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Abstract

This dissertation is an exposition of isoperimetric inequality in various spaces
with a focus on the evolution of techniques as we explore it in more general
spaces. We first focus on differential geometric arguments for Euclidean space
hyper-surfaces and review the uniqueness of the solution to C2 isoperimetric
problem and uniqueness of extremal of C2 isoperimetric functional. We look
into convex bodies in R next and review the popular theorem "Brunn-Minkowski
theorem" using convex geometry techniques. From this theorem, as a corollary,
isoperimetric inequality for the convex body is proved
We also discuss Isoperimetric inequality for graphs and for 2k-regular graphs,
analyze how it relates with the problem of bounding the second eigenvalue.

v



Chapter 1

Introduction

The literal meaning of ’isoperimetric’ is ’having the same perimeter’. Isoperi-
metric inequality is a geometric inequality which relates the perimeter and the
volume of a domain. Classical isoperimetric inequality in the plane is defined as
the curve, if any, which maximizes the enclosed area among all the closed curves
of a fixed perimeter or among all the closed curves the curve which minimizes
the perimeter in the plane surrounding a fixed area.

People have defined Isoperimetric inequalities for various spaces like Eu-
clidean space and Riemannian manifolds. In Euclidean space, sharp isoperimet-
ric inequality is found while in Riemannian manifolds, isoperimetric inequality
is not exact but is close enough to get its global information.
Only Isoperimetric inequality in Euclidean spaces, e.g. in Rn and then specifi-
cally in convex subsets of Rn are discussed here.

In chapter (2), I first discussed some preliminaries defining some basic defi-
nitions and terms associated with convex Geometry.

Isoperimetric inequality in R2 is formulated in the chapter(3), and method-
ology is generalized for Rn and then the theorem which discusses the uniqueness
and existence of the solution to Isoperimetric Problem which is a disk is demon-
strated and proof of it is also described by using classical calculus.
We have further demonstrated the proof of Isoperimetric inequality in R2 using
2-dimensional divergence theorem.
Next, I have demonstrated Isoperimetric inequality in domains with C2 bound-
ary. In that, I first started giving standard local calculations pertaining to
Hypersurface differential geometry in Euclidean space. In which, together with
Riemannian divergence and curvatures, I have defined the Riemannian metric
(first fundamental form) and second fundamental form.

Then I have demonstrated some results related to the first variation of do-
main area and volume and their boundaries and then discussed some standard

1



CHAPTER 1. INTRODUCTION 2

local calculations related to differential geometry of Hypersurface in Euclidean
space.
Then I have demonstrated that if a domain provides a solution to C2 Isoperi-
metric problem, it has to be a disk. After that I strengthened this result, that
even if the domain is just an extremal of Isoperimetric functional, it will be a
disk.

Firstly, convex sets and their related properties are provided in the chap-
ter (4) and some important theorems related to the convex hull, and convex
combination are stated and proved.

I defined convex polytopes and convex polyhedral sets and discussed their
properties, and then related theorems are proved. After that, convex functions
are defined.
Further volume and surface area of the convex Bodies are discussed after defin-
ing convex bodies.
In order to evaluate the volume and surface area for the convex body, I have
described the volume and area recursively for polytopes and then established
the volume of the arbitrary convex body by approximating it from the polytope
sequences.

All convex bodies behave something like an Euclidean ball. ’Where the whole
n-ball volume is distributed’ is also discussed, and I found that it is situated
near the Euclidean ball’ s surface.

After that, I have first recursively defined the mixed volume for polytopes
then just as I have defined simple volume; I have defined it for the convex body
by approximating an arbitrary convex body by a sequence of convex polytopes.
Then important characteristics of mixed volume for polytopes and convex bod-
ies are discussed.
Then I have demonstrated the proof of an essential result as a lemma which
will be used for proving the well known "The Brunn-Minkowski Theorem", and
I got Isoperimetric inequality for convex bodies as a corollary from the Brunn-
Minkowski theorem.

Isoperimetric inequalities are also defined for graphs, and in the chapter (5)
I have discussed things related to it, e.g. Isoperimetric number for graphs and
best Isoperimetric function.
The Isoperimetric numbers i(G) and ikG are defined from the [4] paper, and
some fundamental properties of i(G) are discussed. Then, lower bound for ikG
and i(G) in terms of the second eigenvalue of the Laplacian matrix D are proved
with the help of bound on the expectation of the second eigenvalue of a random
2k-regular graph.



Chapter 2

Preliminaries

2.0.1 Curvature
For any C2 path ω : (α, β) → R2, Its derivative w′ is the velocity vector field,
and the acceleration vector field is the second derivative w′′, assuming that w
is an immersion (i.e. w′ never vanishes) in the plane. An infinitesimal element
of the length of the arc is given ds = |ω′(t)| dt.
Unit tangent vector field along ω is T(t) defined as

T(t) = ω′(t)
|ω′(t)| (2.1)

and unit normal vector field N along ω is defined as

N = τT (2.2)

where τ : R2 → R2 is the rotation of R2 by π/2 radians, and
Then its curvature κ is defined as

dT
ds

= κN (2.3)

from equation (2.3 ) we have

dT
ds
·N = κ

N and T are perpendicular to each other so that N·T = 0 and on differentiating
with respect to s we get

N · dT
ds

+ T · dN
ds

= 0

so that we get

T · dN
ds

= −N · dT
ds

= −κ

3



CHAPTER 2. PRELIMINARIES 4

and hence finally get
dN
ds

= −κT (2.4)

2.0.2 Relative Compact Domain
A relatively compact subspace of topological space X is a sub-set with compact
closure.
Every subset of a compact space is relatively compact since closed subsets of a
compact space are compact

2.0.3 Convex Sets
A set A in Rn is convex if x, y ∈ A implies that λx + (1 − λ)y ∈ A for all
λ ∈ [0, 1], , i.e. for any x and y in A the closed line segment [x, y] in Rn joining
them is contained in A.

Figure 2.1: Convex set and non-convex set by Oleg Alexandrov(2007) [8]

A convex linear combination of elements x1, . . . , xk ∈ Rn is the linear
combination

∑k
j=1 λjxj where the coefficients satisfy

k∑
j=1

λj = 1, λj ≥ 0 ∀ j

If A is convex, then any convex linear combination of points of A lies inside A.

2.0.4 Convex Hull and convex combination
Definition 2.0.1 (Convex Hull). For a given set A ⊂ Rn,
Intersection of all convex sets containing A is called its convex Hull and is
denoted by convA.

Intuitively convex hull of A is the smallest convex set containing A which
fills its nonconvex parts and turns out to be a set of all convex combinations of
points of A.
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Figure 2.2: Convex Hull of a nonconvex body by Scott Davidson(2017) [15]

Given a family of convex sets {Ai : i ∈ I}, their intersection
⋂
i∈I Ai is also a

convex set and convA is the intersection of all convex sets containing A. Hence
convA always exists for a set A ∈ Rn.
For two points x, y ∈ A and for α ∈ [0, 1], αx+ (1−α)y is called convex com-
bination of x and y, and its generalization for any number of points is as follows:

Let k ∈ N, let x1, . . . , xk ∈ Rn, and let α1, . . . , αk ∈ [0, 1] with α1 + . . . +
αk = 1, then α1x1 + · · ·+ αkxk is called a convex combination of the points
x1, . . . , xk.

2.0.5 Linear Combination of convex sets
We define linear combination λ1A+ λ2B of two sets A,B ∈ Rn to be

λ1A+ λ2B := {λ1x+ λ2y : x ∈ A, y ∈ B}

where λ1, λ2 ∈ R. This type of addition of sets is also called Minkowski
addition. The Minkowski addition of a circle and a square is illustrated in the
following figure.

Figure 2.3: Minkowski sum of circle and square in the plane by Allen Chou(2013)
[9]
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• λ1A+ λ2B is also a convex set if A and B are convex sets.

• Generally for any set A, A + A = 2A and A − A = 0 does not hold, but
the case when A is a convex set, it holds. Also for λ1, λ2 ≥ 0, we also have

λ1A+ λ2A = (λ1 + λ2)A.
We can prove this property for convex sets easily using the convex prop-
erty.

Proof. First, we see that this property doesn’t hold for every set.
For example, take a simple set in R2, B = {(−1,−1), (1, 1)} then clearly
B +B 6= 2B.
Let a ∈ λ1A+ λ2A then

a = λ1x+ λ2y for some x, y ∈ A where λ1, λ2 ≥ 0.

For λ1, λ2 ≥ 0, λ1

λ1 + λ2
,

λ2

λ1 + λ2
∈ (0, 1)

and also
λ1

λ1 + λ2
+ λ2

λ1 + λ2
= 1

so that from convex property(
λ1

λ1 + λ2
x+ λ2

λ1 + λ2
y

)
∈ A.

Now

λ1x+ λ2y = (λ1 + λ2)
(

λ1

λ1 + λ2
x+ λ2

λ1 + λ2
y

)
∈ (λ1 + λ2)A.

So a ∈ (λ1 + λ2)A and hence
λ1A+ λ2A ⊂ (λ1 + λ2)A.

Other direction is trivial as
if a ∈ (λ1 + λ2)A then a = (λ1 + λ2)x for some x ∈ A

and
a = (λ1 + λ2)x = λ1x+ λ2x ∈ λ1A+ λ2A

Hence
λ1A+ λ2A ⊃ (λ1 + λ2)A.

So that
λ1A+ λ2A = (λ1 + λ2)A.

Definition 2.0.2. K and L are said to be Homothetic, if and only if for some
x ∈ Rn, α ∈ R
K = αL+ x or L = αK + x.
Note that if one of K,L is a point, then K and L are trivially homothetic.



CHAPTER 2. PRELIMINARIES 7

2.0.6 Convex body
A convex body in Rn is a nonempty compact convex set with nonempty interior.
e.g.convex Polytope in Rn, Cube [−1, 1]n in Rn, (n)-dimensional regular solid
simplex (convex hull of n+ 1 equally spaced points).

2.0.7 Affinely Independent
Points x1, . . . , xk ∈ Rn are called affinely Independent if the following
vectors x2 − x1, . . . xk − x1 are linearly independent.

• linearly Independent is defined for vectors in Rn whereas affinely indepen-
dence is defined for points in Rn.

2.0.8 Simplex
A simplex is the convex hull of affinely independent points, and
a r-simplex is the convex hull of r + 1 affinely independent points.

Figure 2.4: Graph of n-Simplexes for n=2 to 7 by Weisstein(2020) [12]
(12)

2.0.9 Hyperplane
In general, the word “hyperplane” refers to an (n− 1)-dimensional flat in Rn.
A hyperplane is a subspace whose dimension is one less than that of its ambient
space.
It is the preimage of a linear function from Rn to R, i.e.

H = {x ∈ V : aT · x = b} (2.5)

where a ∈ Rn and b is any other arbitrary constant.
Or simply H = {f = b} where f is a linear function from Rn to R .
It can be written as a linear equation of the form

a1x1 + a2x2 + ...+ anxn = b,

where a1, a2, ..an ∈ R and (a1, a2, a3, ..., an) is a normal vector to the hyperplane.

Two half-spaces determined by hyperplane H are

H− = {x ∈ V : aT · x ≤ b}
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and
H+ = {x ∈ V : aT · x ≥ b}.

Figure 2.5: Half spaces image by Tanoumand(2019) [14]

Let A,B be subsets of Rn and H = {f = b} be a hyperplane. We say that
A and B are separated by H if A and B lie in different closed half-spaces
determined by H.
If neither A nor B intersects H, we say H strictly separates A and B.

Definition 2.0.3. Let A be a subset of Rn which is closed and convex. We say
hyperplane H = {f = α} is supporting hyperplane of A at x ∈ H if A∩H 6= ∅
and A is contained in any of the two closed half-spaces {f ≤ α}, {f ≥ α}.

Figure 2.6: Supporting hyperplane from Wikidots(2019) [11]
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Supporting half-space of A is half-space which contains A and is bounded
by supporting hyperplane of A, and the set A ∩ H is called support Set and
any of its point x ∈ A ∩H is called supporting point.

2.0.10 Hypersurface
A hypersurface is a manifold of dimension (n − 1), embedded in an ambient
space of dimension (n), generally an Euclidean space. It is a generalization of
the hyperplane, plane curve and surfaces. In R2 it is a plane curve and, in R3

it is a surface.
If M and N are differentiable manifolds such that dim(M) − dim(N) = 1

and if animmersion is defined as f : N →M then f(N) is a Hypersurface in M.
For example

x2
1 + x2

2 + x2
3 + · · ·x2

n = 1

is an (n− 1)-dimensional hypersurface in Rn.

2.0.11 Hahn-Banach Separation Theorem
Can we always draw a line between given two sets, A and B? If A and B are
convex, then we can surely draw a line between them. If they aren’t, we could
easily run into problems and can easily see it in the following figures.

Figure 2.7: Drawing Hyperplane between two domains by Oleg Alexan-
drov(2008) [10]

Definition 2.0.4. Let X be a topological vector space. We say A,B ⊂ X are
separated if there is f ∈ X∗( Set of all functional from X → C), f 6= 0, and
α ∈ R such that

A ⊂ (Re f)−1((−∞, α])
B ⊂ (Re f)−1([α,+∞))
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And are strictly separated if

A ⊂ (Re f)−1((−∞, α))
B ⊂ (Re f)−1((α,+∞))

where Re f is the real part of f .

And
( Re f)−1((−∞, α]) is called a closed half-space.

( Re f)−1((−∞, α)) is called an open half-space.

( Re f)−1({α}) is called a closed affine hyperplane.

Lemma 2.0.1. Let K be a nonempty closed convex subset of Rn, Then ∃ a
unique vector in K with the minimum norm.

Proof. Let δ = inf{|x| : x ∈ K} and {xj} be a sequence in K such that |xj | → δ.

Since K is convex, so for any two points xi and xj in the sequence {xj},
from the convex property, their midpoint

xi + xj
2 ∈ K

and from the definition of δ ∣∣∣∣xi + xj
2

∣∣∣∣ ≥ δ2

=⇒ |xi + xj |2 ≥ 4δ2.

From parallelogram law

|xi − xj |2 = 2 |xi|2 + 2 |xj |2 − |xi + xj |2

≤ 2 |xi|2 + 2|xj |2 − 4δ2 → 0

as |xi| , |xj | → δ when i, j →∞.
So {xj} is a Cauchy Sequence, and so it has its limit point x and x ∈ K as K
is closed and also

lim
j→∞

|xj | = |x|

because map x→ |x| is a continuous function from Rn to R.

This limit x is unique also otherwise

if ∃y ∈ K such that |y| = δ then |x− y|2 ≤ |x|2 + |y|2 − 4δ2 = 0
So x = y
Hence proved.
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We will be using the above lemma to prove the Hahn-Banach Extension
theorem.

Theorem 2.0.2. (Hahn-Banach Separation Theorem)

Let X be a topological vector space, A and B, convex, nonempty subsets of X
and A is open then ∃f ∈ X∗, α ∈ R such that ∀x ∈ A,∀y ∈ B

Re f(x) < α ≤ Re f(y)

and for F = R it is simply

f(x) < α < f(y).

Proof. ( For F = R case) Given two disjoint subsets A and B in X

define K = A+ (−B) = {a− b, a ∈ A, b ∈ B}

Since A and B are convex, K is also convex and so its closure, K̄ is also convex.
Hence we can apply the above lemma (2.0.1) for K̄ so that we get a unique
vector v ∈ K̄ with the minimum norm.
For any n ∈ K̄, as K̄ is convex, the line segment

v(1− t) + tn = v + t(n− v) ∈ K̄, 0 ≤ t ≤ 1

and
|v|2 ≤ |v + t(n− v)|2 = |v|2 + 2t〈v, n− v〉+ t2|n− v|2.

Now for 0 < t ≤ 1

0 ≤ 2〈v, n〉 − 2|v|2 + t|n− v|2

and let t→ 0 then 〈n, v〉 ≥ |v|2 so for any x and y, x ∈ A, y ∈ B, we have

〈x− y, v〉 ≥ |v|2 as K = A+ (−B).

Now if v is nonzero then.

〈x, v〉 − 〈y, v〉 > |v|2

.

〈x, v〉 − |v|2 > 〈y, v〉.

If for any y ∈ B the above inequality is valid, then on taking supremum over y
in the right side also it will remain valid.

〈x, v〉 − |v|2 > sup
y∈B
〈y, v〉.
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So we have
〈x, v〉 > sup

y∈B
〈y, v〉+ |v|2.

Above inequality is valid for any x ∈ A so on taking infimum over x on the
left side also, it will remain valid
hence

inf
x∈A
〈x, v〉 > |v|2 + sup

y∈B
〈y, v〉. (2.6)

So

〈y, v〉 6 sup
y∈B
〈y, v〉 6 sup

y∈B
〈y, v〉+ |v|2.

Hence finally we do have

〈x, v〉 > sup
y∈B
〈y, v〉+ |v|2. (2.7)

and
〈y, v〉 6 sup

y∈B
〈y, v〉+ |v|2. (2.8)

Now if we consider α = supy∈B〈y, v〉+ |v|2 then we found a vector v whose
correspondent functional

f = 〈x, v〉 ∀ x ∈ A, y ∈ B

is appropriate functional which satisfies required condition

f(x) < α < f(y) for α = sup
y∈B
〈y, v〉+ |v|2.

Theorem 2.0.3. Each closed, convex set in Rn is the intersection of closed
half-spaces.

Proof. Let C ⊆ Rn closed, convex set and H = {H : H ⊃ C}, i.e. set of all
hyperplanes that contain C
then we have to prove that

C =
⋂
H∈H

H.

For each C ⊆ H,H ∈ H so

C ⊆
⋂
H∈H

H.

So the first part is proved.
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Now the remaining part is to show that.

C ⊇
⋂
H∈H

H.

Or to show that
if x /∈ C then x /∈

⋂
H∈H

H.

Choose a point x outside C, i.e. x /∈ C then using Hahn-Banach Theo-
rem (2.0.2), ∃ hyperplane A which separates C from x.
From this hyperplane, its one half-space contains C so x will not belong to that
half-space of A and so

x /∈
⋂
H∈H

H

hence proved.



Chapter 3

Isoperimetric inequality in
Rn

The isoperimetric problem is to find the domain which contains the greatest
area on considering all bounded domains with a fixed given perimeter.

3.1 Isoperimetric inequality in the Plane(R2)
In R, the discrete measure of the boundary of any bounded open subset of R is
greater than or equal to 2, and equal to 2 only when given bounded open subset
is just an open interval. So open interval is the solution to the isoperimetric
problem in R.
In R2, isoperimetric inequality relates the volume and area of a domain.
Disk turns out to be the solution of the isoperimetric problem in R2.

If the area of the domain is A and the length of its boundary(perimeter) is L
then using values of perimeter and area of the disk, as an analytical inequality,
Isoperimetric inequality can be written as

L2 ≥ 4πA (3.1)

For a domain with a specified volume, its area can be increased by taking the
mirror image of its concave part(first of following figure (3.1) or in the way
shown in second following figure (3.1).

14
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Figure 3.1: Making area to volume ratio larger by Oleg Alexandrov(2007) [13]

Separating Hyperplane

For Rn, n ≥ 2, it can be generalized as:

A(∂Ω)
V (Ω)1−1/n ≥

A
(
Sn−1)

V (Bn)1−1/n (3.2)

where Ω is any bounded domain in Rn and ∂Ω is its boundary, V denotes
the volume of the domain (n−measure), and A denotes the area of the domain
(n− 1 measure), Bn is the unit disk in Rn, and Sn−1, the unit sphere in Rn.
Let ωn denote the (n)-dimensional volume of Bn and cn−1 the
(n− 1)-dimensional surface area of Sn−1.
We have a standard result of ωn and cn−1 for Rn as following

cn−1 = 2πn/2

Γ(n/2) . (3.3)

ωn = cn−1

n
= πn/2

Γ
(
n
2 + 1

) . (3.4)

where Γ is the standard gamma function.
Together (3.2), (3.3) and (3.4) gives us a simple form of Isoperimetric inequality
as following

A(∂Ω)
V (Ω)1−1/n ≥ nω

1/n
n . (3.5)

Theorem 3.1.1. (Uniqueness for Smooth Boundaries.)
Given the area A, let D vary over relatively compact domains in the plane of
area A with C1 boundary, and suppose that the domain Ω and its boundary
∂Ω ∈ C2 realizes the minimal boundary length among all such domains D. Then
we claim that Ω is a disk.
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Proof. since Ω is relatively compact in R2, there exists a simply connected
domain Ω0 such that

Ω = Ω0\{ finite disjoint union of closed topological disks }.

However, Ω0 = Ω otherwise on adding the topological disks to Ω, will increase
its area and decrease the length of the boundary and so Ω will no longer have
minimal boundary length.
So Ω0 = Ω, and it is bounded by an embedded circle.

We assume that the path Γ is oriented(i.e. it has no self-intersection points,
and on travelling through it, its interior always remains on the same side.) and
hence its normal vector which is denoted by ν = −N.

Let Γ: S1 → R2 ∈ C2 be the embedding of the boundary of Ω.
Consider a 1-parameter family Γε : S2 → R2 of embeddings:

v : (−ε0, ε0)× S1 → R2

such that v(ε, t) is given by:

v(ε, t) = Γε(t) = Γ(t) + Ψ(ε, t)ν(t), Ψ(0, t) = 0 (3.6)
is C1.
We have

∂v

∂ε
= ∂Ψ

∂ε
ν. (3.7)

and
∂v

∂t
= Γ′ +

{
∂Ψ
∂t
ν + Ψν′

}
= {1 + κΨ}Γ′ + ∂Ψ

∂t
ν. (3.8)

which implies

∣∣∣∣∂v∂t
∣∣∣∣ =

{
(1 + κΨ)2 + 1

|Γ′|2

(
∂Ψ
∂t

)2
}1/2

|Γ′| .

Let
φ(t) := ∂Ψ

∂ε

∣∣∣∣
ε=0

.

Expanding Ψ(ε, t) around ε using Taylor series expansion we get

Ψ(ε, t) = εφ(t) + o(ε), ∂Ψ
∂ε

= φ(t) + o(1), ∂Ψ
∂t

= O(ε).

On simplifying and ignoring O2(ε) and its higher-order term, we will get∣∣∣∣∂v∂t
∣∣∣∣ = |Γ′| {1 + εκφ+ o(ε)}.
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The area element dA in coordinate (ε, t) is given by

dA =
∣∣∣∣∂v∂ε × ∂v

∂t

∣∣∣∣ dεdt = φ |Γ′| [1 + o(1)]dεdt = [φ+ o(1)]dεds. (3.9)

We have A (Ωε) = A(Ω) for all ε, so for small ε

0 = A (Ωε)−A(Ω) =
∫ ε

0
dσ

∫
Γ
[φ+ o(1)]ds.

So we have ∫
Γ
φds = 0.

Let L(ε) denote the length of Γε.

L(ε) =
∫

S1

∣∣∣∣∂v∂t
∣∣∣∣ dt =

∫
S1
|Γ′| {1 + εκφ+ o(ε)}dt =

∫
Γ
{1 + εκφ+ o(ε)}ds.

We have L′(0) = 0 since Γ has the shortest length.
So

0 = L′(0) =
∫

Γ
κφds.

Therefore we have ∫
Γ
κφds = 0 for ∀φ ∈ C1 :

∫
Γ
φds = 0. (3.10)

Now to show that κ is constant(for showing that Γ is a circle), we choose a
particular choice of φ such that

∫
Γ φds = 0 For any given ψ : S1 → R in C1 take

φ = ψ −
∫

Γ ψds∫
Γ ds

= ψ − 1
L

∫
Γ
ψds.

So that for this φ,∫
Γ

(
ψ − 1

L

∫
Γ
ψds

)
ds =

∫
Γ
ψds−

(
1
L

∫
Γ
ψds

)∫
Γ
ds =

∫
Γ
ψds−

(
1
L

∫
Γ
ψds

)
L = 0.

Thus for this particular φ, from (3.10)

0 =
∫

Γ
κφds =

∫
Γ
κ

(
ψ − 1

L

∫
Γ
ψds

)
ds =

∫
Γ

(
κ− 1

L

∫
Γ
κds

)
ψds.

Now since ψ is arbitrary C1 function we have

κ− 1
L

∫
Γ
κds = 0.



CHAPTER 3. ISOPERIMETRIC INEQUALITY IN RN 18

So that
κ = 1

L

∫
Γ
κds = Constant.

Hence Γ is a circle, and Ω is a disk.

Theorem 3.1.2. (Isoperimetric inequality in R2) Let Ω be a relatively
compact domain in R2, with boundary ∂Ω ∈ C1 Then

L2(∂Ω) ≥ 4πA(Ω) (3.11)

with equality when Ω is a disk.

Proof. Let x = x1e1 +x2e2 be a vector field on R2 with base point x =
(
x1, x2).

We have (2)-dimensional divergence theorem for any vector field x 7→ ξ(x) ∈ R2

with support containing cl Ω.∫
Ω

div ξdA =
∫
∂Ω
ξ · νds (3.12)

where ν denote outward unit normal vector along ∂Ω.

For x = x1e1 + x2e2 we have divx = 2 on all Ω.

So from (3.12), we have

2A(Ω) =
∫

Ω
div xdA =

∫
∂Ω
x · νds.

Using vector-Schwarz inequality we have∫
∂Ω

x · νds ≤
∫
∂Ω
|x|ds.

Furthermore, now using integral Cauchy-Schwarz inequality.∫
∂Ω
|x|ds ≤

{∫
∂Ω
|x|2ds

}1/2{∫
∂Ω

12ds

}1/2
= L1/2(∂Ω)

{∫
∂Ω
|x|2ds

}1/2
.

We have

|x|2 =
(
x1)2 +

(
x2)2 , ∣∣∣∣dx

ds

∣∣∣∣2 =
(
dx1

ds

)2

+
(
dx2

ds

)2

.

Applying Wirtinger’s inequality to each coordinate function x1(s) and x2(s).
implies

2A(Ω) ≤ L1/2(∂Ω)
{∫

∂Ω
|x|2ds

}1/2
≤ L1/2(∂Ω)

{
L2(∂Ω)

4π2

∫
∂Ω
|x′|2 ds

}1/2
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= L2(∂Ω)
2π .

So we have
L2(∂Ω) ≥ 4πA(Ω).

Equality follows easily for the disk as for the disk of radius r,
we have

4π2r2 = L2(∂Ω) = 4πA(Ω) = 4π · πr2 = 4π2r2

3.2 Isoperimetric inequality in domains with C2

boundary
3.2.1 Riemannian metric and First Fundamental Form
Let Γ denote a (n− 1)-dimensional Hypersurface in Rn and is given locally by
the C1 mapping f : A → Rn, where A is an open subset of Rn and f is of
everywhere maximal rank. (i.e. rank of the derivative of f , dpf : Tpf → Rn at
point p ∈ A which is linear, is maximal. )

So f = f(x); and the vectors

∂f

∂x1 ,
∂f

∂x2 , · · · ,
∂f

∂xn−1

are linearly independent and span the tangent space of Γ at every f(x).
We denote n to be continuous normal unit vector field along Hypersurface Γ
and always take the exterior normal unit vector field when Hypersurface Γ is
the boundary of a domain in Rn.

The Riemannian metric of Γ is given locally by the positive definite matrix
G(u), where

G = (gjk) , gjk = ∂f

∂xj
· ∂f
∂xk

, j, k = 1, . . . , n− 1. (3.13)

It is also called the First Fundamental Form.

We use this notation.
G−1 =

(
gjk
)
, g = detG

Also the associated surface area on Γ is given locally by

dA = √gdx1 · · · dxn−1. (3.14)
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3.2.2 Riemannian Divergence
Let Γ be a C2 Hypersurface in Rn (so that Riemannian metric G is C1).
For any tangent vector field ξ along Γ, we can write

ξ =
n−1∑
j=1

ξj
∂f

∂xj
.

and for this its Riemannian Divergence is given by

divΓ ξ = 1
√
g

n−1∑
j=1

∂(ξj√g)
∂xj

(3.15)

For given any (n − 1)-dimensional domain Λ ⊂ Γ, with C1 boundary ∂Λ,
which is (n − 2) - dimension and unit normal exterior vector field ν along ∂Λ,
Riemannian divergence theorem is∫

Λ
divΓ ζdVn−1 =

∫
∂Λ
ξ · νdVn−2 (3.16)

3.2.3 Second Fundamental Form
Second Fundamental Form of Γ in Rn is given locally by

B = (bjk) , bjk = ∂2f

∂xj∂xk
· n, j, k = 1, . . . , n− 1 (3.17)

bjk = ∂2f

∂xj∂xk
· n = ∂

∂xj

(
n · ∂f

∂xk

)
− ∂n
∂xj
· ∂f
∂xk

= − ∂n
∂xj
· ∂f
∂xk

as n is an exterior normal vector field and ∂f
∂x is the basis of tangent space so

that
∂f

∂x
⊥ n

and hence it can also be written as

bjk = − ∂n
∂xj
· ∂f
∂xk

(3.18)

The Mean Curvature H of Γ in Rn is the trace of matrix G−1B, which is
the trace of B relative to G,

H = trG−1B

and Gauss- Kronecker Curvature is given by

K = detG−1B
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Theorem 3.2.1. (First variation of volume and area.) Let Ω be a bounded
domain in Rn, with C2 boundary Γ. Given any C2 time-dependent vector field
X : Rn × R → Rn on Rn, let Φt : Rn → Rn denote the 1-parameter flow deter-
mined by X
Φt and X are related by

d

dt
Φt(x) = X(x, t), Φ0 = id.

and
ξ(x) = X(x, 0), η = ξ|Γ

Then
(i) d

dt
V (Φt(Ω))

∣∣∣∣
t=0

=
∫∫

Ω
div ξdvn =

∫
Γ
η · ndA (3.19)

(ii) d

dt
A (Φt(Γ))

∣∣∣∣
t=0

=
∫

Γ

{
divΓ η

T −Hη · n
}
dA = −

∫
Γ
Hη · ndA (3.20)

Where n is chosen to exterior normal vector field and ηT is tangential part of
η.

Proof. : (i)
If Jφ, denotes the Jacobian matrix of Φt.Then we have

V (Φt(Ω)) =
∫∫

Ω
det Jφ(x)dvn(x) (3.21)

so we have
d

dt
V (Φt(Ω)) =

∫∫
Ω

(
d

dt
det Jφ(x)

)
dvn(x) (3.22)

For any differentiable matrix function t 7→ A(t), where A(t) is non singular
we have

d

dt
detA = detA · tr

(
A−1 dA

dt

)
(3.23)

Therefore

d

dt
V (Φt(Ω)) =

∫∫
Ω

(det Jφt) · tr
(
Jφ−1

t

d

dt
Jφt

)
dvn(x)

Now Jφt is Jacobian matrix so
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(Jφt)
B
A = ∂ΦBt

∂xA
, A,B = 1, . . . , n (3.24)

and at t = 0 we have φ0(x) = x or φ0 is identity so

∂ΦBt
∂xA

∣∣∣∣
t=0

= δBA

where δ is Kronecker delta function.

Furthermore

d

dt
(Jφ)BA = ∂

∂t

∂ΦtB
∂xA

= ∂

∂xA
∂ΦBt
∂t

and at t = 0, which implies

d

dt
(Jφ)BA

∣∣∣∣
t=0

= ∂ξB

∂xA

Since

∂ΦBt
∂xA

∣∣∣∣
t=0

= δBA

so Jφt at t = 0, is an Identity matrix and so its inverse, and det Jφ0 = 1

So

d

dt
V (Φt(Ω))

∣∣∣∣
t=0

=
∫∫

Ω
tr
(
d

dt
Jφt

)
dvn(x) =

∫∫
Ω

div ξdvn (3.25)

Now using divergence theorem we get

d

dt
V (Φt(Ω))

∣∣∣∣
t=0

=
∫∫

Ω
div ξdvn =

∫
Γ
η · ndA (3.26)

Proof. : (ii)
Assume the surface Γ is given locally by x = x(u), and take

y(u, t) = Φt(x(u))
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Denote φ = η · n and the Riemannian metric on Φt(Γ) for each fixed t by

hjk = ∂y
∂uj
· ∂y
∂uk

, j, k = 1, . . . , n− 1 (3.27)

On Γ with metric G and g = det(G), the associated surface area is given locally
by

dA = √gdu1 · · · dun−1 (3.28)
So we have

d

dt
A (Φt(Γ)) =

∫
Γ

∂

∂t

√
det (hjk)du1 · · · dun−1

In calculation of derivative of
√

det (hjk), set H = (hjk) ,H−1 =
(
hjk
)

then

∂

∂t

√
detH = 1

2{
√

detH}−1 detH ·
(

trH−1 ∂H
∂t

)
= 1

2
√

detH
∑
j,k

hjk
∂hkj
∂t

using
d

dt
detH = detH · tr

(
H−1 dH

dt

)
.

Now putting hkj = ∂y
∂uk
· ∂y
∂uj we get

∂

∂t

√
detH =

√
detH

∑
j,k

hjk
∂y
∂uk
· ∂

∂uj
∂y
∂t
.

At t=0 , for η(u) = (∂y/∂t)(u, 0), Along Γ, We can write

η =
n−1∑
`=1

η`
∂x
∂u`

+ φn. (3.29)

where φ = η · n, for t=0, y(u, 0) = x(u) so H = G hence we have

∂

∂t

√
detH

∣∣∣∣
t=0

=
√

detG
∑
j,k

gjk
∂x
∂uk
· ∂η
∂uj
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and

∂η

∂uj
=
n−1∑
`=1

{
∂η`

∂uj
∂x
∂u`

+ η`
∂2x

∂uj∂u`

}
+ ∂φ

∂uj
n + φ ∂n

∂uj
.

So since n is perpendicular to ∂x/∂uk for all k = 1, . . . , n− 1

∑
j,k

gjk
∂x
∂uk
· ∂η
∂uj

=
∑
j,k

gjk
∂x
∂uk
·

(
n−1∑
`=1

{
∂η`

∂uj
∂x
∂u`

+ η`
∂2x

∂u`∂uj

}
+ φ

∂n
∂uj

)

=
∑
j,k,`

gjkgk`
∂η`

∂uj
+
∑
j,k,`

gjkη`
∂x
∂uk
· ∂2x
∂u`∂uj

+
∑
j,k

φgjk
∂x
∂uk
· ∂n
∂uj

=
∑
j

∂ηj

∂uj
+
∑
j

ηj
1
2tr

(
G−1 ∂G

∂uj

)
+
∑
j,k

φgjk
∂x
∂uk
· ∂n
∂uj

=
∑
j

1
√
g

∂
(
ηj
√
g
)

∂uj
+
∑
j,k

φgjk
∂x
∂uk
· ∂n
∂uj

= divΓ η
T − φH.

So we have

d

dt
A (Φt(Γ))

∣∣∣∣
t=0

=
∫

Γ

{
divr ηT −Hη · n

}
dA.

Now since Γ is closed and has no boundary Therefore,∫
Γ
divΓη

T dA = 0.
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so

d

dt
A (Φt(Γ)) |t=0 =

∫
Γ

{
divr ηT −Hη · n

}
dA = −

∫
Γ
Hη · n

}
dA. (3.30)

Following theorem is stated from our reference [2]

Theorem 3.2.2. Let Ω be a bounded domain in Rn whose boundary, Γ is C2

and assume that mean curvature of Γ is constant then Ω will be an n-disk in
Rn.

3.2.4 Ck Isoperimetric problem
Let Ω be a bounded domain in Rn, with Ck boundary, k ≥ 1. We say that
Ω is a solution to the Ck Isoperimetric problem if, for any domain D with Ck
boundary and volume equal to that of Ω, we have

A(∂D) ≥ A(∂Ω)

3.2.5 Ck extremal of the Isoperimetric functional
We say that Ω is a Ck extremal of the Isoperimetric functional if, for any
1 -parameter family of Ck diffeomorphism Φt : Rn → Rn satisfying

V (Φt(Ω)) = V (Ω) ∀ t, we have

d

dt
A (Φt(∂Ω))

∣∣∣∣
t=0

= 0 (3.31)

Theorem 3.2.3. Assume that Ω is a solution to the C2 Isoperimetric problem
with the volume of Ω equal to that of the unit (n)-disk in Rn. Then the mean
curvature H of Γ satisfies

−H ≤ n− 1

on all of Γ.

Proof. Consider the Isoperimetric functional

J(D) = A(∂D)
V (D)1−1/n (3.32)

where D varies over bounded domains in Rn having C2 boundary.
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Notations in this proof are used from the above theorem (3.2.1) which are
following.
We have φt, 1-parameter family of diffeomorphism of Rn, with corresponding
time-dependent vector field

X = X(x, t)

and at time zero, X is

ξ(x) = X(x,0)

and restricting ξ on its boundary, we have

η = ξ|Γ.

As Ω is a solution to the C2 Isoperimetric problem, Ω will minimize the isoperi-
metric functional J(D) so we have

d

dt
J (Φt(Ω))

∣∣∣∣
t=0

= 0

Now on differentiating J(Φt(Ω)) with respect to t, we get

d

dt
J (Φt(Ω))

∣∣∣∣
t=0

= − 1
V (Ω)1−1/n

∫
Γ
Hη ·ndA+

(
1
n
− 1
)

A(Γ)
V (Ω)2−1/n

∫
Γ
η ·n dA

which implies

−
∫

ΓHη · ndA∫
Γ η · ndA

= n− 1
n

A(Γ)
V (Ω) (3.33)

Now that Ω has its V (Ω) = ωn, we should have A(Γ) ≤ cn−1 since Ω is the
solution of Isoperimetric Problem
recall that

ωn = cn−1

n

together implies

−
∫

ΓHη · ndA∫
Γ η · ndA

≤ n− 1 (3.34)

let φ be a nonnegative C∞ function for any w0 ∈ Γ, compactly supported on
a neighbourhood of w0 in Rn. To simplify the above expression, we choose a
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particular vector field X(x, t)

X(x, t) = φ(x)nω0

which is time-independent.
Now picking φ with sufficiently small support about wo we get the left-hand
side of expression (3.34) to be
−H (w0)

and that finally gives

−H(w0) ≤ n− 1

for any ω0 ∈ Γ hence it is proved on all of Γ

As a corollary of the above theorem, we get that mean curvature H is con-
stant.

Corollary 3.2.1. Assume that Ω is a solution to the C2 Isoperimetric prob-
lem with the volume of Ω equal to that of the unit (n)-disk in Rn.Then mean
curvature of H is a constant which is:

H = n− 1
n

A(Γ)
V (Ω)

Proof. To prove that H is constant, we will be using the same argument which
was used in the above proof to prove −H ≤ n− 1,
in the following expression (3.33)

−
∫

ΓHη · ndA∫
Γ η · ndA

= n− 1
n

A(Γ)
V (Ω)

So we repeat the same arguments.

Let φ be a nonnegative C∞ function for any w0 ∈ Γ, compactly supported
on a neighbourhood of w0 in Rn. To simplify the above expression, we choose
a particular vector field X(x, t),

X(x, t) = −φ(x)nω0

which is time-independent.
Now picking φ with sufficiently small support about wo we get left-hand side of
expression (3.33) to be H (w0).
Hence expression (3.33) becomes

H(w0) = n− 1
n

A(Γ)
V (Ω) .

For any ω0 ∈ Γ it is true hence it is proved on all points of Γ.
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Remark: Assume that Ω is a solution to the C2 Isoperimetric problem with
the volume of Ω equal to that of the unit (n)-disk in Rn. Then using the above
corollary (3.2.1) we get that mean curvature of Γ is constant and then from
theorem (3.2.2) we get that Ω will be an (n)-disk in Rn.

Theorem 3.2.4. Assume Ω is a bounded domain in Rn, with C2 boundary Γ
and n, its exterior normal unit vector field along Γ. Assume the mean curvature
H of Γ satisfies

−H ≤ n− 1
along all of Γ. Then

A(Γ) ≥ cn−1

with equality if and only if Ω is a disk in Rn

Theorem 3.2.5. Let Ω be a bounded domain in Rn with C2 boundary that is
an extremal of the C2 Isoperimetric functional. Then ∂Ω has constant mean
curvature.

Proof. We denote φ = η ·n, as Ω is an extremal for the Isoperimetric functional,
so for any vector field X for which

V (Φt(Ω)) = const. ∀ t

From the first part (3.19) of the above theorem (3.2.1)

∫
Γ
φdA = 0

and from the second part (3.20)) of the above theorem (3.2.1∫
Γ
φHdA = 0

Thus we have

∫
Γ φHdA = 0 ∀ φ such that

∫
Γ φdA = 0

from here it implies that H is a constant

Remark: Let Ω be a bounded domain in Rn with C2 boundary that is an
extremal of the C2 Isoperimetric functional.
Then from the above theorem (3.2.5), we get that mean curvature H is constant
and further from theorem (3.2.2) we get that Ω will be an n-disk in Rn.



Chapter 4

Isoperimetric inequality in
convex Subsets of Rn

4.0.1 Convex Polytopes and Polyhedral sets
Convex polyhedrons and convex polytopes are a very interesting class of objects.

Definition 4.0.1. The intersection of finitely many closed half-spaces is called
convex Polyhedral Set or Polyhedron where half-spaces are defined
as {x : aTx ≤ b}, where a is a nonzero vector in Rn and b is another vector in
Rn.

• Polyhedral sets are closed as they are the intersection of closed half-spaces.

• Polyhedral sets are convex sets because the intersection of convex sets is
also convex. We just need to show that half-spaces are convex.

Proof. For aTx1 ≤ b, aTx2 ≤ b
we have

aT (αx1 + (1− α)x2) = αaTx1 + (1− α)aTx2 ≤ b

for x1 and x2 in half-space.
So half-spaces are convex hence Polyhedron is convex.

• Convex polyhedrons may not be bounded; just one half-space can be a
convex polyhedron which is of course unbounded.

Definition 4.0.2. The convex hull of finitely many points x1, . . . , xk ∈ Rn
is called convex Polytope. These are bounded in-fact every bounded convex
polyhedron is a convex polytope.

29
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Every convex polytope is a polyhedron, but the reverse is not valid since convex
polytope needs to be bounded. If a convex polytope is bounded, then both are
equivalent.

• Triangle is the convex hull of 3 distinct points in space, and so is a convex
polytope as well as a convex polyhedron as it is the intersection of 3 closed
half-spaces.

• The convex hull of 4 distinct points in space is a tetrahedron, convex hull
of vertices of a cube is the cube itself.

• For a polytope P, its vertex is defined as point x ∈ P for which P\{x}
is still convex and P is a convex combination of its vertices which is the
next theorem.

Theorem 4.0.1. Let P be a polytope in Rn, and let x1, . . . , xk ∈ Rn be distinct
points.

(a) If P = conv {x1, . . . , xk} , then x1 is a vertex of P, if and only if x1 /∈
conv {x2, . . . , xk} .

(b) P is the convex hull of its vertices.

Proof. (a)
If x1 is a vertex of P then from the definition of vertex, P\ {x1} will be

convex and x1 /∈ P\ {x1}. Hence we have conv {x2, . . . , xk} ⊂ P\ {x1} .
So x1 /∈ conv {x2, . . . , xk} .

For the other direction, on assuming that x1 /∈ conv {x2, . . . , xk} , and
provided that x1 is not a vertex of P, there exists distinct points a, b ∈ P\ {x1}
and λ ∈ (0, 1) such that

x1 = (1− λ)a+ λb

As P = conv {x1, . . . , xk}, a and b can be written as a convex linear com-
bination of x1, . . . , xk so there should exist k ∈ N, µ1, . . . , µk ∈ [0, 1] and
τ1, . . . , τk ∈ [0, 1] with

µ1 + . . .+ µk = 1 and τ1 + . . .+ τk = 1

such that µ1, τ1 6= 1 and

a =
k∑
i=1

µixi, b =
k∑
i=1

τixi (4.1)

as x1 = (1− λ)a+ λb. On putting values of a and b we get

x1 =
k∑
i=1

((1− λ)µi + λτi)xi (4.2)
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that finally gives

x1 =
k∑
i=2

(1− λ)µi + λτi
1− (1− λ)µ1 − λτ1

xi (4.3)

where (1− λ)µ1 + λτ1 6= 1
so x1 can be written as a convex combination of x2, . . . , xk in the last equa-

tion, which is a contradiction.

Proof. (b)
For P = conv {x1, . . . , xk} we can remove those points one by one, which are not
vertices. This will not change the convex hull and will be equal to P as removed
points can be written as a convex combination of other remaining vertex points.
If x is a vertex of P but x /∈ {x1, . . . , xk} then P would be,

P = conv {x, x1, . . . , xk} .

which implies that x can not be written as a convex combination of x1, . . . xk
i.e. x /∈ conv {x1, . . . , xk} = P so x /∈ P that gives contradiction.

Hence P is the convex hull of its vertices.

Definition 4.0.3. The support function hA : Rn → (−∞,∞) for a nonempty
and convex A ⊂ Rn is defined as

hA(u) := sup
x∈A
〈x, u〉, u ∈ Rn.

4.0.2 Convex function
Definition 4.0.4. For a function f : Rn → (−∞,∞], we define epi f as follows

epi f : = {(x, α) : x ∈ Rn, α ∈ R, f(x) ≤ α} ⊂ Rn × R (4.4)

Definition 4.0.5. A function f : Rn → (−∞,∞] is called a convex function, if

f(αx+ (1− α)y) ≤ αf(x) + (1− α)f(y)

for all x, y ∈ Rn, α ∈ [0, 1]
f is called a concave function, if −f is convex.

If A ⊂ Rn is a subset, a function f : A → (−∞,∞) is called convex, if the
extended function f̃ : Rn → (−∞,∞], given by

f̃ :=
{
f on A
∞ on Rn\A

is convex, where A is a convex set. Without loss of generality, we can assume
that convex functions are always defined on all of Rn with this construction.

We define an effective domain of the function where the function is finite.

dom f : = {x ∈ Rn : f(x) <∞}
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Lemma 4.0.2. f is a convex function if and only if epi f is a convex subset of
Rn × R = Rn+1

Proof. First, let epi f is convex,
whenever (x1, β1) , (x2, β2) ∈ epi f, i.e. f (x1) ≤ β1, f (x2) ≤ β2, for all α ∈ [0, 1].
We have α (x1, β1)+(1−α) (x2, β2) ∈ epi f (as epi f is convex subset)

α (x1, β1) + (1− α) (x2, β2) = (αx1 + (1− α)x2, αβ1 + (1− α)β2)

and
(αx1 + (1− α)x2, αβ1 + (1− α)β2) ∈ epi f

So that we have

f (αx1 + (1− α)x2) ≤ αβ1 + (1− α)β2

for all β1 ≥ f (x1) , β2 ≥ f (x2) and all x1, x2 ∈ Rn, α ∈ [0, 1].

As it is satisfied for all β1 ≥ f (x1) , β2 ≥ f (x2), it will also be satisfied for

β1 = f (x1) , β2 = f (x2) .

For the other side
let’s suppose that f is convex, and let

(x1, β1), . . . , (xn, βn) ∈ epi f

for any λ1, . . . , λn ∈ [0, 1] with
∑
λi = 1, the point

(x, β) = λi
∑

(xi, βi) =
(∑

λixi,
∑

λiβi

)
has

β =
∑

λiβi ≥
∑

λif (xi) ≥ f
(∑

λixi

)
= f(x)

Hence (x, β) ∈ epi f, and epi f is convex.
Hence proved.

We can generalize the above theorem as following:
f is convex, if and only if

f (α1x1 + · · ·+ αkxk) ≤ α1f (x1) + · · ·+ αkf (xk) (4.5)

for all k ∈ N, xi ∈ Rn, and αi ∈ [0, 1] with
∑
αi = 1

Definition 4.0.6. A convex function f : Rn → (−∞,∞] is closed if epi f is
closed. For a convex function f : Rn → (−∞,∞], closure of set epigraph of f
is denoted by cl epi f . cl epi f is the epigraph of a closed convex function.
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4.0.3 Convex body
Definition 4.0.7 (Convex body). Convex body in Rn is a nonempty compact
convex set with nonempty interior.

• Convex polytope in Rn is a convex body, but polyhedron is not as it need
not be compact since it may be unbounded.

• Triangle in the plane is a convex body as it has nonempty interior; however,
it is not a convex body if it is considered as a topological subset in space
R3 as then it will have an empty interior.

We denote the space of convex bodies by Kn. For Kn we are taking con-
vex bodies which have empty interior, i.e. lower-dimensional bodies are also
included in Kn. Sum of two convex bodies is a convex body.

K,L ∈ Kn =⇒ K + L ∈ Kn

So set Kn is closed under addition.

Proof. As K and L are convex, for e, f ∈ K + L, let a, b ∈ K and c, d ∈ L s.t.
e = a+ c and f = b+ d

te+ (1− t)f = t(a+ c) + (1− t)(b+d) = (ta+ (1− t)b) + (tc+ (1− t)d) ∈ K+L

for all t ∈ [0, 1].
Hence K+L is convex and as K, L are nonempty and compact K+L will also be
nonempty and compact.

Also, we have
K ∈ Kn, α ≥ 0 =⇒ αK ∈ Kn

So Kn is closed under scalar multiplication operation.

Proof. Let K be a convex set, α ≥ 0 a constant, and αK := {αs | s ∈ K}.
We want to show that αK is convex, i.e. for any x, y ∈ αK and λ ∈ [0, 1] that
the point λx+ (1− λ)y lies in αK.

Take any x, y ∈ αK and λ ∈ [0, 1]. By definition of αK, there exist points
a, b ∈ K such that x = αa and y = αb.
Since K is convex, we know that λa+ (1− λ)b lies in K, i.e.

λa+ (1− λ)b = s

for some s ∈ K. Multiplying the equation by α, we have

λαa+ (1− λ)αb = cs,

which is the same as λx+ (1− λ)y = αs for some s ∈ K.
Hence, by definition of αK, λx+ (1− λ)y lies in αK and K is nonempty so αK
will also be nonempty and also αK will be compact as K is compact.
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Also, since the reflection −K of a convex body K is again a convex body,
αK ∈ Kn, for all α ∈ R, and hence it satisfies properties of being a cone so, Kn
is a convex cone.
Definition 4.0.8. Distance between convex bodies:
For K,L ∈ Kn, we define the distance between K and L as

d(K,L) := inf{ε ≥ 0 : K ⊂ L+B(ε), L ⊂ K +B(ε)} (4.6)

We will use the results of the following theorem from [4] without proving them
here.
Theorem 4.0.3. For K ∈ Kn and ε > 0

1. ∃P ∈ Pn | P ⊂ K and d(K,P ) ≤ ε
and
∃Q ∈ Pn | Q ⊃ K and d(K,Q) ≤ ε

2. ∃P ∈ Pn | P ⊂ K ⊂ (1 + ε)P if 0 ∈ relint K

4.0.4 Volume and surface area of a convex body
We can define volume and surface area for a convex body in an elementary sense
as it is convex. By the way, its volume can also be defined as Lebesgue measure
λn(K) of K for K ∈ Kn.
In an elementary sense, first volume and surface area for polytopes are defined
recursively on dimension n, and then by approximation, they are defined for
arbitrary convex bodies.

Remark- For a convex body K, its support set K(u), u ∈ Sn−1 lies in a
hyperplane parallel to u⊥ and on translating K(u) to u⊥ we get its orthogonal
projection K(u)|u⊥, and we think K(u)|u⊥ as a (n − 1)-dimensional convex
body in Rn−1 on identifying u⊥ with Rn−1.
For determining the volume of a convex body in Rn recursively, we assume that
we already know the volume in (n−1)-dimension and we denote V (n−1) (K(u)|u⊥

)
,

to the (n− 1)-dimensional volume of this projection as this projection is a con-
vex body in Rn−1

Now let us define volume recursively for polytope first.
Definition 4.0.9. For a polytope P ∈ Pn, if n = 1, we have P = [a, b] where
a ≤ b, then we define volume V (1)(P ) := b− a and surface area A(1)(P ) := 2.
For n ≥ 2 and dimP ≤ n − 2, there are no facets in the polytope P , hence its
volume V (P ) = 0 and surface area A(P ) = 0.
We define set Au to be the set of all u ∈ Sn−1 for which P (u) is a facet of P.
Then

V (n)(P ) :=


1
n

∑
u∈Au

hP (u)V (n−1) (P (u)|u⊥
)

dimP ≥ n− 1

0 if dimP ≤ n− 2
(4.7)
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and

A(n)(P ) :=


∑
u∈Au

V (n−1) (P (u)|u⊥
)

if dimP ≥ n− 1

0 if dimP ≤ n− 2
(4.8)

Recall that here hP (u) is the support function of P at point u and P (u) is sup-
port set of P at u.

When dimP = n − 1, P is like a hyperplane of dimension n − 1 and hence
there are only two support sets for P which are its facets, P = P (u0) and P =
P (−u0) , where u0 is a normal vector to P . In that case we have

V (n−1) (P (u0) |u⊥0
)

= V (n−1) (P (−u0) |u⊥0
)

and from the definition of support function, we have hP (u0) = −hP (−u0),
so we find V (P ) = 0, which matches to Lebesgue measure result also and

A(P ) = 2V (n−1) (P (u0) |u⊥0
)
. (4.9)

Theorem 4.0.4. For a polytope P ∈ Pn volume of P is equal to its Lebesgue
measure i.e.

V (K) = λn(K)

Proof. we will be proving this result using induction.
n = 1 case is trivial.

Both n-dim volume and n-dim Lebesgue measure are zero for dimP ≤ n−1.
Assume that the result is true for (n− 1)-dim volume then
for dimP = n from the definition of volume we have

V (P ) = 1
n

k∑
i=1

hP (ui)V (n−1) (P (ui) | u⊥i
)

P (ui) | u⊥i is an (n− 1) dimensional convex polytope so for this its volume
will be equal to its lebesgue measure by inductive assumption for dimension
(n− 1) hence we have

V n−1(P (ui) | u⊥i ) = λn−1(P (ui) | u⊥i )

we can assume that first m support sets hP (u1) , . . . , hP (um) ≥ 0 and next
k −m support sets hP (um+1) , . . . , hP (uk) < 0, without loss of generality and
then take the pyramid-shaped polytopes defined by

Pi := conv (P (ui) {0}), i = 1, . . . , k.
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Then
V (Pi) = 1

n
hP (ui)V (n−1) (P (ui) | u⊥i

)
, i = 1, . . . ,m,

and
V (Pi) = − 1

n
hP (ui)V (n−1) (P (ui) | u⊥i

)
, i = m+ 1, . . . , k

Therefore we have

V (P ) =
m∑
i=1

V (Pi)−
k∑

i=m+1
V (Pi) =

m∑
i=1

λn (Pi)−
k∑

i=m+1
λn (Pi) = λn(P )

above expressions follow by the fact that V (n−1) (P (ui) | u⊥i
)
is (n− 1) dimen-

sional and is its support set, hence it is base of the pyramid and height of this
pyramid is hP (u) so for this pyramid we have its volume as

λn(Pi) = 1
n
× V (n−1) (P (ui) | u⊥i

)

From the above theorem (4.0.4), we can consider the volume of polytope as
a Lebesgue measure so all properties of Lebesgue measure will also be satisfied
by V (P ) and hence we have the following properties for V (P ).

Proposition 1. • V and A are invariant with respect to rigid motions.

• V (αP ) = αnV (P ), A(αP ) = αn−1A(P ), for α ≥ 0

• V (P ) = 0, if and only if dimP ≤ n− 1

• if P ⊂ Q, then V (P ) ≤ V (Q) and A(P ) ≤ A(Q) (Monotone Property)

Now we will be defining volume and surface area for a convex body.

Definition 4.0.10. For a convex body K ∈ Kn, we define

V+(K) := inf
P⊃K

V (P ), V−(K) := sup
P⊂K

V (P )

and
A+(K) := inf

P⊃K
A(P ), A−(K) := sup

P⊂K
A(P )

Theorem 4.0.5. For K ∈ Kn, We have

V+(K) = V−(K) (4.10)

A+(K) = A−(K) (4.11)
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Proof. We will be using Monotone property of volume and surface area from
the above property (1) to prove it

V−(K) ≤ V+(K)

A−(K) ≤ A+(K)

We can assume that 0 ∈ relintK as V−(K), V+(K), F−(K) and F+(K) are
motion invariant so after a suitable transformation, 0 ∈ relintK and from 2nd
part of theorem (4.0.3), for ε > 0, we can find a polytope P such that

P ⊂ K ⊂ (1 + ε)P

and then from the above proposition (1) and using definition (4.0.10) of
V+(K) and V−(K) we have

V (P ) ≤ V−(K) ≤ V+(K) ≤ V ((1 + ε)P ) = (1 + ε)nV (P )

and

A(P ) ≤ A−(K) ≤ A+(K) ≤ A((1 + ε)P ) = (1 + ε)n−1A(P )

now since ε is arbitrary, for ε→ 0 we have
V+(K) = V−(K) and A+(K) = A−(K)

Definition 4.0.11. For K ∈ Kn its volume V (K) and surface area A(K) are
defined as

V (K) =: V+(K) = V−(K)

and

A(K) := A+(K) = A−(K)

Theorem 4.0.6. For a convex body K ∈ Kn, the volume of K is equal to its
Lebesgue measure i.e.

V (K) = λn(K)

Proof. Using the definition (4.0.11) of volume of convex body, we get

V (K) =: V+(K)
= inf
P⊃K

V (P )

= inf
P⊃K

λn(P )

= λn(K)

Hence proved.

Now using the above theorem (4.0.6) all properties of λn(K) will also get
satisfied by V (K) so we have the following properties.

Proposition 2. For K ∈ Kn, V (K) and A(K) has following properties
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1. With respect to rigid motions V and A are invariant .

2. for α ≥ 0, V (αK) = αnV (K), A(αK) = αn−1A(K),

3. V (K) = 0, if and only if dimK ≤ n− 1

4. if K ⊂ L, then A(K) ≤ A(L) and V (K) ≤ V (L)

Definition 4.0.12. We can also define A(K) for K ∈ Kn in an alternative way
in terms of derivative of V (K) as following:

A(K) = lim
ε↘0

1
ε

(V (K +B(ε))− V (K)) (4.12)

Convex bodies have a fascinating property that all convex bodies act like
Euclidean balls a little bit. In some examples of the convex body, it resembles
the Euclidean ball more while in some others it resembles very less.

Cube [−1, 1]n is the simplest example of a convex body. For it, the radius of the
largest ball inside cube(i.e. inscribed) and smallest ball covering it(circumscribed)
is 1 and

√
n respectively.

Smallest ball covering the convex body does not fit well to the cube as the di-
mension grows, i.e. the cube is less and less like a ball as its dimension grows,
because the distance of the cube’s corner from the origin increases as dimension
increases.

The ratio of the radius of inscribed and circumscribed balls is n for regular
solid simplex which is the convex hull of n + 1 equally spaced points, which is
even worse than for the cube.

4.0.5 Distribution of volume for Bn

For unit ball

Bn2 =
{
x ∈ Rn :

n∑
1
x2
i ≤ 1

}
from (3.4) its n-dimensional volume ωn has standard result which is following

ωn = πn/2

Γ
(
n
2 + 1

)
which is very small for large n. From Stirling’s approximation for n! which is

n! ∼
√

2πn
(n
e

)n
We have

Γ
(n

2 + 1
)

=
(n

2

)
! ∼
√

2πe−n/2
(n

2

)(n+1)/2
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So approximately ωn is (√
2πe
n

)n
Now as the volume of the Euclidean ball of radius r is ωnrn, in other terms, we
can say that roughly the Euclidean ball of volume 1 has radius

r =
√

n

2πe = ω
−1
n
n

Which is sufficiently large for a large dimension.
So as the dimension grows, radius required for the Euclidean ball to occupy the
volume 1 is sufficiently large and is proportional to

√
n

Now let us see where its all volume concentrates.
We now consider the (n−1)-dimensional slice passing through the center of the
ball of volume 1 and estimate its (n− 1)-dimensional volume.
As slice is (n− 1)-dimensional disk with its radius ω−1/n

n we have its volume

Vn−1 = ωn−1r
n−1 = ωn−1

(
1
ωn

)(n−1)/n

and for large n which turns out to be
√
e using Stirling’s approximation in

the same way as above.
Now we try to find the volume of its parallel slice at a distance d from the
center which is also a (n− 1)-dimensional slice of different radius

√
r2 − d2, so

this smaller slices has its volume as following:
For radius r, volume is

√
e, so for radius 1, volume is

√
e

rn−1 and hence for radius√
r2 − d2, the volume will be

√
e

(√
r2 − d2

r

)n−1

=
√
e

(
1− d2

r2

)(n−1)/2

Now putting approximate value of r which is
√
n/(2πe), we get volume

=
√
e

(
1− 2πed2

n

)(n−1)/2

≈
√
e e(−πed

2)

So volume distribution approximately follows Gaussian distribution in a sin-
gle direction, with the variance 1

2πe and its variance is independent of n, so here
we get a very important result that given the fact that volume 1 ball’s radius
increases as r =

√
n

(2πe) , nearly all the volume remains inside a slab of constant
width.
For example in the slab {

x ∈ Rn : −1
2 ≤ x1 ≤

1
2

}
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its 96% volume lies, and as n grows, its size grows and about its 96% volume
lies more and more about central slice as in the following figure it is shown

Figure 4.1: 96% volume strip in different dimensions by Ball(2002) [3]

So volume seems to concentrate on the centre of the ball as the volume is
concentrated on its (n− 1)-dimensional slices passing through origin which are
all subspace of the ball and all these subspace meet on the origin. But for large
n as the slice goes very thin and considering all such slices in each direction of
the ball, the volume should lie near the surface of the ball.

So finally we reach to a conclusion that for large dimension objects its mea-
sure(here volume) tends to concentrate in places where our low-dimensional
intuition considers small.
Hence our intuition in the lower dimension of measure distribution is wrong for
higher dimension.

4.0.6 Mixed volume for convex body
First, we define mixed volume for polytopes recursively:
We denote N (P1, P2, . . . Pk) to be the set of all facets normal of the convex
polytope P1 + P2 + . . .+ Pk

Definition 4.0.13. We define the mixed volume V (n) (P1, . . . , Pn) of P1, . . . , Pn
recursively for polytopes P1, . . . , Pn ∈ Pn,

for n = 1, P1 = [a, b] with a ≤ b,
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V (1) (P1) := V (P1) = hP1(1) + hP1(−1) = b− a, (4.13)

and for n ≥ 2

V (n)(P1, . . . , Pn) := 1
n

∑
u∈N (P1,...,Pn−1)

hPn(u)V (n−1) (P1(u), . . . , Pn−1(u)|u⊥
)
.

(4.14)

Theorem 4.0.7. If
(
P

(k)
1

)
k∈N

, . . . ,
(
P

(k)
n

)
k∈N

are arbitrary approximating

sequences converging to convex bodies K1, . . . , ,Kn ∈ Kn respectively.
i.e. each sequence of polytopes P (k)

j converges to a convex body, Kj , j = 1, . . . , , n,
as k →∞, then limit

V (K1, . . . , ,Kn) = lim
k→∞

V
(
P

(k)
1 , . . . , , P (k)

n

)
(4.15)

exists and does not depend on the choice of approximating sequences
(
P

(k)
j

)
k∈N

.

Mixed volume of K1, . . . , ,Kn is defined to be V (K1, . . . , ,Kn)
and the mapping V : (Kn)n → R defined by (K1, . . . ,Kn) 7→ V (K1, . . . ,Kn) is
called mixed volume.

Precisely

V (K1, . . . ,Kn) = 1
n!

n∑
l=1

(−1)n+l
∑

1≤r1<···<rl≤n

V (Kr1 + · · ·+Krl) (4.16)

and, for m ∈ N,K1, . . . ,Km ∈ Kn and α1, . . . , αm ≥ 0

V (α1K1 + · · ·+ αmKm) =
m∑
i1=1
· · ·

m∑
in=1

αi1 · · ·αinV (Ki1 , . . . ,Kin) (4.17)

Above theorem is stated here from [1] without proof.

Proposition 3. for all J ∈ Kn
we have

V (J, . . . , J) = V (J)

and
nV (J, . . . , J, B(1)) = A(J)

Proof. (i)
Assume that given convex body J is just a polytope, so first we prove the
required result for n copies of any polytope P ∈ P and then approximating any
general convex body J ∈ Kn by a sequence of polytopes i.e. Pk → K, we will
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approximate n copies of J by n copies of the same sequence of polytopes Pk to
prove the result for a general convex body J .
So we start with proving the result for P and for that we use induction on n.
For n = 1, V (P ) = V (P )
For n ≥ 2, assume that the induction step is true so that we have

V (P, P, . . . , P︸ ︷︷ ︸
n−1

) = V (P )

then for the dimension n, mixed volume for n copies of polytope P would be

V (P, P, . . . , P︸ ︷︷ ︸
n

) = V ({P, P, . . . , P︸ ︷︷ ︸
n−1

, P}) = V (P, P ) = V (P )

(from the induction step).
Hence for any polytope P ∈ Pn result is proved. Now for any general convex
body J ∈ Kn, taking sequence Pk → J , from above theorem (4.0.7), we have

V (J, J, . . . , J︸ ︷︷ ︸
n

) = lim
k→∞

V (Pk, Pk, . . . , Pk︸ ︷︷ ︸
n

) = lim
k→∞

V (Pk) = V ( lim
k→∞

Pn) = V (P )

from continuity of volume functional.
Hence required result is proved for any general convex body K ∈ K.

(ii)
Again first we will prove the required result for polytope P ∈ Pn then for any
general convex body J ∈ Kn by approximation of polytopes from inside and
from outside.
So let (Pk)k∈N be a sequence of polytopes with Pk → B(1). Then,

nV (P, . . . , P, Pk) 7→ nV (P, . . . , P,B(1))

and
nV (P, . . . , P, Pk) =

∑
u∈N(P )

hPk(u)v(P (u))

→
∑

u∈N(P )

hB(1)(u)v(P (u)) =
∑

u∈N(P )

v(P (u)) = A(P )

Now for arbitrary bodies J, we approximate J, from inside and outside by poly-
topes and use monotonicity of the surface area measure to get the required
result.

4.0.7 The Brunn-Minkowski Theorem
Brunn-Minkowski Theorem basically says that the function

s 7→ n
√
V (sK + (1− s)L), s ∈ [0, 1]
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is concave for K,L ∈ Kn. We will get inequalities for mixed volumes, and as a
consequence also get the famous Isoperimetric inequality from the concavity of
the above function.

We will be using the result of this following lemma further for proving Brunn-
Minkowski Theorem

Lemma 4.0.8 (Power mean inequality
). For a ∈ (0, 1) and r, s, t > 0(

a

r
+ 1− a

s

)[
art + (1− a)st

] 1
t ≥ 1

with equality, if and only if r = s

Proof. For proving this result, we will be using the fact that the function x →
lnx is strictly concave,
so taking ln of the expression as argument of expression is always positive. we
get

ln
{(

a

r
+ 1− a

s

)[
art + (1− a)st

] 1
t

}

= 1
t

ln
(
art + (1− a)st

)
+ ln

(
a

r
+ 1− a

s

)
Now using the strict concavity of function x→ lnx we get

1
t

ln
(
art + (1− a)st

)
+ln

(
a

r
+ 1− a

s

)
≥ 1
t

(
a ln rt + (1− a) ln st

)
+a ln 1

r
+(1−a) ln 1

s

= (a ln r + (1− a) ln s) + a ln 1
r

+ (1− a) ln 1
s

= 0

Now, as logarithm is the strict monotone function, we get the required result.(
a

r
+ 1− a

s

)[
art + (1− a)st

] 1
t ≥ 1

clearly equality follows when r = s

Theorem 4.0.9. (Brunn-Minkowski Theorem) For convex bodies J,K ∈
Kn and a ∈ (0, 1)

n
√
V (aJ + (1− a)K) ≥ a n

√
V (J) + (1− a) n

√
V (K) (4.18)

with equality, if and only if J and K lie in parallel hyperplanes or J and K are
homothetic( see (??)

Proof. Based on the dimension of the convex body, we consider four cases.
First Tackle trivial case separately
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• J and K lie in parallel hyperplanes

• Both J and K are lower dimensional

• One of them is lower dimensional

• Main case: Both J and K are n dimensional

Based on the dimension of the convex body, we consider four cases.

Case 1 : When J and K lie in parallel hyperplanes. Then aJ + (1− a)K
also lies in a hyperplane, so that

V (J) = V (K) = 0

and also
V (aJ + (1− a)K) = 0

hence proved for this case.

Case 2: When dim J ≤ n − 1 and dimK ≤ n − 1, but J and K do not
lie in parallel hyperplanes,
for all a ∈ (0, 1),

dim(J +K) = n.

and also
dim(aJ + (1− a)K) = n

V (J) = V (K) = 0 as dim J,K ≤ n− 1

Therefore for all a ∈ (0, 1)

a n
√
V (J) + (1− a) n

√
V (K) = 0 ≤ n

√
V (aJ + (1− a)K)

Case 3: When dim J ≤ n− 1 and dimK = n (or vice versa)

Then, for x ∈ J, we get

ax+ (1− a)K ⊂ aJ + (1− a)K

Since adding a point x is translation of (1− a)K and won’t affect volume.

V (ax+ (1− a)K) = (1− a)nV (K)

then
V (ax+ (1− a)K) = V ((1− a)K) ≤ V (aJ + (1− a)K)

and equality occur, if and only if J = {x}
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Case 3:
Now for the (n)-dimensional case this is the outline of the proof.

• Reduce to V (J) = V (K) = 1. Geometrically we are scaling down the
objects to unit volume.

• Translate the objects so that their center of gravity is at origin.

• Establish induction base case for R

• Take a hyperplane Eλ at distance λ cutting the convex body J with the
cut Jλ = J ∩ Eλ.

• Define volume of half-space as a invertible function of λ

• Apply induction step on hyperplane cuts Jβ and Kγ for inequality

• Proving for equality case

Reduce to V (J) = V (K) = 1

We are allowed to take V (J) = V (K) = 1. as for general J,K, we can take

J̃ := 1
n
√
V (J)

J, K̃ := 1
n
√
V (K)

K

and

ã :=
a n
√
V (J)

a n
√
V (J) + (1− a) n

√
V (K)

Then we have
n

√
V (ãJ̃ + (1− ã)K̃) ≥ 1

Now as V (J̃) = V (K̃) = 1 so

n

√
V (J̃) + (1− a) n

√
V (K̃) = a+ (1− a) = 1

hence J̃ and K̃ follow the Brunn-Minkowski Theorem, and also J and K are
homothetic iff J̃ and K̃ are homothetic.

Now we just have to prove theorem for V (J) = V (K) = 1,

Shift the center of gravity to origin
We have

V (aJ + (1− a)K) ≥ 1
with equality if and only if J,K are translates of each other.
We define center of gravity for an (n)-dimensional convex body S to be the
point α ∈ Rn such that

〈c, u〉 = 1
V (S)

∫
S

〈x, u〉dx
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for all u ∈ Sn−1. By translating J and K we can have their centre of gravity at
0 as the volume is translation invariant, the equality case then just reduces to
the claim that J = K

Induction base case
Now by induction on n, We prove Brunn-Minkowski Theorem
For n = 1, 1 - dimensional volume is linear, so Brunn-Minkowski inequality
easily follows
Along with the above conclusion, we also get that equality corresponds to the
fact that two convex bodies in R are homothetic.

Now for n ≥ 2 assume the Brunn-Minkowski theorem is true in dimension
n− 1

Hyperplane cut on J

We choose a unit vector u ∈ Sn−1 and denote the hyperplane Eλ in the di-
rection u with distance(signed) λ ∈ R from the origin defined by

Eλ := {x : 〈 x, u〉 = λ},

let’s denote Jλ = J ∩ Eλ for cut on J by Eλ. Now we have

V (J ∩ {x : 〈x, u〉 ≤ β}) =
∫ β

−hK(−u)

v (Jλ) dλ

Function for volume after split by the hyperplane for J

The function

g : [−hJ(−u), hJ(u)]→ [0, 1], f(a) = V (K ∩ {x : 〈x, u〉 ≤ a}

would be continuous and strictly increasing
where −hJ(−u), hJ(u) are the support function of J at u and −u and are ex-
treme upper point and extreme lower point respectively.

Map λ 7→ v (Jλ) is continuous on (−hJ(−u), hJ(u)) , where v is area func-
tional. g is differentiable function on (−hJ(−u), hJ(u)) and

g′(β) = v (Jβ)

since g is invertible, inverse function of g, γ : [0, 1] → [−hJ(−u), hJ(u)] , is
also a continuous function and strictly increasing function satisfies

γ(0) = −hJ(−u), γ(1) = hJ(u)
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γ′(τ) = 1
g′(γ(τ)) = 1

v
(
Jγ(τ)

) , τ ∈ (0, 1)

Function for volume after split by the hyperplane for K

Similarly, for K, the function

f : [−hK(−u), hK(u)]→ [0, 1], g = V (K ∩ {x : 〈x, u〉 ≤ a}

and in the same way we get its inverse function

δ : [0, 1]→ [−hK(−u), hK(u)]

with
δ′(τ) = 1

vKδ(τ)
, τ ∈ (0, 1)

Since

aJγ(τ) + (1− a)Kδ(τ) ⊂ (aJ + (1− a)K) ∩ Eaγ(τ)+(1−a)δ(τ)

for a, τ ∈ [0, 1], we obtain from the inductive assumption

Induction step on the cuts Jγ and Kδ

V (aJ + (1− a)K)

=
∫ ∞
−∞

v ((aJ + (1− a)K) ∩ Eλ) dλ

=
∫ 1

0
v
(
(aJ + (1− a)K) ∩ Eaγ(τ)+(1−a)δ(τ)

)
× (aγ′(τ) + (1− a)(δ)′(τ)) dτ

≥
∫ 1

0
v
(
aJγ(τ) + (1− a)Kδ(τ)

)
×
{

a

vJγ(τ)
+ 1− a
vKδ(τ)

}
dτ

≥
∫ 1

0

{
an−1v

(
Jγ(τ)

) 1
n−1 + (1− a)v

(
Kδ(τ)

) 1
n−1
}n−1

×
{

a

vJγ(τ)
+ 1− a
vKδ(τ)

}
dτ

(Using Induction step)

Choosing r := v
(
Jγ(τ)

)
, s := v

(
Kδ(τ)

)
and t := 1

n−1 ,

Applying above lemma on power mean inequality on the above expression
written inside integration, we get that expression is ≥ 1, and on the limit of 0
and 1, the whole integrand also gets ≥ 1, which gives the required result.

Equality proof:
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Now For equality case, assume that equality occurs so that.

V (aJ + (1− a)K) = 1

For above expression equal to 1, in our last estimation we must have equality,
which means that the integrand is equal to 1, for all τ. and this is the equality
case(iff r = s) of the same lemma.
So we have

v
(
Jγ(τ)

)
= v

(
Kδ(τ)

)
, for all τ ∈ [0, 1]

Hence γ′ = δ′, so γ − δ is a constant.
Because the centre of gravity of J is at the origin, we get

0 =
∫
J

〈x, u〉dx =
∫ γ(1)

γ(0)
λv (Jλ) dλ =

∫ γ(1)

γ(0)
λγ′(λ)dλ =

∫ 1

0
γ(τ)dτ

where the change of variables λ = γ(τ) was used.
In an analogous way,

0 =
∫ 1

0
δ(τ)dτ

Consequently, ∫ 1

0
(γ(τ)− δ(τ))dτ = 0

and therefore γ = δ.
In particular, we obtain

hJ(u) = γ(1) = δ(1) = hK(u)

since u was arbitrary, V (aJ+(1−a)K) = 1 implies hJ = hK , and hence J = K
Conversely, when J = K

V (aJ + (1− a)K) = V (aJ + (1− a)J) = V (J) = 1

Hence Proved.

Corollary 4.0.1. function S(b) : b→ n
√
V (bJ + (1− b)K) is concave on [0, 1].

Proof.
S(b) := n

√
V (bJ + (1− b)K)

We will prove it using the above theorem (4.0.9)
we have to prove that

S(ax+ (1− a)y) ≥ aS(x) + (1− a)S(y)

Let x, y, a ∈ [0, 1],
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S(ax+ (1− a)y) = n
√
V ([ax+ (1− a)y]J + [1− ax− (1− a)y]K)

= n
√
V (a[xJ + (1− x)K] + (1− a)[yJ + (1− y)K])

≥ a n
√
V (xJ + (1− x)K)+(1−a) n

√
V (yJ + (1− y)K) from theorem (4.0.9)

= aS(x) + (1− a)S(y)

Here we are stating the following theorem regarding mixed volume from
reference[2] without proof which is a very crucial theorem to prove Isoperimetric
Inequality for convex bodies.

Theorem 4.0.10. For J,K ∈ Kn

V (J, . . . , J,K)n ≥ V (J)n−1V (K)

with equality, if and only if dim J ≤ n−2 or J and K lie in parallel hyperplanes
or J and K are homothetic.

Now as a corollary of the above theorem we get the famous Isoperimetric
inequality for convex body which states that,

Between all convex bodies of a given volume, the balls have the smallest
surface area given surface area.

or
Between all convex bodies of given surface area, the balls have the largest vol-
ume.

Corollary 4.0.2. (Isoperimetric inequality for Convex body) Assume
that K ∈ Kn is a convex body of dimension n. Then,

A(K)n

V (K)n−1 ≥
A(B(1))n

V (B(1))n−1

with equality if and only if K is a ball.

Proof. - On putting K := B(1) in theorem (4.0.10) we get

V (K, . . . ,K,B(1))n ≥ V (K)n−1V (B(1))

as
V (B(1), . . . , B(1), B(1)) = V (B(1))
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from properties(3) of mixed volume

We can write it in another form.

nnV (K, . . . ,K,B(1))n

nnV (B(1), . . . , B(1), B(1))n ≥
V (K)n−1

V (B(1))n−1

Now using properties (3) of mixed volume we have

nV (K, ...,K,B(1)) = A(K), nV (K, ...,K,B(1)) = A(K)

So We get (
A(K)
A(B(1))

)n
≥
(

V (K)
V (B(1))

)n−1

And then finally get required Isoperimetric inequality

As we know volume and area of B(1),

V (B(1)) = κn and A(B(1)) = nκn,

we can rewrite it in terms of κn

V (K)n−1 ≤ 1
nnκn

A(K)n

From here for R2 plane, i.e. n = 2 we get Isoperimetric inequality

A(K) ≤ 1
4πL(K)2

Where A(K) is the usual area ( volume in R2 ) and L(K) is the boundary length
( surface area in R2 ),

Similarly for n = 3 we get

V (K)2 ≤ 1
36πA(K)3



Chapter 5

Isoperimetric inequality for
graph

Isoperimetric inequality for a graph G is defined similarly to how this is defined
for Rn. It involves finding the smallest edge-boundary subgraph among all sub-
graphs with a given size, which is called Isoperimetric sets.

Let G(V,E) is an undirected graph for vertex set V (G) with number of
vertices |V | = n and edge set E with number of edges |E(G)| = m.
For i, j ∈ V (G), i ∼ j and i � j indicate that i and j are adjacent(or connected)
and are not adjacent to each other respectively. We define di to be the degree
of i-th vertex.

Definition 5.0.1. For subsets A and B of the graph G we define the distance
between them to the length of the shortest path of edges starting from A and
ending in B.

Definition 5.0.2. Edge boundary(∂Ω) : For a graph G = (V,E) with Ω ⊂ V ,
edge boundary ∂Ω ⊂ E is defined as the subset of edges connecting vertices of Ω
with vertices of its complement Ω̄ = V \Ω.
Number of edges in ∂Ω, i.e.|∂Ω| is called the length of edge boundary for edge
boundary ∂Ω.

Definition 5.0.3. Isoperimetric inequality: For a graph G = (V,E), Isoperi-
metric inequality is the problem of finding a function F , such that

∀ Ω ⊂ V, Ω 6= ∅, |∂Ω| ≥ F(|Ω|)

Definition 5.0.4. Best isoperimetric function: These are functions for
which isoperimetric inequality is sharp. Mathematically

F(k) = min
|Ω|=k

|∂Ω|

51
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Best isoperimetric functions( or corresponding sharp isoperimetric inequal-
ity) are known only for a few classes of graphs which are proved using combi-
natorial techniques.
Isoperimetric inequality for some trivial graphs is the following.

• For the complete graph Kn inequality generates to |∂Ω| = (n − |Ω|)|Ω|
which is, in fact, equality case

• For the cycle Cn it is |∂Ω| ≥ 2 for |Ω| 6= n.

• For the infinite d-regular tree it is |∂Ω| ≥ (d− 2)|Ω|+ 2

Other non-trivial classes for which it is known are some families of
Cartesian products of graphs
for e.g.

• n-cube Qn

• grid [k]n

• lattice Zn.

Apart from these combinatorial techniques, there are eigenvalue techniques
which give good Isoperimetric inequality in general, which we will discuss later
for the d-regular graph.

Definition 5.0.5. (Adjacency matrix)
For a graph G(V,E) we define the adjacency matrix A of G to be a n×n matrix
defined by

Aij =


1 i ∼ j and i 6= j

0 i � j and i 6= j

Definition 5.0.6. (Incidence matrix) Incidence matrix is a n×m matrix
B which has rows indexed by the vertices of G(total n vertices) and columns by
the edges of G(total m edges).
We define Incidence matrix B in two ways, first unoriented incidence matrix,
defined by

Bij =


1 i-th vertex is connected to the edge of j-th vertex.

0 otherwise.

and then for each edge if we assume one vertex of edge to head and other to
tail then oriented incidence matrix for undirected graph G is defined by
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Bij =



1 i-th vertex is the head to the edge of j-th vertex.

−1 i-th vertex is the tail to the edge of j-th vertex.

0 otherwise.

Definition 5.0.7. (Laplacian matrix) Let D denote the diagonal matrix D
and Djj = dj, and A is the adjacency matrix. We define the Laplacian matrix
for a graph G to be

L = D −A

It is easy to check that

Lij =



di i = j

−1 i 6= j and i ∼ j

0 Otherwise

Lemma 5.0.1. Laplacian matrix L is a positive definite matrix and hence all
its eigenvalues are real and nonnegative.

Proof. For B being a positive definite matrix, we must have

λ = xTLx ≥ 0

for any general eigenvalue λ and eigenvector x.
If B is the incidence matrix of G, then we can easily check that

L = BTB

and it is independent of orientation of B.
So we have

xTLx = xTBTBx = (Bx)TBx = ‖Bx‖2 ≥ 0

Lemma 5.0.2. Let µ1 ≤ µ2 ≤ · · · ≤ µn, µi ≥ 0 ∀ i, be eigenvalues of L then
smallest eigenvalue µ1 = 0
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Proof. For vector

1
...
1

 we have

A

1
...
1

 =

d...
d


as the sum of i-th rows of the adjacency matrix is a degree of i-th vertex.

For L we have

L

1
...
1

 = (D −A)

1
...
1

 =

d− d...
d− d

 = 0

1
...
1


Now, as all eigenvalues are nonnegative, 0 is the smallest eigenvalue of L.

For proving this theorem, we first state the following important lemma from
the paper (7).

Lemma 5.0.3. Let G = (V,E) be an undirected graph and X,Y ⊂ V (G)
X,Y 6= φ and let the distance between X and Y is s. Let EX and EY are
sets of edges which are completely inside X and Y respectively. we denote
p = |X|/n, q = |Y |/n, then we have

nµ2 6
1
s2

(
1
p

+ 1
q

)
(|E| − |EX | − |EY |)

Theorem 5.0.4. Sharp Isoperimetric inequality for the d-regular graph:)
For the d-regular graph G with V (G) = n, let Ω ∈ V (G) is a nonempty

subset with its boundary ∂Ω and its complement subset Ω̄ in V (G) assuming
that there are nonzero edges going from Ω to Ω̄.
Then for second smallest eigenvalue µ2 of the Laplacian matrix L, we have sharp
isoperimetric inequality for G as

|∂Ω| ≥ µ2
|Ω||Ω̄|
|V |

Proof. of the above theorem
For the d-regular graph G the d-regular graph is a graph in which the degree

of all vertices is d, and hence it is a regular graph.
Let

λ1 ≥ λ2.... ≥ λn
be the eigenvalues of A, and

µ1 ≤ µ2 ≤ · · · ≤ µn, µi ≥ 0 ∀ i
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be eigenvalues of L.
Then in general there is no simple relation between λis and µis
but for the case of d-regular graph, λi corresponds to the i-th Laplacian eigen-
value, µi and as

L = dI −A

we have
λi = d− µi

In the above lemma we put p = |Ω|
n and q = |Ω̄|

n , s = 1(as there exist some edges
from Ω to Ω̄). and

|E| − |EX | − |EY | = |E(G)| − |E(Ω)| − |EΩ̄| = |∂Ω|

to get the required form of Isoperimetric inequality for the d-regular graph as
following:

|V |µ2 6

(
n

|Ω| + n

|Ω̄|

)
|∂Ω| = |V |

(
|V |
|Ω||Ω̄|

)
|∂Ω|

as |Ω|+ |Ω̄| = n and so we finally have

|∂Ω| ≥ µ2
|Ω||Ω̄|
|V |

Above inequality is a good approximation of sharp Isoperimetric inequality for
the d-regular graph where µ2 is the second eigenvalue of the graph G (i.e. second
smallest eigenvalue of L)

5.0.1 Isoperimetric Number of the graph G
Isoperimetric number of the graph G is defined as

i(G) = min
Ω

|∂Ω|
|Ω|

where minimum is taken over all nonempty subsets Ω of V satisfying

|Ω| ≤ 1
2 |V (G)|.

we can think of the quantity |∂Ω|
|Ω| as the average boundary degree of X.

The isoperimetric number i(G) can also be defined in the following way.

i(G) = min |E(X,Y )|
min{|X|, |Y |}

where minimum runs over all partitions of V into nonempty subsets X and Y
such that V = X ∪ Y .
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Here E(X,Y ) = ∂X = ∂Y are the edges between X and Y .
From the above definition of the Isoperimetric constant, it can also be under-
stood as a measure of how easy it is to break a large part of the graph.

For getting i(G), we have to find small edge-cut E(X,Y ) separating as large
as possible subset X from the remaining larger part Y assuming |X| ≤ |Y |, so
in this way, i(G) can also serve as a measure of connectivity of the graph.

Isoperimetric constant for different classes of graphs are following

1. i(G) = 0 if and only if G is disconnected.

Proof. we can choose any part of the graph which is not connected to rest
of the graph and will get i(G) = 0

2. If G is k -edge-connected(require at least k edge to break connectivity)
then i(G) ≥ 2k/|V (G)|.

Proof. For any chosen subset X of V, we have |∂X| ≥ k and we can take
|X| to be |V (G)|/2 and hence proved.

isoperimetric number for some classes of the graph are following

1. For the complete graph Kn, i (Kn) = dn/2e

2. The cycle Cn has i (Cn) = 2/bn/2c

3. The path Pn on n vertices has i (Pn) = 1/bn/2c.
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5.1 Bounding E |λ2(G)| of random 2d-regular graph
Definition 5.1.1. we define Gn,2d to be probability space of random 2d-regular
graphs
constructed in the following way.
We choose d permutations of the numbers 1, . . . , n, denoted by πj , 1 ≤ j ≤ d
with each permutation equally likely and construct a directed graph G = (V,E)
with vertex set V = {1, . . . , n} and edges

E =
{

(i, πj(i)) ,
(
i, π−1

j (i)
)
|j = 1, . . . , d i = 1, . . . , n

}
Although G is directed, we can view it as an undirected graph by replacing each
pair of edges (i, π(i)), (π(i), i) with one undirected edge.

In this way, Each vertex of this graph has its degree 2d, and we denote this
probability space of these random graphs by Gn,2d.

Theorem 5.1.1. (A) For G ∈ Gn,2d we have

E |λ2(G)| ≤ 2
√

2d− 1
(

1 + log d√
2d

+ o

(
1√
d

))
+O

(
d3/2 log logn

logn

)
and we have

E|λ2(G)| ≤ O(d1/2) for fixed d when n→∞

where E denotes the expected value over Gn,2d and more generally we have

E |λ2(G)|m ≤
(

2
√

2d− 1
(

1 + log d√
2d

+O

(
1√
d

))
+O

(
d3/2 log logn

logn

))m
for any m ≤ 2blognb

√
2d− 1/2c/ log dc

(B) As a corollary, For β ≥ 1 we have

|λ2(G)| ≥
(

2
√

2d− 1
(

1 + log d√
2d

+O

(
1√
d

))
+O

(
d3/2 log logn

logn

))
β

with probability

≤ β2

n2b
√

2d− 1/2c log β/ log d

Proof. The standard approach for estimating eigenvalues is to estimate the trace
of high power of the adjacency matrix.



CHAPTER 5. ISOPERIMETRIC INEQUALITY FOR GRAPH 58

Let A be the adjacency matrix of a graph G ∈ Gn,2d. Let Π be the alphabet
of symbols

Π =
{
π1, π

−1
1 , π2, . . . , π

−1
d

}
where π1, . . . , πd are d permutations from which G was constructed.
We denote Πk to be the set of all words which are composition of k permutations
from Π. for any word, w = σ1 . . . , σk of Πk we define

i
w→ j ≡

{
1 if w(i) = j

0 otherwise

and then i, j -th entry of Ak will be∑
w∈Πk

i
w→ j

What we want is to estimate, the expectation of trace, so we need to take the
expectation of the above sum only for i = j In evaluating i w→ i, ππ−1 with
π ∈ Π will fix the vertex, so we can cancel this type of pairs in w.

We define a word w ∈ Πk to be irreducible if w has no pair of consecutive
letters of the form ππ−1 and denote the set of irreducible words of length k by
Irred k.

For the first position of a word, the first letter has 2d choices, and then its
next letter can not be its inverse, so all other k - 1 letters will have only 2d - 1
choices, so Irred k has its size 2d(2d− 1)k−1.

It turns out that to estimate the second eigenvalue it suffices to get an
estimate of the form.∑

w∈ Irred k

i
w→ i = 2d(2d− 1)k−1 1

n
+ error

for all fixed i with some small error term which will be bounded later.
1/n comes because we expect that words in Irredk send a fixed vertex to

each others with more or less equal probability which is 1/n .

We have the following result as a corollary and will be using this result to
estimate the expected sum of the k-th powers of the eigenvalues

For any fixed i, k ≥ 1, and d− 2 >
√

2d− 1/2 (i.e. d ≥ 4) we have

E
{ ∑
w∈Irredk

i
w→ i

}
= 2d(2d− 1)k−1

(
1
n

+ errorn,k
)

where

errorn,k ≤ (ckd)c
 k2

√
2d

n1+b
√

2d−1/2
⌋ + (2d− 1)−k/2

n


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All words in Πk can be reduced to irreducible words by removing occurrences of
ππ−1 in the word, and this irreducible word is independent of how the reducing
was done.

Let pk,s is the probability that a random word in Πk reduces to an irreducible
word of size s then breaking sum over words in Πk to sum over irreducible words
of size s we get

1
(2d)kE

 ∑
w∈Πk

i→ i

 = pk,0 +
k∑
s=1

pk,s
1

2d(2d− 1)s−1 E
{ ∑
w∈Irreds

i
w→ i

}

since
∑
s pk,s = 1, we have

1
(2d)k

∑
i

E

 ∑
w∈Πk

i
w→ i

 = 1 + (n− 1)pk,0 +
k∑
s=1

npk,s errorn,s

We are using the following result for p2k, 2s without proof

p2k,2s ≤
2s+ 1
2k + 1

(
2k + 1
k − s

)(
1
2d

)k−s(
1− 1

2d

)2s−1

Note that k and s can not have different parity as π and π−1 will get vanish in
pair

from proof of the above theorem from [6]
it is seen that(Using here as a result)

p2k,0 ≥
1

2k + 1

((
2k + 1
k

))
(2d− 1)k

(2d)2k

It follows that for any graph of degree 2d,
n∑
i=1

λ2k
i ≥ (2d)2k(n− 1)pk,0 ≈ (n− 1)22k(2d− 1)k

so that taking 2k slightly less than 2 logd n results

|λ2| ≥ 2
√

2d− 1 +O

(
1

logd n

)
Now we take

k = 2blognb
√

2d− 1/2c/ log dc,

so that k is even, and calculate using the simplified bound

p2k,2s ≤ 22k
(

1
2d

)k−s
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It is easy to see that the dominant terms of the summation over s in equation
(1) are s = 1 and s = k, and therefore

E
{

n∑
i=2

λki

}
≤ n1+ log 2

logα (ckd)ck2
√

2d(2
√

2d
√

2d
2d−1 )k

Taking k -th roots, applying Holder’s inequality, and noticing that(
n1+ log 2

log d

)1/k
= 1 + log d√

2d̄
+O

(
1√
d

)
and

(ckd)c/kk2
√

2d/k = 1 +O

(
log d log logn

logn

)
and that

k ≤ 1
cd3/2n

1
c
√
a

for
logn

log logn ≥ c
′
√
d

proves theorem(A)
From here it is clear that E|λ2(G)| ≤ O(d1/2) as log logn

logn → 0 in limit as n
goes to infinity

Theorem 5.1.2. Let G be a graph on n vertices and let µ2 be the second smallest
eigenvalue of its difference Laplacian matrix L. Then for every k, 1 ≤ k ≤ n− 1

ik(G) ≥ (n− k)µ2

n

and, consequently, i(G) ≥ µ2/2

Proof. for the second smallest eigenvalue µ2 ofD and for an arbitraryX ⊆ V (G)
the following relation holds(from paper [4]):

µ2 ≤ |∂X|
(

1
|X|

+ 1
|V \X|

)
putting |X| = k and |V \X| = n− k and using definition of ik(G)

µ2 ≤ |∂X|
(

1
k

+ 1
n− k

)
= |∂X|

(
n

k(n− k)

)
which gives the required result

Definition 5.1.2. F (n, k):= max{i(G)|G is k-regular with n vertices}
and

f(k) := lim
n→∞

supF (n, k)
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Theorem 5.1.3.
f(2k) ≥ k −O

(
k1/2

)
Proof. From theorem (5.1.1), we have

E|λ2(G)| ≤ O(k1/2),

when d is fixed and n→∞ for the second largest eigenvalue λ2 of the Adjacency
Matrix A.
So second smallest eigenvalue(µ2 of corresponding the Laplacian Matrix L)
will be

2k − λ2

As f(k) is limsup of F (n, k)s and each F (n, k) is maximum over i(G) of
k-regular graphs G, so

i(G) ≤ f(2k)

From theorem (5.1.2) we have

i(G) ≥ µ2

2 = 2k − λ2

2
So we have

f(2k) ≥ 2k − λ2

2
If we take expectation over Gn,2d on both side we get

f(2k) ≥ 2k − E(λ2)
2

and as
E|λ2(G)| ≤ O(k1/2)

we have
f(2k) ≥ 2k −O(k1/2)

2 ≥ k −O(k1/2)
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