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Abstract

In this thesis we provide the results obtained through lattice Monte Carlo simula-

tions of the bosonic BMN and the bosonic BFSS matrix models. The simulations are

performed using Hybrid Monte Carlo (HMC) algorithm. The BMN matrix model is

expected to have a Hagedorn/deconfinement type phase transition as the temperature

is varied in the system. The Polyakov loop is used as an order parameter for detecting

the phase transition. Besides the Polyakov loop, other prime observables such as the

internal energy and the extent of space were also computed. We also check the valid-

ity of numerical simulation algorithms by exploring the behavior of various relevant

toy models.

As the main result of this thesis, we present a parametrized phase diagram of the

bosonic BMN matrix model constructed using two dimensionless parameters: a di-

mensionless coupling constant and a dimensionless temperature.

viii



Chapter 1

Introduction

1.1 String theory and M theory

String theory is a field in theoretical and mathematical physics, which represents a

major dream of theoretical physicists towards building ‘a theory of everything.’ It is a

set of attempts made to unify gravity with other three fundamental forces in Nature:

electromagnetic, strong nuclear and weak nuclear forces. The basic idea of this the-

ory is that all matter particles and force mediators are made up of one-dimensional

objects called strings. The theory explains how these strings propagate in spacetime

and interact with each other. It replaces the point like particles, described as the

fundamental entities in the Standard Model, by these one-dimensional objects. In

string theory, each elementary particle corresponds to a unique vibrational pattern of

a string and these vibrational patterns determine their properties like charge, mass,

spin, etc.

There are five types of string theories: type I, type IIA, type IIB and two flavors

of heterotic string theory (SO(32) and E8 × E8). These theories differ depending on

whether strings are open or closed, or they are oriented or unoriented. Each of these

theories lives in ten spacetime dimensions.

In 1995, Edward Witten came up with a new theory in which he suggested that

all five string theories are part of a vast, yet still undiscovered 11-dimensional theory

known as M theory. The M is undefined and may stand to refer to a “membrane” or
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“matrix.”

String theory was first studied in the late 1960s and since then it has been evolv-

ing. The theory has enriched enormously the fields of quantum gravity, high energy

physics, nuclear physics, condensed matter physics, and pure mathematics. However,

there still exists a debate over its validity since no part of this theory has been verified

experimentally.

1.2 The BFSS matrix model

The BFSS matrix model is a one-dimensional supersymmetric Yang-Mills theory. It

was conjectured in 1996 by T. Banks, W. Fischler, S.H. Shenker, and L. Susskind

[Banks 97]. This model is regarded as a low energy effective description of N D0-

branes of type IIA superstring theory [Filev 16]. It is speculated that in the large-N

limit this model is related to the uncompactified eleven-dimensional M theory. One

way to obtain this model is to dimensionally reduce the ten-dimensional supersym-

metric Yang-Mills theory to one-dimension. The resultant reduced action is

S =
1

2g2
YM

∫
dt Tr

[(
DtX

i
)2

+ ψαDtψ
α +

1

2

[
X i, Xj

]2
+ iψαγjαβ

[
ψβ, Xj

]]
, (1.1)

where gYM is the Yang-Mills coupling, Dt = ∂t−i[A, ·] represents the covariant deriva-

tive, the indices i, j = 1, · · · , 9 run over the scalars of the theory, and spinor indices

α, β = 1, · · · , 16. All degrees of freedom are N ×N Hermitian matrices.

1.3 The BMN matrix model

The BFSS matrix model is defined on a flat Minkowski spacetime, but matrix models

can also be considered on curved spacetime.

The maximally supersymmetric pp-wave background, which preserves 32 super-

charges, gives an example of this type. Berenstein, Maldacena and Nastase [Berenstein 02]

proposed the BMN matrix model on this background [Kawahara 06]. This model is

constructed by deforming the BFSS matrix model through the addition of a mass

parameter.
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This model has fuzzy spheres as classical solutions due to presence of mass and

Myers terms [Myers 99]. The presence of mass term leads BFSS’s SO(9) global sym-

metry to break down to SO(6) × SO(3). The action of PWMM (plane wave matrix

model) or BMN has the form

S =
1

2g2
YM

∫
dt Tr

[(
DtX

i
)2

+ ψαDtψ
α +

1

2

[
X i, Xj

]2
+ iψαγjαβ

[
ψβ, Xj

]
−µ

2

32

(
XI
)2 − µ2

62

(
XI′
)2

− µ

4
ψα
(
γ123

)
αβ
ψβ − i2µ

3
εIJKX

IXJXK

]
, (1.2)

where µ is the deformation parameter, and

i, j = 1, · · · , 9,

α, β = 1, · · · , 16,

I, J,K = 1, 2, 3,

I ′ = 4, · · · , 9,

γ123 =
1

6
εIJKγ

IγJγK ,

Dt = ∂t − i[A, ·].

1.4 Advantages of BMN model over BFSS model

There are certain advantages of the BMN model over the BFSS model. Firstly, the

BMN model has a discrete energy spectrum and a well defined canonical ensemble

whereas the canonical ensemble of the BFSS model does not exist [Costa 15] due to

the presence of the so-called flat directions. The existence of flat directions means

that the eigenvalues of commutating matrices X i can attain arbitrarily large val-

ues without costing energy. Flat directions in the BFSS model leads to divergences

and non-existence of the partition function defined at a finite temperature. How-

ever, Monte Carlo simulations of the BFSS model can be accomplished thanks to the

existence of a meta-stable thermal equilibrium, which has a decay rate that is very

small at large N . Flat directions are absent in the BMN model because of mass terms.

Secondly, the BMN model has two dimensionless parameters - a dimensionless

coupling constant

g ≡ λ

µ3
, (1.3)
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with µ denoting a mass parameter and λ the ‘t Hooft coupling; and a dimensionless

temperature

t =
T

µ
, (1.4)

with T denoting the (dimensionful) temperature.

These two parameters can be used to parametrize a two-dimensional phase dia-

gram of the model. This signifies that the dual gravitational description at large N

and strong coupling g � 1 can be used to predict various observables as functions of

t [Joseph 15].

Thirdly, the model becomes weakly coupled in the limit µ → ∞, so it can be

studied perturbatively [Dasgupta 02].

1.5 BMN matrix model and black holes

One of the principal reasons to investigate the BMN model is the connection of matrix

models with black hole states. The BFSS model, at finite temperature, is related to the

black hole state of type IIA supergravity [Klebanov 98] [Banks 98]. The connection

between BFSS matrix model and black hole states is also established by Kabat and

Lowe in Ref. [Kabat 01]. They calculated the entropy of the quantum mechanical

system that agrees well with the Beckenstein-Hawking entropy of a ten-dimensional

non-extremal black hole. The free energy of the black hole in terms of the parameters

of the gauge theory (the BFSS model) can be written as [Semenoff 04]

F

T
= −4.115N2

(
T 3

g2
YMN

)3/5

. (1.5)

The formula given in Eq. (1.5) is of interest for a couple of reasons. Firstly, the

dependence of the free energy on the ’t Hooft coupling (λ = g2
YMN). The ’t Hooft

large-N limit corresponds to the region where supergravity description is valid and

therefore, is appropriate to look for the behavior of the black hole in the BFSS model.

Secondly, the N2 dependence of the free energy, which is also seen in the deconfined

state of a gauge theory system.

It would be significant to reproduce the above formula using calculations in the

matrix model. To get the behavior mentioned above in the matrix model, one must
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look in the strong coupling limit. But in such limits, perturbation theory cannot be

applied. Thus any analytic derivation for this expression has not been made. The

other approach is to use techniques based on numerical simulations. It is a decent

alternative as it does not have any such restrictions.

Further, from the study of black holes dual to the deconfined phase of the BMN

model, the critical temperature in the strong coupling limit was determined in Ref.

[Costa 15]

lim
g→∞

Tc(g)

µ
= 0.105905(57), (1.6)

which is again very difficult to derive analytically in the matrix model.

The authors of Ref. [Costa 15] also predicted the parametrized phase diagram for

the BMN model, and it is shown in Fig. 1.1. In the opposite limit of weak coupling,

that is, in the g → 0 limit, the critical temperature was predicted using perturbative

calculations in Refs. [Furuuchi 03] and [Hadizadeh 05]

lim
g→0

T

µ

∣∣∣∣
c

= lim
g→0

1

12 log 3

[
1 +

26 · 5
3

g

−
(

23 · 19927

22 · 3
+

1765769

24 · 32
log 3

)
g2 +O

(
g3
)]

≈ 0.076. (1.7)

It would be a significant achievement if we could verify the above results using

numerical non-perturbative methods. We will resort to Monte Carlo simulations to

study the BMN model numerically.

1.6 The deconfinement phase transition

For systems owning an exponentially increasing density of states,

ρ(E) ∼ eβHE, (1.8)

there exists an upper limiting temperature above which the partition diverges and no

longer exists,

lim
T→T−H

Tr
[
e−βH

]
→∞, (1.9)

such a limiting temperature is known as the Hagedorn temperature [Semenoff 04].
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Above the cutoff temperature TH , the partition function does not exist. However,

its existence can be made by holding N large but finite. Doing so would break off the

exponential growth in the asymptotic density of states at some large energy value.

At temperatures higher than TH , the entropy and the energy are governed by the

states at and above the cutoff scale, the free energy jumps from O(1) to O(N2). Thus

[Hadizadeh 05]

limN→∞
F
N2 = 0 (confined),

limN→∞
F
N2 6= 0 (deconfined).

(1.10)

The transition from confined to deconfined state of the gauge theory is called the

deconfinment phase transition. In the confined phase, state before the deconfinement

phase transition, the quantum states of the Hamiltonian must be singlets under the

gauge symmetry [Semenoff 04]. This condition breaks as soon as the system reaches

the Hagedorn temperature.

The deconfinement phase transition has been found in large N gauge theories such

as weakly coupled Yang-Mills theory [Aharony 04] [Sundborg 00]. It is expected that

this type of phase transition exists in the BFSS and the BMN matrix models also

[Semenoff 04] [Hadizadeh 05].

The deconfinement transition in the matrix models is associated with the sponta-

neous breaking of the centre symmetry, A(t) 7→ A(t)+c1. There is an order parameter,

called the Polyakov loop, for this type of symmetry breaking [Polyakov 78]. It is de-

fined as the trace of the holonomy of the gauge field around the finite temperature

Euclidean time circle.

P =
1

N
TrP

[
exp

(
i

∮
A

)]
. (1.11)

This operator is gauge invariant. Its expectation value, which is zero in the con-

fined phase, jumps to a non-zero value in deconfined phase. This is because the

Polyakov loop is a unitary matrix and its eigenvalues in the confined phase are uni-

formly distributed on a unit circle, whereas, in the deconfined phase, they start to

clump together.

〈P 〉 = 0 (confined phase),

〈P 〉 6= 0 (deconfined phase).
(1.12)
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Figure 1.1: The phase diagram of the BMN matrix model. At low temperature the

system is in a confined phase where the free energy scales as N0. As the temperature

increases, the system undergoes a first-order phase transition to a deconfined phase

where the free energy scales like N2. (This figure is taken from Ref. [Costa 15].)

It is widely used to study the deconfinement type phase transitions in higher di-

mensional gauge theories. We also use this observable as an order parameter in the

simulations carried out in this work.

The phase diagram shown in Fig 1.1 has been recently recovered using Monte

Carlo simulations in Ref. [Schaich 20]. They used the Polyakov loop as an order

parameter to trace the transition temperature.

The chapters of this thesis are arranged in a series of steps towards building up the

numerical simulation algorithms used to simulate the BFSS and BMN matrix models.

Each chapter includes a specific topic. In Chapter 2, we discuss the discretization of

the matrix models on a Euclidean lattice. The basics of Monte Carlo integration along

with two algorithms, Metropolis and Hamiltonian Monte Carlo (HMC), are discussed

in Chapter 3. In Chapter 4, we present the Monte Carlo simulations of a toy model,

the harmonic oscillator with potential µ2X2. It is an exactly solvable model, and

thus serves as a good starting point to test out the numerical integration methods.

After this, the numerical simulations of the model containing a commutator potential

term [X i, Xj]2, is covered in Chapter 5. In Chapter 6, a gauge field is included in the

7



model, and integration over gauge variables is investigated using the D = 4 model.

The D = 4 model is a toy model of the BFSS matrix model, and therefore is suitable

for examining the behavior of the BFSS matrix model. Finally, the bosonic BFSS and

the bosonic BMN matrix models are investigated in Chapters 7 and 8, respectively.

In Chapter 9 we provide conclusions.

8



Chapter 2

Lattice Discretization

2.1 The quenched model

The primary focus of this thesis is to perform numerical simulations of the bosonic

BMN matrix model. Therefore, the first step is to remove the fermions from the

model. Inclusion of fermions leads to various challenging computational difficulties.

Firstly, there exists the problem of fermion doubling: placing fermions on a Euclidean

spacetime lattice leads to the fermions to behave like multiple degenerate particles. A

solution to this difficulty requires the addition of a term, known as the Wilson term,

directly into the action of the theory. This term decouples the degenerate states

but comes with further challenges. Secondly, the fermionic terms in the action can

be integrated out. However, doing so would leave a complex fermion determinant,

which would pose problems when we use importance sampling based Monte Carlo

algorithms. The fermion determinant has a rapidly fluctuating phase which weakens

the probabilistic interpretation of the Euclidean action in the path integral. It is also

in general time consuming to evaluate the determinant at every simulation time step

during the molecular evaluation. Therefore, in general, the inclusion of fermions in

the lattice field theory simulations is a difficult task.

Also, at high temperatures, fermions decouple from the full action and leave only

the remnant bosonic behavior. Thus, at high temperatures, the system should be

described by just the bosonic action.
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Therefore, dropping fermions is a step taken forward to make the system simpler

to examine. Removing fermions completely from an action is also known as fermion

quenching.

Simulating the bosonic part of the action, the quenched model, is a complicated

problem in itself, and that will be the focus of this work. We have strong reasons

to believe that in the absence of fermions, the bosonic part of the model, at high

temperature, would show the same behavior as that of the full model.

2.2 Euclidean action and partition function

The thermodynamics of the matrix model can be investigated using the Euclidean

action compactified on a temporal circle. An action in the Minkowski space is moved

into the Euclidean space through Wick rotation. The process of Wick rotation involves

the substitution of the Minkowski time for the imaginary Euclidean time (t = −itE).

This just alters the sign of a few terms in the action. The system can be studied at

a finite temperature by compactifying the action on a circle with the circumference

β ≡ 1/T . The compactified Euclidean bosonic actions for both the models are

SBFSS
E =

N

λ

∫ β

0

dtTr

[
1

2

(
DtX

i
)2 − 1

4

[
X i, Xj

]2]
, (2.1)

SBMN
E = SBFSS

E +
N

λ

∫ β

0

dtTr

[
1

2

(µ
3

)2 (
XI
)2

+
1

2

(µ
6

)2 (
XI′
)2

+ i
µ

3
εIJKX

IXJXK

]
, (2.2)

where Dt = ∂t − i[A, ·] is the covariant derivative and the boundary conditions are

periodic in time, X i(t) = X i(t+β) and A(t) = A(t+β). The coupling g2
YM is written

in the form of ‘t Hooft coupling to make the behavior of the system invariant for

distinct values of N .

Using the Euclidean action, the partition function is written as

Z =

∫
D[A]D[X]e−SE [X]. (2.3)
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It counts all accessible states of a system and is used to define fundamental quantities

in thermodynamics like free energy, entropy, etc.

The free energy has the expression

F ≡ − 1

β
lnZ. (2.4)

Unfortunately, the free energy cannot be obtained easily using Monte Carlo simula-

tions as it demands the evaluation of the partition function explicitly. However, we

can make use of another useful quantity, defined by

E ≡ d

dβ
(βF) = − d

dβ
logZ. (2.5)

It will be interesting to look at the behavior of this quantity in the matrix model

simulations.

2.2.1 Connection to statistical mechanics

There is a structural equivalence between the Euclidean path integral of a lattice field

theory and the partition function of a statistical mechanical system.

To understand this, let us consider a spin system in statistical mechanics. As-

suming that the spins are distributed on a lattice, the partition function is written as

Zs =
∑
{s}

e−βH[s], (2.6)

where the sum is over all possible spin configurations.

Equation (2.3) has a similar structure to that of the above equation. The weight

factor e−βH is replaced by e−SE and the sum over the spin configurations are replaced

by a path integral. This structural equivalence suggests that performing simulations

of a quantum field theory system by implementing it on a spacetime lattice, is the

statistical mechanical study of the system. It also provides an advantage to lattice

field theory: it can make use of the analytical and numerical methods developed

within statistical mechanics. These methods are discussed in the next chapter.
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2.3 Gauge fixing

The lattice simulation of the model is possible even without fixing the gauge, but

it would be computationally expensive. Actually, the gauge symmetry in the model

results in redundant dynamical variables and including these variables in the lattice

action would make the simulation inefficient and time consuming. Therefore, it is

essential to remove them before embarking on simulations.

2.4 The link variables

In general, a continuum action that is invariant under a set of gauge transformations

may not remain invariant when it is discretized on a lattice. This occurs when the

action has a derivative term, which on discretization, leaves two field variables at

different lattice sites, thus making it impossible to cancel the gauge transformation

matrices. A common way to maintain the gauge invariance of the action on a lattice

is to treat gauge fields as link variables between the sites of the lattice. We describe

this below.

Consider the action

SE =
N

2λ

∫ β

0

dtTr

[(
DtX i

)2 − 1

2

[
X i, Xj

]2]
, (2.7)

where DtX i = dXi

dt
− i [At, X

i]; i = 1, · · · , 9. This action is invariant under the gauge

transformations

X i(t) −→ Ω(t)X i(t)Ω†(t), (2.8)

A(t) −→ Ω(t)

(
A(t) + i

d

dt

)
Ω†(t). (2.9)

The discrete form of the pure derivative part in Dt is ∂Xi(t)
∂t
−→ Xi

t+1−Xi
t

a
, which

is not invariant under the same transformation. In such cases, link fields are added

between the sites of scalar matrices to define the covariant derivative.

Taking the link fields defined as

Ut,t+1 = P exp

[
i

∫ (t+1)a

ta

dtA(t)

]
, (2.10)
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with the transformation property

Ut,t+1 −→ ΩtUt,t+1Ω†t+1, (2.11)

we can write down the discretized form of covariant derivative as

Dt →
1

a

[
Ut,t+1X

i
t+1Ut+1,t −X i

t

]
, (2.12)

where Ut+1,t = U †t,t+1, and a denotes the lattice spacing.

However, in this thesis we will use a slightly different approach. The gauge is

chosen such that all the gauge variables interacts only with the scalar matrices at the

boundaries of integral and it is diagonalized such that all gauge variables act as angles

on the unit circle. This choice of gauge is called the static-diagonal gauge and we will

use this to study the model. Thus we have

At = diag (θ1, · · · , θN) . (2.13)

With this gauge choice, the link field and the Polyakov loop are written as

U = diag
(
eiθ1 , eiθ2 , · · · , eiθN

)
, (2.14)

and

P =
1

N
TrU. (2.15)

A new term called the Faddeev-Popov determinant appears as part of the partition

function when we use the static-diagonal gauge. (Its origin is due to the change of

variables from the U matrices to the angles θi.) The partition function with this new

term has the form

Z ≈
∫
dθ1 · · · dθN

N∏
l<m

sin2

(
θl − θm

2

)∫
D[X]e−SE [X]. (2.16)

2.5 Computing observables using path integrals

The final task is to put the partition function on a lattice and then to compute the

expectation values of observables by evaluating the path integrals. If the partition

function has the form Z =
∫
D[X]e−SE [X], then expression for the expectation value

of an observable is given by

〈O〉 =
1

Z

∫
D[X]e−SE [X]O[X]. (2.17)
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Integrals of the above form can be calculated using Monte Carlo integration

method. This method is based on generation of random numbers to estimate the

values of integrals. We will discuss this method in detail in the next chapter.
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Chapter 3

Monte Carlo Techniques

This chapter introduces the computational techniques required to solve the Euclidean

path integrals on the lattice. To begin, consider a system of matrices with the following

partition function Z written in terms of a Euclidean action SE.

Z =

∫
D[X]e−SE [X]. (3.1)

The factor e−SE in the partition function acts as a weighting function for each possible

state of the system.

With this partition function the expectation value of an observable is written as

〈O〉 =

∫
D[X]O[X]e−SE [X]∫
D[X]e−SE [X]

. (3.2)

The integrals in the expectation value of an observable are over all matrix variables

at all times. The established method of calculating these integrals is first to break

the time variable into smaller slices and then evaluate each spatial integral at a fixed

time slice. With this done, the time variable splits into T number of lattice sites with

a being the lattice spacing, and the matrix variables defined at all times now exist

only at the lattice sites.

The expressions for the partition function and the expectation value after dis-

cretization are

Zlat =

(
T∏
t=1

d∏
i=1

∫
dX i

t

)
e−Slat[X], (3.3)

〈O〉 =

(∏T
t=1

∏d
i=1

∫
dX i

t

)
O[X]e−Slat[X](∏T

t=1

∏d
i=1

∫
dX i

t

)
e−Slat[X]

, (3.4)
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where Slat represents the discrete form of the Euclidean action. The formalism to

discretize the action on a lattice is discussed in the next chapter. The variables T and

a have the same meaning throughout this thesis.

Now, the problem that is remaining for us is just to solve these path integrals

using a suitable numerical algorithm.

3.1 Monte Carlo integration method

The partition function described above contains a large number of integrals even for

a small lattice size and a small number of spatial dimensions. The exact evaluation

of these integrals would require solving a large number of summations over every pos-

sible state of the system, which is clearly impossible. So a new way to estimate these

integrals is required.

One approach to estimate these integrals comes from the probability theory, which

tells that the integral over a function can be approximated by averaging the function

over randomly selected points within its domain. This method is called the Monte

Carlo integration method.

If an integral over function f(x) needs to be evaluated over a domain Y , we first

select n number of points (xi ∈ Y ) randomly from the domain according to the uniform

distribution ωu (xi) = 1/(β − α). Then an average of the function is calculated over

those selected xi values.

1

β − α

∫ β

α

dxf(x) = lim
n→∞

1

n

n∑
i=1

f (xi) . (3.5)

The error of the Monte Carlo integration is ∝ 1/
√
n. Thus the accuracy of the

integral increases as the number of randomly selected points for the average increases.

The exact value of the integral will be reached for n −→∞.
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3.1.1 Importance sampling

The expression for the expectation value of an observable in Eq. (3.4) has a Boltzmann

weight factor e−Slat , which gives different importance to different field configurations.

The use of a uniform probability distribution for sampling in such cases results in a

poor estimate of the integral. Therefore, it is necessary to consider a different prob-

ability distribution, which can be used to sample configurations having large weight

factor. Sampling configurations according to their weight is called importance sam-

pling.

In importance sampling method, the expectation value of a function f(x) with a

probability distribution ω(x) given by

〈f〉ω =

∫ β
α

dxω(x)f(x)∫ β
α

dxω(x)
, (3.6)

is approximated as an average over n points,

〈f〉ω = lim
n→∞

1

n

n∑
i=1

f (xi) , (3.7)

where each point is randomly sampled according to the normalized probability density

p(x) =
ω(x)dx∫ β
α

dxω(x)
. (3.8)

The path integral in Eq. (3.4) is of this form, and therefore, the expectation value

of an observable can be obtained by [Gattringer C. 10]

〈O〉 = lim
n→∞

1

n

n∑
i=1

O
[
X[i]

]
, (3.9)

where each of the X[i] is sampled with the probability density

p(X) =
e−Slat[X]

∏T
t=1

∏d
i=1 dX

i
t∏T

t=1

∏d
i=1

∫
dX i

t e−Slat[X]
. (3.10)

3.1.2 Markov chains

The problem now is to produce field configurations with the probability distribution

P (X) ∝ exp(−Slat). This is done by making use of the Markov process. In a Markov
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process, we start with some random field configuration and then generate a stochas-

tic sequence of configurations, which ultimately achieve the equilibrium distribution

P (X).

X0 −→ X1 −→ X2 −→ . . . (3.11)

This sequence of field configurations is called a Markov chain. If V is the volume

of states of the system, then the Markov chain is made such as it moves more often in

that region of V , which corresponds to the configurations having substantial weight

exp(−Slat).

There are two conditions that a Markov chain must follow to reach the equilibrium

distribution. These two conditions are ergodicity and the detailed balance conditions.

Ergodicity means that any state of the system should be accessible from any other

state. The detailed balance condition is a sufficient condition for proving the invari-

ance (or stationarity) of the probability distribution. The equation given below is

called the detailed balance equation

T (X ′|X)P (X) = T (X|X ′)P (X ′) , (3.12)

where T (X ′|X) is the transition probability from X to X ′.

In the following next two sections, we describe two different algorithms. They

both are based on the Markov chain method.

3.1.3 Random-walk Metropolis algorithm

The Metropolis algorithm [Metropolis 53] creates a new field configuration from the

previous field configuration using the following steps:

1. Given a matrix variable Xold at time t.

2. Create a proposed matrix by adding a small random matrix to the old matrix

variable, i.e. X ′ = Xold + ∆X.
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3. Use the Metropolis test to accept or reject the proposed matrix.

In this, the proposed matrix is accepted with a probability

min
(
1, e−∆S

)
. (3.13)

We apply Step 3 in the code as:

Xnew =



X ′ ∆S ≤ 0

X ′ if r ≤ e−∆S ∆S > 0

Xold if r > e−∆S,

(3.14)

where r is a uniform (pseudo)random number in interval (0, 1), and ∆S =

S ′lat − Slat.

4. Repeat the steps 2 and 3 to create a sequence of configuration.

There are various algorithms to generate pseudo-random numbers in the interval

(0, 1). Some of these methods are given in Ref. [Press 92]. These numbers are called

pseudo-random numbers because they pass most of the tests of randomness even

though an algorithm produces them.

3.1.4 Hamiltonian Monte Carlo (HMC) algorithm

Hamiltonian Monte Carlo (HMC) [Duane 87] [Neal 12] is another method that con-

structs the Markov chain by using the Metropolis test. It uses Hamilton’s equations

for this purpose.

We provide an overview of this methodology below.

For simplicity, consider a zero-dimensional matrix model with a Euclidean action,

SE[X]. Let us assume that SE[X] is a function of an N ×N scalar Hermitian matrix.

First step of this method is to think the scalar matrix as a function of a fictitious

time, τ .

X ≡ X(τ). (3.15)
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Second step is to define a Hamiltonian function for the system. For this, a kinetic

energy term constituting of an N ×N Hermitian momentum matrix is added to the

action. The action, here, behaves as a potential energy. The Hamiltonian of the

system is then written as

H =
1

2
TrP 2 + SE[X]. (3.16)

Further, the equations of motion are calculated using the Hamilton’s equations.

The Hamilton’s equations are given by

∂H

∂ (P )ab
=
(
Ẋ
)
ab
,

∂H

∂ (X)ab
= −

(
Ṗ
)
ab

(3.17)

Then the equations of motion are

(P )ba =
(
Ẋ
)
ab
, (3.18)

∂SE

∂ (X)ab
= −

(
Ṗ
)
ab
, (3.19)

where the dots indicate that the derivatives are with respect to τ .

The leapfrog method

Next step is to solve the differential equations in Eqs. (3.18) and (3.19). The following

set of equations is used for this purpose.

(P )ab

(
τ +

ε

2

)
= (P )ab (τ)− ε

2

∂SE
∂ (X)ab (τ)

, (3.20)

(X)ab (τ + ε) = (X)ab (τ) + ε (P )ba

(
τ +

ε

2

)
, (3.21)

(P )ab (τ + ε) = (P )ab

(
τ +

ε

2

)
− ε

2

∂SE
∂ (X)ab (τ + ε)

, (3.22)

where ε represents the time step, in fictitious simulation time, on the lattice. The

above set of equations form part of the leapfrog algorithm.

Thereafter a Metropolis test is performed to accept or reject the proposed state.
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Properties of Hamiltonian dynamics

Though Hamiltonian dynamics has many properties, its three properties are signifi-

cant for its use in constructing the Markov chain Monte Carlo updates.

1. Hamiltonian dynamics is reversible. This property is can be used to show that

the MCMC (Markov chain Monte Carlo) updates, which use the Hamiltonian

dynamics leaves the desired probability distribution invariant.

2. Hamiltonian dynamics keeps the Hamiltonian invariant, i.e., conserved. But

practically, in numerical simulations, the Hamiltonian can only be made ap-

proximately invariant.

3. Hamiltonian dynamics keeps the volume of the space preserved. This property

ensures that no additional term is needed to add in the acceptance probability

for the Metropolis update.

The HMC algorithm

The steps involved in HMC algorithm are provided below.

Consider a lattice of points τ = nε, where n = 0, · · · , ν − 1, ν.

1. Given X = X(0).

2. Construct P = P (0) according to the Gaussian distribution, e−
1
2

TrP 2
. Assign X

the P matrix.

3. Solve the differential equations using the Leapfrog method to get the configu-

ration (X ′, P ′) ≡ (X(σ), P (σ)). Here σ = νε.

4. Use the Metropolis test to accept or reject the configuration (X ′, P ′). The

configuration is accepted with a probability

min
(
1, e−∆H(X,P )

)
, (3.23)

where ∆H = H(X ′, P ′)−H(X,P )

5. Repeat the steps 2 to 4.
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At the beginning of each molecular dynamics trajectory, the old momentum ma-

trix is dropped, and a new matrix is constructed. In this way we maintain ergodicity

of the system.

The use of the Metropolis test confirms the detailed balance of this algorithm,

and also the absence of systematic errors occurred due to the non-conservation of the

discrete Hamiltonian.

Worked example: a 1-D system

Consider a 1-D system with the following Hamiltonian.

H(q, p) = V (q) +K(p), (3.24)

where

V (q) = q2/2, K(p) = p2/2, (3.25)

with p and q being scalars.

The equations of motion are

dq

dt
= p,

dp

dt
= −q. (3.26)

Solutions of these differential equations have the form

q(t) = β cos(α + t), p(t) = −β sin(α + t). (3.27)

Thus the trajectory in the phase diagram of q vs p is circular.

In Figs. 3.1 and 3.2 we show the trajectories obtained after the application of the

HMC algorithm to this system.

3.2 Statistical error and autocorrelation

The following formula can be used to calculate the statistical error in the data sampled

δO =
σ√
n
, (3.28)
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Figure 3.1: The plot of position (q) vs momentum (p) using HMC algorithm for with

step size ∆ε = 0.3.

Figure 3.2: The plot of position (q) vs momentum (p) using HMC algorithm with

step size ∆ε = 1.2.

where

σ2 =
〈
O2
〉
− 〈O〉2. (3.29)

However, the formula is valid only for the case when configurations obtained after

the thermalization (explained below) are uncorrelated, i.e., independent. In real sim-
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ulations, two consecutive configurations are dependent, and using such configurations

for calculating the average results in a skewed value. It is possible to obtain an average

number of sweeps, which needs to be skipped to get two uncorrelated configurations.

This is done by calculating the function in Eq. (3.30), and then evaluating the point

where it becomes zero. The average number of sweeps separating two consecutive

uncorrelated configurations is called autocorrelation length. Taking j as a positive

integer called the lag time, we have the lag-j autocovariance function

Γj =
1

n− j

n−j∑
i=1

(Oi − 〈O〉) (Oi+j − 〈O〉) . (3.30)

Normalizing the above expression we get the autocorrelation function is

ρj =
Γj
Γ0

, (3.31)

where Γ0 = σ2.

3.3 Advantages of HMC algorithm

There are two important advantages of HMC, which make it better than the random-

walk Metropolis algorithm. They are listed below:

1. HMC converges to the equilibrium distribution faster than the other algorithm.

2. It has very low autocorrelation time as compared to the other.

Actually, in the random-walk Metropolis algorithm, a Markov chain makes jumps

in state space at random directions due to which it takes a long time to converge.

Whereas, in HMC, the addition of auxiliary variables in action, guides a Markov chain

to make jumps in ‘more appropriate’ directions.

Because of these two benefits it is possible to save a lot of computing time.

3.4 Simulation steps

For simulations of the models discussed in this thesis, the matrix variables are placed

on a one-dimensional lattice.
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1. Simulations can be started either with a cold start or a hot start depending

upon the system. If the initial matrix variables are null matrices, then we call

it a cold start. If they are random, we call it a hot start.

2. Then a Markov chain of configurations is constructed using any of the two

algorithms. The proposed matrix variable is accepted or rejected according to

the Metropolis test. If accepted, the old matrix variable is replaced by the

proposed matrix variable, otherwise the old matrix variable is kept as a new

matrix variable. This process is called an update.

3. The system is then let to evolve for enough number of sweeps until it reaches

the equilibrium distribution. This process is called thermalization. A sweep

involves the update of entire lattice at once.

4. After the system gets thermalized, average of an observable can be calculated

using Eq. (3.9). The data points for this average should be sampled with an

appropriate autocorrelation length to minimize the statistical error.
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Chapter 4

Harmonic Oscillator

A good model to apply the simulation methods we encountered in the last chapter is

the harmonic oscillator. The action of this model is given by

SE =
1

2

∫ β

0

dt tr
[
Ẋ2 + µ2X2

]
. (4.1)

Here β is defined as inverse of the temperature, µ is a mass parameter and the Xs are

scalar N×N Hermitian matrices with periodic boundary conditions X(t+β) = X(t).

The ‘gauge field’ is not included here; we will discuss a model containing the gauge

field in the next chapter.

To apply the techniques discussed in the last chapter, the action must be dis-

cretized first. In order to do so, the integral with respect to time is substituted for

summations, and the derivative is substituted for finite difference operators. We have

∫ β

0

dt ∼ a

T=β
a∑

t=1

,

∂X i
t

∂t
∼
X i
t+1 −X i

t

a
,

X i(t) ∼ X i
t .

(4.2)

With these changes, the lattice action is given by

Slat =
a

2

T∑
t=1

tr

[(
Xt+1 −Xt

a

)2

+ µ2X2
t

]
. (4.3)

The next step is to generate the field configurations with weight e−Slat .
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4.1 Random-walk Metropolis for the model

In this section, a procedure to apply the Metropolis algorithm is outlined. The method

is first to add a random matrix to one scalar matrix at a time and then check the

effect of the change. By looking at Eq. (4.3), it can be inferred that evaluating a local

action is advantageous. The local action includes the terms that consist of the scalar

matrix to which the change is made. The local action of the model is given by

Sloc =
a

2
tr

[(
2

a2
+ µ2

)
(Xt)

2 − 2Xt

(
Xt+1 +Xt−1

a2

)]
. (4.4)

This action reflects the total change in the full action that occurs from altering

the scalar matrix at a given lattice site.

The addition of a random matrix to a scalar matrix can be shown as

X ′ = Xold
t + δΩ. (4.5)

Here Ω is a Hermitian matrix filled with real and complex random numbers.

In the Metropolis test, the proposed change is accepted if

r ≤ exp
[
−Sloc (X ′t) + Sloc

(
Xold
t

)]
, (4.6)

otherwise it is rejected. Here r ∈ (0, 1) is a uniform deviate. Before moving to the

next lattice site, the given site should be updated numerous times to achieve the

thermalization faster. This entire process is repeated for every lattice site until the

whole lattice is covered. A sweep is completed when entire lattice has been updated.

In Eq. (4.5), a new parameter δ has been introduced to control the acceptance

rate. An acceptance rate is defined as the ratio of accepted updates to the total

number of proposed updates. The value for the parameter δ is chosen such that the

acceptance rate lie in the range 60% to 75%. (See Fig. 4.1.)

The reasons for this range are as follows

• If the acceptance rate is kept too low, then the Markov chain would make

longer jumps in configuration space due to which it would skip major regions of

importance.
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• If the acceptance rate is kept too high, then the Markov chain would make

shorter jumps in configuration space due to which it would not be able to cover

the whole configuration space.
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Figure 4.1: A plot of the acceptance rate for the harmonic oscillator model using

random-walk Metropolis algorithm. Here, N = 16, d = 1, µ = 1, T = 32, a = 0.3

and δ = 0.0250. This value of δ stands for the case where each lattice site has been

updated 25 times in one sweep.

4.1.1 Construction of Ω matrix

The following procedure can be used to create elements of the matrix.

For off-diagonal elements

(Ω)ab = n1 + in2,

(Ω)ba = (Ω)∗ab .
(4.7)

For diagonal elements

(Ω)aa = n1. (4.8)

Here, n1 and n2 are uniform random deviates in (−1, 1).
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4.1.2 Periodicity on the lattice

Since the scalar matrices are periodic, Eq. (4.9) can be used to manage this condition

on the lattice. We have

XT+t = Xt, (4.9)

where t = 1, · · · , T .

4.2 HMC for the model

This section explains how HMC algorithm can be applied to the model. The procedure

consists of multiple steps which are as follows

1. Construct a momentum matrix for a given lattice site.

2. Use this matrix to create a local Hamiltonian.

3. Get the equations of motion for that lattice site.

4. Solve these equations to get a proposed scalar matrix and a momentum matrix

for that site.

5. Use the Metropolis test to update the site.

6. Then move to another site and repeat the same process.

It is beneficial to calculate a local Hamiltonian for this method also.

The local Hamiltonian for this model is given by

Hloc =
1

2
trP 2

t +
a

2
tr

[(
2

a2
+ µ2

)
(Xt)

2 − 2Xt

(
Xt+1 +Xt−1

a2

)]
. (4.10)

Here, Pt is a Hermitian momentum matrix with real and complex random num-

bers as its elements, and it is constructed according to the Gaussian distribution

exp
(
−1

2
trP 2

t

)
.

The equations of motion for Hloc are

(Ẋt)ab = (Pt)ba, (4.11)
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−(Ṗt)ab = a

[(
2

a2
+ µ2

)
(Xt)ba −

(
Xt+1 +Xt−1

a2

)
ba

]
. (4.12)

These differential equations are solved using the leapfrog method.

The steps involved in the leapfrog algorithm are the following.

• At a given simulation time τ , firstly, a half-step time evolution (ε/2) for the

momentum matrix is performed, and then a full-step time evolution (ε) for the

scalar matrix is made using the new momentum matrix. Finally, a half-step time

evolution (ε/2) for the momentum matrix is performed again by using the new

scalar matrix. These time steps are repeated multiple times to get a distant

configuration, and this is done by assuming a trajectory of a fictitious time

variable over which iterations are carried out by using an appropriate leapfrog

time step ε. The steps involved in the leapfrog process are summarized in the

following equations.

(Pt)ab

(
τ +

ε

2

)
= (Pt)ab (τ)− ε

2

∂Sloc

∂ (Xt)ab (τ)
, (4.13)

(Xt)ab (τ + ε) = (Xt)ab (τ) + ε (Pt)ba

(
τ +

ε

2

)
. (4.14)

(Pt)ab (τ + ε) = (Pt)ab

(
τ +

ε

2

)
− ε

2

∂Sloc

∂ (Xt)ab (τ + ε)
, (4.15)

where τ represents fictitious time, ε represents lattice spacing of the lattice made from

τ and
∂Sloc

∂ (Xt)ab (τ)
= a

[(
2

a2
+ µ2

)
(Xt)ba(τ)−

(
Xt+1 +Xt−1

a2

)
ba

]
. (4.16)

In the Metropolis test, the solutions obtained after the application of the leapfrog

method are accepted if

r ≤ exp
[
−Hloc (P ′t , X

′
t) +Hloc

(
P old
t , Xold

t

)]
, (4.17)

otherwise they are rejected. When the given lattice is updated once, the updated

momentum matrix is discarded, and a new momentum matrix is constructed for the

next site. The parameter ε serves the same purpose of controlling the acceptance

rate as the parameter δ does in the random-walk Metropolis method. The value for
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the parameter ε is chosen by observing the acceptance rate and the autocorrelation

function on trial runs. There is no need to perform multiple updates within a sweep

for this method.

The correctness of the gradient of action can be checked by using e−∆H shown

in Fig. 4.2. If there is no sign error or any term missing in the gradient of action

then the values of e−∆H would lie around 1. However, rare random points may jump

beyond it as proposed states are accepted with some errors.
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Figure 4.2: The plot of exp(−∆H) against the number of sweeps. Here, ∆H =

Hloc(P
′
t , X

′
t)−Hloc(P

old
t , Xold

t ). The horizontal solid line represents exp(−∆H) = 1.

4.2.1 Construction of Pt matrix

The following technique can be applied to create the elements of the Pt matrix.

For off-diagonal elements we take

(Pt)ab =
g1 + ig2√

2
,

(Pt)ba = (Pt)
∗
ab .

(4.18)

For diagonal elements we have

(Pt)aa = g1. (4.19)
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Here, g1 and g2 are random deviates generated with a normal (Gaussian) distribution

p(y)dy =
1√
2π
e−y

2/2dy. (4.20)

An algorithm to generate random deviates with this distribution is given in Ref.

[Press 92].

4.3 Comparison between Random-walk Metropo-

lis and HMC

4.3.1 Run-time history

A run-time history of an observable is the behavioral details of the observable from

the beginning of the simulation. The observable in Eq. (4.21) has been calculated for

the model using both the algorithms and its run-time history is shown in Fig. 4.3.

O2 =
1

N2T

T∑
t=1

tr(Xt)
2. (4.21)

In both cases, all the matrix fields have been set to zero at the start of the simulation

and then they are left to be evolved. The value of the observable begins from zero, then

reaches the theoretical value and oscillates around it. However, it can be seen from

Fig. 4.3 that the observable thermalized much earlier in the case of HMC compared

to the random-walk Metropolis.

4.3.2 Autocorrelation

It is evident from Fig. 4.3 that the value of the observable after each sweep is not

independent, rather it is related to the values obtained in the preceding sweeps. It

requires multiple sweeps before the observable becomes independent from its previous

values. The autocorrelation function defined in Eq. (3.30) is used to determine the

average number of sweeps to be skipped for obtaining two uncorrelated values of an

observable.

Figure 4.4 shows the plot of normalized autocorrelation for both the methods. In

the case of random-walk Metropolis method, the autocorrelation curve begins from
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Figure 4.3: The run-time history of observable O2 for HMC and random-walk

Metropolis. The solid horizontal line is the exact value. Here, N = 16, d = 1,

µ = 1, T = 32, a = 0.3 and β = aT .

one and then slowly drops off to zero in an exponential fashion. It crosses zero nearly

around sweep number 900. In HMC, the autocorrelation curve begins from the same

value and falls off to zero more quickly. It crosses zero after about sweep number 28,

and then continues to fluctuate about it.
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Figure 4.4: Comparison of autocorrelations for random-walk Metropolis and HMC

for observable O2.
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4.4 Two-point correlation function

Another interesting observable we can examine in this model is the two-point corre-

lation function. This function is the correlation between matrices at different lattice

sites. The value of this function can be calculated using the following formula

O3 =

〈
1

N2
tr [X0Xt]

〉
=
e−µt + e−µ(β−t)

2µ (1− e−βµ)
. (4.22)

Fig. 4.5 shows the two-point correlation function for this model. The plot shows

that the simulated data is in good agreement with the theoretical values.
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Figure 4.5: The two-point correlation function for the harmonic oscillator. Here,

N = 16, d = 1, µ = 1, T = 32 and a = 0.3. We used HMC algorithm to generate the

simulation data.

4.5 Inference

We see that the HMC algorithm is relatively faster, and it takes lesser time to gen-

erate thermalized uncorrelated configurations, whereas the random-walk Metropolis

algorithm is slower and takes more time to generate such configurations. Hence HMC

is more useful to simulate more complex models such as the BMN matrix model.
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Chapter 5

Harmonic Oscillator with

Commutator Potential

Now that the basic steps to perform the lattice simulations of the model under question

has been established, we can move towards simulating another interesting model.

The second model is the harmonic oscillator with a commutator potential. This

model includes a commutator squared potential instead of the mass potential, and it

carries multiple scalar fields (generated as a result of the compactification of spatial

dimensions of a mother theory).

The Euclidean action for this model is given by

SE =
N

2λ

∫ β

0

dt tr

[
(Ẋ i)2 −

d∑
i<j

[
X i, Xj

]2]
. (5.1)

Here, i, j = 1, · · · , d and λ = g2
YMN is the ‘t Hooft coupling. The partition function

is written as Z =
∫
D[X]e−SE .

Using the methodology explained previously, the lattice action is written as

Slat =
Na

2λ

T∑
t=1

tr

[
d∑
i=1

(
X i
t+1 −X i

t

a

)2

−
d∑
i<j

[
X i
t , X

j
t

]2]
. (5.2)

This action is invariant under the transformation

X i
t −→ X i

t + αi1, (5.3)

where αi is an arbitrary constant.
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In order to remove the corresponding zero mode, the below condition is used.

T∑
t=1

tr(X i
t) = 0 for each i. (5.4)

This condition has to be used whenever a commutator potential is present in the

action.

5.1 HMC for the model

The same steps, as mentioned in the previous chapter, are applicable here for the

use of HMC. These steps must be repeated for updating the matrices of each spatial

dimension. The local Hamiltonian is used again for the Metropolis test to update the

sites.

The local action for site t (with i fixed) is

Sloc =
Na

2λ
tr

[
2

a2

(
X i
t

)2 − 2X i
t

(
X i
t+1 +X i

t−1

a2

)
−

d∑
j 6=i

[
X i
t , X

j
t

]2]
. (5.5)

The commutator terms contributing to local interactions are only added in the

local action.

Then local Hamiltonian and gradient of the action have the following forms

Hloc =
1

2
trP i

t

2
+
Na

2λ
tr

[
2

a2

(
X i
t

)2 − 2X i
t

(
X i
t+1 +X i

t−1

a2

)
−

d∑
j 6=i

[
X i
t , X

j
t

]2]
, (5.6)

∂Sloc

∂(X i
t)ab

=
Na

λ

{
2

a2
(X i

t)ba −
(
X i
t+1 +X i

t−1

a2

)
ba

−
d∑
j 6=i

[
Xj
t ,
[
X i
t , X

j
t

]]
ba

}
. (5.7)

5.1.1 The observable O4

The following observable has been calculated for this model.

O4 =
1

NT

T∑
t=1

d∑
i=1

tr
(
X i
t

)2
. (5.8)

It is similar to the observable O2 from the previous chapter, except that it includes

an extra sum, which is over the spatial dimensions, and has one less power over N ,

which is due to the factor N/λ in the action.
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5.2 Taming the flat directions

This model has flat directions: they occur due to indefinitely increasing eigenvalues

of commutating matrices. Flat directions may encounter at any temperature, but

generally, they appear in simulations which are carried out at low temperatures. As

long as flat directions persist, the partition function diverges, and Monte Carlo sim-

ulations become unstable and eventually break down. So, a method is required to

eliminate the problem of flat directions. One way is to add a mass term into the

action. The addition of a mass term restricts the eigenvalues of commuting matrices

to a finite distribution. This in turn lifts the flat directions and provides stability to

simulations. A procedure to calculate the value of observable O4 (see in Eq. (5.8))

using this technique is given below.

5.2.1 Simulation procedure

First, a mass parameter, µ, is introduced in the action by the addition of the term

N

2λ

∫
dt tr

[
d∑
i

µ2X i2

]
. (5.9)

Then the observable is calculated for different small values of µ to create a plot be-

tween the average value of the observable and µ. The obtained plot is fitted with a

line or any other suitable function, which can then be extrapolated to get the value

at zero mass.

With the term given in Eq. (5.9), the expressions for local Hamiltonian and

gradient of action are given by

Hloc =
1

2
trP i

t

2
+
Na

2λ
tr

[
2

a2

(
X i
t

)2 − 2X i
t

(
X i
t+1 +X i

t−1

a2

)
+ µ2X i

t

2 −
d∑
j 6=i

[
X i
t , X

j
t

]2]
,

(5.10)

∂Sloc

∂(X i
t)ab

=
Na

λ

{
2

a2
(X i

t)ba −
(
X i
t+1 +X i

t−1

a2

)
ba

+ µ2
(
X i
t

)
ba
−

d∑
j 6=i

[
Xj
t ,
[
X i
t , X

j
t

]]
ba

}
.

(5.11)
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5.3 Simulation results

The model was simulated at t = 0.2 using the technique mentioned in the previous

section. The data obtained are shown in Table. 5.1 and the plot is provided in Fig.

5.1.

µ 〈O4〉

0.05 1.26231 ± 0.00278846

0.1 1.26002 ± 0.00297276

0.2 1.24189 ± 0.00292772

0.3 1.22837 ± 0.00267511

0.4 1.19861 ± 0.00346254

0.5 1.16484 ± 0.00210862

0.7 1.08522 ± 0.0024943

1.0 0.954097 ± 0.00244354

1.5 0.756634 ± 0.00194958

2.0 0.592594 ± 0.00177286

2.5 0.468172 ± 0.00301384

Table 5.1: The average of 〈O4〉 at different µ values. Here, d = 3, λ = 1, N = 8,

T = 10 and a = 0.5.
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Figure 5.1: Plot of average of 〈O4〉 against µ. Here, d = 3, λ = 1, N = 8, T = 10,

a = 0.5 and β = aT . The linear extrapolation gives 〈O4〉|µ=0 = 1.31233± 0.0113.

The value of 〈O4〉 at µ = 0 obtained from a linear extrapolation is 1.31233 ±

0.0113. We also performed simulations at µ = 0, fortunately, no flat directions were

encountered. The value of 〈O4〉 came out to be 1.26909± 0.00316178 for µ = 0. The

difference is about 3.17%, which indicates that the linear fit is not a good choice to

be used in the extrapolation and we should consider some other fit function.
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Chapter 6

The D = 4 Model

In this chapter, we look at the model after introducing a gauge field in the action. We

call this model the D = 4 model. It has three ‘spatial dimensions’ (encoded through

the presence of the three scalar fields), a commutator potential and one gauge field.

The Euclidean action for this model is given by

SE =
N

λ

∫ β

0

dt tr

{
1

2

(
DtX i

)2 −
3∑

i,j=1

1

4

[
X i, Xj

]2}
. (6.1)

Here

DX i =
∂X i

∂t
− i[A(t), X i]

is the covariant derivative and boundary conditions are periodic, X(t + β) = X(t)

and A(t + β) = A(t). This model is similar to the bosonic BFSS model except that

the BFSS model has nine spatial dimensions (appearing as nine scalar fields). The

action in Eq. (6.1) is invariant under the transformation

X i(t) −→ Ω(t)X i(t)Ω†(t),

A(t) −→ Ω(t)
(
A(t) + i d

dt

)
Ω†(t),

(6.2)

where Ω is a unitary matrix.

The partition function is given by

Z =

∫
D[A]D[X]e−SE . (6.3)

As explained in chapter one, it is necessary to introduce link fields to put the

action on the lattice. Using the discrete form of the covariant derivative as defined in
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Eq. (2.12), the lattice action is given by

Slat =
N

λ

T∑
t=1

tr

{
−1

a
X i
tUt,t+1X

i
t+1U

†
t,t+1 +

1

a

(
X i
t

)2 −
3∑

i,j=1

a

4

[
X i
t , X

j
t

]2}
. (6.4)

This action can be written in a much simpler form by using the SU(N) local

symmetry of the model. The details of the derivation are not included here and are

given in Ref. [Filev 16]. The resulting reduced action is

Slat[X,D] =
N

λ
tr

{
− 1

a

T−1∑
t=1

X i
tX

i
t+1 −

1

a
X i
TDX

i
1D
†

+
T∑
t=1

[
1

a

(
X i
t

)2 − a

4

[
X i
t , X

j
t

]2]}
. (6.5)

Here D = diag(eiθ1 , · · · , eiθN ) ∈ SU(N) and θ1, · · · , θN are the gauge variables which

interacts only with the first and the last lattice site. The sums over i and j are

implicit.

The partition function in the form of gauge variables is written as

Z ≈
∫ N∏

k=1

dθk

3∏
i=1

T∏
t=1

dX i
te
−(Slat[X,D(θ)]+SFP[θ]), (6.6)

where SFP is the part of the action containing the Faddeev-Popov determinant

SFP[θ] = −
∑
l 6=m

ln

∣∣∣∣sin(θl − θm2

)∣∣∣∣ . (6.7)

6.1 HMC for the model

Since we have introduced N number of new variables in the action, they also have

to be updated during the molecular evolution. For fast convergence, it is better to

update them together at every lattice site. The local action to work with according

to this approach can be written as

S ′loc = Sloc + SFP[θ], (6.8)
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where

Sloc =



• If t = 1

N
λ

tr
{
− 1
a
X i

1X
i
2 − 1

a

∑3
i=1X

i
TDX

i
1D
† + 1

a
(X i

1)
2 − a

2

∑3
j 6=i
[
X i

1, X
j
1

]2}
,

• If t = T

N
λ

tr
{
− 1
a
X i
T−1X

i
T − 1

a

∑3
i=1X

i
TDX

i
1D
† + 1

a
(X i

T )
2 − a

2

∑3
j 6=i
[
X i
T , X

j
T

]2}
,

• If t 6= 1 and t 6= T

N
λ

tr
{
− 1
a

(
X i
t−1X

i
t +X i

tX
i
t+1

)
− 1

a

∑3
i=1X

i
TDX

i
1D
† + 1

a
(X i

t)
2

−a
2

∑3
j 6=i
[
X i
t , X

j
t

]2}
.

(6.9)

The corresponding local Hamiltonian is

H =
1

2
trP i

t

2
+

1

2

N∑
l=1

Pl + S ′loc. (6.10)

Here P i
t is canonical momenta corresponding to the Hermitian matrix X i

t and Pl is

canonical momenta corresponding to the angles θl.

The Hamilton’s equation are

(Ṗ i
t )lm = −∂S ′loc/∂(X i

t)ml , Ṗl = −∂S ′loc/∂θl,

(Ẋ i
t)lm = (P i

t )lm, θ̇l = Pl.
(6.11)

The following equations are used in the Leapfrog method

−∂S ′loc/∂(X i
1)ml =

N

λa

(
X i

2 − 2X i
1 +D†X i

TD
)
lm

+
Na

λ

3∑
j=1

[
Xj

1 ,
[
X i

1, X
j
1

]]
lm

;

−∂S ′loc/∂(X i
t)ml =

N

λa

(
X i
t+1 − 2X i

t +X i
t−1

)
lm

+
Na

λ

3∑
j=1

[
Xj
t ,
[
X i
t , X

j
t

]]
lm

for t = 2, . . . , T − 1;

−∂S ′loc/∂(XT )ml =
N

λa

(
DX i

1D
† − 2X i

T +X i
T−1

)
lm

+
Na

λ

3∑
j=1

[
Xj
T ,
[
X i
T , X

j
T

]]
lm

;

−∂S ′loc/∂θl =
2N

λa

N∑
m=1

<
[
i(X i

T )ml(X
i
1)lme

i(θl−θm)
]

+
∑
m,m 6=l

cot

(
θl − θm

2

)
,

(6.12)

where < indicates the real part.
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6.1.1 Constraint for θl

The link field D is an element of the SU(N) group, so the gauge variables θl follow

the constraint
N∑
k=1

θk = 0. (6.13)

6.2 Observables

The observables namely, the Polyakov loop, the extent of space, and the internal en-

ergy have been calculated to study the phase structure of the system. These quantities

have the following definitions.

• Polyakov loop

P =
1

N
trP

(
ei

∮
A
)

=
1

N

∣∣∣∣∣
N∑
k=1

eiθk

∣∣∣∣∣ . (6.14)

• Extent of space

〈
R2
〉

=

〈
1

Nβ

∫ β

0

dtTr
(
X i
)2
〉
. (6.15)

• Internal energy

E

N2
=

〈
− 3

4Nβ

∫ β

0

dtTr
([
X i, Xj

]2)〉
. (6.16)

Note: These definitions stand for the case when λ = 1.

6.3 Save and restart strategy

The code to simulate the model can take a long time to complete the run, and if

somehow the simulations break in between, for instance, when a power failure is

encountered, then the code has to run from the beginning. It means one has to wait

again for the system to thermalize. Therefore, to avoid such a problem, the code has

to be designed in a manner that it saves the final configuration in a file which can later

be read to continue the simulations directly from that point onwards. For example,

a code can be designed such that it saves the final configuration at the end of every
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100 sweeps and then it would read in the saved configuration file to continue the run

for the next 100 sweeps. In this way, the code can be made to run for a longer time

to generate enough statistics on the data.

6.4 Simulation results

The code was set to run for different temperature values, each with a total of 1.6

million sweeps. The results obtained are given below. Our simulation results are in

good agreement with the results given in Ref. [Hanada 07].

6.4.1 Polyakov loop

The expectation value of the Polyakov loop, as discussed in Chapter 1, plays the role

of an order parameter for the confining-deconfining phase transition. Fig. 6.1 displays

the expectation value of this parameter as a function of temperature. The change in

slope of the curve near t ≈ 1.11 shows the existence of a phase transition. Analytical

results for high-temperature behavior of this quantity is given in Ref. [Kawahara 07a].

The plot shows that the fitted curve to the data meets with the analytical results

around t = 4. The data is fitted with the function

A tan−1(B (T − Tc) ) +D, (6.17)

and the obtained values of parameters A,B, Tc and D are given in Table. 6.1.

Parameter Value

A 0.3083 ± 0.0041

B 1.7967 ± 0.0453

Tc 1.1125 ± 0.0083

D 0.5272 ± 0.0029

Table 6.1: The values of the fit parameters A,B, Tc and D. Here, d = 3, λ = 1, N = 4

and T = 20.

The distributions of the eigenvalues of the Polyakov loop operator in the two

phases (confined and deconfined) of the model are shown in Fig. 6.2. The eigenvalues

47



 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0  0.5  1  1.5  2  2.5  3  3.5  4

<
|P

|>

Temp

Simulation data for N=4
A tan-1(B(T-Tc)) + D

leading order
next-to-leading order

Figure 6.1: A plot of the expectation value of the Polyakov loop as a function of the

temperature. Here, d = 3, λ = 1, N = 4 and T = 20. The data indicate a phase

transition near t ≈ 1.11.

spread uniformly on the unit circle in the confined phase, whereas they cluster about

one point in the deconfined phase.

a) Confined phase at temp = 0.2 b) Deconfined phase at temp = 4.0

Figure 6.2: The distribution of eigenvalues of the Polyakov loop operator, on a unit

circle in the complex plane, for the D = 4 model. The simulations are performed for

N = 4.
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6.4.2 Internal energy and extent of space

In Figs. 6.3 and 6.4 we show the plots for scaled internal energy 〈E/N2〉 and the

“extent of space” 〈R2〉 as functions of temperature. It can be seen that the data

overlaps with the analytical results for the high-temperature behavior for t & 2.
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Figure 6.3: Plot of the scaled energy as a function of the temperature. Here, d = 3,

λ = 1, N = 4 and T = 20. The data suggest the existence of a phase transition near

t = 1.1.
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Figure 6.4: Plot of the extent of space observable as a function of the temperature.

Here, d = 3, λ = 1, N = 4 and T = 20.

We expect similar behavior for these quantities in the quenched BFSS matrix

model also.
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Chapter 7

Bosonic BFSS Matrix Model

In the previous chapter we set up a framework to include the gauge field with the

commutator potential. We can now move on to simulate the quenched BFSS model.

The Euclidean action of the model is

SE =
N

λ

∫ β

0

dt tr

{
1

2

(
DtX i

)2 −
9∑

i,j=1

1

4

[
X i, Xj

]2}
. (7.1)

Here

DX i =
∂X i

∂t
− i[A(t), X i]

is the covariant derivative and boundary conditions are periodic: X(t + β) = X(t)

and A(t+ β) = A(t).

As mentioned in the previous chapter, the action can be written in a simpler form.

The simplified action is

Slat[X,D] =
N

λ
tr

{
− 1

a

T−1∑
t=1

X i
tX

i
t+1 −

1

a
X i
TDX

i
1D
†

+
T∑
t=1

[
1

a

(
X i
t

)2 − a

4

[
X i
t , X

j
t

]2]}
, (7.2)

where D = diag(eiθ1 , · · · , eiθN ) ∈ SU(N). The sums over indices i and j are implicit

and they run from 1 to 9.

7.1 HMC for the model

The local action is

S ′loc = Sloc + SFP[θ], (7.3)
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where,

Sloc =



• If t = 1

N
λ

tr
{
− 1
a
X i

1X
i
2 − 1

a

∑9
i=1X

i
TDX

i
1D
† + 1

a
(X i

1)
2 − a

2

∑9
j 6=i
[
X i

1, X
j
1

]2}
,

• If t = T

N
λ
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{
− 1
a
X i
T−1X

i
T − 1

a

∑9
i=1X

i
TDX

i
1D
† + 1

a
(X i

T )
2 − a

2

∑9
j 6=i
[
X i
T , X

j
T

]2}
,

• If t 6= 1 and t 6= T

N
λ

tr
{
− 1
a

(
X i
t−1X

i
t +X i

tX
i
t+1

)
− 1

a

∑9
i=1X

i
TDX

i
1D
† + 1

a
(X i

t)
2

−a
2

∑9
j 6=i
[
X i
t , X

j
t

]2}
(7.4)

The equations of motion are

(Ṗ i
t )lm = −∂S ′loc/∂(X i

t)ml , Ṗl = −∂S ′loc/∂θl,

(Ẋ i
t)lm = (P i

t )lm , θ̇l = Pl.
(7.5)

In the Leapfrog algorithm, the following equations are used.

−∂S ′loc/∂(X i
1)ml =

N

λa

(
X i

2 − 2X i
1 +D†X i

TD
)
lm

+
Na

λ

9∑
j=1

[
Xj

1 ,
[
X i

1, X
j
1

]]
lm

;

−∂S ′loc/∂(X i
t)ml =

N

λa

(
X i
t+1 − 2X i

t +X i
t−1

)
lm

+
Na

λ

9∑
j=1

[
Xj
t ,
[
X i
t , X

j
t

]]
lm

for t = 2, . . . , T − 1;

−∂S ′loc/∂(XT )ml =
N

λa

(
DX i

1D
† − 2X i

T +X i
T−1

)
lm

+
Na

λ

9∑
j=1

[
Xj
T ,
[
X i
T , X

j
T

]]
lm

;

−∂S ′loc/∂θl =
2N

λa

N∑
m=1

<
[
i(X i

T )ml(X
i
1)lme

i(θl−θm)
]

+
∑
m,m 6=l

cot

(
θl − θm

2

)
.

(7.6)

7.2 Simulation results

Simulation results given in Figs. 7.1, 7.2 and 7.3 indicate that a phase transition exists

around t ≈ 0.90. The value of the critical temperature obtained in our simulations is

in agreement with those obtained in Refs. [Kawahara 07b] and [Filev 16].
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7.2.1 Polyakov loop
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Figure 7.1: A plot of the expectation value of the Polyakov loop as a function of the

temperature. Here, d = 9, λ = 1, N = 4 and T = 10. The plot displays a phase

transition near t ≈ 0.90. The broken line and the solid line denote the results of the

high-temperature expansion for N = 4, which are obtained in Ref. [Kawahara 07a]

at the leading order and at the next-to-leading order, respectively.

The values of the parameters A, B, TC and D are given in Table. 7.1.

Parameter Value

A 0.273982 ± 0.001569

B 5.37305 ± 0.08925

Tc 0.905404 ± 0.00201

D 0.560378 ± 0.001439

Table 7.1: The values of the fit parameters A,B, Tc and D. Here, d = 9, λ = 1, N = 4

and T = 10.
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7.2.2 Internal energy and extent of space
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Figure 7.2: Figure displays a plot of the scaled energy as a function of the temperature

for N = 4 and T = 10. Here, d = 9 and λ = 1. The plot suggests the existence of a

phase transition near t ≈ 0.90.
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Figure 7.3: The extent of space is plotted against the temperature. Here, d = 9,

λ = 1, N = 4 and T = 10.

54



Chapter 8

Bosonic BMN Matrix Model

The BMN matrix model can be considered as an extension of the BFSS matrix model:

it has additional mass terms besides the derivative and the commutator terms.

The Euclidean action of the matrix model without the fermions is

SE =
N

λ

∫ β

0

dt tr

[
1

2

(
DtX

i
)2 − 1

4

[
X i, Xj

]2
+

1

2

(µ
3

)2 (
XI
)2

+
1

2

(µ
6

)2 (
XI′
)2

+ i
µ

3
εIJKX

IXJXK
]
,

(8.1)

where i, j = 1, · · · , 9, I ′ = 4, · · · , 9 and I, J,K = 1, 2, 3.

The last term in the action can also be written in a simplified form

i
µ

3
εIJK tr

(
XIXJXK

)
= iµ tr

(
X1.

[
X2, X3

])
. (8.2)

8.1 HMC for the model

We can use the same approach employed in the BFSS model here as well. The extra

task is just to add the mass terms and their gradients in Eqs. (7.4) and (7.6), respec-

tively.

The local action along with the mass terms is given by

S ′loc = Sloc + SFP[θ], (8.3)
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where

Sloc =
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(8.4)

with

M =
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λ

tr
{
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(8.5)

The Faddeev-Popov term is the same as that of the BFSS matrix model.

The equations for negated gradient of S ′loc are the following
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(8.6)
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where

(M′)lm =
∂M

∂(X i
t)ml

=


−Na

λ
(µ

3
)2 (X i
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iNaµ
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2
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λ

(µ
6
)2 (X i
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(8.7)

8.2 Observables

One additional observable has also been calculated. It is defined below.

• Myers term

Myr =

〈
i

3Nβ

∫ β

0

dt εIJK Tr
(
XIXJXK

)〉
. (8.8)

With the mass terms included, the internal energy is given by

• Internal energy

E

N2
=

〈
1

Nβ

∫ β

0

dtTr

[
−3

4

[
X i, Xj

]2
+
(µ

3

)2 (
XI
)2

+
(µ

6

)2 (
XI′
)2

+ i
5µ

6
εIJKX

IXJXK

]〉
.

(8.9)

Note : λ = 1 for above mentioned definitions.

8.3 Simulation results

8.3.1 Symmetry breaking

The six colored and three black lines at the top and bottom respectively in Fig. 8.1

illustrate the expected SO(9) −→ SO(6)× SO(3) global symmetry breaking.
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Figure 8.1: A plot of Tr[X i2], i = 1, 2, · · · , 9, against the number of Monte Carlo

sweeps. It displays SO(9) −→ SO(6)× SO(3) global symmetry breaking in the BMN

matrix model (six colored lines above and three black lines below). Here, d = 9,

λ = 1, N = 4, T = 10, t = 0.3 and µ = 12.

8.3.2 Observables for µ = 2.0

The figures shown in this section demonstrate that the system undergoes a phase

transition near t ≈ 0.91. The same value was obtained for the critical temperature in

Ref. [Asano 20].

Polyakov loop

We provide the values of the fit parameters A,B, TC and D in Table. 8.1. A plot for

the expectation value of the Polyakov loop as a function of the temperature is given

in Fig. 8.2. From the data we see the existence of a phase transition around t ≈ 0.91.

The simulations were performed for λ = 1, N = 4, T = 10 and µ = 2.

Internal energy

In Fig. 8.3 we show the simulation data for the internal energy as a function of the

temperature for the N = 4 case with µ = 2.0, λ = 1 and T = 10.
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Parameter Value

A 0.274143 ± 0.001743

B 5.25498 ± 0.09958

Tc 0.918857 ± 0.002204

D 0.560791 ± 0.001572

Table 8.1: The values of fit parameters A,B, Tc and D. Here, d = 9, λ = 1, N = 4,

T = 10 and µ = 2.0.
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Figure 8.2: Plot for the expectation value of the Polyakov loop as a function of the

temperature. It indicates the existence of a phase transition around t ≈ 0.91. Here,

d = 9, λ = 1, N = 4, T = 10 and µ = 2.

Extent of space

In Fig. 8.4 we provide the simulation data for the extent of space and its components

(SO(3) and SO(6)) against the temperature for the N = 4 case with µ = 2.0, λ = 1

and T = 10.

59



 6

 8

 10

 12

 14

 16

 18

 20

 0  0.5  1  1.5  2  2.5  3

E
/N

2

Temp

Simulation data for N=4

Figure 8.3: The internal energy is plotted against the temperature for N = 4 and

µ = 2.0. Here, d = 9, λ = 1 and T = 10.
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Figure 8.4: The extent of space and its components (SO(3) and SO(6)) are plotted

against the temperature for N = 4 and µ = 2.0. Here, d = 9, λ = 1 and T = 10.

Myers term

In Fig. 8.5 we provide the Myers term observable against the temperature for the

case N = 4 with µ = 2.0, λ = 1 and T = 10.
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Figure 8.5: A plot of Myers term against the temperature for N = 4 and µ = 2.0.

Here, d = 9, λ = 1 and T = 10.

8.3.3 Parametrized phase diagram

As discussed in the Chapter 1, a two dimensional parametrized phase diagram can

be built for the model by using a dimensionless temperature T/µ and a dimension-

less coupling g = λ/µ3. This phase diagram is generated by evaluating the critical

temperature for different values of the dimensionless coupling, g. Fig. 8.6 shows the

phase diagram obtained after simulating the model for five distinct values of g. The

data used in the plot is given in Table. 8.2.

In Fig. 8.7 we show the expectation values of the Polyakov loop against tempera-

ture for these five g values.
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Figure 8.6: The phase diagram for the bosonic BMN model. For each value of g,

the critical temperature, TC is evaluated by fitting the Polyakov loop data with the

functional form given in Eq. (6.17). The colored circles represent the values of TC/µ

in the weak (g � 1) and the strong (g � 1) coupling limit for the full BMN model.

In each case, we set λ = 1, N = 4, T = 10 and d = 9.
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Figure 8.7: A representative set of Polyakov loop data that is used to determine the

critical T/µ of the deconfinement transition. We set λ = 1, N = 4, T = 10 and d = 9.
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µ g = λ
µ3

Tc
µ

10 0.001000000 0.122101 ± 0.000238

12 0.000578703 0.111706 ± 0.0001944

18 0.000171467 0.0978775 ± 0.0002242

25 0.000064000 0.093240 ± 0.000153

55 0.000006010 0.0896591 ± 0.0001183

Table 8.2: This table shows the obtained values of TC/µ for different values of the

coupling g. The corresponding µ values are also provided. For all cases we used λ = 1,

N = 4, T = 10 and d = 9.
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Chapter 9

Conclusion

The main goal of this thesis was to recover the parameterized phase diagram for the

bosonic BMN matrix model using Monte Carlo simulations.

Initially, we cross checked our simulation results with the existing results for the case

of a smaller model, the D = 4 model, using hybrid Monte Carlo algorithm. Next,

we studied the quenched BFSS model using various observables. We found that our

results were in good agreement with those of the earlier studies. Further, we simu-

lated the quenched BMN matrix model for the mass parameter µ = 2.0 and obtained

the value of critical temperature. Our result matches exactly with the one given in

Ref. [Asano 20]. Finally, we performed simulations to obtain the parametrized phase

diagram for the bosonic BMN model, which was our main objective.

The primary observable used to investigate the deconfinement phase transition in the

model is the Polyakov loop. It can be clearly seen from the simulation data that

the system undergoes a deconfinement phase transition. The three other observables,

the internal energy, extent of space and Myers term, were computed to examine the

value of critical temperature obtained from the Polyakov loop. The final calculations

were done for the N = 4 case. For large N , the Polyakov loop will have the similar

behaviour as seen from the N = 4 data. The only difference would be that at the

critical point the observable would sharply change its value.

An important extension of this work would be to add fermions to the model and see

65



how the results change.
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