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Abstract

Classical one-dimensional XY model has been proven to imitate some character-

istics of non-Newtonian fluids. In this work we study the dynamics of rotors

present in an XY system when administered between counter rotating boundaries.

As shown in a research paper [Evans 15], we applied Langevin dynamics to 1D

XY system to replicate the results which proposed its analogous nature with

non-Newtonian fluid. Different distinct types of flow regimes were observed

under different combination of system parameters. Then the one chain system was

modified to two chain system with the chains aligned parallel and

perpendicular to each other. They were also evolved under different combinations

of system parameters. We attempted to understand how such a change would

affect and alter the dynamics of the system.





Chapter 1

Introduction

Condensed matter physics is the field of physics that deals with the study of

microscopic and macroscopic properties of matter using physical laws. Some of

the very interesting properties which are studied in this field of physics include

ferromagnetic and antiferromagnetic properties of materials studied based on the

orientation of spins, superconductivity of certain materials at low temperature,

Bose-Einstein condensate and so on. Our deeper understanding of such intricate

phenomenon have definitely paved way for the advancement of science and tech-

nology further. Applications of condensed matter physics range from identifying

the most suitable material fit to make tools used in daily life, like telecommunica-

tion devices such as cellphones and other multimedia devices, to superconducting

magnets that are used in NMR tomography in medical diagnostics. To understand

the plethora of properties exhibited by diverse systems, we use different theoretical

models which suit each system uniquely. Classical XY Model [Kosterlitz 73] is one

such paradigm among many others in the field of condensed matter physics. Even

though it is commonly used to study simple magnetic systems and its properties

that first inspired it, Classical XY model’s application extends far beyond these

systems.
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1.1 XY Model

An XY model consists of rotors or spins, s at each lattice site j of the sys-

tem which is free to rotate in two dimensions, that is, in a plane. Hence each

spin has one continuous degree of freedom, θj, of the two-component spin vector

sj = (cos θj , sin θj). These angles, can acquire any values ranging from zero to

2π, that is

0 ≤ θj ≤ 2π

To study any system and various phenomenon exhibited by it, we need to

understand how the energy dynamics of the system works and generally for an

XY system energy corresponding to the configuration of the system is given by

the Hamiltoninan,

H =
∑
i,j

Jijsi.sj

where Jij represent the strength of coupling between ay rotors. There are some

systems in which a spin interacts only with its immediate neighbours, for such

systems Jij will be zero except for the cases where i and j are neighbours.

The probability of each state or configuration occurring given by,

Probability, P =
1

Z
exp (

−E
KBT

)

Where Z is the partition function of the system, KB is the Boltzmann’s Constant,

T is the temperature of the system and E is the energy of the system for that

particular configuration.
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1.2 Langevin Equation

Langevin Equation is a stochastic differential equation originally developed to de-

scribe Brownian motion, which is the random jittery motion exhibited by small

particles suspended in a fluid. Brownian motion was first experimentally observed

by a Scottish botanist Robert Brown [Brown 28] when he was observing the mo-

tion of pollen grains suspended in water using a simple microscope. However a

theoretical explanation was only provided by Einstein [Einstein 56] way after its

discovery. Brownian motion was later extended to some collective properties of

macroscopic systems instead of just fluctuating particles. The Langevin Equation

contains frictional and random noise terms apart from the classical force terms.

Since we are dealing with multiple rotors rotating simultaneously in a chain, this

equation is also applicable in the XY system.

The Newton’s equation of motion governing the motion of a Brownian particle in

one dimension is given by,

m
dv

dt
= Ftot(t)

where m is the mass of the Brownian particle and Ftot(t) is the total force acting

on the particle. Since the source of the force acting on the particle is mainly the

viscous force exerted by the fluid medium on the particle, the above equation can

be re-written as,

m
dv

dt
= −ζv

where ζ is the friction constant, v is the velocity of the particle. On solving the

above differential equation we get

v(t) = v(0)e
−ζt
m
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Hence based on this equation, velocity of the particle should decay to zero for

infinitely long time duration. But this is in contradiction to the Maxwell-Boltzmann

distribution law which states that the mean squared velocity of a particle in

thermal equilibrium should be KBT
m

. Therefor the assumption that only the fric-

tional force of the medium is involved has to be corrected. At each instant the

Brownian particle is colliding with a large number of particles in the fluid medium.

The number of collisions and the force exerted by these particles varies at each

instant. So we bring in this random colliding force into the picture by adding one

more term to the differential equation, that is,

m
dv

dt
= −ζv + δF (t)

δF (t) is the Gaussian white noise term acting on the rotor at time instant t.

Properties of the white noise term are:

〈δF (t)〉 = 0

〈δF (t)δF (t′)〉 = 2Bδ(t− t′)

The first equations states that the time average of the noise term is always zero.

And the second equation states that there is absolutely no correlation between

between the random noise terms at two different time instances. This is known

as the auto-correlation function of the white noise. The variable B indicates the

intensity of the fluctuating force. In the presence of external force the Langevin

Equation is defined as

m
dv

dt
= F − ζv + δF (t)

where F is the external force acting on the system.
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1.3 Non-Newtonian Fluid

Non-Newtonian fluids are those fluids which do not obey Newton’s Law of

viscosity, which states that there is a linear relation between stress and shear

rate. So for Newtonian fluids, the proportionality constant η, known as Viscosity,

will be constant throughout the fluid for a given temperature, no matter how fast

the fluid is flowing through a channel.

Unlike Newtonian fluids, in non-Newtonian fluids the relation between stress

and shear rate is not linear and therefore one cannot observe a constant viscosity

through out the fluid. They show macroscopic regions with different shear rate

existing simultaneously.

According to a research paper published by R.M.L Evans et. al [Evans 15], one-

dimensional XY model with conserved angular momentum and counter rotating

boundaries is analogous to non-Newtonian fluids and exhibits non-Newtonian fluid

flow characteristics. Based on the trend in which the shear rate is distributed along

the fluid, flow regimes can be classified into the following regimes.

1.3.1 Uniform Flow Regime

This type of flow regime shows constant shear rate throughout the fluid. It exhibits

characteristics of a Newtonian fluid with linear relation between stress and shear

rate. Therefore the global shear rate is same as the local shear rate at any layers

of the fluid. This characteristic kind of fluid flow is shown by almost all fluids. If

fluids don’t exhibit this kind of flow characteristic at normal conditions, we can

observe it in the same fluid at a higher temperature.
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1.3.2 Shear Banding Regime -SBR

This type of flow regime shows different sections of layers of the fluid having

different shear rates. These specific regions or layers having different shear rates

are fairly distinguishable and are identified as different Bands, hence the name

Shear Banding. Some polymers [Kunita 12], colloids [Besseling 10] and surfactant

phases [Schmitt 94] exhibit this particular flow regime characteristics.

1.3.3 Solid- Fluid Coexistence Regime

This type of flow regime shows different separated regions or layers with features

of solid interconnected by layers showing characteristics of fluids. Solid region

is marked by layers of fluid with constant velocities and hence zero shear rate.

And liquid region is marked by layers of fluid having uniform shear rates be-

tween the solid regions. This particular flow characteristic is shown by some

foams [Debregeas 01] and colloids [?]. Some fluids even show both solid-fluid co-

existence characteristics as well as slip planes.

1.3.4 Slip-Plane Regime

This type of flow regime is characterised by the presence of multiple sections of fluid

with solid nature, marked by the presence of layers of fluid with constant velocities.

There are no layers of fluid in between these sections with any other distinct

velocities. Hence all of the shear flux is concentrated between non-connected solid

sections known as Slip Planes. This particular fluid flow is observed in some

surfactant cubic phases [Jones 95] and polymer melts [Tapadia 03].
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Chapter 2

One Chain System - 1D XY

Model

One dimensional XY Model is a simple XY model consisting of only a single chain

of rotors. The plane of rotation of the rotors is perpendicular to the spatial location

of the rotors on the axis of the chain.

2.1 Model Description

In this particular one chain XY system which we consider, the rotors or spins

couple only to their immediate neighbours. The intra-chain coupling constant Jij

is one here and the system is Spin 1 system, that is, sj = 1 at all lattice points j.

Consequently, the Hamiltonian of the system is given by,

H =
N∑
j=1

[−sj.sj−1 +
1

2
θ̇2j ]

where the first term in the Hamiltonian represent potential energy due to the

spin coupling between two neighbouring spins. This energy is dependent on the
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relative orientation between those two specific rotors. And the second term in the

Hamiltonian represent the rotational kinetic energy of a rotor, which is dependent

only on the rotational velocity of that rotor.

Since we are only interested in the non-equilibrium behaviour of the system,

we add two counter rotating rotors, driving rotors, one on either side of the chain.

These rotors are made to rotate relentlessly at a constant velocity in time and

therefore continuously supply energy to the system.

Figure 2.1: Schematic representation of 1D XY system. The blue ellipses at both
ends represent counter rotating driving rotors.Jij is the intra-chain coupling con-
stant.
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2.2 1D XY Model and

Non-Newtonian Phenomenology

Even though 1D XY model exhibits trivial equilibrium phase behaviour, away

from equilibrium the system seem to imitate the characteristics of non-Newtonian

fluids. It maybe challenging for someone at first to find a connection between

a condensed matter system like XY model and a classical physical system like

Non-Newtonian fluid. The analogy between one dimensional XY system and fluid

system can be understood by visualizing that the rotation of spins in 1D XY system

is similar to the rotation of different layers of fluid in a parallel-plate rheometer

[Unterberger 14] [Tempel 96]. The rotational velocity difference of the rotors can

be used to represent shear rates.

Figure 2.2: Diagrammatic representation of 1D XY system. The two red ellipses,
which is the trajectory of driving rotors, can be considered as the rotating parallel
plates of a rheometer and the black ellipses,trajectory of other spins, can be con-
sidered as different layers of fluid in between these plates. The red arrows represent
the rotating spins.
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2.3 Model Simulation

Even though model’s dynamics may not affect the phase behaviour of the system

at equilibrium, we need specific equations of motion to determine the dynamics

of the system in non-equilibrium. Here we apply Langevin dynamics to develop

and study the system. The forces involved obey Newton’s Laws of Motion and

hence conserve angular momentum of the rotating spins, which only have angular

degrees of freedom and no radial motion. The frictional and stochastic part of

the Langevin equation only act between nearest neighbours. Using Hamilton’s

equation to find generalized momenta τj and incorporating the the frictional and

stochastic parts of the Langevin equation, we get the dynamical equations for the

system. The equations are

θ̈j = τj − τj−1,

τj = sin ∆θj + µ∆θ̇j + ηj(t)

Here, τj is the torque applied by rotor j+1 on rotor j. ∆θj is the relative angular

difference between rotors at lattice points j + 1 and j, that is, ∆θj = θj+1 − θj.

µ is the coefficient of friction and ηj(t) is the δ-correlated Gaussian function with

mean zero and,

〈ηj(t)ηj(t′)〉 = 2µTδ(t− t′)δij

The simulations were done with kB ≡1 at a temperature, T, and µ was same

for all rotors, including the driving rotors. Dissipative Particle Dynamics (DPD)

algorithm [Groot 97] was used to evolve the system. Finite size effect was elimi-

nated by setting the total number of rotors to be 512(N). An overall global shear

rate was given to the system by giving specific velocity difference(Nγ̇) between

the counter rotating driving rotors. So the system as a whole experience a mean

shear rate, angular difference per rotor, γ̇.
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2.4 Results

The combination of system variables, namely temperature T , co-efficient of friction

µ and mean shear rate γ determined the behaviour of the system. On evolving the

model at different system parameters for asymptotically late times t ≥ 4500 and

averaging of rotors over 500 units of time, four distinct type of flow regimes were

observed. they are,

• Uniform Flow Regime at (T, µ, γ̇) = (0.02,50,0.009960)

• Shear Banding Regime at (T, µ, γ̇) = (0.02,10,0.007813)

• Solid-Fluid Coexistence Regime at (T, µ, γ̇) = (0.001,1,0.0078125)

• Slip Planes Regime at (T, µ, γ̇) = (0.001,0.5,0.0058938)

Figure 2.3: Angular velocity versus position in a chain of 512 rotors showing four
different flow regimes. (a) Unform; (b) Shear Banding; (c) Solid-Fluid Coexistance;
(d) Slip Planes
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Chapter 3

Two Chain Systems - Quasi 1D

Model

Quasi one dimensional XY Model is another simple XY model consisting of two

single chain of rotors where it is not essentially a two dimensional system. The

plane of rotation of each rotor will be perpendicular to their spatial location on

the axis of the chain they belong to.

3.1 Parallel Two Chain System

3.1.1 Model Description

In this particular two chain XY system which we consider, the rotors or spins

couple only to their immediate neighbours as in 1 chain system. Since there are

two chains, say chain a and chain b, each rotor will have three interaction terms,

two from the neighbours present on it’s either side on the same chain and one

from the rotor present at the corresponding lattice point on the parallel chain.

The intra-chain coupling constant Jij is one here for both the chains and the

12



system is Spin 1 system, as before. The strength or intensity of the interaction of

rotors between the two chains is determined by the inter-chain cAoupling constant,

α. Consequently, the Hamiltonian of the rotors present in chain a is given by,

H =
N∑
j=1

−saj .saj−1 − αsaj .sbj +
1

2
(θ̇aj )2

Similarly the Hamiltonian of rotors present in chain b is given by,

H =
N∑
j=1

−sbj.sbj−1 − αsaj .sbj +
1

2
(θ̇bj)

2

where the superscripts a and b represent the chain in which the rotor belongs

to. The first two terms in the Hamiltonian represent potential energy due to

the spin coupling, first term comes from the coupling between spins on the same

chain and the second term comes from coupling between spins on different chain.

These potential energy terms are dependent on the relative orientation between

two specific rotors. And the third term in the Hamiltonian represent the rotational

kinetic energy of a rotor, which is dependent only on the rotational of that rotor.

Like before, to study the non-equilibrium behaviour of the system, we drive

the system out of equilibrium by adding two counter rotating driving rotors, one

on either side of both the chains. These rotors rotate continuously at a constant

velocity in time.

13



Figure 3.1: Schematic representation of parallel two chain XY system. The blue
ellipses at both ends represent counter rotating driving rotors. α is the inter-chain
coupling constant and Jij is the intra-chain coupling constant of the respective
chains

3.1.2 Model Simulation

Here also we apply Langevin dynamics to develop and study the system. The

nature of forces and motion of rotors are same as those in the one chain system.

The added inter-chain interaction also obey Langevin dynamics. The modified

dynamical equations for the system are as follows.

for rotors in chain a,

θ̈aj = τaj − τaj−1 − τ bj ,

for rotors in chain b,

θ̈bj = τ bj − τ bj−1 + τaj ,

In both the equations the first two terms represent torque exerted on a rotor

by it’s neighbouring rotors on the same chain. The expression for these torques is

same for both chains.

τj = sin ∆θj + µ∆θ̇j + ηj(t)

14



Here, τj is the torque applied by rotor j + 1 on rotor j present on the same

chain and ∆θj is the relative angular difference between rotors at lattice points

j + 1 and j on the same chain, that is, ∆θj = θj+1 − θj.

The third term in both acceleration function is due to inter-chain interaction.

For a rotor in chain a this will be due to the corresponding rotor at the same

lattice point j on chain b. Similarly for a rotor in chain b this will be due to the

corresponding rotor at the same lattice point on chain a. The intensity or strength

of this interaction is scaled by the inter-chain coupling constant α. The magnitude

of effect of this torque will be same for rotors on both the chain, but its direction

will be opposite as shown in the acceleration functions.

Expression for this torque is,

τj = sin ∆θj + µ∆θ̇j + ηj(t)

Here, τj is the torque experiences by rotor at lattice point j on chain a by rotor

at the same lattice point j on chain b or vice-versa. ∆θj is the relative angular

difference between rotors at lattice point j on both chains, that is, ∆θj = θaj −θjb.

µ is the coefficient of friction and ηj(t) is the usual δ-correlated Gaussian func-

tion with mean zero.

The simulations were done with kB ≡1 at a temperature T, and µ was same for

all rotors, including the driving rotors. Like before, Dissipative Particle Dynamics

(DPD) algorithm was used to evolve the system. Number of rotors on both chains

were set to 512 to eliminate finite size effect. The inter-chain coupling constant, α

was constant for all inter-chain interactions. Apart from the combination of usual

three variables, T, µ and γ̇, now α also determined the behaviour of the system.

So the system was studied at different values of α also.

15



3.1.3 Results

The model was evolved at different system parameters corresponding to different

flow regimes. They were also simulated for different values of inter-chian coupling

consatnt, α. The system was evolved for asymptotically late times t ≥ 4500 and

the of rotors were averaged over 500 units of time. The results obtained are shown

below. In the plots violoet markers indicate the of rotors in chain a and green

markers indicate the of rototrs in chain b.

• Uniform flow regime environment at (T, µ, γ̇) = (0.02,50,0.009960)

Figure 3.2: Angular velocity versus position in two chain parallel
system of 512 rotors under the conditions of Uniform flow regime.
(a)α = 0.5; (b)α = 1.0; (c)α = 3.0; (d)α = 3.5;

16



• SBR environment at (T, µ, γ̇) = (0.02,10,0.007813)

Figure 3.3: Angular velocity versus position in two chain
parallel system of 512 rotors under the conditions of SBR.
(a)α = 0.00005; (b)α = 0.5; (c)α = 1.0; (d)α = 4.0;

• Solid-Fluid Coexistence Regime environment at (T, µ, γ̇) = (0.001,1,0.0078125)

Figure 3.4: Angular velocity versus position in two chain parallel sys-
tem of 512 rotors under the conditions of Solid-Fluid Coexistence regime.
(a)α = 0.0005; (b)α = 0.05; (c)α = 2.0; (d)α = 8.0;

17



• Slip Planes Regime environment at (T, µ, γ̇) = (0.001,0.5,0.0058938)

Figure 3.5: Angular velocity versus position in two chain paral-
lel system of 512 rotors under the conditions of Slip Plane regime.
(a)α = 0.00005; (b)α = 0.005; (c)α = 0.5; (d)α = 1.0;

18



3.2 Perpendicular Two Chain System

3.2.1 Model Description

This is yet another simple XY model consisting of two chain of rotors, but here the

orientation of the two chains are different unlike in the previous parallel two chain

system. The two chains can be imagined to be placed perpendicular to each other

with a single rotor being the only link between the two chains. This common rotor

is shared by both the chains as in a junction. As in the previous cases here also

the spins only couple to their nearest neighbours. Since there is no interaction

between the the chains except through the common rotor, all rotors except the

common rotor will have only two interaction terms, which is from its neighbors on

either side on the same chain like in the one chain system. As for the common

rotor, it will have four interaction terms, two from immediate neighbours on each

chain. Like before, the system is spin 1 system. Hamiltonian for the rotors, except

for the common rotor, irrespective of the chain in which the rotor belongs to is

given by,

H =
N∑
j=1

[−sj.sj−1 +
1

2
θ̇2j ]

as usual the first term in the Hamiltonian represent potential energy due to the

spin coupling between two neighbour spins and this energy is dependent on the

relative orientation between those two specific rotors.The second term represents

the rotational kinetic energy of a rotor, which is dependent only on the rotational

velocity of that rotor.
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Now for the common rotor the Hamiltonian is given by,

H = [−saj .saj−1 − saj .saj+1 − sbj.sbj−1 − sbj.sbj+1 +
1

2
(θ̇j)

2 ]

Here the first two terms come from the spin coupling between neighbours

present on chain a, third and fourth term comes from the spin coupling between

neighbours present on chain b. These potential energy terms are dependent only

on the relative orientation between two rotors. the last term denotes the rotational

kinetic energy of the rotor which is dependent on it’s angular velocity.

The system is driven out of equilibrium by adding a pair of counter rotating

driving rotors on either side of both chains. These rotors are made to rotate at

a constant velocity in time and therefore continuously supply energy to the system.

Figure 3.6: Schematic representation of peprendicular two chain XY system. The
light blue ellipses at the ends represent counter rotating driving rotors. Jij’s are
the intra-chain coupling constant of respective chains. The dark blue circle at the
center represents the common rotor.
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3.2.2 Model Simulation

Langevin dynamics were applied to develop and study the system. The nature of

forces and motion of rotors are same as those in the one chain system. As men-

tioned before all rotors except the common rotor will have two interaction terms

whereas the common rotor will have four. The dynamical equations for the system

are as follows,

for all rotors except the common rotor,

θ̈j = τj − τj−1,

for the common rotor,

θ̈j = τaj − τaj−1 + τ bj − τ bj−1

where,

τj = sin ∆θj + µ∆θ̇j + ηj(t)

Here, τj is the torque applied by rotor j + 1 on rotor j. ∆θj is the relative

angular difference between rotors at lattice points j+ 1 and j,( ∆θj = θj+1− θj ).

µ is the coefficient of friction and ηj(t) is the usual δ-correlated Gaussian function

with mean zero.

The simulations were done with kB ≡1 at a temperature, T and µ was same

for all rotors on the same chain, including the driving rotors. Dissipative Particle

Dynamics (DPD) algorithm was used to evolve the system. Finite size effect was

eliminated by setting the total number of rotors to be 512(N) on both chains.

An overall global shear rate, (Nγ̇) was applied on the system through the velocity

difference between the counter rotating driving rotors making the mean shear rate,
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angular velocity difference per rotor, γ̇. The system variables T, µ, γ̇ and also the

intra-chain coupling of two chains determined the behaviour of the system.

3.3 Results

The model was evolved at different system parameters corresponding to specific

flow regimes. The system was evolved for asymptotically late times t ≥ 4500

and the velocity of rotors were averaged over 500 units of time. The intra-chain

coupling of chain b, CCb was varied with intra-chain coupling of chain a, CCa kept

at unity. This was to study the impact of the common rotor on both chains. The

results are shown below.

(a) CCb=0.01 (b) CCb=0.05

(c) CCb=0.1 (d) CCb=0.2

Figure 3.7: Velocity distribution of two perpendicular chain model evolved under
uniform regime at T=0.02 and t≥4500. Common rotor at lattice point j=256.
Intra-chain coupling constants CCa=1 for all cases and CCb is varied
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Since the junction of intersection or the position of the common rotor could be

anywhere along the chain, it was also varied to see if there was any consequential

effect on the behaviour of the system.

(a) Common rotor at lattice point j=128 (b) Common rotor at lattice point j=384

Figure 3.8: Velocity distribution of perpendicular two chain system evolved under
uniform regime at t≥4500. The position of the common rotor is varied. Intra-chain
coupling constants CCa=1 and CCb=0.1 for both cases

Another interesting operation which was done here was to evolve the two chains

under different co-efficient of frictions , µ1 for chain a and µ2 for chain b, but in the

same temperature. Since the co-efficient of friction significantly affects the velocity

distribution of the rotors and it in turn affects the steady state, we can evolve the

chain into a different flow regime under the same temperature by changing µ. This

approach cannot be taken in the parallel two chain system since it would be hard

to define the inter-chain reaction. The intra-chain coupling constant was chosen

to be unity for both the chains. The results are shown below.
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(a) Common rotor at lattice point j=128 (b) Common rotor at lattice point j=200

(c) Common rotor at lattice point j=256 (d) Common rotor at lattice point j=384

Figure 3.9: Velocity distribution of perpendicular two chain system in which
Chain a is developed under Uniform flow regime conditions and Chain b is de-
veloped under solid-fluid coexistence regime condition at the same temperature,
T=0.02. CCa=1 and CCb=1. The position of the common rotor was varied.
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Chapter 4

Summary

In this work we started with one of the simplest and basic paradigm of soft con-

densed matter, one-dimensional XY model to explore its mimicking nature of

non-Newtonian fluids. Using Langevin dynamics to develop and study the

motion and interaction of rotors present in the chain, we were able to show that

the system exhibited different distinct types of angular velocity distribution along

the chain for different combination of system parameters signifying different types

of shear rate distribution along the layers of a non-Newtonian fluid. The differ-

ent types of velocity distributions were characterized into four categories, namely,

uniform flow regime, SBR, solid-fluid coexistence regime and slip planes regime.

To ensure they were in fact steady states the system was developed for much longer

time duration and it was observed that the characteristics remained the same.

Later we modified the system by adding one more chain to the one-dimensional

XY model. These two chains were aligned parallel and perpendicular to each

other and evolved in different flow regime environment to see the impact one

had on the other. It was observed that the chains influenced each other more in

the parallel two chain system even for very small inter-chain interaction. In the

perpendicular two chain system we also developed the two chains under different
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fluid flow regimes at the same temperature to see how they responded to such a

scenario. On developing one chain in uniform flow regime and the other in solid-

fluid coexistence regime, it was observed that the common rotor on the latter chain

always positioned itself on the fluid part of the solid-fluid coexistence regime. This

suggests that we may be able to dictate the position of fluid part and hence the

solid part in a solid-fluid coexistence regime.
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Appendix A

C Program used for 1D XY

Model

This is the C program used to develop the datats for 1D XY model.

#include <stdio.h>

#include <math.h>

#include "header.h"

double acceleration(int k,double a,double v);

double theta[512],vel[512],avg[512],dt,t,g,T,mu,r,p,q,cc;

long seed;

// Accelereation Function

double acceleration(int k,double a,double v){

p = sin(theta[k+1]-a) + mu*(vel[k+1]-v) + r*gasdev(&seed) ;

q = sin(a-theta[k-1]) + mu*(v-vel[k-1]) + r*gasdev(&seed) ;

return (p-q);

}
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int main()

{

int c,i,j,k,n,N,tt,nn;

float th,dx1,dv1,dx2,dv2,dx3,dv3,dx4,dv4,dx,dv;

FILE *fpr=fopen("tavg1.txt","w");

seed =-12345;

N=512; //Number of Rotors

tt=450000; //Time upto which system is evolved

dt=0.01; // Time interval

c=0;

T=0.02; //Temperature

mu=50.; //Coefficient of friction

r=sqrt(2*mu*T*dt);

for(i=0;i<N;i++) //initial condition----

{

theta[i]=M_PI*ran1(&seed);

vel[i]=0.1*ran1(&seed);

avg[i]=0;

}

t=0;

vel[0]=-2.; //Velocity of driving rotors

vel[N-1]=3.1;

for(i=0;i<=500000;i++){ //Time loop

t+=dt;
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theta[0]+=vel[0]*dt;

theta[N-1]+=vel[N-1]*dt;

for(j=1;j<N-1;j++){ // RK-4 Algorithm

dx1=dt*vel[j];

dv1=dt*acceleration(j,theta[j],vel[j]);

dx2=dt*(vel[j]+dv1/2);

dv2=dt*acceleration(j,theta[j]+dx1/2,vel[j]+dv1/2);

dx3=dt*(vel[j]+dv2/2);

dv3=dt*acceleration(j,theta[j]+dx2/2,vel[j]+dv2/2);

dx4=dt*(vel[j]+dv3);

dv4=dt*acceleration(j,theta[j]+dx3,vel[j]+dv3);

dx=(dx1+2*dx2+2*dx3+dx4)/6;

dv=(dv1+2*dv2+2*dv3+dv4)/6;

theta[j] += dx;

vel[j] += dv;

}

if(i==tt-1){ // Averaging velocities

c++;

for(k=0;k<N;k++){

avg[k]+=vel[k];

}

tt+=100;

}

}

for(i=0;i<N;i++){ // Output
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fprintf(fpr,"%d %f %f \n",i,theta[i],avg[i]/c);

}

}

33



Appendix B

C Program used for parallel two

chain XY Model

This is the C program used to develop the datas for parallel two chain XY Model.

#include <stdio.h>

#include <math.h>

#include "header.h"

double acceleration1(int k,double a,double v);

double acceleration2(int k,double a,double v);

double tor[512],theta1[512],theta2[512],vel1[512],vel2[512],

avg1[512],avg2[512],dt,t,ti,g,T,mu,r,p,q,o,s,cc;

long seed;
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int main()

{

int c,i,j,k,n,N,tt,ttt,nn,jn,NS;

float th,dx1,dv1,dx2,dv2,dx3,dv3,dx4,dv4,dx,dv;

FILE *fpr=fopen("quasi7.txt","w");

seed=-12345;

N=512;T=0.02;mu=50.0; //system parameters

ti=4500;ttt=1000;dt=0.01;

cc=0.5; // inter-chain coupling constant;

tt=floor(ti/dt); // Timepoint at which averaging begins

NS=floor((ti+500.0)/dt); //No.of time steps required

r=sqrt(2*mu*T*dt);

for(i=0;i<N;i++){} //initial condition----

theta1[i]=M_PI*ran1(&seed);

theta2[i]=M_PI*ran1(&seed);

vel1[i]=vel2[i]=0.;

avg1[i]=avg2[i]=0.;

}

c=0;t=0;

vel1[0]=-2.; //Velocity of driving rotors

vel1[N-1]=3.1;

vel2[0]=-2.0;

vel2[N-1]=3.1;
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for(i=0;i<=NS;i++){ //Time Loop

t+=dt;

theta1[0]+=vel1[0]*dt;theta2[0]+=vel2[0]*dt;

theta1[N-1]+=vel1[N-1]*dt;theta2[N-1]+=vel2[N-1]*dt;

for(j=1;j<N-1;j++){

//--------------------RK-4 Algorithm for chain a

dx1=dt*vel1[j];

dv1=dt*acceleration1(j,theta1[j],vel1[j]);

dx2=dt*(vel1[j]+dv1/2);

dv2=dt*acceleration1(j,theta1[j]+dx1/2,vel1[j]+dv1/2);

dx3=dt*(vel1[j]+dv2/2);

dv3=dt*acceleration1(j,theta1[j]+dx2/2,vel1[j]+dv2/2);

dx4=dt*(vel1[j]+dv3);

dv4=dt*acceleration1(j,theta1[j]+dx3,vel1[j]+dv3);

dx=(dx1+2*dx2+2*dx3+dx4)/6;

dv=(dv1+2*dv2+2*dv3+dv4)/6;

theta1[j] += dx;

vel1[j] += dv;

//----------------------RK-4 Algorithm for chain b

dx1=dt*vel2[j];

dv1=dt*acceleration2(j,theta2[j],vel2[j]);

dx2=dt*(vel2[j]+dv1/2);

dv2=dt*acceleration2(j,theta2[j]+dx1/2,vel2[j]+dv1/2);

dx3=dt*(vel2[j]+dv2/2);

dv3=dt*acceleration2(j,theta2[j]+dx2/2,vel2[j]+dv2/2);

dx4=dt*(vel2[j]+dv3);

dv4=dt*acceleration2(j,theta2[j]+dx3,vel2[j]+dv3);
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dx=(dx1+2*dx2+2*dx3+dx4)/6;

dv=(dv1+2*dv2+2*dv3+dv4)/6;

theta2[j] += dx;

vel2[j] += dv;

}

if(i==tt-1){

c++;

for(k=0;k<N;k++){

avg1[k]+=vel1[k];

avg2[k]+=vel2[k];

}

tt+=100;

}

}

for(i=0;i<N;i++){ //Output

fprintf(fpr,"%d %f %f \n",i,avg1[i]/c,avg2[i]/c);

}

fclose(fpr);

}

double acceleration1(int k,double a,double v){ // Chain a

p = sin(theta1[k+1]-a) + mu*(vel1[k+1]-v) + r*gasdev(&seed) ;

q = sin(a-theta1[k-1]) + mu*(v-vel1[k-1]) + r*gasdev(&seed) ;

o = sin(a-theta2[k]) + mu*(v-vel2[k]) + r*gasdev(&seed) ;

return p-q -cc*o ;

}
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double acceleration2(int k,double a,double v){ //Chain b

p = sin(theta2[k+1]-a) + mu*(vel2[k+1]-v) + r*gasdev(&seed) ;

q = sin(a-theta2[k-1]) + mu*(v-vel2[k-1]) + r*gasdev(&seed) ;

o = sin(theta1[k]-a) + mu*(vel1[k]-v) + r*gasdev(&seed) ;

return p-q+cc*o ;

}
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Appendix C

C Program used for perpendicular

two chain XY Model

This is the C program used to develop the datas for perpendicular two chain XY

Model.

#include <stdio.h>

#include <math.h>

#include "header.h"

double acceleration1(int k,double a,double v);

double acceleration2(int k,double a,double v);

double acceleration3(int k,double a,double v);

double tor[512],theta1[512],theta2[512],vel1[512],vel2[512],

avg1[512],avg2[512],dt,t,ti,g,T,mu,r,p,q,o,s,cc1,cc2;

long seed;
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int main()

{

int c,i,j,k,n,N,tt,ttt,nn,jn,NS;

float th,dx1,dv1,dx2,dv2,dx3,dv3,dx4,dv4,dx,dv;

FILE *fpr=fopen("quasi7.txt","w");

seed=-12345;

N=512;T=0.02;mu=50.0;

ti=4500;ttt=1000;dt=0.01;

cc1=1.0; // intra-chain coupling constants

cc2=0.1;

tt=floor(ti/dt); // Timepoint at which averaging begins

NS=floor((ti+500.0)/dt); //No.of time steps required

r=sqrt(2*mu*T*dt);

for(i=0;i<N;i++){} //initial condition----

theta1[i]=M_PI*ran1(&seed);

theta2[i]=M_PI*ran1(&seed);

vel1[i]=vel2[i]=0.;

avg1[i]=avg2[i]=0.;

}

c=0;t=0;

jn=256 //Lattice point of Common rotor

vel1[0]=-2.; //Velocity of driving rotors

vel1[N-1]=3.1;

vel2[0]=-2.0;
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vel2[N-1]=3.1;

for(i=0;i<=NS;i++){ //Time Loop

t+=dt;

theta1[0]+=vel1[0]*dt;theta2[0]+=vel2[0]*dt;

theta1[N-1]+=vel1[N-1]*dt;theta2[N-1]+=vel2[N-1]*dt;

for(j=1;j<N-1;j++){

if (j!=jn){ //Not the common rotor

dx1=dt*vel1[j]; //RK-4 Algorithm for chain a

dv1=dt*acceleration1(j,theta1[j],vel1[j]);

dx2=dt*(vel1[j]+dv1/2);

dv2=dt*acceleration1(j,theta1[j]+dx1/2,vel1[j]+dv1/2);

dx3=dt*(vel1[j]+dv2/2);

dv3=dt*acceleration1(j,theta1[j]+dx2/2,vel1[j]+dv2/2);

dx4=dt*(vel1[j]+dv3);

dv4=dt*acceleration1(j,theta1[j]+dx3,vel1[j]+dv3);

dx=(dx1+2*dx2+2*dx3+dx4)/6;

dv=(dv1+2*dv2+2*dv3+dv4)/6;

theta1[j] += dx;

vel1[j] += dv;

//----------------------RK-4 Algorithm for chain b

dx1=dt*vel2[j];

dv1=dt*acceleration2(j,theta2[j],vel2[j]);

dx2=dt*(vel2[j]+dv1/2);

dv2=dt*acceleration2(j,theta2[j]+dx1/2,vel2[j]+dv1/2);

dx3=dt*(vel2[j]+dv2/2);

dv3=dt*acceleration2(j,theta2[j]+dx2/2,vel2[j]+dv2/2);
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dx4=dt*(vel2[j]+dv3);

dv4=dt*acceleration2(j,theta2[j]+dx3,vel2[j]+dv3);

dx=(dx1+2*dx2+2*dx3+dx4)/6;

dv=(dv1+2*dv2+2*dv3+dv4)/6;

theta2[j] += dx;

vel2[j] += dv;

}

if (j==jn){

dx1=dt*vel1[j];

dv1=dt*acceleration3(j,theta1[j],vel1[j]);

dx2=dt*(vel1[j]+dv1/2);

dv2=dt*acceleration3(j,theta1[j]+dx1/2,vel1[j]+dv1/2);

dx3=dt*(vel1[j]+dv2/2);

dv3=dt*acceleration3(j,theta1[j]+dx2/2,vel1[j]+dv2/2);

dx4=dt*(vel1[j]+dv3);

dv4=dt*acceleration3(j,theta1[j]+dx3,vel1[j]+dv3);

dx=(dx1+2*dx2+2*dx3+dx4)/6;

dv=(dv1+2*dv2+2*dv3+dv4)/6;

theta1[j] += dx;

vel1[j] += dv;

}

}

if(i==tt-1){

c++;

for(k=0;k<N;k++){

avg1[k]+=vel1[k];

avg2[k]+=vel2[k];
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}

tt+=100;

}

}

for(i=0;i<N;i++){ //Output

fprintf(fpr,"%d %f %f \n",i,avg1[i]/c,avg2[i]/c);

}

fclose(fpr);

}

double acceleration1(int k,double a,double v){ // Chain a

p = sin(theta1[k+1]-a) + mu*(vel1[k+1]-v) + r*gasdev(&seed) ;

q = sin(a-theta1[k-1]) + mu*(v-vel1[k-1]) + r*gasdev(&seed) ;

return cc1*(p-q) ;

}

double acceleration2(int k,double a,double v){ //Chain b

o = sin(theta2[k+1]-a) + mu*(vel2[k+1]-v) + r*gasdev(&seed) ;

s = sin(a-theta2[k-1]) + mu*(v-vel2[k-1]) + r*gasdev(&seed) ;

return cc2*(o-s);

}

double acceleration3(int k,double a,double v){ //Common Rotor

p = sin(theta1[k+1]-a) + mu*(vel1[k+1]-v) + r*gasdev(&seed) ;

q = sin(a-theta1[k-1]) + mu*(v-vel1[k-1]) + r*gasdev(&seed) ;

o = sin(theta2[k+1]-a) + mu*(vel2[k+1]-v) + r*gasdev(&seed) ;

s = sin(a-theta2[k-1]) + mu*(v-vel2[k-1]) + r*gasdev(&seed) ;

return cc1*(p-q)+cc2*(o-s);

}
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