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Abstract

Quantum cryptography, also known as quantum encryption, exploits the principles

of quantum mechanics to encrypt messages in a way such that it is not possible to

be read by anyone except the recipient to which it is sent. It utilizes the advantage

of quantum’s multiple states, coupled with its “no change theory”, to achieve secure

encryption, which means it cannot be unknowingly interrupted. The fundamental

idea behind the security of quantum cryptography comes from the no-cloning theo-

rem. Whenever an eavesdropper tries to gain information by attacking the quantum

channel, she would end up disturbing the state.

One of the best-known examples of quantum cryptography is quantum key distri-

bution. Quantum key distribution (QKD) is a cryptographic task that allows two

distant parties, Alice and Bob, to exchange secret keys and communicate securely

over an untrusted quantum channel (which can be affected by an eavesdropper, Eve),

provided they have access to an authenticated classical channel. The basic idea is

that, Eve cannot gain any information from the states transmitted from Alice to Bob.

Any attempt by her to try and learn information about the key being established,

causes discrepancies, leading to Alice and Bob to notice. Once the key is established,

it is then typically used for encrypted communication using classical techniques.

The security of the traditional device-dependent quantum key distribution (DD-QKD)

protocols is based on several assumptions, the most prominent being that honest users

are able to control their devices completely and accurately. Most of these protocols

do not consider the fact that the measuring devices cannot be trusted, which causes

hidden danger resulting in unsafe quantum communication.

The goal of device-independent quantum key distribution (DI-QKD) is to provide a

relaxation, even to the fundamental assumption of devices being truthful. In fact, in

this case, no assumption is made on the internal working of the devices. The security

is based only on the observable behaviour of the devices, i.e. the probabilities of the

measurement results given the choice of measurement.

This thesis is an attempt to explore the realm quantum key distribution in the context

of device-independence.
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Chapter 1

Introduction

Cryptography is the method of securing information and communications such that

it can only be accessed by the person for whom it is intended, thus preventing any

unauthorized access to information. It involves construction of techniques such as

algorithms and protocols based on a set of rules and calculations, which are used to

encode messages (or information), in a way that they are hard to decode. This en-

coded information is difficult to be interpreted by an unwanted party. It is then used

to exchange secret messages between two users. Say, a person wishes to buy some-

thing online, and therefore provides his credit card number to the selling merchant in

exchange of the goods. But, it is possible that the network over which the information

flows is insecure, i.e. a third party (known as an adversary or an eavesdropper) can

intercept the message and can have access the information related to the credit card

that has been sent by the owner. But, if this information is encrypted, it is of no use

to the adversary. That’s why, cryptography is necessary.

Cryptography has various applications; it can be utilized to ensure the integrity of data

(i.e. the received or retrieved information is identical to the information originally sent

or stored), to authenticate specific parties (i.e., that the purported sender or author

of a message is indeed its real sender or author), to facilitate non-repudiation, and to

preserve the confidentiality of information that may have come into the possession of

some unauthorized parties.

A principle on which most of the modern day cryptographic schemes are based is
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known as private key cryptography. In a private key cryptosystem, two parties, com-

monly known as Alice and Bob, can communicate with each other by sharing a com-

mon private key known only to both of them. Alice encrypts her message which she

wishes to send to Bob using the key. After encryption, she sends the encrypted in-

formation to Bob. Bob then uses the pre-shared key to decrypt Alice’s message to

recover the information. Therefore, in order to privately share the information among

themselves, both Alice and Bob must be able to share a secret key before hand, which

would be further used for encryption and decryption.

Unfortunately, classical private key cryptosystem has a major problem: the secure

distribution of keys. In a way, the distribution of the key is as difficult as the original

problem of secure communication. They have to be delivered in advance via meetings,

secure private communication channels, trusted couriers etc. and have to be securely

guarded. But, the risk of it being intercepted is still there.

The solution to the problem lies in quantum mechanics. Quantum computing and

quantum information is an area which has grown tremendously over the past two

decades. It comprises the study and implementation of the information processing

tasks that can be efficiently performed using a quantum mechanical system. Quantum

computers are able to accomplish computational tasks which are not possible to carry

out on classical computers.

One of the most remarkable discoveries in quantum computation and quantum in-

formation was that key distribution could be done using the principles of quantum

mechanics, in such a way that Alice’s and Bob’s security is not compromised. This

procedure is known as quantum cryptography . One of the best-known example of

quantum cryptography is quantum key distribution. It is based on the framework

of private key cryptosystem. It exploits the quantum mechanical principle that an

observation in general, disturbs the system being observed. Thus, if an eavesdropper

Eve is listening in, as Alice and Bob attempt to transmit their key, the presence of the

eavesdropper will be visible as a disturbance over the communication channel being

used to establish the key, which can be detected during the key sharing process.

We elaborate this idea of quantum key distribution over the next chapters of this

thesis.

2



1.1 Organization of the thesis

This thesis deals with the analysis of quantum key distribution in the context of

device-independence. The organization of the thesis is described as follows:

Chapter 2 provides an introduction to basic information theory. It includes the fun-

damental algebraic relationships of entropy, relative entropy and mutual information

from a classical as well as a quantum point of view. Various properties and ap-

plications of entropy are also discussed. We also review the concept of accessible

information, and analyze an upper bound for it, which is strongly used in the security

analysis of various QKD protocols.

Chapter 3 emphasizes on a detailed analysis of standard device-dependent quantum

key distribution (DD-QKD) and some of its protocols. We also give a brief outline

of some strategies that could be used by an eavesdropper, to attack the quantum

channel to acquire the information shared between Alice and Bob. Some loopholes

and drawbacks of these QKD techniques are pointed out, which makes it necessary

to develop device-independent quantum key distribution schemes.

Chapter 4 provides an introduction to device-independent quantum key distribution,

and describes the necessary assumptions required to allow secure quantum key dis-

tribution in device-independent context. It also provides an overview of some of its

advantages over DD-QKD.

Chapter 5 defines the Bell’s inequality and provides an interpretation of the relation

between its violation and unpredictability.

In Chapter 6, the basic spot-checking device-independent protocol based on the

Clauser-Horne-Shimony-Holt (CHSH) inequality is discussed.

In Chapter 7, we analyze a device-independent quantum key distribution scheme

secure against eavesdropping attacks limited by only the no-signalling principle.

We extend our study of the concept of device-independence to qutrits (3-level systems)

and qudits (d-level systems) in Chapter 8. We analyze the security of such schemes,

and provide a relation between noise resistance and dimension of quantum systems

used in the protocol.

3



Chapter 9 emphasizes on some drawbacks and loopholes in the physical implementa-

tions of DI-QKD techniques, and provides some possible strategies to overcome those

shortcomings.

Chapter 10 presents a summary of the thesis with conclusions, and suggests some

possible future directions in the field of device-independence.

Appendix A provides a brief outline of basic probability theory. Appendix B and C

contain some derivations and proofs of some concepts used in the thesis.
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Chapter 2

Information theory and entropy

Information theory deals with the analysis and mathematical modelling of a communi-

cation system. It is a branch of applied mathematics, computer science and electrical

engineering, and is widely used in many fields (see Figure 2.1). It was developed by

Claude E. Shannon in 1948, in his paper “A mathematical theory of communication”

[Shannon 01]. He formulated the laws of data compression and transmission, which

formed the basis of information theory. This chapter provides an overview of various

concepts of information theory such as entropy and mutual information, which are

very well utilized in quantum information.
2 INTRODUCTION AND PREVIEW
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FIGURE 1.2. Information theory as the extreme points of communication theory.

source is less than the capacity of the channel, asymptotically error-free
communication can be achieved.

Information theory today represents the extreme points of the set of
all possible communication schemes, as shown in the fanciful Figure 1.2.
The data compression minimum I (X; X̂) lies at one extreme of the set of
communication ideas. All data compression schemes require description

Figure 2.1: Relation of information theory to other fields [Cover 06]
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2.1 Shannon’s entropy

Entropy refers to the measure of uncertainty in the state of a particular physical

system. Suppose, a discrete random variable X in a set X has probability mass

function pX(x) = Pr{X = x} with x ∈ X . The Shannon entropy for X is defined as

follows.

Definition 2.1.1. [Cover 06] The Shannon’s entropy H(X) of a discrete random

variable X, associated with a probability distribution pX(x) is defined by

H(X) = H(p1(x), p2(x), ...., pn(x)) = −
∑
x∈X

pX(x)log2 pX(x). (2.1)

The entropy is expressed in bits. For example, for a fair coin, p(Head) = p(Tail) = 1
2
.

Therefore, the entropy for a fair coin toss is given by H(X) = −[pHead log2 pHead +

pTail log2 pTail] = −[1
2
log2

1
2

+ 1
2
log2

1
2
] = 1 bit. Also, the convention 0log20 = 0 is

used, as limx→0 xlog2 x = 0. This is because, an event with pX(x) = 0 (this event can

never occur) should not have a contribution in the calculation of entropy.

If the probability distribution associated with a random variable X is pX(x), then the

expectation value E of another random variable f(X) is given by:

E(f(X)) =
∑
x∈X

f(x)pX(x). (2.2)

The entropy of X can also be represented in terms of the expectation value of a

random variable f(X) = log2
1

p(X)
as:

H(X) = E log2

1

p(X)
. (2.3)

Lemma 2.1.1. The entropy for a discrete random variable X is non-negative, i.e.

H(X) ≥ 0.

Proof. Since probability pX(x) lies between 0 and 1, so 1
pX(x)

≥ 1. This implies,

log2
1

pX(x)
≥ 0. Therefore by equation (2.3), H(X) ≥ 0.

Some of the basic properties of entropy are discussed in the following section.

6



2.2 Properties of entropy

2.2.1 Binary entropy

The binary entropy is defined for random variables, for which only two outcomes are

possible. Say, the probability of one of the outcome of a random variable is p. So,

the other outcome occurs with a probability (1−p), and therefore the binary entropy

is defined as:

Hbinary(p) = −plog2(p)− (1− p)log2(1− p). (2.4)

16 ENTROPY, RELATIVE ENTROPY, AND MUTUAL INFORMATION

0
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H
(p
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FIGURE 2.1. H(p) vs. p.

Suppose that we wish to determine the value of X with the minimum
number of binary questions. An efficient first question is “Is X = a?”
This splits the probability in half. If the answer to the first question is
no, the second question can be “Is X = b?” The third question can be
“Is X = c?” The resulting expected number of binary questions required
is 1.75. This turns out to be the minimum expected number of binary
questions required to determine the value of X. In Chapter 5 we show that
the minimum expected number of binary questions required to determine
X lies between H(X) and H(X) + 1.

2.2 JOINT ENTROPY AND CONDITIONAL ENTROPY

We defined the entropy of a single random variable in Section 2.1. We
now extend the definition to a pair of random variables. There is nothing
really new in this definition because (X, Y ) can be considered to be a
single vector-valued random variable.

Definition The joint entropy H(X, Y ) of a pair of discrete random
variables (X, Y ) with a joint distribution p(x, y) is defined as

H(X, Y ) = −
∑
x∈X

∑
y∈Y

p(x, y) log p(x, y), (2.8)

Figure 2.2: Binary entropy Hbinary vs p

From Figure 2.2, we see that the binary entropy is a concave function, with Hbinary(p)

= 0 for p = 0 or 1. The maximum value for Hbinary(p) is 1 which occurs at p = 0.5.

Also, Hbinary(p) = Hbinary(1− p).

2.2.2 Joint entropy

The entropy for a single discrete random variable X has been defined in the previous

section. Now, we extend the concept of entropy to two variables.

Definition 2.2.1. For a pair of random variables (X, Y ), with joint probability dis-

7



tribution p(x, y), the joint entropy H(X, Y ) is defined as:

H(X, Y ) = −
∑
x∈X

∑
y∈Y

p(x, y) log2p(x, y). (2.5)

The joint entropy is the measure of total uncertainty of the pair (X, Y ). The above

definition can now be extended to any number of random variables. Also, we note

that H(X, Y ) = H(Y,X).

2.2.3 Relative entropy

Definition 2.2.2. The relative entropy is a measure that provides us with the distance

between two probability distributions. Say, there are two probability distributions,

p(x) and q(x). The relative entropy of p(x) to q(x) is given by:

H(p(x)||q(x)) ≡
∑
x∈X

p(x)log2

p(x)

q(x)
. (2.6)

In terms of the Shannon entropy, relative entropy can be written as follows:

H(p(x)||q(x)) =
∑
x∈X

p(x)log2p(x)−
∑
x∈X

p(x)log2q(x)

= −H(X)−
∑
x∈X

p(x)log2q(x). (2.7)

The relative entropy is also referred as Kullback–Leibler distance between the proba-

bility distributions p(x) and q(x).

Theorem 2.2.1. (Information inequality) Let p(x) and q(x) be two probability

distributions, with x ∈ X , then the relative entropy H(p(x)||p(y)) ≥ 0, with equality

iff p(x) and q(x) are equal ∀ x.

Proof. Using the definition of relative entropy from equation (2.6),

H(p(x)||q(x)) =
∑
x∈X

p(x)log2

p(x)

q(x)
= −

∑
x∈X

p(x)log2

q(x)

p(x)
.

8



Since, log2x ln2 = lnx ≤ x−1, therefore,

H(p(x)||q(x)) = −
∑
x∈X

p(x)log2

q(x)

p(x)
≥ 1

ln2

∑
x∈X

p(x)
(

1− q(x)

p(x)

)
(2.8)

=
1

ln2

∑
x∈X

(p(x)− q(x))

=
1

ln2

(∑
x∈X

p(x)−
∑
x∈X

q(x)
)

=
1

ln2
(1− 1) = 0. (2.9)

Therefore, H(p(x)||q(x)) ≥ 0, and the equality holds iff q(x)
p(x)

= 1 in equation (2.8),

implying that p(x) = q(x) ∀ x.

2.2.4 Conditional entropy

Suppose, we are given a pair of discrete random variables X and Y . The measure

of the total uncertainty about the pair (X,Y ) is given by the joint entropy (refer

Subsection 2.2.2). But, say we know the value of X; therefore we have H(X) bits of

information about (X,Y ), and therefore the pair (X,Y ) loses some uncertainty. The

remaining uncertainty about the pair (X,Y ), provided that we know X, is given by

the conditional entropy H(X|Y ). It is defined as :

H(Y |X) = H(X, Y )−H(X). (2.10)

It is the measure of uncertainty in Y , given that we know X.

Corollary. For three discrete random variables X, Y and Z,

H(X, Y |Z) = H(X|Z) +H(Y |X,Z). (2.11)

Proof. Using equation (2.10), we have

H(X, Y |Z) = H(X, Y, Z)−H(Z). (2.12)

9



Adding and subtracting H(X,Z) to the right hand side of the above equation gives

H(X, Y |Z) = H(X, Y, Z)−H(X,Z) +H(X,Z)−H(Z).

Again, by equation (2.10), we get,

H(X, Y |Z) = H(X, Y |Z) +H(X|Z).

2.2.5 Mutual information

Definition 2.2.3. Suppose, we have two discrete random variables X and Y , with

probability mass functions p(x) and p(y) respectively, and a joint probability distri-

bution p(x, y). The mutual information I(X : Y ) is defined as the relative entropy

between the joint distribution p(x, y) and the product of individual probability dis-

tributions p(x)p(y):

I(X : Y ) =
∑
x∈X

∑
y∈Y

p(x, y)log2

p(x, y)

p(x)p(y)
(2.13)

= H(p(x, y)||p(x)p(y)). (2.14)

508 Entropy and information

conditional entropy H(Y |X) as a relative entropy between two probability
distributions. Use this expression to deduce that H(Y |X) ≥ 0, and to find the
equality conditions.

The various relationships between entropies may mostly be deduced from the ‘entropy
Venn diagram’ shown in Figure 11.2. Such figures are not completely reliable as a guide
to the properties of entropy, but they provide a useful mnemonic for remembering the
various definitions and properties of entropy.

���� ����

��

Figure 11.2. Relationships between different entropies.

We conclude our study of the elementary properties of conditional entropy and mutual
information with a simple and useful chaining rule for conditional entropies.

Theorem 11.4: (Chaining rule for conditional entropies) Let X1, . . . , Xn and Y
be any set of random variables. Then

H(X1, . . . , Xn|Y ) =
n

�

i=1

H(Xi|Y, X1, . . . , Xi−1). (11.27)

Proof
We prove the result for n = 2, and then induct on n. Using only the definitions and
some simple algebra we have

H(X1, X2|Y ) = H(X1, X2, Y )− H(Y ) (11.28)

= H(X1, X2, Y )− H(X1, Y ) +H(X1, Y )− H(Y ) (11.29)

= H(X2|Y, X1) +H(X1|Y ), (11.30)

which establishes the result for n = 2. Now we assume the result for general n, and show
the result holds for n + 1. Using the already established n = 2 case, we have

H(X1, . . . , Xn+1|Y ) = H(X2, . . . , Xn+1|Y, X1) +H(X1|Y ). (11.31)

Applying the inductive hypothesis to the first term on the right hand side gives

H(X1, . . . , Xn+1|Y ) =
n+1
�

i=2

H(Xi|Y, X1, . . . , Xi−1) +H(X1|Y ) (11.32)

H(X|Y)H(X|Y)      I(X:Y)

Figure 2.3: Relationship between different types of entropies [Nielsen 11]

The mutual information I(X : Y ) is the measure of the information that is common
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to both X and Y . It could be re-written as follows:

I(X : Y ) =
∑
x∈X

∑
y∈Y

p(x, y)log2

p(x, y)

p(x)p(y)
(2.15)

=
∑
x∈X

∑
y∈Y

p(x, y)log2

p(x|y)

p(x)

=
∑
x∈X

∑
y∈Y

p(x, y)log2p(x|y)−
∑
x∈X

∑
y∈Y

p(x, y)log2p(x)

I(X : Y ) = H(X)−H(X|Y ). (2.16)

Now, using the definition of conditional entropy from equation (2.10), we get

I(X : Y ) = H(X) +H(Y )−H(X, Y ). (2.17)

Replacing Y with X in equation (2.16), we get the mutual information of a random

variable with itself (also referred as self-information) as:

I(X : X) = H(X)−H(X|X) = H(X), (2.18)

since H(X|X) = 0. Therefore, entropy is also called as self-information. From equa-

tion (2.17), it is also clear that I(X : Y ) = I(Y : X).

Corollary. (Non-negativity of Mutual Information) For any two discrete ran-

dom variables X and Y , the mutual information I(X : Y ) ≥ 0, with equality iff X

and Y are independent.

Proof. From equations (2.13) and (2.14),

I(X : Y ) = H(p(x, y)||p(x)p(y)) =
∑
x∈X

∑
y∈Y

p(x, y)log2

p(x, y)

p(x)p(y)
.

We have already proved in Theorem 2.2.1, that relative entropy H(p(x)p(y)) ≥ 0.

Therefore, I(X : Y ) ≥ 0. If X and Y are independent, then p(x, y) = p(x)p(y), and

since log21 = 0, the equality holds.

Another property commonly used in information theory is the conditional mutual

11



information, which is defined as the reduction in uncertainty in X due to knowledge

of Y , when Z is given.

Definition 2.2.4. The conditional mutual information of random variables X and

Y , given another random variable Z, is given by

I(X : Y |Z) = H(X|Z)−H(X|Y, Z). (2.19)

We also define chain rule for entropy and mutual information.

Theorem 2.2.2. (Chain rule for entropy) Let X1, X2, ..., Xn be a set of random

variables. Then the combined entropy of the collection is given by

H(X1, X2, ..., Xn) =
n∑
j=1

H(Xj|Xj−1, ..., X1). (2.20)

Proof. The repeated application of the relation between joint entropy and conditional

entropy, defined by equation (2.10), gives

H(X1, X2) = H(X1) +H(X2|X1) (2.21)

H(X1, X2, X3) = H(X1) +H(X2, X3|X1) (2.22)

= H(X1) +H(X2|X1) +H(X3|X2, X1). (2.23)

This generalizes for n random variables as

H(X1, X2, ..., Xn) = H(X1) +H(X2|X1) + ....+H(Xn|Xn−1, ..., X1) (2.24)

=
n∑
j=1

H(Xj|Xj−1, ..., X1). (2.25)

Theorem 2.2.3. (Chain rule for mutual information) For a set of random

variables, X1, X2, ..., Xn and Y ,

I(X1, X2, ..., Xn : Y ) =
n∑
j=1

I(Xj : Y |Xj−1, Xj−2, ..., X1). (2.26)
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Proof. Using the definition of mutual information given in equation (2.16), we have

I(X1, X2, ..., Xn : Y ) = H(X1, X2, ..., Xn)−H(X1, X2, ..., Xn|Y ). (2.27)

Now, using the chain rule of entropy defined by equation (2.20), we get

I(X1, X2, ..., Xn : Y ) =
n∑
j=1

H(Xj|Xj−1, ..., X1)−
n∑
j=1

H(Xj|Xj−1, ..., X1, Y ) (2.28)

=
n∑
j=1

I(Xj : Y |Xj−1, Xj−2, ..., X1). (2.29)

2.3 Data-processing inequality

The notion of data-processing inequality comes from the idea of Markov chain of

random variables. Suppose there are three random variables X, Y and Z. They

are said to form a Markov Chain X → Y → Z, in that order, if the conditional

distribution of Z depends only on X, and is independent of Y . More formally, the

joint probability distribution function of X, Y and Z can be written as

p(x, y, z) = p(x)p(y|z)p(z|y). (2.30)

Also, X → Y → Z, iff X and Z are conditionally independent. This is because,

p(x, z|y) =
p(x, y, z)

p(y)
=
p(x, y)p(z, y)

p(y)
= p(x|y)p(z|y). (2.31)

Theorem 2.3.1. (Data-processing inequality) Say, X → Y → Z, then

H(X) ≥ I(X : Y ) ≥ I(X : Z). (2.32)

This states that if a random variable X is subject to some noise, producing an output

Y , then any data-processing by us on Y cannot be used to increase the information

that Y contains about the original information X.
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Proof. By equation (2.5),

H(X, Y ) = −
∑
x∈X

∑
y∈Y

p(x, y) log2p(x, y) (2.33)

= −
∑
x∈X

∑
y∈Y

p(x, y) log2p(y)p(x|y) (2.34)

= −
∑
y∈Y

p(y) log2p(y)−
∑
x∈X

∑
y∈Y

p(x, y) log2p(x|y) (2.35)

H(X, Y ) = H(Y )−
∑
x∈X

∑
y∈Y

p(x, y) log2p(x|y). (2.36)

Since, 0 ≤ p(y|x) ≤ 1, log2 p(x|y)) ≤ 0. This implies,

H(X, Y )−H(Y ) ≥ 0. (2.37)

Adding −H(X) to both sides of the above equation and using equation (2.17), we

get:

H(X) ≥ I(X : Y ). (2.38)

To prove the second part of the inequality, we use the chain rule of mutual information

given by equation (2.26),

I(X : Y, Z) = I(X : Z) + I(X : Y |Z). (2.39)

Also,

I(X : Y, Z) = I(X : Y ) + I(X : Z|Y ). (2.40)

Since X → Y → Z forms a Markov chain, X and Z are conditionally independent

of Y . Therefore, I(X : Z|Y ) = 0. And mutual information is non-negative, so

I(X : Y |Z) ≥ 0. Thus, by comparing equations (2.39) and (2.40), we have

I(X : Y ) ≥ I(X : Z).

14



2.4 Von Neumann entropy

Similar to the Shannon entropy as a measure of uncertainty for classical probability

distributions, entropy is also defined for quantum systems.

Definition 2.4.1. For a quantum state, represented by a density operator ρ, von

Neumann entropy is defined as:

S(ρ) ≡ −Tr(ρ log2 ρ). (2.41)

Lemma 2.4.1. Given a state ρ, with eigenvalues λx, the von Neumann entropy could

be expressed as:

S(ρ) = −
∑
x

λxlog2λx. (2.42)

Proof. Let the set {|x〉} be the basis vectors of the state ρ. Then, its spectral decom-

position ρ is given as:

ρ =
∑
x

λx|x〉〈x|, (2.43)

where λx are the eigenvalues of ρ. Then,

log2ρ = log2

(∑
x

λx|x〉〈x|
)

(2.44)

=
(∑

x

log2λx|x〉〈x|
)

(2.45)

−ρlog2ρ = −
∑
x

log2λx
(
ρ|x〉〈x|

)
. (2.46)

From equation (2.41),

S(ρ) = −Tr(ρ log2 ρ) = −Tr
{∑

x

log2λx
(
ρ|x〉〈x|

)}
(2.47)

= −Tr
{∑

x

log2λx
(∑

y

λy|y〉〈y|x〉〈x|
)}

(2.48)

= −
∑
x

log2λx

[
λx
{
Tr|x〉〈x|

}]
. (2.49)

Since {|x〉} are the set of basis vectors of the state ρ, therefore
∑

x Tr(|x〉〈x|) = 1.
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So,

S(ρ) = −
∑
x

λxlog2λx. (2.50)

Similar to the Shannon entropy (refer Section 2.1), the von Neumann entropy for any

density operator ρ is non-negative:

S(ρ) ≥ 0. (2.51)

The joint entropy for a composite quantum system with two components A and B is

defined as S(A,B) ≡ −Tr(ρAB log2 ρAB), where ρAB is the density matrix of the joint

system AB. Also, the conditional information and mutual information for quantum

systems are defined in a similar way, as was defined for the Shannon entropy (refer

Section 2.2):

S(A|B) ≡ S(A,B)− S(B), (2.52)

S(A : B) ≡ S(A) + S(B)− S(A,B). (2.53)

2.4.1 Entropy of a mixture

Theorem 2.4.2. [Nielsen 11] Suppose a mixture of quantum states is given by ρ =∑
j pjρj, with probabilities pj and density operators ρj. The entropy of the mixture ρ

is bounded as follows:

S(ρ) ≤
∑
j

pjS(ρj) +H(pj). (2.54)

The equality holds iff the states ρj have orthogonal subspaces.

Proof. Let’s suppose that ρj are density operators for pure states, i.e. ρj = |φj〉〈φj|
for a system J . An auxiliary system K is introduced, with orthonormal basis |j〉,
corresponding to the index j of the probabilities pj. We define a joint system JK,

with a state |JK〉 given by

|JK〉 =
∑
j

√
pj|φj〉|j〉. (2.55)
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|JK〉 is a pure state, therefore by Schmidt decomposition, the eigenvalues of the

density operators of system J and K are the same. This implies

S(K) = S(J) = S
(∑

j

pj|φj〉〈φj|
)

= S
(∑

j

pjρj

)
= S(ρ). (2.56)

Suppose αij are the eigenvalues and |αij〉 are the eigenvectors of ρj. For
∑

j pjρj, the

eigenvectors remain the same, but eigenvalues equal pjα
i
j. Therefore, by equation

(2.42),

S
(∑

j

pjρj

)
= −

∑
ij

pjα
i
j log2 pjα

i
j, (2.57)

= −
∑
j

pj log2 pj −
∑
j

pj
∑
i

αij log2 α
i
j, (2.58)

= H(pj) +
∑
j

pjS(ρj). (2.59)

On performing a projective measurement on system K in |j〉 basis, the state (of system

K) becomes ρK̃ , where

ρK̃ =
∑
j

pj|j〉〈j|. (2.60)

The entropy for this state is equal to S(ρK̃) = H(pj). The entropy does not decrease

on a projective measurement (refer [Nielsen 11]), therefore S(ρ) = S(K) ≤ S(ρK̃)

= H(pj). Since ρj are pure, S(ρj) = 0. Combining this result with equation (2.59)

provides the required bound for pure states ρj,

S(ρ) ≤
∑
j

pjS(ρj) +H(pj). (2.61)

We now prove the case for the mixed states. Let ρj =
∑

k p
j
k|ejk〉〈ejk| be an orthonormal

decomposition for the states ρj. So ρ =
∑

jk pjp
j
k|ejk〉〈ejk|. Now, using

∑
k p

j
k=1 and

17



equation (2.61), we get,

S(ρ) ≤ −
∑
jk

pjp
i
k log2(pjp

j
k) (2.62)

= −
∑
j

pj log2 pj −
∑
j

pj
∑
j

pj log2 pj (2.63)

= H(pj) +
∑
j

S(ρj). (2.64)

In both pure and mixed state cases, the equality holds iff K = K̃, which happens

only when |φj〉 are orthogonal.

2.5 Accessible information

We consider here two parties, Alice and Bob. Say, Alice prepares a quantum state

according to a random variable X = 0, 1, ..., n, represented by the ensemble E ≡
{pX(x),ρx}. Bob wants to determine the value of X, so he performs a POVM {My}
on the state given to him and gets a result Y . The measure of information that he can

gain about X, knowing the measurement result Y is the mutual information I(X : Y ).

Here, Bob can choose the measurement that he wants to perform, and he would like

to perform a measurement that maximizes the mutual information I(X : Y ), which in

result maximizes his information about X. Therefore, Bob’s accessible information is

the maxima of the mutual information I(X : Y ) over all possible measurements that

can be performed by Bob [Nielsen 11]:

Iacc(E) = max I(X : Y ). (2.65)

The next section provides a natural bound on the accessible information of Bob.

2.6 Holevo bound

Holevo bound establishes an upper bound on the amount of information than can be

retrieved about a quantum state. Thus, it bounds the accessible information. It is

defined by the following theorem:
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Theorem 2.6.1. [Cover 06] (The Holevo bound) Suppose Alice prepares a state

from an ensemble E ≡ {pX(x), ρX(x)}, where X = 0,1,...,n, and pi(x) is the probability

with which state ρi(x) is prepared. Bob performs a POVM described by {My} =

{M0,M1,...,Mm} on the state prepared by Alice, and gets a measurement outcome

Y . The Holevo bound states that for any of the possible measurements that could be

performed by Bob:

I(X : Y ) ≤ χ. (2.66)

Here χ = S(ρ) − ∑x pxS(ρx) is the Holevo quantity, where ρ =
∑

x pxρx.

Proof. Suppose there are 3 quantum systems J , K and L, where J and L are auxiliary

systems, and system K is given to Bob by Alice. Let J be the preparation system, with

an orthonormal basis |x〉, where the basis elements describe the possible preparations

corresponding to the labels 0,1,...,n. L is Bob’s measuring device, with basis |y〉, where

the basis elements describe the possible outcomes of Bob’s measurement (1,2,...,n).

The combined initial state of the three systems can be represented as:

ρJKL =
∑
x

px|x〉〈x| ⊗ ρx ⊗ |0〉〈0|. (2.67)

A trace-preserving quantum operation E on system K and L, represents the POVM

measurements described by {My} on J , and store the measurement outcomes in K:

E(δ ⊗ |0〉〈0|) =
∑
z

√
Myδ

√
My ⊗ |y〉〈y|. (2.68)

Here, δ is a state of K, and |0〉 is the initial state of the measurement device. Suppose

the states of the system JKL, before and after the quantum operation E are repre-

sented by {J , K, L} and {J̃ ,K̃,L̃} respectively. Since, applying a quantum operation

E on KL cannot increase the mutual information between J and KL, therefore,

S(J̃ : K̃, L̃) ≤ S(J : K,L). (2.69)

Also, removing a system cannot increase the mutual information, so,

S(J̃ : K̃) ≤ S(J̃ : K̃, L̃). (2.70)
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Combing equations (2.69) and (2.70), we get:

S(J : K) ≥ S(J̃ : K̃). (2.71)

The combined state of systems J̃ , K̃ and L̃ is represented as:

ρJ̃K̃L̃ =
∑
x,y

px|x〉〈x| ⊗
√
Myρx

√
My ⊗ |y〉〈y|. (2.72)

Tracing out system K̃ gives,

ρJ̃ ,L̃ = TrK̃(ρJ̃K̃L̃) = TrK̃(
∑
x,y

px|x〉〈x| ⊗
√
Myρx

√
My ⊗ |y〉〈y|) (2.73)

=
∑
x,y

|x〉〈x| ⊗ pxTr
(√

Myρx
√
My

)
⊗ |y〉〈y|

=
∑
x,y

|x〉〈x| ⊗ pxTr
(
ρxMy

)
⊗ |y〉〈y|

=
∑
x,y

pxp(y|x)|x〉〈x| ⊗ |y〉〈y|

ρJ̃ ,L̃ =
∑
x,y

p(x, y)|x〉〈x| ⊗ |y〉〈y|. (2.74)

Therefore,

S(J̃ : L̃) = H(X : Y ). (2.75)

The combined state of systems J and K is represented as:

ρJK =
∑
x

px|x〉〈x| ⊗ ρx. (2.76)

Using the results from Theorem 2.4.2, we get S(J) = H(px), S(K) = S(ρ), and

S(J,K) = H(px)+
∑

x pxS(ρx). So,

S(J : K) = S(J) + S(K)− S(J,K) = S(ρ)−
∑
x

pxS(ρx) = χ. (2.77)

Comparing equations (2.71), (2.75) and (2.77) gives us the required Holevo bound.

The Holevo bound is a crucial result which is used in the proof of various arguments
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and calculations in quantum information. One of the its fundamental applications is

its use in the calculation of the key rates for various QKD protocols, as discussed in

the upcoming chapters.
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Chapter 3

Quantum key distribution

3.1 Introduction

Quantum key distribution (QKD) protocols allows two separated parties (say Alice

and Bob) to share secure private keys over a public channel. The security of the

key is guaranteed by the laws of quantum mechanics, given that the error rate is

below a certain threshold. The basic idea behind QKD is that an eavesdropper (Eve)

cannot gain any information from the quantum state transmitted by Alice to Bob

without causing a disturbance in their state. By no-cloning principle, it is impossible

for Eve to make a perfect copy of Alice’s qubit. Therefore, any attempt by Eve to

obtain information from the quantum channel between Alice and Bob will cause some

disturbance, which can be detected by the users.

Proposition 3.1.1. [Nielsen 11] (Information gain implies disturbance) In

order to distinguish between 2 non-orthogonal states, any information gain is possible

only at the cost of introducing disturbance to the state.

Proof. Suppose |φ1〉 and |φ2〉 are two non-orthogonal quantum states, and an eaves-

dropper Eve is trying to obtain information about the states. Without any loss of

generality, we can assume that while obtaining the information, Eve unitarily inter-

acts its own system with the states |φ1〉 or |φ2〉 by introducing an ancilla (|u〉). It is
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assumed that this process does not disturb the states. We get:

|φ1〉|u〉 → |φ1〉|v′〉 (3.1)

|φ2〉|u〉 → |φ2〉|v′〉 (3.2)

In order to obtain some information about the states, Eve would want |v〉 and |v′〉 to

be non-identical. Now since the unitary transformation preserves norm, we can write

〈φ2|φ1〉〈v|v′〉 = 〈φ2|φ1〉〈u|u〉

〈v|v′〉 = 〈u|u〉 (3.3)

= 1

and therefore, |v〉 and |v′〉 must be identical. Thus, distinguishing between two non-

orthogonal will surely disturb at least one of the two states.

This idea of transmitting non-orthogonal states from Alice to Bob is used further

as the basic underlining principle for quantum key distribution. By checking the

disturbance caused in the transmitted states, an upper bound can be established on

the noise (or eavesdropping) that’s being occurring in the channel, such that, if the

noise is below a certain threshold, they perform information reconciliation and privacy

amplification to obtain a shared secret key; and if it’s above the threshold, they abort

the protocol and start it over again. The threshold for the maximum amount of

tolerable error depend upon the efficacy of the information reconciliation and privacy

amplification protocols.

Having developed the intuition behind quantum key distribution, we discuss some of

its protocols in the following section.

3.2 Protocols for quantum key distribution

Although, quantum key distribution came into light after the formulation of BB84

protocol by Charles Bennet and Gilles Brassard in 1984, the use of quantum techniques

in context of security can be found since 1970’s. Since then, many quantum key

distribution protocols have been formulated till date, with rigorous security proofs.
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Generally, quantum key distribution protocols are of two types:

• Prepare and Measure: Here, the transmitting user Alice encodes the optical

signals using a discrete random variable, such as a bit. The encoded optical sig-

nals are then sent to the receiving user, Bob. Bob then performs a measurement

on the received bits in order to retrieve the information sent by Alice.

• Entanglement-based: In this case, entanglement is used as the basis for per-

forming quantum key distribution. Here, a single source emits a pair of entan-

gled particles (such as polarized photons), which are then separated and sent

to both Alice and Bob, who then perform measurements by choosing a random

basis, to generate a key.

We discuss here two most conventional QKD protocols: BB84 protocol and EPR

protocol. The BB84 protocol is based on the prepare and measure scheme, whereas

the EPR protocol is based on the entanglement-based scheme.

3.2.1 BB84 Protocol

The first quantum cryptographic protocol was the BB84 protocol, developed by Ben-

nett and Brassard [Bennett 84] in 1984, as the name suggests. In this protocol, photon

polarization states are utilized to transmit the information between the two users. The

protocol [Nielsen 11] is as follows:

• Alice creates two strings a and b, each of 4n-random classical bits. She encodes

the strings as a block of 4n qubits.

ψ =
4n⊗
i=1

|ψaibi〉 (3.4)

where ai(bi) is the ith bit of a(b) , and each qubit is one of the following four
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states:

|ψ00〉 = |0〉 (3.5)

|ψ10〉 = |1〉 (3.6)

|ψ01〉 = |+〉 =
1√
2

(|0〉+ |1〉) (3.7)

|ψ11〉 = |−〉 =
1√
2

(|0〉 − |1〉) (3.8)

The above process simply effects in encoding a in Z or X basis, which is deter-

mined by b.

• After encoding the bits into qubits, she sends the resulting state to Bob.1.1. Quantum Key Distribution 3

γ

{ 0

1

, }01 { , }
basis

bit

useful

+ + × + × ×
1 0 0 0 1 1

✗ ✓ ✓ ✓ ✗ ✓

basis

result

useful

× + × + + ×
0 0 1 0 1 1

✗ ✓ ✓ ✓ ✗ ✓

same basis, different bit → eavesdropper

Figure 1.1: The [BB84] quantum key-distribution protocol.

the most general attacks was made [May01, LC99, BBB+06, SP00, ILM01].
A further difficulty is that a physical implementation of the protocol will
never be perfect and always contains noise. It is, therefore, necessary to
allow for noisy channels and unreliable detectors in order to establish a
key. It was also realized that the possibility of Eve delaying her measure-
ment until the key is actually used in an application could pose a serious
problem. The definition of secrecy of a key needs to be made carefully
to hold in this situation [KRBM07]. Meanwhile, these issues have been
considered in the security proofs and it can be shown that quantum key
distribution remains secure despite of them [Ren05].

Some years after Bennett and Brassard, Ekert [Eke91] proposed a quan-
tum key distribution protocol the security of which is based on a different
property of quantum physics: the monogamy of entanglement. In fact,
two quantum systems which are strongly entangled (correlated) can at
most be weakly entangled with a third system [Ter04]. The idea of Ekert’s
protocol is the following (see Figure 1.2): Alice prepares two photons4 in
an entangled quantum state, more precisely the singlet state, i.e., |Ψ−〉 =

4The original protocol [Eke91] uses spin-(1/2) particles. For simplicity, we stick with the
formulation in terms of photons.

Figure 3.1: The BB84 quantum key distribution protocol [Hänggi 10]

• Upon receiving the qubits, Bob announces this fact, and measures the received

qubits randomly in X or Z basis.

• Alice announces b over a public channel.

• Over the public channel, Alice and Bob check and discard the bits in which Bob

made a measurement in different basis than the one in which Alice prepared.

Assuming n is very large, they are left with approximately 2n bits.
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• Now to check the noise or eavesdropping in the channel, Alice randomly selects

n bits (of her 2n bits) that serve as check bits, and publicly announces the

selection. Alice and Bob, both compare their values among the check bits (see

Figure 3.1). If the error rate is above a certain threshold, then they’ll abort the

protocol, otherwise they’ll continue.

• Alice and Bob together performs information reconciliation and privacy ampli-

fication on their remaining n bits to get an m-bit shared key.

3.2.2 The EPR Protocol

The EPR scheme [Ekert 91] was proposed by Ekert in 1991. The security of this

protocol is based on a different property of quantum physics known as entanglemnet .

It uses entangled pairs of photons, which are distributed such that one pair of photon

is with Alice, and other pair with Bob. The entangled states should be perfectly

correlated. The protocol is as follows:

• Alice prepares 4n pairs of the following EPR state,

|ψAB〉 =
1√
2

(|01〉 − |10〉) (3.9)

(This state is chosen because it’s rotationally invariant, and will give perfect

correlations irrespective of the basis the state is measured.)

• She sends the second pair of the qubit to Bob over a quantum channel.

• Alice and Bob measures their qubits randomly in Sz {|+〉, |−〉} or Sx {|0〉, |1〉}
basis.

• Over the public channel, they perform basis reconciliation. Given that n is very

large, they are left with 2n bits.

• Alice randomly selects n bits that will serve as check bits. Then, they’ll check

their values as well as the correlations corresponding to them. If the error rate

is above a certain threshold, then they’ll abort the protocol, otherwise they’ll

continue.

• Alice and Bob together performs information reconciliation and privacy ampli-
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Figure 1.2: Ekert’s quantum key distribution protocol [Eke91]. The
marked bits form the key.

tocol the key bits do not have any associated ‘element of reality’
[Eke91]. This implies that the eavesdropper ‘is in the hopeless position
of trying to intercept non-existent information’ [BBM92]. This property
can be very useful to overcome attacks taking advantage of flaws in the
physical implementation and to create a key distribution protocol with
untrusted devices, as we will explain below.

1.2 The Need for Device-Independence

It had been discovered that quantum key-distribution protocols are vul-
nerable to imperfections in the physical implementation in a way that
an adversary could easily manipulate the apparatus such that the key-
distribution scheme becomes completely insecure.

Imagine, for example, that in the BB84 protocol, several photons are sent
from Alice to Bob [BLMS00, Lüt00]. Eve could easily attack this system by
storing some of the photons in a memory. Later, she can measure it in the
basis announced by Alice and know the encoded bit with certainty. The

Figure 3.2: Ekert’s E91 quantum key distribution protocol [Hänggi 10]

fication on their remaining n bits to get an m-bit shared key.

3.3 Eavesdropping strategies

The protocols described above are provably secure [Shor 00]. In absence of noise or

any other errors due to measurement etc., a disagreement in any of the bits would

indicate the presence of a eavesdropper in the quantum channel. Eve’s aim is to gain

information shared between Alice and Bob by inducing some noise over the quantum

channel. To achieve this, she uses some strategies (also called ‘attacks’), commonly

known as the eavesdropping strategies .

Till date, many eavesdropping strategies have been defined and analyzed. A gen-

eral objective of eavesdropping analysis is to develop ultimate proofs to security for

quantum protocols, such that those protocols are secure against any kind of strategies

that an eavesdropper might use. A particular strategy of interest is assuming that an

eavesdropper attaches an ancilla, |E〉 (which is a quantum system possibly of a higher

dimension than a qubit) to each of Alice’s qubit, let them interact, and then measures

her ancilla one after the other. This kind of an attack is called the individual attacks .

When Eve processes several of Alice’s qubits coherently, then the attack is known as

coherent attacks . When Eve attaches one ancilla per qubit as in individual attacks,
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but measures several of her ancillas coherently, as in coherent attacks, this type of

attacks are called collective attacks . For collective attacks, it is usually assumed that

Eve’s measurement of her ancilla is done only after Alice’s and Bob’s discussion about

basis reconciliation, error correction and privacy amplification on a public channel.

While for the individual attacks, Eve only waits till the public discussion of basis

reconciliation.

An example of an eavesdropping strategy (known as symmetric-collective eavesdrop-

ping) has been discussed in the following section, in the calculation of secret-key rate

for the BB84 protocol.

3.4 Key-rate analysis

In this section, we calculate the secret key-rate for the BB84 protocol, for a symmetric-

collective eavesdropping strategy. Suppose, Eve attaches an ancilla |E〉 to Alice’s qubit

(where Alice’s state is in computational basis). This interaction can be described by

a unitary transformation [Pirandola 19]:

U |0〉|E〉 =
√
F0|0〉|E00〉+

√
D1|0〉|E01〉 (3.10)

U |0〉|E〉 =
√
F1|1〉|E00〉+

√
D1|0〉|E01〉 (3.11)

where the states {|E00〉, |E01〉, |E10〉, |E11〉} are the states of Eve after interaction with

Alice’s qubits. The equations (3.10) and (3.11) imply that when Alice sends state

|0〉 (|1〉), the probability of Bob getting the correct state is F0 (F1) when he makes

a measurement in the Z basis, and D0 (D1) when he makes a measurement in the X

basis.

Suppose, Alice’s original state was |θ〉, where |θ〉 ∈ {|0〉, |1〉, |+〉, |−〉}. The equations

(3.10) and (3.11) can also be written as:

U |θ〉 =
√
Fθ|θ〉|Eθθ〉+

√
Dθ|θ⊥〉|Eθθ⊥〉 (3.12)
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where 〈θ|θ⊥〉 = 0. The unitarity conditions on U imply the following conditions:

〈Eθθ|Eθθ〉 = Fθ, (3.13)

〈Eθθ⊥ |Eθθ⊥〉 = Dθ, (3.14)

〈Eθθ|Eθθ⊥〉 = Fθ, (3.15)

and

Fθ +Dθ = 1. (3.16)

In equation (3.12), Fθ represents the fidelity , and Dθ is the Quantum Bit Error Rate

(ratio of the number of wrong bits to the total number of received bits) or QBER.

Thus, the mutual information between Alice and Bob is given by:

IAB = 1−H2(Dθ), (3.17)

where H2(Dθ) is the binary Shannon entropy calculated over Dθ.

In the BB84 protocol, the errors are symmetric in both Z and X bases (since the

usage of both Z and X bases is symmetric in the case of BB84 protocol). This leads

to additional conditions described as follows [Fuchs 97, PIRANDOLA 08]:

〈Eθθ|Eθ⊥θ⊥〉 = Fθ cos(x), (3.18)

〈Eθθ|Eθ⊥θ〉 = 0, (3.19)

〈Eθθ⊥|Eθ⊥θ⊥〉 = Dθ cos(y), (3.20)

where x, y ∈ R. This implies that QBER is:

Dθ =
1− cosx

2− cosx+ cosy
. (3.21)

Now, suppose that Eve’s ancillary system is still in the quantum memory till the

completion of Alice’s and Bob’s public discussion of basis reconciliation. In this way,

she can differentiate her two states |Eθθ〉 and |Eθ⊥θ⊥〉.
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Suppose, Eve can also perform a collective attack, in which she makes a joint mea-

surement on her quantum memory. The maximum classical information that Eve can

obtain is equal to the Holevo information (refer Section 2.6):

χAE = S(ρE)− S[ρE(θ)] + S[ρE(θ⊥)]

2
, (3.22)

where S(ρ)= −Tr(ρ log2 ρ), is the von Nuemann entropy, and ρE(θ〉) and ρE(θ⊥〉) are

Eve’s states for Alice’s state |θ〉 and |θ〉 respectively. Therefore, as a consequence, the

secret key rate is lower bounded by the Devetak-Winter rate [Devetak 05]:

RDW = IAB − χAE. (3.23)

For a symmetric collective attack, using equations (3.12), (3.17) and (3.22), this rate

is equal to [PIRANDOLA 08]:

R = 1− S(ρE) = 1− 2H2(Dθ). (3.24)

Therefore, it can be concluded that the maximum value of QBER, for which a secret

key can be generated between Alice and Bob is approximately 11%.

The unconditional security of the BB84 protocol uses the idea to reduce the quan-

tum key distribution protocol in an entanglement distillation one. For a set of non-

maximally entangled states (say k pairs), entanglement distillation distills m entan-

gled pairs with higher levels of entanglement using only LOCC methods. Due to

the basis of protocol on entanglement, Eve cannot get any information about the

measurements that Alice and Bob make.

The security-proof of BB84 protocol given by Shor and Preskill [Shor 00] uses quantum

error correction codes (CSS codes [Nielsen 11]) to perform entanglement distillation,

which dissociates phase errors (ep) from bit errors (eb), which helps in performing bit

correction and phase correction independent from each other. In this case, the secret

key rate is given by:

R = 1−H2(eb)−H2(ep), (3.25)

which reduces to a similar equation like equation (3.24) in case of phase errors and bit
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error being equal. This also implies that the maximum value of eb (=ep), for which a

secret key can be generated between Alice and Bob is approximately 11%.

3.5 Loopholes and drawbacks of device-dependent

quantum key distribution: The need for device-

independence

Although, the rigorous security proofs for many so-called standard device-dependent

quantum key distribution protocols have been published, there are several limitations

associated with them. Some of them are described as follows.

• It has been discovered that these security proofs are vulnerable due to imper-

fections in the physical implementations of the protocols associated with them.

The apparatus used in the protocol could be easily manipulated by a third party

(Eve), who could use it in her favour to gain some information, resulting in the

protocol being completely insecure.

• It is required that the devices used in the protocol work perfectly. Suppose Alice

encodes her qubit in state |0〉 and send it to Bob, who performs a measurement

in the Z basis. But, it is possible that the devices performing the encoding and

measurement are faulty. For example, say both Alice’s and Bob’s devices always

use the same basis for encoding and measurement, instead of two different bases

chosen at random. The eavesdropper can take advantage of the situation, and

performs her measurement in that same basis. In this way, she would be able

to learn the bit perfectly, without causing any disturbance.

• Also, the users have to regularly check the functionality of the devices used in

the protocol, to ensure that the devices work in accordance with the assumptions

in the security proof. This is a technically challenging task.

• The security analysis of quantum key distribution protocols requires the di-

mension of the Hilbert space in in various calculations. Therefore, the security

proofs of these protocols hold only when the dimension of the system used is

known (for eg. BB84 is proven secure only for a 2-dimensional Hilbert space,
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but is proven to be unsecure while using systems of higher dimensions (refer

Appendix B)). This is not always the case, since Eve can modify the source

which shares the entangled pair, and provide a system of a different dimension

without the knowledge of Alice and Bob.

• There could be many attacks and eavesdropping strategies, known as the side-

channel attacks, that exploit some features which are not modelled in the se-

curity analysis of the protocol. These attacks could hamper the security of the

protocol.

Moreover, the proofs of quantum key distribution protocols are said to be uncondi-

tionally secure, but they do make several assumptions:

• It is mandatory that Alice and Bob have secure laboratories. This means that no

information is leaked from Alice’s and Bob’s laboratories. Also, Eve is not able

to look into Alice’s and Bob’s inputs. If this is not the case, and somehow Eve

is able to get information about the user’s inputs via looking over their shoulder

or via placing a transmitter in the devices used that sends information about

raw data to Eve, then surely the security is not possible. Thus, this assumption

of secure laboratories is a very crucial one, and it cannot be removed.

• It is also assumed that in quantum key distribution protocols, Alice and Bob

have complete control over their physical devices. They know the exact spec-

ifications and working of their devices. As discussed above, a failure of this

assumption opens doors for Eve, to have an easy access to the information

shared.

• Additionally, it is also believed that, Alice and Bob have a reliable local source

of randomness. The measurement bases and the check bits used to check the

presence of an adversary in the system, should be chosen at random, independent

from an eavesdropper. If the eavesdropper is somehow aware about which bases

are being used or which bits are being used as check bits, then it would be easy

for her to attack, without causing disturbance.

• A further assumption is made that there is no error in the classical computations

performed by Alice and Bob. For example, the measurement outcomes are noted
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down correctly, the number of bits in which both Alice and Bob measured in the

same basis are correctly discussed etc. This is necessary to estimate the error

rate, and check for the presence of eavesdropper in the channel.

The aim of device-independent quantum key distribution (DI-QKD) is to reduce the

above assumptions to the bare minimum, and particularly, to remove all assumptions

that state about the operation of the physical devices used in the protocols. The

devices could then even be manufactured by the adversary, Eve. Ideally, the security

should only rely on testable features of the devices, such as their input-output be-

havior, which could be tested in the protocol. This forms the fundamental basis for

device-independence. For a secure communication, the honest users, now, would only

need to make sure that their laboratories are isolated from the adversary (i.e. there

is no unwanted flow of information from the laboratories of Alice and Bob to the out-

side) and they compute the classical statistics correctly. The next chapter provides

an introduction to device-independence, and discusses how it could be utilized for key

distribution.
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Chapter 4

Device-independent quantum key

distribution

The laws of quantum mechanics provide us with key distribution protocols that are

unconditionally secure. But, as discussed in the previous chapter, the security of

these protocols rely on a critical assumption, that the quantum devices used in the

protocols are trustworthy. Device-independent quantum key distribution (DI-QKD)

provides a relaxation even to this assumption of the devices being trustful; the devices

used in DI-QKD protocols may have been prepared by an adversary and/or may not

work according to their specifications. Thus, it offers the strongest form of secure

communication, as in the security proof of device-independent quantum key distribu-

tion protocols, no assumptions are made about the internal working of the quantum

devices used for key distribution.

6 V. Scarani

The readers are supposed to be familiar with quantum formalism. If this were not the
case, they can refer to any of the excellent books and courses which have gone a great
didactical length to introduce those notions carefully. For instance, [Preskill notes] are
in open access.

2 Bell inequalities as an operational notion

2.1 Introductory matters

2.1.1 Bell experiments

This text deals with the description of a very specific class of experiments sketched in
Fig. 1. Two parties Alice and Bob are at distinct locations. Each has a measurement
device, which shall be treated as a black box with an input (say, a knob, to choose
the measurement setting) and an output (to record the result). In each run of the
experiment, each party sets the knob at a randomly chosen position and receives an
outcome. After repeating the procedure several times, Alice and Bob come together
(or exchange information via communication) and compute the joint statistics of their
observations2.

x

a

y

b

Fig. 1. Bipartite Bell experiment. Notice that we do not need to specify a “channel” between the
locations: the boxes may have been pre-loaded with shared information (classical or quantum),
but in the Bell test Alice and Bob act in a completely independent way.

Such experiments have been repeatedly realized in the last few decades but were
first proposed as Gedankenexperimente. The famous 1935 paper by Einstein, Podolski
and Rosen [Einstein, Podolski and Rosen 1935] is obviously a precursor, but the setup
they presented would not allow to have two spatially separated measurement stations
(see Appendix A) which, as we shall see, is crucial in our present understanding. This

2In this text, Alice and Bob are always the verifiers that operate the black boxes: their role is the
one described here, namely to choose measurement settings, record outcomes and compute statistics. In
some papers, Alice and Bob are rather those who receive the settings from a referee and are supposed
to produce outcomes according to the desired statistics (think of an experimentalist in each box, who
has control over the internal mechanisms). In this paper, only in paragraph 5.2.1 will it be convenient
to give names to the simulators, and I shall use Anthony and Beatrix for that.

Figure 4.1: Quantum apparatuses as black boxes used by Alice and Bob in DI-QKD
[Scarani 13]

In device-independent quantum key distribution protocols, the quantum apparatuses
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used by Alice and Bob are treated as black boxes (see Figure 4.1), each of them

producing an output (corresponding to the measurement outcome), based on some

classical inputs (such as the measurement settings). This scenario is referred to as Bell

scenario [Brunner 14]. Although, it is thought that these devices implement quantum

processes, there are no assumptions made on states, operators, or the dimensions of

Hilbert space used.

4.1 Motivation for device-independence

The motivation for device-independent quantum key distribution can be interpreted

by comparing it with the usual device-dependent quantum key distribution techniques.

In the entanglement-based protocol [Bennett 92] of DD-QKD, Alice and Bob receive

pairs of an entangled state emitted by a common source. They perform some measure-

ments on them in some chosen bases to generate a secret key from the measurement

outcomes. Here, since the source is situated between Alice and Bob, it is possible

that the source is under the control of an eavesdropper Eve, who could manipulate it

(say by changing the emitted state) in a way to gain information about Alice’s and

Bob’s measurement outcomes. Hence, it is distrusted by the users. However, Alice

and Bob can perform measurements in a chosen basis on a randomly chosen fraction

of their particles (known as the check bits) to estimate the state that they got from

the source, and decide whether a secret key can be generated from them or not.

In device-independent quantum key distribution, Alice and Bob not only distrust

the source of the particles, but also distrust their measurement apparatuses. It is

possible that the apparatuses wear out with time, and therefore produce some im-

perfections while performing measurements. It can also be the case that the devices

are manufactured by the adversary, and are manipulated in such a way that there

is no guarantee that the actual measurement bases correspond to the actual ones.

Therefore, in DI-QKD, Alice and Bob aim to bound information accessible to Eve, by

choosing the worst possible states and measurement bases (in arbitrary dimensions of

Hilbert space), that also agree with the observed input-output behavior. In the usual

DD-QKD, the measurement bases and the Hilbert state dimension of the emitted

state were perfectly known to them, and they could easily use this information to
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bound Eve’s accessible information, while looking for worst possible states and mea-

surement bases compatible with their observed statistics . But this is not the case in

DI-QKD.

The security of DI-QKD is based on the observed statistics of the black boxes that

Alice and Bob use. Assuming that the behavior of the black boxes remain the same in

each run, the observed statistics can be represented by a set of probability distribution

[Scarani 13]:

PAB = {P (xy|ab), x ∈ X , y ∈ Y ; a ∈ A, b ∈ B} (4.1)

where a and b are Alice’s and Bob’s inputs and x and y are their respective outputs.

From these statistics, and without making any assumption about the internal working

of the devices, Alice and Bob should be able to conclude, whether they can generate

a secret key against the eavesdropper or not.

4.2 Assumptions in DI-QKD

As discussed in the previous section, device-independent quantum key distribution

provides a relaxation of the assumptions made in the security proof of standard DD-

QKD. But, still there are some fundamental assumptions that are needed to be fulfilled

for DI-QKD to be carried out (note that these assumptions are made in the trusted

devices case as well)[Pirandola 19]. These assumptions are described below:

• The laboratories of Alice and Bob are perfectly secure and they have full control

over the channels connecting their laboratory with the outdoors i.e. for any

devices present in their labs, no unwanted information can leak between them

as well as to the outside.

• Alice and Bob can generate perfectly random (and private) bits using a trusted

random number generator within their own laboratories, which produces a clas-

sical random output.

• Each party has trusted classical devices which provide them a reliable way to

store and process classical data generated by their quantum devices.

• Alice and Bob are connected by an authenticated (but otherwise public) classical
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channel, on which Eve could listen without being detected.

• Alice and Bob also share an insecure quantum channel which could be inter-

cepted by Eve such that she could modify the signals in validation with quantum

mechanics.

Assuming that the mandatory basic assumptions mentioned above are taken care

of, device-independent quantum key distribution paves a way for a much better and

stronger alternative to the traditional QKD.

4.3 Advantages of DI-QKD

Device-independent quantum key distribution provides a stronger security than the

usual device-dependent quantum key distribution. DD-QKD makes several crucial

assumptions about the quantum systems used in the protocol. For example, in the

security proof of BB84 protocol, the dimension of Hilbert space of quantum system

is usually assumed to be 2 (qubits). But, the security of the protocol is totally

compromised if four-dimensional system are used. The proof for this is given in

Appendix B. Whereas, in DI-QKD, no assumptions are made about the dimensions

of the quantum system used in the protocol.

DI-QKD makes it easier to test the components of the QKD protocol in which they

are used. Since, the security of the DI-QKD protocol is relied on the input-output

behavior of the devices, errors as well as wearing out of the devices with time can be

easily detected and accounted for during the protocol.

The security proof of the usual QKD protocols do not take into account the real life

implementations of the protocols. Due to some noise in the quantum channel or some

uncontrolled side-channels, the actual implementation of the protocols may differ

from the ideal case. The user needs to regularly characterize the functionality of the

quantum devices very precisely, to ensure that their behavior is still in line with the

assumptions made in the security proof, which is a very challenging task. Whereas,

DI-QKD does not need any sophisticated testing is required to check whether the

devices are functioning well or not.

DI-QKD also provides a solution to the case where the measurement apparatuses
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are not trusted. Suppose, the Eve had access to the quantum apparatuses, and she

manipulates it to her own benefit aiming to get some information about Alice’s and

Bob’s measurement outcomes before sending it out to Alice and Bob. But, since the

security of DI-QKD is based only on the input-output behavior, it does not matter

whether the devices are manipulated or not. It could be possible that Eve modifies

the mechanism of the devices, such that it send out the measurement settings and

results directly to her. But, this violates the first assumption that Alice and Bob’s

laboratories are secure, which is a necessary assumption for key distribution.

4.4 Security of DI-QKD

The security of device-independent quantum key distribution is based on the quantum

phenomena of non-locality and violation of Bell’s inequalities [Bell 04]. It is based on

the idea that quantum correlations allows one to perform classically impossible task

like violating the Bell’s inequalities. It follows from the intuition that entangled states

require non-local correlations for their generation, whose measurement outcomes cor-

responding to some basis, cannot be completely known to an adversary. Thus, if

Alice’s and Bob’s devices are unable to communicate, and are provided with random

inputs such that their input-output behavior gives rise to a distribution that violates

a Bell inequality, then the outputs could not have been pre-determined by Eve. The

concept of non-locality and Bell violation has been analyzed in detail in the next

chapter.
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Chapter 5

Bell violation and unpredictability

Prediction of quantum correlations is one of the most astonishing aspects of quantum

mechanics. Indeed, the correlations between the measurements performed on systems

comprising of several components of an entangled state have no analog in the classical

domain. In 1964, an important feature of quantum correlations was derived by John

Bell, in his paper titled On the Einstein Podolsky Rosen paradox [Bell 64], which

stated that the predictions of quantum theory are incompatible with those of any

physical theory satisfying a natural notion of locality, i.e the quantum correlations

for states of entangled composite systems cannot be reproduced by a classical local-

variable theory. He proved that the observed correlations between two spin-1
2

particles

in a singlet state violate some inequalities, known as the Bell inequalities, which are

satisfied by a local variable theory.

This provided a possible definition of non-locality : the impossibility to reproduce

quantum correlations with theories based on local variables. Thus, a state is said

to be non-local, if the correlations corresponding to it violates a Bell inequality. In

this chapter, we discuss Bell inequalities and analyze the relation of their violation

to the unpredictability of correlations produced by quantum mechanics. Further,

the importance of Bell violation as a fundamental necessity in device-independent

quantum key distribution is also analyzed.

We consider the following scenario: Say, each of the two users, Alice and Bob, has

a measurement apparatus which performs measurements on the halves of pair of
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entangled qubits in some particular basis. Each device can take in one of the two

possible inputs (which corresponds to a particular measurement setting, say the choice

of measurement basis) and produces one of the two possible outputs (corresponding

to the measurement outcome). It is assumed that that one device cannot access the

input of the other device. Crucially, although for the security argument in a DI case

no details about the state and measurement settings are required, this may be a good

staring point for honest parties to set up their devices.

In order to describe the behavior of devices, the following notation is used:

Alice’s input: a Bob’s input: b

Alice’s output: x Bob’s output: y

It is possible that from one run of the experiment to the other, the measurement

outcomes a and b that are obtained may vary, even when the inputs x and y are made

same in each run. Therefore, these outcomes are thus in general described by a joint

probability distribution P (xy|ab).

The conditional distribution P (xy|ab) as a 4 × 4 matrix can be described using the

following table [Pirandola 19]:

P (xy|ab) b 0 1
y 0 1 0 1

a x

0
0

1

P (00|00)

P (10|00)

P (01|00)

P (11|00)

P (00|01)

P (10|01)

P (01|01)

P (11|01)

1
0

1

P (00|10)

P (10|10)

P (01|10)

P (11|10)

P (00|11)

P (10|11)

P (01|11)

P (11|11)

Table 5.1: Conditional probability distribution P (xy|ab)

Let’s say, Alice’s and Bob’s device follow some particular probability distribution

P (xy|ab). Imagine an eavesdropper Eve acquires some additional classical information

about the devices, denoted by the random variable Z. Eve exploits this classical

information to further enhance her knowledge about what is happening. This can be

interpreted as follows: Suppose, Eve is the manufacturer of the devices to be used by

Alice and Bob, and let’s assume that she supplies devices that behave according to a
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probability distribution Pz(xy|ab), but chooses z with probability pz, such that from

Alice and Bob’s point of view the devices behave in the same way. Formally,

P (xy|ab) =
∑
z

pzPz(xy|ab). (5.1)

For non-communicating devices (i.e. no device can access the input of the other), the

probability distribution of the devices must follow conditions of locality. This implies

Pz(x|ab) = Pz(x|a) and Pz(y|ab) = Pz(x|a). (5.2)

Now, the question arises that is it possible for Eve to supply such deterministic devices

giving rise to the observed distribution? Mathematically, the question is whether

P (xy|ab) can be penned in the form of (5.1) with Pz(xy|ab) = Pz(x|a)Pz(y|b), and

Pz(x = x̃|a = i), Pz(y = ỹ|b = j) ∈ {0,1} for all x̃, ỹ, i, j ∈ {0, 1}.

In other words, is P (xy|ab) a convex combination of 16 local deterministic distribu-

tions [Pirandola 19]
1 0 1 0

0 0 0 0

1 0 1 0

0 0 0 0

 ,


1 0 1 0

0 0 0 0

0 1 0 1

0 0 0 0

 ,


1 0 1 0

0 0 0 0

0 0 0 0

1 0 1 0

 , . . . . . . . ,


0 0 0 0

0 1 0 1

0 0 0 0

0 1 0 1

 ?

If yes, then Eve can have complete knowledge of Alice’s and Bob’s measurement results

after knowing their inputs. If not, then at least some of the time Eve must be sending

a distribution Pz(xy|ab) to which she doesn’t have information about either Alice’s

or Bob’s outcome after learning their inputs (i.e. there is some kind of randomness).

We provide a formal picture to the above concept of local deterministic distributions

in the following section.

5.1 Defining Bell’s Inequality

In this section, we describe quantum correlations mathematically using an expression

known as the Bell’s inequality.

Definition 5.1.1. A Bell inequality is a relation satisfied by all local correlations
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(i.e., all P (xy|ab) that can be written as a convex combination of local deterministic

distributions), but can be violated by suitable measurements on a pair of quantum

particles in an entangled state.

An example of Bell inequality is the CHSH inequlaity [Clauser 69], given by John

Clauser, Michael Horne, Abner Shimony, and Richard Holt in 1969. Let’s take the

case where there are two measurement choices per observer a, b ∈ {0,1}, with only

two possible measurement outcomes x, y ∈ {+1,-1}. The expectation value of the

product xy, for the measurement settings (a,b) is given by 〈xaxb〉 =
∑

x,y xy p(xy|ab).
Consider the expression: S = 〈x0y0〉 + 〈x0y1〉+ 〈x1y0〉 - 〈x1y1〉, which is a function

of probabilities p(xy|ab). Thus, if the probabilities can be written as a convex com-

bination of local deterministic distributions, as described in the previous section, we

necessarily have

S = 〈x0y0〉+ 〈x0y1〉+ 〈x1y0〉 − 〈x1y1〉 ≤ 2. (5.3)

which is known as the CHSH inequality. The derivation of the above result is provided

in Appendix C.

Equation (5.3) can also be represented in terms of the probability distribution Pz(xy|ab)
as S = 〈C,P 〉 ≤ 2, where P = Pz(xy|ab), and the matrix C is given by

C =


1 −1 1 −1

−1 1 −1 1

1 −1 −1 1

−1 1 1 −1

 .

〈C,P 〉 = Tr(CTP ) is known as the Hilbert-Schmidt inner product .

5.2 Violation of CHSH Inequality: An example of

state |φ+〉

Bell’s theorem states that there are quantum correlations that violate the CHSH

inequality. This implies that quantum theory is non-local. To describe the above

correlations, a particular class of distributions are parameterized in terms of ε ∈
[
0, 1

2

]
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as follows:

Pε :=


1
2
− ε ε 1

2
− ε ε

ε 1
2
− ε ε 1

2
− ε

1
2
− ε ε ε 1

2
− ε

ε 1
2
− ε 1

2
− ε ε

 . (5.4)

A state is defined as |φθ〉 := cos θ
2
|0〉 + sin θ

2
|1〉. Suppose, Alice and Bob measure the

two halves of the maximally entangled-state |φ+〉 = 1√
2
(|00〉+ |11〉) corresponding to

their inputs in the following bases:

{|φ0〉, |φπ〉} for a = 0,

{|φπ/2〉, |φ3π/2〉} for a = 1,

{|φπ/4〉, |φ5π/4〉} for b = 0,

{|φ3π/4〉, |φ7π/4〉} for b = 1.

This gives rise to the following probability distribution:

Pcalculated :=


1
4

+
√
2
8

1
4
−
√
2
8

1
4

+
√
2
8

1
4
−
√
2
8

1
4
−
√
2
8

1
4

+
√
2
8

1
4
−
√
2
8

1
4

+
√
2
8

1
4

+
√
2
8

1
4
−
√
2
8

1
4
−
√
2
8

1
4

+
√
2
8

1
4
−
√
2
8

1
4
−
√
2
8

1
4

+
√
2
8

1
4
−
√
2
8

 = PεQM . (5.5)

Comparing the form of Pε of the calculated distribution, with the distribution of (5.4),

we get

ε =
1

4
−
√

2

8
=

1

8
(2−

√
2) =: εQM (5.6)

The above value of εQM leads to the value of CHSH inequality 〈C,PεQM 〉 = 2
√

2 ≥
2, which contradicts equation (5.3), and thus the locality constraints as well. This

violation implies the correlations corresponding to the measurement on state |φ+〉
are non-local, and therefore cannot be pre-determined via any LV theory, and thus

concluding that quantum theory is indeed non-local. Note that S = 2
√

2 is the

maximal violation of this inequality. The Tsirelson’s bound [Cirel’Son 80] states that

if a probability distribution P is quantum-correlated, then S ≤ 2
√

2.
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The randomness of the outcomes can be seen by decomposing the distribution PεQM ,

in a way that the local components of the decomposition is maximized. For 0 ≤ ε ≤
1/8, this is achieved by the following distribution:

Pε:= ε

[


1 0 1 0

0 0 0 0

1 0 1 0

0 0 0 0

 +


1 0 1 0

0 0 0 0

0 0 0 0

1 0 1 0

 +


0 1 1 0

0 0 0 0

0 0 0 0

0 1 1 0

 +


1 0 0 1

0 0 0 0

1 0 0 1

0 0 0 0



+


0 0 0 0

0 1 1 0

0 0 0 0

0 1 1 0

 +


0 0 0 0

1 0 0 1

1 0 0 1

0 0 0 0

 +


0 0 0 0

0 1 0 1

0 1 0 1

0 0 0 0

 +


0 0 0 0

0 1 0 1

0 0 0 0

0 1 0 1


]

+ (1− 8ε)


1
2

0 1
2

0

0 1
2

0 1
2

1
2

0 0 1
2

0 1
2

1
2

0

.

5.3 Implications of Pε: Linking non-locality and

randomness

From the above distribution of Pε, the probability that Eve would be able to guess

Alice’s outcomes using the above description is equal to 8ε + 1
2
(1 − 8ε) = 1

2
+ 4ε,

which implies that Alice’s outcome would have some randomness w.r.t. Eve. The

first eight terms in the decomposition are local, and the last term is a maximally

non-local distribution (i.e. it is not one of the 16 local deterministic distributions)

[Popescu 94], and therefore Eve would not have information about Alice’s and Bob’s

outcomes in this case. The above argument intends to given an intuition to the idea of

why violating a Bell inequality implies some randomness in the outcomes. It suggests

that it would be much difficult for Eve to extract information about Alice and Bob’s
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outputs.

So, if two devices limited by no-signalling principle (i.e. a particular device cannot

have access to other device’s input), are able to produce correlations that are non-local,

then their measurement outcomes cannot be fully-determined, and they must neces-

sarily exhibit some randomness. This forms the basic principle for device-independent

quantum key distribution protocols, in which violation of Bell inequality, which can

be asserted without any assumptions on the physical working of the devices, ensures

the generation of secure cryptographic keys that cannot be pre-determined. Some

device-independent protocols are discussed in the following chapters.
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Chapter 6

Spot-checking CHSH QKD

protocol

Device-independent quantum key distribution allows two isolated parties to share

a secret key, provided they have an access to an authenticated public channel and

an insecure quantum channel. In the last chapter, we discussed the idea of a Bell

inequality and the consequences of its violation in quantum theory. The violation of

Bell inequalities guarantee the presence of a randomness but only in the condition that

the users are non-signalling. Therefore, in a model that is intrinsically no-signalling,

the measurement outcomes cannot therefore be fully determined in each run of a Bell

test, and they must necessarily exhibit some kind of randomness. This forms the

intuition behind the development of DI-QKD protocols.

The application of Bell non-locality in quantum key distribution was first given by

Ekert in 1991 in his paper Quantum cryptography based on Bell’s theorem [Ekert 91],

in which he presented a key distribution protocol based on CHSH inequality using

two qubit maximally entangled state |φ+〉 as a source, but the idea of security of his

protocol on the basis of violation of Bell inequalities was not recognized at that time.

The idea of device-independence was first described by Mayers and Yao, by their

self-testing protocol [Mayers 98a], but it was not directly based on violations of Bell-

inequalities. Barret, Hardy and Kent presented the first explicit device independent

protocol known as the BHK protocol [Barrett 05a], which was based on the violation of
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chained Bell inequalities. It was also the first DI-QKD protocol proven secure against

general attacks by no-signalling eavesdropper. Since then, significant developments

have been made in the formulation as well as the security of various DI-QKD protocols.

Eavesdropping analysis has contributed immensely in development of even stronger

protocols, secure against a wide range of eavesdropping strategies.

A general class DI-QKD protocols comprises mainly of the following steps:

• Measurement step: Alice and Bob measure a series of entangled quantum

systems.

• Estimation step: Alice and Bob publicly announce a fraction of their measure-

ment inputs and outputs to test the violation of Bell inequality and calculate

the error rate in the raw data.

• Error correction step: This step involves the correction of errors using a

classical protocol, which involves public communication.

• Privacy-amplification step: In this step, a shorter secure key is distilled from

the raw key based on the bound on the eavesdropper information, calculated

from the violation of Bell’s inequality.

In the following section, we describe a particular example of a DI-QKD protocol, with

its security based on the violation of CHSH inequalty.

6.1 The Spot-Checking CHSH QKD Protocol

We describe a particular DI-QKD protocol for a maximally entangled qubit state

|φ+〉= |00〉+|11〉√
2

. Note that, the assumptions for DI-QKD described in Section 4.2 are

to be considered here. As the name suggests, the protocol we discuss here is based on

the CHSH (Clauser-Horne-Shimony-Holt) game with spot-checking. Few parameters

have been defined: α ∈ (0, 1), n ∈ N, β ∈ (2, 2
√

2], δ ∈ (0, 2(
√

2−1)), which are to be

chosen by the user at the start. The protocol is described as follows [Pirandola 19]:

• Alice generates an entangled pair |φ+〉 using a preparation device. She keeps

one half to herself and sends the other to Bob.

• Bob stores it and announces reception of his half of the entangled pair to Alice.
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• Alice chooses a random bit Qi, comprising of 0’s and 1’s, in which Qi = 0 occur

with probability 1−α, and Qi = 1 occur with probability α.

• Qi is then sent to Bob over an authenticated classical channel.

• Let Alice’s measurement outcomes are denoted by xi, corresponding to her

inputs ai. Similarly, Bob’s outcomes are denoted by yi, corresponding to his

inputs bi.

• Suppose that Qi = 0 is chosen as a scenario corresponding to no test. In this

case, Alice and Bob perform measurements corresponding to the inputs ai = 0

and bi = 2 respectively, and record the outcomes, xi and yi.

• Qi = 1 is chosen as a scenario corresponding to a CHSH test. In this case,

Alice and Bob each independently pick uniformly random inputs ai ∈ {0, 1}
and bi ∈ {0, 1}, and record the outcomes, xi and yi, corresponding to their

measurements.

• The above steps are repeated n times, increasing i each time.

• For all the cases with Qi = 1, Bob sends his inputs and outputs to Alice who

computes the average CHSH value. If the value is below β − δ, the protocol is

aborted.

• If the protocol does not abort, Alice and Bob use the rounds with Qi = 0 to

generate a key using error correction and privacy amplification over the authen-

ticated classical channel.

To understand the above mentioned protocol, let us consider an ideal scenario, in the

absence of an eavesdropper, Eve. The state generated is a maximally entangled state

1√
2
(|00〉 + |11〉). For inputs a, b ∈ {0, 1}, the measurements are same as described in

Section 5.2. Furthermore, for b = 2, the measurement is in {|ψ0〉, |ψπ〉} basis, which

is the same basis as for a = 0.

If α is chosen to be small, then on most of the rounds, both parties measure in

{|0〉, |1〉} basis, which should provide perfectly correlated outcomes, suitable for the

generation of a key. For any other case, the outcomes are completely uncorrelated.

Therefore, for the rounds with Qi = 1, a CHSH test is performed, in order to keep
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the devices honest. These are known as the spot-checks . The parameter β is the

expected CHSH value of the setup, which is equal to 2
√

2 (the maximal violation)

in the ideal scenario, and δ is known as the tolerance to statistical fluctuations. The

probability that an ideal implementation with no eavesdropping leads to an abort

is called the completeness error . Using the implementation given above, this occurs

when the statistical fluctuations cause devices with an expected CHSH value of β to

produce a value below β − δ.

6.2 Remarks

Some worthful remarks about the above-mentioned spot-checking CHSH QKD pro-

tocol are described below:

• It is important that the preparation device used by Alice to generate the entan-

gled pair |φ+〉 is unable to access information from Alice’s measurement device,

even though these may be in the same lab (this is because the preparation de-

vice may be provided by Eve, and if access were granted, it could send previous

measurement results to Eve via the quantum channel).

• The choice Qi needs to be communicated after the state is shared (otherwise

Eve can choose whether to intercept and modify the quantum state depending

on whether or not a test will be performed).

• It is possible for Bob’s device to tell when it is being used to generate key

(bi = 2). Crucially though, Alice’s device cannot (Alice’s device learns only Ai

and not the value of Qi), and it is this that forces her device to behave honestly;

not doing so will lead her getting caught out if the round is a test. If Bob’s

device does not behave close enough to the way it should in the case bi = 2,

then the protocol will abort during error correction step.

• Another important aspect of Bell violation is that, in a quantum experiment, the

violation of a Bell inequality reveals the presence of entanglement in a device-

independent way. In fact, in some cases, certain quantum correlations can only

be reproduced by performing specific local measurements on a specific entangled

state. Therefore, in some cases, by observing such correlations, it is possible to
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identify the characteristics of an unknown source of quantum states as well that

of measurement devices in a device-independent way. For example, the obser-

vation of maximal violation of the CHSH inequality implies that the underlying

quantum state on which measurements are performed is necessarily equivalent

to a two-qubit singlet state.

• It is also worth noting that, as discussed in Section 4.2, there is no sophisticated

testing required to check the functionality of the working of the devices. Device-

independent QKD protocols check that the devices are functioning sufficiently

well during the protocol itself.

There are many other DI-QKD protocols possible, but they also are based on the sim-

ilar idea of generating randomness via the violation of some kind of Bell inequalities,

as in the CHSH protocol described in the previous section. The protocol discussed

in this chapter describes an ideal case where there is no eavesdropper present in the

channel. But, in real-life implementations, this is not always the case. As discussed in

Section 3.3, there are many possible strategies that an eavesdropper could utilize to

attack the channel to gain access to the information shared between Alice and Bob.

Therefore, it is necessary to analyze the security of a protocol against the strate-

gies available to the eavesdropper. In the next chapter, we describe a QKD scheme

and analyze its security against an eavesdropper limited only by the no-signalling

principle.
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Chapter 7

DI-QKD against no signalling

eavesdropper

Non-signalling cryptography (also called relativistic quantum cryptography) bases its

security on the impossibility of signalling between parties that are space-like isolated

from each other, as justified by special relativity. It states that an eavesdropper cannot

prepare two or more physical systems in a joint state such that a local measurement

on one system might send information to another discrete system.

Two parties are able to share a secret key between them, which is secure not only

against an eavesdropper Eve which follows the laws of quantum mechanics, but is also

secure against an Eve which is limited by on the no-signalling principle only. Here,

the eavesdropper cannot be forced to interact with the legitimate parties. Given

the eavesdropper’s measurement outcome, the two parties, namely Alice and Bob,

must not be able to signal to each other by interacting with their quantum systems.

The security of the scheme is based on the existence of non-local correlations which

imply that the outcomes must be completely independent of any information the

eavesdropper can possibly hold. These correlations can be realized by measuring an

entangled quantum state and additionally have the property that Alice’s and Bob’s

outcomes are perfectly correlated.

An advantage of non-signalling constraint is that the security proof is based on ob-

served correlations. It is independent from the question how these correlations were
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realized, such as the physical particles used to distribute them, the dimension of

the Hilbert space or the exact working of the measurement device. Therefore, these

protocols are naturally device-independent.

In this chapter, we describe a protocol which is secure against an eavesdropper Eve

who is limited by only the no-signalling principle. This protocol uses the idea of

[Aćın 06b] and [Ekert 91], in which the parties (Alice and Bob) perform a CHSH

non-locality test on a fraction of their particles to check the violation of the CHSH

inequality, and perform the measurements on the rest of the particles in the same basis,

for the successful generation of key as well as maximizing the key-rate. The CHSH

test is performed to guarantee that the knowledge that the eavesdropper (Eve) has

about the systems of Alice and Bob is limited [Barrett 05b]. The protocol [Aćın 06b]

is described below.

7.1 Protocol

The protocol for quantum key distribution is based on the CHSH inequality.

• A quantum channel is shared between Alice and Bob, which consists of a source,

which emits pairs of qubits in maximally entangled state |φ+〉 = (|0〉A|0〉B+|1〉A|1〉B)√
2

,

where subscript A represents Alice’s qubit and subscript B represents Bob’s

qubit.

• But due to noise, there are some imperfections present in the channel. The noise

transforms the state |φ+〉 in a Werner state

ρ = p|φ+〉〈φ+|+ (1− p)I
4
. (7.1)

• Both parties choose their measurement settings randomly and independent from

each other, and record the corresponding outcomes. They are denoted as follows:

Alice’s input (measurement): a Bob’s input (measurement): b

Alice’s outcome: x Bob’s outcome: y

The observed statistics of their devices (refer Chapter 5) are represented by
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P (xy|ab), which represents the joint probability to obtain outcomes a and b,

given measurements x and y.

• Alice can perform one of the three measurements, a = 0, 1 or 2, which corre-

sponds to measurement of her qubit in the following bases:

{|0〉 ± e iπ4 |1〉} for a = 0,

{|0〉 ± |1〉} for a = 1,

{|0〉 ± e iπ2 |1〉} for a = 2.

The probability that Alice chooses her measurement along π/4 (a = 0) is q, and

probability that she chooses her measurement along 0 (a = 1) or π/2 (a = 2)

are both (1− q)/2.

• Similarly, Bob can perform two measurements, b = 0 or 1, which corresponds

to measurement of his qubit in the following bases:

{|0〉 ± e−iπ4 |1〉} for b = 0,

{|0〉 ± e iπ4 |1〉} for b = 1.

Probability that Bob chooses his measurement along π/4 (x = 0) is q′, and

probability that he chooses his measurement along −π/4 (x = 1) is (1− q′).

• Alice and Bob perform the chosen measurements on each of their qubits.

• After measuring all the pair of particles, the measurement bases are revealed by

Alice and Bob.

• Alice’s measurement a = 0 or π/2 is a case which leads to a maximum violation

of the CHSH inequality. Therefore, in this scenario, Alice and Bob, both reveal

their measurement outcomes, and then compute the value of the CHSH quantity.

• If both Alice and Bob measure along π/4, then their outcomes are strongly

correlated, which will be further used for key generation.

• The case where Alice measures along π/4 and Bob measures along −π/4, their

outcomes are completely uncorrelated. The data corresponding to this case will
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be discarded.

• Privacy amplification and information reconciliation steps on the strongly cor-

related outcomes will provide a pair of identical secret keys.

We note that the security of the protocol follows from the fact that the observed

statistics of Alice’s and Bob’s device violate the CHSH inequality. To maximize

the key rate, q and q′ should be chosen as close to 1 as possible. Within the

next sections, we address the eavesdropping strategies and evaluate the security

of this protocol.

7.2 Eavesdropping strategies: Individual attacks

This section describes the strategies used by an eavesdropper Eve to gain information

from the insecure quantum channel shared by Alice and Bob. We make an assumption

that Eve controls the particle source, and therefore, she has the ability to prepare

Alice’s and Bob’s particles as well as any other system in a joint non-signalling state.

Moreover, she is also restricted to individual attacks, in which she attacks each particle

separately and acquires independent knowledge about each individual bit of the key.

Eve prepares a state of three particles, say |Ψ〉ABE, corresponding to Alice, Bob and

herself, and shares it with Alice and Bob. Say, Eve performs a measurement e on

the state |Ψ〉ABE, and receives an outcome z. We define a set of joint measurement

probability distributions, P (xyz|abe). The no-signalling condition implies that:

∑
z

P (xyz|abe) ≡ P (xy|ab) ∀ e,
∑
z

P (xyz|abe) ≡ P (yz|be) ∀ a,
∑
z

P (xyz|abe) ≡ P (xz|ae) ∀ b.

(7.2)

This states that the marginal distributions of any subset of particles do not depend

on the measurement choices chosen by the other parties.

Eve wants to perform a measurement on her particle that will provide her with the

maximum information about the outcomes of Alice and Bob. Since, only the mea-
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surement outcomes corresponding to a = 0 and b = 0 are used in the key generation

process, Eve is only interested in Alice’s and Bob’s outcomes corresponding to the

measurements a = 0 and b = 0, respectively. Moreover, due to the no-signalling

constraint on Eve, she could also not affect Alice’s and Bob’s outcomes by her choice

of measurement. Therefore, it is assumed that she always performs the same mea-

surement ẽ, which gives her the maximum information about the measurement pair

(a = 0, b = 0).

Let’s say Eve gets an outcome z corresponding to her measurement ẽ, with probability

pz = P (z|ẽ). Eve will therefore prepare Alice’s and Bob’s particles in a state, satisfying

the no-signalling conditions Pz(xy|ab) = P (xy|abẽz).

The individual attack of Eve would be to prepare a mixture of probability distributions∑
z Pz(xy|ab), satisfying the no-signalling conditions, providing her Alice’s and Bob’s

observed correlations P (xy|ab) =
∑

z pzPz(xy|ab) , and therefore the secret key. It is

also assumed that each non-signalling term in the mixture, Pz(ab|xy) is extremal, i.e.,

it cannot itself be decomposed as a convex sum of other no-signalling correlations.

The outcomes of Alice and Bob (x and y), can take values either 0 or 1. For each of

Alice’s measurement a, either the outcome x is predetermined, i.e. P (x|a) = 0 or 1 or

is uniformly random, i.e. P (x|a) = 1/2. For P (x|a) = 1/2 case, the measurement a

corresponds to the set containing two measurements for Alice and two measurements

for Bob, such that for this set CHSH inequality is maximally violated. Similarly, for

Bob, it is either P (y|b) = 0 or 1, or P (y|b) = 1/2.

7.3 Security analysis and key rate

The strategy of individual attack by Eve has been described in the previous section.

We now try to analyse how much secure is the above protocol against such attack.

Using the definition of Bell’s inequality described in Section 5.1, we calculate the value

of the CHSH quantity for the Werner state (7.1) for the measurements described in

the protocol. It is represented by 〈Sn.s.〉[Aćın 06b]. The value of CHSH quantity
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comes out to be:

〈Sn.s.〉 = P (x1 6= y0) + P (x1 6= y1) + P (x2 6= x1) + P (x2 = y0) = 2−
√

2p. (7.3)

Note that, this expression is calculated for inputs a = 1, 2 and b = 0, 1, since these

inputs are used by Alice and Bob to check the violation of the CHSH inequality.

Equation (7.3) is the same as equation (5.3), but written in a different notation.

Here, the local correlations satisfy 〈Sn.s.〉 ≥ 1, and the non-local correlations satisfy

0 ≤ 〈Sn.s.〉 ≤ 1. Thus, the CHSH expression is violated, for p ≤
√

2.

When Alice and Bob measure the pair (x = 0, y = 0) (the case of interest of Eve),

the correlations between them can be described by:

〈Cn.s.〉 = P (a0 = b0)− P (a0 6= b0). (7.4)

The value of the above quantity turns out to be equal to p. The strategies of Eve

can be classified according to whether the outcomes corresponding to x = 0 or y = 0

yield pre-determined or uniformly random outcomes [Barrett 05c, Jones 05]. These

strategies are described in the table below:

i Strategies 〈Sn.s.〉 〈Cn.s.〉 H(A|E) H(B|E) I(A : B|E) pi
1. (D,D) > 1 61 0 0 0 p1
2. (D,R) > 0 0 0 1 0 p2
3. (R,R) > 0 6 1 1 1 1 p3

Table 7.1: Extremal strategies available to Eve for measurement inputs x = 0 and y = 0
(used to generate a key) [Aćın 06b].

In the table above, (D,D) represents the scenario where both measurements x = 0

and y = 0 produce deterministic outcomes, (D,R) represents the scenario where the

measurement x = 0 produces deterministic outcome and the measurement y = 0 pro-

duces a random outcome and (R,R) represents the scenario where both x = 0 and

y = 0 produce random outcomes. Eve could choose any of the above 3 strategies

with probability pi, as represented in the table. For each of the cases, the condi-

tional entropies H(A|E) and H(B|E) (representing the ignorance of Eve) and mutual

information between Alice and Bob (refer Chapter 2) are calculated.

The secret key rate for privacy amplification with one-way communication is defined
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by using the Csiszár-Körner condition [Csiszar 78] as:

K = max{I(A : B)− I(A : E), I(A : B)− I(B : E)}. (7.5)

The mutual information between Alice and Eve can be calculated using equation

(2.10)

I(A : E) = H(A)−
∑
i

piHi(A|E). (7.6)

From Table 7.1,

I(A : E) = 1− p1H1(A|E)− p2H2(A|E)− p3H3(A|E) (7.7)

= 1− p1(0)− p2(0)− p3(1)

= 1− p3. (7.8)

Similarly, the mutual information between Bob and Eve is given by:

I(B : E) = H(B)−
∑
i

piHi(B|E) (7.9)

= 1− p1H1(B|E)− p2H2(B|E)− p3H3(B|E) (7.10)

= 1− p1(0)− p2(1)− p3(1)

= 1− p2 − p3 (7.11)

= p1. (7.12)

Comparing equations (7.8) and (7.11), we see that I(A : E) ≥ I(B : E), which implies

I(A : B)− I(A : E) ≤ I(A : B)− I(B : E). Thus, the key rate equals

K = I(A : B)− I(B : E). (7.13)

The mutual information between Alice and Bob is I(A : B) = 1 − h(1+p
2

), where h

is the binary entropy, as defined in Subsection 2.2.1. Therefore, the secret key rate

becomes

K = 1− h
(1 + p

2

)
− p1. (7.14)
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Since, for the DD strategy, 〈Sn.s.〉 ≥ 1, and 0 ≤ pi ≤ 1, therefore

p1 ≤ 〈Sn.s.〉. (7.15)

Thus, combining equations (7.3), (7.14) and (7.15), we put an upper-bound on the

key rate as follows:

K = 1− h
(1 + p

2

)
− p1

≥ 1− h
(1 + p

2

)
− (2−

√
2p). (7.16)

This gives us the following equation for the key rate of the protocol:

K ≥
√

2p− h
(1 + p

2

)
− 1. (7.17)

Thus, in the noise free case (i.e. when p = 1), K ≥
√

2 − 1, which is much higher

compared to the protocol given in [Aćın 06a]. The key generation ceases (K=0) when

p = 0.903, and therefore this protocol is much more noise-resistant than the protocol

in [Aćın 06a] (which had K = 0 for p = 0.931).

7.4 Generalization of the protocol

The protocol described above can also be generalized using chained Bell inequality

for N measurements (in the previous section, we described the case for N = 2). The

generalized protocol is described as follows [Aćın 06b]:

• Alice carries out (N + 1) measurements x = 0, 1, ..., N , corresponding to mea-

surement in the bases {|0〉 ± eiφ(x)|1〉}, with φ(0) = π/2n and φ(x) = πx/N for

x = 1, 2, ..., N .

• Bob can perform N measurements y = 0, 1, ..., N−1 corresponding to measuring

in bases {|0〉 ± e−iφ(y)|1〉}, where φ(y) = π(y + 1/2)/N .

• Similar to the previous case, the measurement outcomes of x = 0 and y = 0

provide highly correlated bits which are used in key generation.

• The mutual information between Alice and Bob is I(A : B) = 1−h(1/2 + p/2).

62



• The other measurements are used to calculate P (ab|xy), and therefore are used

to check the violation for the chained inequality, described in [Barrett 05a].

The chained inequality for N measurements is defined as:

〈S̃n.s.〉 =
N∑
i=1

[P (xi 6= yi−1) + P (xi 6= yi)]. (7.18)

Here, bN stands for b0 + 1mod 2.

For the Werner State (7.1) and the given measurements, the value 〈Sn.s.〉 = N [1 −
pcos(π/2N)]. The eavesdropping strategies of an eavesdropper limited only by no-

signalling constraint are in some sense similar to the previous case. We note that

Alice’s measurement a = 0 is not a part of the non-locality test. This is because, Eve

can fix the output corresponding to a = 0, as well as produce an arbitrary violation of

the chained inequality, thus faking a violation. In general, Eve’s knowledge of Alice’s

outcome will be greater than that of Bob’s outcome [I(A : E) > I(B : E)], and

therefore the communication goes from Bob to Alice.

Similar to the previous case, for each no-signalling distribution, either the measure-

ment outcome corresponding to b = 0 is deterministic or completely random. For

any measurement b used in chained inequality, [Barrett 06] shows that 〈S̃n.s.〉 >

2P (y|b)−1. When b = 0 has a deterministic outcome, then P (b|y) = 1, and therefore

〈S̃n.s.〉 > 1, and H(B|E) = 0. When b = 0 has a uniformly random outcome, then

P (y|b) = 1/2, and therefore 〈S̃n.s.〉 > 0, and H(B|E) = 1. It follows that:

I(B : E) 6 〈S̃n.s.〉. (7.19)

Here also, the key rate KN is defined using the Csiszár-Körner condition as follows:

KN = I(A : B)− I(B : E). (7.20)

Substituting value of I(A : B) in the above equation and using inequality in Equation

(7.19), we get a lower bound on KN as:

KN > 1−h
(1 + p

2

)
−N

[
1−pcos

( π

2N

)]
& 1−h

(1 + p

2

)
−p π

2

8N
−N(1−p). (7.21)
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Corresponding to equation (7.21), the key rates (KN) for different values of N com-

pared to the purity p of the Werner state (7.1) are plotted below:
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Figure 7.1: Key rate (KN ) versus noise (p) for different values of N

7.5 Analysis of key rate

As shown in Figure 7.1, the protocols corresponding to N = 3, 4 and 5 are more

efficient than the CHSH based protocol (N = 2), for all noise levels. N = 3 provides

the best noise resistance, as the key rate goes to zero for p = 0.889. Thus, in compar-

ison to the CHSH test (where two measurements were performed), the key rate and

noise resistance significantly increases by just adding one more measurement. As N

increases, the protocols become more and more sensitive to noise, since they require

p > 1−O(1/N). In the case with no noise (i.e. p = 1), KN > 1− π2

8N
, and therefore,

as N increases key rate tends to 1. This implies that in absence of noise, when N is

infinite, the correlations introduced are maximally non-local.
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Chapter 8

DI-QKD using 3-level systems

8.1 Introduction

The study of quantum cryptography and quantum entanglement has been widely

based and thoroughly discussed for two dimensional quantum variables (qubits).

There have been a vast number of protocols that have been proven secure for them.

The optimal attacks have been known about many qubit based schemes, and as a re-

sult strong bounds have been derived, which are quite essential in the analysis of the

respective scheme of interest. But, in recent times the focus has shifted towards the

underdeveloped area of quantum cryptography for higher dimensions. In this chapter,

we extend the notion of device independence for higher dimensions (d dimensional qu-

dit based schemes) and provide a detailed analysis for three level systems or qutrits.

We describe a quantum key distribution protocol using a maximally entangled qutrit

state |ψ+
3 〉, and discuss its security, for an individual eavesdropping strategy, known

as cloning based attacks.

The maximally entangled qutrit state is defined as:

|ψ+
3 〉 =

1√
3

(|0〉A ⊗ |0〉B + |1〉A ⊗ |1〉B + |2〉A ⊗ |2〉B). (8.1)

where, as usual, subscript A represents Alice’s half of the maximally entangled pair,

and subscript B represents Bob’s half. Following the same intuition of Bell-violation

as a fundamental notion for any device-independent security (as discussed in Chapter
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4), we describe a Bell inequality for qutrits in the next section.

8.2 Bell violation for qutrits

We extend the novel approach of Bell inequalities for bipartite quantum systems (as

discussed in Chapter 5) for higher dimensions, based on similar formalisms of linking

quantum correlations and ‘non-locality’ i.e. the impossibility to reproduce quantum

correlations with local realistic theories. Let us suppose, the two parties sharing

the maximally entangled qutrit states are Alice and Bob. Alice can perform two

possible measurements A1 or A2 and Bob can perform two measurements B1 or B2,

with each measurement having 3 possible outcomes: 0, 1, and 2. The generalized

Bell expressions corresponding to 3-dimensional quantum systems are of the form

[Collins 02]:

S3 = P (A1 = B1) + P (A1 = B2 − 1) + P (A2 = B2)

+ P (A1 = B2)− P (A1 = B1 − 1)− P (A2 = B1)

− P (A2 = B2 − 1)− P (A1 = B2 + 1) 6 2, (8.2)

where

P (Aa = Bb + k) ≡
2∑
j=0

P (Aa = j, Bb = j + k mod 3)

are the probabilities of observers A and B measuring Aa and Bb differ by k (modulo 3).

The maximum value of S3 for a local variable theory is 2 i.e. S3(local) ≤ 2, which is

same as the CHSH inequality. For a non-local theory, S3 can attain a maximum value

of 4, i.e. S3(non-local) ≤ 4, which produces a violation of the inequality in equation

(8.2). The protocol is based on the violation of the above inequality to ensure that the

quantum correlations produced by Alice and Bob could not be completely known to

an eavesdropper, which ensures security. Similar to the case of CHSH inequality used

by Ekert in the E91 protocol [Ekert 91], here also the we consider the bases which

produces the maximal violation of the above inequality.

The E91 entanglement-based protocol uses four bases (two pairs of mutually unbiased

bases) that produce the maximal violation of the CHSH inequalities. Similarly, there
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is a natural generalization of this set of bases for the qutrits as well [Durt 01], which

produces the maximal violation for the state |ψ+
3 〉.

In terms of the computational bases {|0〉, |1〉, |2〉}, these bases are [Durt 03]:

|lφ〉 =
1√
3

2∑
k=0

eik(
2πl
3

+φ)|k〉 (8.3)

=
1√
3

[
|0〉+ ei(

2πl
3

+φ)|1〉+ e2i(
2πl
3

+φ)|2〉
]

(8.4)

=
1√
3
ei(

2πl
3

+φ)
[
cos
(2πl

3
+ φ
)(
|0〉+ |2〉

)
+ |1〉+ sin

(2πl

3
+ φ
)
(−i)

(
|0〉 − |2〉

)]
,

(8.5)

with l= 0, 1 and 2, and φi = 2π
12
.i (with i = 0,1,2,3). The maximal violation for the

state |ψ+
3 〉 given by equation (8.1), corresponding to the above set of bases comes out

to be equal to
(

4
6
√
3−9

)
≈ 2.8729.

Theorem 8.2.1. The maximally entangled qutrit state |ψ+
3 〉 can be written as:

|ψ+
3 〉 =

1√
3

2∑
k=0

|βl〉 ⊗ |β∗l 〉, (8.6)

where β and β∗ are conjugate of each other.

Proof. We consider two bases: an arbitrary chosen bases β (with 〈βi|j〉 = Uij), and

its conjugate basis β∗ (with 〈β∗i |j〉 = U∗ij). Using the unitary matrix Uij, |ψ+
3 〉 can be

written as:

|ψ+
3 〉 =

1√
3

2∑
k,l,m=0

|βl〉〈βl|k〉 ⊗ |β∗m〉〈β∗m|k〉

=
1√
3

2∑
k,l,m=0

|βl〉Ulk|β∗m〉U∗mk

=
1√
3

2∑
l,m=0

|βl〉|β∗m〉δlm

=
1√
3

2∑
l=0

|βl〉|β∗l 〉.
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Thus, whenever Alice projects the state |ψ+
3 〉 in the basis β, she projects Bob’s com-

ponent into the conjugate basis β∗, and vice versa. Moreover, the state |ψ+
3 〉 can also

be written as:

|ψ+
3 〉 =

1√
3

2∑
l=0

|lφ〉 ⊗ |l∗φ〉, (8.7)

where

|l∗φ〉 =
1√
3

2∑
k=0

e−ik(
2πl
3

+φ)|k〉. (8.8)

Therefore, when Alice performs a measurement in |lφ〉 and Bob makes a measurement

in conjugate basis |l∗φ〉, their outcomes are perfectly correlated. The correlation of

the four bases producing the maximum violation can be shown as follows: The phase

term in equation (8.8) can be written as

−
[
(
2π

3
)l + φ

]
= k
[2π

3
(3− l − j)− φ+ j(

2π

3
)
]
mod 2π, (8.9)

where j is an arbitrary number. Since, 3 − l − j varies from 0 to 1(mod 2) when l

varies from 0 to 2, therefore φ∗ basis is the same φ̃, where φ̃ = φ + j(2π
3

). Thus, the

basis with even values of i [i=0,2, φi = 2π
4d
i] are preserved under phase conjugation,

whereas the bases associated with the odd values of i [i = 1,3] are interchanged. Thus,

the four bases are pairwise correlated. Following the above discussion, the maximally

entangled state for qutrits can be written as:

|ψ+
3 〉 =

1√
3

(|0φ〉 ⊗ |0∗φ〉+ |1φ〉 ⊗ |1∗φ〉+ |2φ〉 ⊗ |2∗φ〉). (8.10)

Since there exists a 100% correlation between the two measurement bases |lφ〉 and

|l∗φ〉 when Alice and Bob make a measurement in the same phase φi, the case where

the phases of Alice’s and Bob’s bases match are suitable for generation of a secure

key. The cases where there’s a difference in their phases could be used to detect the

presence of an eavesdropper via the calculation of Bell violation. Based on the above

discussion, a protocol for maximally entangled qutrits is given below.
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8.3 Device-independent protocol for qutrits

We describe a secure device-independent quantum key distribution protocol for 3-

dimensional quantum system (qutrits). It is described as follows:

• A source, situated in the quantum channel shared between Alice and Bob, emits

a maximally entangled qutrit state |φ+
3 〉, which is shared between Alice and Bob.

• Both parties choose their measurement settings randomly and independent from

each other, and record the corresponding outcomes.

• Alice can perform one of the three measurements, a= 0, 1 or 2, which correspond

to measurement of her qutrit in the following bases:

{|lφ0〉} =
{ 1√

3

2∑
k=0

eik(
2πl
3

)|k〉
}
, l = 0, 1, 2 for a=0

{|lφ1〉} =
{ 1√

3

2∑
k=0

eik(
2πl
3

+π
6
)|k〉
}
, l = 0, 1, 2 for a=1

{|lφ2〉} =
{ 1√

3

2∑
k=0

eik(
2πl
3

+π
3
)|k〉
}
, l = 0, 1, 2 for a=2

• Similarly, Bob can perform one of the three measurements, b = 0, 1 or 2, which

correspond to measurement of his qutrits in the following bases:

{|l∗φ0〉} =
{ 1√

3

2∑
k=0

e−ik(
2πl
3

)|k〉
}
, l = 0, 1, 2 for b=0

{|l∗φ2〉} =
{ 1√

3

2∑
k=0

e−ik(
2πl
3

+π
3
)|k〉
}
, l = 0, 1, 2 for b=1

{|l∗φ3〉} =
{ 1√

3

2∑
k=0

e−ik(
2πl
3

+π
2
)|k〉
}
, l = 0, 1, 2 for b=2

• Alice and Bob perform the chosen measurements on each of their qutrits.

• After measuring all pair of their particles, the measurement bases are revealed

by Alice and Bob.

• When Alice makes a measurement a = 0 and Bob makes a measurement b =

0, their outcomes are perfectly correlated (as discussed in the previous section),
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and therefore are suitable for raw key generation.

• The other measurements (a = 1, 2 and b = 1, 2) produce the maximal violation

of the Bell inequality. Therefore, in this case both Alice and Bob reveal their

outcomes and compute the violation of the Bell inequality. Privacy amplification

and information reconciliation steps on the strongly correlated outcomes will

provide an identical pair of secret keys.

Similar to the protocol described in the previous chapters, the security of this protocol

is also based on the violation of a 3-dimensional Bell inequality. In the next section,

we analyze the security of the protocol for cloning based attacks.

8.4 Eavesdropping strategy and key rate

In this section, we analyze the security of the protocol against individual attacks (i.e.

where Eve monitors each of the qutrit separately). We discuss eavesdropping strate-

gies known as cloning-based attacks, which is based on quantum cloning machines.

In these kinds of attacks, Eve imperfectly clones Alice’s qutrit and keeps the original

with herself, while sending the copy to Bob.

A general class of cloning transformations are used as defined in [Cerf 00b, Cerf 00a].

Suppose, Alice sends the input state |ψ〉, the transformed state become:

|ψ〉 −→
3∑

m,n=0

am,nUm,n|ψ〉A|Bm,−n〉B,C (8.11)

=
3∑

m,n=0

bm,nUm,n|ψ〉B|Bm,−n〉A,C . (8.12)

Here, amplitudes amn characterize the cloner with
∑2

m,n |am,n|2 = 1, and the states

|Bm,n〉A,C are 3-dimensional Bell states, which are a set of 9 orthonormal entangled

states of two qutrits, described as:

|Bm,n〉 =
1√
3

2∑
k=0

e2πi(kn/3)|k〉|k +m〉,

with m,n = 0, 1, 2. The kets must be taken modulo 2 here.
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The operators Um,n form a group of qutrit error operators, generalizing the Pauli

matrices for qutrits, where m represent the shift errors (corresponding to bit flip σx)

and n represent the phase errors (corresponding to phase flip σz). The form of Um,n

is described as:

Um,n =
2∑

k=0

e2πi(kn/3)|k +m〉〈k|.

Tracing over the systems B and C in equation (8.11) gives the final state of clone A

described by:

ρA =
2∑

m,n=0

|am,n|2|ψm,n〉〈ψm,n|, (8.13)

where |ψm,n〉 = Um,n|ψ〉. Similarly, tracing over the systems A and C in equation

(8.12) gives the final state of clone B described by:

ρB =
2∑

m,n=0

|bm,n|2|ψm,n〉〈ψm,n|. (8.14)

Note that am,n and bm,n are amplitude functions that are dual under a Fourier trans-

formation [Cerf 00a]:

bm,n =
1

3

2∑
x,y=0

e2πi
nx−my

3 ax,y. (8.15)

Let’s assume that Eve clones the state |ψ〉 sent by Alice to Bob, and resends the

imperfect clone (A) to Bob, while keeping the original (B) with her. Eve will measure

her clone in same basis as Bob (φ-basis) and her ancilla (C) in the conjugate basis

(φ∗-basis). We rewrite the cloning transformations in these bases. These are describes

as:

|Bm,n〉 =
1√
3

2∑
l=0

eim( 2π
3
(l−n)+φ)|lφ〉|(l − n)∗φ〉 = eim(−2π

3
n+φ)|B̃−nφ,m∗φ〉, (8.16)

where,

|B̃mφ,n
∗
φ
〉 =

1√
3

2∑
k=0

e2πi(
kn
3
)|kφ〉|(k +m)∗φ〉 (8.17)

and

Um,n =
2∑

k=0

e−im( 2π
3
(k+n)+φ)|(k + n)φ〉〈kφ| = e−im( 2π

3
n+φ)Ũnφ,−mφ , (8.18)
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where the subscript tilde refer to the new (φ and φ∗) bases. After substitution in

equation (8.11), we get:

|ψ〉 −→
3∑

m,n=0

am,nUm,n|ψ〉A|Bm,−n〉B,C =
2∑

m,n=0

ãm,nŨmφ,nφ |ψ〉A|B̃mφ,nφ〉B,C , (8.19)

where the amplitudes ãn,−m = am,n. The cloning machine which has same effect when

expressed in the four optimal bases i.e. when φi = 2π
12
.i (i=0,1,2,3), which imposes

the constrains on amplitudes am,n characterizing the cloner, must be of the form

am,n =


v x x

y y y

z z z

 . (8.20)

The fidelity of the clone A that is sent to Bob, when copying a state |ψ〉 can be written

in general as:

FA = 〈ψ|ρA|ψ〉 =
2∑

m,n=0

|am,n|2〈ψ|ψm,n〉|2. (8.21)

Using the cloning machine defined in equation (8.20), the fidelity FA can be written

as:

FA = 〈lφ|ρA|lφ〉 = v2 + y2 + z2. (8.22)

Similarly, the fidelity of the clone kept by Eve is given by

FB = 〈ψ|ρB|ψ〉 =
2∑

m,n=0

|bm,n|2〈ψ|ψm,n〉|2. (8.23)

Using equation (8.15), it comes out to be equal to:

FB =
v2 + 2x2 + 12y2 + 8xy + 4vy

3
. (8.24)

The value of FB is maximum when y and z are equal. After the basis of Alice and Bob

are revealed, Eve makes a measurement on her copy B and the cloning machine C,

in the same basis as Bob, the difference (modulo 3) of the outcomes gives Bob’s error

m. Thus, conditional on whether error is 0 or not, the mutual information between
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Alice and Eve is given by:

I(A : E|m = 0) = log2(3)−H
[(v + 2y)2

3FA
,
(v − y)2

3FA
,
(v − y)2

3FA

]
(8.25)

I(A : E|m 6= 0) = log2(3)−H
[2(x+ 2y)2

3(1− FA)
,

2(x− y)2

3(1− FA)
,

2(x− y)2

3(1− FA)

]
, (8.26)

where FA = v2 + 2y2, since y = z, as previously discussed. On an average, Eve’s

information is

IAE = FAI(A : E|m = 0) + (1− FA)I(A : E|m 6= 0). (8.27)

The mutual information between Alice and Bob is given by:

IAB = log23−H
[
FA,

1− FA
2

,
1− FA

2

]
(8.28)

To get a lower-bound on the secret key rate i.e. the rate R at which Alice and Bob

can generate a secret key via privacy amplification, we use the Csisz̀ar and Körner

theorem [Csiszar 78], which states that if Alice, Bob and Eve share many independent

realizations of a probability distribution p(a, b, e), then there exists a protocol that

generates a number of key bits per realization satisfying

R ≥ max(IAB − IAE, IAB − IAE) (8.29)

Since Eve exactly knows Bob’s error m, IAE = IBE , for one-way communication on

the classical channel, IAB > IAE is the necessary and sufficient condition to generate

a key between Alice and Bob. Thus, the protocol ceases to generate secret key bits

when Eve’s and Bob’s information match.

The maximal fidelity FA, which provides the minimal error rate, such that IAB = IAE,

comes out to be equal to:

FA = 0.7753 (8.30)

Thus, the acceptable error rate D equals to

D = 1− FA = 0.2247. (8.31)
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8.5 Conclusion and furthur discussion

The protocol described for qutrits in the previous section can be genralized for even

higher dimensions. Say, the dimension of the quantum system used is described by d.

The maximally entangled d-dimensional state is:

|ψ+
d 〉 =

1√
d

d−1∑
j=0

|jj〉. (8.32)

The Bell inequality for d dimensions is defined as [Collins 02]:

Sd =

[ d
2
]−1∑
k=0

(
1− 2k

d− 1

){
+ [P (A1 = B1 + k) + P (B1 = A2 + k + 1)

+ P (A2 = B2 + k) + P (B2 = A1 + k)]− [P (A1 = B1 − k − 1)+

P (B1 = A2 − k) + P (A2 = B2 − k − 1) + P (B2 = A1 − k − 1)]
}
. (8.33)

Similar to the qutrit case, the bases that maximally violate d dimensional Bell in-

equality are:

|lφ〉 =
1√
d

d−1∑
k=0

eik(
2πl
d

+φ)|k〉, (8.34)

with l = 0,1,...,(d−1), and φi = 2π
4d
i (with i = 0,1,2,3). The state |ψ+

d 〉 can be written

as the following:

|ψ+
d 〉 =

1√
d

d−1∑
l=0

|lφ〉 ⊗ |l∗φ〉, (8.35)

where

|l∗φ〉 =
1√
d

d−1∑
k=0

e−ik(
2πl
d

+φ)|k〉. (8.36)

The maximal violation of the Bell inequality described in equation (8.33) for the

maximally entangled state for two qudits Cd ⊗ Cd is described in Table 8.1. It can be

seen that the maximal violation of Bell inequality for the maximally entangled state

|ψ+
d 〉 increases with dimension d.

The generalized protocol will be similar to the protocol described for qutrits, where

Alice chooses her measurements in basis |lφ〉 described in equation (8.34), and Bob

chooses his measurements in the conjugate basis |l∗φ〉. The cases with both of them
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Dimension d Violation for |ψ+
d 〉

3 2.8729
4 2.8962
5 2.9105
6 2.9202
7 2.9272
8 2.9324

Table 8.1: Violation of Bell inequality for state |ψ+
d 〉 [Aćın 02].

measuring the same phase φi could be use to generate the secret key, and the rest of

the cases could be use to check the Bell violation (similar to the case of qutrits).

In presence of some noise, the maximally entangled state |ψ+
d 〉 transforms in a state

ρ described by:

ρ = p|ψ+
d 〉〈ψ+

d |+ (1− p) 1
d2

(8.37)

where p is the probability that the state is unaffected by noise. The value of Bell

inequality for state ρ is given by [Collins 02]

Sd(ρ) = pSd(|ψ+
d 〉). (8.38)

This implies that the Bell inequality Sd(ρ) is violated if p > 2
Sd(|ψ+

d 〉)
= pmin. Since, the

violation of Bell violation increases with dimension d, therefore pmin decreases with

increase in dimensions. Thus, as dimension d increases, the robustness against noise

increases.
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Chapter 9

Drawbacks and loopholes of

DI-QKD

As discussed in previous chapters, device-independent quantum key distribution in

principle provides a higher security than the standard device-dependent QKD. But

till now, we have only looked at the theoretical aspects of it. The physical implemen-

tations of DI-QKD are quite challenging. Since the security of DI-QKD rely on the

violation of some Bell inequalities, the protocols are subject to loopholes and draw-

backs, which impacts its security. We describe some of those drawbacks and loophole

of DI-QKD as follows:

• The detection loophole : In the physical implementation to distribute en-

tanglement between Alice and Bob, photon-based signals are used. But, the

detection of single photons is difficult. It is possible that these signals may not

get detected. This may happen due to some inefficiencies of the detectors or due

to some particle losses that occurred between the source and the detectors. This

means that some trials in a Bell experiment give a “no outcome” result. The

detection-loophole exploits the idea that it is a local variable that determines

whether a photon signal will be registered or not. Only if the measurement

settings of the device agrees with a scheme that is pre-determined, then only

the signal will be detected. In this way, provided that the detector efficiencies

η are below a certain threshold, non-local correlation can be reproduced by a

purely local model.
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Experiments testing non-locality have been performed to overcome the detection

loophole, by only recording the events in which both Alice’s and Bob’s measure-

ment devices produced an output, and discarding events in which no signal has

been detected. This accounts to performing a post-selection on the measure-

ment data. In a non-adversarial setting this is not problematic [Pearle 70], but

if it is presumed that the measurement devices are adversarial (provided by an

untrusted party) and “no outcome” results are discarded, then it is possible

that, the adversary might selectively choose a “no outcome” result, allowing

them to post-select for favourable conditions. In particular, the devices may

post-select for a particular measurement setting, allowing the adversary to have

control over the measurement settings. Thus, post-selection makes it possible

for the adversary to fake the violation of a Bell inequality, even in a purely local

theory [Clauser 74].

One possible remedy to the above problem is as follows: The proper security

analysis of DI-QKD with inefficient detectors must take into account all mea-

surement outcomes produced by Alice’s and Bob’s devices, which should also

include a “no-detection” outcome. A possible strategy would be to make a pre-

agreement, that a lack of answer would be treated as one of the measurement

outcome (which shall remain same during the experiment). A violation of Bell

inequalities produced by the above statistics is conclusive.

• The locality loophole : While performing the key distribution, there is a

possibility that devices could talk to each other, such that one party may have

information about the input (measurement settings) of the other, before pro-

ducing his/her own output. It is then trivial for a classical model to account for

the non-locality of the correlations that are observed i.e. it is trivial to violate

a Bell’s inequality in a classical deterministic way, and therefore the security is

compromised. This is known as the locality loophole[Aspect 75].

The locality loophole is overcome by performing measurements at a space-like

separation between Alice and Bob, such that no signals with speed less than

the speed of light could travel between their devices. In this way, the parties

cannot have the knowledge about the measurement settings of the other.
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In the context of device-independence, it is not necessary to close the locality

loophole. It is sufficient just to guarantee that no photon signals could travel

between Alice and Bob. This can be achieved by creating Alice’s and Bob’s

laboratories to be secure, such that no unwanted information can leak to the

outside. This is similar to the assumption made in standard QKD. Without this

assumption, any kind of quantum key distribution does not make sense.

• Many of the first DI-QKD protocols using violation of Bell inequality as a basis

for key distribution [Barrett 05a, Mayers 98b] have negligible key rates as well

poor noise tolerance as compared to the standard QKD. The protocol by Barret,

Haardy and Kent require as many number of device as the number of entangled

pairs in the protocol, so as to keep up with the no-signalling requirements in

the protocol. This is a major drawback. Many protocols have been developed

since then, which provide much better key rates and noise tolerance, but only

within certain restrictions [Pironio 09, Aćın 06a, McKague 09].

• Even if the locality loophole is closed, the practical applications of DI-QKD are

challenging, because at large separations, it is difficult to generate correlations

that violate a Bell inequality.

• The coincidence loophole : Photons used in most of the Bell experiments are

very much likely to get absorbed in the air or some other surfaces before reaching

the detector. It is also possible that photons from some other source (non-signal

photons) or dark counts lead to clicks in one of the detector. Therefore, after

the experiment, the users pick out coincidences (i.e the times when detectors of

both parties clicked simultaneously) from the collected data for further analysis,

by making a decision about whether their detection times are close or not.

This could be exploited by Eve. She could manufacture devices that delay the

detection time of each of the two particles by some amount on the basis of some

hidden variables carried by the particles and the detector settings, which can

lead to fake correlations being observed [Larsson 04].

The coincidence loophole can be ruled out by working with some fixed detection

windows, which should be short enough that most photon pairs interacting with

the detectors in the same window originate with the same emission statistics
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(representing a single click), and long enough that the two components of a

particular photon pair are not separated into two different windows due to the

window boundary.

Although DI-QKD contains many drawbacks and loopholes, it is still considered to

be the one which provides the strongest form of secure communication. The practical

value of DI-QKD is still limited, due to various loopholes and negligible key rate

it achieves, but its theoretical advancements are extensive. In recent developments,

much of the focus is laid towards designing loophole-free Bell experiments, which

should be within experimental reach in the near future.
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Chapter 10

Summary & Conclusions

In this thesis, we have looked at the quantum key distribution process in a device-

independent scenario. Quantum key distribution (QKD) protocols allow two sepa-

rated parties to share secure private key over a public channel. The security of the

key is guaranteed by the laws of quantum mechanics, given that the error rate is be-

low a certain threshold. But the security of the traditional QKD schemes is based on

several assumptions, which could result in unsafe communications in their practical

applications.

Device-independent quantum key distribution provides a relaxation to the assumption

of devices being truthful, which is one of the fundamental assumptions of standard

QKD. In DI-QKD, no assumptions are made even about the operational specifications

of the devices. Rather, their security is based on some tests of non-locality, such as

the violation of Bell inequality. Several protocols based on the concept of device

independence have been formulated.

We analyzed the basic device-independent protocol for qubits (2-level systems), whose

security is based on the violation of CHSH inequality. The security of the protocol,

in the presence of an adversary, which was limited only by no-signalling alone, was

analyzed. We extended the notion of device independence for qutrits (3-level sys-

tems) and higher dimensions. The basis of security was still the violation of higher

dimensional Bell inequalities. We concluded that, as the dimensions of the quantum

systems increases, the protocols for key sharing become more and more robust to
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noise. Further, the limitations in physical implementations of DI-QKD due to many

loopholes and drawbacks were also assessed.

Future outlook

The research in DI-QKD has a lot of potential and several of its possible domains are

yet to be explored. We discuss some of the possible future directions of the field, that

could yield significant results in the near future.

A significant area of research in DI-QKD is to overcome its shortcomings, so as to

make DI-QKD experimentally feasible. Some possibilities to overcome the drawbacks

and loopholes of DI-QKD has been discussed in Chapter 9, but still a lot of work has

to be done to make DI loophole-free.

Throughout the thesis, we have looked at eavesdropping strategies for DI correspond-

ing to individual attacks only. It could be analyzed how the security of the protocols

is modified in case of collective attacks. It is worth looking at whether the violation

of Bell inequalities is a sufficient condition for security against collective attacks as

well. Some part of this has been analyzed in [Pironio 09].

Although, there has been significant amount of research in the field of device inde-

pendence quantum key distribution, but it only had success from a theoretical point

of view. The protocols discussed in Chapter 8 as well in [Masanes 06], prove un-

conditional security of QKD protocols against eavesdroppers limited by no-signalling,

but the key rates and noise resistance achieved cannot be practically implemented,

when they are applied to quantum correlations. The possibility of incorporating new

constraints associated with quantum mechanics to enhance key rates and resistance

to noise can be looked upon.

Till now, DI-QKD is said to be practically impossible. Techniques such as semi-

device-independent quantum key distribution (SDI-QKD), have been thought of as

an alternative of DI-QKD. In SDI-QKD, devices used by trusted parties are still non-

characterized (similar to the DI case), but the dimensions of the quantum systems used

in the protocol are assumed to be bounded. In this form of DI security, the devices

are assumed to produce quantum systems of a particular dimension. This assumption
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make this form of quantum key distribution experimentally feasible. SDI-QKD for

one-way communication has been proven in [Paw lowski 11], but applying it to more

general attacks, as well as study of robustness against imperfections such as detection

efficiency and losses still remains an open question. It would also be interesting to

find relationship between the entanglement-based DI and one-way SDI based QKD.
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Appendix A

Basic probability theory

The knowledge of some elementary probability theory is necessary in the study of

quantum computation and information. As discussed, the concept of device-independence

in entirely based on the family of conditional probability distributions of the observed

statistics of the devices used. Therefore, some fundamental definitions of probabil-

ity are needed to be understood. This appendix reviews some basic definitions and

results of probability theory that have been used in some calculations in this thesis.

The essence of probability theory comes from the concept of a random variable. The

possible values a random variable may take represents the possible outcomes of an

event that is yet to occur. The random variable is denoted by capital letters, A, and

the value that it takes is denoted by small letters, a. A random variable A may take

a value a, from a set of possible values, with probability P (A = a). For a random

variable, its probability distribution describes how the probabilities are distributed

over the possible values of the random variable. In this discussion, we assume that

the set of possible values Ω of a random variable is finite.

Some basic definitions of probabilities of random variables are described as follows.

Definition A.0.1. The conditional probability of a random variable A = a given

another random variable B = b is defined as

P (A = a|B = b) =
P (A = a,B = b)

P (B = b)
(A.1)
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where P (A,B) is the probability of A = a and B = b, also known as the joint

probability distribution.

When P (B = b) = 0, it is by convention that P (A = a|B = b) = 0. A conditional

probability distribution can be seen as a system taking as input the random variable

B and giving a (probabilistic) output A, depending on the input b.

Definition A.0.2. Random variables A and B are said to be independent, if

P (A = a, B = b) = P (A = a)P (B = b), ∀ a, b. (A.2)

When the joint probability distribution of two (or more) random variables is given,

we sometimes consider the marginal distribution of X. This is the distribution of the

random variable A of a joint distribution when the value of the second random variable

B is ignored.

Definition A.0.3. Given the joint probability distribution P (A = a,B = b), of two

random variables A = a and B = b, the marginal distribution of A is given by

P (A = a) =
∑
b

P (A = a,B = b). (A.3)

Here, the sum is over all possible values b of B.

The relationship between conditional probabilities for B given A to those for A given

B is given by Bayes’ theorem.

Definition A.0.4. For random variables A = a and B = b, Bayes’ theorem states

that

P (A = a|B = b) = P (B = b|A = a)
P (A = a)

P (B = b)
. (A.4)

Proof. By equation (A.1),

P (A = a|B = b) =
P (A = a,B = b)

P (B = b)
.
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Multiplying and dividing the right side of equation (A.4) by P (A = a), gives

P (A = a|B = b) =
P (A = a, B = b)P (A = a)

P (B = b)P (A = a)
, (A.5)

where P (A=a, B=b)
P (A=a)

= P (B = b|A = a). Hence,

P (A = a|B = b) = P (B = b|A = a)
P (A = a)

P (B = b)
. (A.6)

Another important result of probability theory is the law of total probability. It is

defined as

Definition A.0.5. For two random variables A and B, the probability of B can be

expressed in terms of probabilities of A, and the conditional probabilities B given A,

P (B = b) =
∑
a

P (B = b|A = a)P (A = a). (A.7)

Here, sum is taken over all possible values a of A.

Proof. Using equation (A.1),

P (B = b|A = a) =
P (A = a,B = b)

P (A = a)
.

Therefore,

∑
a

P (B = b|A = a)p(A = a) =
∑
a

P (A = a,B = b)

P (A = a)
P (A = a) (A.8)

=
∑
a

P (A = a,B = b). (A.9)

Since, the sum is over all possible values A can take, therefore

∑
a

P (B = b|A = a)P (A = a) = P (B = b).
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We also define the expectation or average for a random variable A.

Definition A.0.6. The expectation of a random variable A is given by:

E(A) ≡ 〈A〉 =
∑
a

P (a)a. (A.10)

Here also, the sum is taken over all possible values of A.

We have provided a very brief overview of some definitions of probability theory. There

are many texts available which provide a more detailed introduction to the theory of

probability. One such text for reference is: Probability and random processes by

Grimmett and Stirzaker [Grimmett 01].
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Appendix B

BB84: not secure in the

device-independent scenario

We mentioned in Chapter 4, that the BB84 quantum key distribution protocol is no

longer secure, if Alice and Bob share four dimensional quantum systems, instead of

qubits. We illustrate this using the following example.

We consider the entanglement-based version of the BB84 protocol [Bennett 14]. Both

Alice and Bob have a measuring device each. Suppose Alice’s device takes in a clas-

sical input (measurement setting) a ∈ {0,1}, and produces an output (measurement

outcome) x ∈ {0,1}. Similarly, Bob’s device takes an input b ∈ {0,1}, and produces

an output y ∈ {0,1}. We assume that both devices act on a two-dimensional Hilbert

space of the incoming particles emitted by a source. Say, the measurement setting ‘0’

corresponds to measurement in σx basis and the measurement setting ‘1’ corresponds

to measurement in σz. Suppose that, in the absence of noise, Alice and Bob observe

the correlations given below:

P (xy|00) = P (xy|11) = 1/2 if x = y,

P (xy|01) = P (xy|10) = 1/4 ∀ x, y. (B.1)

This implies that, if Alice and Bob make a measurement in the same bases, their

outcomes are always perfectly correlated, otherwise, they get completely random out-

comes. Suppose, that the state |φ〉 ∈ C2⊗C2 correspond to the two-qubit state of the
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incoming particles. Therefore, the above correlations in terms of operators σx and σz

can be described as:

〈φ|σz ⊗ σz|φ〉 = 〈φ|σz ⊗ σz|φ〉 = 1,

〈φ|σz ⊗ σx|φ〉 = 〈φ|σx ⊗ σz|φ〉 = 0.
(B.2)

For the maximally entangled state (|00〉+|11〉)√
2

, the above set of conditions perfectly

hold. Therefore, Alice and Bob can securely extract a key from their measurement

data, using the state and measurement settings described above [Pironio 09].

But, in the case of DI scheme, Alice and Bob cannot presume that their device’s

measurement settings ‘0’ and ‘1’ correspond to σx and σz respectively. Also, there

can be no assumption made on the dimension of the Hilbert space. Suppose that the

source (controlled by Eve) emits a 4-dimensional (C4 ⊗ C4) state, given by a density

matrix ρAB:

ρAB =
1

4

1∑
s0,s1=0

(|s0, s1〉〈s0s1|)A ⊗ (|s0, s1〉〈s0s1|)B, (B.3)

and the device’s measurement settings ‘0’ and ‘1’ correspond to σz ⊗ I and I ⊗
σz respectively. Similar to the device-dependent case, here also Alice’s and Bob’s

outcomes are perfectly correlated if their measurement bases are the same, and are

completely uncorrelated otherwise. However, instead of the state ρAB, suppose Eve

sends a tripartite state ρABE given by:

ρABE =
1

4

1∑
s0,s1=0

(|s0, s1〉〈s0s1|)A ⊗ (|s0, s1〉〈s0s1|)B ⊗ (|s0, s1〉〈s0s1|)E. (B.4)

Now, Eve can have a perfect copy of Alice’s and Bob’s local states, and therefore will

have complete knowledge of their measurement outcomes.

Thus, the device-independent variant of BB84 protocol is insecure, and the assump-

tion of a 2-dimensional Hilbert space in the usual BB84 protocol is really crucial.

Relaxing this assumption (as seen in the above example) invalidates the security of

the protocol.
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Appendix C

Derivation of CHSH inequality

In this appendix, we derive the results of the CHSH inequality, as defined in Section

5.1. First, we provide an overview of the idea of local polytope and its facets, which

will be furthur used to calculate the constraints for the inequality. Suppose, the

measurement settings of Alice are described by a ∈ A and her measurement outcomes

are denoted by x ∈ X . Similarly, the measurement settings of Bob are described by b

∈ B, and his measurement outcomes are denoted by y ∈ Y . Here (A,B) and (X ,Y)

denote the sets of possible inputs and outputs of Alice’s and Bob’s devices. For a

particular scenario: (A,X ;B,Y), the set L of all probability distributions that can be

obtained from a local variable theory is convex [Scarani 13]. Mathematically stating,

if probability distributions Pi ∈ L and Pj ∈ L, then αPi + (1− α)Pj ∈ L, for all α

∈ [0,1].

The set L can be completely determined by describing all extremal points belonging

to that set. Extremal points are those points that cannot be written as convex com-

bination of other points. Any P ∈ L can be written as a convex sum of deterministic

local variables. Moreover, each deterministic local point is an extremal point of L. A

convex set with a finite number of extremal points is called a polytope. Thus, L is a

local polytope for the scenario (A,X ;B,Y).

A polytope L in Rk is bound by (k− 1)-dimensional hyperplanes called facets. These

facets must have at least D extremal points lying on it, while the other extremal

points lie on the same side of it. Mathematically, it can be stated as follows: if the
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points P of the facet follow the equation n.P = f , then

n.P ≤ f ∀ P ∈ L, (C.1)

where n ∈ Rk is the vector normal to the facet, directed outside the polytope. In case

of probability polytope like L, some facets are given by equations P (x, y|a, b) = 0 and

P (x, y|a, b) = 1. These facets are trivial, since these constraints are satisfied by all

probability distributions, 0 ≤ P (x, y|a, b) ≤ 1. We ought to look at other non-trivial

facets given by equation (C.1). These non-trivial facets form the well-known Bell

inequalities.

For the case of CHSH inequality, there are two measurement settings and two possible

measurement outcomes each for Alice’s and Bob’s device. We denote the measurement

settings by (a,b) and assume that the outcomes of the measurements are binary. We

aim to look for constraints for set of probability distribution P belonging to L , by

working out the facets of L.

For such a scenario, the correlation-coefficient is defined as:

Exy = P (x = y|a, b)− P (x 6= y|a, b). (C.2)

We note that any quadruple of numbers m = (E00, E01, E10, E11) is a valid correlation

vector, with an additional constraint

− 1 ≤ Eab ≤ 1. (C.3)

Therefore, vectors with ||m||2 = 4, corresponding to all those vectors with +1 and −1

as their components, are the extremal points of a polytope in R4. There exist 16 such

vectors.

We assume that the measurement outcome x, y ∈ {+1,−1}, implying thatEab=〈xa, yb〉.
For deterministic local points, Eab

D
= xayb, which implies

E00E01E10E11 = 1. (C.4)
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So, the extremal points of the local correlation polytope are the vectors given by:

t1 = (+1,+1,+1,+1) t5 = −t1 = (−1,−1,−1,−1)

t2 = (+1,+1,−1,−1) t6 = −t2 = (−1,−1,+1,+1)

t3 = (+1,−1,+1,−1) t7 = −t3 = (−1,+1,−1,+1)

t4 = (+1,−1,−1,+1) t8 = −t4 = (−1,+1,+1,−1). (C.5)

The set {t1, t2, t3, t4} are mutually orthogonal, and are therefore linearly indepen-

dent. This signifies that R4 is the minimum dimension for a possible local correlation

polytope. Now, to define a three dimensional hyperplane, we require 4 linearly inde-

pendent vectors. The sets of four linearly independent vectors are given by:

Ur = {r1t1, r2t2, r3t3, r4t4}, (C.6)

with r = [r1, r2, r3, r4] ∈ {+1,-1}4. The solution of equation nr ·(rktk) = 4, gives the

normal to the hyperplane Ur, which comes out to be equal to nr =
∑4

k=1 rktk, since

ti ·tk = 4δij. Therefore, each set of Ur defines a facet of the local polytope L following:

nr ·m = 4, (C.7)

where nr =
∑4

k=1 rktk. There are 16 facets for the local correlation polytope. Exam-

ining these facets, we calculate the constraints for L. These are described as follows.

n[+1,+1,+1,+1] = (4, 0, 0, 0) =⇒ 4E00 ≤ 4,

n[+1,+1,+1,−1] = (2, 2, 2,−2) =⇒ 2E00 + 2E01 + 2E10 − 2E11 ≤ 4,

n[+1,+1,−1,+1] = (2, 2,−2, 2) =⇒ 2E00 + 2E01 − 2E10 + 2E11 ≤ 4,

n[+1,−1,+1,+1] = (2,−2, 2, 2) =⇒ 2E00 − 2E01 + 2E10 + 2E11 ≤ 4,

n[+1,+1,−1,−1] = (0, 4, 0, 0) =⇒ 4E01 ≤ 4,

n[+1,−1,+1,−1] = (0, 0, 4, 0) =⇒ 4E10 ≤ 4,

n[+1,−1,−1,+1] = (0, 0, 0, 4) =⇒ 4E11 ≤ 4,

n[−1,+1,+1,+1] = (−2, 2, 2, 2) =⇒ − 2E00 + 2E01 + 2E10 + 2E11 ≤ 4, (C.8)
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The other 8 constraints would be similar, as n−r = −nr. The constraints E00 ≤ 1,

E01 ≤ 1, E10 ≤ 1, and E11 ≤ 1 are trivial, as given by equation (C.3). The other four

equations (on relabeling of inputs and/outputs) give the constraint:

S ≡ E00 + E01 + E10 − E11 ≤ 2. (C.9)

This constraint is known as the CHSH inequality and is the same as given in equation

(5.3). It is not trivial, and can be violated by some valid correlation vectors, which do

not belong to the local correlation polytope. For example, a vector (+1,+1,+1,−1) is

a valid correlation vector, but violates the above inequality up to the value of S = 4.

This concludes the derivation.
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