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Abstract

Internal modes of light can be used for efficient realization of any discrete arbitrary

unitary matrix. For ns spatial modes and ni internal modes of light, we present a

scheme for realizing (nsni) × (nsni) dimensional Quantum Fourier Transform (QFT)

matrix. A generalized scheme for decomposing QFT matrix into physically real-

izable matrices corresponding to spatial and internal transformations is developed

and then demonstrated for various choices of spatial and internal modes in realizing

four-dimensional, eight-dimensional and twelve-dimensional QFT matrices. This de-

composition reduces the number of beam splitters required for implementing QFT

matrices, with an addition of internal transformations. Furthermore, implementation

of the permutation matrices involved in realization of QFT are investigated.
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Chapter 1

Introduction

Quantum algorithms claim an exponential speedup over their classical counterparts.

This exponential speedup was demonstrated through various algorithms like Deutsch-

Jozsa algorithm [Deutsch 92], and Shor’s factoring algorithm [Shor 97]. The latter

requires Quantum Fourier Transform (QFT) operations as a building block of the

algorithm. QFT operations are also essential for Iterative Phase Estimation for find-

ing eigenvalues of an arbitrary unitary matrix [Zhou 13]. Thus, implementing QFT

experimentally is of great interest.

Implementing a discrete Fourier transform using quantum states is referred to as

Quantum Fourier Transform. Many such implementations in various platforms like

NMR quantum computer, Cavity-QED, superconducting qubits and Photonic chips

were previously investigated [Weinstein 01, Scully 02, Mariantoni 11, Crespi 16]. In

this work, we mainly focus on using linear optical setups for implementation of desired

unitary transformations on a light beam.

In 1994, Reck et al. showed that linear optical elements like beam splitters and

phase shifters can be used to approximate the action of an arbitrary finite-dimensional

discrete unitary matrix [Reck 94]. This was accomplished by re-expressing N - dimen-

sional unitary matrices as a sequence of two-dimensional beam splitter and phase

shifter matrices. We will refer to this process of re-expressing a matrix as a prod-

uct of two or more matrices as decomposition throughout this work. Their scheme

required O(N2) number of beam splitters to perform the desired N -dimensional uni-

tary transformation on light. Later, in 2016, Clements et al. perfected this scheme

to improve its scalability, but still required aligning O(N2) number of beam splitters

to achieve the desired unitary transformation [Clements 16]. Beam splitters tend to

be lossy in realistic conditions. Moreover, aligning O(N2) number of beam splitters

as N increases is a practically difficult task. The obvious solution to overcome this

problem is to reduce the number of beam splitters required for implementation.

In order to address this problem, Dhand et al. proposed a new algorithm which

explored the use of various degrees of freedom (DOFs) of light to perform a desired
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CHAPTER 1. INTRODUCTION

unitary transformation. Their scheme used internal modes of light like polarization,

orbital angular momentum (OAM) and time bins to perform unitary transformations,

along with the spatial modes of light used by Reck’s and Clements’ schemes. For an

arbitrary N = nsnp-dimensional discrete unitary matrix, their scheme reduced the

number of beam splitters by a factor of n2
p/2, with a two-fold increase in the num-

ber of optical elements required for transformation of the internal modes [Dhand 15].

Here, ns corresponds to the number of spatial modes and np corresponds to the num-

ber of internal modes of light.

In this work, we are interested in the implementation of QFT, which is an in-

stance of a symmetric unitary matrix. In 1996, Torma et al. recognized that this

symmetry can be exploited and introduced a new decomposition scheme which re-

quired considerably lesser number of beam splitters for realizing symmetric unitary

transformations [Törmä 96].They managed to reduce the number of beam splitters re-

quired to O(Nlog2N) for the specific case where N is a power of two. We adapt this

decomposition method to include the internal modes of light, which is advantageous

in further reducing the number of beam splitters required for implementation.

By using polarization and OAM of light alongside its spatial DOF to imple-

ment QFT operation, we require only six beam splitters for realization of an eight-

dimensional QFT, as opposed to 12 beam splitters required by Torma’s scheme. A

major difficulty for actual implementation of the proposed scheme stems from the per-

mutation matrices involved in the decomposition, which was not considered explicitly

in the previous work [Törmä 96]. Next, we present a setup for the particular case of

twelve-dimensional QFT, in which a new way of realizing a three-dimensional QFT on

OAM modes is devised. The permutation matrix associated with twelve dimensions

is hard to implement, suggesting that we still require a general decomposition for

arbitrary N -dimensional permutations in terms of spatial and internal modes of light.

We also take note of the modularity presented by Torma’s scheme and investigate

how it can be of use in realization of QFT matrices with internal modes of light.

The result that we present in this work will be helpful for an easy implementation

of higher dimensional QFT, which may be helpful in data post-processing for emerging

quantum machine learning schemes[Lloyd 13], quantum arithmetic[Ruiz-Perez 17],

and solving hidden subgroup problems [Roetteler 98].

This thesis is organized into 4 chapters. Chapter 2 contains detailed discussions

regarding the relevant background required, which includes unitary matrix implemen-

tation by Reck et al. and Clements et al. and Dhand et al., along with the adapted

version of Torma et al. implementation of QFT so as to include internal DOFs of

light. This chapter also contains discussions on methods used to implement unitary

2



CHAPTER 1. INTRODUCTION

transformations on polarization and OAM DOFs of light. Possible applications of our

adaptation and various experimental implementations of selected QFT matrices are

presented in Chapter 3. This chapter also includes a cost analysis with respect to

the number of optical elements required for implementation of QFT. Further discus-

sions including possible use cases of the algorithm and challenges ahead constitute

Chapter 4.

3



Chapter 2

Background

In classical optics, light beams are characterized by its electric field components.

Every optical element acts on the input electric field component of light to perform

a linear transformation on the beam. This means that the action of these optical

elements can be quantified by means of unitary matrices. Unitarity of the matrix

implies that the intensity of the input light beam is unchanged by the action of the

optical element.

Similarly, in Quantum Optics, optical elements transform the creation or annihi-

lation operators related to the electric field components of the input light beam, to

that of the output beam. Here, unitarity of the transformation matrix is related to

preservation of probability amplitudes of the input quantum states. In this chapter,

we will discuss about different experimental schemes used for implementing unitary

transformations in various DOFs of light.

2.1 Unitary matrices

Unitary matrices of finite dimension N are complex square matrices which satisfies

the relation

UU † = U †U = 1. (2.1)

Imposing an additional constraint that det|U | = 1 results in the special unitary ma-

trix. A group of such N -dimensional unitary matrices with the group operation of

multiplication constitutes the Special Unitary group (denoted as SU(N)). It is well

known that SU(2) is homomorphic to SO(3), which is the special orthogonal group

corresponding to three-dimensional rotations. The general form of a matrix belonging

to SU(2) can be written as

U =

[
η χ

−χ∗ η∗

]
, (2.2)

4



CHAPTER 2. BACKGROUND

with η = a + ib, χ = c + id, and a2 + b2 + c2 + d2 = 1. This means that it requires

three independent parameters to define an element of the SU(2) group. A commonly

used parameterization for SU(2) is in terms of Euler angles. For angles α, β, and γ,

U(α, β, γ) = e−
i
2
ασ2e

i
2
βσ3e−

i
2
γσ2 (2.3)

where σ2 and σ3 are Pauli matrices. We will now see how SU(2) operations are

physically implemented on light beams.

2.2 SU(2) operations on different DOFs of light

A single photon can be associated with various DOFs. The path in which the photon

is localized is referred to as the spatial DOF. The input and output ports of a beam

splitter can be considered as the spatial DOF accessible by a photon.

A single photon can be associated with different mutually orthogonal polarization

states. This corresponds to the polarization DOF of the photon. Usually, the hori-

zontal and vertical polarization are chosen as the basis for representing polarization

DOF. Similarly, a single photon can carry a superposition of l OAM states, where l

is an unbounded integer. This is referred to as the OAM DOF of photon.

2.2.1 Spatial DOFs

Specific SU(2) operations can be performed on the spatial DOFs of photons using a

Mach-Zehnder Interferometer (MZI) combined with a phase shifter. A MZI consists

of two each of beam splitters, phase shifters and mirrors. This is used as the building

block of some of the schemes that use spatial DOF of light to implement unitary

transformations. A beam splitter is a four-port device, with two input ports and two

output ports. These ports corresponds to the spatial modes of the incoming photons.

A beam splitter with 50% transmittance and 50% reflectance can be represented as

B =
1√
2

[
1 i

i 1

]
. (2.4)

As the name suggests, a phase shifter acts on the beam to impart a phase difference,

say φk, between the input and output beams. The matrix corresponding to a phase

shifter is thus

P =

[
eiφ1 0

0 eiφ2

]
. (2.5)

In the case of a MZI, we only require one phase shifter in one of the arms (as this

imparts the relative phase difference between the two arms of the interferometer), as

5
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2θ
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2’
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Figure 2.1: SU(2) operation on spatial DOFs : A MZI with two different phase
shifters at the first input and output ports imparts a SU(2) transformation on the
spatial DOFs. Adding a phase element to both of the output ports will result in a
U(2) transformation.

shown in Fig 2.1. The matrix representation of the interferometer thus becomes,

T = B†PB

=
1

2

[
1 −i
−i 1

][
ei2θ 0

0 1

][
1 i

i 1

]

=
1

2

[
ei2θ + 1 iei2θ − i
−iei2θ + i ei2θ + 1

]

=
eiθ

2

[
eiθ + e−iθ i(eiθ − e−iθ)
−i(eiθ − e−iθ) eiθ + e−iθ

]

= eiθ

[
cos θ sin θ

− sin θ cos θ

]
(2.6)

Here, eiθ is a global phase which changes the phase of every state equally, and thus

can be omitted. Now, imparting a phase shift in one of the spatial modes,

T ′ =

[
eiφ 0

0 1

][
cos θ sin θ

− sin θ cos θ

]
=

[
eiφ cos θ eiφ sin θ

− sin θ cos θ

]
(2.7)

It is easy to check that T ′ satisfies the relation in Eq.2.2, thus confirming that MZI

combined with a phase shifter performs a SU(2) operation on the input beams. This

6
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setup is used as a substitute for variable reflectivity beam splitters, as it is easier to

tune θ and φ to the desired reflectivity and transmittance values of the required beam

splitter.

Schemes using spatial DOF to implement a unitary transformation uses an array

of MZIs paired with phase shifters to act as the desired unitary transformation. In

Section 2.3, we see such algorithms that decompose a matrix into smaller SU(2)

operations corresponding to MZI-Phase shifter pairs.

However, this setup is characterized by only two parameters, and hence does not

impart any arbitrary SU(2) operation using the spatial DOF. Adding a phase shifter

at one of the input ports of the MZI-phase shifter pair results in

T” =

[
eiφ1 cos θ eiφ1 sin θ

− sin θ cos θ

][
eiφ2 0

0 1

]
=

[
ei(φ1+φ2) cos θ eiφ1 sin θ

−eiφ2 sin θ cos θ

]
(2.8)

T” is characterized by three independent parameters, and hence can perform any

arbitrary SU(2) operation on the input light beam. An additional phase shifter can

be added in the output spatial mode to impart any U(2) operation on the beam,

as SU(2) and U(2) differs only in the global phase factor. Now, we see how SU(2)

operations can be implemented using internal DOFs of light.

2.2.2 Internal DOFs

In 1989, Simon and Mukunda noted that a sequence of co-axially mounted Quarter-

Wave Plates (QWPs) and Half-Wave Plates (HWPs) can be used to impart any

desirable SU(2) transformation on the polarization DOF [Simon 89]. Waveplates are

birefringent plates with a mutually orthogonal slow and fast axes. Waveplates delay

the phase of the electric field component corresponding to fast axis by a certain

amount, say ζ. Let the fast axis of the wavelpate be in y direction, slow axis be in x

direction, and let the wave propagate through z direction. A general expression of a

waveplate thus becomes,

W0(ζ) = e−iζ/2

[
eiζ/2 0

0 e−iζ/2

]
= e−iζ/2ei

ζ
2
σ3 . (2.9)

Suppressing the global phase factor e−iζ/2, we see that W0(ζ) ∈ SU(2). The subscript

denotes the angle between the slow axis and a unit vector along x direction. Any

arbitrary rotation of the waveplate can be quantified by multiplication of the rotation

matrix

R(θ) =

[
cos θ − sin θ

sin θ cos θ

]
= e−iθσ2 , (2.10)

7
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so that

Wθ(ζ) = R(θ)W0(ζ)R−1(θ) (2.11)

Note that R−1(θ) = R(−θ). For any waveplate, rotation through an angle of π does

not change the operation of the waveplate. However, rotation through an angle of π/2

interchanges the fast and slow axes, resulting in an inverse operation of the waveplate.

Recall from Eq. 2.3 that any SU(2) matrix can be parameterized using Euler angles.

In comparison with Eq. 2.9 and Eq. 2.10, we see that

U(α, β, γ) = R(α/2)W0(β/2)R(γ/2)

= R(α/2)W0(β/2)R−1(α/2)R(α/2)R(γ/2)

= Wα/2(β)R((α + γ)/2)

(2.12)

For a HWP, ζ = π and for a QWP, ζ = π/2. Their corresponding matrices at θ = 0

are

H0 =

[
i 0

0 −i

]
= iσ3, (2.13)

Q0 =

[
eiπ/4 0

0 e−iπ/4

]
. (2.14)

As σ2 and σ3 are anti-commutative, it is straightforward to check that H0R(θ) =

R−1(θ)H0. Also, two-dimensional rotations commute with each other about the origin.

Using these identities,

Hθ0Hθ0±π/2−θ/4 = R(θ0)H0R
−1(θ0)R(θ0 ± π/2)R−1(θ/4)H0R(θ/4)R−1(θ0 ± π/2)

= R(θ0)H0R
−1(θ0)R(θ0 ± π/2)H0R(θ/2)R−1(θ0 ± π/2)

= R(θ0)H0R
−1(θ0)R(θ0 ± π/2)H0R

−1(θ0 ± π/2)R(θ/2)

= Hθ0Hθ0±π/2R(θ/2) [since H−1θ0 = Hθ0±π/2]

= R(θ/2).

(2.15)

Similarly, it can be established that

Hθ0±π/2+θ/4Hθ0 = R(θ/2). (2.16)

8
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Thus, we see that any arbitrary rotation of polarization can be achieved using a com-

bination of two HWPs. This can be further simplified. Now, consider the expression

Qπ/4R(β/2)Q−1π/4 = R(π/4)Q0R(−π/4)R(β/2)R(π/4)Q−10 R(−π/4)

= R(π/4)Q0R(−π/4)R(π/4)R(β/2)Q−10 R(−π/4)

= R(π/4)Q0R(β/2)Q−10 R(−π/4)

= R(π/4)ei
π
4
σ3e−i

β
2
σ2ei

π
4
σ3R(−π/4).

(2.17)

Taking note of the fact that σ2σ3 = iσ1 = −σ3σ2,

Qπ/4R(β/2)Q−1π/4 = R(π/4)e−i
β
2
σ1R(−π/4). (2.18)

Rotating −σ1 through π/4 results in σ3, which implies

Qπ/4R(β/2)Q−1π/4 = ei
β
2
σ3 . (2.19)

Multiplying both sides of Eq. 2.19 with e−i
α
2
σ2 from left and ei

α
2
σ2 from right,

Qα/2+π/4R(β/2)Q−1α/2+π/4 = e−i
α
2
σ2ei

β
2
σ3ei

α
2
σ2 . (2.20)

Combining Eq. 2.15, Eq. 2.16 and Eq. 2.20, Eq. 2.12 can be re-expressed as

U(α, β, γ) = Qα/2+π/4Hθ0±π/2+β/4Hθ0Q
−1
α/2+π/4Hξ0Hξ0±π/2−(α+γ)/4. (2.21)

The value of θ0 and ξ0 in this expression can be carefully chosen so that the number of

parameters is reduced to three, as required for describing an arbitrary SU(2) matrix.

This choice can be made by noting that aligning the principal directions of Hθ0 and

Hξ0 to that of Q−1α/2+π/4 = Qα/2−π/4 lets these matrices commute with each other. This

means that θ0 = α/2± π/4 and ξ0 = α/2∓ π/4, which leads to

U(α, β, γ) = Qα/2+π/4Hα/2∓π/4+β/4Qα/2−π/4Hα/2±π/4Hα/2∓π/4Hα/2±π/4−(α+γ)/4

= Qα/2+π/4Hα/2∓π/4+β/4Qα/2−π/4Hα/2±π/4H
−1
α/2±π/4Hα/2±π/4−(α+γ)/4

= Qα/2+π/4Hα/2∓π/4+β/4Qα/2−π/4H(α−γ)/4±π/4.

(2.22)

Using the same identities as in Eq. 2.15, a general combination of waveplates Hξ,

9
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ξ φ η

QWP HWP QWP

Figure 2.2: Simon-Mukunda polarization gadget : Two QWPs and a HWP oriented
at respective angles suffices to impart any arbitrary SU(2) operation on the polar-
ization modes of light. Note that the waveplates are co-axially mounted.

Qφ, and Hη can be expressed as

HξQφHη = HξR(φ)Q0R(−φ)R(η)H0R(−η)

= HξR(φ)Q0R(−φ)H0R(−2η)

= HξR(φ)Q0H0R(−(2η − φ))

= HξR(φ)R(π)Qπ/2R(−(2η − φ)).

(2.23)

Introducing 1 = R(−(2η − φ))R((2η − φ)) to this equation,

HξQφHη = HξR(φ+ π)R(−(2η − φ))R((2η − φ))Qπ/2R(−(2η − φ))

= HξR(2(φ− η + π/2))Q2η−φ+π/2

= HξR(2(φ− η + π/2))Q2η−φ+π/2

= R(−(φ− η + π/2))HξR(φ− η + π/2)Q2η−φ+π/2

= Hξ−φ+η−π/2Q2η−φ+π/2.

(2.24)

Using Eq. 2.24, we can further simplify Eq. 2.22 as

U(α, β, γ) = Qα/2+π/4H(α+β−γ)/4−π/4Qπ/4−α/4. (2.25)

This means that any arbitrary SU(2) operation on polarization can be realized by

co-axially mounting two QWPs and a HWP. The values of α, β and γ can be found

for the desired unitary matrix through Euler decomposition and then the waveplates

can be arranged accordingly. Fig. 2.2 illustrates the experimental setup used. Simon

and Mukunda have also proved that any combination of two QWPs and a HWP can

10
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ξ φ η

Figure 2.3: SU(2) operation on OAM : Device similar to Simon-Mukunda polariza-
tion gadget for performing SU(2) operation on OAM modes with N=1

be used for experimental realization of SU(2) operations [Simon 90].

A much more versatile internal DOF is the OAM carried by light beams. In 1992,

Allen et al. showed that a paraxial linearly polarized Laguerre-Gaussian (LG) beam

can have a exp(ilθ) phase dependence, with l} being the value of OAM carried per

photon [Allen 92]. Here, l is an integer which is unbounded, which implies that a

single photon can be associated to an infinite dimensional Hilbert space. LG beams

have a helical wavefront and are analogous to circularly polarized light. Similarly,

another class of beams known as Hermite-Gaussian (HG) beams are analogous to

linear polarization.

Following Allen’s work, Beijersbergen et al. noted that an arrangement of cylin-

drical lenses (known as Astigmatic mode converters) can impart a Gouy phase shift

(phase shift suffered by the beam passing through the waist of the Gaussian beam as

compared with a plane wave) to the input beam, thus enabling inter-conversion of a

rotated HG beam to LG beam or vice-versa [Beijersbergen 93]. This setup is referred

to as a π/2-mode converter, as it introduces a phase shift of π/2 between successive

terms in the expansion of either rotated HG beam or LG beam. It was duly noted

that the matrix for of a π/2-mode converter is

C(π/2) =



1

−i
−1

i

1

−i
. . .


, (2.26)

by Allen et al. [Allen 99]. The matrix is infinite dimensional owing to unbounded

values of l. In the case of two OAM modes, we see that this action is analogous to

11
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that of a QWP on a linearly polarized light. Another important optical element that

transforms OAM is the Dove prism. A Dove prism adds a l dependent phase to the

input beam, depending on the orientation angle of the prism (exp(iαl), where α is

the orientation angle). An input beam impinging on the Dove prism undergoes two

refractions and a total internal reflection before emerging at the output [Moreno 04].

This effectively rotates the beam based on the orientation angle of the prism.

Later, Gadway et al. noted that two π/2-mode converters and a Dove prism (Fig.

2.3) can be used analogously to the Simon-Mukunda polarization gadget to impart

any SU(2) transformation on selected l values (l = ±1)[Gadway 08]. This constraint is

inherent to the mode converter design, as discussed in [Beijersbergen 93]. We discuss

the details of the origin of these values of orbital angular momentum with reference

to Schwinger’s representation in Section 2.7.

2.3 Implementation of unitary matrices using spa-

tial modes

Conventionally, the experimental realization of a N -dimensional arbitrary discrete

unitary matrix is achieved by expressing it as a product of smaller dimensional ma-

trices corresponding to transformation matrices of optical elements. This process of

re-expressing a matrix as a product of matrices is referred to as decomposition. An im-

portant milestone in devising experimental setups for unitary matrix realization was

due to Reck et al. [Reck 94]. According to their scheme, the physical representation

of a N -dimensional unitary matrix would have N input and output ports respectively.

The algorithm which they devised for decomposing any arbitrary unitary matrix is as

follows

1. Take as input the N -dimensional arbitrary unitary matrix U , which is to be

decomposed.

2. Define

Tp,q(θ, φ) =



1
. . .

cos θ eiφ · · · sin θ eiφ

...
. . .

...

− sin θ · · · cos θ
. . .

1


, (2.27)

which matches the dimensions of U . Note that the entries that are embedded

in the pth and qth rows and columns of Tp,q(θ, φ) corresponds to a MZI matrix

12
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(as in Eq. 2.6) multiplied by a phase shifter matrix imparting a phase shift of

φ to the first output mode of MZI respectively (the inverse of this matrix is

denoted as T−1p,q (θ, φ)). This matrix only affects a two-dimensional subspace of

the N -dimensional matrix U .

3. Multiply U with TN,N−1(θ, φ) from the right by choosing appropriate values for

θ and φ, such that (N,N − 1)th element of U is nulled.

4. Repeat this procedure so that

UTN,N−1TN,N−2 . . . T2,1 = D, (2.28)

where D is a diagonal unitary matrix. We have omitted (θ, φ) to simplify the

notation. This let’s us write the matrix U as

U = DT−12,1 . . . T
−1
N,N−2T

−1
N,N−1, (2.29)

which completes the decomposition.

From a physical point of view, the matrix TN,N−1(θ, φ) represents a variable reflec-

tivity beam splitter acting on the input ports N and N − 1. It is easy to see that(
N
2

)
operations are required to null the lower triangular part of matrix U . So, this

decomposition method results in an experimental setup that utilizes N spatial modes,

on which N(N − 1)/2 beam splitter devices are arranged in a triangular array, along

with appropriate phase shifts dictated by D where necessary (Fig. 2.4.b).

This method of implementing unitary matrix suffers when the dimensionality of

the matrix U increases, as aligning O(N2) beams splitters perfectly becomes a tedious

task and the setup suffers from loss in fidelity of the output states. One of the main

reason for this loss is that a beam encounters different number of optical elements in

each spatial mode due to the triangular pattern in which the elements are ordered.

This creates an unbalanced loss along different arms of the setup. In order to tackle the

problem of unbalanced loss, Clements et. al. put forth a new decomposition algorithm.

Their algorithm is similar to Reck’s except for the third step where diagonalization

of U begins. Instead of diagonalizing U by multiplying appropriate Tp,q(θ, φ) only

from the right, Clements et al. also multiplies U with T−1p,q (θ, φ) from the left, under

the constraint that only nearest neighbour p and q are chosen. This step changes

the order in which the elements of the lower triangular part of U is nulled, which

translates into a more compact rectangular array of beam splitter devices over the

triangular array proposed by Reck et. al.(Fig.2.4.c). The algorithm can be summed

up as

1. Take as input the N -dimensional unitary matrix U .

13
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U1,1 U1,2
U1,3 U1,4 U1,5

U2,1 U2,2
U2,3 U2,4 U2,5

U3,1 U3,2
U3,3 U3,4 U3,5

U4,1 U4,2
U4,3 U4,4 U4,5

U5,1 U5,2
U5,3 U5,4 U5,5

U1,1 U1,2
U1,3 U1,4 U1,5

U2,1 U2,2
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U3,1 U3,2
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b)

c)

= MZI(θ)
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Figure 2.4: Optical architectures : Architectures arising due to Reck’s and Clements’
decomposition is compared in this figure. a) Simplification used for representing the
variable reflectivity beam splitter device. Here, straight lines corresponds to the op-
tical modes and X shaped structure corresponds to the beam splitter device (which
is a composition of a MZI and a phase shifter). V shaped structure corresponds to
a mirror reflection. b) Reck’s scheme. c) Clement’s scheme. Red elements are nulle-
d in both the schemes and blue arrows show the order in which the elements are n-
ulled. Adjacent to it is the experimental setup resulting from arranging the beam
splitter devices as in the decomposition sequence. A specific case of N = 5 is used
here to illustrate both algorithms. Note that Reck’s scheme generates a triangular
array of beam splitter devices while Clements’ scheme generates a rectangular arra-
y of beam splitter devices.
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2. Define an iterable, say k, which ranges in [1, N − 1].

3. If k is odd, then

(a) Define an iterable, say j, which ranges in [0, k − 1].

(b) Find a matrix Tk−j,k−j+1(θ, φ), with appropriate values for θ and φ which

nulls the element (N − j, k − j)

(c) Multiply U from left with Tk−j,k−j+1(θ, φ), so that

U = UTk−j,k−j+1(θ, φ). (2.30)

4. If k is even, then

(a) Define an iterable, say j, which ranges in [0, k].

(b) Find a matrix T−1N+j−k−1,N+j−k(θ, φ), with appropriate values for θ and φ

which nulls the element (N + j − k, j)

(c) Multiply U from right with T−1N+j−k−1,N+j−k(θ, φ), so that

U = T−1N+j−k−1,N+j−k(θ, φ)U. (2.31)

5 10 15 20 25 30 35 40 45 50

Circuit Dimensions

0.6

0.7
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1.1
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de

lit
y

Clements et al.

Reck et al.

Figure 2.5: Comparison of fidelities : Output fidelities simulated for Reck’s method
and Clement’s method, with a 2% loss in intensity at each beam splitter. As the di-
mensionality of the unitary matrix increases, beam splitters also increase. Balanced
loss presented by Clement’s method stabilizes over a fidelity of 1 without much loss,
in contrast to a steep drop in fidelity for Reck’s method.
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This method claimed to have balanced loss due to its rectangular structure, as the

beam now encounters similar number optical elements along different spatial modes,

making it an optimal architecture for realization of unitary matrices [Clements 16].

The fidelity of the optical circuit can be calculated according to

F =

∣∣∣∣∣∣ tr(U †Uexp)√
Ntr(U †expUexp)

∣∣∣∣∣∣
2

, (2.32)

where Uexp corresponds to multiplication of all matrices in the decomposition. As a

standard metric, higher values of F corresponds to lesser loss due to the circuit. We

observe that the decline in fidelity is far less for Clement’s scheme as compared to

Reck’s scheme (Fig. 2.5). Also, the rectangular array made the optical depth of the

circuit much less as compared to Reck’s scheme. However, the practical difficulty in

aligning O(N2) beam splitters still remained a problem.

2.4 OAM sorter

The ability to perform N -dimensional arbitrary unitary operation on OAM modes

can be achieved through a setup known as OAM sorter [Leach 02]. The OAM sorter

consists of a Mach-Zehnder interferometer setup with Dove prisms in both of its arms.

As we have noted in Section 2.2.2, OAM carrying beams have a l-dependent phase

given by exp(ilφ). The Dove prisms in the OAM sorter are rotated at a relative angle

of α/2, and is responsible for performing rotation on the incoming beam by an amount

α, so that the the phase difference between the original beam and rotated beam is lα.

Specific combinations of l and α let’s us choose the modes to be in phase with each

other or out-of-phase with each other.

Fixing the value of α = π, we see that rotated even OAM modes are in phase

with their corresponding original beam in one arm of the MZI, while the odd modes

in the same arm are out of phase with the original beam. This creates constructive

interference of even OAM modes and destructive interference of odd OAM modes. The

exact opposite happens in the other arm of the interferometer. Thus, we get even

OAM modes through output port 1 and odd OAM modes through output port 2.

The same setup can be used again at the two output ports to perform further

sorting of OAM values. In the next stage, α is set to π/2, so that even and odd

OAM values exit through different ports of the OAM sorter. This can be carried out

recursively until all N OAM modes are separated from the superposition.

After achieving spatial separation of OAM modes through cascaded use of OAM

sorters, we can now use SLMs to generate an arbitrary superposition of states in

different spatial modes. Hence, for realizing a N -dimensional unitary transformation
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BS

BS

DP

DP

Mirror

Mirror

BS: Beam splitter DP: Dove Prism

α/2
1

2

Figure 2.6: OAM sorter : The setup used for implementing an OAM sorter. A MZI
with Dove prisms on its both arms are used to perform sorting. To sort even and
odd OAM values, the value of the relative rotation angle between the Dove prisms,
α, is set to π. Even values of OAM are sorted to port 1 and odd values of OAM are
sorted to port 2.

on OAM modes, we require (N − 1) OAM sorters and N SLMs. This means that we

need 2(N − 1) number of beam splitters, Dove prisms and mirrors to perform spatial

sorting of OAM modes.

2.5 Implementation of unitary matrices by involv-

ing Internal modes

In order to reduce the number of beam splitting operations, Dhand et. al. proposed

a new algorithm which uses internal DOFs of photons as well for unitary realization

[Dhand 15]. This is in contrast to using only the spatial DOFs as proposed by the

methods discussed in the Section 2.3. The internal DOFs of photons may include

polarization, OAM or time. The main component of their scheme is the Cosine-Sine

Decomposition (CSD) algorithm, which is based on the well known Singular Value

Decomposition (SVD).

Theorem:

Any arbitrary discrete unitary matrix, say U , of dimensions (m + n) × (m + n) can

be expressed as a product of three matrices,

Um+n =

[
Lm 0

0 L
′
n

]
(S2m ⊕ 1n−m)

[
R†m 0

0 R
′†
n

]
. (2.33)
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where Lm, L
′
n, R†m and R

′†
n are all unitary matrices and S2m is a cosine-sine matrix of

the form,

S2m =



cos θ1 sin θ1
. . . . . .

cos θm sin θm

− sin θ1 cos θ1
. . . . . .

− sin θm cos θm


. (2.34)

Proof:

U can be expressed as a block matrix of the form

Um+n =

[
A B

C D

]
2×2

, (2.35)

where A, B, C, and D are m × m, m × n, n × m, and n × n dimensional complex

matrices respectively. It is well known that the SVD of a complex matrix X of

dimensions m× n is

X = MξXV
†, (2.36)

where M and V are m×m and n×n unitary matrices with columns corresponding to

eigenvectors of XX† and X†X respectively, and ξX is a positive real diagonal matrix.

The columns of M and V are also referred to as left-singular vectors and right-singular

vectors which diagonalize X.

Since U is unitary,

UU † = 1m+n =

[
AA† +BB† AC† +BD†

CA† +DB† CC† +DD†

]
, (2.37)

and,

U †U = 1m+n =

[
A†A+ C†C A†B + C†D

B†A+D†C B†B +D†D

]
. (2.38)

Here, 1m+n is the m+ n-dimensional identity matrix. Comparing the block diagonal

identity matrix with the RHS of Eq. 2.37, we get

AA† +BB† = 1m,

CC† +DD† = 1n.
(2.39)

Note that (AA†)† = AA†, implying that AA† is a normal matrix. This holds true for

BB†, CC† and DD† as well. Now, multiplying the two equations by BB† and DD†
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respectively from right as well as left yields

AA†BB† +BB†BB† = BB†,

BB†AA† +BB†BB† = BB†,
(2.40)

and,

CC†DD† +DD†DD† = DD†,

DD†CC† +DD†DD† = DD†.
(2.41)

Subtracting equations in Eq.2.40 and Eq. 2.41, we see that

[AA†, BB†] = 0,

[CC†, DD†] = 0,
(2.42)

which means that AA† and CC† commutes with BB† and DD† respectively. This

suggests that the matrices (A, B) and (C, D) have the same set of left-singular vectors,

denoted by matrices Lm and L
′
n respectively, upto a defined phase value. Now, we

compare the block diagonal identity matrix with the RHS of Eq. 2.38, to get

A†A+ C†C = 1m,

B†B +D†D = 1n.
(2.43)

A similar procedure as in Eqs. (2.39-2.41) yields

[A†A,C†C] = 0,

[B†B,D†D] = 0.
(2.44)

This shows that the matrices (A, C) and (B, D) have the same set of right-singular

vectors, denoted by matrices Rm and R
′
n respectively, upto a defined phase value.

Now, performing SVD (Eq. 2.36) of unitary matrices A and D yields,

A = LmξAR
†
m, (2.45)

D = L
′

nξDR
′†
n . (2.46)

Here, ξA and ξD are real positive matrices, as seen in Eq. 2.36. The matrices Lm, L
′
n,

R†m and R
′†
n also diagonalize B and C, so that

B = LmξBR
′†
n , (2.47)

C = L
′

nξCR
†
m, (2.48)
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However, their corresponding singular value matrices ξB and ξC may not be positive

real matrices in general, and may contain complex phases. As U is unitary, ξB and

ξC can be expressed as

ξB = Φ|ξB|, (2.49)

ξC = −|ξC |Φ†, (2.50)

where Φ is a complex phase and |ξB|, |ξC | are the real magnitudes of ξB and ξC

respectively. Eqs. (2.45-2.50) can be expressed in the 2× 2 block matrix form to get

Um+n =

[
Lm 0

0 L
′
n

][
ξA Φ|ξB|

−|ξC |Φ† ξD

][
R†m 0

0 R
′†
n

]
. (2.51)

The phase Φ can be absorbed into the unitary matrices Lm and Rm such that

Um+n =

[
LmΦ 0

0 L
′
n

][
ξA |ξB|
−|ξC | ξD

][
(RmΦ)† 0

0 R
′†
n

]
. (2.52)

Let us define

Λm+n =

[
ξA |ξB|
−|ξC | ξD

]
. (2.53)

It can be easily inferred from Eq. 2.52 that Λm+n is an orthogonal matrix. Note that

any orthogonal square matrix of dimensions 2 can be expressed as a rotation matrix

(similar to Eq.2.6), which can be associated with Λm+n as

Λk =

[
cos θk sin θk

− sin θk cos θk

]
. (2.54)

Orthogonality of Λm+n means that any two columns or rows of Λm+n are orthogonal

to each other. This means that the elements of Λm+n in the indices (k, k), (k, k+m),

(k + m, k) and (k + m, k + m) can be replaced by corresponding elements from Eq.

2.54. This generates a 2m-dimensional real orthogonal square matrix of the form

S2m =



cos θ1 sin θ1
. . . . . .

cos θm sin θm

− sin θ1 cos θ1
. . . . . .

− sin θm cos θm


. (2.55)
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 =

Figure 2.7: Cosine-Sine Decomposition: The action of the desired unitary matrix is
equivalent to a sequence of three operations. While including the internal modes,
this can be interpreted as: A unitary operation acting on the spatial-internal sub-
space of m and n spatial modes respectively, followed by an operation on all the
spatial modes of the photon. The sequence ends with another set of unitary oper-
ations on the spatial-internal subspace of the photon alone. Note that actual ar-
rangement of experimental setup is shown here.

In the remaining n − m dimensions, an identity matrix is embedded so that the

orthogonality condition of Λm+n is satisfied. Hence, Eq. 2.52 can be re-expressed as

Um+n =

[
Lm 0

0 L
′
n

]
(S2m ⊕ 1n−m)

[
R†m 0

0 R
′†
n

]
. (2.56)

This concludes the proof for CSD.

This method can be employed to cater in for internal DOFs of light. For that,

we inherently assume that the internal degrees of freedom in one spatial mode does

not interact with the same in other spatial modes. So, the combined Hilbert space

corresponding to QFT operation can be defined as,

H = Hs ⊗Hi, (2.57)

where Hs corresponds to the spatial Hilbert space with basis vectors {|sj〉} (j ∈
{1, . . . , ns}) and Hi corresponds to the Internal Hilbert space with basis vectors {|ik〉}
(k ∈ {1, . . . , ni}). Hi can be further expressed as a direct sum of commuting internal

DOF’s like polarization and OAM modes, which gives flexibility for the experimen-

talist to choose the modes according to available resources. The combined basis of

the total Hilbert space can be represented as

|hjk〉 = |sj〉 ⊗ |ik〉 . (2.58)

Choosing the basis for representing the CSD generated matrices let’s us identify the
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subspace in which optical transformation is to be performed. Now, we see the algo-

rithm developed by Dhand et al., which is as follows

1. The algorithm takes as input the nsni-dimensional unitary matrix Unsni .

2. Fixing m = ni and n = (ns − 1)ni, CSD is performed to get

Unsni =

[
Lni 0

0 L
′

(ns−1)ni

]
(S2ni ⊕ 1(ns−2)ni)

[
R†ni 0

0 R
′†
(ns−1)ni

]
. (2.59)

Here, Lni and R†ni are unitary matrices acting on a single spatial mode and ni

internal modes. Similarly, L
′

(ns−1)ni and R
′†
(ns−1)ni are unitary matrices acting on

(ns − 1) spatial modes and ni internal modes. S2ni acts on the first two spatial

modes and the ni internal modes in each of the spatial modes.

3. In the next iteration, CSD is applied to L
′

(ns−1)ni so that

L
′

(ns−1)ni =

[
Lni 0

0 L
′

(ns−2)ni

]
(S2ni ⊕ 1(ns−3)ni)

[
R†ni 0

0 R
′†
(ns−2)ni

]
. (2.60)

Since R
′†
(ns−2)ni commutes with R

′†
(ns−1)ni , it can be absorbed in R

′†
(ns−1)ni .

4. Iterations are carried out until the dimensions of L
′
matrix becomes ni, so that it

is affecting only on the internal modes of the last available spatial mode. At this

point, R
′† matrices would be multiplied together to form a (ns−1)ni-dimensional

unitary matrix,

U(ns−1)ni =
ns−2∏
k=0

R
′†
(ns−1−k)ni . (2.61)

5. Steps 1-4 are repeated with input unitary matrix U(ns−1)ni .

Comparing the form of S2ni in Eq. 2.55 to that of Eq. 2.6, we can devise that

S2ni = (B ⊗ 1ni)(Pni ⊕ P †ni)(B
† ⊗ 1ni), (2.62)

where B is a balanced beam splitter of the form in Eq. 2.4, and

Pni =


eiθ1

eiθ2

. . .

eiθni

 . (2.63)

This decomposition scheme only requires (ns(ns − 1)) beam splitters, compared to
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Internal transformation S2ni matrices S4ni matrix

a)

b)

Figure 2.8: Internal Spatial decomposition: Two methods by which internal modes
can be included in the decomposition algorithm. Here, ns = 4. a) Dhand et al.
scheme generates a triangular array of six beam splitting operations (S2ni matrices)
and n2

s = 16 internal operations. Note that each blue box contains two additional
internal operations in the form of Pni and P †ni . b) Modifying the choice of m and n
generates a rectangular array of six beam splitting operations. The green box con-
tains two beam splitting operations (S4ni matrix) and four internal operations. The
total number of internal and spatial transformations remains the same.

nsni(nsni−1)/2 beam splitters required by schemes employing only spatial modes (see

Section 2.3). This means the number of beam splitters were reduced by a factor of

n2
i /2, when internal modes were employed along with spatial modes for decomposition.

However, the total number of internal transformation elements required for realizing

the matrix goes up by a factor of two by this approach [Dhand 15].

This algorithm generates a triangular array of beam splitters for the spatial trans-

formation part, similar to Reck’s scheme (see Fig. 2.8.a). However, it can be

adapted to Clements’ method simply by choosing m = floor(ns/2)ni = bns/2cni

23



CHAPTER 2. BACKGROUND

and n = ceil(ns/2)ni = dns/2eni when performing CSD. This results in

Unsni =

[
L(bns/2c)ni 0

0 L
′

(dns/2e)ni

]
(S2(bns2 c)ni

⊕1(dns2 e−b
ns
2
c)ni)

[
R†(bns/2c)ni 0

0 R
′†
(dns/2e)ni

]
.

(2.64)

In the next iteration, CSD is performed on the matrices L(bns/2c)ni , L
′

(dns/2e)ni , R
†
(bns/2c)ni

and R
′†
(dns/2e)ni . This is carried out recursively until all the L and R matrices are of

dimension ni.

This method generates a rectangular array of beam splitters (see Fig. 2.8.b), simi-

lar to that produced in Clements’ scheme. Although, this approach doesn’t change the

total number of components or the number of beam splitters required for realization,

it helps in improving the fidelity of the circuit (as discussed in Section 2.3).

2.6 Adapting Torma et al. QFT factorization to

include internal modes

Torma et al. proposed an algorithm that makes use of a general Cooley-Tukey algo-

rithm to separate the action of a N = N1N2-dimensional QFT into action of several

N1-dimensional and N2-dimensional QFT matrices [Törmä 96]. They considered the

specific case of using spatial modes to implement the desired QFT operation. When

N = 2n for positive integer values of n, their scheme required onlyO(Nlog2N) number

of beam splitters.

In this section, we adapt Torma’s decomposition scheme to include the internal

DOFs of light as well. We derive the general decomposition algorithm which uses

internal modes of light, and discuss about the permutation matrices involved in the

decomposition in point of view of the internal modes as well.

2.6.1 Deriving the general decomposition

Cooley-Tukey algorithm is a recursive algorithm used to compute discrete fourier

transform of a given function. For N -dimensional set of annihilation operators {âj},
where j = 0, 1, 2, . . . , N − 1, the QFT is given as

b̂k =
N−1∑
j=0

ωkj âj, (2.65)

where ω = exp(i2π/N), and b̂k (where k = 0, 1, 2, ...N − 1) is the output annihilation

operators upon performing QFT. When applied for a two-point case, Cooley-Tukey

algorithm exploits the symmetry of the complex exponential in the QFT to express
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N -dimensional transformations as a combination of two (N/2)-dimensional transfor-

mations acting on the even and odd indices respectively [Cooley 65], so that

b̂k =
1√
N

N
2
−1∑

j=0

ωk(2j)â2j +

N
2
−1∑

j=0

ωk(2j+1)â2j+1


=

1√
N

N
2
−1∑

j=0

ωk(2j)â2j +
ωk√
N

N
2
−1∑

j=0

ωk(2j)â2j+1

= Aeven + ωkAodd,

(2.66)

with Aeven and Aodd being the QFT of even and odd indices of {âj}N−1j=0 respectively.

Due to the recursive nature of the algorithm, this is continued until we are left with

the lowest dimensional transformations required to act as the desired N -dimensional

QFT. In matrix notation, Eq.(2.65) assumes the form

b = FNa, (2.67)

where b and a are N dimensional vectors corresponding to {b̂k}N−1k=0 and {âj}N−1j=0 , and

FN is a N ×N dimensional matrix given by

FN =
1√
N



1 1 1 · · · 1

1 ω ω2 · · · ωN−1

1 ω2 ω4 · · · ω2(N−1)

...
...

...
. . .

...

1 ω(N−1) ω2(N−1) · · · ω(N−1)(N−1)


. (2.68)

Here, FN is the matrix representation of the QFT transformation. The matrix FN is a

symmetric unitary matrix and has a degenerate set of eigenvalues (1, i,−1,−i). This

matrix can be decomposed into a set of smaller matrices which are easily realizable

using various schemes of decomposition. For simplicity, we omit the normalization

factor of 1/
√
N .

FN =

[
1N/2 DN/2

1N/2 ωN/2DN/2

][
FN/2 0

0 FN/2

]
PN , (2.69)

Note that ωN/2 = −1. Now, the first matrix on the RHS of Eq.2.69 can be expressed

as a combination of matrices generated through CSD,

FN =

[
1N/2 0

0 −1N/2

][
1N/2 1N/2

−1N/2 1N/2

]

×

[
1N/2 0

0 DN/2

][
FN/2 0

0 FN/2

]
PN .

(2.70)
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Figure 2.9: Action of Permutation matrix : Shown here is the operation of an eight-
dimensional permutation matrix for the case of a two-point discrete Fourier trans-
form based on Cooley-Tukey algorithm. For simplicity, we consider only the spatial
modes. Applying the permutation breaks the eight-dimensional QFT into equiva-
lent four-dimensional QFT operations.

Multiplying the first two matrices in the RHS of Eq. 2.70,

FN =

[
1N/2 1N/2

1N/2 −1N/2

][
1N/2 0

0 DN/2

][
FN/2 0

0 FN/2

]
PN . (2.71)

The leftmost matrix in the RHS of Eq.2.71 corresponds to a QFT operation on

a two-dimensional subspace, which stems from the fact that we have used a reg-

ular 2-point Cooley-Tukey algorithm to split the N -dimensional QFT into (N/2)-

dimensional QFTs.

Let us consider the case where internal modes are included. Now, N = nsni,

where ns represents number of spatial modes and ni represents number of internal

modes. Similar to the 2-point QFT case, we can represent the nsni-dimensional QFT

by splitting into ns components as
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Figure 2.10: Visualization of the general decomposition algorithm: QFT is imple-
mented in steps as shown in the figure. First, a permutation is done on the input
modes, followed by QFT operations on the internal subspace of the photon, in ev-
ery spatial mode. Then, a set of diagonal unitary operations takes place leaving
the first spatial mode unaffected. Finally, a QFT operation on the spatial degree
of freedom is performed. Note that this is the actual order in which experimental
setup is arranged.

b̂k =

ni−1∑
j=0

ωk(nsj)ânsj +

ni−1∑
j=0

ωk(nsj+1)ânsj+1

+ · · ·+
ni−1∑
j=0

ωk(nsj+ns−1)ânsj+ns−1

=

ni−1∑
j=0

ωk(nsj)ânsj + ωk
ni−1∑
j=0

ωk(nsj)ânsj+1

+ · · ·+ ωk(ns−1)
ni−1∑
j=0

ωk(nsj)ânsj+ns−1,

(2.72)

for k = 0, 1, . . . , nsni−1. We have permuted the modes in such a way that ns number

of ni-dimensional QFT operations are performed to get back the original QFT. The

corresponding matrix form is,

b =



1 1 · · · 1

1 ωns · · · ω(ns−1)+ns(ni−1)

1 ω2ns · · · ω2((ns−1)+ns(ni−1))

...
...

. . .
...

1 ω(nsni−1)ns · · · ω(nsni−1)((ns−1)+ns(ni−1))


a (2.73)

This matrix can be partitioned on the basis of the summation form in Eq.2.72, and

we see that it is essentially made up of n2
s number of ni-dimensional QFT operations.

Hence, the transformation in Eq.2.73 can be decomposed as
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F̃nsni = F̃


Fni

Fni
. . .

Fni

 , (2.74)

where F̃nsni denotes the original QFT matrix after permutation,

Fni =


1 1 · · · 1

1 ωns · · · ωns(ni−1)

...
...

. . .
...

1 ω(ni−1)ns · · · ωns(ni−1)
2

 , (2.75)

and

F̃ =


1ni Dni · · · Dns−1

ni

1ni ωniDni · · · ωni(ns−1)Dns−1
ni

...
...

. . .
...

1ni ωni(ns−1)Dni · · · ωni(ns−1)
2
Dns−1
ni

 . (2.76)

Here, Dni is a diagonal matrix with complex entries (1, ω, ω2, . . . , ωni−1). Now, CSD

can be applied to F̃ to get

F̃ =


1ni 1ni · · · 1ni

1ni ωni1ni · · · ωni(ns−1)1ni
...

...
. . .

...

1ni ωni(ns−1)1ni · · · ωni(ns−1)
2
1ni



1ni

Dni

. . .

Dns−1
ni

 . (2.77)

From this, we see that any nsni-dimensional QFT can be split into ns-dimensional and

ni-dimensional QFTs by exploiting the structure of the permutation matrix, which is

responsible for splitting the total summation form into smaller summation forms over

desired indices. Therefore, Fnsni can be decomposed as (Fig.2.10),

Fnsni = (Fns ⊗ 1ni)(1ni ⊕Dni ⊕ . . .⊕Dns−1
ni

)(1ns ⊗ Fni)Pnsni , (2.78)

with Fns being an operation on the spatial modes and Fni being an operation on

the internal modes, and Pnsni is a permutation matrix obtained by rearranging the

columns of 1nsni in the specific order given by (1 : ns : N, 2 : ns : N, . . . , ns : ns : N),

and then taking its transpose conjugate.

Fns can be realized using a combination of ns(ns−1)/2 beam splitters and ns(ns+1)/2

phase shifters [Reck 94, Clements 16]. Since this is a recursive algorithm, Fni can be
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further decomposed in the second iteration of the algorithm as

Fnpno = (Fnp ⊗ 1no)(1no ⊕Dno ⊕ . . .⊕Dnp−1
no )(1np ⊗ Fno)Pnpno . (2.79)

Here, Fnp is a QFT operation on polarization modes, which can be realized through

combinations of waveplates [Simon 89] and phase shifters. Fno is an operation on OAM

modes, which can be realized upto three dimensions using cylindrical lenses, Dove

prisms, lenses and SLMs [Arrizón 07] (as discussed in Section 3.3.1). The iterations

are continued until the lowest implementable dimensions are achieved, which may be

F2 or F3.

2.6.2 Permutation involving internal modes

The structure of the permutation matrix depends on the value of ns. Here, 1 : ns : N

corresponds to a syntax of the form initial : step−size : final, which is used to

specify the order in which the columns of the identity matrix is to be permuted as

per the algorithm. It denotes the set of numbers generated by adding the value ns

to the initial value specified at the left, upto the final value specified at the right.

So, 1 : 2 : 8 would generate the set (1, 3, 5, 7), and 2 : 2 : 8 would generate the set

(2, 4, 6, 8). After this, the operation denoted by (, ) concatenates these sets together

to specify that the columns of the identity matrix should be rearranged in the order

(1, 3, 5, 7, 2, 4, 6, 8).

A general scheme for realization of arbitrary dimensional permutation operations

involving spatial and internal modes is yet to be achieved. This is due to the fact that

higher dimensional permutation matrices have associated degeneracy, which implies

that a set of decomposition matrices can exist for representing a single permutation.

Finding the optimal implementable decomposition from this set is still a challenge.

However, we discuss implementations of specific cases of permutation matrices in

Chapter 3.

2.7 Schwinger’s representation

In 1965, Schwinger showed that two independent harmonic oscillators can be used

to construct the Lie algebra related to orbital angular momentum. Let (â1, â
†
1) and

(â2, â
†
2) denote the creation and annihilation operators of the two independent har-

monic oscillators respectively. These operators abide by the fundamental commuta-

tion relation [âi, â
†
i ] = 1 and the number operators related to these oscillators can be

written as Ni = â†i âi, for i = 1, 2. Now, we can define a set of angular momentum
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operators in terms of (â1, â
†
1; â2, â

†
2).

Ĵ1 =
}
2

(â†1â1 − â
†
2â2),

Ĵ2 =
}
2

(â†1â2 + â†2â1),

Ĵ3 =
}
2

(â†2â1 − â
†
1â2).

(2.80)

These three operators satisfy the Lie algebra for angular momentum given by,

[Ĵj, Ĵk] = i}εjklĴl. (2.81)

Now, we can define the operator

Ĵ0 =
}
2

(â†1â1 + â†2â2), (2.82)

which satisfies,

[Ĵ0, Ĵl] = 0, (for l = 1, 2, 3). (2.83)

This suggests that Ĵ0 can be paired with any of {Ĵi}3i=1 operators to generate a com-

plete set of commuting operators. The simultaneous eigenfunctions of such operators

form a complete basis in the Hilbert space. Here, the direct product space of the

uncoupled harmonic oscillators yield the orbital angular momentum space and can be

denoted as,

H = H1 ⊗H2, (2.84)

where H1 and H2 denotes the Hilbert space of the two independent harmonic oscilla-

tors and H denotes the Hilbert space of the angular momentum operators. The states

|n1, n2〉 forms the basis for the Hilbert space H. The simultaneous eigenfunctions of

the operators Ĵ0 and Ĵ3 are the Laguerre-Gaussian (LG) modes. The action of Ĵ0 and

Ĵ3 on the basis states yield,

Ĵ0 |n1, n2〉 =
}
2

(n1 + n2) |n1, n2〉 ,

Ĵ3 |n1, n2〉 =
}
2

(n1 − n2) |n1, n2〉 .
(2.85)

Let us introduce a change of variables j = (n1 + n2)/2 and m = (n1 − n2)/2, which

results in the following equations,

Ĵ0 |j,m〉 = j} |j,m〉 ,

Ĵ3 |j,m〉 = m} |j,m〉 .
(2.86)
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We see that n1 and n2 can only take non-negative integer values. This implies that

j can only take non-negative half-integer and integer values, and m can take values

from −j to j in integer steps [Simon 93].

2.8 Implementation of Schwinger’s matrices

The generators that were discussed in Section 2.7 can be used to form matrices with

the basis corresponding to the OAM states, in a similar parameterization as in Eq.

2.3. The ability to realize such matrices that are generated using {Ĵi}3i=1 is important

for the realization of three-dimensional QFT, as discussed in Section 3.3.1.

Consider a paraxial light beam propagating along z direction. This can be expressed

as

Ψ(x, y, z, t) = Ψ′(x, y, z)ei(kz−ωt) (2.87)

Any unitary operation U would transform a paraxial field as

Φ(x, y, z) = UΨ′(x, y, z) (2.88)

The unitary transformation is generated by the quadratic form of position and mo-

mentum operators given by x̂ = x, ŷ = y, p̂x = −i∂/∂x and p̂y = −i∂/∂y. Various

unitary operations can be performed on a light field, of which free propagation through

a distance d

Fd = e−
id
2k

(p̂2x+p̂
2
y), (2.89)

and action of a thin lens of focal length f

Lf = e−
ik
2f

(x̂2+ŷ2) (2.90)

are the most commonly used first order axially symmetric transformations. The matri-

ces corresponding to these transformations belong to the Symplectic group (Sp(4,R))

[Sudarshan 85]. Let S ∈ Sp(4,R) and η̂ denote the vector [x̂, p̂x, ŷ, p̂y]
T . Then,

U †(S)η̂U(S) = Sη̂, (2.91)

where SΣST = Σ, and Σ = Ω⊕ Ω. Here,

Ω =

[
0 1

−1 0

]
. (2.92)
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Note that det(S) = 1, which indicates that the input and output refractive indices

are preserved. Using Eq. 2.91, the corresponding matrix form of Fd and Lf are

F(d) =

[
F (d) 0

0 F (d)

]
, where F(d) =

[
1 d

0 1

]
, (2.93)

L(f) =

[
L(f) 0

0 L(f)

]
, where L(f) =

[
1 0

−1/f 1

]
. (2.94)

For the case of an axially asymmetric transformation, we have thin cylindrical lens of

focal length f , which transforms the beam only in a specific direction, and is given by

Lx(f) =

[
L(f) 0

0 12

]
, and Ly(f) =

[
12 0

0 L(f)

]
. (2.95)

Here, Lx(f) acts only on the vector [x̂, p̂x]
T , and Ly(f) acts only on the vector [ŷ, p̂y]

T .

Now, the generators in Eq. 2.80 and Eq. 2.82 can be re-expressed in the position

representation as

Ĵ0 =
1

4
(x̂2 + ŷ2 + p̂x

2 + p̂y
2)− 1

2
, (2.96)

Ĵ1 =
1

4
(x̂2 − ŷ2 + p̂x

2 − p̂y2), (2.97)

Ĵ2 =
1

2
(x̂ŷ + p̂xp̂y), (2.98)

Ĵ3 =
1

2
(x̂p̂y − ŷp̂x), (2.99)

Using Eq. 2.91 with U = ei2θĴl (for l = 0, 1, 2, 3), the corresponding matrix formalism

of these operators can be found to be

J0(θ) =

[
R(θ) 0

0 R(θ)

]
, (2.100)

J1(θ) =

[
R(θ) 0

0 R(−θ)

]
, (2.101)

J2(θ) =

[
cos θ12 − sin θ ε1

− sin θ ε1 cos θ12

]
, (2.102)

J3(θ) =

[
cos θ12 sin θ12

− sin θ12 cos θ12

]
, (2.103)

32



CHAPTER 2. BACKGROUND

where R(θ) is a rotation matrix of the form in Eq. 2.10 and

ε1 =

[
0 1

−1 0

]
. (2.104)

It is easy to see that ε1 can be decomposed as

ε1 = F (1)L(1)F (1)

=

[
1 1

0 1

][
1 0

−1 1

][
1 1

0 1

]

=

[
1 1

0 1

][
1 1

−1 0

]

=

[
0 1

−1 0

]
.

(2.105)

Hence, one convex lens is essential for implementing ε1. Similarly, ε−11 can be decom-

posed as

ε−11 = F (2)L(1)F (3)L(1)F (2), (2.106)

requiring two convex lenses for implementation.

Now, Jl(θ) ∈ Sp(4,R), for l = 0, 1, 2, 3. In particular, note that J0(θ) and J1(θ)
are in a block diagonal form. Any symplectic matrix of the form S = S1 ⊕ S2, where

S1, S2 ∈ Sp(2,R) (two-dimensional symplectic matrices), can be realized using a max-

imum of three convex lenses and seven cylindrical lenses with f > 1 [Ameen Yasir 17].

To see this result, note that S can be decomposed as

S =

[
S1 0

0 S2

]

=

[
−S1 0

0 −S1

][
−F (−d) 0

0 −12

][
F (d) 0

0 S−11 S2

]
= (12 ⊗−S1)(−F (−d)⊕−12)(F (d)⊕ S−11 S2).

(2.107)

In general, −S1 in (12 ⊗−S1) can be represented using a 2× 2 matrix of the form

−S1 =

[
−a −b
−c −d

]
, (2.108)

where a, b, c, d are positive real entries and ad − bc = 1. Such a matrix can be

decomposed as

−S1 = F

(
1 + a

c

)
ε−11 F (c)ε1F

(
1 + d

c

)
, (2.109)
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requiring three convex lenses (two from ε−11 and one from ε1) for implementation

[Yasir 14]. Now, (−F (−d) ⊕ −12) is a unitary operation causing inverse free propa-

gation of the light field in the x direction. This can be decomposed as

−(F (−d)⊕12) = Lx

(
d

2

)
F

(
d

4

)
Ly

(
d

4

)
F

(
d

2

)
Ly

(
d

4

)
F

(
d

4

)
Lx

(
d

2

)
, (2.110)

requiring four cylindrical lenses for implementing the transformation. Finally, (F (d)⊕
S−11 S2) can be expressed as

F (d)⊕ S−11 S2 =

[
F (d) 0

0 12

][
12 0

0 S−11 S2

]
(2.111)

Here S−11 S2 is a symplectic matrix realized by not more than three convex lenses, as

in Eq.2.109. The entire block (12⊕ S−11 S2) thus corresponds to action of three Ly(f)

cylindrical lenses. Also,

F (d)⊕ 12 = F

(
d

3

)
Ly

(
d

9

)
F

(
d

3

)
Ly

(
d

9

)
F

(
d

3

)
Ly

(
d

9

)
. (2.112)

Hence, it requires a total of three cylindrical lenses to implement F (d)⊕ S−11 S2, with

d corresponding to the total distance in the cylindrical lens setup. Summing up the

components required for implementing S = S1⊕S2, we see that it requires a maximum

of three convex lenses and seven cylindrical lenses to impart the transformation to

the paraxial light field.

2.9 Diagonal unitary operation on OAM modes

In 2010, Berkhout et al. noted that refractive optical elements can be engineered

to perform a log-polar co-ordinate transformation on the incident light field carrying

OAM [Berkhout 10]. Such refractive elements transforms the azimuthal component

of the input LG beam corresponding to OAM to a transverse position in the output

beam. Let this map be between the co-ordinates (x, y) to (u, v). In our case, let (x, y)

be mapped to

u = −ln

(√
x2 + y2

b

)
, (2.113)

v = a arctan
(y
x

)
. (2.114)

For this co-ordinate mapping, the amplitude of the incoming light field is multiplied
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R1 R2

Log-Polar Transformation

Fan-out SLM Phase corrector SLM

Figure 2.11: Experimental setup for performing diagonal unitary operation on OAM
modes : R1 and R2 are refractive elements that perform the log-polar co-ordinate
mapping. A fan-out SLM performs refractive beam copying to generate well re-
solved spots of varying OAM values. The following SLM performs the desired phase
operation corresponding to the diagonal unitary matrix.

with the phase element

Φ1(x, y) =
2πa

λf

[
y arctan

(y
x

)
− x ln

(√
x2 + y2

b

)
+ x

]
, (2.115)

where f is the focal length of the Fourier transforming lens and λ is the wavelength of

the incoming beam. a scales the image according to a = d/2π, where d is the length of

the output beam, and b performs a translation in the direction of u. A second phase

element, Φ2(u, v), is added at the Fourier plane (u, v) for performing phase correction,

such that

Φ2(u, v) = −2πa

λf
exp

(
−u
a

)
cos
(v
a

)
. (2.116)

Berkhout et al. used SLMs to fabricate the required phase elements. Later,

Mirhosseini et al. improved this scheme by using specifically manufactured refractive

elements with desired phase structure of Φ1(x, y) and Φ2(u, v), along with a fan-

out copy SLM which performs beam copying. The beam copying step added to the

resolution of the output OAM modes, increasing the mode separation efficiency of the

entire setup [Mirhosseini 13]. The phase structure of the fan-out copy SLM is given

by

Φ2N+1(x) = tan−1

(∑N
k=−N αksin[(2πs/λ)kx+ βk]∑N
k=−N αkcos[(2πs/λ)kx+ βk]

)
, (2.117)

where 2N+1 is the total number of copies of the beam and s is the angular separation

between the number of copies. x denotes the direction in which copying is carried

out. αk and βk are parameters which can be numerically optimized to generate a
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uniformly distributed intensity profile.

We modify this scheme to add one more SLM, which imparts different phase

operations on the transverse mapped output beam. This can be used to perform

any arbitrary diagonal unitary operation on the OAM modes. After performing the

diagonal unitary operation, refractive elements Φ1(x, y) and Φ2(u, v) are acted in

reverse to get back the azimuthal OAM phase. Hence, it requires 6 components to

achieve an arbitrary diagonal unitary operation on N OAM modes.
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Optical implementation of QFT

using spatial and internal DOFs

We have seen in the previous chapter that various DOFs of light can be used to realize

the operation of an arbitrary unitary matrix experimentally. As we have noted earlier,

reducing the number of beam splitters required for the unitary matrix realization

would be helpful to improve the fidelity of the output state. In this chapter, we use

the adapted version of Torma’s algorithm for QFT factorization presented in Section

2.6 to understand its effect on the number of beam splitters. The hardest part of this

implementation is the realization of permutation matrices involving internal DOFs.

We present specific cases of permutation matrices and see how it can be decomposed

into smaller permutations in the internal subspace of the photon.

3.1 Four-dimensional QFT

We demonstrate the application of our scheme by starting with the realization of

the four-dimensional QFT. The choice of basis is subjective, and for demonstration,

we choose two polarizaion modes and two OAM modes. Applying our adaptation of

Torma’s scheme yields,

F4 = (F2 ⊗ 12)(12 ⊕D2)(12 ⊗ F2)P4. (3.1)

Here, (F2⊗12) is a Hadamard operation on the polarization DOF. From Section 2.2.2,

we see that
Hπ/8 = R(π/8)H0R(−π/8)

= H0R(−π/4)

=
i√
2

[
1 1

1 −1

] (3.2)
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67.5o

Hadamard operation on OAM HWPSLMSPP

Figure 3.1: Four-dimensional QFT on Polarization-OAM space: The permuted
wave is sent in as input, and first passes through a Hadamard for OAM modes,
followed by a phase operation on OAM using a SPP and SLM, and Hadamard on
polarization using a HWP.

Global phase can be neglected, and hence orienting a HWP at an angle 22.5◦ is suffi-

cient to perform a Hadamard operation on polarization DOF. The next matrix,(12⊕
D2), is a polarization dependent phase operation on OAM modes, which can be re-

alized by a combination of Spiral Phase Plate (SPP) which adds a specified value of

l (l = +1 in this case) to all modes and a SLM, as SLMs are polarization sensitive.

Now, (12⊗F2) is a Hadamard operation on OAM modes, which can be realized using

π/2-mode converters and Dove prism (see Fig. 3.1). This setup was already demon-

strated by Song et al. [Song 15]. Note that this implementation uses one spatial

mode and makes use of the internal DOFs of photon to perform a four-dimensional

QFT. If the choice of basis is interchanged, the order in which the QFT operations

are performed to the beam also reverses, along with a different permutation matrix.

3.1.1 Permutation on 4-dimensions

In Eq. 3.1, P4 is the permutation matrix and is given by,

P4 =


1

1

1

1

 . (3.3)
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R1 R2 R2 R1HWP
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ℓ=-1

R1 R2 R2 R1HWP

ℓ=+1

ℓ=-1

Figure 3.2: Four-dimensional permutation on Polarization-OAM space

This is a Polarization-OAM swap operation, due to the choice of our basis, and can

be decomposed as

P4 =


1

1

1

1




1

1

1

1




1

1

1

1



= (12 ⊕ σ1)


1

1

1

1

 (12 ⊕ σ1).

(3.4)

Here, σ1 is the Pauli matrix which acts on the OAM subspace of photon to flip the

OAM mode l = 1 to l = −1 and vice-versa. To realize this experimentally, a Polarizing

Beam Splitter (PBS) is used to split the H and V components of polarization, and

then a mirror is placed on the spatial mode corresponding to V to perform a reflection

of OAM modes. The next matrix is a similar flipping operation, but acting on the

polarization subspace of the photon. To realize this, Mirhosseini et al. scheme (see

Section 2.9) can be used to sort OAM values, and then a HWP can be placed in the

mode corresponding to l = −1. Hence, it requires 2 each of PBS, mirror, HWP, Fan-

out SLM, and 7 custom made refractive elements required for log-polar mapping to

completely realize the four-dimensional Polarization-OAM swap operation (see Fig.

3.2).

3.2 Eight-dimensional QFT

In order to implement the eight-dimensional QFT operation, we look at two different

choices of ns and ni. Increasing the number of spatial modes to ns = 2 from the
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previous case of implementing F4 is the first choice that we make. This sets ni = 4,

with two polarization DOFs and two OAM DOFs respecively. Applying adapted

Torma’s scheme yields,

F8 = (F2 ⊗ 14)(14 ⊕D4)(12 ⊗ F4)P8. (3.5)

where D4 is a diagonal matrix with complex entries (1, ω, ω2, ω3). Here, (F2 ⊗ 14) is

a Hadamard operation on the spatial modes, which can be easily implemented using

a 50:50 beam splitter and two phase shifters so that

F2 =
1√
2

[
1 0

0 −i

][
1 i

i 1

][
1 0

0 −i

]
. (3.6)

Now, (14 ⊕D4) is a diagonal unitary operation on polarization and OAM modes on

the second spatial mode. D4 can be expressed as

D4 =

[
1 0

0 ω2

]
⊗

[
1 0

0 ω

]
, (3.7)

where the first block is the operation of a waveplate on polarization and the second

block is the operation of a SLM on the OAM modes (similar to the diagonal matrix

realization in the four-dimensional QFT case). In the specific case of diagonal ma-

trices powers of ω, an SLM can also be substituted with two Dove prisms and an

appropriate phase shifter. Finally, (12 ⊗ F4) is the four-dimensional QFT operation

on Polarization-OAM subspace that was realized in Section 3.1.

We will now choose ns = 4 and ni = 2 for realization of F8. Specifically, we choose

polarization as the internal DOF. In that case,

F8 = (F4 ⊗ 12)(12 ⊕D2 ⊕D2
2 ⊕D3

2)(14 ⊗ F2)P8. (3.8)

where D2 is a diagonal matrix with complex entries (1, ω). Here, (F4 ⊗ 12) is a QFT

operation on four spatial modes, which can be realized using four beam splitters,

phase shifters and appropriate spatial permutations [Törmä 96]. (12⊕D2⊕D2
2⊕D3

2)

corresponds to diagonal unitary operations on polarization DOF in second, third and

fourth spatial modes respectively, which can be realized using appropriate waveplates

2.2.2. Finally, (14 ⊗ F2) can be realized using a HWP oriented at an angle 22.5◦, at

each of the spatial modes.
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3.2.1 Permutation on 8-dimensions

In Eq. 3.5, P8 is a permutation matrix that rearranges the columns of the decompo-

sition obtained so as to get back F8, and is given by,

P8 =



1

1

1

1

1

1

1

1


. (3.9)

For a purely spatial based scheme, this matrix can be achieved by physically permuting

the spatial modes as per the transformation, if implemented using fiber couplers, or

by exploiting 3-D laser writing techniques to fabricate directional couplers of suitable

spatial configuration on a borosilicon glass substrate [Crespi 16]. Here, we choose

the basis for the matrices involved by including the internal degrees of freedom of

the photon as well. Hence, permutation is achieved by a combination of physical

permutation, waveplates and SLMs. The matrix P8 can be expressed as,

P8 =




1

1

1

1

⊗ 12

×



1

1

1

1

1

1

1

1


= (P4 ⊗ 12)(12 ⊗ P4).

(3.10)

First, let us consider the case where ns = 2 and ni = 4. Here, (P4 ⊗ 12) acts on the

spatial-polarization subspace and leaves the OAM modes unchanged. This matrix

can be expressed as in Eq. 3.4, with the basis changed from polarization-OAM to

spatial-polarization. Hence, it can be achieved experimentally using a PBS with a σ1

operation on the polarization states only in the second spatial mode during input as

well as output. σ1 operation on polarization modes can be achieved by using a HWP.

The next matrix (12⊗P4) corresponds to a P4 operation on the polarization-OAM

subspace as discussed previously in Section 3.1. Such a P4 operation is performed in

both the spatial modes.
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Now, we consider the case where ns = 4 and ni = 2. In this case, (P4 ⊗ 12) acts

only on the spatial subspace and leaves the polarization DOF unchanged. A spatial

permutation can be achieved by physically permuting the modes, as discussed earlier.

It is evident that only second and third spatial modes are switched by the action of P4.

The next matrix in the sequence, (12 ⊗ P4), also includes the polarization DOF. The

first block represents the subspace spanned by spatial modes 1 and 2, while the second

block represents the subspace spanned by spatial modes 3 and 4. Hence, realizing this

matrix reduces to placing two PBS with σ1 operations (as discussed in ns = 2, ni = 4

case) between spatial modes (1, 2) and (3, 4) respectively.

3.3 Twelve-dimensional QFT

Physical realization of the 12 × 12 QFT matrix can be achieved using the proposed

scheme for various combinations of ns, np and no. Here, we choose ns = 2, np = 2

and no = 3. Applying adapted Torma’s scheme yields,

F12 = (F2 ⊗ 16)(16 ⊕D6)(12 ⊗ F6)P12. (3.11)

where D6 is a diagonal matrix with complex entries (1, ω, ω2, ω3, ω4, ω5). Here, (F2 ⊗
16) is an operation on the spatial subspace and is realized using a 50:50 beam splitter

and two π/2 phase shifters. The next matrix, (16⊕D6), is a phase shift in the second

spatial mode, performed on the polarization-OAM subspace. D6 can be re-expressed

as

D6 =

[
1 0

0 ω3

]
⊗

 1 0 0

0 ω 0

0 0 ω2

 . (3.12)

The first block is a phase operation on the polarization DOF, which is realized using

a suitable waveplate. The next block is a diagonal unitary operation on three OAM

modes, which is realized using two Dove prisms rotated at appropriate angles. In

(12 ⊗ F6), F6 is a QFT operation on polarization-OAM subspace and can be further

decomposed as follows,

F6 = (F2 ⊗ 13)(13 ⊕D3)(12 ⊗ F3)P6. (3.13)

Here, (F2 ⊗ 13) is again a Hadamard operation on polarization modes, which can

be achieved using a HWP rotated at an angle of 22.5◦ (see Section 3.1). (13 ⊕ D3)

is a diagonal unitary operation on OAM, realized using two rotated Dove prisms and

phase shifter. Finally, (12⊗F3) is a three-dimensional QFT operation on OAM modes.

Now, we discuss the realization of three-dimensional QFT using OAM modes.
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3.3.1 QFT of three OAM modes

Realization of arbitrary unitary operation on OAM modes is usually done by splitting

the different modes spatially using beam splitters and then performing relevant phase

operations on the corresponding OAM modes, using a setup referred to as OAM

sorter (see Section 2.4). However, this splitting further reduces the fidelity of the

output state. Hence, it is always desirable that such operations can be performed

in a single beam carrying a superposition of OAM modes. A two-dimensional QFT

can be performed on the specific OAM modes with azimuthal indices -1 and 1 using

astigmatic mode converter setups consisting of cylindrical lenses and Dove prisms

[Song 15]. In the case of unitary operations for OAM modes greater than two, there

are some inherent constraints. The main constraint for performing such operations

for multiple OAM modes is related to the Position-OAM mapping of the beam under

consideration [Pinnell 19]. For Laguerre-Gaussian modes with p=0, azimuthal indices

corresponding to −l and +l are mapped to the same spatial position, and differ only

in the handedness of rotation. This feature makes it hard to perform phase operations

on individual −l or +l modes.

To realize QFT of three OAM modes, we derive a mathematical relation between

a general SU(3) matrix (of which Quantum Fourier Transform is a special case),

and SO(3) matrices. It requires eight parameters to characterize a general SU(3)

matrix, and three parameters to characterize a general SO(3) matrix (Euler angle

decomposition). More formally,

Theorem: Let O1 and O2 ∈ SO(3), and M ∈ SU(3). Then,

M = O1DO2, (3.14)

where D is a diagonal unitary matrix.

Proof:

Any arbitrary square unitary matrix U can be expressed as a combination of two

real square matrices A and B as U = A + iB. Note that A and AT have the same

characteristic polynomial, resulting in same eigenvalues. This means that [A,AT ] = 0.

This holds for B as well. Now, unitarity of U implies

UU † = 1 = (A+ iB)(AT − iBT ),

U †U = 1 = (AT − iBT )(A+ iB),
(3.15)

which yields the following two equations,

AAT +BBT − i(ABT −BAT ) = 1, (3.16)
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ATA+BTB + i(ATB −BTA) = 1. (3.17)

From Eq.(3.16) and Eq.(3.17), we see that the LHS of both the equations are a

composition of symmetric and anti-symmetric parts. Since we have 1 in the RHS, the

anti-symmetric part should be zero. So, we have

AAT +BBT = 1,

ATA+BTB = 1,
(3.18)

which implies that [AAT , BBT ] = 0 (or AAT commutes with BBT ) and [ATA,BTB] =

0 (or ATA commutes with BTB). Hence, we see that both A and B are diagonalized

by the same left singular and right singular vectors,

A = O1Λ
AO2,

B = O1Λ
BO2.

(3.19)

Writing U in terms of A and B now,

U = O1(Λ
A + iΛB)O2. (3.20)

Here, O1 and O2 here are real orthogonal matrices which can be characterized by

3 independent parameters, and the sum in between is a diagonal unitary matrix

characterized by 2 independent parameters.

The optical elements that perform rotation of OAM modes are usually expressed

in the Schwinger’s basis which has the following generators,

J1 =

 0 1 0

1 0 1

0 1 0

 , J2 =

 0 −i 0

i 0 −i
0 i 0

 , and J3 =

 2 0 0

0 0 0

0 0 −2

 , (3.21)

corresponding to OAM values {2, 0,−2} [Sakurai 11]. LG modes are characterized

using this OAM value (l) and a radial index p, which is defined as the minimum value

of n1 and n2 oscillator states that make up the value of l (Eq.2.86). Here, the p indices

are 0, 1, and 0 respectively. Any matrix in the Schwinger’s basis can be parameterized

using any two of these generators so that,

L(α, β, γ) = e−iαĴ3e−iβĴ1e−iγĴ3 . (3.22)

Introducing an additional phase of eiαJ3 , we get

L(α, β, γ) = e−iαĴ3e−iβĴ1eiαĴ3 × e−i(γ+α)Ĵ3 . (3.23)
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The first three operators in the RHS of Eq.3.23 represents the matrix J1(θ) in Eq.

2.101, and can be implemented using not more than 7 cylindrical lenses and 3 convex

lenses [Ameen Yasir 17]. The last operator here can be implemented using 2 Dove

prisms. Now, the generators of SO(3) in the computational basis are the following,

S1 =

 0 0 0

0 0 i

0 −i 0

 , S2 =

 0 0 −i
0 0 0

i 0 0

 , and S3 =

 0 i 0

−i 0 0

0 0 0

 . (3.24)

So, any arbitrary SO(3) operation can be performed on the OAM modes by establish-

ing a unitary transformation between these two generator sets. The unitary operation

that connects these matrices is the following,

U =

 1 0 i

0 1 0

−1 0 i

 , (3.25)

and satisfies the following relation,

USiU
† = Ji (i = 1, 2, 3) (3.26)

Realizing the matrix U thus enables us to use already available optical transformations

for the Schwinger basis. This matrix can be realized using an SLM, thus enabling inter-

conversion of basis. Thus, three-dimensional QFT can be realized using cylindrical

lenses, Dove prisms, convex lenses and SLMs.
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3.3.2 Permutation on 12-dimensions

The last part remaining is the realization of the permutation matrices involved in the

decomposition. In this particular case, we have Pfin = (12 ⊗ P6)P12. Here,

P12 =



1

1

1

1

1

1

1

1

1

1

1

1



, (3.27)

and

P6 =



1

1

1

1

1

1


. (3.28)

We find that P12 = Prow(12 ⊗ P6), with

Prow =




1

1

1

1




1

1

1

1




1

1

1

1


⊗ 13. (3.29)

Prow can be implemented as discussed previously in the section for realization of eight-

dimensional QFT. Now, P6 can be decomposed to (12 ⊕ σ1⊕12)(P3(132)⊕ P3(213)),

where

P3(132) =

 1

1

1

 and P (213) =

 1

1

1

 , (3.30)

which can be realized using a combination of waveplates and SLMs.
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Figure 3.3: Modularity presented by the scheme: Implementing F18 and F24 becomes
easier as combining required number of F6 operations with appropriate permuta-
tions and spatial QFT is equivalent to these higher dimensional QFT operations.

3.4 Cost analysis

For implementation of the four-dimensional QFT, we require 25 components which

consists of 4 cylindrical lenses, 2 Dove prisms, 1 SPP, 3 SLMs, 3 HWPs, 2 PBS,

8 refractive elements and 2 mirrors. By increasing the number of spatial modes to

two, the four-dimensional QFT can be combined in a modular array to perform the

eight-dimensional QFT, thus requiring 50 elements for transformation of the internal

DOFs. This estimate is after including the permutation on polarization-OAM sub-

space. Apart from the internal transformations, we require one SPP and two Dove

prisms for diagonal unitary operation and 6 beam splitters (5 PBS, for permutation,

and a 50:50 beam splitter for Hadamard transformation) for spatial transformations.

In contrast, the method presented in [Crespi 16] (using Torma’s scheme) requires a

total of 12 beam splitters to do the same transformation, with use of no internal

elements.

Now, choosing ns = 4 and ni = 2 (polarization DOF) for realizing eight-dimensional

QFT requires 2 PBS and 4 HWPs for permutation, 4 HWPs for QFT on polarization

at each spatial modes, 3 suitable waveplates for diagonal unitary transformation and

4 beam splitter devices for four-dimensional QFT of spatial modes. This implemen-

tation also requires six beam splitters, which means lesser number of beam splitters

as compared to Torma’s scheme.
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To implement a three-dimensional QFT, we require 14 cylindrical lenses, 6 Dove

prisms, a phase shifter, 4 SLMs and 6 lenses. This means that in order to implement

the twelve-dimensional QFT, we require 28 cylindrical lenses, 20 SLMs, 18 Dove

prisms, 12 lenses, 9 waveplates, 8 SPPs, and 4 phase shifters to implement the internal

transformations (which is a total of 99 internal elements), along with 2 beam splitters

and 2 phase shifters for spatial transformation. This is in contrast to the 132 beam

splitters required to implement a twelve-dimensional transformation using available

schemes [Reck 94, Clements 16]. Our adaptation of Torma’s scheme is advantageous

for the fact that it requires lesser number of beam splitting operations and hence

provides an easier way to implement transformations without having to align O(N2)

beam splitters.
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Conclusion

Quantum Fourier Transform is an important unitary operation for various Quantum

information processing schemes and machine learning methods. The ability to realize

such an operation for higher dimensional Hilbert spaces could help in demonstrating

quantum supremacy over its classical counterparts, whether it is computing or cryp-

tography. We hope that this work could be extended to improve the scalability of the

scheme for realizing higher dimensional QFT operations.

The design that we present for implementing QFT is particularly advantageous

due to its modular structure, which means that lower dimensional QFT operations

can be combined to realize a higher dimensional QFT operation. In order to realize

12 dimensional QFT of input states, two 6 dimensional QFT operations acting solely

on internal modes can be combined in two independent spatial modes to generate the

transformation. In fact, any multiple of ni can be implemented, given that operation

on ni internal modes are possible in a single beam. Realizing N dimensional QFT

operations on the OAM carried by a single beam still remains a challenge, and could

be addressed by constructions involving SLMs.

Machine learning methods like Generative Adversarial Learning, which is a neural

architecture consisting of three independent neural networks correcting and evolving

from each others errors, can be combined with the concept of inverse optical design

to generate novel metamaterials that could transform an arbitrary dimensional OAM

space to any desirable OAM spectrum [Liu 18, Zhang 19]. This could mean that

more dimensions can be controlled inside a single beam itself with lesser number of

optical elements, providing more fidelity to the output states and less complexity for

experimental realization. Optimizing the choice of basis according to lesser complexity

of experimental implementation setup and lesser number of components is a challenge,

and could possibly be solved using machine learning methods.

We have adapted an algorithm for realizing experimental setups for arbitrary di-

mensional Quantum Fourier Transform (QFT) by incorporating internal modes of

light. This means that the operations on internal degrees of freedom like polarization,
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OAM, and time bins can in effect reduce the number of spatial modes involved for

higher dimensional realizations of QFT, thus helping in reducing the number of beam

splitters to be included in the experimental setup. The algorithm was demonstrated

for a 12 dimensional QFT transformation which required only 2 beam splitters in

place of 132, which reduces the overhead loss of splitting the beam multiple times,

and that of the beam encountering different number of optical elements in different

arms of the experimental setup. However, the total number of components are higher

than other available schemes due to addition of internal transformations. Finally, re-

alization of permutation matrices involving internal modes is difficult, and a general

decomposition algorithm for separating the action of permutation onto spatial per-

mutation and internal permutation is yet to be achieved. This would help in assessing

the exact cost of realizing any higher dimensional QFT operation with respect to the

number of components required.
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