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Abstract

Understanding the nature of fundamental particles and their interactions is a ma-
jor step towards unravelling the existing mysteries of the universe and to probe new
physics. That’s why scattering experiments are performed at colliders on such a large
scale. What lies at the core of these collider experiments are the gauge-invariant
perturbative scattering amplitudes which provide essential information about the
cross-sections of these scattering processes. This thesis gives a glimpse about the
traditional Feynman diagrammatic approach and its limitations, when it comes to
calculate these scattering amplitudes. We review modern techniques like Trace
based Colour-Decompositions and Spinor-Helicity Formalism and discuss,
how they have an upper hand over traditional approach, specially while calculat-
ing multi-parton or multi-leg scattering amplitudes in the theory of QCD. We see,
how symmetries and compact expressions like Parke-Taylor MHV amplitudes can
make the computation of such complicated scattering amplitudes less intense and
more efficient. We further discuss recursive techniques like BCFW Recursion
Relation that entirely discard the need of Feynman diagrams and just uses the
analytic properties of scattering amplitudes to write higher multiplicity amplitudes
in terms of lower ones. We give a proof of Parke-Taylor formulae for multi-gluons
and also for MHV amplitudes involving a quark-anti quark pair, using these BCFW
recursion relations. This thesis just sticks to massless particles and talks about am-
plitudes only at tree-level. However, these techniques can be used to calculate higher
order perturbative corrections that involves loop as well. We use BCFW recursion
technique and MHV amplitudes to numerically calculate Next to Leading Order
(NLO) i.e., one gluon real correction to diphoton production at hadron colliders.
We see how this technique can make the calculations less cumbersome and give
results with higher accuracy.

ix



Chapter 1

QCD : A Brief Introduction

The aim of this chapter is to review some of the basic concepts from the theory of
the Standard Model, in particular, our goal is to understand the fundamentals of
perturbative Quantum Chromodynamics (QCD). The idea is just to use and further
develop these concepts throughout the thesis, wherever necessary. We do not wish
to achieve a broad and detailed understanding of these already well known topics. A
rigorous and thorough analysis of these can be found in many sources like the lectures
presented by Benjamin Grinstein at University of California, San Diego [Gri06], or
in various known field theory textbooks, e.g. [PS93].

1.1 Perturbative QCD

The Standard Model is the theory which classifies all known elementary particles
that constitute matter and also describes the three fundamental forces of nature,
except the gravitational force. It is a gauge theory defined by the local gauge sym-
metry group SU(3)×SU(2)×U(1), all three factors giving rise to the fundamental
interactions :

• The gauge group SU(2)×U(1) describes the unified theory of electromagnetic
and weak interactions between leptons and quarks - the Electroweak theory.

• Electroweak symmetry is spontaneously broken into U(1) gauge group de-
scribing electromagnetic interactions by Higgs mechanism which generates the
masses of charged leptons and quarks.

• The local gauge group SU(3) describes the theory of strong interactions among
coloured quarks and gluons - Quantum Chromodynamics.

We know that there are many parallels between QCD and QED. One can say that
the mathematical structure of QCD is just an extension of QED, see the lectures

1
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given at the University of Frieburg by Christian Schwinn [Sch15]. The strong
interactions between quarks in QCD is described by the exchange of massless spin-
1 vector bosons called gluons, similar to the role played by photons in theory of
electromagnetic interactions. Unlike photons though, gluons carry charge - colour
quantum number, which is responsible for the self interactions among gluons. Both
the theories can be considered as gauge theories because for both, Lagrangian is
invariant under gauge transformations. However, unlike the QED which is described
by the abelian gauge group U(1), QCD is a non-abelian gauge theory with symmetry
group SU(3).

If we consider n types of non-interacting quarks, say with masses mi, then the
classical Lagrangian density [Sey10] is given by

L =
n∑
i

q̄Ai (i/∂ −mi)ABq
B
i , (1.1)

where (i/∂ − mi)AB is proportional to identity matrix in colour space. The above
Lagrangian has a global SU(Nc) symmetry, Nc = 3 for QCD,

qA −→ q′A = exp(it.θ)ABqB. (1.2)

Now for L to have a local transformation invariance,

qA(x) −→ q′A(x) = exp(it.θ(x))ABqB(x), (1.3)

we define the covariant derivative in such a way :

Dµ,AB = ∂µ1AB − igs(t.Aµ)AB, (1.4)

where Aa
µ are coloured vector fields with the transformation property that allows

D′
µ,ABq

′
B(x) = exp(it · θ(x))ABDµ,BCqC(x), (1.5)

to give,

t·A′
µ = exp(it·θ(x))t·Aµ exp(−it·θ(x))+ i

gs

(
∂µ exp(it · θ(x))

)
exp(−it·θ(x)). (1.6)

Now, since we have introduced a new vector field Aµ, an additional kinetic energy
term should be added to make the Lagrangian physical.

Lkinetic = −1

4
F a
µνF

µν
a , (1.7)

where F a
µν is a non-abelian field strength tensor defined as,

F a
µν = ∂µA

a
ν − ∂νA

a
µ + gsf

abcAb
µA

c
ν , (1.8)

2 Chapter 1 Gaurav Singh
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where gs is the coupling constant of the strong interaction and is defined as,

g2s
4π

= αs. (1.9)

The last term in equation (1.8) makes sure that the equation (1.7) remains invariant
under gauge transformations. Finally, we write the Lagrangian for the perturbative
QCD,

LQCD = −1

4
F a
µνF

µν
a +

n∑
i

q̄Ai
(
i /D −mi

)
AB

qBi − 1

2η

(
∂µAa

µ

)2
+ Lghost. (1.10)

Here, a or b denotes colour indices from 1 to N2
c − 1 and A or B denotes colour

indices ranging from 1 to Nc. The third term in above equation is the gauge fixing
term, with η being a parameter for the choice of gauge.

The matrices ta are basis set of N2
c −1 matrices that generates the group SU(Nc)

and are related to the structure constants fabc of the group by the relation,

[ta, tb] = ifabctc, (1.11)

and satisfy the normalization condition,

Tr(tatb) =
1

2
δab. (1.12)

For quantization of a non-abelian gauge theory, one need to put the Lghost term
describing the contribution from unphysical fields. The ghost fields are complex
scalar fields but follow Fermi statistics. These are necessary because they cancel
off the unphysical degrees of freedom which arise when scattering amplitudes are
computed. However, these are beyond the scope of our work and can be ignored
because in physical gauges, their contribution always vanishes, [Sey10].

1.2 Feynman rules for QCD

We saw the form of Lagrangian, equation (1.10), for this non-abelian gauge theory.
If we simplify it further, we obtain a form with clearly distinguishable interaction
terms which can be used to construct the Feynman rules for propagators and vertices.

L = q̄(i/∂ −m)q − 1

4

(
∂µA

a
ν − ∂νA

a
µ

)2
+ gsA

a
µq̄γ

µtaq−

− gsf
abc
(
∂µA

a
ν

)
AµbAνc − 1

4
g2s

(
f eabAa

µA
b
ν

)(
f ecdAµcAνd

) (1.13)

Chapter 1 Gaurav Singh 3
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External Lines

� Incoming quark

k
u(k)

� Outgoing quark

k
ū(k)

� Incoming antiquark

k
v̄(k)

� Outgoing antiquark

k
v(k)

� Incoming gluon

k
εµ(k)

� Outgoing gluon

k
ε∗µ(k)

Propagators

� Quark propagator

k

i j iδij
(/k +m)

k2 −m2 + iε

4 Chapter 1 Gaurav Singh
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� Gluon propagator

k
a, µ b, ν −iδab

k2 + iε

[
gµν − (1− η)

kµkν
k2

]
� Scalar propagator

k

a b
−iδab
k2 + iε

η fixes the gauge : η =

1, Feynman gauge

0, Landau gauge

Vertices

� Gluon-Quark vertex

i

j

a, µ igsγ
µtaji

� Three-gluon vertex

r

q
p

c, ν

b, µ

a, ρ
−gsf

abc[ (p−q)ν gρµ+(q−r)ρ gµν+(r−p)µ gνρ ]

Chapter 1 Gaurav Singh 5
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� Four-gluon vertex

c, νb, µ

a, ρ d, σ

−ig2sf
abef cde

(
gρνgµσ − gρσgµν

)
−ig2sf

acef bde
(
gρµgνσ − gρσgµν

)
−ig2sf

adef cbe
(
gρνgµσ − gρµgσν

)

We will be using these Feynman rules for calculating the scattering amplitudes
for physical processes in Quantum Chromodynamics. Even though such rules come
in quite handy, still the calculations remain very complex and cumbersome. As we
will proceed, we will see what kind of complications one face and how they can be
tackled in some efficient and productive ways.

6 Chapter 1 Gaurav Singh



Chapter 2

Modern Amplitude Methods

As stated before, to understand the basic structure of perturbative quantum field
theory and to probe new physics, one need to understand scattering amplitudes
which make the core of QFT. For a detailed understanding of the same, one can
refer to many textbooks and reviews, like [EH14]. The following sections review
some of the modern and traditional amplitude calculating methods which are well-
known till date. These techniques have been available for several years and are
very efficient, specially when it comes to tree-amplitudes. Loop calculations are
way more involved and it becomes impossible to perform them analytically and
sometimes, even numerical evaluation has its limit. However, we won’t be dealing
with any loop calculations in this report and will just stick to tree-level amplitudes
i.e., we will be comparing traditional and modern techniques, at tree-level only.

2.1 Traditional approach

The well known and the most followed approach, at least in any quantum field
theory course, is the traditional Feynman diagrammatic approach where we first
derive the Feynman rules from the Lagrangian of a theory like QED, QCD, etc.
and using these rules, scattering amplitude of a process is written as a sum of all
possible Feynman diagrams. From this amplitude, one can calculate differential
cross-section, dσ

dΩ
which is related to the amplitude, M as

dσ

dΩ
∝ |M|2, (2.1)

and the cross section, σ by integrating the differential cross-section over the
phase space. These are important because they are the observables of interest in
any collider physics experiment. However, the objective of this review is not to
calculate cross-sections but scattering amplitudes and therefore, we will be sticking
to that only except for some cases where we will calculate the differential cross-

7
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section as well. So, for future reference (in case needed), we will just itemize the
main steps of calculating unpolarised cross-section using the traditional approach :

1. Extracting Feynman rules from the Lagrangian.

2. Writing amplitude as the summation of all possible Feynman diagrams. This
means, all possible ways in which a particular scattering process can happen,
are incorporated.

3. Squaring the scattering amplitude (at the beginning only).

4. Summing analytically over the spin of the external states and averaging over
the spin of initial states.

5. Summing over colour quantum number, in case, quarks and/or gluons are
involved.

6. Performing spin-sum using the completeness relations of the Dirac spinors,∑
s=1,2

us(k)ūs(k) = /k +m, (2.2)

∑
s=1,2

vs(k)v̄s(k) = /k −m. (2.3)

7. Using trace technology i.e., identities derived from the Dirac algebra such as,

{γµ, γν} = 2gµν , (2.4)

Tr[1] = 4, (2.5)

Tr[γµγν ] = 4gµν . (2.6)

Product of any odd number of the γµ matrices have zero traces,

Tr[γµ] = 0, T r[γµγνγρ] = 0, (2.7)

Tr[γµγνγργσ] = 4(gµνgρσ + gµσgνρ − gµρgνσ), (2.8)

Tr[γ5] = 0, T r[γµγνγ5] = 0, (2.9)

Tr[γµγνγργσγ5] = −4iεµνρσ, (2.10)

Tr[γµγνγργσ.....] = Tr[.....γσγργνγµ]. (2.11)

8. Performing Lorentz algebra, like going into centre of mass (CM) frame to
obtain a much simpler expression for the amplitude - the spin-averaged matrix
element, M.

9. Converting the expression into a form involving terms with masses and Man-
delstam variables.

8 Chapter 2 Gaurav Singh
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p

p′

Q

γ

k

k′

e−

e+

q

q̄

Figure 2.1: e−e+ −→ qq̄

10. And finally, calculating the differential cross-section

dσ

dΩ

∣∣∣∣
CM

=
∑
colour

1

64π2E2
CM

|K|
|P|

|M|2 (2.12)

Let’s look at an example to understand this approach more clearly.

2.1.1 An example from QED

e−(p, s) + e+(p′, s′) −→ q(k, r) + q̄(k′, r′)

For this process, the only possible Feynman diagram (lowest order) is Figure 2.1.
Now, using the Feynman rules of QED, the matrix element, M can be computed

as,

iM = v̄s′(p
′)(−ieγµ)us(p)(

−igµν
Q2

)ūr(k)(−ieqγ
ν)vr′(k

′) (2.13)

= v̄s′(p
′)(−ieγµ)us(p)ūr(k)(

−eq
Q2

)(gµνγ
ν)vr′(k

′) (2.14)

=
ieeq
Q2

(v̄s′(p
′)γµus(p))(ūr(k)γµvr′(k

′)). (2.15)

Taking complex conjugate of the matrix element,

− iM∗ =
−ieeq
Q2

(v̄s′(p
′)γµus(p))

∗(ūr(k)γµvr′(k
′))∗. (2.16)

Now consider,

(v̄γµu)∗ = (v†γ◦γµu)∗. (2.17)

Chapter 2 Gaurav Singh 9
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Say, we take an element,

[v̄1iγ
µ
ijuj1]

∗ = [v†1kγ
◦
kiγ

µ
ijuj1]

∗ (2.18)

= vk1γ
◦
ki(γ

µ
ij)

∗u∗
j1 (2.19)

= vk1γ
◦
ki(γ

µ)†jiu
†
1j (2.20)

= u†
ij(γ

µ)†jiγ
◦
ikvk1 (2.21)

= u†γ◦γµv (2.22)

= ūγµv. (2.23)

Thus,
(v̄γµu)∗ = ūγµv. (2.24)

Using the above equation, one can write equation (2.16) as,

− iM∗ =
−ieeq
Q2

(ūs(p)γ
µvs′(p

′))(v̄r′(k
′)γµur(k)). (2.25)

Multiplying equation (2.15) and (2.25), we obtain

|M|2 =
e2e2q
Q4

(v̄s′(p
′)γµus(p)ūr(k)γµvr′(k

′))(ūs(p)γ
νvs′(p

′)v̄r′(k
′)γνur(k)) (2.26)

Now, summing analytically over the spin of the external states and averaging
over the spin of initial states,

|M|2 = 1

2

∑
s

1

2

∑
s′

∑
r

∑
r′

|M|2 (2.27)

=
e2e2q
4Q4

∑
s,s′

(v̄s′(p
′)γµus(p)ūs(p)γ

νvs′(p
′))

∑
r,r′

(ūr(k)γµvr′(k
′)v̄r′(k

′)γνur(k)). (2.28)

Consider,∑
s,s′

(v̄s′(p
′)γµus(p)ūs(p)γ

νvs′(p
′))11 =

∑
s,s′

(v̄s′(p
′))1i(γ

µ)ij(us(p))jk(ūs(p))kl

(γν)lm(vs′(p
′))m1 (2.29)

=
∑
s,s′

(vs′(p
′))m1(v̄s′(p

′))1i(γ
µ)ij(us(p))jk

(ūs(p))kl(γ
ν)lm (2.30)

= Tr

 ∑
s,s′

(vs′(p
′)v̄s′(p

′)γµus(p)ūs(p)γ
ν)

 .

(2.31)

10 Chapter 2 Gaurav Singh
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Then, using the completeness relations (2.2) and (2.3),∑
s,s′

(v̄s′(p
′)γµus(p)ūs(p)γ

νvs′(p
′)) = Tr[(/p

′ −me)γ
µ(/p+me)γ

ν ] (2.32)

similarly,∑
r,r′

(ūr(p)γµvr′(p
′)v̄r′(k

′)γνur(k)) = Tr[(/k +mq)γµ(/k
′ −mq)γν ]. (2.33)

Thus, equation (2.28) can be rewritten as,

|M|2 =
3e2e2q
4Q4

Tr[(/p
′ −me)γ

µ(/p+me)γ
ν ] Tr[(/k +mq)γµ(/k

′ −mq)γν ] (2.34)

The factor 3 comes up because a quark has three colours. One can see that the
above equation has terms involving traces and by using the trace identities wisely,
one can simplify the above expression as follows:

Consider,

Tr[(/p
′ −me)γ

µ(/p+me)γ
ν ] = Tr[/p

′γµ
/pγ

ν + /p
′γµmeγ

ν −meγ
µ
/pγ

ν −meγ
µmeγ

ν ]

(2.35)

= Tr[γργµγσγνp′ρpσ + γργµγνmep
′
ρ −meγ

µγργνpρ

−m2
eγµγν ]. (2.36)

The second and third trace terms would become zero because of equation (2.7)
and then by using equation (2.6) and (2.8), we obtain

Tr[(/p
′ −me)γ

µ(/p+me)γ
ν ] = 4(p′µpν + p′νpµ − gµν(p.p′ +m2

e)), (2.37)

similarly,

Tr[(/k +mq)γµ(/k
′ −mq)γν ] = 4(kµk

′
ν + kνk

′
µ − gµν(k.k

′ +m2
q)). (2.38)

Putting these in equation (2.34) and simplifying, one obtain the expression

|M|2 =
24e2e2q
Q4

[(p.k)(p′.k′) + (p.k′)(p′.k) +m2
q(p.p

′) +m2
e(k.k

′) + 2m2
em

2
q]. (2.39)

Now, since me << mq, we can set me as zero. Then we go into the centre of
mass frame and introduce Mandelstam variables :

s = (p+ p′)2 = (k + k′)2 = q2 = 2p.p′ = 2k.k′ = (2E)2 = E2
CM ,(2.40)

t = (k − p)2 = (k′ − p′)2 = m2
q − 2p.k = m2

q − 2p′.k′ = m2
q − 2(E2 − E|K| cosθ),(2.41)

u = (k′ − p)2 = (k − p′)2 = m2
q − 2p.k′ = m2

q − 2p′.k = m2
q − 2(E2 + E|K| cosθ)(2.42)
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where, |K| =
√

E2 −m2
q. Using these, equation (2.39) can be written as

|M|2 =
24e2e2q
s2

(
t2

4
+

u2

4
+m2

q

s

2
) (2.43)

= 3e2e2q(1 +
4m2

q

s
+ (1−

4m2
q

s
)cos2θ) (2.44)

And finally, the differential cross-section can be calculated using equation (2.12),

dσ

dΩ

∣∣∣∣
CM

=
1

64π2E2
CM

|K|
|P|

|M|2

=
1

64π2s

√
1−

4m2
q

s
|M|2

=
3e2e2q
64π2s

√
1−

4m2
q

s
(1 +

4m2
q

s
+ (1−

4m2
q

s
)cos2θ). (2.45)

So, we managed to obtain the result for a scattering process involving quarks,
using the traditional approach. There were some laborious calculations involved but
still the result wasn’t that difficult to obtain. However, one should keep in mind
that we considered one of the most simplistic process to begin with. In this case,
there was only one possible Feynman diagram (lower order) and therefore, we didn’t
face much difficulty but there can be many possible arrangements for a particular
process. This in indeed the case for many QCD processes involving gluons due to the
non-abelian nature of the theory. Also, as the number of external particles increases,
one can see a drastic growth in the number of Feynman diagrams. For example, if
one consider scattering of gluons [KK89] at tree level,

gg −→ gg : Number of diagrams = 4
gg −→ ggg : Number of diagrams = 25

gg −→ ggggg : Number of diagrams = 2485
...

gg −→ gggggggg : Number of diagrams = 10525900,

it can be noted that as the number of gluons increases, the evaluation becomes
uncontrollable and soon it goes away, even from the reach of a computer. On top of
that, because this approach squares the amplitude contribution from all diagrams in
the very beginning, total number of terms can become too much to handle. That is,
if there are N number of Feynman diagrams, then there will be N2 number of terms
in the squared matrix element |M|2. This can take a lot of time and effort as the
calculations become very lengthy and tedious. That is not all though. If polarization
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vectors or colour quantum numbers are involved, calculations can become more
cumbersome. The process that we have considered doesn’t even scratch the surface
of the problem. We’ll see later on, with the help of more complex examples, that
despite the final expression of the solution having a simple and compact form - “ the
intermediate stages of calculation often explode in an inferno of indices, contracted
up and down and in all directions - providing little insight of the physics and hardly
any hint of simplicity ” [EH14]. But before going there, we’ll introduce some of the
modern methods of calculating scattering amplitudes, that may help us to tackle at
least some of our problems.

2.2 Trace-based colour decompositions in QCD

In the previous section, we mentioned that presence of colour degrees of freedom
increases the complexity of algebra involved in the calculations of multi-parton scat-
tering amplitudes of a non-abelian gauge theory like QCD. This algebra seems to
be very tedious because of the structure constants fabc and generators ta of the un-
derlying symmetric gauge group SU(3) that we encountered in the section 1.2. For
the generalisation purpose, we will consider the gauge group SU(Nc), remembering
that we can always put Nc = 3 in the end. As mentioned earlier, “the generators
of the group SU(Nc) in the fundamental representation are traceless and Hermitian
Nc × Nc matrices (ta)j̄i where, a = 1,2,..., N2

c − 1 is the colour index of gluons in
the adjoint representation and i = 1,2,..., Nc is the colour index of quarks in the
fundamental representation”.
Now, for computing the colour factors, we make a slight change in notation of gen-
erators by redefining the normalisation as,

ta ≡ 1√
2
T a. (2.46)

Thus, (1.11) and (1.12) are modified as

[T a, T b] = i
√
2fabcT c, (2.47)

Tr(T aT b) = δab. (2.48)

Now if we consider any general QCD Feynman diagram at the tree level, it is
evident from the Feynman rules being mentioned in section 1.2 that each quark-
gluon-quark vertex contributes a factor of (T a)j̄i , each pure three-gluon vertex con-
tributes a factor of the structure constant fabc, and more involved and contracted
pair of structure constants fabcf cde is the vertex factor contribution for each four-
gluon vertex. Furthermore, delta factors like δab and δj̄i will be used by the parton
(quarks and gluons) propagators for the contraction of many indices [Dix96].
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ab

c

=

c

ab

−

c

ab

Figure 2.2: Graphical representation of the identity for eliminating struc-
ture constants fabc.

The main idea is to understand how one can identify all the colour structures
appearing in a scattering amplitude and then reorganise these colour degrees of
freedom in such a way that one can easily disentangle these colour factors from the
kinematics. One thing that can be done is to write all the group theory structure
constants fabc in terms of the Lie group generator matrices T a. For doing the same,
we proceed as follows :

We know from the relation (2.47) that

[T a, T b] = f̃abcT c, (2.49)

where, we have defined f̃abc ≡ i
√
2fabc. Multiply both sides of the above equation

by T d,
[T a, T b]T d = f̃abcT cT d,

then,
Tr([T a, T b]T d) = f̃abcTr(T cT d),

using the equation (2.48),

Tr([T a, T b]T d) = f̃abcδcd,

=⇒
Tr([T a, T b]T d) = f̃abd,

or,
f̃abc ≡ i

√
2fabc = Tr(T aT bT c)− Tr(T aT cT b). (2.50)

This can be represented diagrammatically [Dix13, Dix96], as shown in figure 2.2.

Replacing all the structure constants with T a matrices using the relation (2.50)
will result in a product of large number of traces of the form Tr(..T aT bT c..)Tr(..T dT aT e..)..Tr(..),
for multi-gluon amplitudes and also strings of the form (T a1 ...T am)j̄i , if external
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quarks are involved. If one wishes to simplify these traces and strings of generators,
the following Feirz identity comes in handy,

N2
c−1∑
a=1

(T a)j̄1i1 (T
a)j̄2i2 = δj̄2i1 δ

j̄1
i2
− 1

Nc

δj̄1i1 δ
j̄2
i2
. (2.51)

As clearly visible, this equation just states that the generators T a form a complete
set of traceless and Hermitian matrices. The graphical representation of the same
is shown below :

i1

j̄1

i2

j̄2

=

i1

j̄1

i2

j̄2

− 1
Nc

i1

j̄1

i2

j̄2

Figure 2.3: Graphical representation of the Feirz identity.

Now, let’s see how we can simplify our calculations by playing with colour struc-
tures using the identity (2.51). Suppose we have the product of structure constants
fabcf cde, a four-point gluon vertex will always contribute a factor like this. Then
from equation (2.50),

fabcf cde = −1

2
[Tr(T aT bT c)− Tr(T aT cT b)][Tr(T cT dT e)− Tr(T cT eT d)]

= −1

2
[Tr(T aT bT c)Tr(T cT dT e)− Tr(T aT bT c)Tr(T cT eT d)

− Tr(T aT cT b)Tr(T cT dT e) + Tr(T aT cT b)Tr(T cT eT d)]. (2.52)

Consider,

Tr(T aT bT c)Tr(T cT dT e) = (T a)j̄1i1 (T
b)j̄2

j̄1
(T c)i1j̄2 (T

c)j̄3i2

(
T d
)j̄4
j̄3
(T e)i2

j̄4

=
(
(T c)i1j̄2 (T

c)j̄3i2

)
(T a)j̄1i1 (T

b)j̄2
j̄1

(
T d
)j̄4
j̄3
(T e)i2

j̄4

= Tr(T aT bT dT e)− 1

Nc

Tr(T aT b)Tr(T dT e)

= Tr(T aT bT dT e)− 1

Nc

δabδde, (2.53)

where, we have used the equations (2.48) and (2.51).
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Similarly other terms can be written as,

Tr(T aT bT c)Tr(T cT eT d) = Tr(T aT bT eT d)− 1

Nc

δabδde, (2.54)

Tr(T aT cT b)Tr(T cT dT e) = Tr(T bT aT dT e)− 1

Nc

δabδde, (2.55)

Tr(T aT cT b)Tr(T cT eT d) = Tr(T bT aT eT d)− 1

Nc

δabδde. (2.56)

Putting these back in equation (2.52), we obtain

fabcf cde = −1

2
[Tr(T aT bT dT e)− Tr(T aT bT eT d)− Tr(T bT aT dT e) + Tr(T bT aT eT d)].

(2.57)
From this, one can observe that any tree-level diagram for multi-gluon scattering

can be expressed in terms of single traces over product of generators T ai , with all
possible permutations. And using this observation, we define the colour decomposi-
tion/ colour ordering of n-gluon tree amplitude [Dix13] as ,

Mtree
n ({ki, λi, ai}) = gn−2

s

∑
σ∈Sn/Zn

Tr(T aσ(1) · · ·T aσ(n))M tree
n (σ(1λ1), σ(2λ2), .., σ(nλn)),

(2.58)
where, λi = ± are the helicities of particles with momenta ki represented as

(1, 2, ..., n), gs is the gauge coupling constant defined by the relation (1.9). Sn is the
set of all permutations of n objects, while Zn is the subset of all cyclic permutations
preserving the trace. Thus the sum is done over all (n-1)! non-cyclic permutations
σ. This is equivalent to fixing particle 1 and summing over all permutations of the
rest.

So, here we have decomposed a QCD amplitude in terms of SU(Nc) colour fac-
tors and colour-stripped partial amplitudes M tree

n (1λ1 , ..., nλn) that depends only on
particular ordering, momenta and helicities of external particles. These indepen-
dent partial amplitudes are more easier to work with rather than the full amplitude
because of the following reasons :

(i) They are independent of any colour structures and so these colour-stripped/or-
dered amplitudes behave like QED amplitudes which in comparison to QCD ampli-
tudes, are easier to work with.

(ii) Because only particular cyclic ordering of gluons contribute, number of sin-
gularities are reduced as the factorization poles/channels of these amplitudes must
only contain cyclically adjacent momenta [Dix13]. For example, the four-point par-
tial amplitude Atree

4 (1λ1 , 2λ2 , 3λ3 , 4λ4 , ) can only have poles in s12, s23, s34, and s41 as
these are cyclically adjacent and not in s13, or s24, where sij = (ki + kj)

2. Clearly,
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this reduces the number of kinematic variables involved which are more apparent
when the number of external legs increase.

(iii) All partial amplitudes are separately gauge-invariant. This is because the
colour factors corresponding to each partial/sub-amplitude are independent of each
other in any non-abelian gauge group. These single traces form a partial orthogonal
basis, [EH14]. And since the full scattering amplitude is gauge-invariant, all partial
amplitudes must be gauge-invariant as well.

(iv) It would seem very counter productive that instead of solving one full ampli-
tude, one has to now solve (n-1)! partial amplitudes. However, these sub-amplitudes
are related to each other via many relations like,

• Cyclic Invariance :

M tree
n (1, 2, .., n) = M tree

n (2, 3, .., n, 1). (2.59)

• Reflection Symmetry :

M tree
n (n, n− 1, ..., 2, 1) = (−1)nM tree

n (1, 2, .., n). (2.60)

• Photon Decoupling Equation :

M tree
n (1, 2, .., n)+M tree

n (2, 1, 3, .., n)+M tree
n (2, 3, 1, .., n)+ . . .+M tree

n (2, 3, .., 1, n) = 0.

(2.61)

There are many other symmetry relations like parity or charge conjugation
that can be used to relate partial helicity amplitudes of n-gluons or when external
quark - anti quark pairs are present. Such symmetries make it easier to perform
those cumbersome calculations. Actually it has been shown in reference [KK89]
that for n-gluon scattering, there are (n-3)! independent partial amplitudes.

Another simple case of tree-level colour decomposition is when an external
pair of quark - antiquark is present along with the gluons. For such case, the
decomposition [Dix13], is given by

Mtree
n = gn−2

s

∑
σ∈Sn−2

(T aσ(3) · · ·T aσ(n))j̄1i2 M tree
n (1λ1

q̄ , 2λ2
q , σ(3λ3), .., σ(nλn)), (2.62)

where the amplitude has been decomposed into a string of generators. For am-
plitude involving photons, we need to replace the generator (T a)ij by δij and gs by
√
2eQq for each gluon to be replaced by a photon.

2.2.1 Colour-ordered Feynman rules for QCD

As we have stripped the partial amplitudes of their colour structures, we can give
the colour-ordered Feynman rules that can be used to construct such sub-amplitudes.
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It can be noted that all the group theory structures have been removed and so the
rules are purely kinematic. Also, we have fixed η = 1, i.e. we have chosen the
Feynman gauge and as per convention, all momenta are outgoing.

Propagators

� Quark propagator

k

i j i
(/k +m)

k2 −m2 + iε

� Gluon propagator

k
a, µ b, ν −igµν

k2 + iε

� Scalar propagator

k

a b
−i

k2 + iε

Vertices

� Gluon-Quark vertex

i

j

a, µ i√
2
γµ

� Three-gluon vertex

q

rp

b, µ

c, ν

a, ρ i√
2
[ (p−q)ν gρµ+(q−r)ρ gµν+(r−p)µ gνρ ]
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� Four-gluon vertex

c, νd, σ

a, ρ b, µ

i[gρνgµσ −
1

2
(gρµgνσ + gρσgµν)]

After calculating all the partial amplitudes, to calculate the differential cross-
section, the full amplitude must be squared and since the colour quantum number is
unobserved, the squared amplitude must be summed over final colours and averaged
over initial colours, just like we did with spins in section 2.1. Now, when we will do
this process of squaring the amplitude (2.58) and summing it over the colours, we
will have terms [MP05], like∑

colours

[Tr(T a1 ...T an)][Tr(T b1 ...T bn)]∗ = Nn−2
c (N2

c − 1)(δ{a}{b} +O(
1

N2
c

)) (2.63)

where {b} is a permutation of {a}. Earlier, we said that the traces of T a matrices
form an orthogonal basis for the expansion. However, they are orthogonal only at
the leading order in powers of Nc. The leading contributions in Nc come when the
two permutations are equal (up to cyclic orderings), [MP05]. Using this we can
write,

N2
c−1∑

a1,..,an=1

∣∣Mtree
n ({ai})

∣∣2 = Nn−2
c (N2

c − 1)

 ∑
σεSn/Zn

∣∣M tree
n (σ(1), ..., σ(n))

∣∣2 +O(
1

N2
c

)


(2.64)

2.3 The Spinor-helicity formalism

We saw in previous section that how colour-ordering can make our life easier to some
extent by making the process of calculating scattering amplitudes of the non-abelian
gauge theory a bit simpler. This section aims to do the same (actually more) by
taking few more steps towards obtaining compact and simpler expressions for tree
level amplitudes. It does so by introducing a new set of kinematic variables called
spinor products which are the Lorentz-invariant contractions of Weyl spinors that
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will serve as the fundamental object in this review of spinor helicity formalism. The
reason behind why this formalism has an upper hand over the traditional methods
is that most of the quantities that appear in scattering amplitude calculations, like
momentum variables, their inner products, Dirac spinors, polarization vectors, etc.
can be represented in terms of these Weyl spinors or their inner products. We
will see that these spinor products have many useful identities that can make the
calculation process somewhat less strenuous.

Another thing to note is that we will be talking about only massless vector
bosons like gluons and massless fermions like quarks. Though different flavours
of quarks have light and heavy masses, we’ll be dealing with light quarks only
and it is a fair assumption to consider them massless because they are involved in
very high energy processes at colliders. At such energy scale, all fermions can be
considered as ultra-relativistic i.e., their momenta are much larger as compared to
their individual masses and thus we can treat them as massless particles. Since we
are dealing with massless particles only, it would be good to work with amplitudes
in which particles are labeled with definite helicity. We have already mentioned
one advantage of working with helicity amplitudes - presence of symmetries; the
other being that different helicity configurations do not interfere with each other
as they are orthogonal and thus squares of all the possible helicity states can be
summed incoherently. This definitely reduces the number of terms from the case
when all configurations are first added and then squaring of total amplitude is done.
Moreover, as we will see later that assigning a fixed helicity to an amplitude can
help us to exploit gauge invariance and select an explicit representation for the
polarization vectors that may help in reducing the calculation effort.

2.3.1 Spinor variables for massless fermions

We are used to using four-momenta and the corresponding Mandelstam variables
as the basic kinematic variables in traditional approaches. However, these four-
momenta (kµ) are Lorentz vectors that are reducible and can be written in terms of
a more fundamental (irreducible) representation - the spinor representation which
is a two-dimensional representation for massless vectors. Basically we represent
massless four-momenta in terms of a pair of two dimensional spinors called Weyl
spinors.
Let’s consider a massless fermion four-momentum k. This formalism basically comes
from the massless Dirac spinors of this fermion that are four-component spinors and
are solutions of the massless Dirac equation in momentum space

/kU(k) = 0. (2.65)
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This equation has two independent solutions of the form U+(k) and U−(k) where,
the former is a right-handed spinor while the latter is a left-handed spinor. These
solutions are helicity eigenstates and since for massless particles helicity is a con-
served Lorentz-invariant quantity, it coincides with chirality. So, these solutions can
be written as

U+(k) =
1

2
(1 + γ5)U(k), U−(k) =

1

2
(1− γ5)U(k) (2.66)

Negative energy solutions also exist but for light-like momenta they are equiv-
alent to positives ones up to normalisation conventions i.e., U± = V∓ (crossing
symmetry).

The gamma matrices are represented in the Weyl(Chiral) basis, [Con20a] as

γµ =

 0 σµ

σ̄µ 0

 , γ5 =

−I 0

0 I

 , (2.67)

where, σµ = (1, σi) and σ̄µ = (1,−σi). In such a basis, solutions of the Dirac
equation take the form

U+(k) =

 0

u+(k)

 , U−(k) =

u−(k)

0

 . (2.68)

Here, u±(k) are two-component spinors in the Weyl representation denoted as,

u+(k) ≡ λα, u−(k) ≡ λ̃α̇, (2.69)

where {α, α̇} = 1,2 and the Weyl spinor indices can be raised and lowered using
the antisymmetric tensors,

εαβ = −εαβ = εα̇β̇ = −εα̇β̇ =

 0 1

−1 0

 , (2.70)

as follows :

λα = εαβλβ, λ̃α̇ = εα̇β̇λ̃β̇

λα = εαβλ
β, λ̃α̇ = εα̇β̇λ̃

β̇ (2.71)

Now, it’s better to give a compact representation of Weyl spinors - the angle
braket, | 〉 and the square braket, | ] notation. Say ki is the momenta of ith particle,
then we first define,

|k±
i 〉 ≡ |i±〉 , (2.72)

then,
|i+〉 ≡ (λi)α ≡ u+(ki) = v−(ki) ≡ |i〉 ,
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|i−〉 ≡ λ̃α̇
i ≡ u−(ki) = v+(ki) ≡ |i],

〈i+| ≡ (λ̃i)α̇ ≡ ū+(ki) = v̄−(ki) ≡ [i|,

〈i−| ≡ λα
i ≡ ū−(ki) = v̄+(ki) ≡ 〈i| , (2.73)

where,

u+ : Incoming right-handed fermion; v− : Outgoing left-handed antifermion,
u− : Incoming left-handed fermion; v+ : Outgoing right-handed antifermion,
ū+ : Outgoing right-handed fermion; v̄− : Incoming left-handed antifermion,
ū− : Outgoing left-handed fermion; v̄+ : Incoming right-handed antifermion.

Having defined all the notations and representation of the spinors, we can finally
define the Lorentz invariant inner products using equation (2.71) and (2.73). These
angle and square braket products are the core of spinor-helicity formalism :

ū− (ki)u+

(
kj
)
= εαβ (λi)α

(
λj

)
β
= 〈i−|j+〉 = 〈ij〉, (2.74)

ū+ (ki)u−
(
kj
)
= εα̇β̇

(
λ̃i

)
α̇

(
λ̃j

)
β̇
= 〈i+|j−〉 = [ij]. (2.75)

Useful Identities

• Consider the four-momentum of a light-like particle and contract it with the
Pauli matrices to construct matrix of the form,

(/k)αβ̇ = kµ(σ
µ)αβ̇ =

 k0 − k3 −k1 + ik2

−k1 − ik2 k0 + k3

 . (2.76)

The determinant of this matrix is zero since the particle is massless. Therefore,
rank of this (2× 2) matrix is 1 and it can be represented as an outer product
of two-component spinors,

(/k)αβ̇ = λα(k)λ̃β̇(k) = |k〉α [k|β̇, (2.77)

similarly,
(/k)α̇β = λ̃α̇(k)λβ(k) = |k]α̇ 〈k|β . (2.78)

The spin-sum completeness relation then can be written as :

/k = |k〉 [k|+ |k] 〈k| . (2.79)

• It follows that for real-valued momenta kµ,

[i|α̇ = (|i〉α)∗, 〈i|α = (|i]α̇)∗ (2.80)
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while these angle and square bras and kets are independent of each other for
complex-valued momentum [EH14]. Using the above equation (2.80), complex
conjugation of spinor products can be related as,

[ij] = 〈ji〉∗ . (2.81)

• Anti-symmetry :

〈ij〉 = −〈ji〉 , [ij] = −[ji], [ii] = 0, 〈ii〉 = 0 (2.82)

• Analytic continuation :

| − j] = i |j], |−j〉 = i |j〉 (2.83)

• Projection operator :
|i±〉 〈i±| = 1

2
(1± γ5)/ki (2.84)

• Momentum conservation :
n∑

j=1; j 6=i,k

〈ij〉 [jk] = 0 (2.85)

• Schouten identity :

〈ij〉 〈kl〉 − 〈ik〉 〈jl〉 = 〈il〉 〈kj〉 (2.86)

• We define the product of angle and square spinor products as following :

〈ij〉 [ji] = Tr(
1

2
(1− γ5)/ki/kj) = 2ki.kj = (ki + kj)

2 = sij. (2.87)

We can also write this spinor products [Dix96], in terms of Mandelstam vari-
ables,

〈ij〉 = √
sije

iφij , [ij] =
√
sije

−i(φij+π) (2.88)

where φij is the phase factor that can be defined in terms of light-cone coor-
dinates,

cosφij =
k1
i k

+
j − k1

jk
+
i√∣∣sij∣∣ k+

i k
+
j

, sinφij =
k2
i k

+
j − k2

jk
+
i√∣∣sij∣∣ k+

i k
+
j

; k± = k0 ± k3. (2.89)

Now, consider an angle-square braket of the form

[i|γµ |j〉 = [i|α̇σµ
α̇β |j〉

β . (2.90)

The following identities related to this object come out to be very useful in simpli-
fying the calculations,
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• Charge conjugation of current :

[i|γµ |j〉 = 〈j| γµ|i]. (2.91)

• Real momentum conjugation :

[i|γµ |j〉∗ = [j|γµ |i〉 . (2.92)

• Feirz rearrangement :

〈i| γµ|j] 〈k| γµ|l] = 2 〈ik〉 [jl]. (2.93)

• Gordon identity :
〈i| γµ|i] = [i|γµ |i〉 = 2kµ

i . (2.94)

• Consider an arbitrary four-momentum kµ, then

[i|/k |j〉 = kµ[i|γµ |j〉 . (2.95)

If kµ is a light-like vector, then we can use the completeness relation (2.79) to
simplify the above equation as

[i|/k |j〉 = [ik] 〈kj〉 . (2.96)

2.3.2 Spinor variables for massless vector bosons

We have written almost all the objects (relevant to us) in terms of angle and square
spinors except the polarization vectors that appear in Feynman rules for external
lines, for spin-1 massless vector particles like gluons. The spinor representation of
these massless polarization vectors with fixed helicity is given by

εµ+(ki, q) =
〈q| γµ|i]√
2 〈qi〉

, εµ−(ki, q) = − [q|γµ |i〉√
2[qi]

, (2.97)

where, q is a light-like arbitrary reference momentum and ki is the momentum
of ith gluon such that q.k 6= 0. The arbitrariness of the reference momentum q
is manifested by the gauge invariance of the on-shell scattering amplitude. This
means that all scattering amplitudes would be independent of q because changing
the reference momentum only shifts the polarisation vector as

εµ±(k
µ) −→ εµ±(k

µ) + Ckµ. (2.98)
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To see this, let’s assume that the reference momentum q is changed to q′. Then,

εµ+(k, q
′)− εµ+(k, q) =

〈q′| γµ|k]√
2 〈q′k〉

− 〈q| γµ|k]√
2 〈qk〉

=
−〈q′|γµ/k|q〉+ 〈q|γµ/k|q′〉√

2 〈q′k〉 〈qk〉

= −
√
2 〈q′q〉

〈q′k〉 〈qk〉
× kµ (2.99)

Similarly, we can prove the following properties :

• Normalisation :

ε±.(ε±)
∗ = ε±.ε∓ = −1, ε±.(ε∓)

∗ = ε±.ε± = 0. (2.100)

• Transversality condition :

ε±(ki, q).ki = 0, ε±(ki, q).q = 0. (2.101)

• The completeness relation :∑
λ=±

ε∗µλ ενλ = −gµν +
kµqν + qµkν

(k · q)
. (2.102)

The arbitrariness of the reference momentum q proves to be very useful, as a
smart choice of qi for each gluon can simplify the calculations by making lots of terms
to disappear. Now that we have everything in our hand to express any amplitude
involving massless fermions and/or vector bosons in terms of spinor products, we’ll
apply the modern techniques learnt so far to the scattering process whose amplitude
has already been calculated using the traditional Feynman diagrammatic approach.
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2.4 An example from QCD

q(k1) + q̄(k2) −→ g(k3, a) + g(k4, b)

k1

k2

k3

k4

q, i

q̄, j

g, µ

g, ν

(i)

k3k1

k4k2

g, µq, i

g, νq̄, j

(ii)

q, i

q̄, j g, ν

g, µ

k1

k2

(iii)

Figure 2.4: qq̄ −→ gg

Above figure shows all the possible Feynman diagrams for the scattering process
in consideration. The overall amplitude for any arbitrary helicity (λ) configuration
can be written using colour-ordered Feynman rules discussed in subsection 2.2.1 and
equation (2.62), since a quark-anti quark pair is involved in the process along with
two gluons. Before writing that, let’s discuss the colour structure contributions from
each diagram. These are,

fabc(T c)ij, (T bT a)ij, and (T aT b)ij,

respectively. We can write the first colour structure in terms of the other two using
equation (2.47) and thus the full amplitude can be written as

Ma,b
j,i (1

λ1 , 2λ2 , 3λ3 , 4λ4) = g2s [(T
bT a)ij Mx(1

λ1 , 2λ2 , 3λ3 , 4λ4)

+ (T aT b)ij My(1
λ1 , 2λ2 , 4λ4 , 3λ3)], (2.103)

where, Mx and My are the gauge invariant partial amplitudes independent of each
other. Mx is the contribution from diagrams (i + ii) while My is the contribution
from diagrams (i + iii).

Now, let’s start calculating these partial amplitudes one by one. Because there
are four particles and each can have ± helicity, we have 16 possible helicity con-
figurations in total. The expressions for colour stripped amplitudes of an arbitrary
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helicity configuration for Feynman diagram (i) and (ii) are :

M(i) =
i

2(k1 + k2)2
v̄λ(k2)γ

ρuλ(k1) [(k3 − k4)
ρgµν + (2k4 + k3)

µgνρ

− (2k3 + k4)
νgρµ] εµ,λ(k3) εν,λ(k4)

=
i

2(k1 + k2)2
v̄λ(k2)γ

ρuλ(k1) [ελ(k3).ελ(k4)(k3 − k4)
ρ

+ 2ερλ(k4)(k4.ελ(k3))− 2ερλ(k3)(k3.ελ(k4))], (2.104)

M(ii) =
−i

2(k1 − k3)2
εν,λ(k4)εµ,λ(k3) [v̄λ(k2)γ

ν /k1γ
µuλ(k1)

− v̄λ(k2)γ
ν /k3γ

µuλ(k1)] (2.105)

. Then,

Helicity configurations for Mx

• Mx(1
+, 2+, 3+, 4+) : For this particular helicity configuration, we have a term

like
v̄+(k2)γ

ρu+(k1) = 〈2γρ1〉 = 0,

in the expressions (2.104) and (2.105). For latter, just use the completeness
relation (2.79) to bring it in the above form. Therefore,

Mx(1
+, 2+, 3+, 4+) = 0.

This actually happens because quarks and anti-quarks are coupled through a
vector current and so they must have opposite helicity. This implies that all
the configurations, in which they have equal helicity, vanish i.e.,

Mx(1
+, 2+, 3−, 4−) = Mx(1

+, 2+, 3+, 4−) = Mx(1
+, 2+, 3−, 4+) = 0.

Similarly,

Mx(1
−, 2−, 3−, 4−) = Mx(1

−, 2−, 3+, 4+) = Mx(1
−, 2−, 3−, 4+)

= Mx(1
−, 2−, 3+, 4−) = 0.

One can notice that the last four configurations are related to the first four
via parity symmetry. Out of the 16 possible configurations, 8 have already
vanished. Now, since quark and anti-quark should have opposite helicity,
both gluons must have opposite helicity as well; else, conservation of angular
momentum would be violated. Let’s verify the same by calculating one of such
configuration.
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• Mx(1
+, 2−, 3+, 4+) : Consider,

M(ii)(1
+, 2−, 3+, 4+) =

−i

2t
εν,+(k4)εµ,+(k3) [v̄−(k2)γ

ν /k1γ
µu+(k1)

− v̄−(k2)γ
ν /k3γ

µu+(k1)]

Now using equation (2.97) and (2.79) and choosing q1, q2 as the reference
vectors, we get

=
−i

2t

〈q2| γν |4]√
2 〈q24〉

〈q1| γµ|3]√
2 〈q13〉

{[2γν1〉[1γµ1〉 − [2γν3〉[3γµ1〉}

We can apply the Feirz arrangement (2.93) to obtain the expression

=
−i

t 〈q24〉 〈q13〉
{〈q21〉 [42] 〈q11〉 [31]− 〈q23〉 [42] 〈q11〉 [33]}.

One can now exploit the spinor product relations like [ii] = 〈ii〉 = 0 by choosing
the appropriate reference momenta; say, q1 = q2 = k1

=⇒
M(ii)(1

+, 2−, 3+, 4+) = 0.

Now, consider the other diagram ,

M(i)(1
+, 2−, 3+, 4+) =

i

2s
v̄−(k2)γ

ρu+(k1) [ε+(k3).ε+(k4)(k3 − k4)
ρ

+ 2ερ+(k4)(k4.ε+(k3))− 2ερ+(k3)(k3.ε+(k4))].

First we’ll calculate the dot product of polarization vectors,

ε+(k3, q1).ε+(k4, q2) =
〈q1q2〉 [34]
〈q13〉 〈q24〉

. (2.106)

Again, q1 = q2 = k1 since choice of reference momenta must be same for
all amplitudes contributing to same helicity configuration. Thus the above
equation vanishes leaving the expression,

M(i)(1
+, 2−, 3+, 4+) =

i

2s
[2γρ1〉 [2〈1| γρ|4]√

2 〈14〉
(k4.ε+(k3))

− 2
〈1| γρ|3]√
2 〈13〉

(k3.ε+(k4))].

Feirz rearrangement of the outer angle-square braket with the inner ones will
give terms like 〈11〉, making the above expression zero.
∴

Mx(1
+, 2−, 3+, 4+) = 0.
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Similarly,

Mx(1
+, 2−, 3−, 4−) = Mx(1

−, 2+, 3+, 4+) = Mx(1
−, 2+, 3−, 4−) = 0.

This makes the tally of vanishing configurations equal to 12. Let’s handle the
remaining states one by one.

• Mx(1
+, 2−, 3+, 4−) :

M(i)(1
+, 2−, 3+, 4−) =

i

2s
v̄−(k2)γ

ρu+(k1) [ε+(k3).ε−(k4)(k3 − k4)
ρ

+ 2ερ−(k4)(k4.ε+(k3))− 2ερ+(k3)(k3.ε−(k4))]

=
i

2s
[2γρ1〉 [−〈q14〉 [3q2]

〈q13〉 [q24]
(k3 − k4)

ρ − 2
[q2|γρ|4〉√
2[q24]

(k4.ε+(k3))

− 2
〈q1|γρ|3]√
2 〈q13〉

(k3.ε−(k4))].

Choose reference momenta, q1 = k4 and q2 = k3. Then, first term becomes
zero. Also, second and third term become zero because,

q.ε±(p, q) = 0.

Now consider,

M(ii)(1
+, 2−, 3+, 4−) =

−i

2t
εν,−(k4)εµ,+(k3) [v̄−(k2)γ

ν /k1γ
µu+(k1)

− v̄−(k2)γ
ν /k3γ

µu+(k1)]

=
i

2t

[q2|γν |4〉√
2[q24]

〈q1| γµ|3]√
2 〈q13〉

{[2γν1〉[1γµ1〉 − [2γν3〉[3γµ1〉}.

By using the same choice of reference momenta this becomes,

=
i

t[34] 〈43〉
{〈41〉 [32] 〈41〉 [31]− 〈43〉 [32] 〈41〉 [33]}

=
i

t[34] 〈43〉
{〈41〉 [32] 〈41〉 [31]}

= −i
〈14〉2 [23]

〈13〉 〈34〉 [43]
, ∵ t = s13 = 〈13〉 [31].

Now multiply top and bottom of the above expression by 〈14〉 〈24〉, use the
momentum conservation relation 〈14〉 [43] = −〈12〉 [23] and anti symmetric
properties of spinor products to obtain the final expression ,

M(ii)(1
+, 2−, 3+, 4−) = i

〈14〉3 〈24〉
〈13〉 〈34〉 〈42〉 〈21〉

,
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which using equation (2.88), can be written in terms of Mandelstam variables,

=
i

s

√
u3

t
eiφ1 ,

where, φ1 = 3φ14 − φ13 − φ12 − φ34. Since Mi = 0,

=⇒

Mx(1
+, 2−, 3+, 4−) = i

〈14〉3 〈24〉
〈13〉 〈34〉 〈42〉 〈21〉

=
i

s

√
u3

t
eiφ1 .

• Mx(1
−, 2+, 3−, 4+) : This relation is related to the previous one by parity.

Helicity flip would just change the angle product 〈 〉 to square product []

which will result in reversing the sign of phase factor as well. Thus,

Mx(1
−, 2+, 3−, 4+) = i

[14]3[24]

[13][34][42][21]
=

i

s

√
u3

t
e−iφ1 .

• Mx(1
+, 2−, 3−, 4+) : Proceeding in a similar fashion, we obtain

Mx(1
+, 2−, 3−, 4+) = i

〈13〉3 〈23〉
〈13〉 〈34〉 〈42〉 〈21〉

= i

√
tu

s
eiφ2 ,

where, φ2 = 2φ13 + φ23 − φ24 − φ12 − φ34. And helicity flip of this would lead
us to,

• Mx(1
−, 2+, 3+, 4−) :

Mx(1
−, 2+, 3+, 4−) = i

[13]3[23]

[13][34][42][21]
= i

√
tu

s
e−iφ2 .

Now that we have calculated all the vanishing and non-vanishing configurations of
Mx, we can easily calculate the same for My. All we have to do is to interchange t
and u, as Mx and My differ only in the exchange of gluon(k3) with gluon (k4). Thus,
the non-vanishing configurations of My has the following expressions :

• My(1
+, 2−, 4+, 3−) :

My(1
+, 2−, 4+, 3−) = i

〈13〉3 〈23〉
〈14〉 〈43〉 〈32〉 〈21〉

=
i

s

√
t3

u
eiφ1 .

• My(1
−, 2+, 4−, 3+) :

My(1
−, 2+, 4−, 3+) = i

[13]3[23]

[14][43][32][21]
=

i

s

√
t3

u
e−iφ1 .

• My(1
+, 2−, 4−, 3+) :

My(1
+, 2−, 4−, 3+) = i

〈14〉3 〈24〉
〈14〉 〈43〉 〈32〉 〈21〉

= i

√
ut

s
eiφ2 .
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• My(1
−, 2+, 4+, 3−) :

My(1
−, 2+, 4+, 3−) = i

[14]3[24]

[14][43][32][21]
= i

√
ut

s
e−iφ2 .

Now we will calculate the square of the full amplitude of a particular helicity state
(equation (2.103)), averaged over initial and summed over final colours,

•
∣∣M(1+, 2−, 3+, 4−)

∣∣2 :∣∣M(1+, 2−, 3+, 4−)
∣∣2 = g4s

9

∑
colours

∣∣∣(T bT a)ij Mx(1
+, 2−, 3+, 4−) + (T aT b)ij My(1

+, 2−, 4−, 3+)
∣∣∣2

Let’s see this term by term :
1st term

Tr(T aT aT bT b)
∣∣Mx(1

+, 2−, 3+, 4−)
∣∣2 = 64

3

u3

ts2
,

2nd term
Tr(T aT aT bT b)

∣∣My(1
+, 2−, 4−, 3+)

∣∣2 = 64

3

ut

s2
,

3rd term

2 Tr(T aT bT aT b)
∣∣M∗

x(1
+, 2−, 3+, 4−)My(1

+, 2−, 4−, 3+)
∣∣ = −16

3

u2

s2
.

∴ ∣∣M(1+, 2−, 3+, 4−)
∣∣2 = g4s

9
{64
3
(
u3

ts2
+

ut

s2
)− 16

3

u2

s2
}.

Similarly,

• ∣∣M(1−, 2+, 3−, 4+)
∣∣2 = g4s

9
{64
3
(
u3

ts2
+

ut

s2
)− 16

3

u2

s2
}.

• ∣∣M(1−, 2+, 3+, 4−)
∣∣2 = g4s

9
{64
3
(
t3

us2
+

ut

s2
)− 16

3

t2

s2
}.

• ∣∣M(1+, 2−, 3−, 4+)
∣∣2 = g4s

9
{64
3
(
t3

us2
+

ut

s2
)− 16

3

t2

s2
}.

For calculating the cross-section, we need to sum over all the possible helicity
configurations

∑
Helicity

|M|2 = 2g4s
9

 64

3s2

(
u3

t
+ ut+

t3

u
+ ut

)
− 16

3s2
(
u2 + t2

)
=

2g4s
9

 64

3s2

((
u2 + t2

)( t

u
+

u

t

))
− 16

3s2
(
u2 + t2

) .
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Now,
u+ t = −s

=⇒
u2 + t2 = s2 − 2ut

Thus,

∑
Helicity

|M|2 = 2g4s
9

64

3

((
1− 2ut

s2

)(
t

u
+

u

t

))
− 16

3

(
t2 + u2

s2

)
=

2g4s
9

64

3

( t

u
+

u

t

)
− 2

(
t2 + u2

s2

)− 16

3

(
t2 + u2

s2

)
=

128g4s
27


(
t

u
+

u

t

)
− 9

4

(
t2 + u2

s2

)
Finally, the differential cross section for the process can be calculated using

equation (2.12),

dσ

dΩ
(qq̄ → gg) =

1

64π2s

∑
Helicity

|M|2

=
8

27

α2
s

s

[
t

u
+

u

t
− 9

4

t2 + u2

s2

]
. (2.107)
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Chapter 3

BCFW Recursion Technique

In the previous chapter, we saw how tree-level colour decompositions and spinor-
helicity formalism can reduce the complexity of scattering amplitude calculations.
However, as the number of external legs increase, it becomes more and more difficult
to obtain compact and simplified expressions because possible Feynman diagrams
show a rapid growth in number. Here to our rescue, come recursion techniques. As
the name ‘recursion’ suggests, the main idea of such techniques is to use lower-point
amplitudes as fundamental starting points to construct higher-point amplitudes in
a recursive fashion. As we will see in this chapter, such techniques can manifest the
hidden simplicity in the tree-level scattering amplitudes of gluons. One such tech-
nique known as - the BCFW recursion technique, was developed by Britto, Cachazo,
Feng and Witten in the year 2005. The recursion relations given by them claim to
write any tree level amplitude as a sum over terms constructed from products of
amplitudes with lesser number of legs multiplied by a Feynman propagator, [CF05].

The main principle behind the derivation of these recursion relations is the ex-
ploitation of the idea that tree-level colour-ordered amplitudes are analytic functions
of kinematic variables like momenta of external particles, [FW05]. This basically
means that poles or branch cuts construct the singularity structure of such ampli-
tudes, allowing the analytical continuation of them to complex momenta in order to
reconstruct generic scattering amplitudes from their residues (singularities). And in
these singular regions, “amplitudes factorize into two casually disconnected ampli-
tudes” [Dix13], with lesser particles, connected by an on-shell propagator. BCFW
relations constructs the higher-point amplitudes from on-shell gauge invariant ob-
jects. For calculating n-point gluon amplitudes, the fundamental building blocks
are the on-shell three-point gluon amplitudes whose expressions will be derived in
the next section. These three-point interactions actually carry all the relevant in-
formation in non-abelian gauge theories like QCD and so working with higher-point
vertices seems like a futile exercise. An example of this is that quartic interactions
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can always be absorbed into cubic ones with no effect whatsoever on the colour
structures as they carry the same colour factors as the different channel diagrams
that one can construct using three-point gluon vertices.

3.1 Three-gluon amplitudes

It isn’t very difficult to calculate three-gluon amplitudes but before going there, one
needs to have a look on three-point kinematics of massless particles first. Say, k1,
k2 and k3 are light-like momenta such that momentum conservation holds ,

kµ
1 + kµ

2 + kµ
3 = 0.

Then if these momenta are real, equations (2.81) and (2.87) implies that

〈ij〉 [ji] = 〈ij〉 〈ij〉∗ = 〈ij〉2 = (ki + kj)
2 = k2

k = 0, (3.1)

=⇒

〈ij〉 = [ij] = 0, for real momenta.

However, if these momenta are complex then equation (2.81) is not true but from
above relation (3.1), 〈ij〉 [ji] = 0. This implies that either the angular or the square
inner product should vanish. Say, 〈ij〉 6= 0 and from momentum conservation, we
have 〈ij〉 [jk] = 0.
=⇒

[jk] = 0.

Similarly, if we choose the square spinor product to be non-vanishing, we’ll have
〈jk〉 = 0. We can itemize this whole massless three-point kinematics as follows :

• |1] ∝ |2] ∝ |3] ≡ λ̃1 ∝ λ̃2 ∝ λ̃3

=⇒
[12] = [23] = [31] = 0; all 〈ij〉 6= 0. (3.2)

• |1〉 ∝ |2〉 ∝ |3〉 ≡ λ1 ∝ λ2 ∝ λ3

=⇒
〈12〉 = 〈23〉 = 〈31〉 = 0; all [ij] 6= 0. (3.3)

This implies that the expression for a non-vanishing on-shell three-point scatter-
ing amplitude will either have a holomorphic form (angle product dependence) or
anti-holomorphic form (square product dependence). Let’s verify this.
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k2

k3

k1

b, µc, ν

a, ρ

Figure 3.1: 3-gluon vertex

Suppose we wish to calculate colour-ordered 3-gluon amplitude with the he-
licity configuration M(1−, 2−, 3+). The three-gluon scattering is represented by the
Feynman diagram shown in 3.1.

Then,

M(1−, 2−, 3+) =
i√
2
[ (k1 − k2)

ν gρµ + (k2 − k3)
ρ gµν + (k3 − k1)

µ gνρ ]

ε−ρ (k1)ε
−
µ (k2)ε

+
ν (k3)

=
i√
2
[ ε−(k1).ε−(k2)(k1 − k2).ε+(k3) + ε−(k2).ε+(k3)(k2 − k3).ε−(k1)

+ ε+(k3).ε−(k1)(k3 − k1).ε−(k2) ]

Now, using equations (2.95), (2.96) and (2.97) , terms inside the square bracket can
be written in the form ,

[q1q2] 〈12〉 (〈q31〉 [13]− 〈q32〉 [23]) + [q23] 〈2q3〉 ([q12] 〈21〉 − [q13] 〈31〉)√
2[q11][q22] 〈q33〉

+
[3q1] 〈q31〉 ([q23] 〈32〉 − [q21] 〈12〉)√

2[q11][q22] 〈q33〉
,

where, qi are the reference momenta. Now if we will consider the case (3.3), all
the terms in the numerator will become zero. Therefore, we choose the case (3.2).
This will make the first term vanish. Then applying momentum conservation to
write [q12] 〈21〉 = −[q13] 〈31〉 and [q23] 〈32〉 = −[q21] 〈12〉, we obtain

M(1−, 2−, 3+) = i
[q23] 〈2q3〉 [q13] 〈13〉+ [q13] 〈1q3〉 [q23] 〈32〉

[q11][q22] 〈q33〉

= i
[q13][q23](〈2q3〉 〈13〉 − 〈1q3〉 〈23〉)

[q11][q22] 〈q33〉

= i
[q13][q23] 〈3q3〉 〈21〉
[q11][q22] 〈q33〉

,
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where in the last step, we have used the Schouten identity (2.86). Now multiply
the numerator and denominator by 〈32〉 〈21〉 to use the momentum conservation just
like before. This is done because a scattering amplitude can’t depend on reference
momenta. Finally we obtain,

M(1−, 2−, 3+) = i
〈12〉3

〈23〉 〈31〉
. (3.4)

As one can see, the expression depends only on angle brakets (like we stated
before). Now, we know that reversing the sign of helicity interchanges angle and
square brakets. Therefore, a parity reversal will give us

M(1+, 2+, 3−) = −i
[12]3

[23][31]
. (3.5)

We could have calculated the same by using the other case of 3-point kinematics
for this helicity configuration and proceeding just like before. Amplitude of the
type (3.5) (two particles with negative helicity) are called Maximally Helicity
Violating or MHV amplitudes and of the type (3.4) are called MHV amplitudes
as they are related to the first by parity symmetry. To understand where this MHV
term comes from, let’s proceed to the next section.

3.2 The Parke-Taylor amplitudes

Consider scattering processes of the type where two gluons collide and scatter into
(n-2) gluons. Now in the all outgoing convention, an incoming gluon is related to
the outgoing gluon by crossing symmetry i.e., their states with opposite helicity are
equal. This means that if we consider all n (≥ 4) particles to be outgoing, then the
helicity configuration M tree

n (1+, 2+, 3+, ..., n+) is basically equivalent to

1− + 2− −→ 3+ + ....+ n+.

Clearly, helicity conservation is being violated here. Same can be said about the
configuration M tree

n (1+, 2+, 3−, ..., n+) or any configuration like this with the cyclic
symmetry. However, amplitudes with such configurations actually vanish i.e.,

M tree
n (1±, 2+, 3+, ..., n+) = 0. (3.6)

This happens because for n gluons, the Feynman diagram will contain at most (n-2)
three-point vertices and as evident from Feynman rules - that will contribute (n-2)
momenta to the expression for amplitude. And there will be n polarization vectors
for each gluon. Thus there can be at most (n-2) contractions between momenta and
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polarizations vectors. This leaves at least one contraction of the form εi.εj. Now
using equation (2.97) we can have terms of the form

ε+i .ε
+
j ∝ 〈qiqj〉 , ε−i .ε

−
j ∝ [qiqj], ε+i .ε

−
j ∝ 〈qij〉 [iqj],

depending on the helicity configuration. If we choose all reference momenta to
be equal then clearly M tree

n (1+, 2+, 3+, ..., n+) vanishes. Similarly for the other case
when one of the helicity is flipped (Say for 1), choice of reference momenta can be
q1 = k2 and qi = k1 for i > 1. And so the result (3.6) is proved. Now if one more he-
licity is flipped, we’ll have configuration of the form M tree

n (1+, 2+, .., j−, .., l−, ..., n+)

which is equivalent to

1− + 2− −→ 3+ + ..+ j− + ..+ l− + ..+ n+.

We called this type of configuration as the MHV amplitude in the previous
section and rightly so because this configuration is where one can most violate the
helicity and still obtain a non-vanishing amplitude whose general form was given by
Parke and Taylor [PT86] in the year 1986,

MMHV
jl ≡ M tree

n (1+, 2+, .., j−, .., l−, ..., n+) = i
〈jl〉4

〈12〉 〈23〉 ... 〈n1〉
. (3.7)

The beauty of this expression lies in its simplicity. All we need is just this one
formula for writing n-gluon amplitudes with exactly two negative helicity gluons.
Similarly for the configuration related to this state via parity, the Parke-Taylor
MHV amplitude is given by

MMHV
jl ≡ M tree

n (1−, 2−, .., j+, .., l+, ..., n−) = −i
[jl]4

[12][23]...[n1]
. (3.8)

If we replace two of the gluons with a quark-antiquark pair, we can have MHV
amplitudes similar to the Parke-Taylor amplitudes mentioned above. These are :

M tree
n (1+, 2+, ..., j−q̄ , ..., k

+
q , ..., n

+) = 0, (3.9)

M tree
n (1−, 2+, ..., j−q̄ , ..., k

+
q , ..., n

+) = i
〈1j〉3 〈1k〉
〈12〉 ... 〈n1〉

. (3.10)

These relations are, in fact, consistent with the results we obtained in the section
2.4. However, we’ll see in the coming sections that these can be proved using the
BCFW recursion technique that we’ll learn next.

3.3 The recursion formula

In this section, we will follow the path of BCFW [FW05], to arrive at the recursion
relation given by them in [CF05]. We will be mainly sticking to the notation used
in reference [Dix13].
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Consider a colour-ordered n-gluon tree-level amplitude M tree
n (z) that depends on

a complex variable z. Notice that we have introduced a ‘complex’ parameter for the
first time, the motivation behind which was given in section 3.1. This variable can
be used to shift the on-shell momenta of external particles. BCFW used a special
type of shift called the [n, 1〉 shift that translates only two gluons legs’ (n and 1)
momenta. This particular shift is defined as follows :

ˆ̃λn = λ̃n − zλ̃1, λ̂n = λn,

λ̂1 = λ1 + zλn,
ˆ̃λ1 = λ̃1. (3.11)

One can notice that only the right-handed spinor λ1 and the left-handed spinor
λ̃n has been shifted. The above equations can be written in terms of angle and
square braket spinors as follows :

|n̂] = |n]− z|1], |n̂〉 = |n〉 ,

|1̂〉 = |1〉+ z |n〉 , |1̂] = |1]. (3.12)

Using this, we can define the following useful spinor product relations :

〈n̂1̂〉 = 〈n1〉 , [n̂1̂] = [n̂1] = [n1], 〈n̂1〉 = 〈n1〉 , [1̂n] = [1n]. (3.13)

In terms of momenta variables, this shift can be expressed as

/̂k1(z) = (λ1 + zλn)λ̃1 = λ1λ̃1 + zλnλ̃1 = |1〉 [1|+ z |n〉 [1|,

/̂kn(z) = λn(λ̃n − zλ̃1) = λnλ̃n − zλnλ̃1 = |n〉 [n| − z |n〉 [1|. (3.14)

It is clear from above that /̂k1(z) + /̂kn(z) = λ1λ̃1 + λnλ̃n = /k1 + /kn. This implies
that for any value of z, momentum is conserved. Now, one can say that the shifted
momenta are not physical as they depend on a complex parameter. However, we
can prove that they still are on-shell. Let’s say, λnλ̃1 = /v is the shifting momenta.
Then,

(k̂1)
2 = (k1 + zv)2 = (k1)

2 + 2zv.k1 + v2,

(k̂n)
2 = (kn − zv)2 = (kn)

2 − 2zv.kn + v2. (3.15)

Since k1 and kn are light-like on-shell momenta, the following conditions should
be satisfied for shifted momenta to be on-shell as well,

v.k1 = v.kn = v2 = 0 (3.16)

One can always find such a v, by allowing it to be a complex vector. For instance,
if we choose

vµ =
1

2
[1γµn〉, (3.17)

38 Chapter 3 Gaurav Singh



Calculating scattering amplitudes using modern techniques

then,
v.k1 =

1

4
[1γµn〉[1γµ1〉 ∝ [11] = 0.

Similarly, other orthogonality relations in equation (3.16) are satisfied as well. Now
that shifted momenta are on-shell and satisfy the momentum conservation, we can
write the amplitude as a function of these complex momenta,

Mn(z) ≡ Mn(k̂1(z), k2, ..., kn−1, k̂n(z)). (3.18)

For convenience, we have removed the superscript ‘tree’. We can always calculate
the physical amplitude by putting z = 0 i.e., Mn(0) = Mn is the amplitude with
unshifted momenta that we originally wish to calculate.

Now, consider a function of the form Mn(z)
z

. It has an obvious pole at z = 0.
Since we are talking about tree-level amplitudes, only poles will construct their
singularity or analytic structure as stated before. More specifically, Mn(z) will
have only simple poles being contributed by propagators in the diagram; different
propagators contributing poles at different values of z for generic external momenta,
[FW05]. Let’s look at our function in the complex plane. The residue of this function
at z = 0 corresponds exactly to the unshifted physical amplitude. To calculate this,
what we can do is consider the integral

1

2πi

∮
C

Mn(z)

z
dz, (3.19)

where the contour C is a large circle with its origin at simple pole z = 0 and
assume that the function has no poles at infinity so that Mn(z) → 0 in the limit
z −→ ∞. Then we can use this limit and Cauchy’s residue theorem [Con20b] to
write the integral as

1

2πi

∮
C

Mn(z)

z
dz = Mn(0) +

∑
i

Res

[
Mn(z)

z

]∣∣∣∣∣∣
z=zi

= 0, (3.20)

=⇒

Mn = Mn(0) = −
∑
i

Res

[
Mn(z)

z

]∣∣∣∣∣∣
z=zi

, (3.21)

where, zi are the other poles contributed by the denominator (propagator) of the
amplitude. We need to calculate residue at each such pole but before that we need
to find the form of these poles. This can be done by using the factorization property
of on-shell tree amplitudes that when such amplitudes factorize into sub-amplitudes
with lower number of legs, the intermediate propagator becomes on-shell. Let’s look
at the denominator of this propagator which has a z dependence now because of the
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momenta shifts :

Q̂2
1,i(zi) = (k̂1(zi) + k2 + ...+ ki)

2

= (k1 + ziλnλ̃1 + k2 + ...+ ki)
2

= (Q1,i + ziλnλ̃1)
2

= Q2
1,i + zi[1|/Q1,i|n〉, (3.22)

where in the last step, we have used the equations (3.16), (3.17) and (2.95). And
since the shifted propagator is on-shell,
=⇒

Q2
1,i + zi[1|/Q1,i|n〉 = 0,

or,

zi = −
Q2

1,i

[1|/Q1,i|n〉
. (3.23)

Now that we have calculated the poles, next step is to calculate Res
[
Mn(z)

z

]
,

where Mn(z) can be factorised [Dix13] as ,

Mn(z)
Q̂2

1,i→0
−−−−→ Mi+1(k̂1(z), k2, ..., ki,−Q̂1,i)

i

Q̂2
1,i(z)

Mn−i+1(Q̂1,i, ki+1, ..., kn−1, k̂n(z))

(3.24)
Then,

Res

[
Mn(z)

z

]∣∣∣∣∣
z=zi

= Ltz→zi (z − zi)

[
Mn(z)

z

]

= Ltz→zi z +
Q2

1,i

[1|/Q1,i|n〉

[
Mi+1(z)

i

zQ̂2
1,i

Mn−i+1(z)

]

= Ltz→zi

z[1|/Q1,i|n〉+Q2
1,i

[1|/Q1,i|n〉

[
Mi+1(z)

i

(z[1|/Q1,i|n〉+Q2
1,i)z

Mn−i+1(z)

]

= Mi+1(zi)
i

zi[1|/Q1,i|n〉
Mn−i+1(zi)

= Mi+1(zi)
−i

Q2
1,i

Mn−i+1(zi). (3.25)

Substituting back equation (3.25) into (3.21), we finally obtain the desired relation,

M tree
n (k1, ..., kn) =

∑
λ=±

n−2∑
i=2

Mi+1(k̂1, k2, ..., ki,−Q̂−λ
1,i )

i

Q2
1,i

Mn−i+1(Q̂
λ
1,i, ki+1, ..., kn−1, k̂n).

(3.26)
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This equation, evaluated at the pole value (z = zi) is known as the BCFW re-
cursion relation [CF05]. Notice that there is a sum over helicity of the intermediate
on-shell particle. Since, all particles are considered to be outgoing, helicity appear-
ing on either side of the factorization pole are opposite in signs. The other sum is
over all cyclically ordered configurations of gluons with at least two gluons on each
sub-amplitude. This implies that the lowest sub-amplitude possible is a 3-point
amplitude. So when asked to calculate a colour-ordered n-gluon tree amplitude, we
can keep applying this recursion relation until we reach at the basic building block
i.e., 3-point amplitude.

One last thing that is important to discuss is the assumption that we made in the
derivation of relation (3.26) i.e., Mn(z) → 0 as z → ∞. What conditions will allow
us to make this assumption? Actually, there’s a prescription for it; an overview of
which is discussed here. For a rigorous proof of the same, one can have a look at
[FW05] and [AHK08]. The amplitude vanishes for large value of z when the helicity
configuration for our choice of shift [n1〉, is (−,+), (−,−) or (+,+). This is because
for these choices, the amplitude contributes factors of the O(1

z
) while, a contribution

of O(z3) comes from the choice (+,−). This makes the amplitude diverging and
therefore, this configuration isn’t a suitable choice for the BCFW relation. Having
derived the recursion relation, let’s move on to see some of its applications - the first
of which would be to derive the Parke-Taylor amplitudes mentioned in section 3.2.

3.4 Proof of Parke-Taylor amplitude by induction

Consider the Parke-Taylor MHV amplitude given in equation (3.7),

MMHV
jl ≡ M tree

n (1+, 2+, .., j−, .., l−, ..., n+) = i
〈jl〉4

〈12〉 〈23〉 ... 〈n1〉
.

We can shift one of the negative helicity to nth using the cyclic property so that
we can stick with our [n1〉 ≡ [−+〉 shift. This gives,

MMHV
jn ≡ M tree

n (1+, 2+, .., j−, .., (n− 1)+, n−) = i
〈jn〉4

〈12〉 〈23〉 ... 〈n1〉
. (3.27)

We aim to prove this relation by induction using the BCFW recursion formula
(3.26), which for our convenience can be written in short-hand notation as,

M tree
n (1, 2, ..., n) =

∑
λ=±

n−2∑
i=2

Mi+1(1̂, 2, ..., i,−Q̂−λ
1,i )

i

Q2
1,i

Mn−i+1(Q̂
λ
1,i, i+1, ..., n− 1, n̂).

(3.28)
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Now, because of the opposite helicity of Q̂ on either side of the propagator, we
have a maximum of three negative helicities to be distributed among the two sub-
amplitudes. However, for getting a non-vanishing amplitude, at least two gluons
should have negative helicity (see section 3.2). This isn’t possible when 3 ≤ i ≤ n−3

as we’ll always have at least one sub-amplitude of the helicity configuration - all plus
or all but one minus, which will make the whole term disappear. Therefore, all these
middle terms would become zero and we are left with two cases :

• i = n− 2

For this case, equation (3.28) will become,

M tree
n (1, 2, ..., n) =

∑
λ=±

Mn−1(1̂, 2, ..., n−2,−Q̂−λ
1,n−2)

i

Q2
1,n−2

M3(Q̂
λ
1,n−2, n−1, n̂).

(3.29)
Now, since nth gluon has one of the two negative helicities, this means that
if j = n − 1, then M3 will have both the negative helicities and Mn−1 can
only have at most one negative helicity depending upon the helicity of Q̂ and
so it vanishes. If j < n − 1, then Mn−1 will survive only for λ = +. This
implies that we have a three-point amplitude of the form M3(+,+,−) which
from equation (3.5) has an anti-holomorphic form. We saw in section 3.1 that
this would be the result of three-point kinematics (3.3). However, since we
have shifted the left-handed spinor [n|, the 3-point kinematics (3.2) should
be followed for this case i.e., all left-handed spinors are proportional to each
other. In that scenario though, this anti-MHV three-point configuration M3

vanishes.

Either case, i = n− 2 term in the summation vanishes as well and we are left
with only one possibility for i which should give us a non-vanishing result.

• i = 2

For this case, equation (3.28) will become,

M tree
n (1, 2, ..., n) =

∑
λ=±

M3(1̂, 2,−Q̂−λ
1,2)

i

Q2
1,2

Mn−1(Q̂
λ
1,2, 3, ..., n− 1, n̂). (3.30)

Now, for j > 2 and λ = +, we’ll have the following 3-point amplitude,

M3(1̂
+, 2+,−Q̂−

1,2) = −i
[1̂2]3

[2− Q̂1,2][−Q̂1,21̂]

= i
[12]3

[2Q̂1,2][Q̂1,21]
. (3.31)
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where in the last step, we have used equations (2.83) and (3.12). Now, Q̂1,2 =

k̂1 + k2. So,

Q̂2
1,2 = 0 = 2(k̂1.k2) = 〈1̂2〉 [21̂] = 〈1̂2〉 [21], (3.32)

=⇒

〈1̂2〉 = 0.

Then, following the 3-point kinematics (3.3), we have 〈1̂2〉 = 〈2Q̂〉 = 〈Q̂1̂〉 =
0 and corresponding square products are non-zero. Therefore, M3 survives.
Now, we have to compute Mn−1 which we will do by induction.

Say, n = 4. Then, equation (3.30) becomes,

M tree
4 (1+, 2+, 3−, 4−) = M3(1̂

+, 2+,−Q̂−
1,2)

i

Q2
1,2

M3(Q̂
+
1,2, 3

−, 4̂−)

= −i
[12]3

[2Q̂][Q̂1]

1

s12

〈34〉3

〈4Q̂〉 〈Q̂3〉

= −i
[12]3

〈4Q̂〉 [Q̂2]

1

s12

〈34〉3

〈3Q̂〉 [Q̂1]
, (3.33)

now from equation (3.14),

/̂Q1,2(z2) = /k1 + /k2 + z2λnλ̃1

= |1〉 [1|+ |2〉 [2|+ z2 |n〉 [1|, (3.34)

=⇒

〈4Q̂〉 [Q̂2] = 〈4 /̂Q1,22] = 〈4| /k1 + /k2|2〉+ z2 〈44〉 [12] = 〈4| /k1 + /k2|2〉

= 〈41〉 [12] + 〈42〉 [22] = 〈41〉 [12], (3.35)

similarly,

〈3Q̂〉 [Q̂1] = 〈32〉 [21]. (3.36)

Using these and s12 = 〈12〉 [21], equation (3.33) can be modified as

M tree
4 (1+, 2+, 3−, 4−) = −i

[12]3 〈34〉3

〈41〉 [12] 〈12〉 [21] 〈32〉 [21]

= i
〈34〉4

〈12〉 〈23〉 〈34〉 〈41〉
. (3.37)
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Thus, one can see that the relation (3.27) is true for n = 4 gluons. Let’s assume
that it is true for 4 < k < n gluons. Then equation (3.30) can be written as,

MMHV
jn = M3(1̂

+, 2+,−Q̂−
1,2)

i

Q2
1,2

Mn−1(Q̂
+
1,2, 3

+, ..., j−, ..., n̂−)

=
i[12]3

[2Q̂1,2][Q̂1,21]

i

s12

i 〈jn̂〉4

〈Q̂3〉 〈34〉 ... 〈n− 1, n̂〉 〈n̂Q̂〉

=
i[12]3

[2Q̂1,2][Q̂1,21]

i

s12

i 〈jn〉4

〈Q̂3〉 〈34〉 ... 〈n− 1, n〉 〈nQ̂〉

= −i
[12]3 〈jn〉4

〈3Q̂〉 [Q̂1]s12 〈34〉 ... 〈n− 1, n〉 〈nQ̂〉 〈Q̂2〉 〈12〉 [21]
. (3.38)

From (3.34),

〈3Q̂〉 [Q̂1] = 〈32〉 [21],

〈nQ̂〉 [Q̂2] = 〈n1〉 [12]. (3.39)

Putting these back in equation (3.38), we obtain

MMHV
jn = −i

[12]3 〈jn〉4

〈32〉 [21] 〈34〉 ... 〈n− 1, n〉 〈n1〉 〈12〉

Rearranging, (3.40)

= i
〈jn〉4

〈12〉 〈23〉 〈34〉 ... 〈n1〉
. (3.41)

This completes our induction proof of the Parke-Taylor relation (3.27) for n gluon
legs. One can notice how the use of BCFW recursion formula made the proof so
simple and neat. Actually the choice of shift for a particular calculation can make the
computation simpler, even though each shift would correspond to the same result.
In the next section, we’ll use the recursion technique to prove the Parke-Taylor like
MHV amplitude formula (3.10), following the same procedure but with different
choice of reference gluons.

3.5 Proof of MHV amplitude for qq̄ + (n− 2)gluons

Consider the relation (3.10),

MMHV
1j ≡ M tree

n (1−, 2+, ..., j−q̄ , ..., k
+
q , ..., n

+) = i
〈1j〉3 〈1k〉
〈12〉 ... 〈n1〉

.
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Once again, we aim to prove this relation by induction using the BCFW recursion
relation. For convenience, n > j > 3 and we choose our reference gluons to be 1
and 2, so that the shift [1−, 2+〉 is done as follows :

|1̂] = |1]− z|2], |1̂〉 = |1〉 ,

|2̂〉 = |2〉+ z |1〉 , |2̂] = |2]. (3.42)

Adapting from equation (3.28), for this particular choice, the relation can be
modified as :

M tree
n (1, 2, ..., n) =

∑
λ=±

n∑
i=4

Mn−i+3(1̂, Q̂
λ
2,i−1, i, ..., n)

i

Q2
2,i−1

Mi−1(−Q̂−λ
2,i−1, 2̂, 3, ..., i−1).

(3.43)

We can solve equation (3.43) by dividing it into following three cases :

• 4 < i < n :
All these middle terms vanish because for each i in this case, we’ll have at
least one sub-amplitude of the form (3.10) or (3.6).

• i = n :
For λ = −, Mn−1(+,+, ..,−, ..,+) = 0. So this term vanishes. For λ = +,
we’ll have a 3-point sub-amplitude,

M3(1̂
−, Q̂+, n+) = −i

[Q̂n]3

[1̂Q̂][n1̂]
. (3.44)

Now, since we have shifted the left handed spinor [1|, going by the same logic
we used in previous section, this term would become zero as well.

• i = 4 : For this case, equation (3.43) can be written as,

M tree
n (1, 2, ..., n) =

∑
λ=±

Mn−1(1̂
−, Q̂λ

2,3, 4
+, .., j−, .., k+, .., n+)

i

Q2
2,3

M3(−Q̂−λ
2,3 , 2̂

+, 3+).

(3.45)
For λ = −, M3(+,+,+) = 0. So, other case must surive now for a non-
vanishing amplitude. For λ = +, we get

M tree
n (1, 2, ..., n) = Mn−1(1̂

−, Q̂+
2,3, 4

+, .., j−, .., k+, .., n+)
i

Q2
2,3

M3(−Q̂−
2,3, 2̂

+, 3+).

(3.46)
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Now, we can proceed like we did in previous section and apply induction to this
using relation (3.10):

MMHV
1j =

i 〈1̂j〉3 〈1̂k〉
〈1̂Q̂〉 〈Q̂4〉 ... 〈n1̂〉

i

〈23〉 [32]
i[2̂3]3

[3Q̂][Q̂2̂]

= −i
〈1j〉3 〈1k〉

〈1Q̂〉 〈Q̂4〉 ... 〈n1〉
1

〈23〉 [32]
[23]3

[3Q̂][Q̂2]
, (3.47)

where, we have used relation (3.42) for dealing with hats. Now using equation
(3.14),

/̂Q2,3(z4) = /k2 + /k3 + z4λ1λ̃2

= |2〉 [2|+ |3〉 [3|+ z4 |1〉 [2|, (3.48)

=⇒
〈4Q̂〉 [Q̂2] = 〈43〉 [32], (3.49)

〈1Q̂〉 [Q̂3] = 〈12〉 [23]. (3.50)

Using these equations and rearranging, equation (3.47) becomes,

MMHV
1j = i

〈1j〉3 〈1k〉 [23]3

〈12〉 〈23〉 〈34〉 ... 〈n1〉 [32]2[23]

= i
〈1j〉3 〈1k〉

〈12〉 〈23〉 ... 〈n1〉
. (3.51)

This completes our proof, by induction, of the MHV gluon amplitude with an
external pair of quark and anti-quark.
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Chapter 4

Application To Diphoton
Production At Hadron Colliders

Di-photon production via quark-antiquark annihilation (q̄ + q → γγ) is one of the
most important processes at the hadron colliders. Due to clean final states, the
process is a good observable for probing new physics beyond the standard model.
A precise theoretical prediction for the process in the standard model is required
in order to compare it with the experimental data. In perturbative QCD, precise
theoretical predictions can be obtained by calculating higher order QCD corrections.
A part of these QCD corrections are obtained by considering real gluon emission
proceses like: q̄q → gγγ, ggγγ etc. In this chapter we will apply the tree level
techniques discussed in the previous chapter to calculate scattering amplitude for one
gluon emission in di-photon production, and compare it numerically with calculation
using publicly available tools.

4.1 One gluon real correction

Consider the process :

q̄(k1) + q(k2) −→ g(k3, a) + γ(k4) + γ(k5)

We wish to calculate the square of the full scattering amplitude of this process. We
won’t be considering any Feynman diagrams here and will just use the smart things
that we have discussed so far. One can see that right hand side of the above process
contains two photons along with a gluon. Since photon is a colourless particle and
we deal with colour-stripped partial amplitudes, we can just treat these photons
like any other gluon for the sake of calculating partial amplitudes. So basically, our
process just becomes a process with 3 gluons and a quark-anti quark pair. Thus, we
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can use equation (2.62), to write the full amplitude Mtree
5 (1λ1 , 2λ2 , 3λ3 , 4λ4 , 5λ5) for

this process as,

Mtree
5 = g3s

∑
σ∈S3

(T aσ(3)T aσ(4)T aσ(5))ijM
tree
5 (1λ1

q̄ , 2λ2
q , σg(3

λ3), σγ(4
λ4), σγ(5

λ5))

= g3s [(T
aT bT c)ijMw(1

λ1 , 2λ2 , 3λ3 , 4λ4 , 5λ5) + (T aT cT b)ijMx(1
λ1 , 2λ2 , 3λ3 , 5λ5 , 4λ4)

+ (T bT aT c)ijMy(1
λ1 , 2λ2 , 4λ4 , 3λ3 , 5λ5) + (T cT bT a)ijMz(1

λ1 , 2λ2 , 5λ5 , 4λ4 , 3λ3)

+ (T bT cT a)ijMu(1
λ1 , 2λ2 , 4λ4 , 5λ5 , 3λ3) + (T cT aT b)ijMv(1

λ1 , 2λ2 , 5λ5 , 3λ3 , 4λ4)]

(4.1)

Then using the prescription, given after equation (2.62) for processes involving
photons, the above equation can be modified as

Mtree
5 = 2Q2

qe
2gs (T

a)ij [Mw(1
λ1 , 2λ2 , 3λ3 , 4λ4 , 5λ5) +Mx(1

λ1 , 2λ2 , 3λ3 , 5λ5 , 4λ4)

+My(1
λ1 , 2λ2 , 4λ4 , 3λ3 , 5λ5) +Mz(1

λ1 , 2λ2 , 5λ5 , 4λ4 , 3λ3)

+Mu(1
λ1 , 2λ2 , 4λ4 , 5λ5 , 3λ3) +Mv(1

λ1 , 2λ2 , 5λ5 , 3λ3 , 4λ4)]. (4.2)

Now, let’s calculate these partial amplitudes . Since five particles are involved, in
principle, we can have 25 = 32 possible helicity configurations. However, as we saw
in section 2.4, quark and anti-quark can’t have the same helicity. Thus, half of the
configurations would vanish. Also, from equation (3.9), the following configurations
would vanish :

Ms(1
−, 2+, 3+, 4+, 5+) = 0, Ms(1

+, 2−, 3+, 4+, 5+) = 0,

Ms(1
−, 2+, 3−, 4−, 5−) = 0, Ms(1

+, 2−, 3−, 4−, 5−) = 0, (4.3)

where, s = {w, x, y, z, u, v}. So, we are left with 12 configurations which would
be non-vanishing. Since parity is a symmetry of both QED and QCD, we have
only six independent configurations. These configurations can be obtained using
the result for MHV amplitude given in (3.10) via permutation. Let’s write down
these independent configurations one by one.

•

Mw(1
−, 2+, 3−, 4+, 5+) = i

〈13〉3 〈23〉
〈12〉 〈23〉 〈34〉 〈45〉 〈51〉

,

Mx(1
−, 2+, 3−, 5+, 4+) = i

〈13〉3 〈23〉
〈12〉 〈23〉 〈35〉 〈54〉 〈41〉

,

My(1
−, 2+, 4+, 3−, 5+) = i

〈13〉3 〈23〉
〈12〉 〈24〉 〈43〉 〈35〉 〈51〉

,
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Mz(1
−, 2+, 5+, 4+, 3−) = i

〈13〉3 〈23〉
〈12〉 〈25〉 〈54〉 〈43〉 〈31〉

,

Mu(1
−, 2+, 4+, 5+, 3−) = i

〈13〉3 〈23〉
〈12〉 〈24〉 〈45〉 〈53〉 〈31〉

,

Mv(1
−, 2+, 5+, 3−, 4+) = i

〈13〉3 〈23〉
〈12〉 〈25〉 〈53〉 〈34〉 〈41〉

. (4.4)

•

Mw(1
−, 2+, 3+, 4−, 5+) = i

〈14〉3 〈24〉
〈12〉 〈23〉 〈34〉 〈45〉 〈51〉

,

Mx(1
−, 2+, 3+, 5+, 4−) = i

〈14〉3 〈24〉
〈12〉 〈23〉 〈35〉 〈54〉 〈41〉

,

My(1
−, 2+, 4−, 3+, 5+) = i

〈14〉3 〈24〉
〈12〉 〈24〉 〈43〉 〈35〉 〈51〉

,

Mz(1
−, 2+, 5+, 4−, 3+) = i

〈14〉3 〈24〉
〈12〉 〈25〉 〈54〉 〈43〉 〈31〉

,

Mu(1
−, 2+, 4−, 5+, 3+) = i

〈14〉3 〈24〉
〈12〉 〈24〉 〈45〉 〈53〉 〈31〉

,

Mv(1
−, 2+, 5+, 3+, 4−) = i

〈14〉3 〈24〉
〈12〉 〈25〉 〈53〉 〈34〉 〈41〉

. (4.5)

•

Mw(1
−, 2+, 3+, 4+, 5−) = i

〈15〉3 〈25〉
〈12〉 〈23〉 〈34〉 〈45〉 〈51〉

,

Mx(1
−, 2+, 3+, 5−, 4+) = i

〈15〉3 〈25〉
〈12〉 〈23〉 〈35〉 〈54〉 〈41〉

,

My(1
−, 2+, 4+, 3+, 5−) = i

〈15〉3 〈25〉
〈12〉 〈24〉 〈43〉 〈35〉 〈51〉

,

Mz(1
−, 2+, 5−, 4+, 3+) = i

〈15〉3 〈25〉
〈12〉 〈25〉 〈54〉 〈43〉 〈31〉

,

Mu(1
−, 2+, 4+, 5−, 3+) = i

〈15〉3 〈25〉
〈12〉 〈24〉 〈45〉 〈53〉 〈31〉

,

Mv(1
−, 2+, 5−, 3+, 4+) = i

〈15〉3 〈25〉
〈12〉 〈25〉 〈53〉 〈34〉 〈41〉

. (4.6)
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•

Mw(1
+, 2−, 3−, 4+, 5+) = i

〈23〉3 〈13〉
〈12〉 〈23〉 〈34〉 〈45〉 〈51〉

,

Mx(1
+, 2−, 3−, 5+, 4+) = i

〈23〉3 〈13〉
〈12〉 〈23〉 〈35〉 〈54〉 〈41〉

,

My(1
+, 2−, 4+, 3−, 5+) = i

〈23〉3 〈13〉
〈12〉 〈24〉 〈43〉 〈35〉 〈51〉

,

Mz(1
+, 2−, 5+, 4+, 3−) = i

〈23〉3 〈13〉
〈12〉 〈25〉 〈54〉 〈43〉 〈31〉

,

Mu(1
+, 2−, 4+, 5+, 3−) = i

〈23〉3 〈13〉
〈12〉 〈24〉 〈45〉 〈53〉 〈31〉

,

Mv(1
+, 2−, 5+, 3−, 4+) = i

〈23〉3 〈13〉
〈12〉 〈25〉 〈53〉 〈34〉 〈41〉

. (4.7)

•

Mw(1
+, 2−, 3+, 4−, 5+) = i

〈24〉3 〈14〉
〈12〉 〈23〉 〈34〉 〈45〉 〈51〉

,

Mx(1
+, 2−, 3+, 5+, 4−) = i

〈24〉3 〈14〉
〈12〉 〈23〉 〈35〉 〈54〉 〈41〉

,

My(1
+, 2−, 4−, 3+, 5+) = i

〈24〉3 〈14〉
〈12〉 〈24〉 〈43〉 〈35〉 〈51〉

,

Mz(1
+, 2−, 5+, 4−, 3+) = i

〈24〉3 〈14〉
〈12〉 〈25〉 〈54〉 〈43〉 〈31〉

,

Mu(1
+, 2−, 4−, 5+, 3+) = i

〈24〉3 〈14〉
〈12〉 〈24〉 〈45〉 〈53〉 〈31〉

,

Mv(1
+, 2−, 5+, 3+, 4−) = i

〈24〉3 〈14〉
〈12〉 〈25〉 〈53〉 〈34〉 〈41〉

. (4.8)

•

Mw(1
+, 2−, 3+, 4+, 5−) = i

〈25〉3 〈15〉
〈12〉 〈23〉 〈34〉 〈45〉 〈51〉

,

Mx(1
+, 2−, 3+, 5−, 4+) = i

〈25〉3 〈15〉
〈12〉 〈23〉 〈35〉 〈54〉 〈41〉

,

My(1
+, 2−, 4+, 3+, 5−) = i

〈25〉3 〈15〉
〈12〉 〈24〉 〈43〉 〈35〉 〈51〉

,

Mz(1
+, 2−, 5−, 4+, 3+) = i

〈25〉3 〈15〉
〈12〉 〈25〉 〈54〉 〈43〉 〈31〉

,
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Mu(1
+, 2−, 4+, 5−, 3+) = i

〈25〉3 〈15〉
〈12〉 〈24〉 〈45〉 〈53〉 〈31〉

,

Mv(1
+, 2−, 5−, 3+, 4+) = i

〈25〉3 〈15〉
〈12〉 〈25〉 〈53〉 〈34〉 〈41〉

. (4.9)

The other six non-vanishing configurations, as mentioned before, are related to these
by parity symmetry and can just be obtained by replacing 〈ij〉 by − [ij].

So, now that we have all the non-vanishing amplitudes in hand, we can calculate the
square of full amplitude for a particular helicity configuration using equation (4.1)
and then we can add all the helicity configurations summed over final colours and
averaged over initial colours and spin,

R = |M|2Total =
∑

Helicity

1

2

8

9
Q4

qe
4g2s |Mw(1

λ1 , 2λ2 , 3λ3 , 4λ4 , 5λ5) +Mx(1
λ1 , 2λ2 , 3λ3 , 5λ5 , 4λ4)

+My(1
λ1 , 2λ2 , 4λ4 , 3λ3 , 5λ5) +Mz(1

λ1 , 2λ2 , 5λ5 , 4λ4 , 3λ3)

+Mu(1
λ1 , 2λ2 , 4λ4 , 5λ5 , 3λ3) +Mv(1

λ1 , 2λ2 , 5λ5 , 3λ3 , 4λ4)|2. (4.10)

The factor 1/2! signifies takes care of the fact that the two photons are identical.

We will calculate this numerically for which I have developed a C++ code that
can evaluate each partial amplitude helicity configuration at a given phase-space
point (see Table : 4.1). Let’s have a look at this numerical evaluation process.

4.1.1 Numerical evaluation

The code that I have written aims to calculate all the required angular braket inner
products at a given phase-space point and uses these values to evaluate all the non-
vanishing helicity configurations (equations (4.4) - (4.9)). It further calculates the
sum of all the partial amplitudes appearing in equation (4.2) at a particular helicity
configuration and then calculate the square of this sum for each non-vanishing helic-
ity configuration. Finally it performs the sum over all helicities to give the desired
output (4.10).
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n E Px Py Pz

1 500.00000000000000 353.55339059327372 0.0000000000000000 353.55339059327372
2 500.00000000000000 -353.55339059327372 0.0000000000000000 -353.55339059327372
3 458.57878788544019 -17.005390826698950 379.65366207819869 -256.64843317644414
4 364.06662073681770 62.239353947232971 -347.70430131936706 88.161703698191019
5 177.35459137774205 -45.233963120534021 -31.949360758831560 168.48672947825312

Table 4.1: The Test Phase-Space Point

After obtaining the result numerically, we want to cross-check our result with
the available result from publicly available tools. The tool that we have used as
the reference is MadGraph5 (MG5), [AFF+14] and the Table : 4.2 shows the
result obtained by our numerical computation and already available result from
MadGraph5 for comparison.

Tool R
MG5 5.7319406091124580 ×10−7 GeV−2

My Code 5.7319406091124590 ×10−7 GeV−2

Table 4.2: Comparison of Matrix element (R) for the phase space points
shown in Table : 4.1

As we can see we have an excellent agreement between the two calculations. This
allows us to calculate the total and differential cross-section for diphoton production
with one gluon emission.
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Chapter 5

Conclusion and Outlook

In this thesis we have barely managed to touch the top layer of modern techniques
that are being used to calculate scattering amplitudes. This is because we have
restricted ourselves to tree-level techniques only. In section 2.4 we saw an example
where we applied the trace-based colour decomposition and spinor-helicity formal-
ism to calculate the differential cross-section. We found out the exact same result
(2.107) as obtained through traditional Feynman diagrammatic approach in many
textbooks. However we realised through the calculation process that these mod-
ern methods are more efficient, specially when more number of external legs are
involved. The main highlight of this thesis is the application of BCFW recursion
technique and MHV amplitudes to calculate one-gluon real correction to diphoton
production at hadron colliders (section 4.1). We have gone beyond the analytic
calculation of partial amplitudes and have calculated the matrix element for the
process numerically. We have made internal consistency check on our numerical
calculation. Our calculation of matrix element has been compared with the results
obtained from publicly available tool for calculating scattering amplitude and an
excellent agreement has been found between the two.

We can further extend our code to calculate matrix element for two gluon real
correction to diphoton production at hadron colliders. In perturbative QCD the two
gluon emission process contributes to Next to Next to Leading Order (NNLO)
correction. This process has 6 particles and so one has to deal with Next to MHV
(NMHV) amplitudes as well. This isn’t a trivial exercise but people have calculated
all-gluon NMHV amplitudes and so this should be possible too. It would be an
interesting exercise to see the efficiency of BCFW recursion technique while dealing
with more or any number of external legs.

Further we would like to bring virtual corrections into the picture by looking
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at the application of these techniques at loop-level. Also, since we have restricted
ourselves to massless particles only, we would like to apply these techniques to
ongoing and future high energy collider experiments that mainly involves EW and
QCD processes i.e., interactions involving massive fermions and gauge bosons.
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