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Abstract

According to Big-Bang theory, at the earliest of its expansion, universe existed as QGP.

As it cooled down, the deconfinement-confinement phase transition occurred and hadrons

were formed. Study about this kind of a stage can lead us to understand the early stages of

universe formation. It can also give us some constraints on the Standard Model which can

give us insights to the formation of theories beyond the Standard Model. The transforma-

tion of matter at high enough energies, from nucleons to constituent quarks and gluons has

been very interesting and equally very challenging.

Even though the energy scale is quite challenging, in heavy ion collisions we are trying to

create a similar system and studying various properties. Since the multiplicity of produced

particles is an important quantity to characterise the evolving system and its event to event

fluctuation may provide a distinct signal of the phase transition from hadron gas to QGP.

This signal is to be found using ν Dynamics. Higher moments of a distribution can give

important information about the asymmetry of the system. Considering the distributions

of conserved quantities in this system, higher moment analysis provide a scope to under-

stand some existing problems. In this thesis we are looking at the higher moments of such

multiplicity distributions and ν Dynamics analysis to reveal some dynamical fluctuations.

Study of higher moments like kurtosis and skewness of these multiplicity distributions on an

event-by-event basis will provide valuable information on the dynamic state of the system

just after the collision. From these higher moments we can also calculate the susceptibilities

of the system which is very useful in determining whether there are any fluctuations due to

QGP formation or it’s the Hadron Phase fluctuations. These studies are geometrical studies

i.e they are characterised using centrality or number of participating nucleons (〈Npart〉).

Charged particle multiplicity distributions are studied for Pb-Pb collisions at
√
SNN = 2.76

TeV.
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Chapter 1

Introduction

1.1 Standard Model

Presently the answer we have to the widely asked question, what the world is made up of

is the Standard Model, the reason behind the 2013 Nobel Prize. At the same time the 2015

Nobel Prize renders this theory incomplete and hence this new search for Beyond the Stan-

dard Model.

The Standard Model classifies the whole universe into elementary particles called the Lep-

tons and Hadrons as shown in Figure 1.1. The theoretical basis that we were taught in our

schools where the atoms is the smallest unit which comprises of protons, neutrons and elec-

trons were rendered incomplete when inelastic electron-proton scattering experiments were

performed which showed that protons have a substructure comprising of particles called

quarks. Further experiments showed that neutrons too have a substructure comprising of

quarks.

1



Figure 1.1: Three generation of matter particles in the standard model. The mediator parti-

cles (Gauge bosons) are also shown. [Cha14]

Proton contains two up and one down quark whereas a neutron contains two down and one

up quark. The quarks interact with each other via the exchange of gluons. The force existing

between the quarks is called the color force. Quarks and gluons are collectively known as

partons (the parton name was given by Feynman, while Murray Gellman picked the word

quark from the sentence Three quarks for Muster Mark in James Joyce book, Finnegans

Wake). This color force which is the backbone of the Quantum Chromo Dynamics (QCD)

is what describes one of the fundamental forces called the strong interaction force shown

in Table 1.2.
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Quarks come in six flavors: u (up), d (down), s (strange), c (charm), t (top), b (bottom)

and each quark may exist in three equivalent states differing in values of the new quantum

number, termed as color.

1.2 Color the Quantum Number

Pauli exclusion principle forbids two identical fermions to occupy same quantum state.

However, making up hadrons from quarks, possessing spin 1/2, will lead to a contradiction

to the exclusion principle, for example, proton contains two up quarks and Ω− particle is

made of three strange quarks. The existence of such particles indicate that there must exist

some another quantum number (in addition to spin) and since a maximum of three quark

bound states exist in nature (baryons), this new quantum number must have three values. In

1965 three physicists Bogolubov, Struminsky, Tavkhelidze introduced the concept of color

quantum number with colored quarks existing in three states, red (R), green (G) and blue

(B).

Since quarks are charged, they will also interact by photon exchange i.e. via electromag-

netic interactions. Considering the existence of ∆++ particle, containing three u quarks,

there must exist a strong force that will overrule the electromagnetic repulsion between u

quarks and bind these quarks together to form ∆++ particle. In fact, a color charge endows

the quarks with a new color field making this strong binding possible. As indicated earlier,

gluons are the quanta of this color field.

Gluon itself is a colored object, in fact its a bicolored object (color + anticolor). Since there

are three color states; R, G, B and correspondingly three anticolor states; antired(R), anti-

green (G), antiblue (B) which on permuting we can have nine bicolored states: RR, RG,

RB, GR, GG, GB, BR, BG, BB. One of the nine combinations RR + GG + BB is a

color singlet state which lacks any net color charge and thus cannot play the role of a gluon

carrying color from one quark to another.
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Quantum Chromodynamics (QCD) is the theory of strong interactions between quarks and

gluons. It is a theory like electromagnetism but with eight gluons instead of a single photon.

There is other important distinctions between the two theories:

• Photons are neutral particles, they do not carry any electric charge but gluons are

colored objects.

• The coulomb interactions between electric charges vary inversely as the distance be-

tween the charges whereas, as pointed out earlier, the color force strength increases

with the distance between quarks.

1.3 Asymptotic Freedom

The color force between the quarks tend to be weak when quarks are close together. Within

a proton (or other hadron), at distances of less than 1 fermi, quarks behave as if they were

nearly free. However, when one begins to draw the quarks apart, the force grows stronger.

This is because gluons have the ability to create other gluons. Thus, if a quark starts to

speed away from another quark after being struck by an accelerated particle, the gluons

utilize this energy to produce more gluons. More the number of gluons exchanged among

quarks, stronger will be the color force. At some point the force will grow so strong that an

additional quark-antiquark pair production energy will be reached before the quarks can be

separated. This is why quarks cannot be isolated and this is known as color confinement.

This behaviour of color force is taken into account in the QCD theory by defining a running

coupling constant.

1.4 Why the QGP ?

For a few millionths of a second after the Big-Bang, the universe was filled with an ex-

tremely hot and dense soup of quarks and gluons known as the quark-gluon-plasma (QGP)

[Alf03]. Also known as the primordial fluid (detailed study of the QGP shows it has lowest

shear viscosity to entropy ratio making it the most perfect fluid in the universe Table 1.3).

The existence of this novel phase of matter was proposed in the mid-seventies, just ten years

after the birth of the Quark Model of hadrons, and two years after it was realised that the

4



candidate non-Abelian field theory of inter-quark forces, which is quantum chromodynam-

ics (QCD) predicts their weakening at short distances, the so-called asymptotic freedom.

As the universe cooled down, the quarks and gluons hadronize resulting in the formation of

baryonic matter that we see today.

Figure 1.2: The viscosity η,the viscosity over density η/n ratio, and the viscosity over

entropy density η/s ratio for several fluids at particular values of pressure p and temperature

T (from Ref. [ST09])

1.5 Formation of the QGP

At high densities once we have a system of interpenetrating hadrons, each quark will find

in its vicinity, at a distance less than the hadron radius, a number of quarks. In this state

each quark’s identity is lost now and neighbouring quarks have no meaning. We say now

the quarks are in a deconfined state.

This state can also be achieved by increasing the temperature and at high enough tempera-

tures more and more low mass pions will be formed and thereby increasing the density.

This kind of transition from a confined state to a deconfined state is very similar to phase

transitions we see in thermodynamic systems but here the derivatives of free energy do not

posses any singularity at the transition point hence not so trivial. But still can be probed

using order parameters and other state variables.

Now the deconfined state of quarks are bag of particles, a macroscopic system which can

be characterized with state variables.

5



Figure 1.3: The figure on the left shows a nucleus at low energy density / temperature and

the figure on the right shows the same system at extreme conditions of energy density /

temperature

1.5.1 Mechanism of the Mott Transition

The mechanism of deconfinement is provided by the screening of the color charge. It is

analogous to the Mott transition in atomic physics. In dense matter, the long range coulomb

potential, which binds ions and electrons into electrically neutral atom, is partially screened

due to presence of other charges, the potential become much more short range,

V (r) = e20/r → e20/r × exp(−r/rD) (1.1)

here r is the distance of the probe from the test charge e0. rD is the Debye screening radius

and is inversely proportional to density,

rD ∼ n−1/3 (1.2)

At sufficiently high density, rD can be smaller than the atomic radius. A given electron can

no longer feel the binding force of its ion, alternatively, at such density, coulomb potential

can no longer bind electron and ion into a neutral atom. The insulating matter becomes a

conducting matter. This is the Mott transition. We expect deconfinement to be the quantum

chromodynamic analog of Mott transition.

Due to the screening of color potential, quarks can not be bound into a hadron. Now one

may wonder about the very different nature of QCD and QED forces. Interaction potential

in QED and QCD can be expressed as,

6



QED : V (r) ∼ e2/r (1.3)

QCD : V (r) ∼ -α/r + σr (1.4)

While in QED, potential decreases continuously with increasing distance, in QCD, at large

distance, it increases with distance. However, screening is a phenomenon at high density,

or at short distance. The difference in QED and QCD at large distance is of no consequence

then. More over, due to asymptotic freedom, in QCD interaction strength decreases at short

distances, thereby enhancing the deconfinement.

1.6 Stages of Heavy-Ion collisions

The Large Hadron Collider (LHC) at CERN and Relativistic Heavy-Ion Collider (RHIC) at

BrookHaven National Laboratory (BNL) make head-on collisions between massive ions at

very high energies to recreate conditions similar to those of the very early universe.

Such a relativistic nucleus-nucleus collision passes through different stages which are de-

scribed below:

• Pre-equilibrium Stage: Initial partonic collisions produce a fireball in a highly ex-

cited state. In all possibility, the fireball is not in equilibrium. Constituents of the

system collide frequently to establish a local equilibrium state. The time takes to

establish local equilibrium is called thermalisation time T. The state of matter for 0

< t < T is said to be in the pre-equilibrium stage.

• Expansion stage and Hadronization: In the equilibrium or the thermalised state, the

system has thermal pressure which acts against the surrounding vacuum. The system

then undergoes collective (hydrodynamic) expansion. As the system expands, its

density (energy density) decreases and the system cools. The expansion and cooling

is governed by the energy-momentum conservation equations. In the hadronisation

stage, over a small temperature interval, entropy density will decrease very fast. Since

total entropy can not decrease, it implies that the fire ball will expand rapidly, while

temperature remains approximately constant.

• Freeze-out: Hadronic matter will also be in thermal equilibrium. Constituent hadrons

will collide to maintain local equilibrium. The system will expand and cool. A stage

7



will come when inelastic collisions, in which hadron changes identity, become too

small to keep up with expansion. This stage is called chemical freeze-out. Hadron

abundances will remain fixed after the chemical freeze-out. However, due to elastic

collisions, local equilibrium can still be maintained and system will cool and expand

with fixed hadron abundances. Eventually a stage will comes when average distance

between the constituents will be larger than strong interaction range. Collisions be-

tween the constituents will be so infrequent that local thermal equilibrium can not be

maintained. The hydrodynamic description will break down. The hadrons decouple

or freeze-out. It is called kinetic freeze-out. Hadrons from the freeze-out surface

will be detected in the detector.

Figure 1.4: Different stages of nuclear collisions. [Luo11]

Note on Hydrodynamics: Hydrodynamics provides a simple, intuitive description of rel-

ativistic heavy-ion collisions. Hydrodynamic models requires the assumption of local ther-

mal equilibrium, i.e. at each space time point x of the fluid, a small region can be considered

where equilibrium is achieved, a temperature T(x) can be defined. As discussed above, from

the equilibrium stage to the kinetic freeze-out, relativistic heavy ion collisions can be mod-

elled by hydrodynamics.

A variety of experimental data from Relativistic Heavy Ion Collider (RHIC) experiments,

are successfully explained in ideal hydrodynamical models. Some problems however re-

main. For example, ideal hydrodynamics description of experimental data becomes poorer

as the collisions become more and more peripheral.
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1.7 Kinematic Quantities

In dealing with the experimental data on high-energy collisions, one frequently encounters

some kinematic variables. These include collision centrality, rapidity and pseudorapidity.

1.7.1 Collision Centrality

The large accelerators like LHC and RHIC collide bunch of particles (nuclei) coming in

from opposite directions. When one such particle from one beam scatters off of another

particle in the other beam, this is what we define as one event. One very important quan-

tity characterizing any type of collision is the impact parameter b. Small b collisions are

called central whereas large impact parameter collisions are called peripheral. The impact

parameter of each event varies during the collision. The collection of all possible impact

parameters is called a minimum bias sample. This variation of impact parameter is called

centrality. For example, 0-5% centrality covers the impact parameter range from 0 to 3.50

fm (for Pb-Pb collisions at
√
sNN = 2.76 TeV). However, impact parameter is not the only

way of characterizing the collision centrality. Centrality can also be defined in terms of

the number of participating nucleons (Npart), the nucleons that has undergone at least one

inelastic collision or in terms of the binary nucleon collision number. The other two param-

eters have one to one correspondence with the impact parameter which can be calculated in

a Glauber Model [MRSS07]. More on this covered in the next chapter.

1.7.2 Rapidity

The rapidity of a particle is defined as

y =
1

2
ln(

E + pzc

E − pzc
) (1.5)

where E is the total energy of the particle and pz is it’s longitudinal momentum. Conven-

tionally the z-direction is taken as the beam axis.

Why rapidity is used?

Suppose a particle, in a collision, is predominantly produced along the beam direction say

the +z direction. In that case E ≈ pzc, so that y→ ∞. If the particle moved along the -z

direction, then y→ −∞. Consider now the particle being produced in a direction perpen-

dicular to the beam axis, so that pz = 0 and y→ 0. Thus we see that the rapidity of a particle
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is related to the angle at which the particle is produced with respect to the beam direction.

Some calculations on rapidity

y =
1

2
ln(

E + pzc

E − pzc
) = ln(

√
E + pzc

E − pzc
) (1.6)

y = ln(

√
E + pzc

E − pzc
) = ln(

E + pzc√
E − pzc

√
E + pzc

) = ln(
E + pzc√
E2 − pzc2

) (1.7)

Using the definition of transverse mass, M2
T c

4 = p2xc
2 + p2yc

2 + M2c4, where M is the rest

mass, we get

y = ln(
E + pzc

MT c2
) (1.8)

Now, using the identity

tanhθ =
eθ − e−θ

eθ + e−θ
(1.9)

y = tanh−1(tanh(ln(
E + pzc

MT c2
)) (1.10)

y = tanh−1
(exp(ln(E+pzc

MT c2
))− exp(−ln(E+pzc

MT c2
))

exp(ln(E+pzc
MT c2

)) + exp(−ln(E+pzc
MT c2

))

)
(1.11)

y = tanh−1
( E+pzc

MT c2
− MT c

2

E+pzc

E+pzc
MT c2

+ MT c2

E+pzc

)
(1.12)

Using simple algebra we finally get

y = tanh−1
(pzc(E + pzc)

E(E + pzc)

)
(1.13)

y = tanh−1
(pzc
E

)
(1.14)

Rapidity transformation under Lorentz Boosts parallel to the beam direction: For this

we first need to see how the components of 4-momentum transforms with respect to boosts

along the z direction:

E
′
/c = γ(E/c− βpz) (1.15)

p
′

x = px (1.16)

p
′

y = py (1.17)

p
′

z = γ(pz − βE/c) (1.18)

Substituting this into the equation above

y
′
=

1

2
ln
(γE/c− βγpz + γpz − βγE/c
γE/c− βγpz − γpz + βγE/c

)
(1.19)
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y
′
=

1

2
ln
((E/c+ pz)(γ(1− β))

(E/c+ pz)(γ(1 + β))

)
(1.20)

y
′
=

1

2
ln(

E + pzc

E − pzc
) + ln(

√
1− β
1 + β

) (1.21)

y
′
= y + ln(

√
1− β
1 + β

) (1.22)

This expression can further be simplified

ln(

√
1− β
1 + β

) = tanh−1(tanh(ln(

√
1− β
1 + β

))) (1.23)

= tanh−1
(√√√√ 1−β

1+β
− 1−β

1+β

1−β
1+β

+ 1−β
1+β

)
(1.24)

= tanh−1β (1.25)

Thus we finally get from above equations

y
′
= y − tanh−1β (1.26)

Suppose there are two particles flying out of the collision region with rapidities y1 and y2

as measured by some observer. Now let some other observer measure the same rapidities

from a different frame of reference and get y′1 and y′2.

y
′

1 − y
′

2 = y1 − tanh−1β − y2 + tanh−1β = y1 − y2 (1.27)

Thus the difference between the rapidities of two particles is invariant with respect to boosts

along the beam direction. This is why rapidity is so important in accelerator physics.

1.7.3 Pseudo-rapidity

For outgoing particles with very high pz values, it can be very difficult to measure the pz

value precisely because the beam pipe can be in the way of measuring it and hence the

rapidity can be hard to measure for such particles. However we can define a quantity that is

almost the same thing as rapidity but can be determined much easily than rapidity for highly

energetic particles. The quantity is called pseudo-rapidity (η). Starting with the definition

of rapidity

y =
1

2
ln(

E + pzc

E − pzc
) (1.28)
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y =
1

2
ln(

√
p2c2 +m2c4 + pzc√
p2c2 +m2c4 − pzc

) (1.29)

For a highly relativistic particle pc << mc2

y =
1

2
ln
(pc(1 + m2c4

p2c2
) + pzc

pc(1 + m2c4

p2c2
)− pzc

)
(1.30)

y ≈ 1

2
ln
(pc+ pzc+ m2c4

2pc
+ ...

pc+ pzc+ m2c4

2pc
+ ...

)
(1.31)

y ≈ 1

2
ln
(1 + pz

p
+ m2c4

2pc
+ ....

1 + pz
p
− m2c4

2pc
+ ....

)
(1.32)

Now pz
p

= cosθ, where θ is the angle made by the particle trajectory with the beam pipe.

1 +
pz
p

= 1 + cosθ = 2cos2
θ

2
(1.33)

1− pz
p

= 1− cosθ = 2sin2 θ

2
(1.34)

Substituting these back into the above equation we get

y ≈ −ln(tan
θ

2
) (1.35)

Thus we define pseudo-rapidity as

η = −ln(tan
θ

2
) (1.36)

Thus we see that the quantity η is directly related to the angle at which the particle is emitted

with respect to the beam direction and hence is much easier to calculate.
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Chapter 2

Techniques to probe the QGP

2.1 Signals of Quark-Gluon-Plasma

In the final state of heavy-ion collisions, the detector detects some thousands of particles

produced in the collision. The deconfined medium of quarks and gluons exist for only a

few microseconds. It is extremely difficult to directly observe QGP in this short lifetime.

However, the various particles produced in the collision might prove to be useful as signa-

tures of QGP. There may be no unique signal which will lead to the identification of QGP.

The problem is closely related to quark confinement; quarks are unobservable. QGP, even

if produced in a collision, is a transient state, it expands, cools, hadronises, cools further till

interactions between the hadrons become too weak to continue the evolution. Any informa-

tion about the QGP phase, if produced in high energy nuclear collisions, has to be obtained

from the observed hadrons only. Instead, a number of different signals come out from the

medium which may be treated as QGP signatures. Present search for QGP at RHIC/LHC

is on the premise that the hadronisation process does not erase the memory and from the

observed hadrons, one can comment on the possible existence of QGP. An account of some

of these signatures is given below:

2.1.1 J/Ψ suppression

Firstly we define what quarkonia are, they are made up of cc and bb pairs (c = charm quark,

b = bottom quark) that are created in the initial phase of the collision, Color screening in

the deconfined phase leads to melting of quarkonia states. The freed c and b quarks are

unlikely to recombine to quarkonia states during freeze-out if their concentrations are too
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low. Quarkonium mass, radius and formation time can be obtained from the solution of

non-relativistic Schrodinger equation and are given in the Figure 2.1.

In 1986, Matsui and Satz suggested that if QGP is formed in nuclear collisions, J/Ψ, the

bound state of cc will be suppressed, w.r.t. pp collisions. The idea is simple. In pres-

ence of QGP, J/Ψ production will be inhibited due to screening of potential. A cc pair,

which could transform into a J/Ψ, is now unable to do so. Over the years, several groups

have measured the J/Ψ, yield in heavy ion collisions. In brief, experimental data do show

suppression. However, suppression is observed in pA collisions also, where, one does not

expect QGP formation. It is understood that in an inelastic collision with nucleons, J/Ψ’s

can be dissociated and lead to suppression. Suppression in pA collisions is termed cold nu-

clear matter (CNM) effect. It is important to disentangle CNM effect from the experimental

data to obtain the suppression due to deconfinement.

Figure 2.1: Quarkonium Spectroscopy from Non-Relativistic Potential Theory [Sat06]

2.1.2 Strangeness Enhancement

The ratio of s, u quarks do not show a significant
√
s dependence in p-p collision. Contrar-

ily, the number of strange particles are enhanced in heavy-ion collision. This is explained

by the lower threshold energy of the production of strange particles in deconfined matter

compared to hadronic matter, the effective masses of the quarks change from constituent

masses in hadronic matter to bare masses in deconfined matter [GO09].

As an example the associated production of strange particles and quarks can be compared,

in hadronic matter the lightest strange particle is the kaon, thus the production of a kaon
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pair has a threshold energy of about 987 MeV. In the deconfined medium the production of

an ss pair has a threshold of only about 140 - 260 MeV and the strange quark content is ex-

pected to reach equilibrium quickly. However, if strange quarks are produced at a late stage

in the expansion of a fluid initially dominated by gluons, the net strangeness will again be

greatly reduced on sufficiently small rapidity scale. Consequently, fluctuations in net/total

strangeness would be reduced/enhanced [TW02].

2.1.3 Flow

In case of non-zero impact parameter collisions, the overlap region of two nuclei is called

reaction or participant zone. The initial reaction zone posses azimuthal anisotropy. Multiple

collisions among the constituent particles translate this spatial anisotropy into the momen-

tum anisotropy of the produced particles. This observed momentum anisotropy is known as

the collective flow. Mathematically, the observed momentum anisotropy is defined as the

fourier expansion of Lorentz invariant differential yield in the angle φ given by:

E
d3N

d3p
=

1

2π

dN

pTdpTdy
[1 +

∞∑
n=1

2vncosnφ] (2.1)

Where φ is the azimuthal angle of the detected particle and vn are called the flow coeffi-

cients. v1 is called directed flow, v2 is called elliptic flow, v3 is called triangular flow and

so on. Additionally, elliptic flow occurs in non-central collisions due to the asymmetric,

almond shaped, collision region which results in an anisotropic expansion. This effect is

self-quenching in the sense that the expansion reduces the anisotropy and thus the elliptic

flow. Therefore, the measurement of elliptic flow carries signatures of the earlier collision

stages [KH04]. The analysis of transverse momentum spectra at central rapidity with re-

spect to the reaction plane in an event allows elliptic flow occurring in the collision to be

analyzed.

2.1.4 Jet Quenching

In heavy-ion collisions at ultra-relativistic energies, the partons involved in the collisions

are violently accelerated. Just like accelerated electric charges emit electromagnetic radi-

ation in the form of photons, accelerated color charges emit QCD radiation in the form of

gluons. Photons are not electrically charged but gluons are color charged. Hence gluons
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can further emit more gluons or a gluon can decay into a quark-antiquark pair, thus leading

to parton showers.

Jets are formed when a parton from a nucleus or nucleon scatters off of a parton from an-

other nucleus or nucleon. After the scattering, the partons form parton showers which then

hadronizes leading to a collimated spray of hadrons. Now, if a hot and dense QGP medium

is produced in AA collision, then a jet created in early collision will propagate through this

medium. Due to interaction with the medium, the jet particles will dissipate some energy

while propagating through the medium. Usually, in experiments, the transverse momen-

tum distribution of the particles produced in heavy-ion collisions is studied. The energy

loss by the jet particles will result in a suppression of the high-pT particles and is com-

monly known as jet quenching [GP90]. Mathematically, jet quenching is measured through

a quantity defined as Nuclear Modification Factor (RAA). It is defined as:

RAA =

dNAA

d2pT dy

TAA
dσAA

d2pT dy

(2.2)

The numerator is the single particle transverse momentum distribution of a jet parton pro-

duced in AA collision and travelling through the hot and dense QGP medium. The de-

nominator shows single particle distribution of same species of jet parton produced in p-p

collision multiplied by nuclear thickness function TAA which is a proton to nucleus scaling

factor ( if AA collision is an incoherent superposition of p-p collision) and is a function of

impact parameter b. A value of RAA equals to 1 indicates that no jet quenching has taken

place. However if the ratio tends to be less than unity, it serves as a definite measure for jet

suppression in the medium and thus serves as a signature for QGP.

The back-to-back correlation that can be usually observed in two-jet events due to mo-

mentum conservation in the hard parton-parton interaction is strongly influenced by the

medium. This correlation is broadened; one jet may even be completely absorbed. Jet

production rates measured in p-p collisions, again, provide an essential reference here.

2.1.5 Identical Particle Interferometry

Two (or more) particle momentum correlations reveal information about the space-time

dynamics of the collision. This procedure is analogous to Hanbury-Brown and Twiss (HBT)

interferometry that has been successfully used in astrophysics to determine the angular

diameter of stars. In high-energy physics these correlations allow the size, lifetime, and
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flow patterns of the fireball at the moment when the hadronization occurs to be measured.

The three-particle interferometer is another viable candidate for revealing such information

on space-time dynamics.

2.1.6 Dilepton and Photon Spectra

Leptons and photons are produced throughout the entire evolution of the collision. How-

ever, leptons and photons produced in the earliest and hottest phase of the collision do not

interact strongly with the fireball. Therefore, they are a probe of the phase at its highest

temperature. In the measurement, both of them are dominated by large backgrounds from

hadronic processes, for example from pions, kaons, ρ and π0 . The yields of dileptons and

photons are compared between heavy-ion and p+p collisions to extract signals from the

early collision phase.

Dileptons are a signal of medium modifications of hadronic matter, e.g. of the mass of

the ρ-meson. Furthermore, dileptons from charm decay allow the total charm yield to be

accessed, which is important for the measurement of the total production cross-section of

the J/Ψ.

2.1.7 Chiral-Symmetry Restoration

The Lagrangian of QCD implies approximate chiral symmetry. As a consequence the

baryon number should be conserved for right- handed and left-handed quarks separately.

In nature only the total baryon number is conserved thus chiral symmetry is broken. The

symmetry breaking is twofold: to start with the symmetry is only approximate due to the

finite, however small, bare quark masses that cause a so-called explicit symmetry breaking.

Furthermore, the quarks acquire their constituent masses in the interaction with the QCD

vacuum at low T which is a spontaneous breaking of the symmetry [PP00]. It is predicted

that the spontaneous breaking of chiral-symmetry is restored at temperatures prevailing in

the QGP phase. As a consequence the position and width of the masses of the light vector

mesons (ρ, ω, and φ) may change (see e.g. [Pis82]). Indications have been seen at the SPS

[AAA+03] [DC+07].

A central aspect of the ALICE research program is to analyze heavy-ion collisions to

strengthen the evidence for the existence of the QGP, to study its properties as well as
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the phase transition between hadronic matter and the plasma. As outlined above many

of the signatures require a solid p+p reference. Therefore, the measurement of p+p col-

lisions is crucial for the study of the QGP and the phase transition. It should be pointed

out that the measurements of p+p collisions at
√
s = 10 TeV or

√
s= 14 TeV cannot be

directly used as reference for Pb+Pb collisions that will be performed at
√
sNN of 5.5TeV.

Instead the measurements at high energies are used to interpolate to the energy in heavy-ion

collisions.Ultimately, the measurement of p+p collisions at
√
s = 5.5 TeV is the preferred

reference.

One of the spectacular predictions of quantum chromodynamics (QCD) is that at extremely

high density and/or temperature the hadronic matter undergoes a phase transition to QGP.

Heavy-ion collisions at relativistic energies offer a unique environment for the creation and

study of the QGP phase in the laboratory. A characteristic feature of this process is that the

system experiences large event by event fluctuations in thermodynamic quantities such as

temperature and entropy. These can be studied by the experimentally observed quantities

such as fluctuations of mean transverse momentum and multiplicity.

2.2 Event by Event Fluctuations

The importance of Event by Event fluctuations can be emphasized using this example, if we

keep a sheet of paper in rain and let it get wet for some time(corresponding to averaging)

the paper would get wet uniformly and we can conclude that the rain was of uniform type.

Although if we kept multiple sheets of paper at intervals of few seconds then we could see

different splatter patterns of rain and also whether it hailed or snowed in between the rain.

So analyzing many events not only gives us better statistics but also may reveal rare events

like even a phase transition. This is why Event by Event fluctuations matter.

2.2.1 Net Charge Fluctuations:

In the formalism of grand canonical ensemble, for a system of classical ideal gas, net charge

fluctuations are proportional to the square of electric charge which takes up distinct values

for the QGP and hadronic phases. While the unit of charge in the hadronic phase is 1, in

the QGP phase it is 1/3. However, the fluctuation in the net charge depends on the squares

of the charges and hence strongly depends on which phase it originates from though the net
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charge doesn’t depend on such subtleties [C+12]. Measuring the charge fluctuation itself,

however, is plagued by systematic uncertainties such as volume fluctuations due to the im-

pact parameter variation. The task for us is then to find a suitable ratio whose fluctuation is

easy to measure and simply related to the net charge fluctuation.

We can write the fluctuations of net charge as:

〈δQ2〉 = q2〈(δp− δn)2〉 (2.3)

where q is the charge of the particles in the system, p is the number of positively charged

particles and n is the number of negatively charged particles in the system.

Using thermal distributions and disregarding correlations, we get:

〈δQ2〉 = q2(〈δn2〉+ 〈δp2〉) (2.4)

In limit of very high temperature, both Bose-Einstein and Fermi-Dirac statistics reduces to

the classical Maxwell-Boltzmann statistics. Moreover, at extremely high temperatures or

energy densities, due to asymptotic freedom, quark interactions are very weak and we can

approximate the hot and dense medium formed in heavy-ion collisions as a classical ideal

gas.

For the case of a classical ideal gas in grand canonical ensemble, we have fluctuation in a

quantitiy N as [Appendix A]:

〈N2〉 − 〈N〉2 = 〈N〉 (2.5)

Using this result and equation above:

〈δQ2〉 = q2(〈n〉+ 〈p〉) (2.6)

〈δQ2〉 = q2〈N〉 (2.7)

where N = n+p is the total number of charged particles. Using this relation and the principle

outlined above, the measurement of net charge fluctuations can serve as a definite measure

for the formation of QGP in heavy-ion collisions.

The numbers of particles produced in relativistic nuclear collisions differ dramatically

from collision to collision due to the variation of impact parameter, energy deposition,

baryon stopping and other dynamical effects. Such fluctuations can also be influenced
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by novel phenomena such as disoriented chiral condensate or the appearance of multiple

event classes. Even globally conserved quantities such as net charge, baryon number and

strangeness can fluctuate when measured, e.g., in a limited rapidity interval. The rapid

hadronization of a quark-gluon plasma (QGP) can reduce net charge fluctuations compared

to hadronic expectations, while phase separation can increase net-baryon fluctuations. Fluc-

tuations of conserved quantities are possibly the best probes of such novel dynamics, be-

cause conservation laws limit the degree to which final-state scattering can dissipate them

[PGV02].

2.2.2 Transverse Momentum Fluctuations

Fluctuations in average transverse momentum were among the first event-by- event analyses

studied. In a series of papers Mrowczynski et al have tried to the degree of thermalization by

studying transverse momentum fluctuations.Experimental analyses by NA49 [Tra00] reveal

that a careful evaluation of systematic effects are required before substantial equilibration

can be claimed in central heavy-ion collisions from transverse momentum fluctuations.

They also have found strong correlations between multiplicity and transverse momentum.

There are numerous observables that can be used to measure pT fluctuations, the most

obvious one being is the distribution of average transverse momentum:

M(pT ) =
1

N

N∑
i=1

pTi (2.8)

where N is the multiplicity of accepted particles in a given event and pTi is the transverse

momentum of the ith particle.

The distribution of M(??pT )?? is usually compared to its corresponding distribution ob-

tained for mixed events in which the particles are independent from each other and follow

the experimental inclusive spectra (the multiplicity distribution for mixed events is the same

as for the data). A difference between the two distributions signals the presence of dynam-

ical fluctuations[ABB+04].

Another quantity used to measure transverse momentum fluctuations is ΦpT , following the

authors of [GM92] one defines the single particle variable zpT = pT − pT with the bar de-

noting averaging over the single particle inclusive distribution. Then ZpT is defined which
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the multiparticle analog of zpT defined as:

ZpT =
N∑
i=1

(pT − pT ) (2.9)

Note that < ZpT > = 0. Finally the ΦpT quantity is defined as:

ΦpT =

√
< Z2

pT
>

< N >
−
√
z2pT (2.10)

Φ by its construction, is insensitive to the system size and is insensitive to centrality.
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Chapter 3

Higher Moments and ν dynamics

In this section we discuss about the probes used for quantifying the fluctuations in the

system, ν Dynamics is used for finding if there are any dynamical fluctuations that can be

accounted for new physics taking place. The Higher Order moments are for quantifying

this new fluctuations by comparing with Statistical systems which we already know about.

3.1 Moments Methodology in Heavy Ion Collision

In this work we are focusing on, how to deal with the charged multiplicity distribution of

heavy ion collisions. From section 2.1, one can get the idea about, how the out coming

particles are important in the study of heavy ion physics. Since we do not have the informa-

tion about the system formed during the collision, these multiplicity tracks are the pathway

which carries the information about the system which we are interested in.

In statistics, moments are used to characterize the shape of a probability distribution. For

example, the second central moment (moment about the mean), variance (σ2) is widely

applied to describe the width of a probability distribution. The skewness (S) and kurtosis

(κ) are used to describe how the distributions skewed and peaked from its mean value, re-

spectively. Another alternative method to the moments of a distribution are the so called

cumulants. The cumulants determine the moments in the sense that any two probability

distributions whose cumulants are identical will have identical moments as well, and simi-

larly the moments determine the cumulants. In heavy ion collision, the higher moments of

distributions of conserved quantities, such as net-baryon, net-charge and net-strangeness,

are predicted to be sensitive to the correlation length and to be connected to the thermody-
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namic susceptibilities computed in Lattice QCD [GG11] and in the Hadron Resonance Gas

(HRG) [KR11] model.

3.2 Cumulants and Moments

3.2.1 Definition

In probability theory and statistics, the cumulants of a probability density distribution can

be defined by using the cumulant-generating function [Hal00]. The cumulant-generating

function of the random variable X is defined as:

G(t) = log[E(etX)] (3.1)

where the E is the expectation operator and some times denoted by angle brackets 〈 〉, E(etX)

= 〈etX〉 =
∫ +∞
−∞ etXf(X)dX , for a real-valued continuous probability density function f(x).

Generally, the nth order cumulants Cn can be extracted from the cumulant-generating func-

tion via differentiation (at zero) of G(t).

Cn = Gn(0) =
∂nG(t)

∂tn
|t=0 (3.2)

Cumulants of a distribution are closely related to the moments of the distribution and the

moment-generating function for moments about zero can be written as:

g(t) = E(etX) = 1 +
∞∑
n=1

〈Xn〉 t
n

n!
(3.3)

Consequently the nth order moments about zero µn = 〈Xn〉 can be obtained by:

µn = 〈Xn〉 = gn(0) =
∂ng(t)

∂tn
|t=0 (3.4)

Thus, the cumulant-generating function can be expressed in term of the moments about

zero as:

G(t) = log[g(t)] = −
∞∑
n=1

1

n
(1− g(t))n =

∞∑
n=1

1

n
(−

∞∑
m=1

µm
tm

m!
)n (3.5)

= µ1 × t+ (µ2 − µ12)× t2

2!
+ (µ3 − 3µ2µ1 + 2µ3

1)×
t3

3!
+ ... (3.6)

Finally, we obtain the connections between the cumulants, moments about zero µnand cen-

tral moments (moments about mean) µ′n = 〈(X − 〈X〉)n〉 = 〈(δX)n〉 :

C1 = µ1 = 〈X〉 (3.7)
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C2 = µ2 − µ12 = 〈(X − 〈X〉)2〉 (3.8)

C3 = µ3 − 3µ2µ1 + 2µ3
1 = 〈(X − 〈X〉)3〉 (3.9)

C4 = µ4 − 4µ3µ1 − 3µ22 + 12µ2µ
2
1 − 6µ4

1 (3.10)

= 〈(X − 〈X〉)4〉 − 3× (〈(X − 〈X〉)2〉)2 (3.11)

.

.

.

Cn = µn −
n−1∑
m=1

(
n− 1

m− 1

)
Cmµn−m (3.12)

= µ
′

n −
n−1∑

m=1,(n−m,n≥2)

(
n− 1

m− 1

)
Cmµ

′

n−m (3.13)

Usually, the central moments are more useful than the moments about zero to describe the

shape of the distributions. The second central moment (variance (σ2)) is used to describe

the width of a distributions. The normalized third central moment and forth central moment

so called skewness (S) and kurtosis (κ), are used to describe the asymmetry and how peaked

the distributions are, respectively. They are defined as:

σ2 = 〈(X − 〈X〉)2〉 = C2 (3.14)

S =
〈(X − 〈X〉)3〉

σ3
=

C3

(C2)3/2
(3.15)

κ =
〈(X − 〈X〉)4〉

σ4
− 3 =

C4

(C2)2
(3.16)

Fig. 3.1 gives a visual example for determining which of the two kinds of skewness a distri-

bution has. The distribution shown in the left panel, which gives negative skewness, is said

to be left-skewed. It has a longer left tail and the center of the distribution is concentrated

on the right of the distribution. The distribution in the right panel of Fig. 3.1 shows you a

distribution with positive skewness, which is said to be right-skewed. It has a longer right

tail and the center of the distribution is concentrated on the left of the distribution. A zero

value indicates that the values are relatively evenly distributed on both sides of the mean,

typically but not necessarily implying a symmetric distribution.
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Figure 3.1: Visual example of distribution with negative skewness (left panel) and positive

skewness (right panel).

It is found that the distributions with a sharp peak have a larger kurtosis value than those

distributions with broad tails. A high kurtosis distribution has a sharper peak and longer,

fatter tails, while a low kurtosis distribution has a more rounded peak and shorter thinner

tails. The kurtosis must be at least -2, which can be realised by the Bernoulli distribution

with p = 1/2. There is no upper limit to the kurtosis and it may be infinite. For normal

distributions, both, the skewness and the kurtosis are equal to zero. Thus, they are ideal

probes of the non-gaussian fluctuations.

3.2.2 Applications in Heavy Ion Collision

Experimentally, we measure particle multiplicities event-by-event wise. In the following,

we use N to represent the particle number in one event. The average value over the whole

event ensemble is denoted by 〈N〉, where the single angle brackets are used to indicate

ensemble average of an event-by-event distributions.

The deviation of N from its mean value is defined by:

δN = N − 〈N〉 (3.17)

Then, we can define the various order cumulants of event-by-event distributions of a vari-

able N.

C1 = 〈N〉 (3.18)

C2 = 〈(δN)2〉 (3.19)

C3 = 〈(δN)3〉 (3.20)
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C4 = 〈(δN)4〉 − 3〈(δN)2〉2 (3.21)

Once we have the definition of cumulants, various moments can be denoted as:

M = C1 (3.22)

σ2 = C2 (3.23)

S =
C3

(C2)3/2
(3.24)

κ =
C4

(C2)2
(3.25)

And also, the moments product κσ2 and Sσ can be expressed in terms of cumulant ratios.

κσ2 =
C4

C2

;Sσ =
C3

C2

(3.26)

With above definition of various moments, we can calculate various moments and mo-

ment products with the measured event-by-event particle number fluctuations in a certain

pT and rapidity range for each centrality. Higher moments of conserved quantities, such

as net-baryon, net-charge and net-strangeness number are predicted to be sensitive to the

correlation length developed in heavy ion collisions and are directly linked to the thermody-

namic susceptibilities computed in Lattice QCD and in the Hadron Resonance Gas (HRG)

model.

The window in rapidity should be at least about one unit wide, in order for the results to

apply without significant acceptance corrections. Furthermore, the longitudinal expansion

of the matter produced in the collision reduces correlations among particles separated by

much more than one unit in rapidity, making larger windows unnecessary.

In statistics, skewness and kurtosis are widely used to characterize the properties of proba-

bility distributions. Skewness is used to describe the asymmetry property of distributions,

while kurtosis describes how peaked they are. Sign changing of skewness as a function of

colliding energy may indicate a crossing of phase boundary. In addition, for normal distri-

butions, both of the skewness and kurtosis are equal to zero, thus they are ideal probe of

non-Gaussian fluctuations.

3.2.3 Expectations from Poisson Statistics

Many background effects result in statistical fluctuations, which obey the Poisson statistics.

If we assume our true signals are not correlated with those statistical backgrounds, then
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the Poisson value of our observables can serve as a baseline. In statistics, the probability

distribution of Poisson can be expressed as:

P (X = k) =
e−λλk

k!
(3.27)

where k is the random variable and λ is the parameter of the Poisson distribution. The

various moments (M,σ, S, κ) as well as moment products (κσ2, Sσ) of single Poisson dis-

tribution are simple :

M = λ (3.28)

σ =
√
λ (3.29)

S =
1√
λ

(3.30)

κ =
1

λ
(3.31)

κσ2 = Sσ = 1 (3.32)

Hence, for particle multiplicities, its Poisson value of its various moments are simple. In our

case, we are dealing with the difference of two independent Poisson distributions, such as

net-proton, net-charge. The difference of two independent Poisson distributions distributed

as the so called Skellam distributions. Its probability density formula is :

f(k : µ1, µ2) = e−µ1+µ2(
µ1

µ2

)k/2I|k|(2
√

(µ1µ2) (3.33)

where µ1 and µ2 are the mean value of two Poisson distributions, respectively, the Ik(z) is

the modified Bessel function of the first kind. Then, we can calculate various moments (M,

σ, S, κ) and moment products (κσ2, Sσ) products of the Skellam distribution. The results

are shown below:

M = µ1 − µ2 (3.34)

σ =
√

(µ1 + µ2) (3.35)

S =
µ1 − µ2

(µ1 + µ2)3/2
(3.36)

κ =
1

µ1 + µ2

(3.37)

Sσ =
µ1 − µ2

(µ1 + µ2)
(3.38)

κσ2 = 1 (3.39)
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We may find that the κσ2 are always unity for both Poisson and Skellam distributions while

the Sσ is changed from unity in Poisson to the above mentioned quantity to describe the

asymmetry between µ1 and µ2 in Skellam distribution. In our case, if we say the net-charge

multiplicity obeys the Poisson statistics, then the positive particles and negative particles

should be distributed as independent Poisson distributions and the net-charge multiplicity

obeys the Skellam distribution.

3.3 Centrality Determination

The centrality of nucleus-nucleus collisions is an important parameter in heavy ion collision

physics. It can be defined by several different parameters. The most common one is the so

called impact parameter b, defined as the distance between the geometrical centers of the

colliding nuclei in the plane transverse to their direction. Other geometry variables include

the number of nucleons that participate, Npart and the number of binary collisions, Ncoll.

The number of participants is defined as the number of nucleons, which undergo at least

one inelastic nucleon-nucleon collision and the number of binary collisions is defined as

number of inelastic nucleon-nucleon collisions. With the above geometric information, we

can compare centrality dependence (Npart, Ncoll) of observables between different experi-

ments. Unfortunately, those geometry observables can?t be directly measured and must be

deduced from a combination of experimentally measured quantities and Monte-Carlo sim-

ulations. This usually is done by a purely geometric model, the so called Glauber model

[MRSS07].

In the Glauber model, a nucleus-nucleus collision is treated as a sequences of independent

binary nucleon-nucleon collisions. Experimental observables, such as particle multiplicity,

not only reflect the geometry of the collision, but also depend on physical processes. This

indicates that relation between measured observables and impact parameter does not have

a one-to-one correspondence. There are fluctuations for the observable even with a fixed

impact parameter. One value of observable may correspond to many possible impact pa-

rameters. Experimentally, the centrality is usually expressed as a percentage of the total

cross-section, such as 0-5% (most central), 30-50% (semi-peripheral), which indicates the

fraction of a data sample (corrected for inefficiency) relative to all possible collision ge-

ometries (impact parameters).
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Figure 3.2: A cartoon example of the correlation of the final state observable Nch with

Glauber calculated quantities (b, Npart). The plotted distribution and various values are

illustrative and not actual measurements [MRSS07].

For illustrative purposes, Fig. 3.2 shows a typical centrality determination plot with charged

particle multiplicity. Once the total integral of the distribution is known, centrality classes

are defined by binning the distribution on the basis of the fraction of the total integral,

which is represented by the dashed lines shown in Fig. 3.2. In an analogous way, we can

calculate the charged particle multiplicity and determine the centrality classes with Glauber

model simulations, in which the average geometrical parameters (Npart and Ncoll) for each

centrality bin can be also calculated.

The basic assumption underlying centrality classes is that the impact parameter b is mono-

tonically related to particle multiplicity, both at mid and forward rapidity. For large b events

(peripheral) we expect low multiplicity at mid-rapidity, and a large number of spectator nu-

cleons at beam rapidity, whereas for small b events (central) we expect large multiplicity at
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mid-rapidity and a small number of spectator nucleons at beam rapidity.

3.4 The quantity ν Dynamics in Heavy Ion Collisions

Multiplicity Fluctuations are driven by intrinsic 2-particle correlations and such a 2-particle

co-relator is the quantity called ν dynamics. It was developed to isolate the potentially inter-

esting net-charge fluctuations from factors that cause the numbers of positive and negative

hadrons to fluctuate together, such as variations in energy deposition or collision volume. ν

Dynamics is both robust and straight forwardly related to the microscopic co-relators it is

what gives an estimate about the fluctuations in the system which have a dynamical source

because the statistical error was subtracted before hand to get ν Dynamics. ν stat is the

error owed to statistical fluctuations its the error in the Poissonian limit which is associated

with independent particle production[PGV02].

The quantities are defined as:

νa,b,Dynamic =
< Na(Na − 1) >

< Na >2
+
< Nb(Nb − 1) >

< Nb >2
− 2

< NaNb >

< Na >< Nb >
(3.40)

νa,b,stat =
1

< Na >
+

1

< Nb >
(3.41)

Another form in which ν dynamics is written is as:

νn,p,Dynamic = Rpp +Rnn − 2Rnp (3.42)

Rpp =
< p(p− 1) >

< p >2
(3.43)

Rnn =
< n(n− 1) >

< n >2
(3.44)

Rnp =
< np >

< n >< p >
(3.45)

Rpp, Rnn, Rnp are the particles co-relators the positive - positive particle co-relator the neg-

ative - negative particle co-relator and the negative - positive particle co-relator respectively.

3.5 Statistical Fluctuations

As discussed earlier the aim is to find out the fluctuations in the system to understand

whether the formation of QGP is taking place or not. To probe these fluctuations Higher
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Order Moments and ν Dynamics have been calculated which will be discussed in the next

chapters. Firstly to have a comparison and set the baseline Random fluctuations were gen-

erated.

For calculating these Random fluctuations the average positive and negative particle multi-

plicities were calculated by integrating the pt curve data from experimental data at
√
sNN

= 2.76 TeV. Since this data is available particle species wise an assumption was made that

all the charge in the system is accounted by Pions, Kaons and protons.

So independently they were integrated for and Π+, K+ and p would be the total positive

charge and Π−, K− and p would be the total negative charge of the system.

For making it random Gaussian and Poisson Fluctuation were generated with mean as the

integrated values, 10 million events were generated and the Higher Order Moments have

been calculated and plotted along with ν Dynamics, ν stat and particle co-relators.

These Random Fluctuations will be compared with the UrQMD model generated (MC tech-

nique) data’s Higher Order Moments and ν Dynamics.

The reason for choosing Gaussian and Poisson distributions as sources of Random Fluctua-

tions are because Poisson distribution can be obtained as the limit of the Negative Binomial

Distribution which is obtained as the best fit for multiplicities when we fit the Tsallis Dis-

tribution to the pT graphs. Also the NBD fit doesn’t give a proper fit for high multiplicities

and since high energies values are usually associated high multiplicities. Hence we follow

a Poisson distribution for these high multiplicities. So plotting these graphs would give us

an idea how the correlated data has the non-Poissonian fluctuations.

The Gaussian distributions are chosen primarily because any random fluctuation can be

modelled by white noise and any statistical fluctuation is of the form of Gaussian.

3.6 UrQMD the Event Generator

The UrQMD(Ultra Relativistic Quantum Molecular Dynamics Model) Event generator is

the generator that was used for generating the data that has been worked on in this thesis.

The package was installed on the cluster at our lab and events were generated simultane-

ously for different centrality bins, 2500 event per centrality bin.
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As expected the model does not fully accommodate all the physics that is undergone during

a collision because there are many new underlying physics yet to be discovered. So then

how does it work?

This particular model uses a microscopic transport theory which is formulated from covari-

ant propagation of all types of hadrons on classical trajectories and for randomness there

is the stochastic binary scatterings it also uses color string formation and resonance decay.

It like other generators is a Monte Carlo simulation which has been modelled from the

actual experimental data and here it solves a large set of partial differential equations for

trajectories and decays.
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Chapter 4

ν Dynamics Analysis

As discussed before ν Dynamics is a robust quantity that gives us very valuable information

regarding the dynamical fluctuations of the system.

Here once again the plots of random fluctuations are shown to give us an idea to compare

with dynamical fluctuations expected from the generated data.For Poissonian fluctuations

each of these terms individually becomes unity. So ν Dynamics would become zero for

purely statistical (Poisson) fluctuation and non-zero only in the presence of dynamical fluc-

tuation of any form of origin [and08]. The advantage of this variable is that it is robust

against detector efficiency and involves only lowest orders of factorial moments which re-

duces statistical uncertainties.

4.0.1 Gaussian

Gaussian Fluctuation is calculated for accounting for the fluctuations that would come from

the statistical fluctuations.

For a variable which has a gaussian distribution its generated by the formula:

P (x;µ;σ) =
1√
2πσ

e
(x−µ)2

2σ2 (4.1)
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Figure 4.1: On the left we have average values of p and n and on the right we have the

factors for choosing two particles if they are same or different.
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Figure 4.2: On the left we have particle correlators and on the right we have the Central

Mean.
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Figure 4.3: On the left we have νstat and on the right we have νdynamics.

4.0.2 Poisson

Poisson Fluctuations are calculated to find out how much the actual data is fluctuating

from the uncorrelated Poisson values. Poisson distributions describe multiplicities at high

energies. Their distribution is :

P (X = k) = e−λ
λk

k!
(4.2)
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Figure 4.4: On the left we have average values of p and n and on the right we have the

factors for choosing two particles if they are same or different.
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Figure 4.5: On the left we have the particle correlators and on the right we have the Central

Mean.
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Figure 4.6: On the left we have νstat and on the right we have νdynamics. Here we see

νdynamics tends to 0 since uncorrelated data would mean all its terms become unity.

4.0.3 Physics Model Data (UrQMD)

These plots have been calculated from generated at
√
SNN = 2.76 TeV in the UrQMD (Ultra

Relativistic Quantum Molecular Dynamics) generator. A total of 9.1 Million events have

been generated and analysed using the ROOT framework.These are again divided into 4

subsections each for Q - Charge Difference, K - Kaon, π - Pion, p - Proton.
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Chapter 5

Higher Moment Analysis

The Higher Moment analysis along with expectations from the cases when its purely statis-

tical and uncorrelated particle production and its comparison with experimentally generated

data.

5.1 Gaussian Fluctuations

The completely random case is emulated with a normal distribution. 10 Million events were

generated for 10 centrality bins with 1 Million in each bin at
√
sNN=2.76 TeV. Gaussian

Fluctuation is calculated for accounting for the fluctuations that would come from the sta-

tistical fluctuations.

For a variable which has a gaussian distribution its generated by the formula:

P (x;µ;σ) =
1√
2πσ

e
(x−µ)2

2σ2 (5.1)
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From these distributions the Higher Order Moments were calculated to have an idea how

they should look when there is only statistical fluctuations in particle production as opposed

to when there would be statistical and dynamical.
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Figure 5.4: On the left we have the mean values and on the right the sigma values
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that the predicted value of 3.0 for Gaussian is where the Kurtosis is bordering at.
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5.2 Poisson Fluctuations

10 Million events were generated for 10 centrality bins with 1 Million in each bin at
√
sNN=2.76 TeV. Negative and Positive particles were generated separately and then charge

difference was calculated for which the Higher Order Moments were calculated. The Skel-

lam distribution which was talked about earlier is shown here in the results. Poisson Fluc-

tuations are calculated to find out how much the actual data is fluctuating from the uncor-

related Poisson values. Poisson distributions describe multiplicities at high energies. Their

distribution is :

P (X = k) = e−λ
λk

k!
(5.2)
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Figure 5.6: On the left we have average p and n values and on the right we have the sum of

all charge binned into histograms.
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Figure 5.7: On the left we have histogram of positive particles and on the right we have

histogram of negative particles
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Figure 5.8: On the left we have histogram of Ratios of n/p and on the right the difference

n-p histogram

From these distributions the Higher Order Moments were calculated to have an idea how

they should look when there is no co-relation in particle production as opposed to when

there would be.
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Figure 5.9: On the left we have the mean values and on the right the sigma values
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Figure 5.10: On the left we have the Kurtosis and on the right the Skewness, its to be noted

that the predicted value of 3.0 for Poisson is where the Kurtosis is bordering at.
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5.3 Physics Model Data (UrQMD)

These plots have been calculated from generated at
√
SNN = 2.76 TeV in the UrQMD (Ultra

Relativistic Quantum Molecular Dynamics) generator. A total 0f 9.1 Million events have

been generated and analysed using the ROOT framework.These are again divided into 4

subsections each for Q - Charge Difference, K - Kaon, π - Pion, p - Proton.

5.3.1 Charge Difference
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Figure 5.11: On the left we have average n,p values and on the right the total sum of charged

particles binned into histograms
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Figure 5.12: On the left we have the histograms of positive particles and on the right the

histograms of negative particles
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Figure 5.13: On the left we have the ration n/p histograms and on the right the difference

n-p histograms
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5.4 Kaon, Pion and Proton Particle distributions

The distributions of Kaon, Pion and Proton were also plotted and its statistics have also

been calculated. Kaon gives an insight into the Strangeness of the system which was dis-

cussed in the earlier sections about Strangeness Enhancement.

Pions make up for the majority of charge contributions to the system.

Protons can tell us about the Baryonic number and also its the only particle that isn’t formed

through a decay unlike others which have decay sources too.

So studying about these particles can tell us about how these conserved charges are fluctu-

ating in the system.

5.4.1 Kaon
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Figure 5.14: Sum of charged particles histograms stacked against centralities
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Figure 5.15: On the left we have the histograms of positive particles and on the right the

histograms of negative particles
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Figure 5.16: On the left we have the ration n/p histograms and on the right the difference

n-p histograms
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5.4.2 Pion
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Figure 5.17: Sum of charged particles histograms stacked against centralities
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Figure 5.18: On the left we have the histograms of positive particles and on the right the

histograms of negative particles
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Figure 5.19: On the left we have the ration n/p histograms and on the right the difference

n-p histograms

5.4.3 Proton
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Figure 5.20: Sum of charged particles histograms stacked against centralities
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Figure 5.21: On the left we have the histograms of positive particles and on the right the

histograms of negative particles
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Figure 5.22: On the left we have the ration n/p histograms and on the right the difference

n-p histograms

From these distributions 10 quantities were calculated for probing the system for better

viewing purposes all the different particle species have been plotted together.
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Figure 5.23: On the left we have Central mean for different species and on the right the

Raw mean
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Figure 5.24: The plot of sigma values for different species
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Figure 5.25: On the left we have Skewness and on the right we have Kurtosis both for

various species
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Figure 5.26: On the left we have susceptibilities R32 and on the right R42.
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Figure 5.27: On the left we have susceptibilities R12 and on the right R31

The last 4 quantities are called co-relators which tell us about the susceptibilities of the

system when undergoing fluctuations. Conserved quantities will give us an opportunity to

study about the system in a different way. Their fluctuations over system can give important
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results on the parameters which we are looking for. The susceptibility of the system plays

an important role here. Susceptibility, χ, of a system tells us the response of that system to

some perturbation.

They can be found out from the central moments.

R32 = Sσ

R42 = κσ2

R12 = µ
σ2

R31 = Sσ2

µ

All of these cumulants or central moments have been calculated for the quantity N =

Q− < Q >, where Q = n-p.

n is the number of negatively charged particles and p is the number of positively charged

particles. We know that cumulants of N in a statistical system are extensive variables

[AK16].

The generalised susceptibility of conserved quantities are obtained by taking the derivative

of dimensionless pressure as,

χBSQlmn =
∂l+m+n( P

T 4 )

∂(µB
T

)l∂(µS
T

)m∂(
µQ
T

)n
(5.3)

where B, S, Q are the conserved quantities of QCD, and l, m, n denotes the higher order

derivatives. This susceptibility is also related to the moments of the distribution. For large

number of events higher order moments can be calculated and it will give a good under-

standing about the QCD observables.

Here are the the relation between susceptibility and higher moments (up to fourth moment),

µ = V T 3χ1 (5.4)

σ2 = V T 3χ2 (5.5)

S = V T 3χ3 (5.6)

κ = V T 3χ4 (5.7)

These ratios become exactly unity in the HRG model. These ratios thus are suitable in

exploring the existence of physics which cannot be described by the HRG model [AK16].
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Chapter 6

Summary

In this work we mainly focused on the study of fluctuations in heavy ion collisions at
√
SNN =2.76 TeV. Here we are briefly collating all the results and important conclusions.

From statistical mechanics, we got the idea to treat the system formed during collision as

an ensemble, and from there the possibilities of calculating higher moments arose. After

calculating the higher order moments we connected the moments of the system to the sus-

ceptibility of QCD, which is related to the macroscopic parameters of QGP system. From

the susceptibilities there is a deviation from unity which implies fluctuations due to QGP

formation.The analysis of Kurtosis (κ) and Skewness (S) have shown there is a charge con-

servation fluctuation happening, which is a measure of dynamical changes happening inside

the system, and thus the study of higher moments is relevant.

We collected data for the collision at 2.76 T eV for three different particles, pions, kaons,

proton and anti proton from the transverse momentum distribution. From that data, with

the help of a data analysis frame work called ROOT, we were able to calculate the statistics

for random fluctuations. Using which we compared it to the statistics for the generated data

events.

Other dynamic observables like ν Dynamics, ν Statistics and ν were also calculated to

study the dynamical fluctuations better.
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Appendix A

Classical Ideal gas in a Grand Canonical

Ensemble

The single particle partition function for a classical ideal gas in three dimensions is by

Z =
1

(2π~)3

∫
d3q

∫
d3pe−βH (A.1)

where (q,p) are the coordinates of the particle in phase space. The hamiltonian H is by

H =
∑
i

p2i
2m

(A.2)

Z =
1

(2π~)3

∫
d3q

∫
d3pe−βp

2/2m (A.3)

Z =
1

(2π~)3

∫
d3q

∫
d3pe−βp

2/2m =
V

(2π~)3

∫ inf

0

4πp2e−βp
2/2mdp (A.4)

Solving this integral and simplifying the expression, we get

Z = V

(
mkBT

2π~2

)3/2

(A.5)

The N particle partition function is

q =
1

N !
ZN (A.6)

The factor of 1/N! accounts for the indistinguishability of the particles. The corresponding

grand canonical partition function is defined as

Q =
∑
N

eβµNq (A.7)

59



where µ is the chemical potential of the system.

Q =
∑
N

eβµN
1

N !
ZN (A.8)

This can be further simplified as

Q =
∑
N

eβµN
1

N !
ZN = exp(Zeβµ) (A.9)

Once we have the partition function, we can define the average number of particles as

< N >=
1

βQ

∂Q

∂µ
=

1

βQ
(QβZeβµ) = Zeβµ (A.10)

Now, using the above equation

< N2 > − < N >2= kBT (
∂ < N >

∂µ
) = Zeβµ =< N > (A.11)
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H. Sann, N. Schmitz, P. Seyboth, F. Siklér, B. Sitar, E. Skrzypczak, G. Ste-
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Z. Włodarczyk, I. K. Yoo, J. Zaranek, and J. Zimányi, Transverse momen-
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