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Abstract

Understanding the spread of infectious disease in a population of susceptible individuals is an

active field of theoretical research involving interdisciplinary fields. The most common ap-

proach is epidemiological compartment models (commonly known as the SIR models) repre-

sented by differential equations, where the host-pathogen interaction is studied assuming the

transfer of individuals between the different infection states, such as the Susceptible, Infected

and Recovered classes. This is a mean-field approach and does not consider heterogeneity

among individuals in a class/compartment. A microscopic approach to study spread of infec-

tion is through the Agent Based Models (ABM), where each agent is an individual at a particular

infection state, and the rules of interactions describe the change in infection states.

The work presented in this thesis first studies the characteristics of different types of differ-

ential equation epidemiological compartment models (SI, SIS, SIR, and SIRS) using mathemat-

ical and computational analysis of steady states and their temporal dynamics. As an application

of this approach to specific diseases, the basic model of Malaria by Ronald Ross is studied. With

an aim to compare and contrast the mean field models with the microscopic approach, a detailed

study of the equivalent ABMs is developed and analysed. Analytic solutions and numerical re-

sults from differential equation models are compared with individual and averaged dynamics

of the Agent-Based Models over 50 runs for many parameter sets and initially infected agent

densities.

An in-depth comparison between the two approaches of modelling shows that ABMs can

lead to low probability states depending on initial conditions, even with the same parameters -

a behaviour that is absent in mean field models. The role of spatial structure in the distribution

of the same number of initial infected agents is shown to impact the rate of reaching the steady

states along with their dynamics. The presence of oscillations, a feature completely absent in

differential equation models, is observed in ABMs. Similar studies are done with the ABM

realization of the Ross model as well. These results clearly show that in realistic situations, i.e.,

vii



when a particular infection spreads through the host population, the dynamics and steady state

behaviour of the diseased states may exhibit differences due to the inherent randomness in the

agents, even in absence of other biological or social factors.

viii



Chapter 1

Introduction

1.1 Background

T
he study and control of infectious diseases is a critical part of sustainable development

in the modern globalised world, where the outbreak of epidemics is responsible for the

morbidity of millions of people each year and the cause of 17% of global deaths in addition

to high economic costs [GBD 14]. Creation of strategies for management of infectious dis-

eases assumes even more importance for mutating pathogens and new strains of diseases which

can cause worldwide pandemics like the 2019 Coronavirus epidemic which has claimed over

300,000 lives as of print.

Infectious diseases refer to communicable diseases, the class of diseases caused by agents

or pathogens that can spread to other individuals through a medium or by contact with bodily

fluids. The causative agents may be viruses, bacteria, parasites, arthropods, or fungi. Epidemi-

ology, the study of infectious diseases by understanding the profile of infected people such as

age, environment, genetics etc., the geographical spread and the temporal evolution of disease,

thus aims to examine the spatio-temporal patterns of disease prevalence in order to predict and

control it.

1.2 Infectious diseases modelling

The tools of epidemiological analysis of infectious diseases involve modelling them by using

mathematical functions to describe the host-pathogen interactions based on biological facts,

and using statistical modelling methods on the past and current disease prevalence and incorpo-

1



rating these as parameters, as well as other environmental or epidemiological parameters such

as vaccination coverage. There are also detailed statistical data analysis and prediction meth-

ods available that help to determine disease trend, which have important applications in public

health to control the spread of disease.

1.3 Types of modelling

A system can be studied and modelled at different scales of detail-

� Macroscopic scale with continuous space and time, such as differential equations

� Mesoscopic scale methods like lattice systems, where space is discrete but time is still

continuous

� Microscopic scale having both discrete space and time

Below the macroscopic and microscopic methods are discussed as they have been used in this

study.

1.3.1 Differential equation modelling

The use of mathematical modelling for diseases began back in 1766 by Daniel Bernoulli who ap-

plied it to smallpox [Bernoulli 66, Blower 04], and since then the tools of differential equations

began to be commonly used. The development of compartmental models to examine the spread

of diseases occurred dates back to the 1920s with the Kermack-McKendrick model [Kermack 27,

Brauer 01].

Compartmental models involve the creation of different classes or compartments in a

population which are in different stages of a disease. These models make the simplifica-

tion that all individuals belonging to a certain state or compartment are identical. Common

classes/compartments include-

2



d S

d t
=−βSI

∂ S

∂ t
=−βSI +DS

∂ 2 S

∂ x2

d I

d t
= βSI − γ I

∂ I

∂ t
= βSI − γ I +DI

∂ 2 I

∂ x2

d R

d t
= γ I

∂ R

∂ t
= γ I +DR

∂ 2 R

∂ x2

(a) ODE version (b) PDE version

Figure 1.1: The Susceptible-Infected-Recovered (SIR) model as (a) ODEs and (b) PDEs with a

spatial dimension. Compartment transfer rate constants are β and γ , and diffusion constants

DS,DI and DR

• Susceptible (S), referring to individuals prone to contracting the infection and not having

immunity against the disease

• Exposed (E), having acquired the infection but present in a latent manner without the

capability to spread

• Infected (I), having acquired the infection and able to spread it

• Recovered (R), having no infection and immune to further infection

Ordinary differential equation models (ODEs) describe the change in the population size in

each compartment with time, whereas partial differential equation models (PDEs) also account

for the dependence of infection in different compartment on space or any other variable such as

age structure, environmental variables like temperature, humidity etc.

Differential equation-based modelling, especially using the law of mass action, has been

one of the earliest methods of modelling diseases where transition rates define the rate of con-

version of one class of individual into another based on interaction in a deterministic fashion.

Differential equation modelling may include spatial dimensions and involve diffusion, but all of

them are mean field in nature, where interaction is effectively between the population numbers

or fractions [Edelstein-Keshet 88]. This is useful for large populations as a good approximation

but it exhibits only homogeneous interactions, and heterogeneous interactions and rare states

are left out [Agrawal 17, Liu 09].
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1.3.2 Agent-based modelling

Agent based modelling (ABM) is a microscopic or bottom-up technique to study interacting

systems in discrete space and time which makes use of tracking each agent, i.e., an autonomous

individual, to give rise to emergent behaviour [Railsback 19]. For ABM simulations we use

Netlogo [Wilensky 99, Wilensky 15], a multi-agent open source programming software which

is also an Integrated Development (IDE) for modelling, which may even be integrated with

python [Gunaratne 18]. Agent-Based modelling using Netlogo finds many applications across

fields as diverse as mathematical finance [Kurahashi 19], immigrant dynamics [Perez 19], life

cycle modelling [Wang 19] among others.

Interactions in the model can also incorporate environment, and heterogeneity is accounted

for in the system due to knowledge of agent properties. This can result in characteristics both

in the mean field and low probability or rare events. An ABM thus has the following features-

• Autonomous agents that have local interaction rules such that no long distance/averaging

interactions are present by default

• Interaction rules governing the behaviour of the model instead of equations

• A explicit spatial environment in 2 or 3 dimensions with which the agents can interact

and vice-versa

A more detailed description of this methodology is discussed in Chapter 2.

1.4 Malaria modelling

Malaria is one of the oldest infectious diseases plaguing the earth from antiquity. Malaria par-

asite requires two hosts (human and mosquito) for its life cycle to complete, and the disease is

spread through mosquito bites by infected mosquitoes and from infected humans [Anderson 91].

The use of modelling in malaria is of special importance due to the persisting presence of the

disease and about 228 million yearly infections and mortality of 405,000 in 2018, despite elim-

ination in certain regions over past decades [WHO 19]. Resistance of the parasite to drugs and
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mosquitoes to insecticides as well as warming temperatures that facilitate the survival of malar-

ial parasites present emerging risks that necessitate the understanding of its dynamics and both

preventative and public health intervention strategies.

The first malaria model was developed by Sir Ronald Ross in 1910 [Ross 10] to ex-

plain the population relationship in humans and mosquitoes which was further developed by

incorporating biologically realistic elements like latency of parasite development [Anderson 91,

MacDonald 57], age dependent susceptibility [Anderson 91, Aron 82], the time dependent im-

munity conferred by infection [Aron 82, Aron 88], and spatial and genetic heterogeneity in

humans and parasites [Hasibeder 88, Gupta 94]. After the development of Agent-Based Mod-

els, such an evolution accounting for the complexities of the disease and accurate reproduction

of the dynamics was also attempted. [Gu 05, Smith 06, Smith 18]

1.5 Thesis outline

The work embodied in this thesis is presented in five chapters. Along with a complete review

(with mathematical analysis and numerical simulations of equations) of the epidemiological

compartmental ODE models and the ABM method, the equivalent ABMs are developed and

analysed. Analytic solutions and numerical results from differential equation models are com-

pared with individual and averaged dynamics of the Agent-Based Models. Similar studies are

done with the ABM realization of the Ross model also. The aim is to compare and contrast dif-

ferential equations with the effects of an ABM in compartmental disease models and the Ross

malaria model while varying across parameters. The chapter-wise outlines are as under-

1. Chapter 1 gives the introduction to the thesis work.

2. Chapter 2 explains the methods and analysis of compartmental differential equations of

SI, SIS, SIR, and SIRS models, and the basic ODE malaria model (Ross model) along

with basic mathematical results known. The method of Agent-Based Models is also in-

troduced here.

3. Chapter 3 presents the results of the Agent-Based Models corresponding to the compart-

mental differential equation models (SI, SIS, SIR, and SIRS).

5



4. Chapter 4 discusses the ABM realization of the Ross malaria model along with compar-

isons with the ODE model.

5. Chapter 5 gives a summary of the results presented in the thesis, and proposes further

work that may be done.

6



Chapter 2

Models and methods

2.1 Differential equations methods

The differential equation time series have been produced using numerical integration in C with

the Runge-Kutta 4 (RK4) method [Butcher 63]. Calculations for the stability conditions of the

different types of fixed points are analytic except for the Ross model. All numerical solutions

of the compartmental equations assume the total population, N=1250, which stays conserved

across all models; the time step of integration adopted universally is t=0.01 units. We refer to

susceptible individuals as ‘susceptibles’, infected ones as ‘infecteds’ and likewise hereon. We

shall colour compartmental population time series in the following shades- Susceptible, Infected

and Recovered.

2.2 Epidemiological models

2.2.1 SI model

Figure 2.1: Schematic of the SI model
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d S

d t
=−βSI

d I

d t
= βSI

Figure 2.2: The SI system of equations

The Susceptible-Infected (SI) model leads to spread of disease from the infected to susceptible

class by the infection rate β (Figure 2.1). Example diseases include those with high percent-

age of mortality like Bovine Spongiform Encephalopathy (BSE), rabbit haemorrhagic disease,

Leishmaniasis etc.

The stability analysis of the system leads to a single fixed point of complete infection (I∞ = N)

state, independent of the initial conditions, illustrated by systems with different initial condi-

tions and rates in Figure 2.3. Higher I0 in system (S1,I1) leads to faster approach to the fixed

point despite lower β , but both systems 1 and 2 converge to the fixed point (S f ,I f )=(0,1250).

Figure 2.3: Illustrative states (S1,I1) when (β , I0/N) = (1.5,0.2) and (S2,B2) when (β , I0/N) =

(5,0.01); N=1250
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2.2.2 SIS model

Figure 2.4: Schematic of the SIS model

d S

d t
=−βSI + γ I

d I

d t
= βSI − γ I

Figure 2.5: The SIS system of equations

In the SIS model, after the spread of disease from the infected to susceptible class by infection

rate β , infected individuals get rid of the infection with rate γ without acquiring immunity in the

process (Figure 2.4). Diseases which follow this model are retroviruses, sexually transmitted

infections and bacterial infections.

The dynamics of the SIS system can exhibit an endemic state, which is a fixed point with non-

zero values of (S f , I f ), but also a disease free state (DF), which is a fixed point with (S f , I f )

= (N,0). The incidence of a DF state occurs when β/γ ≤ 1, else the fixed point achieved is
(

Nγ
β
,N

(

1− γ
β

))

, with the final state independent of initial conditions. This is illustrated by

systems with different initial conditions and rates in Figure 2.6, where system (a) having β/γ

= 1.6 approaches the endemic fixed point of (S f , I f ) = (781.25,468.75), while (b) where β/γ =

0.875 approaches the disease free state (S f , I f ) = (1250,0)

9



Figure 2.6: Illustrative endemic state (S1,I1) when (β ,γ) = (4,2.5) and disease free state

(S2,I2) when (β ,γ) = (0.7,0.8); N=1250

2.2.3 SIR model

Figure 2.7: Schematic of the SIR model

d S

d t
=−βSI

d I

d t
= βSI − γ I

d R

d t
= γ I

Figure 2.8: The SIR system of equations

In the SIR model, individuals after getting infected with rate β recover from the infection with

rate γ , acquiring immunity in the process (Figure 2.7). Diseases such as measles, mumps and

rubella can be modelled using the SIR model where immunity is lifelong.

The SIR system can only approach the fixed point of a disease free state since all individuals

ultimately become immune, but the intermediate stages of the disease may have an epidemic

in which I(t) has a maxima, or I(t) may alternatively decrease monotonously to the fixed point

10



(S∞, I∞ = 0,R∞); S∞ for general (S0, I0,R0) is given by the transcendental equation

1−

(

R0 −S∞

N

)

+
γ

β

[

ln

(

S∞

S0

)]

= 0

and thus R∞ = N −S∞. If the epidemic occurs, the maxima is similarly given in general as

Imax

N
= 1 –

R0

N
–

γ

β

[

ln

(

βS0

γ N

)

+1

]

The epidemic is seen when

(

βS0

γ N

)

≤ 1, else the disease simply goes extinct; this model no-

tably depends on the initial state as seen in the epidemic condition above.

Figure 2.9 illustrates systems with different initial conditions and rates where (a) satisfies the

epidemic condition with

(

βS0

γ N

)

= 1.485, and (b) where

(

βS0

γ N

)

= 0.72, and infected popula-

tion decays monotonously to the fixed point.

(a) (S0/N,β ,γ) = (0.99,1.8,1.2) (b) (S0/N,β ,γ) = (0.6,0.6,0.5)

Figure 2.9: Illustrative time series (a) with epidemic and (b) with no epidemic; N=1250
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2.2.4 SIRS model

Figure 2.10: Schematic of the SIRS model

d S

d t
= δR−βSI

d I

d t
= βSI − γ I

d R

d t
= γ I −δR

Figure 2.11: The SIRS system of equations

In the SIRS model, individuals after getting infected with rate β recover from the infection with

rate γ but only acquire transient immunity which is further lost with rate δ . Seasonal influenzas

present disease progression of this form with immunity lost over time (Figure 2.10).

The SIRS model can also show the dynamic states of a disease free state or an endemic state,

the former when β/γ ≤ 1 and the latter otherwise. The fixed point achieved in the case of an

endemic state is

(S f , I f ,R f ) =

(

Nγ

β
,Nδ

[

1− γ/β

γ +δ

]

,Nγ

[

1− γ/β

γ +δ

])

and (N,0,0) in the disease free case, again independent of initial conditions. We illustrate sys-

tems with different initial conditions and rates in Figure 2.12, where (a) approaches an endemic

fixed point with (S f , I f ,R f )≃ (937.5,108.7,203.8) while (b) approaches the disease free state of

(S f , I f ,R f ) = (1250,0,0)
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(a) (b)

Figure 2.12: (a) Illustrative endemic state when (β ,γ,δ ) = (2, 1.5, 0.8) and (b) disease free

state at (β ,γ,δ )= (0.4,0.5,0.55); N=1250

2.3 Malaria model (Ross model)

Figure 2.13: Schematic of the Ross model
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d Ih

d t
= abmIm Sh − γIh

d Im

d t
= acIh Sm −µIm

Figure 2.14: The Ross model system of equations

The Ross model [Ross 10] consists of compartments for both the humans and mosquitoes as

below-

1. Susceptible humans (Sh), not having immunity to the disease,

2. Infected humans (Ih), having acquired the infection and are active spreaders,

3. Susceptible mosquitoes (Sm), not having immunity to the disease,

4. Infected mosquitoes (Im), having acquired the infection and are active vectors.

Infection in both cases does not assume superinfection/reinfection. The variables in the

differential equations (Figure 2.14) are the following-

∗ The man biting rate, a, which is the proportion of mosquitoes that feed on humans in a

day [Smith 12],

∗ The infectious fraction in humans, b, the fraction of infectious bites by mosquitoes lead-

ing to contraction of infection in humans,

∗ The infectious fraction in mosquitoes, c, the fraction of bites by susceptible mosquitoes

from an infected human leading to them getting infected,

∗ The ratio of the density of female mosquitoes to humans, m,

∗ The death rate of mosquitoes, µ ,

∗ The recovery rate of humans, γ .

We note that the system is effectively a coupled system of SIS model in humans and SI

model with death for mosquitoes, having no immunity for either class of individuals (Figure

14



2.13)

This system has a disease free state of (I∗h , I
∗
m) = (0,0) and an endemic state

(I∗h , I
∗
m) =

(

a2bcm− γ µ

a2bcm+acγ
,

a2bcm− γ µ

a2bcm+abmµ

)

We leave the Jacobi matrix as a function of I∗h and I∗m for evaluation of the stability of the

states due to the 6 dimensional parameter space,





abmI∗m − γ abm(1− I∗h )

ac(1− I∗m) acI∗h −µ





The effect of parameter changes in the Ross model on the fraction of infected humans is

depicted in Figure 2.15-
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(a) (b)

(c)

Figure 2.15: Effect of changing (a) m, (b) µ , and (c) a on the prevalence curves (as a fraction

of total humans). The reference curve in blue is a=0.2, b=0.5, m=5, γ=0.02, c=0.5, µ=0.05

2.4 Agent-Based Model methods

The agent-based models are produced in Netlogo, making use of the parameter sweeps that

can be made to understand the impact of varying parameters as well as heterogeneity from the

microscopic level detail. The simulations consist of different compartments as before where

individuals have the same state of a disease –

1. Susceptible (S), not having immunity to the disease,

2. Infected (I), having acquired the infection but not liable to reinfection/ superinfection,

3. Recovered (R), having no infection and immune to further infection
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The initialisation of the models is in an environment of a grid of 65×65 (4225 in total)

patches closed on all sides such that no grid edges are connected, with an initial I0 number of

individuals infected and the rest (S0) susceptible to the disease. The initial spatial distribution

of the agents is randomly done in the grid such that no more than one agent occupies a site.

For each ABM simulation, a set of 50 runs is performed with different random configurations

of initial distribution of agents to span the entire space-grid. We note that the rate constants in

differential equations are now replaced by transition timescales which dictate the progression

of an agent from one compartment to the next.

The analysis of oscillatory time series involves the use of Discrete Fourier Transforms

(DFTs), defined for a time series x(t) with N data points and sampling frequency f as the

following-

X(ω) =
N−1

∑
t=0

x(t)e−i
2π f t

N

We look at the normalised power spectrum or ‘probability’ ,

P(ω) =
|X(ω)|2

∑
(N−1)/N

ω=1/N
|X(ω)|2

excluding the constant term at ω = 0, where |z| is the modulus of a complex number z. The im-

plementation of the DFT uses the python library rfft in scipy, which is a Fast Fourier Transform

(FFT), speeding calculations by the fact that Discrete Fourier Transforms of a real time series

are symmetric about ω = N/2 depending on N even or odd, and that FFTs with N of the form

N= N1N2 can be broken into independent calculations of N1 DFTs of size N2. [Cooley 65] The

Full Width at Half Maxima (FWHM) is the width of a peak measured at half the maxima value

to quantify its spread. The implementation of FWHM calculation is by finding the difference

of frequencies at which P(ω)≥ Pmax/2.
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2.4.1 Parameters

The models consist of a total N number of agents (fixed at 1250, ~30% of total patches) and

initial compartmental numbers S0, I0 and R0 (R0=0 always); the models always begin with I0=1,

5 or 10 with the rest of the initial populations given by S0=N-I0. Depending on the model,

transition timescales τA→B can also be defined, which represents the time steps taken for an

agent in compartment A to transition to compartment B, A and B ∈[S,I,R] ; say τI→R, which

represents the time steps after which an infected will become recovered. The timescales used

in the compartmental models for simulations were τA→B=10,15,20,25 and 30 for all appropriate

A and B. Parameters for which time series are presented are chosen to be extreme (minimum

and maximum) of the above ranges to highlight differences on account of changing parameters.

Error bars when indicated for the ABM results, present mean (µ) +/- one sample standard devi-

ation (σs). Simulations are performed for 2500 steps except the SI model, where the simulation

dynamically stops when complete infection occurs, or all of the agents are infected. Zoomed

time series are presented for the first 1000 steps to study features of the compartmental ABMs.

Also, for each ABM simulation, the set of 50 runs performed are shown as light coloured time

series in the background superposed with the mean trajectories as solid lines, where the mean

time series does not include those cases where the disease has gone extinct.

Figure 2.16: An illustration of the Netlogo interface is shown above where we observe the

initialisation buttons and plot monitors (top left), parameter sliders (bottom left), the

simulation space (centre) and a population graph (top right)
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2.4.2 Movement and infection rules

The compartmental model ABM rules are designed to allow only 1-to-1 interactions in a patch

such that they are non-ambiguous in nature and thus more than 2 individuals in a patch are not

allowed. Infection spreads when an infected is present in a patch with a susceptible, referred to

as ‘contact’. An agent is allowed to move into its Moore neighbourhood (the set of 8 nearest

sites), subject to the constraints below (if the classes exist in a given model)-

� Susceptibles are only allowed to move into empty patches

� Infecteds can move into a patch having no other infecteds

� Recovereds similarly move into patches having no infecteds
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Chapter 3

ABM of Epidemiological compartmental

models

In this chapter we present the results of the realisation of different epidemiological com-

partment models to study infection propagation in population using the Agent-based approach.

The dynamic behaviour of the compartments in the differential equation approach (mean field

description) are given in Chapter 2. Here the results obtained using the microscopic approach of

ABM for equivalent compartment models are compared and contrasted. The interaction rules of

ABMs are as per section 2.4.2 in Chapter 2. We shall colour compartmental ABM population

time series in the following shades- Susceptible, Infected and Recovered.

3.1 Two agent (SI) model

Figure 3.1: Schematic of the SI ABM

The ABM representation of the compartments is modelled by distributing (N-I0) agents who

are named as Susceptible (S) and I0 agent(s) who are in the Infected (I) state at t=0 for all ABM

models. The SI model is one where the susceptible-infected interaction leads to immediate

spread of disease from the infected to susceptible class until all agents are infected.
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Figure 3.2: 50 superposed runs of time series corresponding to I0=1 (solid curves) and I0=10

(dashed curves) with the mean curves as solid lines, coloured Susceptible and Infected

(a) Time course of infected populations taken to

reach steady state for I0 = 1, 5, and 10

(b) Spread (one sample standard deviation) in I

across 50 runs with time

Figure 3.3: (a) Average number of infecteds in given time, and (b) Mean time taken to reach

given infected individuals. Plots show µ ±σs, where the solid coloured lines are the mean

values for each I0

50 simulations are performed each for I0 = 1,5, and 10. Figure 3.2 shows 50 simulations

each for two initial numbers (I0= 1 and 10) of infected agents with different random initial

distributions of S0 and I0 in the grid, choosing the minimum and maximum values of I0 to

highlight differences. The increase in infecteds and concomitant decline in susceptibles show

that asymptotically a single fixed point state of complete infection (I∞,S∞)=(N,0) results. Even

though the final steady state is the same for both I0, it is clear that the steady state is reached

faster when I0 is larger. Also, the time course shows more spread across different runs for lower
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I0. To study these features we computed the time taken for half the total population to get

infected (τ1/2) and the error bars/variance (shown in 3.3 (a) and (b)).

We observe that the time taken for half the population to get infected (τ1/2) is lesser and

variance across runs is smaller in the case of higher I0. Increasing I0 thus leads to faster spread

of infection and lesser heterogeneity in the initial spatial distribution of infected, i.e. lesser

variation amongst runs.

In reality this translates to the situations where, irrespective of the distribution of the infecteds

in a population at different regions, larger number of initial infected individuals would lead to

faster development of disease cases.

3.2 Two agent (SIS) model

Figure 3.4: Schematic of the SIS ABM

This model leads susceptible individuals to infection on contact as before but then has a timescale

of eliminating infection, i.e. a timescale from infected to susceptible state, τI→S, without any

immunity conferred.
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(a) (I0,τI→S)=(1,10) (b) (I0,τI→S)=(1,30)

(c) (I0,τI→S)=(10,10) (d) (I0,τI→S)=(10,30)

Figure 3.5: 50 superposed runs of time series corresponding to different (I0,τI→S) pairs with

the mean curves as solid lines, coloured Susceptible and Infected

(a) I f vs τI→S (b) τ1/2 vs τI→S

Figure 3.6: Mean steady infected population (a) I f vs τI→S and (b) τ1/2 vs τI→S curves for

different I0

Fixed points for the system can now be both endemic (0< I f ≤N) and disease free (I f =0)

states with the latter seen at low τI→S when all infecteds transition to susceptibles without
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infecting much numbers of other individuals. This incidence of extinction where I f = 0 is thus

seen only for I0=1, seen as flat lines in Figure 3.5 (a), but not I0=5 or I0=10. 3 and 2 extinctions

were seen for τI→S=10 and 15 respectively while no extinctions were found beyond.

50 simulations each were performed for the 15 pairs (I0,τI→S) where I0 can take the values

1,5, and 10 while τI→S =10,15,20,25, and 30. Figure 3.5 shows simulations for two different

initial infecteds (I0=1 and 10) and τI→S (τI→S=10 and 30) where we again choose parameter

minimum and maximum values to highlight differences; we note that the steady infected pop-

ulation increases with τI→S but does not correlate with I0. This is shown by Figure 3.6a where

we plot the steady state infected value I f , calculated by averaging the mean infected time series

(solid red curves in Figure 3.5),<I(t)>, for the last 500 time steps of the simulation.

We again find that steady states are reached faster with both increasing I0 and τI→S such that

τ1/2 falls with increasing I0 and τI→S. Also, σs, the sample standard deviation given by the

shaded red region in 3.6b, again decreases with increasing I0 and slightly reduces with higher

τI→S.

The interpretation of the above results is that in the SIS model, in the case the disease

does not get eliminated (likely when I0 is higher) and achieves endemic status or an infectious

equilibrium, the expected number of infected in the population is dependent on the time an

individual takes to recover (τI→S, infectious period) but not how many diseased individuals

were present in the population when epidemic began. Here too, the disease develops faster with

higher initial infecteds and τI→S.

3.3 Three agent (SIR) model

Figure 3.7: Schematic of the SIR ABM

The SIR model has three classes of agents, Susceptible, Infected, and Recovered. In this model,

susceptible-infected interaction leads to infection but infected individuals recover with perma-

nent immunity, the timescale of acquiring immunity being τI→R.
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(a) (I0,τI→R)=(1,10) (b) (I0,τI→R)=(1,30)

(c) (I0,τI→R)=(10,10) (d) (I0,τI→R)=(10,30)

Figure 3.8: 50 superposed runs of time series corresponding to different (I0,τI→R) pairs with

the mean curves as solid lines, coloured Susceptible, Infected and Recovered

Figure 3.9: Mean S∞ vs τI→R for different I0 values
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(a) (b)

Figure 3.10: Mean (a) τ1/2 vs τI→R and (b) τmax vs τI→R for different values of I0

The only fixed point for the system is the disease free state (I∞=0) where uninfected sus-

ceptibles and recovereds coexist, but some runs exhibit an infection maxima (epidemic) before

approaching the fixed point while others do not.

50 simulations each are performed for the 15 pairs (I0,τI→R) where I0=1,5, and 10 while

τI→R =10,15,20,25, and 30. Figure 3.8 shows simulations for two different initial infecteds

(I0=1 and 10) and τI→R (τI→R=10 and 30). In the SIR model, the steady number of recovered

increases with both I0 and τI→R, and since S∞ = N−R∞ (N=1250), S∞ correspondingly falls to

0 at large τI→R (Figure 3.9), and the variation of S∞ with I0 also goes away at large τI→R; the

infected maxima similarly increases with both I0 and τI→R.

This model exhibits a potential bottleneck of spreading infection since immune individu-

als prevent contact of susceptibles with infecteds, but since longer τI→R also leads to a delay of

infection maxima from longer sustained spread of the disease, the resultant trend of τ1/2 with

τI→R (Figure 3.10a) is an increase but at higher τI→R; similar effects are seen for the time at

which infected maxima, τmax (Figure 3.10b), occurs. Variance decreases with higher I0 and

τI→R as in earlier ABMs. Extinctions (no epidemic) are found by calculating whether the num-

ber of infected reaches 0 within t=τI→R. Extinctions are again found for I0=1 only, with 2 and 1

extinctions for τI→R=10 and 15 respectively, and none thereafter.

The results signify that for diseases following the SIR pattern, the number of people in-

fected before an epidemic ends (i.e. R∞) is highly dependent on the infectious period τI→R but

also I0 if τI→R is small, and that predicting critical times like τmax and τ1/2, representing peak

periods of disease, can prove difficult, especially at lower I0 where variance/errors are high, so
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one must account for this in planning intervention strategies.

3.4 Three agent (SIRS) model

Figure 3.11: Schematic of the SIRS ABM

The SIRS model again causes susceptible individuals to develop infection but has both a timescale

of acquiring immunity, τI→R, and subsequently losing it at the timescale τR→S.

The system possesses fixed points and oscillatory solutions when distinguishing them by

the strength of oscillations using the Discrete Fourier Transform (DFT), the fixed points either

disease free (I f =0) or endemic (0< I f ≤N) and the oscillatory solutions endemic in nature.

50 simulations each are performed for the 75 sets (I0,τI→S,τI→R) where I0 =1,5, and 10

while τI→S or τI→R can both be 10,15,20,25, and 30 each. Figure 3.12 shows simulations for

two different initial infecteds (I0=1 and 10) and (τI→R, τR→S=10 and 30 for both), coloured

Susceptible, Infected and Recovered. The fixed point/oscillation range values are seen to be

dependent on τI→R and τR→S but not I0, with longer τI→R leading to higher steady value of

infecteds, and τR→S to higher recovereds and slightly higher susceptibles due to lesser infec-

tions from immunity bottleneck (Section 3.3). This system is sensitive to both timescales, and

a change in either timescale can lead to a different range of oscillation/steady state for all com-

partments.
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(a) (I0 , τR→S, τI→R)=(1,10,10) (b) (I0 , τR→S, τI→R)=(1,10,30)

(c) (I0 , τR→S, τI→R)=(1,30,10) (d) (I0 , τR→S, τI→R)=(1,30,30)

(e) (I0 , τR→S, τI→R)=(10,10,10) (f) (I0 , τR→S, τI→R)=(10,10,30)

(g) (I0 , τR→S, τI→R)=(10,30,10) (h) (I0 , τR→S, τI→R)=(10,30,30)

Figure 3.12: 50 superposed runs of time series corresponding to different (I0 , τR→S, τI→R)

combinations with the mean curves as solid lines
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(a) (I0 , τR→S, τI→R)=(1,10,10) (b) (I0 , τR→S, τI→R)=(1,10,30)

(c) (I0 , τR→S, τI→R)=(1,30,10) (d) (I0 , τR→S, τI→R)=(1,30,30)

(e) (I0 , τR→S, τI→R)=(10,10,10) (f) (I0 , τR→S, τI→R)=(10,10,30)

(g) (I0 , τR→S, τI→R)=(10,30,10) (h) (I0 , τR→S, τI→R)=(10,30,30)

Figure 3.13: Superposed DFTs of the infected time series corresponding to the 50 runs of time

series shown previously. Mean curves (<DFT>), taken point wise, are solid lines
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(a) <A>, I0 = 1 (b) <A>, I0 = 5 (c) <A>, I0 = 10

(d) δA, I0 = 1 (e) δA, I0 = 5 (f) δA, I0 = 10

(g) <FWHM>, I0 = 1 (h) <FWHM>, I0 = 5
(i) <FWHM>, I0 = 10

(j) δFWHM, I0 = 1 (k) δFWHM, I0 = 5 (l) δFWHM, I0 = 10

Figure 3.14: The mean DFT peak amplitude surface with interpolation (a-c) and errors (d-f),

and interpolated mean Full Width at Half Maxima (FWHM) surface (g-i) with errors (j-l)
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τR→S = 10 τR→S = 15 τR→S = 20 τR→S = 25 τR→S = 30

τI→R = 10 3 4 6 5 6

τI→R = 15 2 0 1 2 1

τI→R = 20 0 1 0 0 0

Table 3.1: Extinction table for the SIRS model, I0=1

We also perform Discrete Fourier Transforms (DFTs) to quantify the strength of oscil-

lations, and looking at Figure 3.13 conclude that oscillatory behaviour is present when τI→R

and τR→S are higher, while we can consider the final state to be endemic non-oscillatory when

either is lower. This behaviour is further quantified by calculating the peak amplitudes (A) and

Full Width at Half Maxima (FWHM) in the DFTs in Figure 3.14 averaged over the 50 runs,

with cubic interpolation performed in between simulation points for smoother surfaces. Higher

timescale values lead to higher peak amplitude, and also a smaller Full Width at Half Maxima

(FWHM), the width of the peak measured at half of the peak amplitude, showing strong, regular

oscillations at higher timescales.

Variance of the runs largely follows the same pattern as that of A and FWHM (Figure

3.14 d-f and j-l). Extinction is only observed for I0=1, where correlation with τI→R is strong

and negative while that on τR→S is weaker and positive, (Table 3.1) showing the instance of

persistence of infection spread with higher τI→R and suppression at higher τR→S.

The SIRS model assumes that people become susceptible to the disease after having tran-

sient immunity, but since we know that immune individuals prevent the spread of disease, longer

transient immunity (τR→S) can prevent epidemics. Also, the infectious period (τI→R) influences

the final proportion of people infected should the disease not die out and become endemic.

Just like the SIS ABM, the final states are independent of the initial infecteds present in the

population.
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Chapter 4

Agent-Based Model for Malaria

The implementation of ABM for a particular disease requires the biological knowledge of

the host-pathogen interaction specific for that infection. Here we show the implementation and

results of the simplest agent-based model for malaria, which is similar to the Ross Model, which

is a SIS type differential equation model (Section 2.2.2) for humans and SI type for mosquitoes

(Section 2.2.1). Since the malaria parasite needs two hosts - human and mosquito - to complete

its life cycle and disease to spread, the ABM representation also has two sets of agents for

human and mosquitoes, each having their own susceptible and infected states. As in Chaper

3, rate constants are replaced by timescales of transition of the different compartments of both

humans and mosquitoes, while the other parameters are stochastically implemented. We first

develop the Ross ABM model, and study the role of different parameters for malaria spread in

the population of agents and compare the results with the mean field approach of the original

differential equation model by Sir Ronald Ross. [Ross 10]
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4.1 Epidemiological model

Figure 4.1: Schematic of the general Ross ABM with non-trivial a,b and c, where brackets show

the probability of transition of states in terms of the parameters

As in the differential equation model, the Ross ABM also consists of two classes of agents for

both humans and mosquitoes–

1. Susceptible human agents (Sh), and infected human agents (Ih), having acquired the infec-

tion but not liable to reinfection/ superinfection. The Ih agents can recover from malaria,

and become Sh again without having any immunity to the disease.

2. Susceptible mosquito agents (Sm), and infected mosquito agents (Im), having acquired the

infection but not liable to reinfection/ superinfection. Im agents die on infection. To keep

the total population constant, every dead Im is replaced with a susceptible mosquito agent

Sm in the same patch.

The interactions between the human and mosquito agents are defined by timescales that

are similar to the rate constants of interactions in the differential equation Ross model. These are

the timescale of the transition of infected humans to susceptible ones, τh,I→S, and τm,I→S is the

infected mosquitoes replaced with susceptibles (after death) - to keep the mosquito population

constant.

There are other rates of interactions that are implemented as non- timescale parameters. In

the differential equation model both susceptible humans and mosquitoes are infected by biting
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of Im to Sh and when Ih is bitten by Sm (Figure 4.1). These bites by mosquitoes can lead to

probabilistic disease transmission based on infectivity and biting rate parameters.

4.2 Parameters

4.2.1 Population parameters

We initialise the ABM simulations with the total number of agents as 1250 (~30% of total

space sites). The length of the simulation was for 3200 time steps, but zoomed time series are

presented to study features of the ABM. The total population sizes of the two classes of agents

are - Humans: Nh = Sh + Ih = 625 and Mosquitoes: Nm = Sm + Im = 625. Here we consider

that a few infected humans, but no infected mosquitoes are present at the start of simulations,

i.e., Sm,0 = 625 and Im,0= 0. The disease starts to spread in the populations of agents when the

susceptible mosquito takes a blood-meal from an infected human and becomes infected. Then

onward whenever Ih and Im interact with Sm and Sh in the grid respectively, the disease spreads.

This study used infected human (Ih) agent population sizes at t=0 as Ih,0=1, 5 or 10, referred to

as simply I0 here on.

4.2.2 Timescale parameters

To remain close to known parameter values on interaction rates, the human and mosquito

infected-to-susceptible transition timescales are taken as τh,I→S ∈ [90,95,100,105,110] and τm,I→S ∈

[7,8,9,10,11] respectively. The inverse of the central values, 1/ τh,I→S= 0.01 and 1/τm,I→S ~0.11

are kept to be of the same order as the observed values of 0.005-0.05 and 0.05-0.5 respec-

tively [Mandal 11]. Also, the female mosquito to human population ratio, m=Nm/Nh=1 in this

ABM, whereas the observed range is 0.5-40 ,where it may be noted that all mosquito agents are

taken to be potentially infectious/female.
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4.2.3 Other parameters

The differential equation Ross model (Section 2.3) also has the following non-timescale param-

eters –

◦ The man biting rate, a, which is the proportion of mosquitoes that feed on humans in a

day [Smith 12]

◦ The infectious fraction in humans, b, the fraction of infectious bites by mosquitoes lead-

ing to contraction of infection in humans.

◦ The infectious fraction in mosquitoes, c, the fraction of bites by susceptible mosquitoes

from an infected human leading to them getting infected.

The implementation of these parameters in the general ABM is probabilistic, where a

random number in [0,1] is generated and if found greater than the parameter value, the condition

(bite/infection) is switched on; for instance if a=0.7 and the random number generated when a

mosquito and human are in the same patch is 0.6, the mosquito will not bite. We take a=b=c=1

in the simulations for adequate strength of infection spread and simplicity.

4.3 Movement and infection rules

The Ross model ABM, like the compartmental ABMs in Chapter 3, has interactions in a patch

which are 1-to-1 for humans and mosquitoes, and no more than 2 agents in total of any type are

allowed at the same patch/site. The following description is for general values of a, b and c in

the ABM set-up:

� Infection spreads when an infected mosquito is present in a patch with a susceptible hu-

man and bites it, probabilistically triggering infection, or when a susceptible mosquito

similarly bites an infected human

� An agent is allowed to move into its Moore neighbourhood (i.e., nearest 8 neighbours)

subject to the constraints below-
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• Susceptible or Infected humans can only move into patches unoccupied by any other

susceptible or infected humans

• Susceptible or Infected mosquitoes can similarly only move into patches with no other

susceptible or infected mosquitoes

4.4 Results

4.4.1 Parameter set results

When using the parameters in Section 4.2, the asymptotic dynamics of the Ross ABM is a fixed

point similar to the differential equation Ross model. Below we discuss the results of the effect

of variations in time scales and I0 on the collective dynamics of the agents in Ross ABM. The

sets of time series in the following section are coloured as susceptible humans (H,Sus), infected

humans (H,Inf), and infected mosquitoes (M,Inf).
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(a) (I0, τh,I→S, τm,I→S) =(1,90,7) (b) (I0, τh,I→S, τm,I→S) =(1,90,11)

(c) (I0, τh,I→S, τm,I→S) =(1,110,7) (d) (I0, τh,I→S, τm,I→S) =(1,110,11)

(e) (I0, τh,I→S, τm,I→S) =(10,90,7) (f) (I0, τh,I→S, τm,I→S) =(10,90,11)

(g) (I0, τh,I→S, τm,I→S) =(10,110,7) (h) (I0, τh,I→S, τm,I→S) =(10,110,11)

Figure 4.2: 50 superposed runs of time series corresponding to different (I0, τh,I→S, τm,I→S)

combinations with the mean curves as solid lines.
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The section 4.2 parameters only lead to fixed points which are again disease free (Ih, f =0

and Im, f =0) or endemic (0 < Ih, f ≤ N and 0 < Im, f ≤ N). Extinctions, where Ih, f = Im, f = 0

are very sporadic with one case each for (τh,I→S,τm,I→S) = (90,8) and (100,10) at I0=1.

From a large range of parameter combinations studied, in Figure 4.2, representative time

series are presented with parameter values I0=1 and 10, τm,I→S=7 and 11, and τh,I→S =90 and

110 to highlight differences from parameter variation. The susceptible mosquito population

time series is omitted for the sake of plot clarity, but is given as Nm - Im = 625 - Im. The large

time mosquito population, Im, f is largely dependent on the mosquito death timescale τm,I→S but

has a slight dependence on τh,I→S seen by the incline along τh,I→S axis in Figure 4.3 (g-i); note

again the averaging over 50 runs and interpolation to give mean values and smoother surfaces

respectively. The large time human infected (Ih) and susceptible (Sh) are similarly affected

largely by τh,I→S; the dependence of both on I0 is absent. Also, we study the time taken for

half the mosquito population to get infected (τ1/2, Figure 4.3 a-c) and see that both τh,I→S and

τm,I→S are inversely related to τ1/2 In the endemic cases decaying oscillations can be seen but

with longer decay time as τh,I→S, τh,I→S or I0 increase. As in the case of compartmental ABMs,

variance in runs still falls with increasing I0 but there is no specific pattern with τm,I→S or τh,I→S

as seen in Figure 4.3 (d-f and j-l).

We thus see that the expected number of mosquitoes infected by malaria in endemic states

depends on the infectiousness of humans and mosquitoes, but that of humans is largely depen-

dent on their own lifespan when infected. Oscillations may be triggered by the sustained spread

of the disease, which is a result of lesser heterogeneity with increasing τm,I→S,τh,I→S, and I0.
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(a) τ1/2, I0 = 1
(b) τ1/2, I0 = 5

(c) τ1/2, I0 = 10

(d) δτ1/2, I0 = 1 (e) δτ1/2, I0 = 5 (f) δτ1/2, I0 = 10

(g) <Im, f >, I0 = 1 (h) <Im, f >, I0 = 5 (i) <Im, f >, I0 = 10

(j) δ Im, f , I0 = 1 (k) δ Im, f , I0 = 5 (l) δ Im, f , I0 = 10

Figure 4.3: The mean τ1/2 surface with interpolation (a-c) and errors (d-f), and interpolated

mean Im, f (large time infected mosquito fraction) surface (g-i) with errors (j-l)
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4.4.2 Total population size

The model dynamics under different population sizes of human and mosquito agents with

Nh=Nm and initial infected host agent numbers I0 is also studied keeping τh,I→S =100, τm,I→S=9

constant (Figure 4.4, a-d).

Compared to Figure 4.2 it is seen that damping is reduced and the dynamic behaviour

transitions to oscillations at higher populations and I0, as is also shown in the corresponding

DFTs (Figure 4.4, e-h).

Oscillatory dynamics is not observed in the differential equation Ross model (Figure 2.14),

and is one of the interesting outcomes of the ABM realization. This may be a combined effect of

high population density and time scales of interactions leading to sustained regular variation in

spread distributed in space, and increased I0 causing less heterogeneity/variance as before. This

is purely a spatial effect dependent on initial conditions since the ratio m= Nm / Nh is preserved,

and thus all parameters are constant.
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(a) (I0 , Nh, Nm)=(1,1000,1000) (b) (I0 , Nh, Nm)=(1,1800,1800)

(c) (I0 , Nh, Nm)=(10,1000,1000) (d) (I0 , Nh, Nm)=(10,1800,1800)

(e) DFT at (I0 , Nh, Nm)=(1,1000,1000) (f) DFT at (I0 , Nh, Nm)=(1,1800,1800)

(g) DFT at (I0 , Nh, Nm)=(10,1000,1000) (h) DFT at (I0 , Nh, Nm)=(10,1800,1800)

Figure 4.4: 50 superposed runs of time series (a-d) corresponding to different (I0 ,Nh ,Nm)

combinations with the mean curves as bold lines, and the DFTs of Ih time series (e-h)
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Chapter 5

Summary and future work

5.1 Summary

Understanding the mechanism of the spread of an infection in a population is critical to its

management, control, and eradication. Epidemiological modelling has been a commonly used

approach to enhance our knowledge and predictive capability in managing infectious diseases.

In this thesis, two of the theoretical modelling approaches - the mean-field differential equation

models and microscopic Agent-Based Models - have been used. ABMs incorporate hetero-

geneity in agent properties and have agents distributed in space, which may lead to differing

evolution of their time course. The work aimed to compare and contrast the results obtained

for epidemiological compartment modelling from the two approaches. First, the differential

equation models for two and three compartments, namely the SI, SIS, SIR, and SIRS models,

are studied and their steady state and local stability analysis done to understand the long term

dynamics of disease spread. All these models exhibit fixed point asymptotic dynamics, and

either disease free or endemic infection of population, depending on the interaction rates and

initial conditions.

To demonstrate the behaviour of the microscopic approach of agent populations in similar

compartment models, the ABMs of equivalent descriptions are developed in a 45×45 spatial

grid with relevant time scales for interaction rates. A large number of simulations are done

spanning a range for each parameter for 50 different initial population distributions. The major

results obtained for each of the compartment models are summarized below-

� SI model: We observe that the time taken for half the population to get infected is lesser

and variance across runs is smaller in the case of higher initial infecteds. The rate of
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infection in the case of low initial infecteds shows a higher dependence on their location

since infecteds at grid edges have less average neighbours, which explains why some out-

liers may exist and give rise to variations in ABM runs across all model types. Higher

infecteds at the beginning thus leads to faster spread of infection and lesser heterogeneity

in the initial spatial distribution of infected.

In reality, this translates to the situations where irrespective of the distribution of the in-

fecteds in a population at different regions, a larger number of initial infected individuals

would lead to faster development of disease cases.

� SIS model: In the SIS model, extinction or a state where the population is completely free

of infecteds can occur at low initial infecteds but if state achieved is endemic status or an

infectious equilibrium, the expected number of infected in the population is dependent on

the time an individual takes to recover or the infectious period but not how many diseased

individuals were present in the population when the epidemic began. Here too, the disease

develops faster with higher initial infecteds and infectious period.

� SIR model: The results signify that for diseases following the SIR pattern, the number

of people infected before an epidemic ends is highly dependent on the infectious period

but also initial infecteds if the infectious period is small, and that predicting critical times

like time of infection maximum or τ1/2, representing peak periods of disease can prove

difficult especially at low initial infecteds, so one must account for this in planning inter-

vention strategies.

� SIRS model: Higher timescale values lead to higher peak amplitude or strength of oscilla-

tions, i.e., oscillatory behaviour, and also a smaller Full Width at Half Maxima (FWHM),

the width of the peak measured at half of the peak amplitude. Strong, regular oscillations

are seen at higher timescales, while lower timescales correspond to either non-oscillatory

endemic or disease free states.

Extinction is only observed for low infecteds with the dependence on timescales being

such that higher infectious period strongly increases the persistence of infection while

increasing recovery period/transient immunity stage suppresses epidemics though with

relatively moderate intensity.

The SIRS model allows transient immunity, after which individuals again become sus-

ceptible, but since immune individuals prevent contact between susceptibles and infect-

eds and thus inhibit the spread of disease, longer transient immunity can help prevent
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epidemics. Also, the infectious period influences the final proportion of people infected

should the disease not die out and become endemic. The SIRS and SIS models show

similarities in that final endemic states are independent of the initial infecteds present in

the population, both notably being models where a return to susceptibility or ’cyclicity’

of transitions is permitted.

Along with these general models, a more complex model specific to the disease Malaria

(the Ross model), is also studied using both the approaches. Here also both approaches showed

fixed point dynamics, but the ABM realization displayed oscillatory dynamics for certain time

scales and population sizes.

The above description depicts both the similarities that result from agent-based models

when converted from differential equation models but also highlight the effects of spatial di-

mensions seen at the microscopic scale. Agent-based models incorporate stochasticity of pa-

rameters and implement timescales in individual agents leading to heterogeneity as seen in a

spatially explicit grid and also have interactions between agents instead of averaged population

interactions, so the above characteristics result in distinctive features. Another important differ-

entiation between the two is the strong dependence of the ABM on initial conditions, leading to

potential extinction / disease free states by spatial inhibition of interaction, and also outliers or

strong deviations in certain runs from the average ABM behaviour occurring due to particular

spatial distributions of the system, all of which are low probability or rare states. These occur

for the same parameter sets in contrast to differential equations where parameters and initial

conditions completely and deterministically provide the trajectory of the system.

5.2 Future work

While conversion of differential equation models to agent-based models requires appropriate

equivalent parameters and behaviour rules, realistic models will additionally need verification

of rules, calibration of parameters, and replacement of uniform parameters with distributions as

found in populations.

This work may be extended into the analysis and conversion of detailed malaria models

[Mandal 11, Sequeira 19] or used to create ABMs for containment strategies [Jin 20]. Agent-
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based models may also be created corresponding to differential equation models of malaria or

other diseases that have effectively reproduced results in specific geographies [Mandal 13].

ABMs may also be integrated with population data and networks of people realistically situated

in a city or region [IIIangakoon 15], even making use of Geospatial Information Systems (GIS)

software like ArcGIS and demographic profiles of ages to accurately predict disease outbreaks

and plan interventions and public health responses.
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