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Abstract

In this thesis, we look into various aspects of local and global theory of Dynamical Systems. We
primarily employ the stable manifold theorem and the Hartman-Grobman theorem. Using these
theorems we have determined the qualitative structure of non-linear systems. We have studied the
type and the behaviour of hyperbolic and non-hyperbolic critical points of non-linear systems. The
stability of the periodic orbits is also determined by the various concepts of dynamical systems
thoroughly.
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Chapter 1

Introduction

We require proper understanding and knowledge of non-linear systems to solve real-world physical
problems, along with utilizing them to work with various biological models. We can solve linear
systems very easily by (2.1.1). However, in case of non-linear systems, it is not possible to solve
all kinds of equations; but one can analyse local and global behaviour of solutions using existing
mathematical techniques. The Stable Manifold theorem (3.1.2) and the Hartman- Grobman theorem
(4.1.1) are therefore brought in for such study. These two theorems show that topologically, the local
behaviour of the non-linear system ẋ = f(x) near an equilibrium point x0 can be determined by the
behaviour of the linear system ẋ = Ax near the origin where A = Df(x0).

However, these theorems are valid only for hyperbolic critical points. What is expected in case
of non-hyperbolic critical points? For those non-hyperbolic critical points, we can use the Liapunov
method (3.3.2) to observe whether a non-hyperbolic equilibrium point is stable, asymptotically
stable, or an unstable critical point.

Poincare-Hopf index theorem is a fundamental theorem in the study of vector fields on surfaces.
It relates the index of a vector field and the Euler charateristic of the surface. A partial proof of
this theorem may be obtained by studying the global behaviour of the dynamical system originated
by the given vector field.

To begin with, In the Chapter 2, we discuss some basic definitions along with some essential
preliminary concepts which are related to linear and non-linear systems i.e., stable, unstable, and
center subspaces. We also introduce Picard’s existence and uniqueness theorem, Maximal interval
of existence, the flow of non-linear systems, linearisation, hyperbolic critical points. A proof of
Gronawall’s lemma is also provided in this chapter which is required to prove the main theorem in
Chapter 5.

The prime theorem of this thesis stable manifold theorem is explained in the chapter 3 with
the help of several examples. There are also some applications of this theorem which describe the
geometry of the non-linear system. Besides the stable manifold theorem, the center manifold (3.2.1)
and the Lyapunov stability (3.3.2) are also important concepts to observe the local geometry of the
system. The various type of the sectors and non-hyperbolic critical points are also mentioned in
chapter 3. Using theorems (3.5.2) and (3.5.3) , a computer program (3.5) is used and run to check
whether a non-hyperbolic critical point is a topological saddle, a center or a focus, a node, a critical
point with an elliptic domain, a cusp or a saddle-node, given that the dynamical system is in the
normal form.

At the end of chapter 3, two exciting types of systems (Gradient system and Hamiltonian systems)
are prodded into, (3.6) that arise in a physical problems. We also look at an interesting relationship
between Gradient and Hamiltonian systems and the type of critical points of these two systems (see
3.6.5).

Moving towards chapter 4, the Hartman-Grobamn theorem is proved in this chapter. This
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CHAPTER 1. INTRODUCTION 2

theorem states that near a hyperbolic critical point x0, the linear and the non-linear systems are
topologically equivalent.

We have defined the time t in some interval let say maximal interval of existence, but if we wide
the interval of time to t ∈ R, then the non-linear system is called the dynamical system and hence
we are moving to chapter 5.

In the last chapter of this thesis, the global theory of non-linear dynamical systems is discussed.
Chapter 5 begins with the definition and properties of a dynamical system. The Global existence

theorem and its applications are also mentioned there, to show the topological equivalence between a
non-linear system and its linearization. Furthermore, this theorem also tells whether the non-linear
system is a dynamical system or not. To understand the geometry of a dynamical system or a
non-linear system, the limit set, attractors, periodic orbits and limit cycles are explained with the
help of examples. The Poincare map (5.5.1) is introduced in this chapter to show the stability of
limit cycles (see 5.5.1). For the periodic orbits, the stable manifold and center manifold theorem
are explained with the help of some geometrical examples. This thesis, therefore, indulges with the
very elegant theorem called the Poincare-index theorem (5.7.1).

Our main reference is the book "Differential Equations and Dynamical Systems" by Lawrence
Perko [1].



Chapter 2

Preliminaries

2.1 Definitions and Preliminary Concepts
2.1.1 Linear system
Let A be an n× n matrix. Consider the following linear system

ẋ = Ax

The solution of this linear system with the initial condition x(0) = x0 is given by

x(t) = eAtx0 ∀t ∈ R.

2.1.2 Stable, unstable and center subspaces
Let wj = uj + ivj be an eigenvector of the matrix A corresponding to an eigenvalue λj = αj + iβj .
Then Es, Ec, Eu are stable, center and unstable subspaces respectively.

Es = Span {uj ,vj |αj < 0},
Ec = Span {uj ,vj |αj = 0},
Eu = Span {uj ,vj |αj > 0}.

Theorem 2.1.1. Let A be an n× n matrix, then we can write the following

Rn = Es ⊕ Ec ⊕ Eu.

Also Es, Ec, and Eu are invariant under the flow eAt.

2.1.3 The fundamental existence and uniqueness theorem
Theorem 2.1.2. [1] Consider the following initial value problem (IVP).

ẋ = f(x) (2.1)
x(0) = x0

Let E be an open subset of Rn, which contains x0 and f ∈ C1(E). Then there is a d > 0 and a
δ > 0 such that for all a ∈ Uδ(x0) the above IVP has a unique solution u(t, a), where u ∈ C1(W )
and W = [−d, d]× Uδ(x0) ⊂ Rn+1.

3



CHAPTER 2. PRELIMINARIES 4

2.1.4 Maximal interval of existence
Theorem 2.1.3. (Maximal interval of existence) [1] Let E be an open subset of Rn, which contains
x0 and f ∈ C1(E). Then ∀x0 ∈ E, there exists a maximal open interval L where the IVP (2.1) has
a unique solution x(t) or we can say that if the IVP (2.1) has a solution u(t) on the interval I then
for all t ∈ I, I ⊂ L and u(t) = x(t).

L is of the form (α, β) and it is called the maximal interval of existence of the IVP (2.1). We
need the following lemma to prove the Global existence theorem (5.2.1) and similar theorems in
Chapter 5.

Lemma 2.1.4. Let E be an open subset of Rn which contains x0, and f ∈ C1(E). Let [0, β) be the
right maximal interval of solution x(t) of the initial value problem (2.1). If there is a compact set
C ⊂ E such that {b ∈ Rn|b = x(t) for some t ∈ [0, β)} ⊂ C then β = ∞. Hence IVP (2.1) has a
solution x(t) on [0,∞).

2.1.5 Flow of the differential equation
Let E be an subset of Rn and f ∈ C1(E). Let φ(t, x0) be the solution of the non-linear system (2.1)
for x0 ∈ E and defined on its maximal interval I(x0). Then for ∀t ∈ I(x0)

φt : E → Rn

φt(x0) := φ(t, x0)

φt is called the flow of the non-linear differential equation.

2.1.6 Linearization
The following linear system

ẋ = Ax (2.2)
is called the linearisation of the non-linear system (2.1) at x0 with the matrix A = Df(x0).

2.1.7 Invariant
Let E be an subset of Rn and f ∈ C1(E). Consider φt : E → E be the flow of the non-linear system
ẋ = f(x), ∀t ∈ R, then a set W ⊆ E is called invariant with respect to the flow φt if φt(W ) ⊆ W ,
∀t ∈ R.

2.1.8 Hyperbolic equilibrium point(Critical Point)
A point x0 ∈ R is called a hyperbolic critical point of the non-linear system (2.1), if the eigenvalues
of matrix Df(x0) have no zero real part.

2.1.9 Gronwall’s Lemma
We need the following lemma to prove theorem (5.2.5).

Lemma 2.1.5. (Gronwall’s Lemma) Let h(t) be the continuous real valued function with h(t) ≥ 0,
and

h(t) = c+ k

∫ t

0
h(s)ds

for all t ∈ [0, a] and c, k ≥ 0, then

h(t) ≤ cekt ∀t ∈ [0, a].
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Proof. We have

h(t) = c+ k

∫ t

0
h(s)ds

From the fundamental theorem of calculus

h′(t) = k.h(t)

⇒ h′(t)
h(t) ≤ k

⇒ d(log h(t))
dt

≤ k

⇒ log h(t) ≤ k.t+ log h(0)
⇒ h(t) ≤ h(0)ek.t

And hence,
h(t) ≤ cekt ∀t ∈ [0, a].



Chapter 3

The Stable Manifold Theorem and
Its Applications

3.1 The Stable Manifold Theorem
This theorem shows that near a hyperbolic critical point x0, the non-linear system ẋ = f(x) has a
stable and a unstable manifolds S and U which are tangent to the stable and unstable subspace Es
and Eu of the linearazied system ẋ = Ax at x0, where A = Df(x0).

To understand this theorem first, we will study the stability of the linear system by a simple
example. Then in the stable manifold theorem we will see the stability of non-linear systems.
Consider the following 2-dimensional Linear system;

Example 3.1.1.

ẋ = −2x
ẏ = 3y

Let φt be the solution of this linear system.

A =
[
−2 0
0 3

]
Since A has two real and opposite sign eigenvalues, so this system has a saddle point at the origin.
We have

x(t) = a1e
−2t

y(t) = a2e
3t

Here the stable subspace(Es) and unstable subspace(Eu) are

Es = span{(1, 0)}
Eu = span{(0, 1)}

So
lim
t→∞

φt(a) = 0

Only when a ∈ Rs.

6
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Lemma 3.1.1. Let E be an open subset of Rn containing the origin. If f ∈ C1(E), and f(0) =
Df(0) = 0, then for any ε > 0, ∃ a δ > 0 such that ∀x, y ∈ Nδ(0), we have

|f(x)− f(y)| ≤ ε|x− y|

Proof. Given ε > 0, ∃ a δ such that ‖x‖ < δ
2 , ‖y‖ <

δ
2 implies that

‖x− y‖ < δ

Now, Df(0) = 0 and Df is continuous. Hence limx→0 ‖Df(x)‖ → 0.
So from the definition of Df , given ε′ > 0, ∃ a δ′ > 0 such that ‖x‖ < δ′ implies that ‖Df(x)‖ < ε′.
Take δ′′ = min( δ2 , δ

′), ∀‖x‖ < δ′′, ‖y‖ < δ′′.
Consider

|‖f(x)− f(y)‖ − ‖Df(x).(y − x)‖| ≤ ‖f(y)− f(x)−Df(x).(y − x)‖
≤ ε‖x− y‖

And hence

‖f(x)− f(y)‖ ≤ (‖Df(x)‖+ ε)‖(y − x)‖
≤ (ε′ + ε)‖(y − x)‖
= ε′′‖(y − x)‖.

Theorem 3.1.2. (The Stable Manifold Theorem)
Let E be an open subset of Rn containing the origin, and f ∈ C1(E) with f(0) = 0 . Let φt be the
flow of the non-linear system ẋ = f(x). If Df(0) has k eigenvalues with negative real part and n−k
eigenvalues with positive real part, then ∃ a k-dimensional differential manifold S which is tangent
to the stable subspace Es of the linearised system and near the origin it is positively invariant with
respect to the flow φt, i.e. ∀t ≥ 0, φt(S) ⊂ S and ∀x0 ∈ S

lim
t→∞

φt(x0) = 0

also ∃ a n-k - dimensional differential manifold U which is tangent to the unstable subspace Eu of
the linearised system and near the origin it is negatively invariant with respect to flow φt i.e. it
satisfies ∀t ≤ 0, φt(U) ⊂ U and ∀x0 ∈ U

lim
t→−∞

φt(x0) = 0.

Proof. It is given that f∈ C1(E) and f(0) = 0, then we can rewrite the non-linear equation as

ẋ = Ax+ F(x) (3.1)

where A = Df(0) and F(x) = f(x)−Ax.
It is clear that F ∈ C1(E) and also F(0) = 0 and DF(0) = 0.
From lemma (3.1.1), F satisfies the local lipschitz condition i.e.
for all ε > 0 there exists a δ > 0 such that |x| ≤ δ, |y| ≤ δ implies that

|F(x)−F(y)| ≤ ε|x− y| (3.2)

Now we will diagonalise matrix A; i.e. there exist an invertible matrix B such that

C = B−1AB =
[
X 0
0 Y

]
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Here X is a k × k block matrix when the real part is negative, and Y is an n − k × n − k block
matrix when the real part is positive.
Let y = B−1x and transform (3.1) as:

ẏ = Cy + G(y) (3.3)

where G(y) = B−1F(By) and G(0) = 0; DG(0) = 0.
Since Ẽ is homeomorphic to E as B is an invertible matrix, so G(y) ∈ C1(Ẽ), where Ẽ = C−1(E).
Hence, G(y) satisfies the Lipschitz condition. Now consider

P (t) =
[
eXt 0
0 0

]
, Q(t) =

[
0 0
0 eY t

]
Clearly, we can see that Ṗ (t) = CP , and Q̇(t) = CQ. Also

eCt = P (t) +Q(t) (3.4)

The Matrix norm can be defined as:
‖P (t)‖ ≤ ηe−(α+σ)t ∀t ≥ 0
‖Q(t)‖ ≤ ηeσt ∀t ≤ 0

(3.5)

Where α = max(αi), σ = min(σi) and η is sufficiently large.
Now Consider the following integral equation;

h(t, a) = P (t)a+
∫ t

0
P (t− s)G(h(s, a))ds−

∫ ∞
t

Q(t− s)G(h(s, a))ds (3.6)

It is a solution of the differential equation (3.3), if h(t, a) is a continuous solution of this integral
equation.

We will solve this integral equation using the method of successive approximations.
For that consider h(0)(t, a) = a, and the following sequence

h(j+1)(t, a) = P (t)a+
∫ t

0
P (t− s)G(h(j)(s, a))ds−

∫ ∞
t

Q(t− s)G(h(j)(s, a))ds

We will show that this is a Cauchy sequence.
For that assume the induction hypothesis;∣∣∣h(j)(t, a)− h(j−1)(t, a)

∣∣∣ ≤ η|a|e−αt

2j−1 (3.7)

this holds for j = 1, . . . ,m.
From the induction hypothesis ∀t ≥ 0, we have

|hm+1(t, a)− hm(t, a)| ≤
∫ t

0
‖P (t− s)‖ε|h(m)(s, a)− h(m−1)(s, a)|ds

+
∫ ∞
t

‖Q(t− s)‖ε|h(m)(s, a)− h(m−1)(s, a)|ds

≤ ε
∫ t

0
ηe−(α+σ)(t−s) η|a|e−αs

2m−1 ds

+ ε

∫ ∞
0

ηeσ(t−s) η|a|e−σs

2m−1 ds

≤ εη2|a|e−αt

σ2m−1 + εη2|a|e−αt

σ2m−1

<

(
1
4 + 1

4

)
η|a|e−αt

σ2m−1 = η|a|e−αt

2m .
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Here εη
σ < 1

4 , i.e ε < σ
4η .

Hence, (3.7) is true for all j.

|h(j)(t, a)− h(j−1)(t, a)| ≤ η|a|e−αt

2j−1

<
η′

2j−1 since |a| < δ

2η

Now for n > m > N ,

|h(n)(t, a)− h(m)(t, a)| ≤
∞∑
j=N
|h(j+1)(t, a)− h(j)(t, s)|

≤ η|a|
∞∑
j=N

1
2j = η|a|

2N−1

(3.8)

Since |a| is bounded, so the above goes to 0 as N goes to ∞.
Hence, we can say that it is a uniformly Cauchy. Also, it implies uniformly convergences. This
shows that h(t, a) is differentiable.

lim
j→∞

(h(j)(t, a)) = h(t, a)

Satisfies (3.6), and (3.3) also.

|h(j)(t, a)− h(j−1)(t, a)| < η|a|
2j−1

||h(j)(t, a)| − |h(j−1)(t, a)|| ≤ |h(j)(t, a)− h(j−1)(t, a)|
||a| − |b|| ≤ |a− b| (reverse triangle inequality)

|h(j)(t, a)| < η|a|e−αt

2j−1 + |h(j−1)(t, a)| ∀j

|h(j−1)(t, a)| < η|a|e−αt

2j−2 + |h(j−2)(t, a)|

|h(j)(t, a)| < η|a|e−αt

2j−1 + η|a|e−αt

2j−2 + |h(j−2)(t, a)|

<
η|a|e−αt

2j−1 + η|a|e−αt

2j−2 + η|a|e−αt

2j−3 + |h(j−3)(t, a)|

...

< e−αtη|a|{ 1
2j−1 + . . . }

< e−αtη|a|{1 + 1
2 + . . . } = 2e−αtη|a|

lim |hj(t, a)| < 2e−αt|a|
h(t, a) < 2e−αt|a|.

(3.9)
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The last (n−k) components of vector a can be taken as 0 since it does not enter in the computation.

h


t,



a1
...
ak
ak+1
...
an




= h


t,



a1
...
ak
0
...
0





h


0,



a1
...
ak
0
...
0




= P (0)



a1
...
ak
0
...
0


+ 0−

∫ ∞
0

Q(−s)G


h


s,



a1
...
ak
0
...
0






ds

=
[
(id)k×k 0

0 0

]


a1
...
ak
0
...
0


−
∫ ∞

0

[
0 0
0 e−Y s

]
G


h


s,



a1
...
ak
0
...
0






ds

=



a1
...
ak
0
...
0


−



0
...
0∫
∗
...∫
∗


=



a1
...
ak
−
∫
∗

...
−
∫
∗


and hence,

hj(0, a) = aj for j = 1, . . . , k

= −
(∫ ∞

0
Q(−s)G (h (s, a1, . . . , ak, 0)) ds

)
j

for j = k + 1, . . . , n.

Now, define the function as follows

ψj : Rk → R ∀j ∈ k + 1, . . . , n
ψj(x1, . . . , xk) := hj(0, (x1, . . . , xk, 0, . . . , 0))

= −
(∫ ∞

0
Q(−s)G (h (s, x1, . . . , xk, 0)) ds

)
j
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Also, define the following equation

ψj(x1, . . . , xk)j = xj ∀j ∈ {k + 1, . . . , n}

Now, consider

S̃ = {(y1, . . . , yn) ⊆ E| yj = ψj(y1, . . . , yk)} for j ∈ k + 1, . . . , n.
S̃ = {y1, . . . , yk, . . . , ψk+1(y1, . . . , yk), . . . , ψn(y1, . . . , yk)}

Consider the following disc

D = {(y1, .., yk)|
√
y2

1 + ..+ y2
k <

δ

2k }

So, it is clear that S̃ is a k-dimensional manifold.

Example 3.1.2. Consider R4, n = 4 and k = 2.
Let

ψ3(x1, x2) = x2
1 + x2

2

ψ4(x1, x2) = x3
1

Define the equations;

ψ3(x1, x2) = x3

ψ4(x1, x2) = x4

Consider

S̃ = {(x1, x2, x3, x4) ∈ Ẽ| x3 = x2
1 + x2

2, x4 = x3
1}

= {x1, x2, x
2
1 + x2

2, x
3
1}.

Now, we have

∂ψj
∂yi

(0) = 0

for i = 1, . . . , k and j = k + 1, . . . , n.
It means that the differential manifold S̃ is tangent to the stable subspace(Es) of the linear system.
y(t) is the solution of the equation (3.3) such that y(0) ∈ S̃.
If y(0) ∈ S̃, then y(t) ∈ S̃ ∀t ≥ 0.
From (3.9), y(t) = h(t, a) when y(0) = h(0, a). So y(t)→ 0, as t→∞.
By replacing t→ −t, and from the same method as done above for the stable manifold, we will get
an unstable manifold.
This completes the proof of the stable manifold theorem.

3.2 The Center Manifold Theorem
Theorem 3.2.1. (The Center Manifold Theorem)[1] Let E be an open subset of Rn(Contains ori-
gin), and f ∈ Cα(E) for α ≥ 1. Let φt be the flow of the non-linear system. Assume that f(0) = 0
and Df(0) has j eigenvalues with negative real part, k eigenvalues with positive real part, and n−j−k
with zero real part. Then,
(i). There exists n− j − k dimensional center manifold of class Cα, which is tangent to the center
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subspace(Ec) of the linearised system near the origin, and this center manifold is invariant with
respect to the flow of φt.
(ii). There exists j dimensional stable manifold of class Cα, which is tangent to the stable subspace(Es)
of the linearised system near the origin, and this stable manifold is invariant with respect to the flow
of φt.
(iii). There exists k dimensional unstable manifold of class Cα, which is tangent to the unstable
subspace(Eu) of the linearised system near the origin, and this unstable manifold is invariant with
respect to the flow of φt.
Proof. This theorem can be proved using the same idea used in the proof of the stable manifold
theorem.

Example 3.2.1. Consider the following system

ẋ = −x
ẏ = 2y + x2

We will calculate the required parameters, i.e.

A = C =
[
−1 0
0 2

]
F(x) = G(x) =

[
0
x2

]
Let a =

[
a1
0

]
P =

[
e−t 0
0 0

]
Q =

[
0 0
0 e2t

]
Using the successive approximations, we have

h(0)(t, a) =
[
0
0

]
h(1)(t, a) =

[
e−ta1

0

]
h(2)(t, a) =

[
e−ta1
− 1

4e
−2ta2

1

]
h(3)(t, a) =

[
e−ta1
− 1

4e
−2ta2

1

]
And hence for all m ≥ 2, we have

h(m)(t, a) =
[

e−ta1
− 1

4e
−2ta2

1

]
h(t, a) =

[
e−ta1
− 1

4e
−2ta2

1

]
So,

ψ2(a1) = (u(0, a))2nd component

= −1
4a

2
1
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So, the stable manifold is written as
S : y = −1

4x
2

By replacing t→ −t, the unstable manifold is written as

U : x = −1
4y

2

The solution of the system is given by φt

φt =
[

e−ta1
− 1

4a
2
1(e−2t − e2t) + a2e

2t

]
As φt(S) ⊂ S for all t ≥ 0, and φt(U) ⊂ U for all t ≤ 0. So, It is clear that S and U are invariant
under the flow φt.

3.3 Stability and Liapunov Functions
Consider the following non-linear system

ẋ = f(x) (3.10)

The stability of the hyperbolic equilibrium point of (3.10) can be determined by the signs of the real
parts of the eigenvalues λj of the matrix Df(x0).

It is tough to determine the stability of non-hyperbolic equilibrium points. Liapunov is the
crucial method to assess the stability of non-hyperbolic equilibrium points.

Definition 3.3.1 (Stable, Unstable, and Asymptotically stable critical point). Let φt be the flow
of the non-linear system (3.10), which is defined ∀t ∈ R. A critical point (x0) is called stable, if
∀ε > 0, ∃ a δ > 0 such that ∀x ∈ Uδ(x0) and t ≥ 0,

φt(x) ∈ Uε(x0)

If the critical point is not stable then, it is called an unstable critical point.
x0 is an asymptotically stable point; if it is stable, and if ∃ a δ > 0 such that for all x ∈ Uδ(x0),

lim
t→∞

φt(x) = x0.

From the stable manifold theorem and the Hartman-Grobman theorem, it is clear that any sink
of (3.10) is asymptotically stable, and any source or saddle of (3.10) is unstable. So, any hyperbolic
equilibrium point of (3.10) is either asymptotically stable or unstable.

Theorem 3.3.1. [1] If x0 is a stable critical point of (3.10), then there is no eigenvalue of Df(x0)
which have positive real part.

Definition 3.3.2. Let f,L ∈ C1(E), and φt be the flow of the system (3.10), then the derivative of
the function L(x) along the flow φt(x) is given by

L̇(x) = d

dt
L (φt(x))

∣∣∣∣
t=0

= DL(x)f(x)

for x ∈ E.
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Theorem 3.3.2. (Liapunov Stability) Let E be an open subset of Rn(contains x0 ), f ∈ C1(E)
and also f(x0) = 0. Suppose there is a real valued function L ∈ C1(E) which satisfies L(x0) = 0
and L(x) > 0 if x 6= x0, then
(i). If L̇(x) ≤ 0 ∀x ∈ E, then x0 is stable.
(ii). If L̇(x) < 0 ∀x ∈ E − (x0), then x0 is asymptotically stable.
(iii). If L̇(x) > 0 ∀x ∈ E − (x0), then x0 is unstable.
A function L : Rn → R which satisfies the hypotheses of the above theorem is called a Liapunov
function.

Proof. First of all assume that x0 = 0.
Part (i). We want to show that ∀ε > 0, ∃ a δ > 0 such that for all x ∈ Uδ(0) and t ≥ 0, we have
φt(x) ∈ Uε(0).
For that, construct a closed ball of radius r, Br which is subset of E. So for ε > 0, and 0 ≥ r ≥ ε

Br = {x ∈ Rn| |x| ≤ r} ⊂ E.

Now, construct Oα = {x ∈ Br| L ≤ α} such that Oα lies in the interior of Br.
Let β = min|x|=r L(x) and take 0 < α < β

Oα = {x ∈ Br| L ≤ α}.

If a point a is in the boundary, then L(a) ≥ β > α. So Oα lies in the interior of Br.
For x = φ0(x) ∈ Oα, and ∀t,

L(φt(x))− L(φ0(x)) =
∫ t

0

∂

∂s
L(φs(x))ds ≤ 0

L(φt(x)) ≤ L(φ0(x))
≤ α.

So, φt(x) ∈ Oα.
Since L is a continuous function, L(0) = 0, then ∃ a δ > 0 such that |x| < δ implies that L(x) < α.
So,

x ∈ Uδ ⇒ x ∈ Oα
⇒ φt(x) ∈ Oα
⇒ φt(x) ∈ Br
⇒ φt(x) ∈ Uε(0).

This proves the part (i), and hence the origin is a stable.
Part (ii). From the definition, we want to show that ∃ a δ > 0 such that x ∈ Uδ(0), we have

lim
t→∞

φt(x) = 0.

or we can say that
∃ a δ > 0 such that ∀ε > 0, ∃ a τ > 0 such that for x ∈ Uδ(0) and t > τ , we have

|φt(x)| < ε.

In the previous part (i), we have shown that ∀ε > 0 we can construct α such that Oα ⊂ Uε(0) i.e.

φt(x) ∈ Oα ⇒ φt(x) ∈ Uε(0).
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So, it is sufficient to show that ∀x ∈ Uδ(0), we have

lim
t→∞

L(φt(x)) = 0.

This means that ∀α > 0, ∃ a τ > 0, such that ∀t > τ ,

L(φt(x)) < α.

i.e.
φt(x) ∈ Oα ⊂ Uε(0).

It is given that L is decreasing and bounded below, So

lim
t→∞

L(φt(x)) = c ≥ 0.

Assume that c > 0, Let
Oc = {x ∈ Br| L(x) ≤ c}

By the continuity of L and L(0) = 0
∃ a d > 0 such that

Bd = {x ∈ Rn| |x| ≤ d} ⊂ Oc
Since

lim
t→∞

L(φt(x)) = c

then φt(x) lies outside Bd or we can say that φt(x) lies in the compact set d ≤ |x| ≤ r,
L attains its maximum value in this set.
Let

β = − max
d≤|x|≤r

L̇ > 0

For t > 0, we have

L(φt(x)) = L(φ0(x)) +
∫ t

0

∂

∂s
L(φs(x))ds

≤ L(φ0(x))− βt

This shows that

L(φt(x)) < 0
c < 0.

This is the contradiction of the assumed argument and hence c = 0.

lim
t→∞

L(φt(x)) = 0.

Hence x0 is an asymptotically stable.
Part (iii). By using t = −t, and the same steps used in the part (ii), we can get that x0 is
unstable.

Example 3.3.1. Consider the system,

ẋ = −x+ y + xy

ẏ = x− y − x2 − y3
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The origin is an non-hyperbolic equilibrium point of this system, and Liapunov function for this
system is

L(x) = x2 + y2

L̇(x) = 2x(−x+ y + xy) + 2y(x− y − x2 − y3)
= −2x2 + 4xy − 2y2 − 2y4

= −2y4 − 2(x− y)2 < 0.

Hence, the origin is an asymptotically stable equilibrium point of this system.

3.4 Saddle, Nodes, Foci and Centers
Consider the following non-linear system

ẋ = f(x) (3.11)

Definition 3.4.1. In the above non-linear system (3.11), a point is considered as the center, if ∃ a
δ > 0 such that every solution curve of (3.11) is a closed curve with 0 in its interior, in the deleted
neighbourhood Uδ(0)− (0).

Figure 3.1: Center

Definition 3.4.2. The stable-focus here is the origin for (3.11), if ∃ a δ > 0 such that for 0 <
r0 < δ and θ0 ∈ R, radius of the solution curve r(t, r0, θ0) → 0 and the amplitude of an angle
|θ(t, r0, θ0)| → ∞ as t→∞.

Figure 3.2: Stable Focus



CHAPTER 3. THE STABLE MANIFOLD THEOREM AND ITS APPLICATIONS 17

Definition 3.4.3. For this non-linear system (3.11), the unstable-focus is the origin, if ∃ a δ > 0
such that for 0 < r0 < δ and θ0 ∈ R, the radius r(t, r0, θ0) → 0 and an angle |θ(t, r0, θ0)| → ∞ as
t→ −∞.

Figure 3.3: Unstable Focus

Definition 3.4.4. The trajectory of (3.11) is a spiral towards the origin if t → ±∞, it satisfies
r(t)→ 0 and |θ(t)| → ∞.

Definition 3.4.5. The origin is a stable-node for (3.11), if ∃ a δ > 0 such that for 0 < r0 < δ and
θ0 ∈ R, radius of the solution curve r(t, r0, θ0)→ 0 and

lim
t→∞

|θ(t, r0, θ0)| exists as t→∞.

Figure 3.4: Stable Node

Definition 3.4.6. The origin is said to be an unstable-node for the non-linear system (3.11), if
∃ a δ > 0 such that for 0 < r0 < δ and θ0 ∈ R, r(t, r0, θ0)→ 0 and

lim
t→−∞

|θ(t, r0, θ0)| exists as t→ −∞.
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Figure 3.5: Unstable Node

Definition 3.4.7. The origin is a proper node for (3.11), if it is a node and if every line passing
through the origin is tangent to some trajectory of (3.11).

Definition 3.4.8. The origin is a (topological) sadle for (3.11), if there exists two trajectories Γ1,
and Γ2 which approach 0 as t→∞, two trajectories Γ3 and Γ4 which approach 0 as t→ −∞, and
if there exists a δ > 0 such that all other trajectories which start in the deleted neighborhod of the
origin Nδ(0)− {0} leave Nδ(0) as t→ ±∞ . The trajectories Γ1,. . . , Γ4 are called separatrices.

Figure 3.6: Saddle

Theorem 3.4.1. Consider the linearised system of the non-linear system (3.11)

ẋ = Ax (3.12)

Let E be an open subset of R2 (Contains origin), and f ∈ C1(E). The origin is a (topological)
saddle for the non-linear system (3.11) if and only if the origin is a saddle for the linear system
(3.12) with A = Df(0).

Proof. This theorem follows from the Stable Manifold Theorem (3.1.2), and the Hartman-Grobman
Theorem (4.1.1).

Theorem 3.4.2. [1] Let E be an open subset of R2 (Contains origin), and f ∈ C2(E). Let the
origin is a hyperbolic critical point of (3.11). Then,
(i). The origin is a stable (or unstable) node for the non-linear system (3.11) if and only if it is a
stable(or unstable) node for the linear system (3.12).
(ii). The origin is a stable(or unstable) focus for the non-linear system (3.11) if and only if it is a
stable(or unstable) focus for the linear system (3.12).
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Theorem 3.4.3. [1] Let E be an open subset of R2 (Contains origin), and f ∈ C1(E) with f(0) = 0.
If the origin is a center for the linear system (3.12), then the origin may be a focus, a center-focus
or a center for the non-linear system (3.11).

Corollary 3.4.3.1. [1] Let E be an open subset of R2 (Containing origin), and f is analytic in E.
If the origin is a center for the linear system (3.12), then the origin is either a focus or a center for
the non-linear system (3.11).

Let x = (x, y)T , f1(x) = P (x, y) and f2(x) = Q(x, y). The non-linear system (3.11) can be
written as

ẋ = P (x, y)
ẏ = Q(x, y)

(3.13)

Definition 3.4.9. The system (3.13) is called symmetric with respect to the x−axis, if it is invariant
under the transformation (t, y)→ (−t,−y); and it is symmetric with respect to the y − axis, if it is
invariant under the transformation (t, x)→ (−t,−x).

Theorem 3.4.4. [1] Let E be an open subset of R2 (Contains origin), and f ∈ C1(E) with f(0) = 0.
If the non-linear system (3.11) is symmetric with respect to the x− axis or the y − axis, and if the
origin is a center for the linear system (3.12) with A = Df(0), then the origin is a center for the
non-linear system (3.11).

3.5 Non-Hyperbolic Critical Points in R2

Definition 3.5.1. Sector which is topologically equivalent to the sector shown in Fig.(a), (b), (c)
are called a hyperbolic sector, parabolic sector, and an elliptic sector, respectively.

Figure 3.7: (a) Parabolic Sector Figure 3.8: (b) Hyperbolic Figure 3.9: (c) Elliptic Sector

Definition 3.5.2. If the origin contains one elliptic sector, one hyperbolic sector, two parabolic
sectors, and four separatrices, then it is called a critical point with an elliptic domain.
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Figure 3.10: Critical point with an elliptic domain

Definition 3.5.3. If a critical point which consists two hyperbolic sectors and one parabolic sector,
as well as three separatrices and the critical point itself, is called a saddle-node.

Figure 3.11: Saddle-node

Definition 3.5.4. If the origin consists of two hyperbolic sectors and two separatrices, then this
type of critical point is called a cusp.

Figure 3.12: Cusp



CHAPTER 3. THE STABLE MANIFOLD THEOREM AND ITS APPLICATIONS 21

Consider the planar system

ẋ = P (x, y)
ẏ = Q(x, y)

(3.14)

This system can be written as

ẋ = p2(x, y)
ẏ = y + q2(x, y)

(3.15)

where p2 and q2 are analytic in a neighbourhood of the origin and have expansions that begin with
second degree terms in x and y.
The next three theorems shows the type and stability of the non-hyperbolic critical point.

Theorem 3.5.1. [1] Let the origin is an isolated critical point for the system (3.15). Let y = φ(x)
be the solution of the equation y+ q2(x, y) = 0 and the expansion of the function ψ(x) = p2(x, φ(x))
in a neighbourhood of x = 0 is the form

ψ(x) = anx
n + . . .

where n ≥ 2 and an 6= 0. Then
(i). For n odd and an > 0, the origin is an unstable node.
(ii). For n odd and an < 0, the origin is a (topological) saddle.
(iii). For n even, the origin is a saddle-node.

The system (3.15) can be written in the "normal" form

ẋ = y

ẏ = akx
k[1 + h(x)] + bnx

ny[1 + g(x)] + y2R(x, y)
(3.16)

where h(x), g(x) and R(x, y) are analytic in a neighbourhood of the origin.
h(0) = g(0) = 0, k ≥ 2, ak 6= 0 and n ≥ 1.

Theorem 3.5.2. [1] Let k = 2m+ 1 for m ≥ 1 in (3.16) and let λ = b2
n + 4(m+ 1)ak.

(a). If ak > 0, then the origin is a (topological) saddle.
(b). If ak < 0, then the origin is
(i). A focus or a center if bn = 0 and also if bn 6= 0 and n > m or if n = m and λ < 0.
(ii). An node if bn 6= 0, n is an even number and n < m and also if bn 6= 0, n is an even number,
n = m and λ > 0.
(iii). A critical point with an elliptic domain if bn 6= 0, n is an odd number and n < m and also if
bn 6= 0, n is an odd number, n = m and λ ≥ 0.

Theorem 3.5.3. [1] Let k = 2m for m ≥ 1 in (3.16).
Then the origin is
(i). A cusp if bn = 0 and also if bn = 0 and n > m.
(ii). A sadle-node if bn 6= 0 and n < m.
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A computer program using these theorems is performed, which tells about the type of critical
point.

Figure 3.13: Computer Program
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3.6 Hamiltonian and Gradient Systems
Definition 3.6.1. Let E be an open subset of R2n, H ∈ C2(E)

H = H(x, y) for x, y ∈ Rn

A system of the form

ẋ = ∂H
∂y

ẏ = −∂H
∂x

(3.17)

Where,

∂H
∂y

=
(
∂H
∂y1

, . . . ,
∂H
∂yn

)T
∂H
∂x

=
(
∂H
∂x1

, . . . ,
∂H
∂xn

)T
Then (3.17) is called the Hamiltonian system with n degree of freedom on E.

Theorem 3.6.1. Hamiltonian function H(x, y) remains constant along the trajectories of (3.17).

Proof. Consider the trajectories x(t), y(t).

∂H
∂t

= ∂H
∂x
· ẋ+ ∂H

∂y
· ẏ

= ∂H
∂x
· ∂H
∂y
− ∂H
∂y
· ∂H
∂x

= 0.

Hence, H is constant along x(t), y(t).

Lemma 3.6.2. Consider the following hamiltonian system

ẋ = Hy(x, y)
ẏ = Hx(x, y)

(3.18)

If the origin is a stable focus of the above system, then the origin is not a strict local maximum /
strict local minimum of the hamiltonian function H(x, y).

Proof. Let the origin is a stable focus of (3.18), then by the definition of stable focus (3.4.2) in a
polar coordinate, if ∃ a δ > 0 such that for 0 < r0 < δ and θ0 ∈ R, the radius of the solution curve
r(t, r0, θ0)→ 0 and the amplitude of an angle |θ(t, r0, θ0)| → ∞ as t→∞.
Now, we can write the above in the Cartesian coordinate.
for (x0, y0) ∈ Nε(0) ∼ 0, as t→∞

(x(t, x0, y0), y(t, x0, y0))→ (0, 0)

by using theorem (3.6.1),

H(x0, y0) = lim
t→∞

H(x(t, x0, y0), y(t, x0, y0)) = H(0, 0)

So, H(x, y) > H(0, 0) and H(x, y) < H(0, 0) is not true for all (x0, y0) ∈ Nε(0).
The same proof holds if the origin is an unstable focus. Hence, the origin is not strict local maxima
and strict local minima for H.
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Definition 3.6.2. A critical point of the non-linear system is said to be an non-degenerate critical
point, if Df(x0) has no zero eigenvalues, if not then it will be considered as a degenerate critical
point of the system.

Theorem 3.6.3. An non-degenerate critical point (det(A) 6= 0) of the analytic hamiltonian system
(3.18) is either a center or a topological saddle.
(i). (x0, y0) is topological saddle for (3.18) if and only if it is a saddle of the hamiltonian system.
(ii). A strict local maxima or a strict local minima of the function H(x, y) is a center of (3.18).

Proof. Part (i). Consider (0,0) as a critical point. So,

Hx(0, 0) = Hy(0, 0) = (0, 0)

The linearisation of the system at the origin is given by the

ẋ = Ax

A =
[
Hyx(0, 0) Hyy(0, 0)
−Hxx(0, 0) −Hxy(0, 0)

] (3.19)

tr(A) = 0, Det(A) = Hxx(0) · Hyy(0)−H2
xy(0)

Critical point is saddle iff det(A) < 0 iff it is saddle for (3.19) iff it is a saddle for the hamiltonian
system (3.18) from the theorem (3.4.1).
Part (ii). If we have tr(A) = 0 and det(A) < 0, then the origin is a center for linear system (3.19),
then from the Corollary (3.4.3.1) the critical point is either a center or a focus for (3.18). And hence
from the lemma (3.6.2), it can not be a focus. So the origin is a center.

Definition 3.6.3. The Newtonian system is the Hamiltonian system with one degree of freedom.

ẍ = f(x)

where f ∈ C1(a, b).

This equation can be written as a system in R2,

ẋ = y

ẏ = f(x)
(3.20)

The total energy for this system is given by

H(x, y) = K(y) + P(x)

Where K(y) is the kinetic energy, and P(x) is the potential energy.

K(y) = y2

2

P(x) = −
∫ x

x0

f(s)ds

Theorem 3.6.4. (i). All the critical points of the system (3.20) lies on the x− axis.
(ii). (x0, 0) is a critical point of the newtonian system (3.20) iff it is a critical point of P(x).
(iii). If (x0, 0) is a strict local maxima of P(x), then it is a saddle for (3.20).
(iv). If (x0, 0) is a strict local minima of P(x), then it is a center for (3.20).
(v). If (x0, 0) is a horizontal inflection point of P(x), then it is a cusp for (3.20).
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Proof. From the definition of the critical point, we have y = 0 and f(x) = 0.
Part (i). Since y = 0, then it is obvious that the critical points lies on the x− axis.
Part (ii). Now, P ′(x) at (0) is same as f(0), which is the critical point of the system (3.20).

A =
[

0 1
f ′(x) 0

]
Part (iii). If (x0, 0) is a strict local maxima of the analytic function P(x), then P ′′(x) < 0 at (x0, 0)
which is −f ′(x0), so f ′(x0) > 0.
det(A) = −f ′(x) < 0 and tr(A) = 0, so by the definition the critical point is a saddle.
Part (iv). If (x0, 0) is a strict local minima of the analytic function P(x), then P ′′(x) > 0, so
f ′(x0) < 0.
det(A) = −f ′(x) > 0 and tr(A) = 0, so by the definition the critical point is a center.
Part (v). If (x0, 0) is a horizontal inflection point of the analytic function P(x), then det(A) = 0 as
A 6= 0, and hence by definition, the critical point is a cusp.

Example 3.6.1. Consider the following newtonian system

ẍ+ sin x = 0

this equation can be written as

ẋ1 = x2

ẋ2 = − sin x1

P(x1) =
∫ x1

0
sin t dt = 1− cosx1

The critical points of this system is (sin 0, 0) = (±π, 0). Phase portraits of P(x1) and H are Fig.

Figure 3.14: Newtonian system

In the phase portrait of P, 0 is the minima, and ±π are the maxima’s. Hence 0 is the center,
and ±π are the saddle critical points of the Newtonian system.



CHAPTER 3. THE STABLE MANIFOLD THEOREM AND ITS APPLICATIONS 26

Definition 3.6.4. Let E be an open subset of Rn. The following system

ẋ = −grad G(x)

grad G =
(
∂G

∂x1
, . . . ,

∂G

∂xn

)T (3.21)

is called the gradient system of E.

Theorem 3.6.5. [1] An non-degenerate critical point of an analytic gradient system (3.21) on R2

is either a node or a saddle.
(i). If (x0, y0) is a strict local maximum or minimum of the function G(x, y), then it is respectively
an unstable or a stable node for (3.21).
(ii). If (x0, y0) is a saddle of the function G(x, y), then it is a saddle of (3.21).

Example 3.6.2. Consider
G(x1, x2) = x2

1(1− x1)2 + x2
2

then the gradient system is of the form;

ẋ1 = −4x1(x1 − 1)(x1 −
1
2)

ẋ2 = −2x2

The critical points of the above system are (0, 0), ( 1
2 , 0) and (1, 0).

Then from the above theorem (3.6.5), (0, 0) and (1, 0) are stable nodes and ( 1
2 , 0) is a saddle point.

Fig

Figure 3.15: The trajectories of the gradient system
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Definition 3.6.5. Consider the planar system as

ẋ = U(x, y)
ẏ = V (x, y)

(3.22)

The system which is orthogonal to the system (3.22) is defined by

ẋ = V (x, y)
ẏ = −U(x, y)

(3.23)

If (3.22) is a hamiltonian system with U = Hy and V = −Hx, then (3.23) is a gradient system.
And conversely also holds.



Chapter 4

The Hartman-Grobman Theorem

4.1 The Hartman-Grobman Theorem
We will begin with a couple of definitions that will be used later in this chapter.

Definition 4.1.1 (Topologically equivalent). The following differential equations

ẋ = f(x) (4.1)

ẋ = Ax (4.2)

are topologically equivalent in a neighbourhood of the origin or we can say that these having the same
qualitative structure near the origin, if there is a homeomorphism H from an open set P (containing
origin) onto an open set Q (containing origin) which maps trajectories of (4.1) in P onto trajectories
of (4.2) in Q. It is also orientation preserving by time i.e. if the trajectory is directed from T1 to T2
in P , then its image is directed from H(T1) to H(T2) in Q.

Definition 4.1.2 (Topologically conjugate). If H preserves the parametrisation by time, then (4.1)
and (4.2) are topologically conjugate in a neighbourhood of the origin.
let φ be the flow of non-linear (4.1) and ψ is the flow of linear system (4.2), then

ψ(H(x), t) = H ◦ φ(x, t) (4.3)

Example 4.1.1. Consider the following linear systems

ẋ1 = Ax1

ẋ2 = Bx2

A =
[
2 −1
1 3

]
, B =

[
5 −3
1 5

]
Let H(x1) = Rx1, where

R = 1√
2

[
1 −1
1 1

]
, R−1 = 1√

2

[
1 1
−1 1

]
then B = RAR−1.
Let x2 = H(x1) = Rx1 or x1 = R−1x2.

ẋ2 = RAR−1x2 = Bx2

28
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eBt = eRAR
−1t = ReAtR−1

If x1(t) = eAtx0 is the solution of first linear system through x0, then
x2(t) = H(x1(t)) = Rx1(t) = ReAtx0 = eBtRx0 is the solution of second linear system through Rx0.
So, it is clear that

HeAt = eBtH

Hence this map H preserves the parametrisation by time. This mapping H(x1) = Rx1 (rotation
through 45◦) is homeomorphic. So by definition, the above two linear systems are topologically
conjugate.

The Hartman-Grobman theorem shows that near a hyperbolic critical point x0 the linear and
non-linear system have the same qualitative structure.

Theorem 4.1.1. (The Hartman-Grobman Theorem) Let E be an subset of Rn, and f∈ C1(E). Let
φt be the flow of the non-linear system (4.1). Consider f(0) = 0 and the matrix A = Df(0) have
no eigenvalue with 0 real part, then the linear and non-linear equations are said to be topologically
equivalent.
i.e. there exists a homeomorphism H of an open set P (containing origin) onto an open set Q
(containing origin) such that ∀x0 ∈ P , there is an open interval I0 ⊂ R (containing 0) such that
∀x0 ∈ P and t ∈ I0,

H ◦ φt(x0) = eAtH(x0) (4.4)

i.e H maps trajectories of (4.1) near the origin onto trajectories of (4.2) near origin and preserves
the parametrisation by time.
Here the flow of the non-linear system is φ(x, t), and the flow of the linearised system is ψ(x, t),
which is simply eAtx.

Proof. It is given that f∈ C1(E), f(0) = 0 and A = Df(0)

Suppose A =
[
M 0
0 N

]
Where M is a k× k block matrix when the real part is negative, N is an n− k×n− k block matrix
when the real part is positive.
Let φt be the flow of non-linear system. Write the solution as

x(t, x0) = φt(x0) =
[
y(t, y0, z0)
z(t, y0, z0)

]
(4.5)

Where x0 =
[
y0
z0

]
y(t, y0, z0) have k components and z(t, y0, z0) have n− k components.
y0 ∈ Es (stable subspace of A), and z0 ∈ Eu (unstable subspace of A).
Now, define the functions as follows:

Ỹ (y0, z0) = y(1, y0, z0)− eMy0 (4.6)

Z̃(y0, z0) = z(1, y0, z0)− eNz0 (4.7)

ẋ = f(x)
x(0) = 0
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This non-linear system has unique solution x(t) = 0 for all t. When f(0) = 0, then by the flow
property φ(0, t) = 0.
Hence from the equations (4.5), (4.6), and (4.7)

Ỹ (0) = Z̃(0) = 0
Der(Ỹ (0)) = Der(Z̃(0)) = 0.

Since f∈ C1(E) and eMy0, e
Ny0 are C∞, then by (4.6) and (4.7) Ỹ (y0, z0), Z̃(y0, z0) are continuously

differentiable.
Consider a compact set |y0|2 + |z0|2 ≤ c0

2, then by the ε− δ definition of continuity;
For any arbitrary ε > 0, ∃c0 such that |y0|2 + |z0|2 ≤ c0

2 implies that

‖Der(Ỹ (y0, z0))‖ ≤ ε

for small c0 and very small a, we have

‖Der(Ỹ (y0, z0))‖ ≤ a (4.8)
‖Der(Z̃(y0, z0))‖ ≤ a (4.9)

Let Y (y0, z0) and Z(y0, z0) be the smooth functions. For 0 < a < b,

f(x) =

e
(

1
x−c0

− 1
x− c0

2

)
if

c0

2 < x < c0

0 otherwise

F (x) =
∫ c0
x
f(t)dt∫ c0

c0
2
f(t)dt

F is smooth

F (t) =

1 ; t ≤ c0

2
0 ; t ≥ c0

Now, consider the same on Rn, i.e

ψ(x1 · · ·xn) = F
(∑

x2
i

)
ψ =

1 ;
∑

x2
i ≤

c0

2
0 ;

∑
x2
i ≥ c0

This ψ function is a bump function for the next partition.

Y (y0, z0) =

Ỹ (y0, z0) ; |y0|2 + |z0|2 ≤
(c0

2

)2

0 ; |y0|2 + |z0|2 ≥ (c0)2

Z(y0, z0) =

Z̃(y0, z0) ; |y0|2 + |z0|2 ≤
(c0

2

)2

0 ; |y0|2 + |z0|2 ≥ (c0)2

From the mean value theorem
f ′(c) = |f(x)− f(y)

x− y
|
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‖Der(Y )(∗)‖ = ‖Y (y0, z0)− y(0)‖
‖(y0, z0)− (0, 0)‖

‖Y (y0, z0)‖ ≤ a‖(y0, z0)‖

≤ a
√
|y0|2 + |z0|2

≤ a(|y0|+ |z0|).

as (y2
0) + (z2

0) ≤ (y0 + z0)2

Hence ∀(y0, z0) ∈ Rn,

‖Y (y0, z0)‖ ≤ a(|y0|+ |z0|) (4.10)
‖Z(y0, z0)‖ ≤ a(|y0|+ |z0|) (4.11)

Let D = eM and E = eN , E−1 = e−N , then we have

‖D‖ < 1
‖E−1‖ < 1

For x =
[
y
z

]
∈ Rn

Define the following transformations

U(y, z) =
[
Dy
Ez

]
V (y, z) =

[
Dy + Y (y, z)
Ez + Z(y, z)

]

U(x) = eAx =
[
eM 0
0 eN

]
x

and for |y|2 + |z|2 ≤
(
c0
2
)2

V (x) = φ1(x)

Lemma 4.1.2. ∃ a homeomorphism H0 from an open set P (containing origin) onto an open set
Q(containing origin) such that

H0 ◦ V = U ◦H0 (4.12)

Proof. We will prove this lemma by using the method of successive approximations.
For x ∈ Rn, let

H(x) =
[
φ(y, z)
ψ(y, z)

]
Then H ◦ T = L ◦H can be written as in the pair of equations

Dφ(y, z) = φ(Dy + Y (y, z), Ez + Z(y, z)) (4.13)

Eψ(y, z) = ψ(Dy + Y (y, z), Ez + Z(y, z)) (4.14)

First, we will solve (4.13), and then it is clear that the same method can be applied to solve the
other equation. Define the successive approximations for equation (4.13) by

ψ0(y, z) = z

ψk+1(y, z) = E−1ψk(Dy + Y (y, z), Ez + Z(y, z))
(4.15)
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From the induction argument for k = 0, 1, . . . , and for |y|+ |z| ≥ 2c0; ψk(y, z) are continuous and
satisfy ψk(y, z) = z.
We will prove the next inequality with the help of induction i.e for j = 1, 2, . . .

|ψj(y, z)− ψj−1(y, z)| ≤ ρτ j(|y|+ |z|)δ (4.16)

Here we choose sufficiently small δ ∈ (0, 1) such that τ < 1 since e < 1 i.e

τ = e[2 max(a, b, e)]δ

ρ = ae(2c0)1−δ

τ

First we will start with that j = 1, we have

|ψ1(y, z)− ψ0(y, z)| = |E−1ψ0(Dy + Y (y, z), Ez + Z(y, z))− z|
= |E−1(Ez + Z(y, z))− z|
= |E−1Z(y, z)|
≤ ‖E−1‖|Z(y, z)|
≤ ea(|y|+ |z|)
≤ ρτ(|y|+ |z|)δ

Since Z(y, z) = 0 for |y| + |z| ≥ 2co. And then assuming that the induction hypothesis holds for
j = 1, . . . , k, we have

|ψk+1(y, z)− ψk(y, z)| = |E−1ψk(Dy + Y (y, z), Ez + Z(y, z))− E−1ψk−1(Dy + Y (y, z), Ez + Z(y, z))|
≤ ‖E−1‖|ψk(∗)− ψk−1(∗)|
≤ eρτk[|Dy + Y (y, z)|+ |Ez + Z(y, z)|]δ

≤ eρτk[|by + 2a(|y|+ |z|) + e|z|]δ

≤ eρτk[2 max(a, b, e)]δ[(|y|+ |z|)]δ

= ρτk+1[(|y|+ |z|)]δ

Thus, ψk(y, z) is a Cauchy sequence of continuous functions which converges uniformly as k → ∞
to a continuous function ψ(y, z).
ψ(y, z) = z for |y|+ |z| ≥ 2co. By taking limit in (4.15) which shows that ψ(y, z) is a solution of the
equation (4.14).
The equation (4.13) can be written as

D−1φ(y, z) = φ(D−1y + Y1(y, z), E−1z + Z1(y, z)) (4.17)

Where the functions Y1 and Z1 are defined by the inverse of V (exists when a is very small)

V −1(y, z) =
[
D−1y + Y1(y, z)
E−1z + Z1(y, z)

]
With φ0(y, z) = y, and d = |D| < 1. The equation (4.14) can be solved precisely the same way by
the method of successive approximations. So we obtain the following continuous map

H(y, z) =
[
φ(y, z)
ψ(y, z)

]
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Now, we will show that H is a homeomorphism of Rn onto Rn.

H

(
y1, . . . , yk
zk+1, . . . , zn

)
=



φ1(y, z)
...

φk(y, z)
ψk+1(y, z)

...
ψn(y, z)



Der(H)
(
y1, . . . , yk
zk+1, . . . , zn

)
=



∂
∂y1

φ1(y, z) . . . ∂
∂yk

φ1(y, z) ∂
∂zk+1

φ1(y, z) . . . ∂
∂zn

φ1(y, z)
...

. . .
...

...
. . .

...
∂
∂y1

φk(y, z) . . . ∂
∂yk

φk(y, z) ∂
∂zk+1

φk(y, z) . . . ∂
∂zn

φk(y, z)
∂
∂y1

ψk+1(y, z) . . . ∂
∂yk

ψk+1(y, z) ∂
∂zk+1

ψk+1(y, z) . . . ∂
∂zn

ψk+1(y, z)
...

. . .
...

...
. . .

...
∂
∂y1

ψn(y, z) . . . ∂
∂yk

ψn(y, z) ∂
∂zk+1

ψn(y, z) . . . ∂
∂zn

ψn(y, z)


Eψ(y1, . . . , zn) = ψ (Dy + Y (y, z), Ez + Z(y, z))

E

ψk+1(y1, . . . , zn)
...

ψn(y1, . . . , zn)

 =



ψk+1

D
y1

...
yk

+ Y (y1, . . . , zn), E

zk+1
...
zn

+ Z(y1, . . . , zn)


...

ψn

D
y1

...
yk

+ Y (y1, . . . , zn), E

zk+1
...
zn

+ Z(y1, . . . , zn)





ψ0(y1, . . . , zn) =

ψ
0
k+1(y1, . . . , zn)

...
ψ0
n(y1, . . . , zn)

 =

zk+1
...
zn



Der(ψ0(y1, . . . , zn)) =


∂
∂y1

zk+1 . . . ∂
∂yk

zk+1
∂

∂zk+1
zk+1 . . . ∂

∂zn
zk+1

...
. . .

...
...

. . .
...

∂
∂y1

zn . . . ∂
∂yk

zn
∂

∂zk+1
zn . . . ∂

∂zn
zn


=

0 . . . 0 1 . . . 0
...

. . .
...

...
. . .

...
0 . . . 0 0 . . . 1


ψk+1(y1, . . . , zn) = E−1ψk(Dy + Y (y, z), Ez + Z(y, z))

For k = 0,

ψ1(y1, . . . , zn) = E−1



ψ0
k+1

D
y1

...
yk

+ Y (y1, . . . , zn), E

zk+1
...
zn

+ Z(y1, . . . , zn)


...

ψ0
n

D
y1

...
yk

+ Y (y1, . . . , zn), E

zk+1
...
zn

+ Z(y1, . . . , zn)
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= E−1



E

zk+1
...
zn

+ Z(y1, . . . , zn) → 1st Co− ordinate

...

E

zk+1
...
zn

+ Z(y1, . . . , zn)→ (n− k)th Co− ordinate


= E−1E

zk+1
...
zn

+ E−1

Zk+1(y1, . . . , zn)
...

Zn(y1, . . . , zn)


=

zk+1
...
zn

+ E−1Z(y1, . . . , zn)

Der(ψ1(y, z)) =
∂
∂y1
{E−1Z}1st . . . ∂

∂yk
{E−1Z}1st 1 + ∂

∂zk+1
{E−1Z}1st . . . ∂

∂zn
{E−1Z}1st

...
. . .

...
...

. . .
...

∂
∂y1
{E−1Z}(n−k) . . . ∂

∂yk
{E−1Z}(n−k)

∂
∂zk+1

{E−1Z}(n−k) . . . 1 + ∂
∂zn
{E−1Z}(n−k)


=

0 . . . 0 1 . . . 0
...

. . .
...

...
. . .

...
0 . . . 0 0 . . . 1

+ E−1Der(Z(y1, . . . , zn))

Der(ψ1(0, . . . , 0)) =

0 . . . 0 1 . . . 0
...

. . .
...

...
. . .

...
0 . . . 0 0 . . . 1

+ E−1.0

=

0 . . . 0 1 . . . 0
...

. . .
...

...
. . .

...
0 . . . 0 0 . . . 1



ψk(y1, . . . , zn) =

zk+1
...
zn

+E−1Z (y1, . . . , zn)+E−2Z (f(y1, . . . , zn)) +· · ·+E−kZ
(
fk−1(y1, . . . , zn)

)
Where

f : Rn → Rn

y1
...
yk
zk+1
...
zn


→


D

y1
...
yk

+ Y (y1, . . . , zn)

E

zk+1
...
zn

+ Z(y1, . . . , zn)
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f

0
...
0

 =

0
...
0


Der(f(y1, . . . , zn)) =

[
D 0
0 E

]
+
[
Der(Y (y1, . . . , zn))
Der(Z(y1, . . . , zn))

]
Der(f(0, . . . , 0)) =

[
D 0
0 E

]

Der(ψk(y1, . . . , zn)) =

0 . . . 0 1 . . . 0
...

. . .
...

...
. . .

...
0 . . . 0 0 . . . 1

+ E−1Der(Z(y1, . . . , zn))

+ E−2Der(Z(f(y1, . . . , zn))).Der(f(y1, . . . , zn))
+ · · ·+ E−kDer(Z(fk−1(y1, . . . , zn))).Der(fk−1(y1, . . . , zn))

Der(ψk(0, . . . , 0)) =

0 . . . 0 1 . . . 0
...

. . .
...

...
. . .

...
0 . . . 0 0 . . . 1

+ 0 · · ·+ E−kDer(Z(f . . . f(0, . . . , 0)).Der(fk−1(0, . . . , 0)))

=

0 . . . 0 1 . . . 0
...

. . .
...

...
. . .

...
0 . . . 0 0 . . . 1

+ 0 · · ·+ E−kDer(Z(0).Der(fk−1(0, . . . , 0)))

=

0 . . . 0 1 . . . 0
...

. . .
...

...
. . .

...
0 . . . 0 0 . . . 1


Now,

‖Der(ψk+1(y1, . . . , zn))−Der(ψk(y1, . . . , zn))‖ = ‖E−(k+1)Der(Z(fk(y1, . . . , zn))).Der(fk(y1, . . . , zn))‖
≤ E−(k+1)‖Der(Z(fk(y1, . . . , zn)))‖.‖Der(fk(y1, . . . , zn))‖
≤ E−(k+1).a′

For N < m < n′

‖Der(ψm(y1, . . . , zn))−Der(ψn
′
(y1, . . . , zn))‖ = ‖Der(ψm(y1, . . . , zn))−Der(ψm+1(y1, . . . , zn))‖+

· · ·+ ‖Der(ψn
′−1(y1, . . . , zn))−Der(ψn

′
(y1, . . . , zn))‖

≤ E−(m+1)a′ + · · ·+ E−n
′
a′

≤
∞∑
k=N

E−ka′

≤ E−Na′

1− E

as N → ∞, the above goes to 0. So ψk is uniformly Cauchy and hence uniformly convergence. By
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the uniform convergence

ψ′ = limψ′k ∀Points
ψ′(0) = limψ′k

Der(H(0)) =

0 . . . 0 1 . . . 0
...

. . .
...

...
. . .

...
0 . . . 0 0 . . . 1

 6= [0]

Hence from the inverse function theorem there exists an neighbourhood around 0, where H is home-
omorphic.

Let

U t(x0) := eAtx0 (4.18)
V t(x0) := φt(x0) (4.19)

Define:
H =

∫ 1

0
U−sH0V

sds (4.20)

U tH =
∫ 1

0
U t−sH0V

s−tds V t

s− t = s′ =⇒ ds = ds′

=
∫ 1−t

−t
U−sH0V

sds V t

= V t
(∫ 0

−t
U−sH0V

sds+
∫ 1−t

0
U−sH0V

sds

)

Since H0 = U−1H0V , then ∫ 0

−t
U−sH0V

sds =
∫ 0

−t
U−s−1H0V

s+1ds

=
∫ 1

1−t
U−sH0V

sds

So,

U tH =
∫ 1

0
U−sH0V

sds V t

= HV t.

Hence

H ◦ V t = U tH

or

H ◦ φt(x0) = eAtH(x0).



Chapter 5

Global Theory of Non-linear
Dynamical Systems

5.1 Definitions
A dynamical system is a function φ(t, x), which is defined ∀t ∈ R and x ∈ G ⊂ Rn. Which describes
how the point x ∈ G moves with respect to time t.

Definition 5.1.1. A dynamical system on G is a C1- map.

φ : R×G→ G

where G is an open subset of Rn, and if φt(x) = φ(t, x), then φt satisfies :

φ0(x) = x ∀x ∈ G
φt ◦ φs(x) = φt+s(x) ∀s, t ∈ R, x ∈ G.

From the above condition φt has C1 inverse which is φ−t. It also satisfies the group property, so
this system forms a commutative group under the composition of maps.

Definition 5.1.2. Let f ∈ C1(E) and h ∈ C1(G). E and G are open subset of Rn.
Consider the following equations

ẋ = f(x) (5.1)

ẋ = h(x) (5.2)

these equations are topologically equivalent, if there exists a homeomorphism H : E → G, which
maps trajectories of (5.1) onto trajectories of (5.2) and it is also preserves the orientation by time.

If φt is the flow on E defined by the equation (5.1). And (5.2) is the dynamical system ψt on G,
then (5.1) and (5.2) are topologically equivalent if and only if there is a homeomorphism H : E → G
and for each x ∈ E there is a C1 function t(x, τ) defined ∀τ ∈ R such that ∂t

∂τ > 0 and ∀x ∈ E,
∀τ ∈ R,

H ◦ φt(x,τ)(x) = ψτ ◦H(x)

37
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5.2 Global Existence Theorem
Theorem 5.2.1. Let f ∈ C1(Rn), and x0 ∈ Rn, the initial value problem

ẋ = f(x)
1 + |f(x)|

x(0) = x0

(5.3)

has a unique solution x(t) defined ∀t ∈ R, which means that (5.3) is a dynamical system on Rn.
Also (5.3) is topologically equivalent to (5.1) on Rn.

Proof. Time t along the solution x(t) of (5.1) is rescaled by the below formula:

τ =
∫ t

0
(1 + |f(x(s))|) ds (5.4)

Lemma 5.2.2. τ is increasing with respect to the time t.

Proof. Let t1 > t2, then

τ1 − τ2 =
∫ t1

0
(1 + |f(x(s))|) ds−

∫ t2

0
(1 + |f(x(s))|) ds

=
∫ t1

t2

(1 + |f(x(s))|) ds

= (t1 − t2) +
∫ t1

t2

|f(x(s))|ds > 0

τ1 > τ2

Hence τ is increasing with respect to the time t. Also,

∂τ

∂t
> 0.

Let φt be the flow of f . Then dφt()
dt = f(φt(x)). Therefore,

dφt(x)
dτ

=
dφt(x)
dt
dτ
dt

= f(φ(x, t))
1 + |f(φ(x, t))|

i.e φt(x) is the solution of (5.3). Now, if t = 0 then τ = 0. And hence (unique solution),

φt(x)|τ=0 = φt(x)|t=0

φt(x) = ψτ (x).

Define the identity map

H : Rn → Rn

x :→ x
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Now,

H ◦ φt(x) = ψτ ◦H(x)
φt(x) = ψτ (x)

From the definition, these two equations (5.1) and (5.3) are topologically equivalent.
Now, we will prove that (5.3) is dynamical system, i.e if x(t) is the solution of (5.3), then it is defined
for all t.

Lemma 5.2.3. f(x) ∈ C1(Rn), then f(x)
1+|f(x)| ∈ C

1(Rn).

Proof. Let
F (x) = f(x)

1 + |f(x)|
Case 1: Consider f : Rn → R.
Let f(a1, a2, . . . , an) = 0

∂F |(a1,...,an)

∂x1
= lim
t→0

F (a1 + t, a2, . . . , an)− F (a1, . . . , an)
t

= lim
t→0

f(a1 + t, . . . , an)[1 + |f(a1, . . . , an)|]− f(a1, . . . , an)[1 + |f(a1 + t, . . . , an)|]
t(1 + |f(a1, . . . , an)|)(1 + |f(a1, . . . , an)|)

= f ′(a1, . . . , an)
[1 + |f(a1, . . . , an)|]2 + lim

t→0

|f(a1, . . . , an)|[f(a1 + t, . . . , an)]− |f(a1 + t, . . . , an)[f(a1, . . . , an)]
t(1 + |f(a1, . . . , an)|)(1 + |f(a1, . . . , an)|)

= f ′(a1, . . . , an)
[1 + |f(a1, . . . , an)|]2 + 0

= f ′(a1, . . . , an) {exists.}

For non-zero case,

∂F (x)
∂x1

=


∂f(x)
∂x1

[1− f(x)]2 ; f(x) < 0

∂f(x)
∂x1

[1 + f(x)]2 ; f(x) > 0

As x→ (a1, . . . , an)
∂F (x)
∂x1

= f ′(a1, . . . , an).

And hence, ∂F (x)
∂xi

are continuous and exists so F ∈ C1.
Let f(x0) 6= 0, i.e if f(x0) > 0, then ∃ a δ neighbourhood of x0 B(x0, δ) such that ∀x ∈ B(x0, δ),
f(x) > 0.
And if f(x0) < 0, then ∃ a δ neighbourhood of x0 B(x0, δ) such that ∀x ∈ B(x0, δ) , f(x) < 0.
Hence, f(x) is continuous.
Case 2: Consider

f : Rn → Rm m ≥ 2

(x1, . . . , xn)→

 f1(x)
...

fm(x)
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F (x) =
(

f1(x)
1 +

√
f2

1 (x) + · · ·+ f2
m(x)

,
f2(x)

1 +
√
f2

1 (x) + · · ·+ f2
m(x)

, . . . ,
fm(x)

1 +
√
f2

1 (x) + · · ·+ f2
m(x)

)

Let G1(x) = f1(x)
1 +

√
f2

1 (x) + · · ·+ f2
m(x)

As from the above calculation,

∂G1(x)
∂x1

=
∂f1(a1,...,an)

∂x1

[1 +
√
f2

1 (a1, . . . , an) + · · ·+ f2
m(a1, . . . , an)]2

+ limt→0
√
f2

1 (a1, . . . , an) + · · ·+ f2
m(a1, . . . , an)f1(a1 + t, . . . , an)

t(1 + |f(a1, . . . , an)|)(1 + |f(a1, . . . , an)|)

− limt→0
√
f2

1 (a1 + t, . . . , an) + · · ·+ f2
m(a1, . . . , an)f1(a1, . . . , an)

t(1 + |f(a1, . . . , an)|)(1 + |f(a1, . . . , an)|)

+ limt→0
√
f2

1 (a1, . . . , an) + · · ·+ f2
m(a1, . . . , an)f1(a1, . . . , an)

t(1 + |f(a1, . . . , an)|)(1 + |f(a1, . . . , an)|)

− limt→0
√
f2

1 (a1, . . . , an) + · · ·+ f2
m(a1, . . . , an)f1(a1, . . . , an)

t(1 + |f(a1, . . . , an)|)(1 + |f(a1, . . . , an)|)

When norm=0, then = ∂f1(a1, . . . , an)
∂x1

When norm is not 0, then = ∂f1(a1, . . . , an)
∂x1

+
∂f1|(a1,...,an)

∂x1

√
f2

1 + · · ·+ f2
m

[1 +
√
f2

1 (a1, . . . , an) + · · ·+ f2
m(a1, . . . , an)]2

−
∂(
√
f2

1 +···+f2
m)|(a1,...,an)

∂x1
f1(a1, . . . , an)

[1 +
√
f2

1 (a1, . . . , an) + · · ·+ f2
m(a1, . . . , an)]2

as lim x→ (a1, . . . , an), the above expression is same as when norm is 0.
Hence, ∂G1(x)

∂xi
are continuous and exists. Since, all G1(x), . . . , Gm(x) are symmetric so all are C1.

And hence F (x) is C1(Rn).

Let x(t) be the solution of initial value problem (5.3) on the maximal interval (α, β).
x(t) satisfies the following integral equation

x(t) = x0 +
∫ t

0

f(x(s))
1 + |f(x(s))|ds

∀t ∈ (α, β)
from the above integral equation

|x(t)| ≤ |x0|+
∫ |t|

0
ds = |x0|+ t

|x(t)| ≤ |x0|+ β

if t ∈ [0, β].

Since the solution of (5.3) is contained in the compact set K

S = {φt(x0)| t ∈ [0, β)} ⊂ K
K = {x ∈ Rn| |x| ≤ |x0|+ β}
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Then from the Lemma (2.1.4), β =∞.
Now take t→ −t,

S′ = {φ−t(x0)| t ∈ [0,−α)} ⊂ K ′

K ′ = {x ∈ Rn| |x| ≤ |x0|+ α}

Then by the same Lemma (2.1.4), −α =∞.
⇒ (α, β) = (−∞,∞). So the maximal interval of existence of x(t) of the IVP (5.3) is (−∞,∞) and
hence, it is a dynamical system on Rn.

Theorem 5.2.4. [1] Let E be an open subset of Rn and f ∈ C1(E). Then there exists a function
F ∈ C1(E) such that

ẋ = F (x) (5.5)
which defines a dynamical system on E and it is topologically equivalent to (5.1) on E.

Theorem 5.2.5. Let f ∈ C1(Rn) If f(x) satisfies the global Lipschitz condition

|f(x)− f(y)| ≤ K|x− y| (5.6)

∀x, y ∈ Rn then for x0 ∈ Rn, the IVP (5.1) has a unique solution x(t) which is defined ∀t ∈ R.

Proof. Let x(t) be the solution of the IVP (5.1) on its maximal interval (α, β). We know the fact

d|x(t)|
dt

≤ |ẋ(t)|

by using the triangle inequality

d

dt
|x(t)− x0| ≤ |ẋ(t)| = |f(x(t))|

≤ |f(x(t))− f(x0)|+ |f(x0)|
≤ K|x(t)− x0|+ |f(x0)|

If β <∞, then the function g(t) = |x(t)− x0| satisfies

g(t) =
∫ t

0

dg(s)
ds

ds

≤
∫ t

0
[K|x(t)− x0|+ |f(x0)|]ds

= K

∫ t

0
[|x(t)− x0|]ds+ |f(x0)|t

≤ K
∫ t

0
g(s)ds+ |f(x0)|β

∀t ∈ (0, β).
Then from the Gronwall’s lemma (2.1.5), we can write;

|x(t)− x0| ≤ β|f(x0)|eKβ ∀t ∈ [0, β).

Then the trajectory of (5.1) through the point x0 at time t = 0 is contained in the compact set C.

C = {x ∈ Rn| |x− x0| ≤ β|f(x0)|eKβ} ⊂ Rn

From the Lemma (2.1.4), β =∞. Also α = −∞ .
Thus ∀x0 ∈ Rn, the maximal interval of existence of the solution x(t) is (−∞,∞).
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5.3 Limit set and Attractors
Consider the function

φ(., x) : R→ E

The solution curve, trajectory, orbit of (5.1) through the point x0 is

τx0 = {x ∈ E| x = φ(t, x0), t ∈ R}

τ+
x0
, τ−x0

are the positive and negative half trajectory respectively

τ+
x0

= {x ∈ E| x = φ(t, x0), t ≥ 0}
τ−x0

= {x ∈ E| x = φ(t, x0), t ≤ 0}
τx0 = τ+

x0
+ τ−x0

Definition 5.3.1. A point p is a ω-limit point of trajectory φ(., x) of (5.1), if there is a sequence
tn →∞ such that

lim
n→∞

φ(tn, x) = p

and if there is a sequence tn → −∞ such that

lim
n→∞

φ(tn, x) = q

then the point q ∈ E is called the α-limit point.

Definition 5.3.2. Set of all ω-limit points of τ is called ω-limit set of τ and it is written by ω(τ).
Set of all α-limit points of τ is called α-limit set of τ and it is written by α(τ).
The set of all limit points of τ , i.e. α(τ) ∪ ω(τ) is called limit set of τ .

Example 5.3.1. Consider sin
( 1
x

)
.

Figure 5.1: Graph of sin
( 1
x

)
In this graph, consider all the points which are intersecting x-axis. The subsequence of these

points goes to the origin, hence the origin is an ω-limit point. Similarly, the line joining form (0,-1)
to (0,1) are also an ω- limit points. The collection of all these limit points is an ω-limit set.

Theorem 5.3.1. (i). α(τ), ω(τ) are closed subsets of E.
If τ is in a compact subset of Rn, then
(ii). α(τ), ω(τ) are non empty.
(iii). α(τ), ω(τ) are connected subsets of E.
(iv). α(τ), ω(τ) are compact subsets of E.
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Proof. Part (i). First of all, from the definition of ω-limit set we have ω(τ) ⊂ E. Now, to show that
ω(τ) is closed subset of E, consider a sequence of points {sn} in ω(τ) with limn→∞ sn = p ∈ Rn.
We show that p ∈ ω(τ).
Let τ = {φt(x0)|t ∈ R}. Since sn ∈ ω(τ), for 1, 2, . . . there is a sequence t(n)

k → ∞ as k → ∞ such
that

lim
k→∞

φ(t(n)
k , x0) = sn

Assume t(n+1)
k > t

(n)
k . For all n ≥ 2, there is a sequence of integers N(n) > N(n− 1) such that for

k ≥ N(n)
|φ(t(n)

k , x0)− sn| <
1
n

Consider

|φ(t(n)
N(n), x0)− p| ≤ |φ(t(n)

N(n), x0)− sn|+ |sn − p|

≤ 1
n

+ |sn − p|

as n→∞ we have |φ(t(n)
N(n), x0)− p| goes to 0. Hence p ∈ ω(τ).

Part (ii). The sequence of points φ(tn, x0) ∈ C(compact set) contains a convergent subsequence
which converges to a point in ω(τ) ⊂ C, so ω(τ) is non-empty.

Part (iii). To show that ω(τ) is connected for that suppose ω(τ) is not connected, so there ex-
ists two nonempty disjoint closed set P and Q such that ω(τ) = P ∪Q. Distance from P to Q is δ
and it is given by

d(P,Q) = inf
x∈P,y∈Q

|x− y|

Since P and Q are ω-limit points of τ , so it is clear that there are arbitrarily large t such that
φ(t, x0) are inside δ

2 of P and there are arbitrarily large t such that the distance of φ(t, x0) from
P is greater than δ

2 . Since distance function is always a continuous function, So there should be a
sequence tn →∞ such that

d(φ(tn, x0), P ) = δ

2
It is given that the trajectory is contained in a compact set so there is a subsequence which is
converging to a point p ∈ ω(τ) with d(p, P ) = δ

2 .
Now,

d(p,Q) > d(P,Q)− d(p, P ) = δ

2
which shows that p /∈ P and p /∈ Q, also p /∈ ω(τ). It is contradiction of the assumed argument,
hence ω(τ) is connected.

Part (iv). Let C be a compact set, If τ ⊂ C and p ∈ ω(τ), then p ∈ C. And hence ω(τ) ⊂ K, since
closed subset of a compact set is compact therefore ω(τ) is compact.
Using the same steps it is clear that α(τ) is a closed subset of E, nonempty, connected and compact
subset of E.

Theorem 5.3.2. If p is an ω-limit point of a trajectory τ of (5.1), then all other points of the
trajectory φ(., p) of (5.1) passing through the point p are also ω-limit point of τ or we can say that
if p ∈ ω(τ) then τp ∈ ω(τ), and similarly if p ∈ α(τ), then τp ∈ α(τ).

Proof. This theorem can be proved by using the continuity with respect to initial conditions, and
property of dynamical systems.
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Corollary 5.3.2.1. ω(τ) and α(τ) are invariant with respect to the flow φt of (5.1).
Proof. It is merely the use of the above theorem.

Definition 5.3.3. A closed invariant set A which is contained in the set E, is called an attracting
set of (5.1) if there exists a neighbourhood N of A such that ∀x ∈ N , φt(x) ∈ N for all t ≥ 0 and
φt(x)→ A as t→∞.
An attracting set which contains a dense orbit is called an attractor.
Example 5.3.2. Consider the system

ẋ = −y + x(1− x2 − y2)
ẏ = x+ y(1− x2 − y2)

The above system can be written in the polar coordinates as

ṙ = r(1− r2)
θ̇ = 1

The Phase portrait of this system is

Figure 5.2: An Attractor (τ0)

In this phase diagram, If we take the neighbourhood (N) around τ0, then all the other trajectories
starting from the point x ∈ N are approaching τ0 as t ≥ 0, and hence τ0 is an attracting set. It also
contains the dense orbit, so τ0 is an attractor.

5.4 Periodic Orbits and Limit Cycles
Definition 5.4.1. A cycle or we can say a periodic orbit of a system is a closed solution curve,
which is not a critical point of that system.
Definition 5.4.2. A periodic orbit τ is said to be stable periodic orbit if for each ε > 0 there is a
neighbourhood N of τ , such that ∀x ∈ N ,

d(τ+
x , τ) < ε

in other words if ∀x ∈ N and t ≥ 0,
d(φ(t, x), τ) < ε.

If it is not stable, then the periodic orbit is called an unstable orbit.
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Definition 5.4.3. The periodic orbit is said to be asymptotically stable, if the cycle is stable and if
∀x ∈ U ,

lim
t→∞

d(φ(t, x), τ) = 0.

Periodic orbit is asymptotically stable only when the following holds∫ λ

0
5.f(η(t))dt ≤ 0.

Where λ is the Period of the periodic orbit.

Definition 5.4.4. A limit cycle τ is a cycle of the system which is α or ω- limit set of some
trajectory which is not the τ itself.

Definition 5.4.5. A cycle is called a stable limit cycle or ω- limit cycle, if the cycle τ is the ω-
limit set of every trajectory in the neighbourhood of τ .

Definition 5.4.6. A cycle is called an unstable limit cycle or α- limit cycle, if the cycle τ is the α-
limit set of every trajectory in the neighbourhood of τ .

Definition 5.4.7. A cycle is called a semi-stable limit cycle, if the cycle τ is the ω- limit set of one
trajectory other than τ and the α- limit set of another trajectory other than τ .

Figure 5.3: Stable Limit Cycle
Figure 5.4: Unstable Limit Cycle Figure 5.5: Semi-Stable

Example 5.4.1. Consider the system

ẋ = αx− y − αx(x2 + y2)
ẏ = x+ αy − αy(x2 + y2)

Where α is a parameter.
Now transform to radial co-ordinates, it can be seen that the periodic orbit lies on a circle with
|r| = 1. For any α > 0,

ṙ = αr(1− r2)
θ̇ = 1

This periodic orbit has a stable limit cycle for α > 0, an unstable limit cycle for α < 0, and it has
infinite number of periodic orbits and no limit cycles for α = 0.
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5.5 The Poincaré Map
Consider the following system

ẋ = f(x) (5.7)

Let τ is a periodic orbit of the non-linear system through x0 and Ω is a hyperplane which is per-
pendicular to the orbit at x0. Then near x0, any point x ∈ Ω, at t = 0 φt(x) will cross Ω again at a
point P (x). Then the mapping

x→ P (x) (5.8)

is called a poincaré map.

Definition 5.5.1. Let E be an open subset of Rn and f ∈ C1(E). Let φt(x0) be the periodic
solution also the cycle τ is contained in E. Let Ω be the hyperplane which is orthogonal to τ at x0.
Then there is a δ > 0 and a unique function µ(x) which is C1 and for x ∈ Nδ(x0) such that

µ(x0) = λ

and
φµ(x)(x) ∈ Ω

for x ∈ Nδ(x0) ∩ Ω
P (x) = φµ(x)(x)

is called the poincaré map for τ .

The next theorem tells about the stability of the limit cycle.

Theorem 5.5.1. [1] Let E be an open subset of Rn and f ∈ C1(E). Let η(t) be the periodic
solution of period λ. The derivative of the poincaré map along Ω is given by

P ′(0) = e

∫ λ
0
5.f(η(t))dt

Now, η(t) is a stable limit cycle if ∫ λ

0
5.f(η(t))dt < 0.

It is an unstable limit cycle if ∫ λ

0
5.f(η(t))dt > 0.

and semi-stable if ∫ λ

0
5.f(η(t))dt = 0.

5.6 The Stable Manifold Theorem for Periodic Orbits
Consider the following non-linear system

ẋ = f(x)

Let E be an open subset of Rn and f ∈ C1(E).
Let this system has a periodic orbit of period λ.

τ : x = η(t) 0 ≤ t ≤ λ
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The linearisation of the non-linear system about τ is

ẋ = A(t)x

or we can write
φ̇ = A(t)φ

Where
A(t) = Df(η(t)).

The fundamental matrix solution is given by

φ(t) = N(t)eCt

Where N(t) is a non-singular matrix and C is a constant matrix.
Using the conditions at t = 0, φ(0) = I, N(0) = I.

φ(t) = eCt

The eigenvalues (ej) of the constant matrix C are called the characteristic exponents of η(t).

5.6.1 The stable manifold theorem for periodic orbits
Let E be an open subset of Rn and f ∈ C1(E) contains a periodic orbit of period λ.
Let φt be the flow of the non-linear system and

η(t) = φt(x0)

If k characteristic exponents of η(t) has negative real part and n − k has positive real part where
0 ≤ k ≤ n − 1, then there exists a k + 1 dimensional differential stable manifold (S) which is
positively invariant with respect to flow φt. And there exists an (n − k) dimensional differential
unstable manifold (U) which is negatively invariant with respect to flow φt.

5.6.2 The center manifold theorem for periodic orbits
Let E be an open subset of Rn and f ∈ Cg(E) with g ≥ 1 contains a periodic orbit of period λ.
Let φt be the flow of the non-linear system and

η(t) = φt(x0)

If k characteristic exponents of η(t) has negative real part, j has positive real part and m = n−k−j
have zero real part, then there exists a m dimensional center manifold (C) which is invariant with
respect to flow φt.

We can prove the stable and center manifold theorems for periodic orbits by the same method
used in the proof of the stable manifold theorem (3.1.2).

Example 5.6.1. Geometrical example of Periodic orbit with three dimensional stable manifold.
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Figure 5.6: Periodic orbit with stable manifold

Example 5.6.2. Geometrical example of Periodic orbit with two dimensional stable and unstable
manifolds.

Figure 5.7: Periodic orbit with stable and unstable manifolds

Example 5.6.3. Geometrical example of A periodic orbit with two dimensional stable and center
manifolds.

Figure 5.8: Periodic orbit with stable and center manifolds
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5.7 The Poincaré- Index Thorem
Theorem 5.7.1. [1] Consider a two dimensional surface σ which is relative to any C1 vector field
f on σ with at most a finite number of critical points and it is independent of the vector field f , then
the index Indf (σ) is equal to the Euler-Poincaré characteristic of σ; i.e.

Indf (σ) = χσ.
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