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Abstract

The neurons have earlier been modeled using various dynamic equations and the emergence of

collective behaviors has been investigated in coupled neuronal systems. In this thesis, we try to model

neurons as the discrete dynamical system, using maps or the continuous-time dynamical system, using

differential equations. These model neurons could be intrinsically active or inactive. Therefore, the

model governing the dynamics of these neurons should display a rich dynamical behavior so that we

could characterize the active and inactive state of the neuron. These model neurons are then coupled

to each other using different coupling forms. First, we try to see the fraction of neurons exhibiting

activity in the emergent dynamics as a function of coupling strength and the fraction of intrinsically

active neurons in a neuronal network or population. Then we try to see the emergent patterns in the

two coupled neuronal sub-populations. We investigate the effect of connection density, inter-group

coupling and population size on the collective dynamical patterns.
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Chapter 1

Introduction

As the word describes itself, the systems which evolve with time are called dynamical systems. It

can be represented using differential equations or difference equations. These equations which de-

scribe nonlinear dynamical systems have some additional nonlinear terms which make their analysis

difficult. The nonlinear systems may be hard to accurately model, even if they are deterministic.

Nonlinear systems (continuous) of order equal to or greater than three show interesting dynamics

which we call chaos. A dynamical system is chaotic if its future behavior is highly sensitive to initial

conditions. In such dynamical systems, two very close initial conditions would give rise to differ-

ent and uncorrelated dynamics. It makes the prediction of the evolution of the system impossible

and gives rise to unpredictability. The butterfly effect is the phenomenon that describes the unpre-

dictability of deterministic dynamical systems that is how a small change in the initial condition may

give rise to a large deviation in the later stages of the system.

The equations governing dynamical systems may be continuous or discrete. A continuous-time

system is described by differential equations. For instance, a dynamical system of dimension N given

by ordinary differential equations has the following form:

dx

dt
= f(x)

where x is aN -dimensional vector denoting theN state variables of the system, and f ≡ {f1, f2 . . . fN}
are functions describing the time evolution of these variables. The fixed point of the dynamics, also

known as the steady state or equilibrium, is the time-invariant state where there is no further change

in the variables in time. So the fixed point in a continuous-time system corresponds to dx
dt = 0

On the other hand, maps describe a class of dynamical systems in which time is discrete rather

than continuous. They are described using difference equations and are mathematical operators that

advance the system by a one-time step.

xn+1 = f(xn)

Here xn is a vector denoting the state variables of the system at time step n and f is the map giving

the relation between the state at time n and the state at the next time step n + 1. The sequence

x0,x1,x2 . . . , also called iterates, is the orbit starting from x0 which is the initial state at time n = 0.

If x∗ = f(x∗) , then x∗ is a fixed point that is, if xn = x∗ then xn+1 = f(xn) = f(x∗) = x∗, therefore

the orbit remains at x∗ for all the future iterations[Str01].
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Now we describe below the different dynamical systems we have explored in this thesis.

1.1 Chialvo Map

Chialvo map is a two-dimensional map describing the evolution of a two-dimensional system (i.e. a

system whose state x has two components, {x, y}). It is capable of displaying rich dynamics, and is

given by the following dynamical equations [Chi95]:

xn+1 = f1(xn, yn) = x2nexp(yn − xn) + k

yn+1 = f2(xn, yn) = ayn − bxn + c
(1.1)

Here,xn denotes the activation variable, and yn denotes the recovery variable in the context of

the biological systems.

Parameters k and c are offsets to the variables xn and yn while a is the rate constant for yn and

b is the activation dependence of the recovery variable as it relates yn to xn.

As the parameters of the map are varied, the qualitative structure of the flow changes. In

particular, fixed points can be created or destroyed, or their stability may change. The qualitative

changes in the dynamics are called bifurcations. For example, if a parameter is varied, at one value,

it may give a fixed point attractor, while at another value, it may change it to a periodic orbit

attractor and such a critical parameter is called bifurcation parameter.[Str01]

Here, the attractor is defined as a set of numerical values toward which a system tends to evolve,

for a wide variety of starting conditions of the system.

The bifurcation diagram for the Chialvo map with respect to the bifurcation parameter, k, is as

shown in figure 1.1. The parameters used are: a = 0.89, b = 0.18, c = 0.28.

Figure 1.1: Bifurcation diagram for Chialvo map with respect to k

For a range of bifurcation parameter, k, it displays fixed point to chaotic to periodic behavior for

different values of k. This bifurcation has been plotted using Poincaré section. For a Poincaré section,

an arbitrary plane is taken which cuts the attractor into two pieces. Therefore, the orbits comprising
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the attractor crosses the plane several times and the intersections of the orbits and Poincare plane

is plotted. Poincaré section hence reveals the structure of the attractor.

This two-dimensional map has been widely used to model the dynamics of isolated neurons and

in Coupled Map Lattices to represent neural networks.

The active and inactive state of a neuron is established using the parameters of the Chialvo map.

If the time series of a model neuron is either spiking or bursting, it is defined as an active neuron.

The parameters used for spiking are: a = 0.89, b = 0.6, c = 0.28, k = 0.03.

Figure 1.2: Spiking of a neuron(active state)

The parameters used for bursting are: a = 0.89, b = 0.18, c = 0.28, k = 0.04.

Figure 1.3: Bursting of a neuron(Active state)
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While, if the time series of a model neuron is a fixed point, it is defined as an inactive neuron.

The parameters used for a system exhibiting a fixed point are: a = 0.89, b = 0.18, c = 0.28, k = 0.1.

Figure 1.4: Inactive state of a neuron

In our analysis, the bifurcation parameter, k, is kept in either chaotic or periodic region for an

active neuron, while for an inactive neuron it is kept in the fixed point region.

1.2 Different forms of coupling

Coupled systems are often found in nature, which interact with each other to display collective

behavior. Different types of interaction or coupling forms used in this thesis are :

Table 1.1: Coupling forms

Type of Coupling Functional form

Diffusive Repulsive (xj + xi)
Diffusive Attractive (xj − xi)

Mean field (xj − xi)

1.3 Mercury Beating Heart System

The mercury beating heart is a chemo-mechanical oscillator that can be used to envision various

phenomena exhibited by different oscillators existing in nature. It is the result of the electrochemical

redox reaction between Mercury and Iron kept in an electrolyte solution. The setup of the MBH

system as shown in figure 1.5, consists of a mercury drop in the aqueous solution of an acid and strong

oxidant in a concave watch glass. A pointed iron nail is made to touch the periphery of the mercury

drop, which then triggers the mechanical oscillations in the system. The mechanical oscillations in
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the MBH system look similar to that of a beating heart, that’s why it is known as mercury beating

heart system. It is a chemo-mechanical oscillator because the interplay between the chemical and

mechanical oscillations causes the self-sustained oscillations in the system. In particular, the chemical

redox reactions on the surface of the mercury and the change in surface tension of the mercury drop

drive the system to oscillate mechanically [Avn89].

Figure 1.5: Mercury Beating Heart setup

1.4 Basic Mechanism of Oscillation in the MBH system

Mercury is a metal that exists as a liquid and has very high density and surface tension at room

temperature. The oscillations in the MBH system originate from the oxidation of mercury surface

by the oxidizing agent, cerium sulfate, followed by the reduction of the oxide back to mercury by

iron. These processes affect the surface tension and ultimately the geometry of the mercury drop.

In a watch glass, 2 ml of mercury(Hg), 6M of sulphuric acid(H2SO4), and 6M of cerium sulfate

were placed.

In the presence of 6M sulphuric acid, cerium exists as [CeIV (SO4)3]2− which acts as the oxidizing

agent.[CRBV02]

Ce(SO4)2 + SO4(aq) 
 [CeIV (SO4)3]2−

[CeIV (SO4)3]2− then reacts with metallic Hg, according to the following reactions:

2[CeIV (SO4)3]2− + 2Hg 
 Hg2+2 + 2[CeIIISO4]+ + 4SO2−
4 (aq)

2[CeIV (SO4)3]2− + 2Hg 
 Hg2SO4 + 2[CeIIISO4]+ + 3SO2−
4 (aq)

Here Hg2+2 is the free ion, Hg2SO4 is the molecular mercury(I) sulfate. The metallic Fe can

undergo the following reactions

Fe+Hg2+2 
 Fe2+(aq) + 2Hg

5



Fe+Hg2SO4 
 Fe2+(aq) + 2Hg + SO2−
4 (aq)

In the presence of the oxidizing agent, mercury oxidizes accumulating the positive charge on

its surface. The repulsion of like charges causes a reduction in the surface tension which leads to

the expansion of the mercury surface. Once, the iron nail is touched to the surface of mercury, the

mercury is reduced while leaving the iron oxidized. The mercury surface gets discharged raising the

surface tension which then leads to the compression of the mercury surface.

Therefore, a series of redox reactions and surface tension interplay to cause the beating heart

motion of the mercury.

1.5 FitzHugh-Nagumo model

FitzHugh-Nagumo model is a mathematical model of neuronal excitability developed by Richard

FitzHugh [Fit61]. It is a simplified version of the Hodgkin-Huxley model which models the activation

and deactivation dynamics of a spiking neuron. It consists of two coupled, nonlinear differential

equations. It is a continuous-time dynamical system, unlike the Chialvo map.

The equations describing the dynamics of the system is given by:

dvi
dt

= vi −
vi

3

3
− ωi + Iext

τ
dωi
dt

= vi + a− bωi
(1.2)

Here, v is the membrane voltage and ω is the recovery variable, Iext is the external stimulus, and

a and b and τ are dimensionless, positive, and used for the time scale and kinetics of the recovery

variable.

The first equation describes the fast evolution of the neuronal membrane voltage and the other

one describes the slower recovery action of the sodium and potassium channel

The bifurcation diagram for the FHN model with respect to the bifurcation parameter, current

(Iext) is given by:

6



Figure 1.6: Bifurcation diagram for FHN model with respect to Iext

It displays fixed point and period-1 cycle behavior in the different ranges of current. The region

of the current where there are two lines denotes the period-1 cycle region whereas the single line

in the space denotes the fixed point region. For an active neuron, we keep the current in period-1

region while for an inactive neuron we keep the current in fixed point region.

The active and inactive state of the neuron is established by keeping a = 0.7, b = 0.8 and 1
τ = 0.08

constant while changing the value of current (Iext) according to the bifurcation diagram.

If the time series of the model neuron is periodic, it is defined as an active neuron. The parameters

used are: a = 0.7, b = 0.8, 1
τ = 0.08 and Iext = 1.0

Figure 1.7: Time series of an active oscillator
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If 1
τ is changed while keeping the other parameters constant, just the frequency of oscillation

changes. For example, if 1
τ = 0.3, the time series looks like, Figure 1.8.

Figure 1.8: Time series of an active oscillator

Also, the time series of an inactive neuron looks like Fig 1.9. The parameters used are: a =

0.7, b = 0.8, 1
τ = 0.08 and Iext = 0.1

Figure 1.9: Time series of an inactive oscillator
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Chapter 2

Nearest neighbor coupled neuronal

network

Coupled Map Lattices (CML) have been used as effective models for spatiotemporal phenomena

in complex systems ranging from biology to engineering for almost two decades[Kan93]. In general,

CMLs consist of collections of on-site maps reflecting local nonlinearities, interacting with neighboring

sites through different types of coupling forms. Here, the CML approach is used to model a ring of

neurons using the two-dimensional nonlinear Chialvo map, capable of displaying dynamical behavior

ranging in complexity from fixed points (inactive state) to chaos (active state), as a local dynamical

unit.

These model neurons which may be intrinsically active or inactive are coupled to their nearest

neighbors. The effect of active neurons (f) on the collective dynamical patterns is studied as a

function of the fraction of intrinsically active neurons and the coupling strength.

2.1 Model

We consider a one – dimensional ring of neurons modeled by the two-dimensional map known as

Chialvo Map[Chi95]. This map will determine the local dynamics of our system. It is defined as:

xn+1 = f1(xn, yn) = x2nexp(yn − xn) + k

yn+1 = f2(xn, yn) = ayn − bxn + c
(2.1)

xn denotes the activation variable and yn denotes recovery variable in the context of the biological

systems.

Parameters k and c are offsets to the variables xn and yn while a is the rate constant for yn and

b is the activation dependence of the recovery variable as it relates yn to xn.

For active state of neurons we have used the parameters:

a = 0.89, b = 0.18, c = 0.28, k = 0.04

For inactive state of neurons we have used the parameters:
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a = 0.89, b = 0.18, c = 0.28, k = 0.1

When these neuronal maps are coupled to each other by nearest neighbour coupling form, through

x, the dynamics of the system is given by [JSGS07]:

xn+1(i) = (1− e)f1(xn(i), yn(i)) +
e

2
{g(xn(i+ 1)) + g(xn(i− 1))}

yn+1(i) = f2(xn(i), yn(i))
(2.2)

Here, e = coupling strength, n = iteration steps, i = site index on the lattice with periodic boundary

conditions.

g(x) is the coupling function and it can take various forms but here we will use, g(x) = x.

We simulated the system by taking 100 neurons in the ring

f denotes the initial fraction of active neurons in the ring

Q denotes the fraction of inactive neurons in the ring after simulating the system.

2.2 Results

Effect of coupling strength and the fraction of intrinsically active neurons on neuronal activity is

investigated by plotting the fraction of inactive neurons in the ring (Q) with respect to the coupling

strength.

Figure 2.1: Q (final fraction of inactive neurons) vs Coupling Strength (e) for different
fractions (f) of active neurons in the ring.

Different colors represent different fractions (f) of active neurons in the ring.

Here neural network converges at Q=1 (inactive state ) at some critical values of coupling strength

(e) for different fractions of active neurons in the ring which are arranged randomly. As the fraction

of active neurons increases in the ring, the critical value of coupling strength at which the network

converges at the inactive state (Q = 1), also increases.
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For each fraction of active neurons in the ring, the critical value of coupling strength at which

Q first became 1 is recorded and then plotted w.r.t. f on the graph as shown in Figure 2.2.

Figure 2.2: e′ (critical value of coupling strength at which Q first became 1) vs f (initial
fraction of active neurons)

The data fits with the following power law:

e′ = 0.48f0.26 (2.3)

Hence, it is observed that for different fractions of active neurons in the ring, all the neurons

eventually go to the inactive state (Q = 1) at a particular value of coupling strength. The critical

value of coupling strength at which Q first becomes 1 (e′) increases as the fraction of active neurons

(f) increases as the power law.

Figure 2.3: Q vs Coupling Strength (e) for three different arrangements of neurons :
alternate active, active on one half of the ring and inactive on the other half and 0.5 fraction
of active neurons arranged randomly.

Here, the response of the system is compared for three different arrangements of neurons where

each arrangement has the same fraction of active neurons. First, active and inactive neurons are
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arranged alternatively in the ring. Second, on one half of the ring, there are active neurons while on

the other half there are inactive neurons while third is the random arrangement of the neurons in

the ring where half of them are active.

In the alternate arrangement of active and inactive neurons, it can be seen that first there is a

dip in the graph where all neurons become active (Q=0), after which they eventually converge to the

inactive state (Q=1), i.e. there is a window of complete activity. However, the results differ as the

arrangement of neurons in the ring is changed, even if the fraction of active neurons is kept the same

as shown in Figure 2.3. In all three different arrangements of neurons, alternate active, active on

one half of the ring and inactive on the other half and randomly arranged active neurons in the ring,

the fraction of active neurons is half but due to their different arrangement, they converge to the

inactive state(Q=1) at different values of coupling strength. Their path to the inactive state is also

different as there is a clean dip at Q= 0 when active and inactive neurons are arranged alternatively

whereas it is not the case in the other two arrangements.

Figure 2.4: Q vs Initial fraction of inactive neurons (1-f) for different values of coupling
strength. Above coupling strength, e = 0.4, Q= 1 regardless of the initial fraction of inactive
neurons in the ring.

The fraction of inactive neurons (Q) increases monotonically with the initial fraction of inactive

neurons in the ring, up to coupling strength 0.4 (Figure 2.4) while at higher coupling strengths(e >

0.4), Q becomes 1, independent of the initial fraction of inactive neurons.

2.3 Effect of the size on the dynamics of the network

To check the size dependence on the dynamics of the system, a ring of different size, that is 16

neurons is simulated where each neuron is modeled by the Chialvo map. When these neuronal maps

are coupled to each other by nearest neighbour coupling form, through x, the dynamics of the system
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is given by:

xn+1(i) = (1− e)f1(xn(i), yn(i)) +
e

2
{g(xn(i+ 1)) + g(xn(i− 1))}

yn+1(i) = f2(xn(i), yn(i))
(2.4)

The effect of coupling strength and the initial fraction of active neurons on neuronal activity is

investigated for the ring of 16 neurons.

Figure 2.5: Q (final fraction of inactive neurons) vs Coupling Strength (e) for different initial
fractions of active neurons in the ring.

Here, different colors represent different initial fractions (f) of active neurons in the ring.

As observed in the case of the ring of 100 neurons, for this case also where there are 16 neurons

in the ring, the neural network converges at Q = 1, that is, to the inactive state at certain values

of coupling strength (e) for different fractions of randomly arranged active neurons in the ring.

Similarly, as the initial fraction of active neurons is increased in the ring, the value of coupling

strength at which the network converges at the inactive state (Q = 1), also increases.
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Figure 2.6: Q vs Initial fraction of inactive neurons (1-f) for different values of coupling
strength.

As in the case of the ring of 100 neurons, here also, above coupling strength, e = 0.4, Q= 1

regardless of the initial fraction of inactive neurons in the ring.

So, it can be concluded that irrespective of the size of the system we get similar collective

behavior in the nearest neighbor coupling of neurons, arranged in the ring randomly. The neural

network converges to the inactive state at critical values of the coupling strength depending on the

initial fraction of active neurons in the network.

Hence, neurons displaying collective dynamics, converge to the inactive state for the nearest

neighbor coupling which is independent of the size of the system.
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Chapter 3

Neuronal network with mean-field

coupling

In chapter 2, the neurons were coupled to each other by nearest-neighbor coupling and it was observed

that all neurons ultimately became inactive at a critical value of coupling strength. To understand

how the dynamics of the system would change, if neurons were to be coupled by mean-field, the

equation determining the dynamics of the system is changed and the response of the system is

observed.

3.1 Model

Each neuron in the system is modeled by the two-dimensional Chialvo map[Chi95]. This map will

determine the local dynamics of our system. It is defined as:

xn+1 = f1(xn, yn) = x2nexp(yn − xn) + k

yn+1 = f2(xn, yn) = ayn − bxn + c
(3.1)

xn denotes the activation variable and yn denotes recovery variable in the context of the biological

systems.

Parameters k and c are offsets to the variables xn and yn while a is rate constant for yn and b is

the activation dependence of the recovery variable as it relates yn to xn.

For active state of neurons we have used the parameters:

a = 0.89, b = 0.18, c = 0.28, k = 0.04

For inactive state of neurons we have used the parameters:

a = 0.89, b = 0.18, c = 0.28, k = 0.1
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The corresponding dynamics of the system is given by:

xn+1(i) = f1(xn(i), yn(i)) + e(x̄n − xn(i))

yn+1(i) = f2(xn(i), yn(i))
(3.2)

Here, e = coupling strength, n = iteration steps and i = index denoting the ith neuron.

A group of 100 neurons is simulated where the neurons which may be intrinsically active or

inactive, are coupled to each other by mean-field coupling. Now, instead of nearest-neighbor coupling,

each neuron is coupled to every other neuron in the system.

Ultimately, the effect of active neurons is studied on the collective dynamics of the system, as a

function of coupling strength and the fraction of intrinsically active neurons.

3.2 Results

Figure 3.1: Q vs Coupling Strength (e) for different fractions (f) of intrinsically active
neurons in the system

In figure 3.1, colors represent a different initial fraction of active neurons (f) in the system. Q is the

final fraction of active neurons in the system after the evolution.

The system converges to the inactive state, which is at Q= 1, before briefly coming to the active

state if the fraction of active neurons in the system is less than or equal to 0.4. However, if the

fraction of active neurons is more than 0.4, the system evolves to the active state, that is Q=0

3.3 Size dependence

Now, the system size is kept 16 to see if there is any size dependence on the dynamics of the system.
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Figure 3.2: Q vs Coupling Strength (e) for different number of intrinsically active neurons
in the system

In figure 3.1, colors represent different numbers of initial active neurons in the system.

Here, the number of active neurons is increased one by one to see when does the system exactly

changes its collective dynamics. It is observed that in this case also if the fraction of active neurons

in the system is less than or equal to 0.4, it ultimately goes to the inactive state. However, if the

fraction of active neurons is greater than 0.4, the system evolves to the active state. Hence changing

the size of the system does not change the results.

It can be concluded that irrespective of the size of the system when neurons are coupled to each

other by mean-field coupling, they display some collective dynamics depending on the initial fraction

of active neurons in the system. The system goes to the inactive state ultimately if the initial fraction

of active neurons in the system is less than or equal to 0.4 which is termed as the critical fraction.

However, there is a window of coupling strength where the system becomes active before going to the

inactive state. This width of the window where the system becomes active increases as the fraction of

active neurons is increased. While the system goes to the active state if the initial fraction of active

neurons in the system is kept more than 0.4. It can be concluded that this critical fraction of active

neurons which determines the change in the collective dynamics of the system remains constant even

if the size of the system is changed.
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Chapter 4

Effect of active oscillators in the

coupled MBH system

The mercury beating heart (MBH) system which is a chemo-mechanical oscillator is not only visually

spectacular but also a very simple experiment to perform. The only thing one needs to be careful

about is the handling of mercury which is toxic. It can be used to observe the various phenomena

exhibited by coupled oscillators. Here, it is used to see the effect of an active oscillator on the globally

coupled oscillators.

4.1 Mechanism of an autonomous MBH oscillator

When charges accumulate on the mercury surface due to its oxidation in the presence of the oxidizing

agent, there is an electric repulsion among the like charges which leads to the decrease in the surface

tension. Due to the decreased surface tension, mercury drop flattens and as it expands, its surface

area increases. As the iron nail is touched to the mercury surface, the mercury surface gets discharged

due to its reduction by iron, and Hg again contracts to its original state as the surface tension

increases. This charging and discharging and change in the surface tension leads to change in the

surface area of the mercury drop as it expands and contracts[Avn89]. The redox reactions occurring

in the system and the change in surface tension leads to contraction and relaxation of the mercury

surface like a heart, which we term as an autonomous oscillator.
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Figure 4.1: Schematic of charging and discharging of Mercury

4.2 Active and inactive oscillator

Whether the oscillator is autonomous or forced/nonautonomous, it is termed as an active oscillator if

it exhibits oscillations. However, if the oscillator shows no oscillations then it is an inactive oscillator.

4.3 Setup

Six mercury oscillators were prepared using 2 ml of Hg, 6MH2SO4, and 6MCe(SO4)2 in different

sections of the plastic tray. Each section of the tray had a platinum wire connection at the bottom

which was extended through the copper wire to connect it with other oscillators. The wire connected

to the Hg should be inert and should not form an amalgam with mercury. Therefore either platinum

or tungsten could be used to make the connection with mercury.

All the oscillators were then globally coupled through the resistors of 5 ohms. Each one of the

oscillators was connected to every other oscillator through the resistors, such that one end of all the

resistors was at one common point and their other end was connected to the individual oscillators.

The total resistance between the two oscillators was 10 ohms. The coupled MBH system was then

put in the common aqueous medium of sulphuric acid. Iron nails were placed near the oscillators in

different sections of the tray. These iron nails were then connected to common ground.
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Figure 4.2: Image of the setup.

4.4 Procedure

In the experiment, one of the oscillators was made autonomous, that is a pointed iron nail was just

touched to the periphery of the Hg to get self-sustained oscillations. The autonomous oscillator was

uncoupled from the system earlier until it gains self-sustained oscillations. Afterward, it was coupled

to all the oscillators. The effect of this autonomous oscillator was then observed on the globally

coupled system.

4.5 Results

During the oscillations of the MBH system, the electron flow between different chemical species causes

oxidation and reduction of mercury which leads to the contraction and expansion of the mercury

drop. Figure 4.3 shows a typical time series of the redox potential of the mercury drop. The rising

potential corresponds to the oxidation of mercury where charge accumulates on its surface and it

leads to an increase in the potential slowly which then reaches a maximum value. When the iron nail

touches the periphery of the mercury drop, there is a rapid fall of the potential in the time series.

The potential is zero when there is continuous contact between the iron and mercury drop. This

cycle continues as mercury oxidizes again and potential rises, reaches the maximum, and drops again

as iron reduces the mercury.
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Figure 4.3: Redox time series of an autonomous oscillator

By recording the video clip of the top view of the mercury drop, the evolution of the area of the

mercury drop can be determined. The time evolution of the area of the mercury drop is shown in

figure 4.4. When mercury oscillates, there is a change in its radius and thus in its surface area, as it

expands and contracts which is shown in part (a) of figure 4.4, we term this oscillator as an active

oscillator. Whereas if the area of the mercury drop remains constant with time and there are no

oscillations in the MBH system, we term it as an inactive oscillator as shown in part (b) of figure

4.4.

Figure 4.4: Area evolution of an active (a) and an inactive (b) MBH oscillator

The six MBH oscillators were globally coupled to each other through the resistors and one of them

was made active which we call as an autonomous oscillator. It was observed that one autonomous

oscillator triggered the oscillations in all other oscillators which were earlier inactive. But, since the

iron nails were not touching the mercury drops in the case of the rest of 5 MBH oscillators, these

oscillators are now forced or non-autonomous oscillators.
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The redox time series for the autonomous and one of the nonautonomous oscillators, which were

earlier inactive is shown in figure 4.5. It could be seen that the inactive oscillator has become active

and the phases of both the oscillators have synchronized.

As can be seen in figure 4.5, the potential of the autonomous one however completely comes to

zero as the mercury drop touches the iron nail, but for the nonautonomous one, the potential does

not go to zero.

Figure 4.5: Redox time series of an autonomous oscillator and one of the representative
inactive oscillator which became nonautonomous/forced oscillator due to the forcing of the
active oscillator.

The redox time series of two nonautonomous oscillators is as shown in figure 4.6. These two also

go to the active state and are phase synchronized. As these two are forced oscillators, their phases

are the same.

Figure 4.6: Redox time series of two nonautonomous oscillators

23



It can be concluded that if six MBH oscillators are placed in the common aqueous solution,

one autonomous MBH oscillator could trigger oscillations in all other oscillators. All the oscillators

would converge to the active state and become phase synchronized. Therefore, one or more than

one autonomous oscillators in the system could drive all the globally coupled oscillators to the active

state.

4.6 Simulating MBH system using the FHN model

In the MBH system, it is observed that one autonomous oscillator could trigger oscillations in the

rest of the oscillators. This system is modeled using the FHN model[Fit61] which is also an example

of a relaxation oscillator.

We first try to simulate the experimental results by taking 6 oscillators coupled to each other by

mean-field coupling.

The dynamics of the system is given by the equations:

dvi
dt

= vi −
vi

3

3
− ωi + Iext + e(v̄ − vi)

τ
dωi
dt

= vi + a− bωi
(4.1)

Here e is the coupling strength, v is the membrane potential, ω is the recovery variable, Iext is

the external stimulus, and a and b and τ are dimensionless, positive and used for the time scale and

kinetics of the recovery variable.

For active state of neurons we have used the parameters:

a = 0.7, b = 0.8,
1

τ
= 0.08, Iext = 1.0

For inactive state of neurons we have used the parameters:

a = 0.7, b = 0.8,
1

τ
= 0.08, Iext = 0.1

This differential equation was solved using the 4th order Runge-Kutta method. Initially, out of

six oscillators, one oscillator is selected as an active oscillator and the others are kept inactive. Then,

the number of active neurons is increased in the system and the collective dynamics is observed.
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Figure 4.7: Q (final fraction of inactive neurons) vs Coupling Strength (e) for different
number of intrinsically active neurons in the system

It can be observed from the figure that one active neuron can drive all other coupled neurons

to the active state. As the number of active neurons is increased, the system goes to the active

state at much lower coupling strength. Hence the results are the same as we observed in the MBH

experiment.

4.7 Size dependence

Now, instead of six neurons,100 neurons are coupled to each by mean-field coupling.

Figure 4.8: Q (final fraction of inactive neurons) vs Coupling Strength(e) for different frac-
tions (f) of intrinsically active neurons in the system

Here, f denotes the initial fraction of active neurons in the system.
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As the size of the system is increased, it still goes to the active state, the coupling strength at

which the system becomes active decreases as the fraction of active neurons is increased. However,

with a very low fraction of active neurons, that is, 0.1, at coupling strength 0.79, Q starts increasing

and goes to 1 at e = 0.8. The system becomes inactive, that is Q becomes 1, at e = 0.8.

In the MBH experiment, we could only do the experiment with six oscillators, and there the

minimum fraction of active neurons was 1
6 , which is 0.17. So, we could not verify the collective

dynamics of the system for 0.1 fractions of active neurons. It is really very difficult to perform

the experiment with 100 oscillators to see whether the same phenomenon will be observed in the

experiment. We could, of course, do the experiment with ten oscillators while keeping one oscillator

active but due to technical difficulties we could not perform the experiment for more than eight

oscillators.

But, we can say that this model is a better fit for the MBH system than the Chialvo map.

From our experiment, it could be concluded that in the MBH system, one oscillator could trigger

the oscillations in the whole system. This system was then modeled using the FHN model which

gave the same results for the six oscillators as observed in the experiment, that is the all neurons

became active. However, for the system size of 100 neurons, it was observed that for the fraction

of active neurons less than or equal to 0.1, the system goes to the inactive state at high coupling

strength. This observation could not be verified experimentally due to the technical difficulties but

it could be said that the FHN model is the better fit to model the MBH system than the Chialvo

map. However, for the fraction of active neurons greater than 0.1, the system goes to the active

state. This result is similar to the Chialvo map result where neurons were coupled to each other by

mean-field coupling in the sense that there was a critical value of the fraction of active neurons (f =

0.4) in the system above which only the system goes to the active state. But, the FHN model gives

us the results closer to our experiment. That’s why it is a better fit.
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Chapter 5

Emergent patterns in two coupled

neuronal sub-populations.

Emergent phenomena have earlier been studied in two interacting populations of model neurons where

the interacting populations are in different dynamical domains[KS15]. The idea behind studying such

a system is that our brain is composed of neurons and the interacting neuronal groups could be in

different dynamical domains. Here, we consider two interacting sub-populations of model neurons

where the local dynamics of these neurons is determined by the FHN model. The neurons in each

sub-population can be active or inactive depending on the parameters of the governing differential

equations. We try to study how one group influences the dynamics of the other as a function of

coupling strength, connection density, and population size.

5.1 Model

The local dynamics of the system is determined using the FHN model. We consider a network

of neurons where each node denotes our model neuron whose dynamics is determined by a set of

differential equations given below:

dvi
dt

= vi −
vi

3

3
− ωi + Iext

τ
dωi
dt

= vi + a− bωi
(5.1)

Here v is the membrane potential, ω is the recovery variable, Iext is the external stimulus, and

a and b and τ are dimensionless, positive parameters and used for the time scale and kinetics of the

recovery variable.

Now, we consider two sub-populations denoted by A and B. The neurons in sub-population A are

active while in sub-population B are inactive. The intra-group and inter-group coupling strengths

are e1 and e2 respectively. The dynamics of the interactive sub-populations A and B is governed by

the following equations :

27



dviA
dt

= viA −
vA

i3

3
− wiA + IA + e1(v̄A − viA) +

c∑
j=1

A[i, j]
e2
c

(vjB − v
i
A)

dωiA
dt

=
1

τ
(viA + a− bωiA)

dviB
dt

= viB −
vB

i3

3
− wiB + IB + e1(v̄B − viB) +

c∑
j=1

B[i, j]
e2
c

(vjA − v
i
B)

dωiB
dt

=
1

τ
(viB + a− bωiB)

Here, c = number of connections of an individual neuron in the other sub-population. The value

of parameters used are: a = 0.7, b = 0.8, 1τ = 0.08, IA = 1.0, IB = 2.0 and e1 i.e. the intra-group

coupling is kept constant at 0.5.

We consider a unidirectional inter-group coupling here. A and B matrices are formed based on

connection probability, for example, for connection probability (ρ) = 0.1, we select a random number,

r between 0 and 1. If r < 0.1 then we put A [i, j] = 1. Now, these equations are solved using RK4

by taking dt = 0.01. After leaving (1000/dt) transients, we evolve the system for (500/dt) steps and

record the time series of each neuron of both the sub-populations. We find the amplitude (i.e. [global

maxima - global minima] of the time series) of each neuron of a sub-population and see that the

amplitude of each neuron in a sub-population comes out to be almost same for a set of parameters.

So, we average over all the amplitudes to find the averaged amplitude of a sub-population.

5.2 Results for population size (50,3)

In sub-population A there are 50 active neurons while in sub-population B there are 3 inactive

neurons. Now the inter-group coupling (e2) and the connection probability (ρ) are varied with a step

of 0.01 and averaged amplitude is recorded for each sub-population.

(a) sub-population A (b) sub-population B

Figure 5.1: Variation of the amplitude of each sub-population w.r.t. e2 and ρ for population
size (50,3)
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It could be seen that within the active sub-population A the amplitude starts decreasing at

moderate values of ρ and higher values of e2. As the value of ρ is further increased, the window

of amplitude death becomes wider at relatively lower values of e2. Thus, increasing the number of

connections between the two sub-populations aids the amplitude death. While in the inactive sub-

population B, the group is inactive at less number of connections, but as the connection probability

is increased, the sub-population becomes active in a region of moderate ρ and e2. As the connection

probability is increased beyond 0.6, the amplitude starts decreasing at higher inter-group coupling

strength. Amplitude death is aided by increasing ρ and as the ρ is increased, the amplitude death

occurred at relatively low values of e2.

Therefore, even if there are more active neurons (50) in sub-population A than inactive (3)

neurons in sub-population B, both populations go to inactive state at high values of ρ and e2.

(a) sub-population A (b) sub-population B

Figure 5.2: Effect of rewiring of connections on amplitude variation of each sub-population
w.r.t. e2 and ρ for population size (50,3)

Now the connections are rewired after every 10 dynamical updates (i.e. at t =0.1, starting from

t =0, with dt =0.01) in both populations.

Rewiring the connections doesn’t have much effect on amplitude death. The rewired connections,

however, give a smooth transition to the amplitude death window in both populations.
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(a) sub-population A (b) sub-population B

Figure 5.3: Variation of the amplitude w.r.t. e2 and ρ for each sub-population of population
size (50,3) where external impulses are randomly distributed

Now, I1 and I2 are randomly distributed over a range of values rather than keeping them constant.

I1 is kept in the range; [0.4,1.4] where neurons are active while I2 lies in the range; [2,3] where neurons

are inactive.

Uniform random distribution of the external impulse gives a larger window of amplitude death.

The window of amplitude death occurs at relatively moderate values of ρ and e2.

(a) sub-population A (b) sub-population B

Figure 5.4: Variation of the amplitude of each sub-population for population size (50,3)
w.r.t. e2 and ρ where connections are rewired while randomly distributing the external
impulses

Now, the connections are rewired after 10 dynamical updates while taking random uniform

distributions of I1 and I2 over the above-defined range.

Rewiring the connections gives smoother boundaries on the transition of populations to the

inactive state.
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Hence, in the population size (50,3), high values of ρ aided the amplitude death and made the

window wider. As ρ is increased in the window of amplitude death, the value of e2 at which amplitude

death occurred decreases.

5.3 Results for population size (3,50)

In sub-population A there are 3 active neurons while in sub-population B there are 50 inactive

neurons. Now the inter-group coupling (e2) and connection probability (ρ) are varied with a step of

0.01 and averaged amplitude is recorded for each sub-population.

(a) sub-population A (b) sub-population B

Figure 5.5: Variation of the amplitude of each sub-population w.r.t. e2 and ρ for population
size (3,50)

There is amplitude death even at very low ρ and moderate e2 for sub-population A. However, the

window of amplitude death shrinks as the connections and coupling strength are increased but ulti-

mately the population becomes inactive even at higher connection probability and coupling strength.

Since the size of inactive sub-population B is very large as compared to active sub-population

A, at low values of ρ and e2 the sub-population B remains inactive, but as the connections are

increased there is a window where all neurons become active between low to moderate coupling

strength. However, at higher coupling strengths, the population B remains inactive but more number

of connections suppressed the amplitude death window.
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(a) sub-population A (b) sub-population B

Figure 5.6: Effect of rewiring of connections on amplitude variation of each sub-population
w.r.t. e2 and ρ for population size (3,50)

Now the connections are rewired after every 10 dynamical updates (i.e. at t =0.1, starting from

t =0, with dt =0.01) in both populations.

Rewiring the connections doesn’t have much effect on amplitude death. The rewired connections,

however, give a smooth transition to the amplitude death window in both populations.

(a) sub-population A (b) sub-population B

Figure 5.7: Variation of the amplitude w.r.t. e2 and ρ for each sub-population of population
size (3,50) where external impulses are randomly distributed

Now, I1 and I2 are randomly distributed over a range of values rather than keeping them constant.

I1 is kept in the range; [0.4,1.4] where neurons are active while I2 lies in the range; [2,3] where neurons

are inactive.

Uniform random distribution of the external impulse gives a larger window of amplitude death.

The window of amplitude death occurs at relatively moderate values of ρ and e2 and the active

window where all neurons are active shrinks in both populations.
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(a) sub-population A (b) sub-population B

Figure 5.8: Variation of the amplitude of each sub-population for population size (3,50)
w.r.t. e2 and ρ where connections are rewired while randomly distributing the external
impulse

Now, the connections are rewired after 10 dynamical updates while taking random uniform

distributions of I1 and I2 over the above-defined range.

Rewiring the connections gives smoother boundaries on the transition of populations to the

inactive state.

Hence, in the population size (3,50), high values of ρ suppressed the amplitude death and made

the window narrower. As ρ is increased in the window of amplitude death, the value of e2 at which

amplitude death occurred increases.

5.4 Results for population size (10,16)

In sub-population A there are 10 active neurons while in sub-population B there are 16 inactive

neurons. Now the inter-group coupling (e2) and connection probability (ρ) are varied with a step of

0.01 and averaged amplitude is recorded for each sub-populations.
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(a) sub-population A (b) sub-population B

Figure 5.9: Variation of the amplitude of each sub-population w.r.t. e2 and ρ for population
size (10,16)

In sub-population A, amplitude death occurred in the window of moderate e2, i.e. around 0.6

and low ρ. The active sub-population undergoes amplitude death over moderate inter-group coupling

strength and remain inactive at high ρ and e2.

While in sub-population B, already inactive neurons remain inactive at low and above moderate

values of e2. However, there is an active window in between where all neurons become active.

(a) sub-population A (b) sub-population B

Figure 5.10: Effect of rewiring of connections on amplitude variation of each sub-population
w.r.t. e2 and ρ for population size (10,16)

Now the connections are rewired after every 10 dynamical updates (i.e. at t =0.1, starting from

t =0, with dt =0.01) in both populations.

Rewiring the connections doesn’t have much effect on amplitude death. The rewired connections,

however, give a smooth transition to amplitude death in both populations.
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(a) sub-population A (b) sub-population B

Figure 5.11: Variation of the amplitude w.r.t. e2 and ρ for each sub-population of population
size (10,16) where external impulses are randomly distributed

Now, I1 and I2 are randomly distributed over a range of values rather than keeping them constant.

I1 is kept in the range; [0.4,1.4] where neurons are active while I2 lies in the range; [2,3] where neurons

are inactive.

Random distribution of external impulse over a range of values makes the amplitude death

window wider. Amplitude death occurred at relatively low values of inter-group coupling strength

in sub-population A.The active window in sub-population B became narrower and the two windows

of amplitude death widened.

(a) sub-population A (b) sub-population B

Figure 5.12: Variation of the amplitude of each sub-population for population size (10,16)
w.r.t. e2 and ρ where connections are rewired while randomly distributing the external
impulse

Now, the connections are rewired after 10 dynamical updates while taking random uniform

distributions of I1 and I2 over the above-defined range.
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Rewiring the connections gives smoother boundaries on the transition of populations from the

active state to the inactive state and vice versa.

Therefore, it could be concluded that the amplitude death window occurred in all three popula-

tion sizes independent of the size of active sub-population.In the population sizes (3,50) and (10,16)

inactive sub-population sizes were larger and amplitude death occurred above intermediate values of

inter-group coupling strength and at low values of ρ.

While in the population size (50,3), despite the large size of active sub-population, counter-

intuitively there is still an amplitude death window at relatively high values of connection probability.

The population goes to the inactive state instead of the active state, the only difference is that the

amplitude death window is smaller and occurred at a higher ρ than the other two cases. Rewiring

of connections doesn’t have much effect on the amplitude death window, however, it gives smoother

boundaries at the transition of sub-populations from one state to another. Uniform random distribu-

tion of external impulse over a range of values makes the amplitude death window wider. Increasing

the number of connections between the two sub-populations aids the behavior of the smaller sub-

population i.e. if there are less active neurons then the amplitude death window will shrink and if

there are less inactive neurons then the amplitude death window becomes wider.
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Chapter 6

Conclusion and Future Work

6.1 Concluding remarks

In this thesis, the effect of active neurons is studied in a network of coupled neurons where each

neuron is modeled using discrete and continuous-time units. First of all, a ring of neurons was

coupled to their nearest neighbors where the Chialvo map was considered as the local dynamical

unit. It was observed that for different fractions of active neurons in the ring, all neurons eventually

go to an inactive state at a critical value of coupling strength. However, for the mean-field coupling,

the system goes to the inactive state if the fraction of active neurons is less than or equal to the critical

fraction i.e. 0.4. Whereas the system goes to the active state if the fraction of active neurons in

the system is kept more than the critical fraction. In both nearest neighbor and mean-field coupling

cases, the results are independent of the size of the system and the critical value of coupling strengths

and active fractions in the system remain constant even if the size of the system is changed.

Then experiments were performed to see the effect of the active oscillator in a globally coupled

MBH system and it was observed that one or more than one autonomous MBH oscillator could

trigger oscillations in all other oscillators. All six oscillators go to the active state and become phase

synchronized. This system was then simulated by taking a continuous-time FHN model where a

group of neurons was coupled by mean-field coupling. It showed similar results as of the experiment

for the six oscillators but a slight deviation for larger system sizes. It was observed that for the

fraction of active neurons less than or equal to 0.1, (which is similar to the critical fraction of

Chialvo map in the mean-field coupling case) the system goes to the inactive state at high coupling

strength which could not be verified by experiment due to the technical difficulties. The FHN model

gave the results similar to the experiment hence was a better fit than the Chialvo map for the

MBH coupled system. Lastly, two interacting sub-populations of model neurons where the local

dynamics of these neurons is determined by the FHN model were considered in different dynamical

domains. One sub-population was considered active while other was considered inactive and the

effect of population size, inter-group coupling strength, rewiring of connections, and the number of

connections was observed. Amplitude death occurred in all three population sizes, (50,3),(3,50), and

(10,16). In population sizes where inactive sub-population was larger, amplitude death occurred at

low ρ while in population size where active sub-population was larger amplitude death occurred at

higher values of ρ. As the number of connections is increased, the behavior of smaller sub-population

persists. If the smaller sub-population is active, amplitude death window shrinks while if the smaller
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sub-population is inactive, the amplitude death window widens as the number of connections is

increased.

Rewiring of connection didn’t have much effect on the dynamics of the system while the uniform

random distribution of external impulses over a range of values widened the amplitude death window.

Therefore, in this thesis, we have observed the collective dynamics of the different systems of

coupled model neurons that were intrinsically active or inactive and examined to which state the

system converges for different parameter values.

6.2 Future Work

We can extend our system to multi-dimensional networks and study the effect of coupling strength,

size of intrinsically active and inactive networks, number of connections, and rewiring of connections

between the different networks. Therefore, the collective dynamics of multi-dimensional networks

could further be studied.

It would be interesting to perform experiments to see the emergent patterns in multi-dimensional

networks.

—————————————————————-
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