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Abstract

Various mathematical models have been developed to understand schooling in fish.

Most of these models are built on three main rules - alignment, attraction and repul-

sion. They differ from each other in terms of defining social interactions and individual

properties. However, the criticism of these models is that the model assumptions are

unrealistic. In the majority of these models, individuals move at a constant speed,

or their speed is independent of neighbours. Also, in most models, the position and

orientation of all individuals are updated at the same time. Therefore neglecting

the inherent stochasticity observed in a school of fish that results in ansynchronous

changes in the direction of movement and neighborhood-dependent dynamic variation

in the speed.

In this thesis, we develop a more realistic model to understand schooling in fish. In

our model, we incorporate both stochasticity and the ability of individuals to adjust

their speed as a response to neighbours’ behaviour. School size range from 10 to 60

and the model is two-dimensional. We find that cohesive groups and high polarisation

is achieved through pairwise alignment and attraction. This is in contrast to direction

averaging in Vicsek like models. We show that schools of all size are oblong and the

density is equally distributed about the centre of the group.
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Chapter 1

Introduction

We notice similar patterns in seemingly different set-ups. We form a queue whether

to buy coffee after a class or to buy tickets for a cricket match. We make an unspo-

ken decision to move to an empty table, spread ourselves symmetrically before we

begin our discussion. Similar behaviour can be observed when we enter the cricket

stadium, this time maybe with a preference for a seat where the batsman is clearly

visible. Individuals’ behaviour starting from how they form a queue to occupy a seat

is perfectly predictable across all cafes and stadiums. These are a few examples of

free individuals behaving collectively in our daily routine ([Sumpter 05]).

These behaviours, which are common to all of us, are examples of collective be-

haviour in humans or animals, in general. Collective behaviour refers to the emer-

gence of coordinated group-level behaviour by repeated interactions among neighbour-

ing individuals. Essentially, collective behaviour is the tendency to form group-level

patterns. Conspecifics aggregate due to external physical forces, such as clustered

resources or due to mutual attraction among themselves.

Irrespective of the forces that cause collective behaviour, group living offers various

benefits to individuals. Studies have shown that group-living provides better access to

mates and better reproductive success ([Robinson 88], [Cameron 09]). Other benefits

include cooperative breeding, parental care ([Balshine 01], [Clutton-Brock 02]) and an

increase in foraging efficiency ([Rypstra 89]). Members of the group are protected from

aggression or predation through communal territory defence ([Krebs 08], [Port 11]),

mobbing behaviour ([Krams 02]), confusion effect, risk dilution and enhanced preda-

tor detection ([Turner 86]). Another manifestation of group-living is animals moving
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in groups—for example, fish schools or bird flocks. Studies have shown that coor-

dination among individuals moving together reduces the chances of predator attacks

([Ioannou 12]) possibly due to confusion effect ([Landeau 86]). And, it is also shown

to reduce the energetic costs of locomotion ([Bill 76], [Herskin 98a], [Filella 18]). Even

though group-living offers various benefits, they come at a cost. It can increase the

rate of infection or disease ([Tella 02], [Godfrey 09]), increase in competition for lim-

ited resources ([Skogland 85]), such as food and mates ([Schradin 10]).

To continue living as a group and reap the benefits of group-living, animals need

to move as a group. Through repeated local interactions, animals tend to travel col-

lectively. This behaviour often results in the emergence of fascinating group-level

patterns across biological systems. The spectacular swirling of starlings as a collec-

tive; V-formation of migrating geese; ants marching in the bidirectional lane of infinite

length; gliding and turning fish schools; migrating herds of social ungulates; swarms

of marching locusts; or even human crowds in busy streets ([Sumpter 05]).

Researchers have tried to characterise the underlying local interactions that result

in a wide range coordinated motion in animals. Different methods were employed

by biologists and physicists (and mathematicians) to understand the emergent prop-

erties. Biologists mainly focused on studying how animals process the information

from their neighbours, which is generally noisy and inaccurate. On the other hand,

physicists and mathematicians have tried to develop theories and models assuming

simple behavioural rules - which describes the interactions between individuals. This

aids in identifying the behavioural rules that might result in patterns resembling nat-

ural systems ([Jhawar 19b]). However, to better understand the collective motion and

predict natural systems, we need to develop models where the behavioural rules are

guided by empirical observations. Recent advancement in tracking technologies has

helped us obtain high-resolution spatiotemporal data. Hence we can now better infer

underlying local interactions ([Jhawar 19a]).

Most of the mathematical models are developed on the principle of self-organisation

theory. Self-organisation theory suggests that most of the complex coordinated be-

haviour can emerge through relatively simple repeated interactions among the group

members. This theory suggests that behavioural rules dictate the form and conse-

quently, the function of the collective structure ([Couzin 03]). Self-organisation is
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defined as “a process in which pattern at the global level of a system emerges solely

from numerous interactions among the lower-level components of a system. Moreover,

the rules specifying interactions among the system’s components are executed using

only local information, without reference to the global pattern” ([Camazine 03]). How-

ever, it should be noted that in certain systems like migrating animals; animals may

modify their local interactions with neighbours based on global information, such as

a common consensus to move along a specific direction ([Couzin 03]). Various studies

have tried to understand group-level patterns in biological systems on the founda-

tion of self-organisation. Few of them are fetal development ([Kenynes 88]), coats of

mammals ([Murray 81]), nests of social insects ([Theraulaz 95]), swarms of bacteria

([Ben-Jacob 94]), marching army ants ([Deneubourg 89]), locusts ([Collett 98]), bird

flocks ([Hemelrijk 12]), fish schools ([Radakov 73a]), and human crowds ([Couzin 03]).

Mathematical modelling is widely used to study collective behaviour. It is diffi-

cult to deduce how the interactions among large number of group members result in

complex population-level structure. In these systems, there is a non-linear relation

between interactions among neighbours and the emergent structure - a result of local

interactions. Interactions between individuals create larger patterns, which in turn

influence the behaviour of group members, and this further alters the higher-order

structure. This feedback loop continues ([Couzin 03]).

For example, ants deposit pheromone to mark their way to a food source ([Wilson 71]).

Other ants, which encounter the pheromone trail, follow the trail which leads them

the food source. As ants use the trail, which leads them to the food source, they

reinforce the trail by secreting more pheromone to the initial trial. Ants which carry

food from the source also leave pheromone on their way back to the nest. Through

the positive reinforcement, the pheromone trail builds-up, and a larger number of ants

can be seen marching between food source and nest. This steady-state of the ant trail

formed is “more than sum of its parts” ([Sumpter 05]).

One of the influential models in the field of collective behaviour is the Vicsek

model ([Vicsek 95]). In the standard Vicsek model, N self-propelled particles move at

a constant speed s in a finite volume, V with periodic boundary conditions. All the

particles move in the average direction of their neighbours. Particles are assumed to

make an error while copying the average direction. Mathematically, at time t each
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individual i {i ε 1, 2, 3, ......., N} updates its direction θi synchronously as

θi(t+ δt) = θ̄i + ∆θ(t) (1.1)

where the overbar represents an average over all the neighbours within a fixed

radius r from the focal individual, i. The second term on the right-hand side repre-

sents an error focal individual makes while copying the average direction. The error

is typically chosen from a uniform distribution over the range [−η
2
, η
2
], where η ≤ 2π.

The particle now moves in the calculated direction at speed s for time δt. After time

δt the angles are re-calculated.

Figure 1.1: Patterns formed in Vicsek model
Image Take From: [Vicsek 95]

The Vicsek model is a simple model in continuous space where the position and
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direction of particles are updated synchronously based only on the local information

(directions of the neighbouring particles). Yet, the model could demonstrate a wide

range of patterns of collective motion (Figure 1.1). Through numerical simulation,

they showed that group polarisation exhibits a phase transition in two dimensions as

the group density is increased, and noise is decreased ([Vicsek 95]). The Viscek model

inspired various similar SPP models of collective motion ([Czirók 99], [Couzin 02],

[Mishra 12], [Hemelrijk 08]).

Vicsek model and similar SPP models were successful in providing novel insights

on the collective patterns observed in natural systems. However, most of these studies

try to understand collective behaviour in the macroscopic scale, i.e. in the limit of in-

finite group size ([Jhawar 19b]). But, group size is finite in many biological systems,

especially vertebrates. Therefore, they tend to ignore the role of stochastic due to

finite group size. Also, Vicsek like models, where all the group members behave alike

at every time step, fail to account for the stochasticity that arises due to differences

in interactions among group members ([Couzin 03], [Jhawar 19a]).

As mentioned above, stochasticity can arise from multiple factors. The behaviour

of animals in the group are inherently probabilistic, either when they act on their own

or when they interact with their neighbours. Such stochastic behaviour of animal

movement can determine the group structure in many taxa. Groups are usually finite

in size, often relatively small. Finite group size can give rise to group-level stochas-

ticity, also known as intrinsic noise ([Jhawar 19a]). Even though stochasticity is an

integral part of animal decision making and group dynamics, it is usually regarded

as a nuisance which destroys order or obscures patterns in most of the earlier works.

Hence, various statistical tools were developed to get rid of randomness in-order to

study the underlying patterns ([Boettiger 18]).

In most of the Vicsek like models, individuals are considered to move at the same

constant speed. However, in biological systems, the speed of an individual can vary

in response to its neighbours’ dynamics ([Mishra 12]). Members of the group ad-

just their speed by either slowing down to avoid collisions or increase their speed to

prevent being isolated ([Hemelrijk 08]). They also change their speed stochastically

([Huth 92a], [Jhawar 20]). Put simply, individuals adjust distance and alignment with

neighbours primarily through manipulating their speed. Studies have shown that the

speed of an individual determines its spatial position in the group. Faster moving
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individuals usually occupy positions at the front of the group, and slower ones flow

them ([Couzin 02], [Gueron 96]). Recent experiments on fish schools have shown that

faster moving schools are highly aligned compared to that travelling at slower speeds

([Mishra 12], [Hemelrijk 12]). Consequently, variations in the speed of individuals’

can strongly influence the collective behaviour—primarily collective states such as

polarisation, inter-individual distances and group density.

However, in the past few decades, the notion that stochasticity is a nuisance and

obscures patterns has been challenged. Studies have recognised noise as a force driving

novel phenomena that could not have been understood from the underlying determin-

istic skeleton alone ([Boettiger 18]). Many biological systems such as schooling fish or

flocking birds show different types of collective motion at different times. The tran-

sition between different types of collective motion can be caused by environmental

factors or change in behavioural rules. Additionally, they can happen entirely due

to stochastic effects as shown in some studies ([Kolpas 07], [Yates 09], [Dyson 15]).

In fact, it is shown that stochasticity itself creates order. When a colony of ants is

presented with two identical sources of food, we may expect them to divide equally

between two choices. Therefore, not reaching a consensus. But, this is true only when

the colony size is infinitely large, i.e. under the deterministic limit. If we consider the

intrinsic noise due to the finite colony size, ants do arrive at a consensus. But, this

is true only when the colony size is less than the certain critical value ([Biancalani 14]).

In another study on fish groups of Etroplus suratensis, it is shown that school-

ing is noise-induced. Noise emerged from the intrinsic stochasticity due to finite

group size. One important finding is that fish aligns with only one neighbour at a

given time, unlike standard Vicsek like models where the heading is calculated by

local direction-averaging ([Jhawar 20]). They also derive a mesoscopic model for the

group order-parameter (polarisation) by considering noise as a function of both -

inherently probabilistic nature of interactions and finite group size ([Jhawar 19b]).

The model could describe empirically observed group polarisation. However, as the

model assumed constant speed, various questions such as the relation between group-

polarisation and speed, inter-individual distances, group density remain unaddressed.

In this thesis, we incorporate both stochasticity and the ability of individuals to

adjust their speed in response to neighbours’ state, into a numerical model to simulate
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and understand schooling in fish. There are models in which events or interactions

such as alignment and attraction are formulated to be stochastic, but, all the particles

move at a constant speed, or their speed is assumed to be independent of other parti-

cles ([Calovi 18], [Bode 10], [Strömbom 19], [Jhawar 20]). Similarly, there are models

where all the interactions are assumed to occur synchronously, but the speed is a

function of local neighbourhood ([Mishra 12], [Filella 18], [Hemelrijk 08]). However,

we know that the behaviour of animals in the group is inherently probabilistic and

their speed depends on the neighbours’ dynamics. To our knowledge, models do not

incorporate both - probabilistic nature of animal behaviour and speed as a function

of neighbours position and orientation.

Also, the way attraction and repulsion are modelled is distinct from previous

models. In most of the earlier models ([Huth 92b], [Huth 94], [Couzin 02], [Bode 10]),

attraction and repulsion interactions depended just on the angle between the focal

individual’s orientation and the line joining the focal individual and the neighbour

(] (v0i , xj − xi), where vi and xi are velocity and position vectors of ith particle).

In other words, the interactions were independent of the relative distance between

neighbours (xj − xi). In the metric formulation (which is assumed in most of these

models), the interactions are confined to respective zones. This, in turn, accounts for

relative distances, but studies show that interactions are governed by topological dis-

tances rather than metric ([Ballerini 08]). However, in some studies ([Hemelrijk 05],

[Hemelrijk 08], [Calovi 18]), attraction and repulsion interactions are functions of both

relative angle and distance (] (v0i , xj − xi) and xj − xi) but, they are different from

our formulation.

Stochasticity is modelled through continuous-time Gillespie simulations (details in

the next section). This work is an extension of the previously studied spatial model

with stochasticity and constant speed ([Jhawar 20]). Such a model ([Jhawar 20]) will

help us study the shape and internal structure of travelling groups of fish. We can

further comment on the differences in shape and internal structure between fish schools

travelling at different group speeds. We finally discuss the importance of stochasticity

and variable speed in understanding collective motion in biological systems.

7



8



Chapter 2

Model and Specifics of Interactions

As mentioned in the introduction, the model we build is an extension of the spatial

model developed by [Jhawar 20]. Particles in the model are characterised by position

and direction of motion—the direction of particles change due to spontaneous turn-

ing and pair-wise alignment interaction. For the group to be cohesive, they include

medium-range attraction and avoid collisions through short-range repulsion. As the

interactions (spontaneous turning, attraction and pair-wise alignment) are modelled

to be stochastic, they occur at a fixed rate. They employ continuous-time Gillespie

([Gillespie 76], [Gillespie 77]) simulations for interactions with position updated syn-

chronously at discrete-timestep.

We incorporate stochasticity in our model similarly as done by [Jhawar 20]. How-

ever, we model alignment, attraction and repulsion more realistically ([Parrish 05],

[Hemelrijk 08]) as elaborated in the next section.

2.1 Model

We consider N particles (i = 1, 2,..., N) in 2-D continuous space. Each particle is char-

acterised by its position ri, speed vi and orientation ei. Individuals move along their

orientation (Figure 2.1). As is usual in similar agent-based models, particles align with

their neighbours and attract to them. Individuals maintain minimum distance with

their neighbours to avoid collision and also turn spontaneously ([Huth 92b], [Huth 94],

[Couzin 02], [Hemelrijk 05], [Hemelrijk 08], [Jhawar 20]). Unlike earlier models, where

speed is an independent parameter, particles adjust their speed in response to neigh-

bours’ dynamics. Also, as mentioned earlier, interactions are stochastic owing to
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inherent probabilistic nature of animal interactions. Hence the speed and orientation

of individuals change stochastically - due to spontaneous rotation, alignment and at-

traction, and deterministically due to short-range repulsion. We use continuous-time

Gillespie simulation ([Gillespie 76], [Gillespie 77]) for attraction, spontaneous turning

and alignment events with position updated synchronously at discrete time-steps. We

emphasise the readers to notice that the state of an individual change stochastically.

Put simply, the events (alignment, attraction and spontaneous rotation) occur at dif-

ferent times for different individuals.

The equations of motion are

ṙi = viei (2.1)

ei = (cos θi, sin θi)
T

θ̇i(t) =


ω 0 ≤ θid − θi(t) < π

−ω θid − θi(t) ≥ π

ω θi(t)− θid > π

−ω 0 ≤ θi(t)− θid ≤ π

(2.2)

τ
dvi
dt

= v0 − vi + ∆vint + ∆vr (2.3)

where v0 is the speed of an individual in case of no interaction, this is equivalent

to the “cruise speed” defined by ([Hemelrijk 08]). For simplicity, we assume v0 to be

same for all individuals (however, in general, v0 can be different for different individu-

als depending upon their size, position and environmental factors). τ is constant with

dimensions of time. τ is the response time taken by an individual to change from

its current speed to desired speed. Say if τ << 1time step then the fish achieves the

desired speed instantaneously. However, if τ ≈ O(1)of time step then inertia prevents

an instantaneous change in speed. Therefore, τ is a function of the mass of the fish,

friction and drag due to fluid. ∆vint is the desired change in speed due to events.

In case of an event (alignment, attraction, obstacle avoidance or spontaneous ro-

tation) heading of the individuals change. To achieve the desired direction, i.e. the

desired orientation of the particle, (θid), individuals rotate at a constant angular speed,

ω. If the desired heading is within |ω|dt then the individuals rotate and move in the

10



Figure 2.1: Sketch of two interacting fish where ri is the position of ith particle with
orientation ei. rij is the distance between two fish.

desired direction else, they rotate by |ω|dt towards the desired direction.

Fish have a rare blind angle, i.e. fish cannot see its neighbour if the angle between

its orientation and the vector rij is greater than θm. Therefore fish aligns and attracts

only to the neighbours present within its sight. Mathematically, θij should be less

than θm:

θij = cos−1
(

ṙi · rij
|ṙi| |rij|

)
(2.4)

where rij = rj− ri. In some studies ([Hemelrijk 05], [Hemelrijk 08]), the blind zone

depends upon the type of interaction. However, in our model, similar to [Couzin 02],

the blind angle is constant and independent of the type of interaction.

Further, our model follows topological approach, i.e, an individual can sense K

nearest neighbours and, align/attract with k (k ≤ K) individuals randomly chosen

from K nearest neighbours ([Couzin 02]).

Why topological interaction and not metric? Experimental results on flocks of

starlings by [Ballerini 08], showed that the nature of interaction to be topological,

i.e., each individual interact with a fixed number of closest neighbours, independent
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of their distances. Topological interaction ensures robust cohesion and hence, higher

biological fitness. In the case of metric formulation, whenever the interindividual

distances exceed the metric range, there will not be any interaction between the indi-

viduals. Therefore, high chance of cohesion to be lost.

Additionally, to build a realistic model, we need to account for the fact that indi-

viduals behaviour is influenced only by those they can perceive. Metric formulation

neglects the density-dependent perception of group members, i.e., higher group den-

sity limits the perception of individuals which are further away. In [Hemelrijk 08]

study, they overcome the shortcomings of the metric formulation by modelling the

range of perception as inversely proportional to density.

2.1.1 Interactions

In this section, we explain the interaction dynamics in detail.

1. Alignment

At a constant rate per unit time c, individuals try to match their heading and speed

with the nearest neighbours. They identify K nearest neighbours and then randomly

select kc individuals from the set. However, when we account for finite vision, fish can

only align with neighbours present in its sight. Therefore, if there are not K fish in

sight of the focal individual, it identifies all the fish (K ′) in its sight. If K ′ > kc then

the focal individual randomly chooses kc from the set to align. Else, if K ′ ≤ kc then

the focal fish aligns with all the fish in its sight, i.e kc = K ′.

The desired heading is,

eic =
1

kc

kc∑
j=1

ej (2.5)

Individuals adjust their speed to the mean speed of the neighbours. Hence the

rate of change of speed due to alignment is:

τ
dvi
dt

= v0 − vi + ∆vc (2.6)
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∆vc =
1

kc

kc∑
j=1

(vj − v0) (2.7)

2. Attraction

If any individual is farther away from its closest neighbour, it increases its speed

and moves toward the neighbour to avoid being isolated. Hence in the model, if an

individual is at a significant distance from its neighbour, it increases its speed and

approaches the neighbour. However, if the group is already cohesive, and the distance

between individuals is less than few body sizes of fish, then attraction should not

have any qualitative effect on the group dynamics. The desired speed and direction

depends upon the magnitude of rij (|rij| = rij) i.e, desired speed is high if rij is large

and low if rij is small.

At rate r, every individual identifies K nearest neighbours and randomly chooses

ka neighbours from the set and is attracted to them. Similar to alignment, fish is

attracted only to the neighbours in its sight. Hence, if the number of fish in its sight

is less than K but greater than ka, the focal individual identifies all the K ′ individuals

in its sight and randomly selects ka neighbours from the set to attract. But, if the

number of fish in the sight of the focal individual is less than ka, it gets attracted to

all the fish in its sight.

Rate of change of speed due to attraction:

τ
dvi
dt

= v0 − vi + ∆va (2.8)

∆va =
κa
ka

ka∑
j=1

(
|rij| − 2rrp

l

)γ
(2.9)

where rrp is fish body length.

Nevertheless, individuals cannot move faster beyond a limit. The maximum

achievable speed is vm. Therefore,

∆va =

{
∆va ∆va ≤ vm

vm ∆va > vm
(2.10)
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(a) (b)

Figure 2.2: (a) r
l

vs x for different γ, x is the distance between two particles. (b) fc
as a function of inter-particle distance.

l (0.6 m in this study) is a constant. If the particles are within this distance change

in speed and orientation due to attraction will be very small. Hence, if rij − 2rrp < l,

attraction will not have any effect on the group dynamics (Figure 2.2). As shown in

the Figure 2.2, if γ is large, (
rij−2rrp

l
)γ will only have an effect when the fish are at a

significant distance apart.

κ (3 × 10−2 in this study) and γ (3 in this study) are constants which determine

the intensity of attraction interaction.

Desired heading is towards the individual farther away from the focal individual.

However, if the group is cohesive to begin with, the desired direction will be the focal

individuals current heading. Mathematically, the desired heading is given as:

eia =
1

2

(
ei +

1

ka

ka∑
j=1

(
|rij| − 2rrp

l

)γ rj
rj

)
(2.11)

NOTE: In the above description of alignment and attraction, we considered a

general case of selecting k individuals randomly from K (K > k) closest neigh-

bours to align and attract. A special case when k = 1 is called pair-wise alignment

([Jhawar 20]) and pair-wise attraction. So in pair-wise interaction, a focal individual

identifies K closest neighbours (if K individuals are not in sight, it follows the same

method described above) and randomly selects one neighbour (k = 1) from the set to

align and attract.
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Hence eq 5 and 11 can be written as:

eic = ejεL (2.12)

and

eia =
1

2

(
ei +

(
|rij| − 2rrp

l

)γ rjεL
rjεL

)
(2.13)

respectively. Where L is set of K nearest neighbours. Similarly, eq 7 and 9 are

∆vc = vjεL − v0 (2.14)

and

∆va = κa

(
|rij,jεL| − 2rrp

l

)γ
(2.15)

respectively.

3. Spontaneous Rotation

Individuals spontaneously change their heading and speed at a rate of s.

The desired heading of the ith particle is

θs = θi +Ntrunc(0, εθ,−π, π)

eis = (cos θs, sin θs)
T (2.16)

Ntrunc(0, σ
2, a, b) is a truncated normal distribution with mean µ, variance σ2 with

interval (a,b). Rate of change of speed due to spontaneous rotation:

τ
dvi
dt

= v0 − vi + ∆vs (2.17)

and

∆vs = Ntrunc(0, εv,−vm, vm)
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4. Short-range repulsion

Fish occupy a finite volume. Individuals maintain minimum distance among them-

selves to prevent collisions. Therefore if individuals approach their neighbours, they

reduce their speed and change orientation. At every update, we ensure that individ-

uals do not collide.

Unlike [Jhawar 20], other events are not restricted by repulsion interaction. In

their model, other events occur only if the focal individual maintains a certain mini-

mum distance with every individual of the school. However, in this model other events

can happen at any time-step independent of repulsion interaction but, if individuals

are too close to each other, short-range repulsion dictates the desired heading and

speed.

The rate of change of speed due to this interaction is

τ
dvi
dt

= v0 − vi + ∆vr (2.18)

where ∆vr is the desired change in speed due to repulsion and is given as:

∆vr =
1

Nr

n∑
j=1

fappjfproxjfcj (2.19)

fappj = H [vi · rij]H [vi · rij + vj · rji] (2.20)

fproxj = (vi · rij + vj · rji)
κr

(|rij| − 2rrp)
β

(2.21)

fcj = 1− 1

e−c1|rij |+c2+1
(2.22)

fcj = 1− 1

e−c1|rij |+c2 + 1
(2.23)

H[x] is the Heaviside step function.

H[n] =

{
0 n < 0

1 n ≥ 0

16



Figure 2.3: Two perpendicular vectors to the line joining two interacting particles
(rij).

Nr is the number of particles in the repulsion zone

Here, fappj is non zero (i.e fappj = 1) only if i is approaching j and the rate of

change of rij is negative. Put simply, only when the focal individual is moving to-

wards its neighbour and, the distance between focal individual and its neighbour is

decreasing with time fappj = 1 else it is zero. Magnitude of fproxj increases as the

distance between to individuals decrease and fcj indicates whether the repulsion term

is significant or not. As shown in Figure 2.2, fc decreases as the distance between

two fish increases and is zero beyond a point (r = 1 in Figure 2.2). κr (fixed to be

−10−3), c1 and c2 are constants ().

The desired heading of focal individual (i) is perpendicular to rij weighted with

fappj , fproxj and fcj ([Calovi 18]). Let us denote the unit perpendicular vector as r⊥.

Now, for a given vector rij there are two perpendiculars in 2-D space. Individual

chooses a perpendicular vector which is at shorter angular distance from its current

orientation (Figure 2.3). That is, if r⊥1 and r⊥2 are two perpendicular vectors to rij

the desired heading rij⊥ is along:

rij⊥ =

{
r⊥1 cos−1 ei·r⊥1

|ei||r⊥1|
≤ π

2

r⊥2 cos−1 ei·r⊥1

|ei||r⊥1|
> π

2

(2.24)

Therefore the desired heading eir is given by,
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eir =
1

Nr

n∑
j=1

fappjfproxjfcjrij⊥ (2.25)

In [Couzin 02] like models, the desired direction of the focal individual is indepen-

dent of its distance from neighbours. However, the strength of neighbours’ influence

depends upon how far they are from the focal individual ([Reuter 94], [Hemelrijk 05],

[Hemelrijk 08]). Most of these models assume the speed of particles to be independent

of other agents and is considered to be a stochastic variable. But, the speed of fish

can vary as a response to neighbours’ dynamics ([Mishra 12], [Filella 18]). Therefore,

we incorporate both speed and direction of particles as a function of their distance

and orientation with neighbours.

At every time-step, we check if the agent undergoes any of the interactions (alignment,

attraction or spontaneous rotation). If more than one type of interaction occurs at a

given time-step, then the desired direction is given as:

eid = eic + eia + eir + eis

and

eid = (eidx, eidy)

hence

θid = tan−1
eidy
eidx

(2.26)

Similarly, ∆vint is the average of all the interactions at that time-step. For example

if alignment and attraction events occur at a given time-step then,

vint =
∆vc + ∆va

2
(2.27)
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Chapter 3

Analysis and Results

3.1 Analysis of the model

The model described in the previous chapter was implemented on the commercial

software Matlab. We studied the model for different numbers of agents (N = 10,

15, 30, 60). Simulations were run for 4 × 105 time-steps and 8 replicas. Parameter

values explored are given in Table 3.1. This set of parameters ensure cohesive and

polarised schools. At each time-step, the following statistics were calculated. To con-

firm if the model resulted in cohesive schools, we calculated ‘expanse’ (a) as defined

by [Huth 92a]. If the schools are cohesive and do not break apart, the expanse value

lies between fixed values dependent on school size. And, if schools are not cohesive

the expanse value diverges (see Figure 3.5)

a(t) =

√
[xi(t)− X(t)]2 (3.1)

Xt =
1

N

∑
i

xi(t) (3.2)

Where Xt is the position of the centre of the school. This variable quantifies

the spatial size of the school. We calculate group polarisation (m) ([Jhawar 20]) to

quantify the orientation of the agents.

m(t) =

∣∣∣∣∣ 1

N

N∑
i=1

ei(t)

∣∣∣∣∣ (3.3)
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Figure 3.1: Method of measuring group width (w), group length (l) and distance to
front (f). Snapshot of positions (red circles), velocities (red arrows), centre of mass
(black circle) and group velocity (black arrow).

Parameter Unit Symbol Value(s) explored
Number of individuals 1 N 10− 60

Time step 2 ∆t 0.02
Zone of repulsion m rrp 0.2

Sight Degrees – 210
Rate of spontaneous

rotation s−1 s 1.5
Rate of alignment s−1 c 3.5
Rate of attraction s−1 r 2
Rate of rotation Degrees s−1 ω 60

Cruise Speed ms−1 v0 0.2 and 0.4
Max speed ms−1 vm 1

Variance in angle Degree εθ 45
Variance in angle ms−1 εv 0.06

Response time seconds τ 0.2

Table 3.1: Summary of model parameters.
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where ei is the orientation of the ith agent. m = 1 implies all the agents are

pointing in the same direction (order) and, m = 0 indicates that agents are pointing

at random direction (disorder).

To study the form of the school, the school was enclosed within the smallest

rectangle, whose length was parallel to the group direction (Figure 3.1). To calculate

the elongation of the school, we divide the group length (length of the rectangle

parallel to the group direction) by the group width (width of the rectangle orthogonal

to group direction). Further, to calculate the degree of centrality of the position of

the group centre, we divide the distance of the group centre to the front by group

length. We used the ‘boundary’ function available on Matlab to enclose the school

within the smallest boundary and area of the same was calculated. The school size

was then divided by the area to calculate the group density. All the calculations are

done for two cruise speeds (v0) - 0.2 m/s (slow) and 0.4 m/s (fast).

3.2 Results

We found that schooling was achieved for various sets of interaction rates (alignment,

attraction and repulsion). However, for this study we stick to one set of interaction

rates given in Table 3.1.

Groups were cohesive when only attraction interaction or both alignment and at-

traction interactions were considered along with spontaneous rotation (Figure 3.3).

However, when only attraction interaction along with spontaneous rotation and no

alignment is modelled, groups behave like swarms, i.e. low group polarisation (disor-

der). But when both alignment and attraction interaction rates are non-zero, groups

are highly polarised (order). Further, the polarisation decreases with an increase in

school size (Figure 3.4). When only attraction interactions are considered, the spread

in polarisation decreases with an increase in group size. But, a reverse trend is ob-

served when both alignment and attraction interactions are considered (Figure 3.4).

High polarisation and group cohesion were achieved only through pair-wise attraction

and pair-wise alignment.
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Figure 3.2: Snap shot of typical simulation run. Centre of the circle denote the
position of agents. Blue arrows indicate the direction of motion of particles and their
length is proportional to the magnitude of particles’ speed. Red circles denote the
average area occupied by fish. No two circles can intersect.

(a) (b)

Figure 3.3: (a) Time series of expanse with both alignment and attraction interactions
included for group size 30. (b) Time series of expanse with only attraction interaction
for group size 60. Different line colours denote different trials.
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(a) (b)

Figure 3.4: (a) Box plot of group polarisation vs school size when only attraction
interaction was included. (b) Box plot of group polarisation vs school size when both
alignment and attraction interactions were modelled. Red and blue box denote slower
(0.2m/s) and faster (0.4 m/s) cruise speeds

When only alignment interaction with no attraction was modelled, the groups

were not cohesive, and agents travelled in random directions (Figure 3.5). Expanse is

observed to remain constant for a certain amount of time further followed by a sudden

increase and remain constant till the next abrupt increase.

(a) (b)

Figure 3.5: Time series of expanse with only alignment interaction for group sizes 10
and 15. Different line colours denote different trials.
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We also found that schools are oblong for all group sizes. At larger group sizes

schools become more oblong (Figure 3.6). Also, faster schools were more oblong. A

reverse trend was observed in group density. Group density decreased with an increase

in group size. Schools with lower cruise speed were denser compared to faster schools

(Figure 3.6).

(a) (b)

Figure 3.6: (a) box plot of length/width ration vs school size. (b) box plot of density
vs school size. Red and blue box denote slower (0.2m/s) and faster (0.4 m/s) cruise
speeds

To understand the distribution of density, we calculated the degree of centrality of

the position of the group centre. Values significantly less than 0.5 would suggest that

a larger number of agents are located in front of the group centre and higher frontal

density. Furthermore, if the values were significantly greater than 0.5 would mean

higher density in the tail. However, we found the value very close to 0.5, indicating

that agents were equally distributed over the school. Further, we also found that at

almost all times, the equal number of agents were in-front and back of the group cen-

tre (Figure 3.7). The results were the same for both schools moving at slower cruise

speed and faster cruise speed.

Speed distribution as expected was centred around 0.2 ms−1 and 0.4 ms−1 for

slower and faster schools respectively (Figure 3.8). When an agent undergoes spon-

taneous rotation interaction, a random speed from a normal distribution is chosen as

the desired change in speed. If the computed resultant speed is less than zero, we set

the speed of the agent to zero as speed cannot be negative. Also, when agents are
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(a) (b)

Figure 3.7: (a) Box plot of location of the group centre. (b) Distribution of the number
of agents in front of the group centre. Red and blue box denote slower (0.2m/s) and
faster (0.4 m/s) cruise speeds

too close to each other, the one approaching its neighbour comes to rest to avoid the

collision. This is manifested as a peak around v = 0.

(a) (b)

Figure 3.8: (a) Speed distribution of agents with slower cruise speed (0.2 m/s). (b)
Speed distribution of agents with faster cruise speed (0.2 m/s).
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Chapter 4

Discussion

In this study, we show that patterns of spatial organizations - oblong schools and

uniform group density, emerge as a consequence of modelled behavioural rules of co-

ordination in fish. The behavioural rules governing the fish motion - speed control, per-

ception of neighbours and interactions are modelled more realistically ([Hemelrijk 08]).

We find that group cohesion and high group polarisation are achieved in all groups

sizes only through pairwise alignment and pairwise attraction. [Jhawar 20] show that

schooling in Etroplus suratensis to be noise-induced. The noise is arising from the

intrinsic stochasticity due to the finite group size and inherent probabilistic nature of

interactions. The mathematical model built to simulate the fish motion shows that

fish align with one neighbour at a time. This is different from the local direction

averaging in Vicsek like models. However, due to the constant speed of agents and the

way interactions were defined, to achieve cohesive groups, the focal individual had to

move towards the centroid of neighbouring N/4 agents. Where N is the total number

of agents in the group.

[Huth 92b] studied two kinds of models: ‘Average model’ and ‘Decision Model’. In

the average model, the individuals moved in the average direction of their neighbours.

This is similar to Vicsek like models. In the decision model, fish randomly selects a

neighbour to adjust its position and orientation (pairwise interaction). Both models

result in cohesive groups. However, only the schools formed by the averaging model

were polarised. The groups formed from decision model were always “confused”, i.e.

the group polarisation was low. In contrast, we found groups to be cohesive and highly

polar when individuals attract and align with only one neighbour at a time.
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[Strömbom 19], in their study, demonstrate that asynchronous updating of ori-

entation and attraction (alignment free) can result in polarised schools. Similarly

swarming in locusts was shown to achieve only through selective attraction and re-

pulsion ([Romanczuk 12]). In our study, even though only attraction interaction can

result in cohesive groups, they are not highly polarised.

[Jhawar 19a] discuss in detail the importance of stochasticity while modelling bi-

ological systems. However, they do not compare the different ways asynchrony are

modelled. There are different ways to model asynchrony ([Strömbom 19], [Bode 10]).

In [Bode 10], asynchrony is built through stochastic neighbour selection. In other

words, the focal individual randomly chooses a neighbour from the group to interact

irrespective of its position in the group. Further, the interaction with the selected

neighbour is probabilistic (50% chance of alignment interaction and 50% chance of

attraction interaction). But, the studies have shown that neighbours tend to remain

the same while fish move collectively ([Gerlotto 10], [Magurran 94]). Hence in such

systems, it might be an unrealistic way of modelling interactions.

In [Strömbom 19], asynchrony is modelled by randomizing the orders of individu-

als. But, in their model, all the interaction occur at all times. We employ asynchrony

by accounting for the probabilistic nature of interactions. Such modelling of asyn-

chrony can best describe schools in which neighbours tend to be same for longer

periods.

Schools are usually oblong ([Partridge 80], [Hemelrijk 08], [Hemelrijk 05]). [Hemelrijk 08]

develop a realistic model with variable speed to explain the emergence of oblong

schools. In their model, oblong schools emerged because individuals try to avoid col-

lisions. When fish avoid collisions, they tend to fall back. Now those who were on

the sides move together to fill the gap. This results in longer schools. In their model,

slower schools were more oblong. However, we observe that faster schools to be more

oblong similar to various empirical studies ([Radakov 73b], [Breder 59], [Kent 19]).

According to Breder’s hypothesis, this is because swimming movement occurs along

the horizontal plane, and this demands greater distance among individuals along the

axis of motion. As a result, schools with faster speeds are more oblong as fish re-

quire greater reaction distances ([Breder 59]). Recent empirical work by [Kent 19]
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has shown faster groups to be more oblong in contrast to [Hemelrijk 08]. Neverthe-

less, there might be other mechanisms which might result in oblong schools. As shown

in multiple studies swimming at the back might cost less due to hydrodynamic ad-

vantages. Hence oblong schools might be a side effect of fish trying to reduce their

energetic costs of locomotion ([Herskin 98b], [Svendsen 03], [Filella 18]).

[Hemelrijk 08] found larger schools to be denser—also, high frontal density in

schools of all sizes. However, we do not find similar results. We observe density to

decrease with an increase in school size. In schools of all sizes, the group centre was

located midway of the school length (Figure 3.7). We also found that at most times,

an equal number of agents were in front and behind of the group centre. Therefore

in schools of all sizes, the density was equally distributed about the centre of the group.

4.1 Future Perspective

In our model, we assume all the agents to be identical. However, in real biological

systems, individuals are of different size and age. Motivational differences between

group members are shown to influence group structures ([Couzin 02]). Hence it is

essential to build models in which agents tend to interact often with neighbours of

their own kind. In most of the mathematical model, vision is assumed to be symmetric

around the axis of motion, but this not always true in real systems ([Krause 02]).

We also do not study the effect of hydrodynamics on schooling. Similar ways of

incorporating variable speed along with hydrodynamics can be of focused in future

studies.
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