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Abstract

Photoacoustic tomography is a fast-growing biomedical imaging method for last few

years.In photoacoustic tomography, the target is illuminated by a pulsed laser and

the absorption of the light leads to an outward travelling pressure wave called a pho-

toacoustic effect. This pressure wave is used for image reconstruction of the optically

illuminated object. Domain for the PAT is both optical and acoustic so that it has

a lot of advantages as high penetration depth, good spatial resolution, high contrast,

etc. Because of its non-ionising property it is widely using in medical field related to

micro-vascular systems.

This thesis is about the calibration of 3D photoacoustic setup. The calibration is aims

to find the geometrical parameters which are needed for image reconstruction. For the

calibration a detector array is rotating around the calibration object and estimates

the calibration parameters which are speed of sound, source position, the center of

rotation of detector array.



Chapter 1

Introduction

1.1 The photoacoustic effect

Photoacoustic effect is the formation of acoustic energy from absorption of optical

energy in an object. The thermoelastic expansion of the target area leads to the

generation of the ultrasound.When the laser pulses are delivered to the target area,

the absorbed energy leads to the heating of the tissue part, which causes transient

thermoelastic expansion. When the pulsed laser is off, the expanded tissue contracts

will generate outward traveling pressure waves [Hoelen 98]. The laser heating has two

crucial time scales, thermal and stress relaxation time[Wang 12]. The attribute of

thermal diffusion carried out by the thermal relaxation time and it is given by :

τth =
d2

α
(1.1)

Where α is the thermal diffusivity. Stress relaxation time is involved with the at-

tributes of pressure propagation and which is estimated by

τs =
d2

c
(1.2)

In order to get better result the laser has to satisfy thermal confinement and stress

confinement conditions[Willemink 10].The condition when pulse width is less than the

thermal relaxation time, called thermal confinement.Likewise, if the laser pulse width

is less then stress relaxation time called stress confinement. Thermal confinement

1
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Figure 1.1: Photoacoustic effect

conditions depending on the heat diffusion in the material, and the stress confinement

is on the pressure propagation.

The heating of an object is represented by a space-time function H(r, t). Let the

temperature distribution is T (r, t), and then the temperature rise will be :

ρCp
∂T (r, t)

∂t
= λ∇2T (r, t) +H(r, t) (1.3)

In thermal confinement conditions the heat equation reduces to (1.4).Where Cp is

specific heat,ρ is the density, β is the volume expansion coefficient, and λ is thermal

conductivity[Francis 16].

ρCp
∂T (r, t)

∂t
≈ H(r, t) (1.4)

The wave equation gives the relation between temperature distribution and acoustic

pressure:
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∇2p(r, t) =
1

c2
∂2

∂t2
p(r, t)− βρ ∂

2

∂t2
T (r, t) (1.5)

Under thermal confinement conditions :

∇2p(r, t) =
1

c2
∂2

∂t2
p(r, t)− β

CP

∂

∂t
H(r, t) (1.6)

The laser pulse will be considered as a delta function in stress confinement conditions.

The initial pressure at t = 0 is βc2

Cp
A(r) Then the pressure equation in terms of initial

pressure is :

p(r, t) =
1

4πc2
∂

∂t

{
1

ct

∫∫
dr′p0(r

′)
(
t− |r − r

′|
c

)}
(1.7)

This model ignored the acoustic attenuation and considered a constant speed of sound

in calibration object.

1.2 Scope and context

Alexander Graham Bell discovered the photoacoustic effect in 1880 . But its use in the

medical field began only recently after the invention of the ultrasound transducers[Wang 08,

Ku 01, Kostli 01, Xu 02, Köstli 03, Ku 04]. In photoacoustic tomography, both acous-

tic and optical properties have influences, which leads to good results in the imaging

[Xu 06]. Pure optical imaging methods are also there where the analysis is done by

the intensity variations, but its sensitivity is weak when compared to photoacoustic

imaging. Ultrasound in soft tissues has less scattering, ensuring that it can travel

longer distances, which provides the imaging of deeper tissues[Kruger 95]. Different

shapes of ultrasound transducers available for photoacoustic imaging[Kolkman 08,

Minghua Xu 02, Zemp 07, Manohar 04, Vaithilingam 09], and we’ve chosen a linear

detector array setup where the imaging object is stationary, and the detector array

rotates around the object.

Measurements
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To do three-dimensional imaging of an object, we have to perform calibration mea-

surement of the setup to estimate calibration parameters. The calibration has to be

done using the calibration object with point sources. A schematic overview of the

calibration measurement and object measurement is shown below.

(a) Calibration measurement (b) Object measurement

Figure 1.2: Schematic representation of the calibration measurement

Calibration is very crucial in this 3D photoacoustic tomography, because of the geo-

metrical parameters are necessary for the image reconstruction [Willemink 10]. It is

difficult to fix the center of rotation at pre-assigned coordinates. Also, it isn’t easy to

align the linear detectors straight and exactly parallel to the axis of rotation.



Chapter 2

Calibration Setup

2.1 Introduction

This chapter outlines an algorithm, which is necessary for proper image reconstruction.

The calibration algorithm is used to calibrate the geometrical shapes of the setup used

for the measurement. This chapter describes the algorithm, which split into small

parts and concludes with a robust algorithm that calibrates the whole measurement

setup.

2.2 Calibration Parameters

There are two types of parameters that are included in our calibration parameters,

Internal and External parameters. The parameters which are related to the measure-

ment array are called internal parameters, and others are called external parameters.

We assume that internal parameters remain fixed, and the external parameters can

change in between the measurement session; however, it remains fixed during a single

measurement.

Internal Parameters : Length of the linear array (l) , Radius of the curved array

(r), Position of the ith sensor element (pd,i), Spacing between sensor elements (d)

External Parameters : Center of rotation (T ), Position of the photoacoustic point

source (Ps), Speed of sound (c )

5
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2.3 Measurement array setup

There are three kinds of measurement array geometry we have to discuss in this

section. In two-dimensional, a linear detector with 128 sensor elements and curved

detector with 128 sensor elements. In the three-dimensional,a linear detector with

128 sensor elements which is parallel to the axis of rotation. A schematic overview of

both two-dimensional measurement array geometry is shown below.

(a) Linear detectory (b) Curved detector

Figure 2.1: Two-dimensional measurement array setup. In both geometries, the
detector elements are depicted using black dots denoted labelled Pd,i. The spacing
between the detector elements is indicated by d. The photoacoustic point source is
near the center of rotation and labeled by Ps. The length of the arrays is labeled

with l and the radius with r .

For the detector element positions, we are setting the middle of the measurement

array as origin. The detector array contains Nd elements and distance between each

elements is d.

In the curved sensor array radius of curvature is r and the position of detector elements

is given by Equation 2.1

pd,i = r

1− cos
(

(i− Nd+1
2

)d
r

)
sin((i− Nd+1

2
)d
r
)

 (2.1)

For the linear measurement array, we have to consider the curved array with a radius

of curvature tends to infinity :
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pd,i = lim
r→∞

r

1− cos
(

(i− Nd+1
2

)d
r

)
sin((i− Nd+1

2
)d
r
)

 =

[
0

(i− Nd+1
2

)d

]
(2.2)

In three dimensional geometry, we have used a linear measurement array parallel to the

z-axis is shown in the Figure 2.2. The linear detector array is confined to a cylindrical

shape, and we placed the sources at the central part of the cylindrical shape so that

the detector array could measure different angles of the cylindrical shape. So we have

to introduce new parameters, rotation angle φ, and the radius of the cylindrical shape

r1.The position of detector elements in the 3D model is given by Equation 2.3

pd,i =


r cosφ

r sinφ

(i− Nd+1
2

)d

 (2.3)

Figure 2.2: Schematic of the three-dimensional measurement array geometry. The
detector elements are depicted using black dots, and its position is denoted by Pd,i,
and the distance between the detector elements is indicated by d.The linear detector
array is confined to a cylindrical shape with centerline as the z-axis. The center of
rotation will be the middle of the centerline which is labeled by T. The radius of

the cylinder is labeled r1, and the rotation angle is labeled by φ
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2.4 Calibration measurement model

Calibration measurement aims to find the parameters, speed of ultrasound (SOS) of

the calibration object and center of rotation . The basic structure of the calibration

setup is the 3D measurement array, which rotates step wise around the calibration

object. The measurement array records flight time at each step, and this time of flight

data is used to find the calibration parameters.

To make the estimation simple, we assume that speed of ultrasound in calibration

object and reference medium are equal. Consider a measurement array of Nd detector

elements, NR rotation steps and Np point sources in the calibration object, we will

have NR × Np × Nd total number of times of flight data.. Then the measurement

function will be:

ztof,i,j,k =
1

c
‖pd,i − (Rφjps,k + T )‖+ nz (2.4)

Where i, j and k are the indexes of detector elements, rotation steps, and point sources

respectively and nz is the additive noise. The complete measurement function is given

by:

htof (c, T, ps,1, . . . , ps,Np) =
(((

htof (c, T, ps,1, . . . , ps,Np)
)Nd
i=1

)NR
j=1

)Np
k=1

(2.5)

as provided by [Willemink 10].

2.5 Construction of 3D model

The three-dimensional calibration setup was simulated using a Matlab toolbox called

‘k-wave’[Treeby 10]. In 3D model construction, generated point sources for the gen-

eration of acoustic waves and detector array for the detection of generated acoustic

waves. The point source in k-wave generates the pressure waves which is similar to

the pressure waves of a pulsed laser exposing to a photoacoustic material. The propa-

gating medium properties also included so that the pressure wave matches the actual

waves.
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The k-wave toolbox simulates the detector element as a position and it would give

the pressure wave at that position, which would be the pressure wave amplitude if we

placed an ultrasound detector in the same position. As explained in the measurement

array geometry section, a linear array of 128 pseudo ultrasound detectors are arranged

in a linear array which is parallel to the axis of rotation. The detector we are used

in this k-wave toolbox is called pseudo ultrasound detector because measures the

amplitude of the propagating pressure wave. The linear detector array is confined to

a cylindrical shape and we placed the sources at the central part of the cylindrical

shape so that the detector array could measure different angles of the cylindrical

shape. This each measurement at different angles called projections. The simulated

3D model is shown in Figure 2.3a.

(a) Detector array is parallel to z-axis (b) Detector array with slight inclination

(c) Simulated three-dimensional model of
combined two projections

Figure 2.3: Simulated three-dimensional models
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Practically it is very difficult to align the detector array exactly parallel to the axis

of rotation. So inclination introduced in the 3D model detector array. The model

is shown in the Figure 2.3b. The calibration measurement was done using another

measurement array geometry where we combined two projections as a single projec-

tion. The combined projection model is shown in Figure 2.3c. This setup is more

convenient for better calibration and image reconstruction which will explain in the

calibration algorithm section.



Chapter 3

Calibration Algorithm

3.1 Time of flight estimation

The extraction of flight data time is the first step of the calibration process. Flight

time (TOF) is the time that the generated ultrasound takes to reach the elements of

the detector array. The measured signal is the time-shifted and amplitude modulated

source signal with additional noises. For the calibration purpose, we are using the

k-wave generated ultrasound signals, but in the experiment, we are creating the ul-

trasound using optical absorber. The shape of the ultrasound depends on the object

,and it can change in between the different calibration measurements. So simultane-

ously, we try to estimate ultrasound signal, time of flight, and the amplification or

attenuation factors. We cannot find a unique solution to the problem. To get rid of

the problem, we are constraining the phase by enforcing the center of mass(COM) to

the middle of the signal window[Willemink 10]. The constraint is given as:∫ t2

t=t1

t
henv(t)∫ t2

t′=t1
henv(t′)dt′

dt =
t1 + t2

2
(3.1)

Where henv is the magnitude of the signal called the envelope of the signal given in

Equation 3.2 and H{h(t)}is the Hilbert transform of the signal.

henv(t) =
√
h2 + (H{h})2 (3.2)

11
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The amplitude is constrained by implementing the utmost of the signal to be one.

The different steps in the algorithm for estimating time of flight and source signal are

explained further.

• Step 1: Initialization A window of a measured signal which approxi-

mately covers the source signal as taken as the initial estimate of the source

signal.

• Step 2: Applying the source signal constraints In this step,

we applied the source signal constraints, which we discussed earlier. First, as

shown in the Equation 3.2, the signal envelope is calculated, and then COM

of the signal is calculated using Equation 3.1. Then source signal will shift

according to the dissimilarity between the center of the signal window and the

measured center of mass.

• Step 3: Time of flight estimation step Using the calculable source

signal simply, we are able to estimate the time of flight and therefore the at-

tenuation or amplification factors.. It is a template-based approach, where we

compare the estimated source template with the actual source signal and the

time shift will be the time of flight. We estimate the time of flight for each

measured signal.

• Step 4: Source signal estimation step The source signal is esti-

mated by rearranging the signals with the calculated time of flight. The weight-

ing factors for likelihood estimation are calculated from the amplification or

attenuation factors. The result of the step is used for the next iteration, where

we apply the source signal constraints.

The output of the time of flight estimation is given in Figure 3.1a and k-wave generated

the raw data is shown in Figure 3.1b.

3.2 Time of flight classification

Grouping the TOF measures is a necessary step because, if more than one point

sources present in the phantom, we cannot directly fit the data for the calibration pa-

rameters. Even though the user can define the number of sources for the calibration
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(a) Calculated TOF data

(b) Raw TOF data

Figure 3.1: Estimated and raw TOF data

measurement, the grouping algorithm has to find the number of sources and classify

each time of flight data into any of the classes (source) or to the outliers. Outliers

are the false measurements recorded by the detectors. Accuracy of the calibration

increases with the number of the point sources. We have to design a versatile algo-

rithm so that it classifies each time of flight data into any of the classes without the

information of the user-defined number of sources.

Before going to the grouping, we will discuss about the estimated TOF data. In

the Figure 3.2, showed the estimated time of flight data with vertical lines separates

each projections. The time of flight data corresponding to each source can be fitted

using a second-order polynomial. The number of polynomials in each rotation is the
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Figure 3.2: Example of a Time of flight data using 128 element linear sen-
sor array(Nd = 128), over five different angles(NR = 5) and three point

sources(Np=3).Each projection is separated by vertical lines.

number of sources. Still, it need not be the actual number of sources because it is not

necessary to see all the sources in every rotation. We expect there is some deviation in

the measurement from the polynomial model, so we have introduced Gaussian error

with zero mean and standard deviation σz. We already mentioned the aim of this

classification, but the classification step is to proceed with each rotation separately.

It leads to another problem, the correspondence of sources in each rotation, and we

postponed this problem to another step. The classification step is based on using the

mixture models[McLachlan 88]. It estimates the probability that each data belongs

to a specific group (Either any of the sources or outliers).

Let’s consider the time of flight data with N measurements,z = [z1, . . . , zN ]. The

ith measurement was measured by the sensor element si, and it is caused by the kth

source and the polynomial parameter xk then we have:

zi = hi(xk) + ni,k (3.3)

where the polynomial function hi(xk) is the time of flight prediction function with

independent variable as sensor number:

hi(xk) = xk,1s
2
i + xk,2si + xk,3 (3.4)
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The Gaussian random variable with standard deviation σz is the noise, and it is rep-

resented by ni,k for the ith measurement.We have to introduce a membership variable

to describe the relationship between the measurement and the source number,γ =

[γ1, . . . , γN ]T where each entry represents the ith measurement and the γi is the class

number. Then we have the relation :

zi =
Ns∑
k=1

Ik(γi)
(
hi(Xk) + nk

)
+ I0(γi)n0 (3.5)

where the Indicator function Ik(γi) :

Ik(γi) =

1 γi = k

0 γi 6= k
(3.6)

Based on these relations, the likelihood function is given as :

p(zi|χ, γi) =
Ns∑
k=1

Ik(γi)
1√

2πσz
e
− 1

2

r2i (Xk)

σ2z + I0(γi)
1

v
(3.7)

Where χ = (X1, . . . , XNs) is the polynomial parameters and v = zmax − zmin is the

range of time of flight domain and ri = hi(x) − zi is the residue of the ith measure-

ment.The combined likelihood function of all the measurement is given in Equation 3.8

which the product of all the individual likelihood functions:

p(z|χ, γ) =
N∏
i=1

p(zi|χ, γi) (3.8)

By maximizing the likelihood function, we could get the polynomial parameters and

assign each measurement to any of the groups[Fletcher 13]. There is a possibility of

the measurement at the intersection can be originated from either one of the classes.

Also, measurement can fully assign to any of the sources or outliers. To get rid of this

problem, we split the likelihood maximization into two steps, first maximize with X

independent on membership variable then find the probability of each measurement

to any of the classes. The individual marginalized likelihood function (Independent

of gamma) is given as:
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p(zi|χ) =
1

(Ns + 1)
√

2πσz

( Ns∑
k=1

e
− 1

2

r2i (Xk)

σ2z +

√
2πσz
v

)
(3.9)

Probability of a measurement belongs to any of the source group (k > 0) :

p(γi = k|zi, χ̂) =
e
− 1

2

r2i (Xk)

σ2z∑Ns
k′=1 e

− 1
2

r2
i
(Xk′ )
σ2z +

√
2πσz
v

(3.10)

and the probability of certain measurement to be an outlier is given by:

p(γi = 0|zi, χ̂) =

√
2πσz
w∑Ns

k′=1 e
− 1

2

r2
i
(Xk′ )
σ2z +

√
2πσz
v

(3.11)

Instead of maximize the likelihood function, we use the concept of cost function which

is the negative logarithmic of likelihood. Here, the cost function will be the sum of

all the individual cost functions. The cost function minimization faces the problems

of local minima, also the number of groups is an unknown parameter. SO we used

an algorithm called RANSAC(Random sampling consensus) [Fischler 81]. RANSAC

algorithm is used for the strong work of model parameters once outliers are present in

the data. The technique RANSAC minimize the cost is based on randomly selecting

large number of small subsets from observed data. The RANSAC cost function is

given by :

ρRANSAC(r) =

0 r2

σ2
z
≤ T

1 r2

σ2
z
> T

(3.12)

Where threshold T decides measurement belongs to which group inliers or outliers.

The size of the random sampling subset in RANSAC is chosen as the smallest number

enough to fit the model and denoted by Ns,min. Let the sample is S = (i1, . . . , iNs,min);

we use this subset to fit the model and obtain the residue of all the measurements

according to the fitted parameters. This resultant residue decides each measurement

belongs to an inlier or outlier. This method will do over all the sampled set for many
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trials, and the final inlier set can be used for the parameter fitting using least-squares

optimization. The minimum number of trials required to ensure a probability ε :

N̂trials =


log(1− ε)

log

(
1−

(
Ntarget

N̂0

)Ns,min)


(3.13)

Where Ntarget is the number of measurement belongs to the new class and Ns,min is

the smallest subset size number enough to fit the model. Here the size of the subset

Ns,min = 3, because to fit a second-order polynomial we need a minimum of three data

points S = (i1, i2, i3). The subset elements should be from different sensor elements.

The fitted parameter is:

x = H−1S zS with HS =


s2i1 si1 1

s2i2 si2 1

s2i3 si3 1

 (3.14)

An example of a grouping result of the time of flight of three sources over five pro-

jections is shown in Figure 3.3. We already mentioned the measurement array setup

used for this thesis is a combined projection of two linear detector arrays, and the

configuration is shown in Figure 2.3c. The time of flight data from the combined

projection setup is shown in Figure 3.4.

We propose a post-grouping step to make sure of the correspondence of each source of

two separate projections. We execute pairs from two linear projection of a combined

projection based on the least deviation among all the time of flight data. The pairwise

grouping of the first projection is displayed in Figure 3.5.

3.3 Estimation of source position and speed of sound

The TOF classification step estimated the number of sources in the measurement setup

and the probability of each measurement into the source group.From this grouped time

of flight data, we will estimate source position and speed of sound.To accomplish this,

in the measurement model, we used phantom with some sources. The optimization
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(a) Measurement 1 (φ = 0◦) (b) Measurement 2 (φ = 72◦)

(c) Measurement 3 (φ = 144◦) (d) Measurement 4 (φ = 216◦)

(e) Measurement 5 (φ = 288◦)

Figure 3.3: TOF classification result.

is complicated when we estimate all the parameters together because of the presence

of local minima. The source position estimation step is to proceed with a different

method. We try to predict the source position separately in each projections called

relative source position. The time of flight classification was solved all rotations

R ∈ {1. . . . , NR} individually, and the sources in each rotation is labeled by N̂s,R

and second order polynomial parameters are χ̂R = (x̂1, . . . , x̂Ns,R). We combine all
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Figure 3.4: Example of combined projection time of flight data. Different com-
bined projections is separated by vertical lines.Linear sensor array of 64 sensor ele-
ments (Nd = 64), over six different angles(NR = 6) and three point sources(Np = 3)

the measurements overall projections to estimates the speed of sound and source

positions. When we are dealing with relative source positions, we have to introduce

an indicator variable γi to represent the measurements from which source number.

The total number of relative source is the sum of all sources found in each rotation:

N̂ ′s =
∑NR

R=1 N̂s,R. The numbering of each relative source has to be unique, γ′i = k′Ri+k,

where k′R =
∑R−1

R′=1 N̂s,R′ is the rotation offset. The parameters associated with the

estimation of the relative source is displayed in Table. To estimates the unknown

parameters, we set up a likelihood function and use the maximum of the likelihood

function. The measurement function is given by :

hi(c, pk) =
1

c
‖pd,si − pk‖ (3.15)

The residue of the ith measurement caused by the kth source is ri(c, pk) = hi(c, pk)−zi.
Hence marginalized likelihood function is given as:
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(a) TOF pair for source 1 (b) TOF pair for source 2

(c) TOF pair for source 3

Figure 3.5: Pairwise clustering of time of flight in a combined projection. Each
figure represents the time of flight data for each source from different projections.
Blue color represents the first projection and orange represents the second projec-

tion.

p(zi| c, P ′) =
1

(Ns + 1)
√

2πσz

( ∑
k∈SRi

e
− 1

2

r2i (c,p
′
s,k)

σ2z +

√
2πσz
v

)
(3.16)

Where the set SR = {k′R + 1, . . . , k′R + N̂s,R} is the source number for every pro-

jection. To maximize the likelihood, we used an algorithm called the Expectation-

Maximisation (EM) algorithm[Moon 96]. For the E-step of the algorithm, an initial

guess of the both parameters is required, and it is calculating using the polynomial

source parameters χ from the previous step. So the likelihood function will be p(γ|z, χ)

instead of p(γ|z, ĉ, P̂ ) only for the initial guess of the parameters.To start the algo-

rithm, we will estimate the initial guess using the polynomial parameters:

(ĉ(1), P̂ (1)) = argmax
c,P

Eγ|z,χ̂ [log[p(z, γ|c, P )]] (3.17)
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Once we estimated the initial guess, the algorithm follows EM steps. For the E-step

(ĉ(j+1), P̂ (j+1)) = argmin
c,P

Q(c, P, ĉ(j), P̂ (j)) (3.18)

The cost function is calculated by:

Q(c, P, ĉ, P̂ ) =
N∑
i=1

N̂s∑
k=1

r2i (c, pk)wi,k(ĉ, P̂ ) (3.19)

Where weight w is given in Equation 3.20 and it is depends on the rotation step.

[Willemink 10]

wi,k(ĉ, P̂ ) =
e
− 1

2

r2i (ĉ,p̂k)

σ2z∑N̂s
k′=1 e

− 1
2

r2
i
(ĉ,p̂k′ )
σ2z +

√
2πσz
v

(3.20)

The M-step fits the model for unknown parameters. For that, we used the Gauss-

Newton optimization [Guillaume 96]. Even though both parameters are unknown, we

had no clue about the minimum.To solve this problem we used the Gauss-Newton

method. The residue matrix of shape N × Ns residues and the residue vector is

r′(x) = (r′1(c,ps,1), . . . , r
′
N̂s

(c,ps,N̂s)) .So the Jacobian matrix of the residue function

will be:

H
(l)
c,k =


∂
∂c
h
(l)
1,k

√
w1,k

...
∂
∂c
h
(l)
N,k

√
wN,k

 H(l)
pk

=


(

∂
∂ps,k

h
(l)
1,k

)T√
w1,k

...(
∂

∂ps,k
h
(l)
N,k

)T√
wN,k



H(l) =


H

(l)
c,1 H

(l)
p1

...
. . .

H
(l)

c,N̂s
H

(l)
pN̂s


(3.21)

as provided by [Willemink 10].The partial derivatives are given as:

∂

∂c
h
(l)
i,k =

−1

c(l)
hi

(
c(l),p

(l)
s,k

)
(3.22)
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∂

∂ps,k
h
(l)
i,k =

(
p
(l)
s,k − pd,si

) 1

(c(l))2hi

(
c(l),p

(l)
s,k

) (3.23)

The iterative steps of the Gauss-Newton method for the optimization is :

x̂(l+1) = x̂(l) −
(
H(l)TH(l)

)−1
H(l)T r′(x̂(l)) (3.24)

An example of applying relative source position algorithm is shown in the figure

Figure 3.7. The expected and calculated relative source position displayed in the

Figure 3.6.

The accuracy of the estimated parameters can be found using the covariance matrix,

which is shown in the Equation 3.25

P̂xx = AWWTATσ2
w (3.25)

Where A =
(
H(l)TH(l)

)−1
H(l)T and W is given as :

W =


diag

(√
w1,1, . . . ,

√
wN,1

)
...

diag
(√

w1,N̂s
, . . . ,

√
wN,N̂s

)
 (3.26)
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(a) Combined Projection 1 (b) Combined Projection 2

(c) Combined Projection 3 (d) Combined Projection 4

(e) Combined Projection 5 (f) Combined Projection 6

Figure 3.6: Expected and calculated relative source position. Blue color is the
expected source position and the red color is the calculated source position.
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(a) Relative source position from top view

(b) Relative source position from side view

Figure 3.7: An example of relative source position plotted all projections together

3.4 Estimation of center of rotation

From the previous step, calculated the speed of ultrasound and a group of source

positions from different projections and a covariance matrix with the uncertainty of

the parameters. First, associate in nursing initial guess of the source position and
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center of rotation will estimate and so the ultimate estimate of the all the parameters

using the complete likelihood function.

Initial guess

Initial guess of the center of rotation, absolute source position, and the number of

sources are the parameters we are estimating using the previous step results. The

number of sources in the calibration needs to determine because all sources are not

necessary to visible in every rotation. We start by grouping the relative source po-

sition as pairs from different rotations, and it is given by Sp = {(k1 ∈ SR1 , (k2 ∈
SR2) : R1 6= R2}. Let’s consider two relative source positions belongs to different

projections . We could find the center of rotation and source position from this pair

if they are from same point source. Relation between relative and absolute source

position and center of rotation is p′s,k1 = RφR1ps,k + T. If we could get a pair from

different rotation steps, then the relationship between the parameters is shown in the

Equation 3.27, and inverting the equation can estimate the unknown parameters given

in Equation 3.28.Where the R is the rotation matrix given in Equation 3.29, and I is

the identity matrix.[
p′s,k1
p′s,k1

]
= A

[
ps,k

T

]
where A =

[
RφR1 I

RφR1 I

]
(3.27)

[
ps,k

T

]
= A−1

[
p′s,k1
p′s,k1

]
(3.28)

R =


cos(φ) −sin(φ) 0

sin(φ) cos(φ) 0

0 0 1

 (3.29)

We can decompose matrix A−1 as

[
Ap

AT

]
. In the previous step, we calculated the

covariance matrix P̂xx, and here we can use it to calculate the uncertainty of the

calibration parameters. If the pair Sp contains (ps,k1 ,ps,k2), then we extract the

portion of the P̂xx matrix associated to the pair gives a 6×6 matrix Pk1,k2 . Then the

uncertainty of the center of rotation is given by:
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PT = ATPk1,k2A
T
T (3.30)

Then we can calculate the squared Mahalanobis distance of all the pairs using the

d2p(T) =
(
T̂p−T

)T
P−1Tp

(
T̂p− T̂

)
, and using the cumulative distribution function, we

could calculate a score cp = 1 − Fχ2
3
(d2p) between 0 and 1. If the score is higher, the

calculated center of rotations are close to the actual center of rotation[Willemink 10].

The algorithm for center of rotation and source position is displayed in figure as

pseudo-code.

Optimizing the complete likelihood function

In order to estimate the calibration parameters, we have to optimise the whole likeli-

hood function p(z|c,T, P ). From the previous step, we calculated an initial estimation

of all the parameters. The complete measurement function is:

hic,T,ps,k =
1

c
‖pd,si −Rφ,sips,k −T‖ (3.31)

The complete likelihood function for the measurement zi is:

p(z|c,T, P ) =
1

(N̂s + 1)
√

2πσz

( N̂s∑
k=1

e
− 1

2

r2i (c,T,ps,k)

σ2z +

√
2πσz
v

)
(3.32)

To maximize the likelihood, we used the same EM algorithm, which we used earlier.

The cost function associated with the optimization is given as:

Q(c,T, P, ĉ, T̂, P̂ ) =
N∑
i=1

N̂s∑
k=1

r2i (c,T,ps,k)wi,k(ĉ, T̂, P̂ ) (3.33)

where the weight function is:

wi,k(ĉ, T̂, P̂ ) =
e
− 1

2

r2i (ĉ,T̂,p̂k)

σ2z∑N̂s
k′=1 e

− 1
2

r2
i
(ĉ,T̂,p̂k′ )
σ2z +

√
2πσz
v

(3.34)

The calculated and expected center of rotation is given in figure Figure 3.8
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Figure 3.8: An example of expected and calculated center of rotation(COR).

3.5 Conclusion

This chapter included the calibration algorithm of three-dimensional photoacoustic

tomography using the time of flight data. Ultrasound time of flight data generated by

the Matlab toolbox ’k-wave.’ Interested calibration parameters are the COR, SOS and

source position. The algorithm automatically estimates the number of point sources

and outliers. The algorithm’s accuracy increases with the number of point sources

and the number of projections. But the time of flight grouping algorithm shows

errors when the source number is higher. The relative source position is challenging

to estimate using a single projection, and so we combined two projections.
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Experimental Implementation

4.1 Mechanical design of the rotatory stage

In the calibration setup, the linear transducer rotates around the calibration object

shown in shown in Figure 2.3c. We had to design a setup where we can attach the

calibration object at the center, and the sensor can rotate around it. So we designed

the set up in Solid Works is shown below.

Figure 4.1: Rotatory stage designed using solidworks

28
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(a) Mechanical design of the rotatory stage.

(b) IR led and photodiode setup for the rotation control

Figure 4.2: Mechanical setup for calibration measurements. The rotation of the
motor is controlled using LM293D and arduino mega. The IR led-photodiode used

for accurate projections.
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For the rotation of the detector array, we used NEMA-17 stepper motor, Arduino

Mega microcontroller, and L293D motor driver for controlling the rotation of the

detector array. Each part of the setup and the circuit is shown in the Figure 4.2a.To

control the rotation step, we used an IR led and a photodiode for better accuracy

is shown in the Figure 4.2b. Along with the photodiode and led, we 3D printed a

rotatory plate is shown in figure. We integrated this setup with the microcontroller

and controlled rotation of the stepper motor according to the calibration setup. The

arduino code written for the setup is given in Appendix A.

4.2 Testing the detection of ultrasound

For the experimental part, we made tissue-mimicking phantom with number of point

sources. We used human hair with a length of 0.2mm in 2% of agar as a calibration

object[Souza 16]. To check the detection of the ultrasound, we placed three hairs at

the center of the calibration tube with a spacing less than 1cm is shown in Figure 4.3.

(a) Phantom and phantom tube (b) Phantom with points sources

Figure 4.3: Calibration phantom with point sources

We used 690nm wavelength red laser as an illumination source. To achieve the acoustic

coupling, we immersed the calibration phantom and the transducer in the water.The

reconstructed image of the point source is shown in Figure 4.4b.
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(a) Linear transducer,laser and phantom (b) Reconstructed image of point sources

Figure 4.4: Detection of ultrasound: Setup and reconstructed image

The experimental calibration setup is shown in Figure 4.5.

(a) Total calibration setup (b) Phantom and ultrasound transducer on rota-
tory stage

Figure 4.5: Experimental setup for the calibration

4.3 Results and conclusion

In this chapter, we have done the experimental implementation of the calibration. We

used agar phantom as calibration object and hair as point source. The reconstructed

image of the three point sources and the corresponding ultrasound signals is shown in

Figure 4.6.
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(a) Reconstructed image of the three point sources

(b) Recorded ultrasound signals

Figure 4.6: Reconstructed image and ultrasound signals of the point sources

Future works

According to the calibration algorithm, we need the time of flight data of all sources in

each projection. The ultrasound transducer rotates around the stationary calibration

object, and it gets the time of flight data. We faced a problem in getting the ultrasound

signals for all the sources in a single projection. It might be because of the less

acceptance angle of the linear transducer we used. We could solve it by making

the point sources closer and placing the transducer in the proper place. Also, we

could introduce more laser sources for strong ultrasound signals. We have used agar

phantom and hair as point sources, but it is not spherically symmetric so that the size

may vary in different projections. We have to replace the point sources to spherical

sources so that we could maintain the same size in all the projections. As an initial

step, we manually controlled the rotation using a stepper motor and photoacoustic

machine for recording the time of flight in each projection. We could make a trigger

for controlling the photoacoustic machine using the IR led and photodiode setup.
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The accuracy of the calibration algorithm increases with number of point sources and

projections. So we could increase the number of sources and more projections.



Appendix A

Arduino programming to control

the stepper motor

This is the arduino program to control the stepper motor using the IR led and pho-

todiode.

1 /// Stepper Motor

2 #include <Stepper.h>

3 const int stepsPerRevolution = 200;

4 /// IR Sensor

5 int timedelay = 15000; /Delay for each projection

6 int pd = 2;

7 int count=0;

8 int senRead=0;

9 int limit=850;

10 int skip=2;

11

12 int stopcount=0;

13 Stepper myStepper(stepsPerRevolution,9,10,11,12);

14

15 void setup()

16 {

17 myStepper.setSpeed(10); // stpper motor speed

18 pinMode(pd,OUTPUT);

34
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19 digitalWrite(pd,HIGH);

20 Serial.begin(9600);

21 }

22

23

24 void loop()

25 {

26

27 if (analogRead(senRead) < limit) { //

28 if (count == 0 || count == 1){

29 delay(timedelay);

30 }

31 count = (count+1)%(skip+2);

32 stopcount = stopcount + 1 ;

33 Serial.println(stopcount);

34 if (stopcount==24){

35 for(;;){}

36 }

37 while(1) {

38 myStepper.step(1);

39 if (analogRead(senRead) > limit)

40 break;

41 }

42 }

43 else

44 myStepper.step(1);

45 }
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