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Notation and Abbreviations

p := p(x, t|x0, t0), Transition probability distribution

pst := pst(x), Stationary distribution

τ infinitesimally small time interval, τ/t << 1

L1(R) collection of absolutely integrable functions over R
〈x|Tt|y〉 transition probability/ propagator from y to x in time t

= p(x, t|y, 0)

FPE Fokker-Planck Equation

1A Indicator Function of A

tlr Time at which the last reset occurred

E[.], 〈.〉 Expectation Operator

η(t) White noise

ξ Infinitesimal displacement

NESS Non equilibrium steady state
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Abstract

We first develop the understanding of Langevin and Fokker Planck formalisms, path

integral formalism and renewal theory. We then shift our focus to the main aim of

the project that is to understand the stochastic resetting which can be defined as the

abrupt restart of the stochastic process where the time of the next restart follows

some waiting time distribution. We start with Diffusion with Stochastic Resetting as

a first model of study and extend the results of the paper to the general case of initial

position not being same as resetting position then to explore the possibility of finding

new result we look at several models one after another namely Ornstein Uhlenbeck

process with resetting, space dependent resetting, time dependent resetting.

At last we tried to look at: (a) Affect of multiple resetting sites on diffusion with

Poissonian resetting and try to understand the changes in the dynamics with respect

to the set of resetting points and (b) Random graph evolution with resetting as an

example of search algorithm with resetting.
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“It is scientific only to say what’s more likely or less likely, and not to be proving all

the time what’s possible or impossible.”

- Richard Feynman

“Pure mathematics shall be convinced by definite equations for the given indefinite

number system.”

- P.S. Jagadeesh Kumar
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Chapter 1

Introduction

Consider an irreducible Markov chain / random walk which can only be null recurrent

(if recurrent) or transient. What if we make one of the states positive recurrent? All

the states of chain become positive recurrent and thus conceptually new results arise.

Stochastic resetting can be thought of as the simplest mechanism to make the states

of Markov chain positive recurrent and aperiodic.

In Stochastic resetting, particle evolves accordingly with time but is forced to a par-

ticular state time and again abruptly with some probability. The process which has

no steady state can be made to have steady state by stochastic resetting, diffusion

with stochastic resetting is one such example.

It has attracted a lot of attention recently because it is an analytically approachable

NESS problem and many closed form solutions had been found. But, this problem

can’t be dealt in generality. And, one at a time approach can’t exhaust the whole

combinatorial space of process-reset pairs. A lot of theory is unexplored yet.

We aim to find a new analytically solvable resetting rate and stochastic process pair.

Sensing of extracellular ligands by single cells, transcription of genetic information

by RNA, predator visually searching for prey, effect of catastrophes on population

dynamics are only handful of examples where resetting plays an important role. For

other numerous applications one can look up [EM11],[RG11],[EM15]. Also, It can be

used in the field of algorithm optimization, some examples are permutation routing on

the hypercube [MU05], application of random restart to genetic algorithms [GA96].
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However, we will mainly be dealing with the affect of random restart on overdamped

brownian particle.

It is quite a coincidence that the unexpected incidence of spread of COVID-19 can be

seen as an epoch leading to the resetting of many parameters of life.

1.1 Model

Figure 1.1: Trajectory of a free particle in 1-D with time:(a) red trajectory is the usual
trajectory of the particle. (b) blue trajectory is of the particle resetting to origin after
exponential waiting time.

For a random variable x(t) whose time time evolution is governed by the differential

equation 2.2:

∂x(t)

∂t
= f(x(t)) + η(t)

In the presence of random resetting its time evolution will be as follows:

x(t+ τ) =

{
xr with probability r(x(t), t− tlr)τ
x(t) + f(x(t))τ + η(t)τ with probability 1− r(x(t), t− tlr)τ

(1.1)

where, r(x(t), t− tlr) is a random resetting rate which is a function of state and time

since last reset.

2



1.2 Philosophical Note

We frequently face a dilemma when we are upto something. The three options that

we have in such a situation are:

1. Should we keep proceeding further in the direction we are going in the hope of

achieving our goal, even if everything seems against us?

2. Should we give up on what we are doing, calm down and retry to tackle the problem

with a fresh approach?

3. As a pessimist give up totally as it seems impossible to achieve the goal.

Let’s not consider the third option of being the hopeless pessimist.

Then, we have a trade off between former two choices. First choice of being to-

tally optimistic and second choice of being an optimist evaluating his capabilities

time and again before proceeding further, such an individual is more successful in life

than former but, if the same individual has low confidence then he will re evaluate

himself so frequently which in general leads failure more probably.

What is the point of discussing this? We just want to point out that even on philo-

sophical level resetting plays an important role. Given a set of identical optimistic

individuals the successful will be the one who re evaluates his strategy time and again

but not too frequently.

Even, reading and understanding the research paper follows the same methodology of

going back and forth while reading it.

Though, it is to be noted that we are not going to deal with the problems of such

kind. We will be dealing with simple stochastic processes.

3
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Chapter 2

Theory

2.1 Markov Process

A Markov process is a random process whose future is determined only by its current

state and not by its past. But,

”There is really no such thing as Markov Process; Rather, there maybe systems whose

memory time is too small that, on time scale on which we carry out observations it is

fair to regard them as being well approximated Markov Process.” [Gra83]

Definition 1. (Markov Process). A stochastic process x(t) is called Markov if for

every n and t1 < t2... < tn, we have P (x(tn) ≤ xn|x(tn−1), ..., x(t0)) = P (x(tn) ≤
xn|x(tn−1)).

For more details and theoretical results on Markov chains see [Nor98].

Chapman Kolmorov Equation

One important property of Markov processes that we will need as well is that Markov

processes obey Chapman Kolmogorov Equation:

P (x, t|y, s) =

∫ ∞
−∞

p(x, t|z, u)p(z, u|y, s)dz (2.1)

where, t > u > s.

5



2.2 Langevin equation to Fokker Planck Equation

Physical phenomena are quite often non deterministic because of the large number of

constituents or sources of intrinsic noise. Thus, the resultant of the numerous sources

of noise acting on the system simultaneously can be well approximated by a Gaussian

(as a consequence of Central Limit Theorem) delta correlated (〈η(t)η(t′)〉 = δ(t− t′))
stationary noise in the time scale much greater than that of the collision time (mem-

ory time).

Such a phenomenon can be modeled by Langevin description or by the path proba-

bilities of its trajectory.

Supppose, we have a langevin equation of the form:

∂x

∂t
= µf(x(t), t) + g(x(t), t)η(t) (2.2)

We will be dealing cases where f and g are functions of x (i.e. space) only. However,

g will be constant most of the times (namely diffusion constant
√

2D unless stated),

in that case we call the noise to be additive since the strength of the noise added

is independent of the random variable and if g is a function of x then we call it

multiplicative noise .

η is a delta correlated white noise, function of time only and µ is some constant.

Remark 1. Langevin equation doesn’t guarantee the Gaussianity and Stationarity of

the process X inspite of the fact that Gaussian stationary Markov noise is a part of

the equation. It just guarantees the Markovian nature of x.

While doing tedious calculations of integrals of functions of several variables one

often treats such cases as calculations of (iterated) integrals of single variable func-

tions as a consequence of Fubini Theorem.

Theorem implies the commonly used equality of the type :

E

∫ b

a

X(t)dt =

∫ b

a

EX(t)dt (2.3)

where, E denotes expectation with respect to the underlying probability distribution.

There are several ways to reach to Fokker Planck Equation from Langevin Equa-

tion. But, let’s just go through the simple way[Ris84],[Gra83]:
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We have,

p(x, t+ τ |x0, t0) =

∫ ∞
−∞
〈x|Tτ |x′〉p(x′, t|x0, t0)dx′ (2.4)

Here,p(x′, t|x0, t0) denotes the probability of being at x’ such that system was in x0

state at initial time t0. 〈x|Tτ |x′〉 denotes transition probability from x’ to x in time

τ . Above expression is just a Chapman- Kolmogorov Equation.

By change of variable this can be rewritten as:

p(x, t+ τ |x0, t0) =

∫ ∞
−∞
〈x|Tτ |x− ξ〉p(x− ξ, t|x0, t0)dξ (2.5)

〈x|Tτ |x−ξ〉 = φ(ξ) that is simply the probability of picking noise of particular strength

so as to reach x. After expanding the above expression around (x,t) assuming τ to be

small we get,

p(x, t) +
∂p(x, t)

∂t
τ =

∫ ∞
−∞

∞∑
n=0

1

n!

(
− ∂

∂x

)n
〈x+ ξ|Tτ |x〉ξnp(x, t)dξ(2.6)

p(x, t) +
∂p(x, t)

∂t
τ =

∞∑
n=0

(
− ∂

∂x

)n
Mn(x′, t, τ)

n!
p(x, t)dξ (2.7)

where,

Mn(x, t, τ) = 〈(x(t+ τ)− x(t))n〉|x(t)=x−ξ

=

∫
ξn〈x+ ξ|Tτ |x〉dξ

(2.8)

assume,

Mn(x, t, τ)/n! = D(n)(x, t)τ + (τ 2).

Note that coefficient of τ o vanishes as for τ = 0 the transition probability has initial

value as p(x, t|x′, t) = δ(x− x′). Thus we have

∂p(x, t)

∂t
=
∞∑
n=1

(
− ∂

∂x

)n
D(n)(x′, t, τ)p(x, t)

= LKM(x, t)p(x, t)

(2.9)

This is termed as Kramer- Moyal’s Expansion.

7



Now to find 〈ξn〉 put ξ = dx in 2.2 and using the moments relation for any normally

distributed random variable Y (dW(t)) given by

〈Y p〉 =

{
0 when p is odd

σp(p− 1)!! when p is even
(2.10)

We can check that

D(n)(x, t) = O(τ z)→ 0 as z > 0,∀n > 2 (2.11)

And, we get FPE

∂tp = −µ∂xf(x(t), t)p+D∂2
xp (2.12)

2.3 The Fokker-Planck Equation

The theory discussed in this section is from [Ris84].

2.3.1 Purpose

1. To deal with the averages of the macroscopic variables one needs probability

distribution which can be found by FPE.

2. FPE can be applied to study the dynamics of the system far from equilibrium if

an appropriate time dependent solution is used, example: Laser light.

3. It is a way that gives a deterministic equation for a non- deterministic phenomenon.

2.3.2 Forward FPE

Very frequently we want to study the dynamics of non deterministic system in future

based on the present information which is done by Forward FPE. The word forward

is often overlooked and by FPE one means Forward FPE implicitly.

Solution of 2.9 for time independent operator L(x) = −µ∂xf(x) +D∂2
x can be written

as:

p(x, t|x′, t0) = eL(x)(t−t′)δ(x− x′) (2.13)

8



2.3.3 Backward FPE

Till now we have been dealing with the forward time evolution of the random variable.

But, if we want to predict about the past then we use Backward FPE.

Or, the way we derived equation of motion of p(x, t|x′, t0) with respect to x and t

where t is a later time i.e. t > t0. We can derive equation of motion of p(x, t|x′, t0)

with respect to x’ and t0 implying to the case where we are interested in the stochastic

variable x(t0) at earlier times (t is fixed now unlike t0 in the former case).

Unlike Forward FPE, reasonable initial condition will be: δ(x− y) = p(x, t|y, t).

Since,

p(x, t|x′, t′) =

∫
p(x, t|x′′, t′ + τ)p(x′′, t′ + τ |x′, t′)dx′′ (2.14)

which is just a Chapman Kolmogorov Equation.

And,

p(x′′, t′ + τ |x′, t′) =

∫
δ(y − x′′)p(y, t′ + τ |x′, t′)dy

.

Also, Taylor Expansion of δ function is:

δ(y − x′′) = δ(x′ − x′′ + y − x′) =
∞∑
n=0

(y − x′)n

n!

(
∂

∂x′

)n
δ(x− x′′)

From these we get

p(x′′, t′ + τ |x′, t′) =
∞∑
n=0

1

n!

∫
(y − x′)np(y, t′ + τ |x′, t′)dy

(
∂

∂x′

)n
δ(x′ − x′′)

=

[
1 +

∞∑
n=1

1

n!
Mn(x′, t′, τ)

(
∂

∂x′

)n]
δ(x′ − x′′)

(2.15)
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Putting 2.15 in 2.14 gives

p(x, t|x′, t′)− p(x, t|x′, t′ + τ) =
∞∑
n=0

1

n!

∫
(y − x′)np(y, t′ + τ |x′, t′)dy

(
∂

∂x′

)n
p(x, t|x′, t′ + τ)

=
∞∑
n=1

1

n!
Mn(x′, t′, τ)

(
∂

∂x′

)n
p(x, t|x′, t′ + τ)

−∂p
∂t′

=
∞∑
n=1

D(n)(x′, t′)

(
∂

∂x′

)n
p(x, t|x′, t′)

(2.16)

For time independent L+
KM(x′) =

∑∞
n=1D

(n)(x′, t′)(∂/∂x)
n we have solution repre-

sented as

p(x, t|x′, t′) = e−L
+
KM (x′)(t−t′)δ(x− x′) (2.17)

For a white noise acting on the system, equation 2.16 becomes

∂t′p = −µf(x)∂x′p−D∂2
x′p (2.18)

This is Backward FPE which is useful in finding persistence probability and First

passage time as described in the next subsection.

2.3.4 First Passage Times of Homogeneous Processes

Suppose, particle is at x at time t=0 contained in the interval (a,b) with absorbing

barriers at a and b.

So, the probability that the particle is in (a,b) at time t is:∫ b

a

p(y, t|x, 0)dy = Q(x, t)

Q(x,t) can be defined as the survival probability of the particle.

Let, T be the time when particle leaves (a,b). Then,

Prob(T ≥ t) =

∫ b

a

p(y, t|x, 0)dy = G(x, t) (2.19)

which implies, Q(x, t) = Prob(T ≥ t).

By time homogenity of the system we can write p(y, t|x, 0) = p(y, 0|x,−t). And the

10



backward FPE can be written as:

pt(y, t|x, 0) = A(x)px(y, t|x, 0) +
1

2
B(x)pxx(y, t|x, 0)

Applying operator
∫ b
a
dy on both side of the equation gives

Qt(x, t) = A(x)Qx(x, t) +
1

2
B(x)Qxx(x, t) (2.20)

The obvious initial condition is p(y, 0|x, 0) = δ(x− y). Hence

Q(x, 0) = 1x∈(a,b) (2.21)

And, since the particle immediately gets absorbed if x=a or b. These conditions lead

to Prob(T ≥ t) = 0 i.e.

Q(a, t) = Q(b, t) = 0 (2.22)

From 2.19 it follows that

〈f(T )〉 = −
∫ ∞

0

f(t)dQ(x, t) (2.23)

Therefore,

〈T 〉 = −
∫ ∞

0

tdQ(x, t)

= −[tQ(x, t)]∞0 +

∫ ∞
0

Q(x, t)dt

=

∫ ∞
0

Q(x, t)dt

(2.24)

Remark 2. 〈T 〉 =
∫∞

0
e−stQ(x, t)dt|s=0 =

∫∞
0
e−stQ(x, t)dt = q(x, s = 0).

where, Laplace Transform of Q(x,t) is q(x,s).

Similarly, one can get

〈T 〉 =

∫ ∞
0

tn−1Q(x, t)dt (2.25)

From 2.20 we can derive the differential equation for 〈T 〉 by by integrating that equa-

tion over (0,∞) and noting that
∫∞

0
∂tQ(x, t)dt = G(x,∞)−G(x, 0) = −1 we get

A(x)〈T 〉+
1

2
B(x)∂2

x〈T 〉 = −1 (2.26)

11



with boundary condition 〈T (a)〉 = 〈T (b)〉 = 0.

2.4 Feynman Kac Formalism

Here, we will be exploiting the fact that we know the probability distribution of white

noise, η(t) to find the probability distribution of x.

2.4.1 Transform of a Random Variable

It is important to have a look at this before we go further.

Suppose, we have a random variable X and g(X)=Y having probability densities Wx

and Wy respectively. We know Wx then, what is Wy ?

We know that probability of the volume element will remain same after transforma-

tion. i.e.

Wx

N∏
i=1

dxi = Wy

N∏
i=1

dyi (2.27)

where, X = (x1, x2, ..., xN) and Y = (y1, y2, ..., yN).

that implies,

Wy = |J |Wx (2.28)

where, J =
(
∂xi
∂yj

)
; 1 ≤ i, j ≤ N

2.4.2 Probability of x as a transform of η

The method employed here is from [RG11].

Since, we have
∂x

∂t
= µf(x) + η(t)

To write x as a transform of η it is better to discretize the problem. In a discrete

picture, we have 〈ηi〉 = 0, 〈ηiηj〉 = σ2δij and N∆t = T .

And,D ≡ lim
σ→∞,∆t→0

σ2∆t/2.

For any particular jth time step

P (ηj) =

(
1

2πσ2

)1/2

exp

(
− 1

2σ2
η2
j

)
(2.29)

12



xn = xn−1 + (µf(xn) + ηn)∆t (2.30)

where,f(xn) = f(xn)+f(xn−1)
2

(using Stranovich’s description)

Since,

ηn =
xn − xn−1

∆t
− µf(xn) (2.31)

Therefore,

|J | =
(

1

∆t

)N N∏
i=1

(
1− ∆tµf ′(xi)

2

)
≈
(

1

∆t

)N
exp

(
−

N∑
i=1

∆tµf ′(xi)

2

)
(2.32)

A particular path realisation will have a particular unique set of noise that is being

added at each step. Therefore, the joint probability of noise realisation {ηi}0≤i≤N :

P ({ηi}) =

(
1

2πσ2

)N/2
exp

(
− 1

2σ2

N∑
i=0

η2
i

)
(2.33)

Therefore,

P ({xi}) = |J |
(

1

2πσ2

)N/2 N∏
i=1

exp

(
−(xi − xi−1 − µf̄(xi)∆t)

2

2σ2(∆t)2

)
(2.34)

So,

P (xN |x0) = |J |
(

1

2πσ2

)N/2 N−1∏
i=1

∫ ∞
−∞

dxiexp

(
−

N∑
i=1

(xi − xi−1 − µf̄(xi)∆t)
2

2σ2(∆t)2

)
(2.35)

Last step is to take limit ∆t→ 0, N →∞ to jump to the continuous regime.

2.4.3 Feynman Kac Formula

We present it here as described in [Var].

Let, Px be a Gaussian probability measure on C[0,∞) such that process started

from x (not necesssarily 0).
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Suppose, V(x) is a bounded continuous function on R and u is defined as:

u(t, x) = EPx

[
exp

[∫ t

0

V (x(s))ds

]
f(x(t))

]
(2.36)

then u obeys :

ut =
1

2
uxx + V (x)u (2.37)

with initial condition u(0, x) = f(x).

2.5 Fokker-Planck Equation vs Schrodinger’s Equa-

tion

While looking at various models of stochastic resetting we came across [RG11] where

Feynman Kac Path Integral Formalism has been adopted to derive the Schrodinger’s

Equation governing the velocity of p(x, t) unlike rest of the examples [EM11] where

Kramer Moyal’s Expansion led to FPE or renewal theory has been used [PKE15].

FPE is widely used in Statistical Mechanics while Schrodinger’s Equation holds its

own renowned place in Physics, especially in Quantum Mechanics. We observed the

link between these two apparently unlinked formalisms.

Transform of FPE to Schrodinger’s Equation

Consider FPE
∂p

∂t
=

∂

∂x

[
V ′p+D

∂p

∂x

]
(2.38)

Then, RHS becomes

Lp = [V ′′ + V ′∂x +D∂2
x]p (2.39)

Define,

φ(x) =
p(x)√
pst(x)

(2.40)
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where, pst(x) = Ce(−
V (x)
D ) is the stationary solution and C is the normalisation con-

stant. So,

p′ =

(
φ′ − φV ′

2D

)√
Ce(−

V (x)
D )

p′′ =

(
φ′′ − φ′V ′

D
− φV ′′

2D
+
φV ′2

4D2

)√
Ce(−

V (x)
D )

(2.41)

Then, equation comes

Lp =

[(
V ′′

2
− V ′2

4D

)
φ+Dφ′′

]
√
pst (2.42)

i.e.

Lp =
√
pstHφ (2.43)

We get a new hermitian operator H given as

H =

(
V ′′

2
− V ′2

4D

)
+D∂2

x (2.44)

Hence, by setting p(x, t) = φ(x, t)
√
pst(x) we get

∂φ

∂t
= Hφ (2.45)

2.6 Time dependent resetting and elements of re-

newal theory

Most of the cases like birth-death process, random walk etc. are dealt by deriving

master equation considering constant transition probability rates leading to conditions

like: ω{n→ m} = rτ and so on.. assuming the process to be time homogeneous but

it need not be the case. We can have a process where this jump probability rate is a

function of time, r(t). But, before going further to the derivation of master equation

for such a case let’s look at what this r(t) actually mean.
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2.6.1 Time dependent rate and waiting time distribution equiv-

alence

Suppose the probability of no reset (epoch) in time τ is

P (T > τ) = 1− r(τ)τ (2.46)

Then,P (T > nτ) is

P (T > nτ) =
n∏
k=1

(1− r(kτ)τ) = exp(−
n∑
k=1

r(kτ)τ) (2.47)

In limit n→∞ such that nτ = t we get

P (T > t) = exp

(
−
∫ t

0

r(y)dy

)
(2.48)

We can define R(t) = exp
(
−
∫ t

0
r(y)dy

)
It is easy to check that r(t)=r(constant)

corresponds to exponential waiting time.

Also,

P (t < T ≤ T + τ) = (1− e−R(t+τ))− (1− e−R(t))

= e−R(t) − e−R(t+τ)

= e−R(t) − (e−R(t) −R′(t)e−R(t)τ +O(τ 2))

= R′(t)e−R(t)τ = r(t)e−R(t)τ

(2.49)

2.6.2 Elements of renewal theory

In case of time dependent rate r(t) one cannot write Master equation for p(x, t|x′, t′)
as we need to take care of last reset time as well.

For a process with G(x, t|x0) propagator Renewal equations can be written as:

last renewal equation

p(x, t|x0, 0) = e−R(t)G(x, t|x0, 0) +

∫ t

0

dtlrφ(tlr)e
−R(t−tlr)G(x, t− tlr|x0, 0) (2.50)
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where the first term is the contribution of reaching x without a single reset in time

(0,t) with probability of no reset e−R(t) that is multiplied with G(x, t|x0) and second

term considers those contributions where last reset event happened between tlr and

tlr + dtlr whose probability density is φ(tlr) = r(tlr)e
−R(tlr) which follows from 2.49

and propagator from xr to x in the remaining time is e−R(t−tlr)G(x, t− tlr|xr).

First renewal equation

p(x, t|x0, 0) = e−R(t)G(x, t|x0, 0) +

∫ t

0

dt′e−R(t′)p(x, t− t′|x0, 0) (2.51)

Taking Laplace transform we get

P (x, s|x0, t) = Q(x, s|x0, 0) + P (x, s|x0, 0)(−sH(x, s) + 1)

P (x, s|x0, 0) =
Q(x, s|x0, 0)

sH(x, s)

(2.52)

where,

P (x, s|x0, 0) =

∫ ∞
0

dte−stp(x, t|x0, 0)

Q(x, s|x0, 0) =

∫ ∞
0

dte−ste−R(t)G(x, t|x0, 0),

H(s) =

∫ ∞
0

dte−ste−R(t)

(2.53)

Steady State

Remark 3. steady state distribution as a function of time is constant therefore, it

is necessary for the laplace transform of p in long time limit must be expressible in

the form c/s where c is finite. Therefore, as t → ∞, lim
s→0

sP (x, s|x0, 0) < ∞ =⇒

Pst(x, s|x0, t0) = lim
s→0

Q(x,s)
H(x,s)

, which in theory can be inverted to get pst(x, t|x0, 0).

2.7 Master Equation for the general resetting rate

Till now, cases of space and time dependent resetting have been dealt separately. But,

one can derive the master equation for the probability density of reaching (x,t) with

no reset and then the theory of renewals can be used.

Here, 〈x|tτ |x− ξ〉 = (1− r(x− ξ, t)τ)φ(ξ).
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By inserting it in 2.4 , we get

pno res(x, t+ τ |x0, t0) =

∫ ∞
−∞

(1− r(x− ξ, t)τ)φ(ξ)pno res(x− ξ, t|x0, t0)dξ (2.54)

∂pno res(x, t|x0, t0)

∂t
= −µ∂f(x)pno res

∂x
+D

∂2pno res

∂x2
− r(x, t)p

no res(2.55)

where, t0 = tlr.

After obtaining pno res one can use the theory of renewals as discussed in [RG11]. This

method can be used for any resetting rate in theory which is not practical.
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Chapter 3

Exploring Stochastic Resetting

3.1 Diffusion with stochastic resetting

We will try to understand the approach adopted in [EM11] and give some basic insights

and pre requisites for that approach.

Then, we will extend some of the results presented in the paper.

3.1.1 Stationary Distribution of Diffusion

There is no stationary distribution for diffusion as:

∂p

∂t
= D

∂2p

∂x2

As, t→∞

D
∂2p

∂x2
= 0

p = ax+ b

p /∈ L1(R). Hence, no stationary distribution.

Remark 4. Diffusion is the approximation of a Simple Symmetric Random Walk in

continuous time and space. And, random walk is not positive recurrent, not aperiodic,

though irreducible. Thus, stationary distribution doesn’t exist.

3.1.2 Stationary Distribution with resetting

We have:
∂p

∂t
= D

∂2p

∂x2
− rp+ rδ(x− xr) (3.1)
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As, t→∞

D
∂2pst
∂x2

− rpst = −rδ(x− xr) (3.2)

From which we get,

pst(x, t|x0) =
1

2

√
r

D
e(−
√

r
D
|x−xr|)

Since,
∫∞
−∞ pst = 1 and lim

r→∞
pst =

{
∞ x = xr

0 else
.

Remark 5. lim
r→∞

pst = δ(x − xr). Infinite resetting will not let the particle to escape

the resetting state therefore, particle will be found at xr with probability 1.

Remark 6. lim
r→0

pst = 0. So, there is no stationary distribution as r = 0 corresponds

to pure diffusion.

Remark 7. Diffusion is null recurrent itself but in the presence of resetting at expo-

nential waiting time we have an average return time to the resetting point 〈Txr(xr)〉 =
1
r
<∞ implying xr is positive recurrent and in discrete picture it is aperiodic as well

now. Since, state space is irreducible and periodicity and positive recurrence is a class

property hence, unique stationary distribution exists.

Verifying the Stationary Distribution

For the stationary distribution to exist moments 〈xn(t)〉 must stabilise as t → ∞.

Therefore, To find Stationary Distribution numerically we need to decide upon the

time which will be finite physically after which 〈xn(t)〉 converges ∀n.

Let’s calculate stationary first and second moment:

lim
t→∞
〈x(t)〉 =

∫ xr

−∞
x
α

2
e−α(xr−x)dx+

∫ ∞
xr

x
α

2
e−α(x−xr)dx

=

(
xr
2
− 1

α

)
+

(
xr
2

+
1

α

)
= xr

(3.3)

lim
t→∞
〈x2(t)〉 =

∫ xr

−∞
x2α

2
e−α(xr−x)dx+

∫ ∞
xr

x2α

2
e−α(x−xr)dx

=

(
x2
r

2
− xr
α

+
1

α2

)
+

(
x2
r

2
+
xr
α

+
1

α2

)
= x2

r +
2

α2

(3.4)

where, α =
√

r
D

.

Remark 8. First moment converges to the resetting point beginning from the starting

point, while in the case of diffusion it is the starting point at any time. It can be

20



physically deduced in a sense that particle eventually gets reset to xr so, from that

time onward already passed time can be ignored in long time limit and subsequent

diffusions between resets will be centered at xr.

Let’s have a look at the figures below:

As we can see even before 3 units of the time passes both the moments have converged.

Figure 3.1: Evolution of: (a)first and (b)second moment with time for r=2, D=10,
xr = 500, x0 = 0

So, we can sample x(t) for t > 3 (for the set of used parameters) in this case to plot

stationary distribution.

The stationary distribution for the system is plotted below:

Figure 3.2: Stationary distribution of diffusion with Poissonian resetting for r=2,
D=10, xr = 500
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3.1.3 Search starting from any position

The result has already been established for the case when the search starts from the

reset position itself i.e. when xr = x0. But, we have extended the result given in

[EM11] to the case when xr 6= x0.

Let Q(x, t) be the persistence or survival probability of the target upto time t with the

initial position being x and target be the origin. Then, equation followed by Q(x, t)

is
∂Q

∂t
= D

∂2Q

∂x2
− rQ+ rQ(xr, t) (3.5)

Q:=Q(x,t)

Boundary condition: Q(0, t) = 0.

Initial condition: Q(x, 0) = 1

Here, 0 is the absorbing target. After taking Laplace transform of Q(x, t) i.e.∫∞
0
e−stQ(x, t)dt = q(x, s) we have

sq − 1 = D∂2
xq − rq + rq(xr, s)

D∂2
xq − (r + s)q = −1− rq(xr, s)

(3.6)

whose general solution is q(x, s) = Aeαsx + Be−αsx + [1 + rq(x0, s)]/(r + s) with

αs =
√

(r + s)/D. Here, A=0 as q must be finite for large x.

From q(0,s)=0 we get B = −[1 + rq(xr, s)]/(r + s) and q(xr, s) We get the Laplace

transform q(x,s) of Q(x,t) as:

q(x, s) =
(1− e−αsx)(1 + rq(xr, s))

r + s
(3.7)

Now, put x = x0 to find q(x0, s) = 1−e−axr
s+re−axr

and plug q(x0, s) back in the equation to

get

q(x, s) =
1− e−αsx

r + s

(
r

1− e−αsxr
s+ re−αsxr

+ 1

)
From this mean first passage time to hit origin starting from x is obtained: (Txr(x) =

q(x, s = 0))

Txr(x) =
ea0xr(1− e−a0x)

r
= T (xr) +

1− ea0(xr−x)

r
(3.8)
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where T (xr) = ea0xr−1
r

is the mean first passage time starting from xr.

Optimum resetting rate for search time

Now, We aim to find the optimum resetting rate (r∗x) when we start the search from

a given x > 0. For that, ∂T/∂r = 0 gives a relation as:

xr
x

=
2(ez − z/2− 1)

z
(3.9)

where,z =
√
r/Dx. From the above relation r∗x then can be calculated as:

r∗x = z2D/x2. It is clear from the above relation that z hence r∗x will depend on the

ratio of resetting position and the starting position of search ie x0/x.

And, r∗x = z2D/x2

Figure 3.3: The variation of
√
r∗x/Dx with xr/x

3.2 Resetting to a set of states

In [EM11] Diffusion with Poissonian resetting they have considered only a single reset-

ting site.

Proceeding from that and following [MRES20] we will treat here diffusion with Pois-

sonian resetting to the distribution of resetting sites.
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Let q(xr) be the distribution of resetting sites. Then the probability of reset site

being in xr and xr + dxr is q(xr)dxr. Then, the renewal equation for the process can

be written as:

p(x, t|x0) = e−rtG(x, t|x0) + r

∫ t

0

dt′e−rt
′
∫
dxrq(xr)G(x, t′|xr). (3.10)

As t→∞
pst(x) =

∫
dxrq(xr)pst(x|xr), (3.11)

where pst(x|xr) is the stationary distribution with reset to fixed point xr.

For finite N number of reset sites xri , i = 1, 2, ..., N, each of the site being chosen at

reset event with probability Pi then, we have

pst(x) =
N∑
i=1

Pipst(x|xri). (3.12)

(a) xr ∈ {1,−1} with uniform site probability
(b) xr ∈ {−20,−10, 10, 20} with P−20 = 0.4,
P−10 = 0.3, P10 = 0.2 and P20 = 0.1

Figure 3.4: Stationary distributions in the case of multiple isolated reset points for
r=2, D=10
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(a) q(xr) =

{
1/10 xr ∈ (−5, 5)
0 else

(b) q(xr) =


3/40 xr ∈ (−20,−10)
1/40 xr ∈ (10, 20)
0 else

Figure 3.5: Stationary distributions in the case of reset site distribution for r=2, D=10

3.3 Stochastic Resetting of a diffusive particle in

harmonic potential

We have a Langevin picture for a diffusive particle in a harmonic potential, 2κx2 as

dx(t) = −κx(t)dt+ dW (t)

Then, in the presence of constant (Poissonian resetting) 3.1 becomes

∂p

∂t
= D

∂2p

∂x2
+ κ

∂xp

∂x
− rp+ rδ(x− xr) (3.13)

pst obeys

D
∂2pst
∂x2

+ κ
∂xpst
∂x

− rpst = −rδ(x− xr) (3.14)

After taking Fourier transform of pst(x) as
∫∞
−∞ e

−ikxpst(x) = f(k). we get

−k2Df(k)− κk∂f(k)

∂k
− rf(k) = −re−ikxr

∂f(k)

∂k
+

(
r

κk
+
k2D

κk

)
f(k) = re−ikxr

Integrating Factor=e
−k2D

2κ
− r
κ
ln|k|.We get,

f(k) =
r

κ
e
k2D
2κ

+ r
κ
ln|k|

(∫ k

e−ik
′xre

k′2D
2κ

+ r
κ
ln|k′|dk′/k′ + C

)
(3.15)
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Indefinite integral appearing in the expression of f(k) make it cumbersome to invert

f(k).

3.4 Space dependent resetting

Suppose, we have a space dependent resetting rate then Using Feymann kac Formalism

2.4 we can find pno reset.

For that multiply 2.34 by
∏N

i=1(1− r(xi)∆t) ≈
∏N

i=1 e
−r(xi)∆t.

By the procedure employed in [3] we get to know that master equation followed by

pno reset(x) is:
pno reset

∂t
= D

∂2pno reset

∂x2
− V (x)pno reset (3.16)

where,

V (x) =
µ2f(x)2

4D
+
µf ′(x)

2
+ r(x)[RG11] (3.17)

V (x) looks like a quantum potential and it is to be noted that resetting rate is acing

like a potential here. Since, 3.16 is like a Schrodinger’s Equation which therefore,

resetting rate and potential in which particle is moving can be chosen suitably so that

resultant V (x) takes a form of the potential for which solution is known (i.e. αx2 or

0). Therefore, not much of the pairs can be chosen for getting analytic results.

3.5 Evolution of Random Graph with Random Re-

setting

In this last example we will try to implement the resetting mechanism on a simple

random graph evolution model where we will basically try to see that how resetting

can optimize average search time for a desired graph. It is an attempt to demonstrate

the effect of random resetting on search algorithms.

Suppose, we have n vertices so the maximum possible number of edges is
(
n
2

)
= N .

Initially we just have vertices with not a single edge. We decide to throw an edge

blindly with probability p and not to do so with probability 1− p at each time step.

When we throw an edge it can choose any of the N possible options to form an edge

there uniformly at random and if, at later times the position choosen to form an
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edge is not vacant we will simply replace the edge as we will assume edges are iden-

tical. After sufficiently long time, we have a complete graph, Kn then we are stuck

so in order to make the process more useful we will just remove all the edges from

the system with probability 1, the time we get Kn and will start throwing edges again.

In the setup defined above we want to know what the average search time of a par-

ticular graph G∗ with k edges on n vertices is.

Mathematical Model

Let, {Gt}t≥0, (Gt = (V,Et)) where V is the set of vertices which is same at all times

and Et is the set of edges at time t) be a Markov chain say RGM with transition

matrix P. the entries of P are as follows:

1.when, 0 ≤ |Et| < n

P (|Et+1| = m+ 1||Et| = m) = p− m

N
p;P (|Et+1| = m||Et| = m) = 1− p+

m

N
p

that implies probability of particular edge ei being added if it has not been added yet

is:

P (G+ ei|G) =
p− m

N
p

N −m
=

p

N

2.|Et| = n. Then,

P (|Et+1| = 0||Et| = n) = 1

where, |Et| is the number of edges at time t and 0 ≤ p ≤ 1.

Note that the rest of the not specified transitions have probability 0.

Model with resetting

This Markov process with reset can be described by transition matrix Pr whose entries

can be defined as

Pr(|Et+1| = j||Et| = l) = (1− r)P (|Et+1| = j||Et| = l) + rδj0,∀j, l (3.18)

where, 0 ≤ r ≤ 1, and δab is a kronecker delta function.

In such a setup, we want to search a graph G∗, the average search time starting

from a graph with no edge, T0(G∗) will vary with r. Suppose we deploy searchers

on identical systems parallelly with different r value. Which one will finish the task
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of searching G∗ first?( G∗ = ({0, 1, 2, 3, 4}, {(0, 1), (1, 2), (2, 3), (1, 3)}) and p = 1/2

chosen for our purpose)

Let’s have a look at the figure below:

Figure 3.6: The variation of average search time of a graph G∗ with resetting proba-
bility r

As we can see as r increases initially average search time decreases then again

starts increasing with r. For our choice of 5 vertices and a G∗ with 4 edges without

resetting we get T0(G∗) ≈ 159.5. At optimum r value, r∗ search time has the least

value T0(G∗) ≈ 78.5 corresponding to r∗ = 0.09.

Although if we decide to restart upon reaching any of the graph G with |E| = |E∗|
then the average search time decreases drastically to T0(G∗) ≈ 38.5.

This empirical result suggests that random resetting can optimize average search time

for a wide range of stochastic processes.
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Chapter 4

Discussion

1. When we have X = f(Y ) i.e. in the the form of algebraic transform it is easy to

get the probability distribution of x, Wx from Wy as mentioned in 1.3.1. But, when it

is not the case different methods have to be adopted. We have encountered a special

case of Langevin equation,(2) which is a linear differential equation of X w.r.t. time,

t involving the function of ξ. Here, x can’t be written as a function of ξ in con-

tinuous time and space but, this can be done by discretizing the Langevin equation

using Stranovich’s scheme with euler method and then reverting back to continuous

time and space . then, by the Feynman Kac formula 1.3.4, we get, the master equation.

So, for our purpose Schrodinger’s Equation is nothing but a master equation.

2.Another, widely used and simpler method in statistical mechanics to derive the mas-

ter equation is to use Chapman- Kolmogorov property leading to Kramer- Moyal’s

Expansion giving rise to Fokker- Planck Equation in the case of white noise. Instead

of taking transform here we are taking into account the change in probability in small

time.

3.A suitable gauge transform of a path integral can transform Schrodinger’s Equa-

tion into Fokker Planck’s Equation.

4. In order to deal with the case of r(x, t) i.e. space and time dependent reset-

ting one can write the master equation as shown in 2.7 and then can use the theory

29



of renewals [RG11].

5. As is observed δ(x − y) is the initial condition for the master equation which

is a partial differential equation in 2 independent variables but, δ(x − y) is not a

function but a generalized function therefore, to solve the partial differential equation

we take Fourier transform with respect to state variable which converts the initial

condition to e−iky so that we have a nice function as an initial condition and we seek

bounded non-negative solution. All these requirements suggest to solve the partial

differential equation after taking transform.

6.Mathematically, this problem boils down to dealing with the parabolic differen-

tial equation of certain type, which limits the capability to obtain solutions because

till date only certain special cases have been solved yet.

7. It must be realised that in all the problems we are dealing with, state space is

irreducible i.e. one can reach from one state to other. Also, one can start search from

any state not necessarily from resetting state in order to get finite search time. This

is the motivation of 3.1.
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Appendix A

Codes

A.1 Simulation of Diffusion with Poissonian Re-

setting to set of the set of Reset Sites

We will give a C code snippet here for the case of Diffusion with poissonian resetting

to multiple sites:

i n t main ( )

{

p r i n t f (”% f ” , c ) ;

FILE ∗ f2mean , ∗ fmean , ∗ f d i s t ;

fmean=fopen (”2 cmean . dat ” ,”w” ) ;

f2mean=fopen (”2 cavg2 . dat ” ,”w” ) ;

f d i s t=fopen (”2 cdistm . dat ” ,”w” ) ;

double x , g [10001 ]={0} ;

double mean [10001 ]={0} ;

f o r ( i n t j =0; j <10000; j++)

{ x=0;

f o r ( i n t i =1; i <=1000000; i++)

{ i f ( ran ( seed2)<R) \\ r e s e t t i n g cond i t i on

\\ p r o b a b i l i t y o f s i t e s can be de f ined acco rd ing ly below :

{ i f ( ran ( seed2 )<0.75)

x=−20+10∗ran ( seed2 ) ;

e l s e x=10+10∗ran ( seed2 ) ; }
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e l s e \\ usua l e u l e r increment

x=x+c∗dt∗gasdev ( seed1 ) ;

i f ( ( j<=10&&j>=1) && i ∗dt>100)

f p r i n t f ( f d i s t ,”% l f \n” , x ) ;

e l s e

{}
i f ( i %100==0)

{mean [ i /100]=mean [ i /100]+x ;

g [ i /100]=g [ i /100]+x∗x ;}
e l s e {}
}

}
f o r ( i n t i =0; i <=10000; i++)

{
f p r i n t f ( f2mean ,”% f %l f \n” , i ∗100.0∗ dt , g [ i ] / 1 0 0 0 0 ) ;

f p r i n t f ( fmean ,”% f %l f \n” , i ∗100.0∗ dt , mean [ i ] / 1 0 0 0 0 ) ;

}

f c l o s e ( f2mean ) ;

f c l o s e ( f d i s t ) ;

f c l o s e ( fmean ) ;

r e turn 0 ;

}

Pseudo-Random Generators used:

1.ran(long idum) and ran2(long idum) are functions with same definition. And, re-

turns Unif(0,1).

2.gasdev( long a) returns N(0, 1).

[PTVF92]
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A.2 Simulation of Random Graph Evolution with

Resetting

Python code snippet for the problem is below:

import networkx as nx

#import matp lo t l i b . pyplot as p l t

import random

n =5

k=4

p=0.5

E=10 #5C2

# graph evo lu t i on func t i on

de f r e s r g g (G, p , r ) :

i f random . random()< r or G. number of edges ()==E:

G. c l e a r ( )

G. add nodes from ( [ i f o r i in range (n ) ] )

e l s e :

i=random . randint (0 , n−1)

j =( i+random . rand int (1 , n−1))%n

i f random . random()<p and ( ( i , j ) not in l i s t (G. edges ( ) )

) and ( ( j , i ) not in l i s t (G. edges ( ) ) ) :

G. add edge ( i , j )

e l s e :

G=G

return G

ra t e = [ 0 , 0 . 0 1 , 0 . 0 2 , 0 . 0 3 , 0 . 0 4 , 0 . 0 5 , 0 . 0 6 , 0 . 0 7 , 0 . 0 8 , 0 . 0 9 , 0 . 1 , 0 . 1 1 ,

0 . 1 2 , 0 . 1 3 , 0 . 1 4 , 0 . 1 5 , 0 . 1 6 , 0 . 1 7 , 0 . 1 8 , 0 . 1 9 , 0 . 2 0 , 0 . 2 2 , 0 . 2 4 , 0 . 2 6 , 0 . 2 8 ]

f=open (” t imeforn . dat ” ,”w”)
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g1=nx . Graph ( )

g1 . add nodes from ( [ i f o r i in range (n ) ] )

g1 . add edges from ( [ ( 0 , 1 ) , ( 1 , 2 ) , ( 2 , 3 ) , ( 1 , 3 ) ] )

f o r j in range ( l en ( ra t e ) ) :

r=ra t e [ j ]

s=0

f o r i in range (10000 ) :

G=nx . Graph ( )

G. add nodes from ( [ i f o r i in range (n ) ] )

whi l e nx . i s i s o m o r p h i c (G, g1 )!= True :

s=s+1

G=r e s r g g (G, p , r )

f . wr i t e (”% f %f \n” %(r , s /10000))

f . c l o s e ( )
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Appendix B

Some Basics of Markov Chain

Let, (Xn)n≥0 be a Markov Chain with transition matrix P.

Definition 2. (Communication). Two states i and j are said to communicate, written

as i↔ j, if pnij > 0, pmji > 0 for some m,n. In other words,

i↔ j means i→ j and j → i.

Communication is an equivalence relation.

Therefore, It divides the state space of the chain into equivalence classes known as

communicating classes.

Definition 3. (Irreducible Markov Chain) A Markov chain is said to be irreducible if

all states communicate with each other.

Definition 4. (Recurrence and Transience) For any state i, we define

fii = P (Xn = i, for some n ≥ 1|X0 = i).

State i is recurrent if fii = 1, and it is transient if fii < 1. Recurrence and Transience

are class property.

Definition 5. (Period) The period of a state i is the largest integer d satisfying the

following property:

p
(n)
ii = 0, whenever n is not divisible by d. The period of i is shown by d(i). If p

(n)
ii = 0,

∀n > 0, then we let d(i) =∞.

a.If d(i) > 1, we say that state i is periodic.
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b.If d(i) = 1, we say that state i is aperiodic.

Period is also a class property.

A Markov Chain is said to be periodic (aperiodic) if all the states of a Markov Chain

are periodic (aperiodic).

Theorem 1. Consider an infinite Markov chain (Xn)n≥0 where Xn ∈ S = {0, 1, 2, }.
Assume that the chain is irreducible and aperiodic. Then, one of the following

cases can occur:

1.All states are transient, and

lim
n→∞

P (Xn = j|X0 = i) = 0,∀i, j.

2.All states are null recurrent, and

lim
n→∞

P (Xn = j|X0 = i) = 0,∀i, j

3.All states are positive recurrent. In this case, there exists a limiting distribution,

π = [π0, π1, ...], where

πj = lim
n→∞

P (Xn = j|X0 = i) > 0,

for all i, j ∈ S. The limiting distribution is the unique solution to the equations

πj =
∞∑
k=0

πkPkj, for j = 0, 1, 2, ...,
∞∑
j=0

πj = 1.

We also have rj = 1
πj
,∀j = 0, 1, 2, ... where rj is the mean return time to state j.
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