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Abstract

Electrical activity of a neuron is regulated by the unequal distribution of several ions across

its membrane. The standard biophysical model of a neuron was given by Hodgkin and

Huxley (HH), who used coupled differential equations involving the differential conduc-

tances of the Sodium and Potassium ion channels and the input current as parameters. The

model correctly describes the typical voltage impulse dynamics (Action Potential) across

the neuronal membrane. This work probes various dynamic behaviour of single neurons

at different parameter values through their long-term time course, different features of os-

cillatory behaviour, and parameter space search for transition in stability that takes place

upon changing these parameters. Subsequently, the dynamics of two HH neurons is stud-

ied that share membrane voltages through gap junction coupling, for both unidirectional

and bidirectional coupling. The dynamic behaviour is then probed for increased number of

neurons for different boundary conditions, coupling types, and strengths of coupling. The

two boundary conditions probed are - the ring (periodic boundary conditions) and the chain

(fixed boundary conditions) of neurons, with bidirectional coupling implemented in the

ring, and unidirectional coupling in the chain. The collective behaviour of these networks

of neurons is studied for different coupling strengths and input currents. Synchronization

in these neuronal networks is studied through Synchronization Order Parameter and Space

Time plots. Preliminary studies on a reverse approach of estimating parameter values from

neuronal voltage data are also reported. The results obtained in this work are discussed

from a nonlinear dynamical systems view.

xiii





Chapter 1

Introduction

1.1 Neuron as a dynamical system

Neurons exhibit different types of potentials with time and can change their ion channel

properties depending on various physio-chemical and physiological stimuli [1]. Thus, neu-

rons can be considered as dynamical systems. The dynamic behaviour of the action poten-

tial generated by a neuron depends on its various ionic properties at that given time. Many

mathematical models exist which deal with capturing this complex behaviour of neuronal

systems [2]. The complex dynamical behaviour of the neuron are replicated by nonlinear

models of coupled differential equations. The models are capable of exhibiting a vast range

of dynamics in both single and coupled neurons [2]. First, the biological properties of a typ-

ical neuron to explain the origin of the Action Potential have been explained down below.

Then, a few significant mathematical models in the field of Computational Neuroscience

with the advantages and limitations that exist for each model are discussed.

1.2 Functioning of the biological neuron

A neuron is a type of excitable cell which carries information as electrical signals through-

out the body. It has a neuronal membrane which separates ions across it. There is a gradient

of ions across this neuronal membrane with a higher concentration of potassium ions inside

the neuron and a higher concentration of sodium ions outside the neuron. There are other

ions like the Chloride ions etc. which are mostly referred to collectively as the leak ions. In

resting state conditions, there exists an electrical gradient across the neuronal membrane,

1



which renders a potential difference of approximately -70mV to the neuron. The resting

potential in the neuron is maintained by the Sodium and Potassium pumps. Upon receiv-

ing a signal from outside the neuron, the potential difference across the neuron changes,

and if it exceeds a particular level of threshold potential, then we get an action potential.

If it does not cross the threshold, we get a failed initialization called graded potential.

An action potential is an all or none mechanism, in which either the action potential is

completely generated or it is not generated at all. An action potential is essentially a de-

polarization followed by a repolarization and subsequently a hyperpolarization phase.

The depolarization phase occurs due to a rush of sodium ions into the neuron. Eventually, at

around 30mV, the Sodium channel closes, and potassium channel opens, forcing Potassium

ions to move out and thus start the repolarization phase. There is an overshoot due to the

slow closing of the Potassium ion channels, which results in the hyperpolarization phase.

This dynamics of action potential generation has been modelled with the help of various

mathematical models, and we will look at a few of these down below.

Figure 1.1: Components of an action potential (Figure 1.1 reproduced from http :

//biogeonerd.blogspot.com/2012/02/action − potentials − what − make − your −

brain.html)

2



1.3 Mathematical models of a single neuron

We discussed that the functions of a biological neuron could be modelled with nonlinear

equations. Several models already exist which recreate the behaviour of a neuron. We are

mostly interested in models of the electrical input - output membrane Voltage type. As

the name suggests, these models take input as current and give voltage as output. There

often exists a trade-off between the computational tractability of these models and their

ability to simulate real observed biological neural activity. Thus, different models are useful

in different contexts. Simpler models might be useful while creating extensive networks

requiring higher computational power, while more detailed models would be useful for

looking at smaller networks or single neurons at a higher resolution. Below are some of the

models which exist in literature.

• Hodgkin Huxley model [3] - It is a very detailed and computationally extensive model

of a single neuron and was one of the first mathematical models given. It replicates

almost all the features of neuronal excitability and is defined by four state variables

(four-dimensional state space).

• Hindmarsh Rose model [4] - A slight simplification of the Hodgkin Huxley model.

This model has a three-dimensional state space. One of the slow variables in the

Hodgkin Huxley model is approximated to its asymptotic value [5]. It is unique

because it replicates the bursting action potential behaviour that is shown in some

excitable cells.

• Fitzhugh Nagumo model [6, 7] - This model is a further simplification and only con-

sists of a two-dimensional state space. This model is obtained by further simplifica-

tions by first approximating the slow state variable (m) to its asymptotic value, thus

giving up accuracy at the short time scale [5] and by introducing an auxiliary variable

that lets us go of another variable.

• Leaky integrate and fire model [8] - This model comes at the opposite end of the

spectrum and is the least comprehensive and with the most approximations. It is

useful if very large networks are to be constructed, and one can let go of a few features

of the biological neuron for simplicity. It is not able to replicate a number of features,
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including for example, the refractory period in action potential generation of a real

biological neuron.

In this study, the Hodgkin Huxley model has been used which is described in detail in the

methods section (Chapter 2).

1.4 Definitions and Theory

The basic theoretical foundation that is used in our study on the dynamic behaviour of

Hodgkin Huxley neurons is given down below.

• Nonlinear systems are systems whose output does not change linearly with the input

and thus, these systems display extreme sensitivity to their initial conditions. Such

a system is usually represented mathematically in terms of a set of nonlinear differ-

ential equations which are often coupled. These co-ordinates of the output variables

of a non linear system collectively represent the Phase space of the system. Simi-

larly, the possible co-ordinates of the parameters collectively make up the parameter

space of the system. Looking at the phase space and the parameter space is useful

in making important inferences about the properties of the nonlinear system. An im-

portant concept when dealing with nonlinear systems is the concept of transience.

It is defined as a short period in time when the qualitative behaviour of the system

is different from the qualitative behaviour of the system at other times. A transient

is usually observed in one of the state space variables in the very beginning, and as

time passes, the system reaches its natural state for the given parameters known as

the attractor of the system [9]. All the initial conditions which make the system end

up at the same attractor state are collectively called the basin of attraction. The two

major types of attractors that are probed in this work, are the fixed point attractor

and the periodic/oscillating attractor. An interesting phenomenon that is frequently

encountered upon tracking the long term time course of these non linear dynamical

systems is the phenomenon of Bifurcations [10]. These are phenomenon in which a

small change in the input parameters dramatically changes the qualitative behaviour

(type of attractor) of the system. Thus, a bifurcation is usually accompanied with a

change in the properties of equilibrium and stability of the system.
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• Synchronization is a broad concept that can be understood as the tuning of rhythms

of oscillators due to cross-talk between them. It is one of the most important emer-

gent phenomenon arising in coupled systems [11]. The cross-talk/interaction between

these oscillators is a result of coupling between the oscillators. The coupling could be

weak or strong, depending on the effect of oscillators on each other. Synchronization

could be of different types. Two time series that are identical to each other are said

to be in Total/ Complete Synchronization [12–14]. Total Synchronization/ Com-

plete Synchronization is the strongest type of synchronization. A slightly less strong

synchronization type is the Lag Synchronization. In lag synchronization, the cou-

pled bodies are synchronized with a lag between them [14]. Phase Synchronization

is a less strict term in which the coupled bodies remain mostly uncorrelated, how-

ever, the time period of the bodies’ oscillations are equivalent [14–16]. Essentially,

in phase synchronization, the amplitude is largely uncorrelated but the phase differ-

ence between time series remains same. Phase Synchronization is a very weak type

of synchronization. The amplitude of the two time series could be different in phase

synchronization. The difference in phase between the two time series is called Phase

Lagging. Another concept in synchronization is the concept of Frequency Match-

ing. It is the phenomenon of tuning/matching of the frequencies of multiple coupled

oscillators. Meanwhile, having no relationship between the frequency spectrum of

variables is referred to as Asynchronization.

1.5 Importance and Motivation

This section highlights the importance and motivation for the following work. Additionally,

a few interesting related pieces of literature are highlighted in the following points.

• Specifically modelling single neurons and small neuronal networks based on circuits

found in lower level organisms has helped in understanding specific behavioural re-

sponses in these simple organisms. Several pieces of literature probe these behaviours

through modelling of the nervous system of these lower level organisms. Examples

of this are in modelling the part of the nervous system responsible for different cog-

nitive functions in the Jellyfish [17]. There are plenty of other examples of previous

studies which use dynamic models to understand the neural basis of behaviour [18].
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• Apart from modelling specific nervous systems and recreating these simple behaviours

of lower level organisms, simple general models of the single neuron and their col-

lection can be extremely useful in understanding the general properties of the neuron

and the synapse. The underlying dynamic principles which govern neuronal circuits

remain the same. Thus, modelling is essential to get a better understanding of the

general properties of the neuron and its collection besides looking at specific func-

tions of neuronal networks in certain organisms.

• Rhythmic activity of the brain is essential for various cognitive functions to take

place. The brain exhibits this large scale rhythmic behaviour which is captured

through techniques like the EEG and the MEG. This rhythmic activity visible glob-

ally in the brain or in certain parts of the brain is a result of the synchronization

of neuronal networks. Alpha and Gamma EEG rhythms are a result of partial syn-

chrony in cortical brain areas. Excessive synchronization in brain regions could lead

to seizures and epilepsy. Thus, understanding the synchronization of brain networks

is of primary importance [19].

• The role of the electrical coupling in order to drive synchronization has been com-

paratively less studied. Instantaneous synchronization is needed in fight or flight

responses of organisms living in dangerous environments. Electrical coupling being

faster than chemical coupling enables signals to travel faster. This is particularly true

for smaller organisms like in rats to speed motor responses [20]. Comparatively less

has been studied about the role of the electrical synapse/ gap junction coupling in

synchronization, and modelling can help gain insights into this.

1.6 Organization of the thesis

This work studies the dynamic behaviour of single and coupled neurons at different param-

eter values. Chapter 2 deals with the HH model of the single neuron and an introduction to

methods of coupling neurons through gap junction coupling. The method used to map the

single neuron parameter space is discussed, and then the chapter ends with discussion on

measuring synchronization in multiple coupled neurons. These methods and models dis-

cussed in Chapter 2 are then used for probing the dynamic behaviour of single and coupled

6



neurons, and the results obtained by them are discussed in the following chapters. Chapter

3 deals with the results for the effect of different parameters on the dynamics of the single

neuron. Chapter 4 deals with results obtained in two neurons coupled through gap junction

coupling, and chapter 5 discusses results for multiple coupled neurons and how changing

the number of neurons (along with other parameters) affects synchronization. Chapter 6

deals with methods to simulate noisy data and subsequently the theory of parameter es-

timation in this noisy data using Bayesian inference. This would link the modelling and

the data analysis together. Finally, chapter 7 contains further discussions on results and

conclusions.
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Chapter 2

Models and Methods

In this study, our focus is on understanding the dynamics of single neurons and small net-

works of electrically coupled neurons. As discussed in section 1.3, the Hodgkin Huxley

model is a really detailed and computationally extensive model and it enables one to repli-

cate most of the features of neuronal excitability shown in a biological neuron. Thus, the

HH model is particularly useful in modelling smaller networks of neurons and so we have

used it for our purposes. A detailed background on the Hodgkin Huxley model is given in

section 2.1 down below.

2.1 The Hodgkin Huxley Model

Hodgkin and Huxley gave the first comprehensive mathematical model which replicated the

results and data that they had obtained on the giant squid neuron in a series of papers prior to

that [3]. The primary aim of these mathematical models is to replicate the functioning of the

neuron and be able to generate action potentials properly in a biological context. Hodgkin

and Huxley treated the neuron as a circuit with different parts of the circuit representing

different parts of the neuron. The cell membrane was represented by a capacitor (Cm),

the electrochemical gradients (VNa, Vl, VK) were represented as electrochemical batteries

supplying a potential difference (Vm) across the capacitor and the signal to the cell was

modelled as an external input current (I) given to the circuit. The ion channels are modelled

as resistors of variable conductance as their conductance (gNa, gK , gl) is a function of time

and potential difference. The schematic for the circuit is given in Figure 2.1.

The following are the equations for the model:-
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Figure 2.1: The equivalent circuit for Hodgkin Huxley model of the neuron

1. Cm
dVm

dt
= I − gl(Vm − Vl)− ḡNam

3h(Vm − VNa)− ḡKn4(Vm − VK)

2. dn
dt

= αn(Vm)(1− n)− βn(Vm)n

3. dm
dt

= αm(Vm)(1−m)− βm(Vm)m

4. dh
dt

= αh(Vm)(1− h)− βh(Vm)h

5. αm = 0.1 (Vm+35.0)

1−e(− (Vm+35.0)
10.0

6. βm = 4.0e( − (Vm+60.0)
18.0

7. αh = 0.07e( − (Vm+60.0)
20.0

8. βh = 1

1+e
(−Vm+30.0)

10.0

9. αn = 0.01 Vm+50.0

1−e(− (Vm+50.0)
10.0

10. βn = 0.125e
(−Vm+60.0)

80.0

These equations mathematically describe the Hodgkin Huxley model of a neuron. The first

equation is just the Kirchhoff’s law applied on the circuit. Equations 2 to 4 describe the
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opening and closing of gates of the ion channels. Equations 5 to 10 describe the values of

constants used in the first four equations. These were obtained by Hodgkin and Huxley by

analytically fitting a curve to the data. The first four equations describe the dynamics of

the state variables (Vm, m, n, and h). The standard values taken for the constants are as

follows [3]:-

The capacitance value, Cm = 1.0 µV , The reversal potential for Sodium for substituting

in our first equation is, VNa = 115.0 mV , reversal potential for Potassium, VK = −12.0

mV , reversal potential for leak ions is Vl = 10.613 mV . The value for leak conductance,

Gl = 0.3 mS
cm2 .

Note that in the original paper, Hodgkin and Huxley worked on the giant squid neuron, and

thus, the maximal Potassium and Sodium Conductance were also taken as their standard

values. Maximal Sodium Conductance (ḡNa) is taken as 120.0 mS
cm2 and maximal Potassium

conductance (ḡK) is taken as 36.0 mS
cm2 in the Hodgkin Huxley paper. However, we take

these two maximal conductances as variable parameters and see their effects on our model’s

output voltage (Vm).

Note that the n-gate (second equation) controls the dynamics of the Potassium channel.

The m-gate (third equation) and the h-gate (fourth equation) control the dynamics of the

Sodium channel. We now look at the dynamics of Sodium and Potassium gated channels

individually.

• Sodium Channel - The dynamics of the Sodium gated channel are governed by the

m-gate and the h-gate. The dynamics, in fact, depends on the product of powers of

m and h. This means that if either of the gates, m-gate or the h-gate are shut, the

Sodium channel will remain shut. The h gate is open in the resting state. However,

the m-gate is shut. This renders the Sodium gated channel, the off configuration for

the resting state of the neuron. When the neuron gets depolarised, the m-gates start

opening up rapidly. This opens up the Sodium gated channels. This is known as the

open/ activated configuration for the Sodium channel. Subsequently, the channel

goes into the inactivated state as the h-gate shuts. The shutting of the h-gate starts

even before repolarization has started. Subsequently, the m-gates also shut in the

repolarization phase. There is an absolute refractory period, which exists because

the h-gate remains shut even if the neuronal membrane is depolarized in this period.

• Potassium channel - The dynamics of the potassium channel is controlled with the
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n-gate. Its dynamics are slower than the dynamics of the Sodium gates. Upon depo-

larization, n-gates slowly open and they slowly close upon repolarization. This gives

a slow dynamics to the Sodium Channel.

The collective work of these gates, and the above given equations govern the dynamics of

a neuron.

2.2 Modelling of coupled neurons

This study includes work on neurons connected to each other with the help of electrical

synapses along with analysis of single neuron dynamics. Gap junction coupling is the most

common way in which electrical synapses couple multiple neurons. The first evidence of

current flow between cells dates back to around the 1950s [21]. Since then we also know

about their presence in brains of mammals [22]. Gap junctions work because they connect

the inner portions of nearby cells through many channels. Electrical current and other very

small molecules pass through this gap junction. Some gap junctions, however, allow the

passage of larger ions as well. They are very useful for synchronizing the electrical activity

of the neurons.

There are certain properties that are followed by the transmission of signal via gap junction

coupling. Firstly, there is a delay in the signal at the postsynaptic neuron [23]. Also, it is to

be noted that electrical synapses transmit information significantly faster than their coun-

terpart chemical synapses, especially in cold blooded animals. Thus these synapses are

extremely useful in cold blooded animals requiring a quick motor response. In hot blooded

mammals, however, the speed of chemical transmission is really fast as well.

The equations for the single Hodgkin Huxley neuron given in the previous section get

changed by the introduction of electrical coupling between neurons. In the first equation,

we have the currents due to the Sodium ions, the Potassium ions, and the leak ions that

govern the dynamics of the potential difference across the capacitance (cell membrane).

All these are referred to as ionic currents (Iionic). As can be clearly seen, the first equation

comes from Kirchhoff’s laws and describes the total current flowing across the capacitor.

As we have an additional current due to the electrical synapse, this equation changes to in-
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clude that term. Note that all the other equations except the first equation remain unchanged

upon introducing the electrical synapse. This is because the other equations describe the

inner workings of a single neuron, and those remain unchanged due to the gap junction cou-

pling. The new set of equations which govern a neuron coupled with an electrical synapse

are given by

1. Cm
dVm

dt
= I − Iionic − Ielectrical

2. dn
dt

= αn(Vm)(1− n)− βn(Vm)n

3. dm
dt

= αm(Vm)(1−m)− βm(Vm)m

4. dh
dt

= αh(Vm)(1− h)− βh(Vm)h

Iionic refers to current due to all ions, and Ielectrical refers to the current due to the electrical

synapse.

Using a similar analogy of neuronal systems being treated as an electrical circuit taken by

the Hodgkin Huxley model, we define the current due to gap junction coupling, Ielectrical

as a product of the conductance value between the two neurons and the Voltage difference

between the two neurons (gC(V − Vadjacent)). Here, Vadjacent is the voltage of neurons that

affect the neuron we are modelling through electrical coupling. There are two types of cou-

pling that we probe in this work. They are the unidirectional coupling and the bidirectional

coupling. A schematic representation of the two types of coupling is given in Figure 2.2.

The blue arrows denote the direction of coupling. Further details and equations governing

the dynamics for the coupled neurons are given in Chapter 4 (two coupled neurons) and 5

(multiple coupled neurons).

2.3 Methods used to assess the dynamic behaviour of sin-

gle and coupled neurons

In this section, we give a brief introduction and cite literature on the qualitative and quantita-

tive methods used for parameter analysis in single neurons and for studying synchronization

in coupled neurons.
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Figure 2.2: (Above) Illustration of unidirectional coupling in 4 neurons arranged in chain

arrangement (Fixed boundary conditions). (Below) Illustration of bidirectional coupling in

6 neurons arranged in a ring arrangement (Periodic boundary conditions).

2.3.1 Two Parameter plots

For carrying out the parameter analysis on the Hodgkin Huxley neuron, we divided the pa-

rameter space for our model into regions of qualitatively different dynamic behaviours. In

our case, we have three parameters. To visualize these regions and to note down properties

associated with these regions better, we constraint one of the parameters and just look at a

2-D plot with both axes of the plot representing the two non constrained parameters. We

refer to this as a two parameter plot. These plots can be used to identify regions of qualita-

tively different behaviours in the parameter space. We could also incorporate information

on how the third parameter changes the region and its properties by changing the value of

the constrained third parameter and then again looking at the behaviour of the model at dif-

ferent values of the other two parameters. By identifying the new region, we discover how

changing the third parameter has changed the region. This process of identifying regions of

qualitatively different behaviour through two parameter plots requires us to generate plots

of the output value for parameter values covering the part of the parameter plane in ques-

tion. This means we need to generate thousands of plots to cover the region of the parameter

plane. We need to generate a plot for each parameter value set, and we need to do this by

changing the parameter values to cover the whole plane. The entire process of how these

plots are generated is given down below. We demonstrate the process of generating two

parameter plots when we have three possible parameters. The steps of the process are
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1. One parameter out of the three parameters is fixed. Now, we are constrained to move

along a 2-D plane in the parameter space.

2. We now temporarily fix the second parameter too. Now we are constrained to move

along a line parallel to the third parameter in the parameter space.

3. We run a loop in our code to keep changing the third parameter by small amounts, so

that we cover the line that we were constrained to move on. We generate hundreds

of plots to map the line completely so that we do not miss if there is a change in the

dynamic behaviour at some point along this line.

4. We repeat this by changing the value for the second parameter. We keep moving along

different lines in our 2-D plane. This way, we have mapped our two parameters and

we know which region in this two parameter plane corresponds to what behaviour.

5. We do this for different values of the first (constrained) parameter and note down

what happens to the region.

Figure 2.3: Stable self sustained action potentials (Sustained periodicity)

The above-mentioned steps essentially separate the two-parameter space into regions of

different dynamical activity. The type of dynamics focused on are (i) Continuously spiking

(Sustained periodicity), (ii) Steady state attractor (Fixed point dynamics), and (ii) Damped

oscillations leading to steady state (damped oscillations). These three types of dynamics

can be further classified into two classes:-

• Sustained action potentials - Oscillation of type (i) (Sustained periodicity). When the

system shows continuous spiking behaviour in the long run, we term it as stable self
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sustained action potentials. Figure 2.3 illustrates the output of the Hodgkin Huxley

model for parameter values that produce stable self sustained action potentials.

• Stable dynamics/ Damped Oscillations - Oscillations of type (ii) (Fixed point dynam-

ics) and type (iii) (Damped oscillations) as both of these display stable dynamics in

the long run. These correspond to the system showing either resting potentials or

graded potentials in the long run. What this means is that even if there are a few

action potential peaks in the beginning as transient and then the system decays to

resting potentials or graded potentials later, we classify these as stable fixed point

dynamics/ Damped potentials. An illustration (Figure 2.4) showing two examples of

stable behaviour is given.

Figure 2.4: Asymptotically stable dynamics with an illustrative example of fixed point

dynamics on the left and an example of damped oscillations leading to ultimately stable

dynamics on the right.

2.3.2 Space Time plots

Space time plots are generated with the heatmap function in python Jupyter. Space time

plots act as a qualitative way to assess synchronization in multiple coupled neurons. Fol-

lowing is an example of a space time plot (Figure 2.5) for ten coupled neurons. This figure

is just to illustrate how a space time plot looks like. Time in msec is denoted on the X-axis.

On the Y-axis, we have the neuron number, and there is a scale adjacent to the figure that

indicates the intensity/ voltage. Thus, a brighter patch of light means that a neuron is firing.

A darker patch means that the neuron is at low voltage (around resting potential). For neu-

ronal networks to be synchronized, the light and dark patches must align along the Y-axis.
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That would indicate that all neurons are firing at the same time.

Figure 2.5: Illustration of a Space Time plot for values of I = 10.0 mA; gC = 0.1 mS
cm2

As can be seen in the figure, the neuronal firing is not synchronized completely as all neu-

rons do not fire at the same time. The figure would indicate higher levels of synchronization

if all the light patches were more aligned along the Y-axis.

2.3.3 Synchronization Order Parameter

A quantitative way to measure and attribute a numerical value to synchronization is through

a parameter called the synchronization order parameter. The level of Synchronization de-

pends on a lot of factors and the values of the parameters. This quantity may also be very

useful in ascertaining the point at which transition from phase synchronous behaviour to

complete synchronous behaviour occurs. This quantity was first used in the paper [24] and

has since also been used in other works where it is used to measure synchronization in

coupled cells [25]. Synchronization order parameter (R) is described as -

R =
< M2 > − < M >2

[< z2i > − < zi >2]
(2.1)

Note that the symbol <> denotes temporal averaging, and the symbol [ ] denotes spatial

averaging. M is the spatial average over all cells for a particular time point. The Synchro-

nization order parameter can have values between 0 and 1 (included). Higher values of R

refer to higher synchronization.
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Chapter 3

Dynamics of Single Neuron on Variation

of Parameters

The Hodgkin Huxley model, as given in Section 2.1, is a realistic biophysical description of

the ion channel activities in the neuron. The ion channels that are important in maintaining

the voltage across the membrane are Sodium and Potassium ion channels as given in the

first equation of the HH model:-

Cm
dVm
dt

= I − gl(Vm − Vl)− ḡNam
3h(Vm − VNa)− ḡKn4(Vm − VK) (3.1)

where I is the input current, ḡNa is the maximal conductance of the Sodium channel, ḡK

is the maximal conductance of the Potassium channel, gl is the conductance of the leak

channels, Cm is the value of the capacitance and Vl, VNa, VK are the reversal potentials for

leak ions, Sodium and Potassium ions respectively. Vm is the value of the output Voltage

across the capacitor.

To study the dependence of the neuronal dynamics on parameters, we chose three parame-

ters, which are - (i) The maximal conductance of the Sodium channel (ḡNa), (ii) The maxi-

mal conductance of the Potassium channel (ḡK), and (iii) The input current (I). The other

parameters are kept constant. We vary the three parameters (ḡNa, ḡK and I) and record the

temporal dynamics of the output Voltage variable (Vm) in the HH model for a long time to

assess its stability. The aim is to divide the parameter space into regions of qualitatively

different dynamical behaviours.

As mentioned in subsection 2.3.1, we look for two types of long-term behaviour in the time

series of the membrane potential (Vm). So the initial transient behaviour is not considered
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while assessing the qualitative behaviour of the system. Here we present the results for the

long-term dynamical behaviour of the neuron under different parametric conditions. Since

we are considering the long-term behaviour of the system, we take the input current at a

constant value for the whole time period. Based on this, we classify the activity of a single

neuron into two types - (A) stable (or, fixed point) with or without damped oscillations, and

(B) sustained oscillations (periodic). For every combination of parameters, the long-term

dynamics in Voltage was noted and grouped into any one of the two classes. Illustrations

for visually depicting these have been given in Figures 2.2 and 2.3 in subsection 2.3.1.

Along with the type of dynamics, the frequency and amplitude of the action potentials are

also important properties to be studied. First, we ascertain the dependence of the frequency

of firing in the HH neuron on the constant input current parameter (I) given to the neuron

(see Eqn. 3.1). Figure 3.1 is a plot where the Y-axis depicts the number of action potentials

in a 125 msec interval and the X-axis depicts the corresponding constant input current

value. Here, the ḡNa and ḡK values are chosen such that they lead to stable sustained action

potentials/ oscillations for the tested input current range (X-axis).

Figure 3.1: Dependence of frequency of action potential generation on input current value

for value of ḡK = 36.0 mS
cm2 and ḡNa = 120.0 mS

cm2

The figure clearly shows that the spiking frequency of action potential increases with in-

creasing input current.
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3.1 The Potassium conductance (ḡK) - Input current (I)

parameter plot

To understand the 3-dimensional parameter space, the first step we took is to plot the spike

dynamics by changing two parameters (ḡK and I) with the third parameter (ḡNa) kept at a

constant value. This is then repeated with a different value of the third parameter. That can

give some idea of how the parameters affect the type of the spike dynamics.

3.1.1 Dividing the ḡK-I plane into regions of qualitatively different dy-

namics

In the previous section, we discussed what we meant by qualitatively different dynamical

behaviours for a single neuron. We divide the ḡK-I (Potassium conductance - Input current)

plane into regions of qualitatively different dynamical behaviours following the method

described in subsection 2.3.1. Figure 3.2 denotes this region for the fixed ḡNa value (Sodium

conductance value) of 120.0 mS
cm2 . We find that there exists a bounded region in the ḡK-I

plane, inside which the single neuron generates sustained oscillations/ stable self sustained

action potentials. Outside this region, the behaviour is always fixed point dynamics. Thus,

outside this region either stable fixed points dynamics is observed or damped potentials

leading up to an asymptotic stable state is observed and we refer to this collectively as the

damped oscillation behaviour. For a fixed ḡNa value, the bounded curve consists of two sets

of transitions shown by orange and blue points with increasing input current (I). The red

line parallel to the X-axis denotes 0.0 value of input current. The first set of transitions, at

low I, is denoted in the figure with an orange set of points. This set of transitions is from

damped potentials to stable self sustained action potentials. The second set of transitions

from stable self sustained action potentials back to damped potentials is denoted by the blue

set of points.

This indicates that stable self sustained action potentials is only possible inside this bounded

region of parameter sets, for a fixed ḡNa value. The shape of the bounded region also shows

that for medium values of potassium conductance, the neuron shows sustained spikes for

a larger range of input currents compared to both lower and higher values of potassium

conductances.
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Figure 3.2: ḡK-I parameter plane for ḡNa = 120.0 mS
cm2

3.1.2 Effect of Sodium conductance (ḡNa) on the ḡK-I parameter plot

To determine the effect of varying the maximal sodium conductance on the bounded region

of stable self sustained action potentials, the same plot was calculated on another value of

ḡNa. Figure 3.3 shows the results.

Figure 3.3: ḡK-I parameter plane for ḡNa = 120.0 and ḡNa = 150.0 mS
cm2

As can be seen from the figure, even though the shape of the bounded region is very simi-

lar in both cases, the area of the bounded region increases with higher maximum possible

value of sodium conductance (ḡNa). The leftmost point where both these curves start, al-
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most overlap in both cases. However, the total area enclosing the region of stable self

sustained action potentials is larger for higher maximal sodium conductance values.

If one were to intuitively guess of what would happen to the bounded region on increasing

maximal sodium conductance, one would have guessed that the area would increase. This is

because Sodium ions are responsible for eliciting action potential generation. Thus, higher

Sodium conductance would mean that it would be easier for the neuron to generate action

potentials and thus, stable self sustained action potentials. Thus action potentials would

be generated for higher values of maximal potassium conductance and input current values

giving a larger bounded area for sustained action potentials in the ḡK-I plane. Also, it is

important to note that nonlinear systems are extremely complex, and it may be difficult

to directly intuitively predict behaviour of a system. Thus, computational modelling and

simulations are essential to know the behaviour of nonlinear systems.

3.1.3 Properties of the dynamical transitions in the ḡK-I parameter

plane

In Figure 3.3, for ḡNa = 120.0 mS
cm2 , the boundaries are made up of two curves, which denote

two different dynamical transitions. For a particular ḡNa value, the first set of transition

points (represented in orange) denotes the transition from damped potentials (outside) to

stable self sustained action potentials (inside). The second set of points (denoted by blue)

are transitions from stable self sustained action potentials (inside) to damped potentials

again outside the bounded region. We look at both these sets of transitions and elaborate

their properties. To check the properties of each transition point, we adopted the following

procedure.

• A value for maximal potassium conductance should be fixed, and looking at the

graph; one should first ascertain the corresponding value for the input current for

which the transition occurs.

• At the transition point coordinates decided by the previous step, we need to figure

out whether each of those transitions is marked by an abrupt change in the qualitative

behaviour of the system (damped and stable self sustained action potentials are the

two types of behaviours) or a more continuous and gradual change in the qualitative
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behaviour of the system when changing the input current parameter. We consider

the amplitude of oscillations in the long run as an indicator of whether the transition

occurs abruptly by a sudden change in amplitude of oscillations or the transition is

more gradual with the amplitude of oscillations gradually dying out to a resting state

potential with changing input current parameter.

• We repeat this for all the points and try to ascertain a pattern.

Repeating the steps mentioned above on each point in both the upper and lower transition

point sets, we find the following results for each sets of points.

1. The first set of points (denoted in orange) all follow an abrupt transition for a small

change in input current (I) value across the border. This is because the amplitude of

oscillations in the long run suddenly and abruptly changes in these sets of points as

shown in Figure 3.4. These figures denote how the amplitude suddenly and abruptly

rises at the transition point upon a small increase in the input current.

Figure 3.4: Abrupt change in the dynamic behaviour of the system for the first transition

from damped potentials to sustained oscillations with a small change of 0.1 mA (from I =

9.4 mA in the first plot to I = 9.5 mA in the second plot) in the Input current parameter

2. The second set of points in blue follow a more interesting set of properties. Unlike

the first set of points (orange), here all the transitions are not abrupt. Instead, we find

that transitions are abrupt for lower values of maximal potassium conductance (ḡK)

as illustrated in Figure 3.5, and for higher values of maximal potassium conductance

(ḡK), we get continuous and gradual transitions as illustrated in Figure 3.6.

The properties could be assessed in more detail by plotting the amplitudes just before

the transition and just after the transition by varying input current about the transition
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Figure 3.5: Abrupt change in the dynamic behaviour of the system for the second transition

from sustained oscillations to damped potentials with a small change of 0.1 mA (from I =

9.3 mA in the first plot to I = 9.4 mA in the second plot) in the Input current parameter.

This abrupt change in dynamics occurs for lower ḡK values.

Figure 3.6: Gradual change in the dynamic behaviour of the system with Input current

parameter for the second transition from sustained oscillations to damped potentials. This

continuous and gradual change in dynamics occurs for higher ḡK values

point (Figure 3.7). For the second set of points (in blue), which indicate transition

from stable self sustained action potentials inside the bounded region to damped os-

cillations outside, we notice that the amplitude of the sustained spiking just before the
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transition (inside the bounded region) decreases with increasing ḡK value. Outside

the bounded region, the damped potentials reach a resting state potential behaviour

asymptotically. Figure 3.7 shows the long-term value of the maximum and the min-

imum of the action potentials reached before the transition, i.e. inside the boundary,

and the value of resting potential attained for damped potentials after the transition

(outside the region) for different values of ḡK at the blue (upper) transition points of

Figure 3.2.

Figure 3.7: Probing the amplitude of oscillations at the point of transition for ḡNa = 120.0

mS
cm2

Note that Figure 3.7 has Voltage values on the Y-axis and maximal potassium con-

ductance values on the X-axis. Whenever we fix the maximal potassium conductance

value, we also fix the value of Input current at which transition happens. Thus, the

X-axis denotes not just ḡK , but it also fixes the current value at which the transition

from sustained oscillations to damped oscillations occurs. The input current value is

ascertained from Figure 3.3 (blue points), and this information for the input current

is incorporated in the plot (Figure 3.7) by scaling the size of the points according to

the input current values with larger dots indicating a higher value of input current at

which transition occurs. This illustration is for ḡNa = 120.0 mS
cm2 . The orange points

in Figure 3.7 indicate the maximum value of stable self sustained action potentials

just before the transition while the system is inside the bounded region. Similarly,
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the green points are for the minimum voltage value for the stable self sustained ac-

tion potentials. The blue set of points indicates the value for resting potential that the

system attains just after transition upon going into the region of damped potentials.

We notice that all three points coincide for values of ḡK ≥ 10 ms
cm2 . Thus this result

states that for the second set of transitions (blue points), there is a continuous change

in amplitude with input current for ḡK >= 10 ms
cm2 . Also, there is an abrupt change

in amplitude for ḡK < 10 ms
cm2 .

3.2 The Potassium conductance - Sodium conductance pa-

rameter plane

Now, we look at the ḡK − ḡNa parameter plane for constant input current (I) values fixed.

As in the previous section, we do this study for different fixed values of the third variable,

the input current (I), and then look at their effect on the regions of qualitatively different

dynamical behaviours.

3.2.1 The ḡK − ḡNa plane and effect of input current (I) values

The steps taken for identifying the curves of transition are the same as before. The effect

of input current on the bounded region is probed by repeating the following steps for each

value of the input current (I).

• Fix the input current value.

• Fix ḡK and vary ḡNa to identify points of transition along the ḡNa axis.

• Repeat this for different ḡK values, thus covering the ḡK − ḡNa plane.

• Change the input current value and repeat from step 1.

The results obtained are shown in Figure 3.8.

The figure suggests that unlike the ḡK − I plane, the ḡK − ḡNa plane is not bounded on all

sides. It is bounded on three sides only. Here also, we get a series of two transitions when

we move along the Y-axis (ḡNa) for every ḡNa value. We do not see a very major effect of

changing input current on the region except that there are slight shifts in the curves forming
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Figure 3.8: Dynamical regions in the ḡK − ḡNa plane for different I

the boundaries of the region of stable self sustained action potentials. This major difference

from the ḡK-I curve is that there is no limit to the ḡK value (in the range studied) for

obtaining stable self sustained action potentials for a given ḡNa value. Another difference

in the ḡK − I and the ḡK − ḡNa parameter plots is that their boundaries are different. While

the boundaries for ḡK − I plane were closed curves, the boundaries for ḡK − ḡNa plane are

almost straight lines. We discuss their dynamical behaviour in the next subsection.

3.2.2 Effect of Input Current (I) on transitions in the ḡK − ḡNa plane

A similar analysis of the changes in the maxima and minima of the amplitude of oscillations

at each of the transitions could be done. However, here we show the effect of the input

current on the position of the transition curves in the ḡK − ḡNa plane. Firstly, an expanded

view of Figure 3.8 is given in Figure 3.9 (A and B).

1. The expanded view of the first set of transition points can be seen in Figure 3.9 (A).

We probe the effect of changing input current on the curve that joins these transition

points. We can approximate these curves as straight lines even though we see higher

bending in curves for higher input current values. This bending effect can be clearly

seen to start with the red points (I = 50.0 mA), and it progressively increases with in-

creasing input current values with a significant initial bend seen in high input current

values corresponding to 200.0 mA (brown points). These bends are however, present
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(A)

(B)

Figure 3.9: Expanded view of the transition curves. (A) Lower transition points; (B) Higher

transition points

at the beginning of the curves, and they approximate to the shape of a straight line,

if we consider points of higher ḡK values. Approximating these curves as straight

lines, it can be seen that the slope of the straight line decreases with increasing input

current. The slope does not change linearly with increasing input current. It instead

converges to a value. The decrease in the slope was really high on a jump from input

current magnitude from 0.0 (blue) to 10.0 (yellow). The decrease in slope is still

noticeable even for the jump from 10.0 to 25.0 (green). However, the slopes for the

input current magnitude of 25.0, 50.0, 100.0, and 200.0 are almost the same, and a

significant change in slope is not seen even with a 100.0 mA jump. Thus the slope

converges to a constant value.
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2. The second set of transition points shown in Figure 3.9 (B) are from stable self sus-

tained action potentials to damped potentials. As can be seen from the plot, these

transition points lie very well along straight lines. No bend is visible in this range of

points. Interestingly, when we try to see the effect of changing input current on the

straight lines, we see that unlike in the previous case, their slope does not change. In-

stead, the value of the constant of the line changes, and the lines just shifts down with

increasing input current. Additionally, the shift seems to vary linearly with increasing

input current.

3.3 Summary

We mapped the three dimensional (ḡK , ḡNa, I) parameter space of the single Hodgkin

Huxley neuron using two parameter plots. We probe the effect of the third parame-

ter on regions of qualitatively different dynamical behaviours in these two parameter

planes. Moreover, we identify properties for transition points using change in am-

plitude of oscillations as a parameter. Salient features of the parameter space with

respect to evolution of different dynamical behaviours are mapped at a fine scale and

combination of three parameters obtained for describing changes in dynamics. These

changes are elaborated from the manner at which dynamics changes from stable to

sustained oscillations by considering amplitude change in voltage (V) as a read-out

parameter. The implications are described in the final Discussion section from both

bifurcation and type of phase transition point of view. Thus, in this section, we have

successfully mapped the parameter space of the single Hodgkin Huxley neuron and

some of its properties. This prepares us to study the properties of multiple neurons.
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Chapter 4

Dynamics of Two Coupled Neurons on

Variation of Parameters

Neurons communicate with each other through chemical and electrical synapses. An im-

portant feature that distinguishes electrical synapses from chemical synapses is that the

former can be both unidirectional and bidirectional, while chemical synapses are mostly

unidirectional synapses. The coupling through an electrical synapse is via gap junctions,

which are channels (made of proteins) between cells. In this section, we have studied the

dynamical properties of two neurons coupled with the help of an electrical synapse. We are

particularly interested in understanding ”synchronization” (see section 1.4 of Chapter 1) of

electrical activity of the two neurons and its dependence on various cellular parameters. The

aim is to study how the strength of electrical coupling (gC) and their types (unidirectional

or bidirectional) alter the firing patterns of the individual neurons in a two-neuron system.

Here, and in the next chapter, we study the effect of these parameters on synchronization in

the system of coupled neurons. When a neuron is connected/coupled to another neuron, it

receives additional electrical current (Ielectrical) due to the coupling. In general, the mem-

brane voltage variation in a Hodgkin Huxley neuron, with input current (I), connected with

an electrical synapse, can then be modelled by:

Cm
dVm
dt

= I − Iionic − Ielectrical (4.1)

The other equations (Eqn number 2 to 10 in section 2.1) remain the same. Ielectrical is mod-

elled based on the type of coupling, i.e., whether coupling is unidirectional or bidirectional.

In chapters 4 and 5, we present dynamical behaviour exhibited by the system of neurons
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for different types and strengths of electrical synapses, with varying boundary conditions

(ring-like or chain-like connectivity) and network size (number of neurons), and show how

these parameters affect synchronization of neuronal activity based on both qualitative and

quantitative analysis. In this chapter, we start with the simplest network of two neurons that

can be coupled unidirectionally or bidrectionally through gap junctions. Below, we first

discuss the models for unidirectional and bidirectional couplings, and then show an overall

representation of the effect of input current on the action potentials of the two neurons. Re-

sults on frequency synchronization, and phase synchronization in two electrically coupled

neurons are discussed in detail.

Consider two neurons, with the voltage across neuronal membrane of first neuron as V1

and that across the second neuron as V2. These two neurons can have unidirectional cou-

pling where only the voltage of one neuron (say, the first neuron (V1)), affects the second

neuron. As mentioned before, now an extra term corresponding to current due to the elec-

tric synapse (Ielectrical) comes into the picture. Ielectrical is defined as the product of the

gap junctional conductance between the two neurons, and their voltage difference, i.e.,

(gC(V −Vadjacent)). Here, Vadjacent is the voltage of the adjacent neurons that are connected

through the gap junction. The parameters that can be changed for two neurons are either

the coupling strength (gC), or, the magnitude of input current in the driving neuron 1 (I),

or, the type of coupling (unidirectional and bidirectional). We look at both qualitative and

quantitative methods to measure each neuron’s dynamics and their synchronization.

Unidirectionally coupled neurons

We have two neurons. Neuron 1 makes an electrical synapse with neuron 2 with current

flowing only in one direction - neuron 1 to neuron 2. Considering the neuronal membrane

voltages of first neuron as V1 and that for the second neuron as V2 , the revised HH equations

for this coupled two-neuron system are :-

• For the first neuron -

Cm
dV1
dt

= I − Iionic (4.2)

• For the second neuron -
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Cm
dV2
dt

= −Iionic − Ielectrical (4.3)

Note that only the first neuron has an input current (I), while the other neuron does not

have an input current. Thus the first neuron’s input current is responsible for generating the

action potentials, and it is referred as the driving/driver neuron. The second neuron gets

the external current only through the electrical synapse (Ielectrical), and is thus called the

driven neuron (as it is being driven by the first neuron). In case of bidirectional coupling

(discussed in the subsequent point), however, the second neuron also has an effect on the

first neuron.

Bidirectionally coupled neurons

In bidirectional coupling of two neurons, even though only Neuron 1 gets the input current

(I), yet unlike the previous case, here both the neurons have electrical coupling (Ielectrical)

between each other. Thus the neuron 1, which has an input current, is responsible for gen-

erating the action potentials first, and can still be called the driving neuron. However, even

though neuron 2 is the driven neuron, yet due to the bidirectional coupling its electrical

activity in turn affects neuron 1.

For bidirectionally coupled neurons, the driving neuron 1 is also affected by the electrical

activity of the driven neuron 2. The HH equations for the two neurons are -

• For the first neuron -

Cm
dV1
dt

= I − Iionic − Ielectrical (4.4)

• For the second neuron -

Cm
dV2
dt

= −Iionic − Ielectrical (4.5)

The two types of coupling can have differential effects in the emergent properties of the

firing patterns of the neurons. Figure 4.1 gives an idea of the nature of long-term action

potential generation in both the neurons connected via bidirectional coupling strength, gC =

0.7 mS
cm2 and for different values of input current. The figure is given only to illustrate the
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Figure 4.1: (Left) Time series depicting the firing pattern of the first neuron, (Right) Time

series depicting the firing pattern of the second neuron for different input currents in the

first neuron. The coupling type is bidirectional with coupling strength, gC = 0.7 mS
cm2

pattern of firing in both the neurons. The driving neuron 1 shows higher frequency with

reduced amplitude of spikes with increasing input current (I). The second neuron, which is

driven by neuron 1, exhibits higher amplitude spikes but the same frequency from I = 0 to

50 mA, beyond which the two neurons show different firing patterns at this gC . This shows

that both input current and the gap junctional coupling strength have significant roles to play

in the collective electrical activity of the two-neuron system. Below we present the results

for the dynamics and synchronization in the two-neuron system for changing the coupling

strength (gC) and the input current (I) for the two types of coupling - unidirectional and

bidirectional.

4.1 Frequency synchronization in two neurons

Frequency matching is an indicator of synchronization, so we study frequency synchroniza-

tion for the two types of couplings.

4.1.1 Unidirectionally coupled neurons

HH equations for this coupled two-neuron system are :-

• For the first neuron -

Cm
dV1

dt
= I − Iionic

Cm
dV1

dt
= I − gl(V1 − Vl)− ḡNam

3h(V1 − VNa)− ḡKn4(V1 − VK)

• For the second neuron -
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Cm
dV2

dt
= −Iionic − Ielectrical

Cm
dV2

dt
= −gl(V2 − Vl)− ḡNam

3h(V2 − VNa)− ḡKn4(V2 − VK)− gC(V2 − V1)

We count the number of action potentials generated in both of the unidirectionally coupled

Hodgkin Huxley neurons in a 125 msec time interval. These observations are recorded for

different gC and input current (I) values. The result is shown in Figure 4.2.

Figure 4.2: Effect of gC on the long term action potential frequencies in the driving neuron

1 (top lines) and driven neuron 2 (lower lines) for different input currents for unidirectional

coupling. Frequency synchronization is observed when both lines meet.

The X-axis in Figure 4.2 denotes the conductance values (gC) for the electrical synapse.

We have two lines for each current (I) value shown by different colours. The lines plot the

number of action potentials generated in the neurons in a 125 msec time interval. For each

colour (i.e., for a particular value of I), the lines coming from higher up are for the driving

Neuron 1, and the ones from down below are for the second (driven) Neuron 2.

The lower lines all originate from zero, i.e., no coupling, because the neuron 2 remains

silent (at resting state) without any external input current. As shown in Chapter 3, higher

input currents result in higher frequency of firing of single neurons. This is clearly seen for

the neuron 1’s spike frequencies for different input currents (top lines). Higher the input

current in neuron 1, higher is its frequency of sustained action potentials.

The following are the major observations.

1. Effect of the coupling strength (gC) :

The plots in Figure 4.2 show that, for all I values at lower gap junctional conductance
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(gC), the the two neurons continue to spike at different frequencies. Their frequencies

start matching, with increasing gC value, which indicates frequency synchronization.

The frequency of the driving neuron does not change with gC values, since it is unaf-

fected by the unidirectional coupling, and is totally decided by the input current. The

frequency of the driven neuron, on the other hand, keeps increasing with increasing

gC until it equals the frequency of the driving neuron. Thus, increasing coupling (gC)

facilitates synchronization of two unidirectionally coupled neurons, and for every

driving frequency (determined by input current), there is a specific coupling strength

for obtaining frequency synchronization..

2. Effect of the Input current (I) - For the driving neuron 1, higher frequency sus-

tained action potentials are observed for increased input current. Neuron 2 is at rest

at gC = 0 (no coupling). This makes the difference in frequency of the two neurons

higher as I increases. It is seen from Figure 4.2 that larger difference in frequency,

due to higher input current in the driving neuron requires higher value of coupling

strength, gC , at which the two neurons attain the same frequency (frequency synchro-

nization). Larger coupling is required between the two neurons to attain frequency

synchronization in unidirectional coupling.

Thus, in a unidirectionally coupled two-neuron system, even low coupling can elicit

frequency synchronization if the driving neuron has low input current. Higher the

input current, harder it becomes to synchronize the frequencies in this case.

4.1.2 Bidirectionally coupled neurons

The HH equations for each of the bidirectionally coupled neurons is :-

• For the first neuron -

Cm
dV1

dt
= I − Iionic − Ielectrical

Cm
dV1

dt
= I − gl(V1 − Vl)− ḡNam

3h(V1 − VNa)− ḡKn4(V1 − EK)− gC(V1 − V2)

• For the second neuron -

Cm
dV2

dt
= −Iionic − Ielectrical

Cm
dV2

dt
= −gl(V2 − Vl)− ḡNam

3h(V2 − VNa)− ḡKn4(V2 − EK)− gC(V2 − V1)

The results for the effect of gC and input current value on synchronization are shown in
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Figure 4.3. The lower lines for neuron 2 still originate from zero at gC = 0.0, as there this

neuron is at rest without any input current due to the absence of the electrical synapse. The

following are the major observations.

Figure 4.3: Effect of gC on the long term action potential frequencies in the driving neuron

1 (top lines) and driven neuron 2 (lower lines) for different input currents for bidirectional

coupling. Frequency synchronization is observed when both lines meet.

1. Effect of the coupling strength (gC) : Like uni-directional coupling, here also,

the two neurons continue to spike at different frequencies at lower gC for all input

currents, and their frequencies synchronize with increasing gC value. However, due

to the effect of the neuron 2 on the driving neuron 1 for bidirectional coupling, the

frequency of the driving neuron 1 keeps decreasing with increasing gC value. In-

terestingly, compared to uni-directional coupling, frequency synchronization occurs

at lower coupling strengths when bidirectional coupling is present, for the same in-

put current. Thus, bidirectional coupling facilitates frequency synchronization in two

neurons at lower gC values. Note that the number of oscillations denoted on the Y-

axis for the case of unidirectional coupling is for a 125 msec time interval, while

for the bidirectional case it is for a 250 msec interval. This has been done to clearly

show the effect of decrease in the frequency of the action potentials in neuron 1 with

increasing gC values.

2. Effect of the input current (I) in neuron 1 - All results obtained for unidirectional

coupling are observed here with one noticeable difference. In the former case (uni-
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directional), both neurons locked frequency at the frequency of the driving neuron

1 for all values of I. Here, for bidirectional coupling, both neurons, even after get-

ting synchronized, continue to decrease their frequencies with increasing gC values

for lower input currents, after which the frequencies do not change with increasing

coupling. Thus, bidirectional coupling not only allows frequency synchronization

at lower gap-junctional conductances of the electrical synapse for all input currents,

it also adapts both the driving and driven neurons to exhibit synchronized electrical

activity at a lower frequency value than decided by the input current. This prop-

erty of the two-neuron system is an emergent adaptive feature of this small electrical

network.

4.2 Phase Synchronization and Complete Synchronization

in two neurons

This section highlights the occurrence of two major types of dynamical behaviours in the

2 neuron system - (i) Phase synchronization, and (ii) Complete synchronization. In the

context of the two neuron system, phase synchronization is observed when both neurons

spike continuously and the time period of spiking is the same for both neurons but there

is a lag associated between the firing activity of the two. Complete synchronization in

two neurons occurs when both neurons achieve an identical and overlapping pattern of

spiking and there is no lag present. We use a space time plot (refer to section 2.3.2) to

describe the long-term electrical activity of the two neurons in both space and time. They

are shown as heat maps of voltages of the action potentials in two neurons. These maps are

helpful in qualitatively indicating the two types of synchronization (Phase and Complete

Synchronization) in coupled neuron systems. If the heat maps have the activity of the

neurons properly aligned (i.e - aligned dark and bright patches) along the y-axis, this is an

indicator of complete synchronization. The presence of a phase difference between the two

neurons shows in the heat maps as a lag in the activity of the driven neuron 2 as compared to

the driving neuron 1 (i.e - bright patches for the second neuron occur after a delay from the

occurrence of bright patches in the first neuron) and this indicates phase synchronization.

The results for space time plots for different gC values and different input current values

in the driving neuron 1 are given below for unidirectional and bidirectional couplings for
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three different input currents (I=10.0 mA, 25.0 mA and 50.0 mA). For each input current,

a large range of gC values were checked from 0.0 to 1.0 mS
cm2 at a gap of 0.1 mS

cm2 between

each successive observation.

4.2.1 Input current in driving neuron 1 : 10.0 mA

Unidirectional coupling

The space-time plots for I = 10.0 mA in the driving neuron 1 for unidirectional coupling

are given in Figure 4.4 for four increasing gC values. The X-axis is time and Y-axis shows

the amplitude of action potentials in neuron 1 and neuron 2.

Figure 4.4: Space-time plots for increasing gC value show shift from an asynchronous state

to phase synchronization to complete synchronization. Row 1: gC = 0.1 mS
cm2 , gC = 0.5 mS

cm2 ,

and Row 2: gC = 1.0 mS
cm2 , gC = 4.0 mS

cm2 . Colour bar shows the voltage of action potentials.

It can be seen that for a particular input current and type of coupling (unidirectional), the

synchronization increases for increase in the gC value. At extremely low values of gC , the

neurons are asynchronized. At slightly higher gC , the two neurons spike continuously, but
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with a constant phase difference between the two. Here, they are phase synchronized. At

higher gC , the two neurons’ spikes overlap completely and both are in complete synchro-

nization.

Apart from performing the qualitative analysis of synchronization using space-time plots,

we use the Synchronization Order Parameter (R), described in subsection 2.3.3, as a quanti-

tative measure of synchronization. Figure 4.5 illustrates the evolution of complete synchro-

nization with gC values using R (Synchronization Order Parameter), which takes a value of

unity when the action potentials of the two neurons overlap completely. It can be seen from

Figure 4.5 that R increases with gC value. It starts with a value of 0.5 and goes up to 1.0

around gC = 3.0 mS
cm2 .

Figure 4.5: Synchronization order parameter at different gC values for two unidirectionally

coupled neurons for input current I = 10.0 mA in driving neuron 1.

Bidirectional coupling

The space-time plots for input current of 10.0 mA in the driving neuron 1 for bidirectional

coupling are given in Figure 4.6. As has been shown earlier, in bidirectional coupling, both

neurons affect each other through exchange of their electrical activities when gC > 0.

Both neurons send current to each other due to bidirectional coupling.

It can be seen from all the given figures (Figure 4.6, Figure 4.7, Figure 4.8) that for a

particular input current and type of coupling (bidirectional), the synchronization increases

for an increase in the gC value.
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Figure 4.6: Space-time plots for increasing gC value show shift from an asynchronous state

to phase synchronization to complete synchronization. Row 1: gC = 0.1 mS
cm2 , gC = 0.5 mS

cm2 ,

and Row 2: gC = 1.0 mS
cm2 , gC = 4.0 mS

cm2 . Colour bar shows the voltage of action potentials.

Looking at the time series for the two neurons gives a better idea of the type of synchro-

nization and how it develops with changing gC values.

The first figure shows the time series for gC = 0.1 mS
cm2 . At this value of coupling strength,

we do not even get phase synchronization. At gC = 0.2 mS
cm2 (not shown here) we get phase

synchronization. The amplitudes of the two do not overlap. Upon increasing the gC value

further, the oscillations overlap and the synchronization shifts from phase synchronization

to complete synchronization. At gC = 4.0 mS
cm2 , we have almost identical time series, which

is a feature of complete synchronization. We can estimate the gC value at which the type

of synchronization shifts from phase to complete synchronization from the R plot, which is

given in Figure 4.8. The plot illustrates the evolution of the synchronization with gC value

quantitatively using the Synchronization order parameter (R). Looking at the graph acquired

by plotting the quantitative estimate of synchronization (R) against gC values, we confirm

the qualitative result. Additionally, we can notice that the slope is steeper for bidirectional

coupling. We get value of R = 1.0 at gC = 2.0 mS
cm2 in bidirectional coupling for two

41



Figure 4.7: Time series from Left to Right : gC = 0.1 mS
cm2 , gC = 0.5 mS

cm2 , gC = 4.0 mS
cm2 .

The type of synchronization changes from no synchronization to phase synchronization to

complete synchronization.

neurons at input current 10.0 mA. This suggests that bidirectional coupling makes it easier

for two neurons to synchronize. They synchronize at lower gC values. This observation

also matches with frequency synchronization results.

Figure 4.8: Synchronization order parameter at different gC values for two bidirectionally

coupled neurons and with input current, I = 10.0mA in driving neuron 1.

4.2.2 Other Input currents in driving neuron (25.0 mA and 50.0 mA)

Unidirectional coupling

Figure 4.9 (for I = 25.0 mS
cm2 ) and Figure 4.10 (I = 50.0 mS

cm2 ) confirm that increasing gC ,

results in a shift from an asynchronous state to phase synchronization first and later to

complete synchronization for all input current values (in driving neuron 1) in the case of

unidirectional coupling between the two neurons. The activity of the two neurons gets more

synchronized with increased coupling strength.
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Figure 4.9: Space time plots for Input current in driving neuron 1 as 25.0 mA and type of

coupling as unidirectional. Row 1: gC = 0.1 mS
cm2 , gC = 0.5 mS

cm2 , and Row 2: gC = 1.0 mS
cm2 ,

gC = 4.0 mS
cm2 . Colour bar shows the voltage of action potentials.

Figure 4.11 clearly illustrates the effect that the input current in driving neuron 1, has on

synchronization in the two unidirectionally coupled neurons. It is seen that for unidirec-

tional coupling, higher input currents in driving neuron 1 result in lower slopes of the gC

vs. R plot. The transition from phase synchronization to complete synchronization occurs

at a higher gC value for higher values of input current in driving neuron 1 (I). Thus, a clear

result that we obtain from looking at Figure 4.11 is that a higher input current in driving

neuron 1 makes it harder to synchronize two unidirectionally coupled neurons.

Bidirectional coupling

Figure 4.12 (I = 25.0 mS
cm2 ) and Figure 4.13 (I = 50.0 mS

cm2 ) indicate that the shift from an

asynchronous state to phase synchronization and subsequent shift from phase synchroniza-

tion to complete synchronization on increasing coupling strength (gC) occurs for all values

of input current in driving neuron 1 (I) in a bidirectionally coupled two neuron system.
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Figure 4.10: Space time plots for Input current in driving neuron 1 as 50.0 mA and type of

coupling as unidirectional. Row 1: gC = 0.1 mS
cm2 , gC = 0.5 mS

cm2 , and Row 2: gC = 1.0 mS
cm2 ,

gC = 4.0 mS
cm2 . Colour bar shows the voltage of action potentials.

Figure 4.11: Synchronization order parameter at different gC values for two unidirectionally

coupled neurons. Different colours indicate different values of input current in the driving

neuron 1.
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Figure 4.12: Space time plots for Input current in driving neuron 1 as 25.0 mA and type of

coupling as bidirectional. Row 1: gC = 0.1 mS
cm2 , gC = 0.5 mS

cm2 , and Row 2: gC = 1.0 mS
cm2 , gC

= 4.0 mS
cm2 . Colour bar shows the voltage of action potentials.

Figure 4.14 quantitatively depicts the effect that input current in driving neuron 1 (I) has on

the evolution of synchronization. It is seen that a higher input current in the driving neuron

1 (I) results in a lesser R vs gC slope, indicating that it is more difficult to synchronize two

bidirectionally coupled neurons when the value of driving current is higher.

Upon comparing Figure 4.14 to Figure 4.11, it is inferred that bidirectional coupling results

in an easier synchronization as compared to unidirectional coupling. This can be ascer-

tained by comparing the slopes of the R vs. gC plot for each of the I values in Figure 4.11

to the slopes of R vs. gC of the corresponding I values in Figure 4.14. The slope of increase

of R vs gC value is higher for the bidirectional coupling for all values of input current in the

driving neuron 1 (I = 10.0 mA, 25.0 mA and 50.0 mA respectively) than the corresponding

slope in the unidirectional coupling case. The value of R reaches close to 1 for the bidirec-

tional coupling at a lower gC value when compared to the corresponding input current in

the unidirectional case. These results further confirm the results obtained in section 4.1.
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Figure 4.13: Space time plots for Input current in driving neuron 1 as 50.0 mA and type of

coupling as bidirectional. Row 1: gC = 0.1 mS
cm2 , gC = 0.5 mS

cm2 , and Row 2: gC = 1.0 mS
cm2 , gC

= 4.0 mS
cm2 . Colour bar shows the voltage of action potentials.

Figure 4.14: Synchronization order parameter at different gC values for two bidirectionally

coupled neurons. Different colours indicate different values of input current in the driving

neuron 1.
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4.3 Summary

The results in this chapter show how synchronization evolves with different parameters in

a two-neuron circuit. We used other values of input current (75mA, 100mA, etc.), and

the trend for those is similar to what we have observed so far. The synchronization value

increases with increasing gC , and it decreases with increasing input current in the driving

neuron. A comparison of phase synchronization in unidirectional and bidirectional cou-

pling indicates that bidirectional coupling results in synchronization at lower gC . The fact

that bidirectional coupling leads to better synchronization in two neurons is further seen

in Figure 4.15 below. This figure depicts the value of gC at which phase synchronization

occurs in two unidirectional and bidirectionally coupled neurons for different input currents

in the driver neuron. This points out to the value of gC needed for a particular input cur-

rent in the driving neuron and how this value changes by changing input current value for

both unidirectional coupling and bidirectional coupling. The blue line is for unidirectional

coupling, and the orange line is for bidirectional coupling. The unidirectional coupling plot

has a higher slope, indicating that for a certain input current in the driving neuron, higher

gC values are required to generate synchronization of the two neurons. Interestingly, the

line separating regions marked by phase synchronization to no phase synchronization in

the gC-I parameter plane for bidirectional coupling is linear. However, for unidirectional

coupling, it deviates from linearity. It might be due to a higher symmetry present in the

bidirectional coupling case.

Figure 4.15: Dependence of phase synchronization on the input current in neuron 1 (I) in

unidirectional (Blue line) and bidirectionally (Orange line) coupled neurons, shown in the

gC-I parameter space.
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Chapter 5

Dynamics of Multiple Coupled Neurons

on Variation of Parameters

This chapter continues the study of probing the dynamics and synchronization properties

in networks (rings and chains) of multiple electrically coupled neurons. The effects of

parameters, I and gC , are analyzed for these larger networks of coupled neurons. The

overall results obtained in the case of two neurons, remain primarily unchanged even for

higher number of neurons. However, with increased number of neurons, the additional

parameters whose effect on synchronization was probed included - (i) Network length, and

(ii) Boundary conditions (Periodic - Ring and Fixed - Chain). The focus of the results

given here would be to highlight the effect of these parameters on synchronization and

transmission of information in multiple coupled neurons, while also discussing the effect

of parameters studied earlier (I , gC and Coupling type).

The HH equations for multiple electrically connected neurons are very similar to the ones

in the two neuron case. There is an input current in the first neuron. This neuron sends

current through the electrical synapse to the next connected neuron and so on. The two

types of arrangements studied for multiple neurons are the unidirectional chain and the

bidirectional ring. The unidirectional chain arrangement is such that the neurons on the

two ends of the chain are not connected (Fixed boundary conditions), and the coupling type

between all the neurons is unidirectional, with neuron 1 being the driving neuron with input

current. The bidirectional ring arrangement of n neurons has periodic boundary conditions,

so each neuron (say ith neuron) in this arrangement is connected to exactly two neurons -

to the (i+ 1)th and (i− 1)th - and follow bidirectional coupling. Here also the neuron 1 is
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the driving neuron, but it connects to both the 2nd and the nth neurons electrically.

Due to the high computational complexity, we had to limit our simulations to 50 neurons

with each neuron represented by four nonlinear coupled HH equations. We also did a few

simulations for 100 neurons, but these take a lot of time. In order to study networks of

larger sizes, higher computational power is needed. Simulations were done for network

sizes of 3, 5, 10, 25, and 50 neurons. We have presented results for the 5, 10, and 50 neuron

cases and used these to arrive at general results for network lengths in the range mentioned

above.

5.1 Case 1: Five neurons

5.1.1 Unidirectional chain

In unidirectional chain arrangement, the first neuron gets a constant input current (I=50

mA), and communicates with the second neuron unidirectionally, with the help of the elec-

trical synapse, which is then one-way coupled to the third neuron, and so on. The fifth

neuron gets the input current from the fourth neuron and it can not pass it any further. The

results for a five unidirectionally coupled chain of neurons are discussed below and given

in Figures 5.1 and 5.2.

• Figure 5.1 reveals that the electrical activity of each neuron in the chain sets up with

increasing phase difference with respect to neuron 1, due to the increased delay in

receiving current from the previous neurons. At lower gC , less current is transferred,

and the spike frequency is lesser than the driving neuron. The space time plots show

a wave-like electrical activity along the chain that travels from the first neuron to the

final neuron. At higher gC values, the phase difference between the neurons keeps

decreasing and all neurons spike at the same frequency due to increased Ielectrical.

This is an indicator of better synchronization at higher coupling strength.

• The quantitative assessment with Figure 5.2 using the synchronization order pa-

rameter (R) reveals that the system attains close to complete synchronization (i.e.-

R = 1.0) at around gC = 18.0 mS
cm2 .
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Figure 5.1: Space-time plots for increasing gC value for 5 neurons unidirectional chain.

Row 1: gC = 0.2 mS
cm2 , gC = 0.5 mS

cm2 , and Row 2: gC = 1.0 mS
cm2 , gC = 4.0 mS

cm2 .

Figure 5.2: Synchronization order parameter at different gC values for five unidirectionally

coupled neurons in chain arrangement with I = 50.0 mA

Note that we have studied gC values up to 20.0 mS
cm2 for 5 neurons, because complete syn-

chronization values are achieved only at high gC values for larger networks with higher

number of neurons. Comparing the synchronization order parameter, R, for the 5 neurons
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case (Figure 5.2) to the two neurons case (Figure 4.5) for unidirectional coupling, it is ob-

served that the slope is less and the R = 1.0 value (complete synchronization) is achieved at

a much higher gC value here. Thus, increasing the number of neurons while keeping other

conditions similar makes it difficult to synchronize the network.

5.1.2 Bidirectional ring

As described earlier, the bidirectional ring arrangement allows electrical coupling of each

neuron to both the adjacent neurons. Thus, both neuron 2 and 5 are now driven directly by

the driving neuron 1.

The figures to illustrate the collective dynamic behaviour of the five bidirectionally coupled

ring of neurons are given in Figures 5.3 and 5.4.

Figure 5.3: Space-time plots for increasing gC values for 5 neuron bidirectional ring. Row

1: gC = 0.2 mS
cm2 , gC = 0.5 mS

cm2 , and Row 2: gC = 1.0 mS
cm2 , gC = 4.0 mS

cm2 .

• The space time plots (Figure 5.3) show that, since the signal travels both ways in a

ring, the second and the fifth neuron fire in perfect synchrony. Similarly, the third and

the fourth neurons behave in a synchronous fashion (even for extremely small values
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Figure 5.4: Synchronization order parameter at different gC values for five bidirectionally

coupled neurons in ring arrangement with I = 50.0 mA.

of coupling strength (gC)). As the whole circuit is symmetrical about the first neuron,

it is expected that the firing pattern should be synchronous about that neuron. Of

course, like in the previous case, increasing the gC value synchronizes these neurons

more and the lag decreases upon increasing gC values.

• Synchronization order parameter (R) plot in Figure 5.4 is similar to that of the two

neuron case - showing that the bidirectional ring of five neurons is synchronized at

much lower gC value compared to the uni-directional chain of five neurons (Figure

5.2). The value of R is close to 1.0 at gC = 3.0 mS
cm2 and it quickly touches 1.0 at

around gC = 5.0 mS
cm2 . Our results show that a ring-like network of neurons with

bidirectional coupling is better for synchronization than a unidirectional chain-like

arrangement.

Note that similar to the two coupled neurons case, there is a negative effect of increasing

the input current value on synchronization for the five neurons case. This was ascertained

with both space time plots and the study of the Synchronization order parameter. As the

effect of input current on synchronization was discussed in length for the two neurons case

in Chapter 4, and because the effect remains the same for higher number of neurons, we

have not explicitly shown results for varying input currents for these larger network sizes.
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5.2 Case 2: Ten neurons

5.2.1 Unidirectional chain with I as 50.0 mA

Figure 5.5: Space-time plots for increasing gC value for 10 neuron unidirectional chain.

Row 1: gC = 0.2 mS
cm2 , gC = 0.5 mS

cm2 , and Row 2: gC = 1.0 mS
cm2 , gC = 4.0 mS

cm2 .

Space-time plots in Figure 5.5 show a wave like pattern which travels from the first to the

tenth neuron and synchronization is seen to increase with increased coupling strength (gC).

Figure 5.6 shows that the value of R reaches around 1.0 only at gC values as high as 20.0
mS
cm2 . The slope for R vs. gC is lesser for ten unidirectionally coupled neurons (Figure 5.6)

when compared to five unidirectionally coupled neurons (Figure 5.2). These results further

confirm the results discussed in Section 5.1 that increasing the number of neurons makes it

more difficult to synchronize them.

5.2.2 Bidirectional ring with I as 50.0 mA

Figure 5.8 indicates that the value of R reaches very close to 1.0 around gC = 10.0 mS
cm2 .

It further increases and almost touches 1.0 at around gC = 12.0 mS
cm2 . Since complete
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Figure 5.6: Synchronization order parameter at different gC values for ten unidirectionally

coupled neurons in chain arrangement with I = 50.0 mA.

Figure 5.7: Space-time plots for increasing gC value for 10 neuron bidirectional ring. Row

1: gC = 0.2 mS
cm2 , gC = 0.5 mS

cm2 , and Row 2: gC = 1.0 mS
cm2 , gC = 4.0 mS

cm2 .

synchronization (R = 1.0) is attained at a lower gC value for bidirectional ring arrangement

in 10 neurons as compared to unidirectional chain, this confirms that a bidirectional ring of

10 neurons offers better synchronization than a unidirectional chain of 10 neurons.
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Figure 5.8: Synchronization order parameter at different gC values for ten bidirectionally

coupled neurons in ring arrangement with I = 50.0 mA.

5.3 Case 3 : Fifty neurons

It is seen that a bidirectional ring is not always better for synchronization than the unidirec-

tional chain in case of network length of 50 neurons. Thus, the results for 50 neurons are

presented in three subsections. In subsection 5.3.1 and 5.3.2, we have compared the unidi-

rectional chain with the bidirectional ring results of 50 neurons with 50.0 mA input current

with the help of the Synchronization Order parameter. The R value of 1.0 is attained at a

lower gC value for the unidirectional chain as compared to the bidirectional ring. Whether

this is an anomaly that only occurs at higher input current values (50.0 mA) or whether a

similar pattern is observed for all input currents in the 50 neurons case is explored in sub-

section 5.3.3, where we see results for comparatively lower input currents (10.0 mA and

25.0 mA) for the 50 neurons case.

5.3.1 Unidirectional chain with I as 50.0 mA

Figure 5.10 illustrates that the value of R does not reach 1.0 even for values of gC as high as

20.0 mS
cm2 . As plotting the R value against gC values requires running a ”for-loop” for very

small increments in gC , it takes a lot of time and computational power and so, we could not

plot the R vs gC plot for higher gC values (for the 50 neurons case). However, we managed

to ascertain the value of gC for which R reaches very close to 1.0 (by selecting gC using

trial and error). It is found that an R value of 0.99 is attained around a gC value of 250 mS
cm2
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Figure 5.9: Space-time plots for increasing gC value for 50 neuron unidirectional chain.

Row 1: gC = 0.2 mS
cm2 , gC = 0.5 mS

cm2 , and Row 2: gC = 1.0 mS
cm2 , gC = 4.0 mS

cm2 .

Figure 5.10: Synchronization order parameter at different gC values for fifty unidirection-

ally coupled neurons in chain arrangement with I = 50.0 mA.
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5.3.2 Bidirectional ring with I as 50.0 mA

Figure 5.11: Space-time plots for increasing gC value for 50 neuron bidirectional ring. Row

1: gC = 0.2 mS
cm2 , gC = 0.5 mS

cm2 , and Row 2: gC = 1.0 mS
cm2 , gC = 4.0 mS

cm2 .

Figure 5.12: Synchronization order parameter at different gC values for fifty bidirectionally

coupled neurons in ring arrangement with I = 50.0 mA

Figure 5.12 illustrates that the value of R does not reach 1.0 till gC = 20.0 mS
cm2 even for
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bidirectional coupling in ring arrangement for 50 neurons. The slope increases really fast

at first till R reaches 0.5 and then the slope decreases to a very low value. In fact, the value

of R = 0.99 is reached at a very high gC value of around 650 mS
cm2 . This value of gC at which

complete synchronization is attained for a bidirectional ring of 50 neurons is much higher

than the gC value required in the case of a unidirectional chain of 50 neurons. Thus, these

results indicate that a unidirectional chain of 50 neurons is better for synchronization than

a bidirectional ring when input currents are high (50.0 mA). This suggests that for higher

number of neurons (around 50), there might be a more complex dynamics at work for syn-

chronization, and we cannot simply state that a bidirectionally coupled ring is always better

than a unidirectionally coupled chain of neurons for all the input currents simulated when

the number of neurons is around 50. We still need to carry out more simulations with 50

neurons to completely rule out all the other possibilities for such a result (for example -

the presence of a longer transient in case of higher network lengths which needs to get

removed before evaluating the Synchronization Order parameter) and accepting that this

sort of a dynamics is seen in higher network sizes. Along with this, we need to run a few

more simulations for network sizes greater than 50 neurons to understand the dynamics at

play for larger networks. The simulations require significantly more computational time to

complete as the number of neurons increase. We have discussed this at length along with a

discussion on future perspectives for modelling multiple coupled neurons in the Discussion

chapter (Chapter 7). However, results for other input current values and boundary condi-

tions for 50 neurons are presented in subsection 5.3.3 to paint a better picture of what could

be ascertained from simulations done so far.

5.3.3 Other results for 50 neurons

Figure 5.13 has four images depicting the evolution of R (Synchronization order parameter)

with coupling strength (gC) for different input currents in a 50 neuron unidirectional chain

and bidirectional ring. It can be seen that for the 50 neuron bidirectional ring case, even at

these lower input current values (10.0 mA and 25.0 mA), a bend in the R vs gC curve is

seen (seen in the bottom images in Figure 5.13). The value of R seems to reach a limiting

value and then grows very slowly after that. The bend in the curve is seen at a lower R

value for higher input currents. This is not the case for unidirectional coupling where the

curve for R versus gC is continuous. Apart from that, we evaluated the value of gC at which
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Figure 5.13: Evolution of the synchronization order parameter with gC for different input

current values and boundary conditions in 50 neurons. The upper two graphs are for uni-

directional chains and the lower ones are for bidirectional rings. The figures on the left are

for 10.0 mA current while those on the right are for I value as 25.0 mA

complete synchronization (R = 1.0) is achieved. These values are :-

1. For the unidirectional chain of 50 neurons with input current 25.0 mA, the value of R

= 0.99 is achieved at around the value of gC = 150 mS
cm2 . However, for the bidirectional

ring, the value of R = 1.0 is achieved at a higher gC value of 180 mS
cm2 . This difference

in the gC values is not as high as in the 50.0 mA input current case discussed in the

previous two subsections. However, even in this case, it implies that a unidirectional

chain is better than a bidirectional ring of 50.0 mA input current when the current is

25.0 mA.

2. For the unidirectional chain of 50 neurons with input current 10.0 mA, the value of

R = 0.99 is achieved at around the value of gC = 90 mS
cm2 , and for the bidirectional

ring, the value of R = 1.0 is achieved at a lower gC value of 45 mS
cm2 . Thus, for these

lower values of input currents, the usual results that the bidirectional ring is better for

synchronization than a unidirectional chain still hold.

Three possibilities emerge from this observation - (i) Higher network sizes obey a more

complex dynamics for synchronization, (ii) Only higher network sizes with high input cur-
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rent values obey a complex dynamics of synchronization and the usual results of bidirec-

tional ring being better for synchronization than the unidirectional chain are valid other-

wise, and (iii) The results for the case of 50 neurons were an anomaly. These could be

ascertained by modelling higher network sizes at different input currents values(e.g., 100

neurons). We also wish to point out that up until now, a transient of 60 msec was removed

from a time series of 200 msec to evaluate R. We need to test these results with longer time

ranges and upon removing a longer transient as this might have an effect on the results.

This was not possible up until now due to the limited computational power available. Simi-

larly, other simulations mentioned above with higher network sizes need to be carried out to

make conclusive statements about the dynamics at play for higher network lengths. Thus,

in conclusion, all the other results (effect of input current, effect of number of neurons etc.

on synchronization) hold for both smaller and larger network sizes. However, even though

we know for sure that a bidirectional ring is better than a unidirectional chain for smaller

network sizes, there might be a few exceptions to this particular result as we go to higher

network lengths. A set of conclusions for the results obtained so far on the synchronization

of coupled neurons are presented in the Summary section.

5.4 Summary

The conclusions for multiple coupled neurons are summarized below:-

1. Synchronization increases with increasing coupling strength (gC values).

2. Increasing the number of neurons makes it more difficult to synchronize the network.

3. Increasing the input current in driving neuron makes it difficult to synchronize the

network.

4. Bidirectional ring arrangement provides better synchronization than Unidirectional

chain arrangement at least for lower network sizes.

5. More simulations are to be done for higher network sizes (50 neurons and more)

to conclusively highlight the difference between the synchronization ability of the

unidirectional chain and the bidirectional ring in larger networks.
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Chapter 6

Estimating Parameters from Neuronal

Activity using Bayesian Inference

The final aspect of the work deals with an inverse approach to parameter analysis. This

work is at a preliminary stage. Rather than generate the output variable by simulating a de-

terministic model after feeding the parameters, they are estimated from experimental data.

In real neurons and neuronal circuits, the individual and emergent action potentials gener-

ated are under many other influences (internal or external to the system), which contribute

to add stochasticity or noise to the measurement of the voltages (say, in single neuron ac-

tion potentials, or EEG, ECG, etc.) [26]. In this chapter we explore the methods employed

to study the time series of noisy measurements (neuronal output voltage here) to estimate

parameters of a known mathematical model (such as, the Hodgkin-Huxley model of neu-

rons). Many probabilistic estimation methods exist in Statistics and this section considers

only the methods used for the Bayesian paradigm. The studies made in this area consist of

learning about the Bayesian methods and preparing noisy datasets from the HH equations

for future studies.

Various approaches for Bayesian estimation of parameters exist. Section 6.1 deals with

the review of the literature and discussion of various preexisting algorithms for Bayesian

Inference of parameters. Section 6.2 deals with simulation of the Hodgkin Huxley model

with different types of noise introduced to the output to generate noisy HH data. The final

aim is to then apply the Bayesian techniques in parameter estimation discussed in section

6.1 to noisy data, which is generated according to the protocol followed in section 6.2. This

would help in gaining a better understanding of the effects of different types of noises on

63



the parameter estimation algorithms. This is an important aspect because different biolog-

ical sources can interact to produce processes containing different types of noises in them.

Thus, to summarise, we give techniques in Bayesian inference followed by Hodgkin Hux-

ley model plots with different underlying noise distributions. The final aim is to combine

these two aspects and understand the effectiveness of the numerical techniques in parameter

estimation for different noise types.

6.1 Concepts in Bayesian Inference

6.1.1 Bayes’ theorem

Probability theory consists of two approaches. The first one being the frequentist approach

[27], and the second one being the Bayesian approach [28]. The basis of the Bayesian

approach to probability lies in Bayes’ theorem [28], which states that the probability of an

event keeps updating with observation (new incoming data). There are four key variables

which make up the mathematical formula for the Bayes’ theorem. These are -

1. The posterior probability - The posterior probability is the newly updated probability

once new data is observed.

2. The prior probability - The probability of an event occurring before new data is ob-

served.

3. The likelihood - The likelihood is the probability of observing the new data, given

that the event occurred.

4. The evidence - Evidence is obtained from all the data present. It is the probability of

the preexisting data. It acts as a normalizing constant in the formula for the Bayes’

theorem.

The following is the mathematical formula for the Bayes’ theorem:-

P (parameter|data) =
(P (data|parameter))× P (parameter)

P (data)
(6.1)

• Posterior probability = ((Prior probability)×(likelihood))/(Evidence)

This is the Bayes’ theorem, which gives us the rules for updating of probabilities with data.
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6.1.2 Algorithms in Bayesian Inference

A few algorithms used in Bayesian Inference are highlighted in this subsection. Each of

these algorithms has different advantages and disadvantages.

Markov Chain Monte Carlo methods (MCMC algorithms)

These are a group of methods that use Markov chain processes with a Monte Carlo sampling

technique [29, 30]. A Markov chain is a stochastic process that does not have long-term

memory. This means that in a Markov chain process, the next state is only dependent on

the previous state. A Monte Carlo sampling technique samples with a defined probability

distribution. The sampling is done from a set of randomly generated numbers coming from

a given probability distribution. These two together govern the selection criteria in MCMC

processes.

Monte Carlo integration draws samples from the given distribution and then approximates

averages as expectation values. An MCMC algorithm draws from these samples by running

a Markov chain for a long time. Following are a few algorithms that follow this approach.

• Metropolis Hastings Algorithm [31, 32]- The classic algorithm which is most used

from the MCMC methods.

• Hamilton Monte Carlo algorithm [33]- This algorithm looks at the sampling from a

physical analogy and relies on the application of theoretical concepts from classical

mechanics to solve the problem. It is faster than the Metropolis Hastings algorithm.

• Gibbs sampling method [34]- This is a simplification (special case) of the Metropolis

Hastings algorithm.

MCMC algorithms do not need the evidence term (in Eq. 6.1) for the calculation of the

posterior probability. This is really advantageous because the numerical estimation of the

evidence term is often infeasible. Thus, these methods are particularly useful when the

evidence is not known.
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Likelihood Free Inference/ Approximate Bayesian computation

As the name suggests, this numerical technique does not require the Likelihood variable

in the Bayes’ formula for updating probabilities for purposes of parameter estimation.

Approximate Bayesian Computation is a type of Likelihood Free Inference method for

Bayesian Inference [35]. ABC (Approximate Bayesian Computation) requires the following:-

1. Data.

2. Generative model to generate data.

3. Prior.

4. Criteria for when the simulated data matches the actual data.

The following are the steps for carrying out Approximate Bayesian computation:-

1. The preexisting data is used to evaluate the parameters like mean etc. which gives us

a prior probability distribution for the parameter values.

2. From this distribution, parameter values are taken out and simulations are performed.

3. Probability distributions for the parameter values are evaluated for each of the simu-

lation and then, based on a threshold for tolerance, it is decided whether these simu-

lations generate data sufficiently close to the observed data and data is updated.

4. This gives us a posterior estimate.

Other uses of ABC may be in model comparison. Limitations of ABC include the follow-

ing.

• Small number of models used to estimate posterior due to high computational cost

• High dimensionality may require a large number of parameters to be estimated, and

thus, a large number of simulations may be required (Computational complexity).

Approximate Bayesian Computation is particularly useful when a Likelihood function is

not available or computationally infeasible/ expensive to evaluate. This method may be

implemented with software like PyABC or the abc R package.
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Variational inference

This algorithm frames parameter estimation as an optimization problem. This is a faster

and computationally scalable algorithm and this acts as an advantage in certain cases.

Many numerical implementation of the above-mentioned algorithms exist in literature and

as libraries in Python and other software tools.

6.2 Data generation for parameter estimation

Biological processes are not as precise as the deterministic mathematical models that we

used to simulate them. Action potential generation in real biological systems are never as

deterministically regulated as given by the plots obtained from the simulation of the coupled

non linear equations in the Hodgkin Huxley model. The Hodgkin Huxley model, in fact,

represents the ideal behaviour in biological systems where there is no stochasticity present.

Real biological processes have noise in them. Besides, the noise in these biological sys-

tems could originate from different types of probability distributions and be both white and

coloured [36]. Parameter estimation in real neuronal systems would thus have to overcome

the difficulties posed by the presence of noise - both in parameters and variables. In this sec-

tion, as the simplest case, we simulate the Hodgkin Huxley model by introducing additive

noise in the output voltage at every integration step. We give below simulation results for

the Hodgkin Huxley model with noise introduction in it. Figure 6.2 illustrates three types

of random distributions which are used to simulate noise which is then fed into the Hodgkin

Huxley model. The simulation results and the corresponding histograms are shown for HH

model - (a) With Gaussian random noise, (b) Noise from Poisson distribution, and (c) Noise

from Uniform distribution respectively. Note that for illustration purposes, the mean and

variance for all three types of input noise given in Figure 6.2 are taken equal to 3.0 mV.

Figure 6.1 represents a simulation of the HH neuron without any input noise. This is given

for purposes of comparison.

The future prospects are to apply the numerical methods in Bayesian Inference discussed

in Section 6.1 for parameter estimation in noisy signals with different types of background

noise (as given in Figure 6.2 as illustration).
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Figure 6.1: HH neuron for parameter values : ḡNa = 120.0 mS
cm

and ḡK = 36.0 mS
cm

and I =

50.0 mA for with no input noise

Figure 6.2: (Left) : Histograms for Gaussian random distribution, Poisson random distri-

bution and Uniform random distribution used for generating (Right) : Plots generated for

Hodgkin Huxley model for Gaussian random noise, Poisson random noise and Uniform

random noise respectively. Parameter values are ḡNa = 120.0 mS
cm

and ḡK = 36.0 mS
cm

and I

= 50.0 mA
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Chapter 7

Summary and Outlook

Neurons act as messengers of information in living systems with action potentials acting

as the messages. The action potential arises from various ion channel (specifically, sodium

and potassium) activities interacting at different scales, which are successfully modelled

by the four-variable Hodgkin-Huxley (HH) equations. The coordinated activity of single

and networks of neurons make it possible for living organisms to perform their cognitive

functions. The two most important features of this electrical activity are the frequency

and amplitude of the emergent oscillations of action potentials from the neuronal networks.

This study explores the functioning of a neuron as a dynamical system, and the role that

various electrical parameters play in the singular and coordinated activity of neurons. The

three broad categories of work are :-

1. Mapping the electrical parameter space of ion channel conductance and input currents

(ḡK , ḡNa, I) of the Hodgkin Huxley single neuron and highlighting the properties of

transitions in dynamic behaviours.

2. Understanding the effect of various parameters in driving synchronization in net-

works of neurons of different sizes coupled through gap junction coupling (electrical

synapse).

3. Bayesian Inference techniques for parameter estimation in noisy HH model.

These three together, complete a study of the analysis of parameters in the HH neurons by

bringing together the methods of computational modelling and data analysis. The first two

points highlight the role of parameters in driving the dynamic activity (of output voltage)

of single and coupled neurons, while the third point emphasises on a reverse approach to
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obtain the parameters when the data on the output voltage is given. In this chapter, we sum-

marize and further elaborate on some of the results obtained so far. Section 7.1 summarizes

single neuron results and highlights different ways of looking at the transitions in the dy-

namics in parameter space. Section 7.2 summarizes coupled neuron results and highlights

the future perspectives of computational modelling of coupled neurons. Finally, there are a

few anomalies encountered in the results obtained so far and section 7.2 highlights those as

well.

7.1 Single Neuron results - Additional Perspectives

We mapped the (ḡK , ḡNa, I) 3 dimensional parameter space of the HH neuron with the help

of 2 parameter plots of the ḡK , I and the ḡK , ḡNa planes (Chapter 3). The study aimed to

find the effect of these parameters on the dynamics of the action potential. It was discovered

that -

1. The (ḡK , I) two parameter plane (Figure 3.3) has a bounded region inside which the

asymptotic dynamics behaviour of the single neuron is stable self sustained action

potentials and everywhere outside, it exhibits steady state dynamics (damped poten-

tials). The area of the enclosed region gets larger upon increasing the third parameter

(ḡNa). The dynamic transitions in this plane are viewed in terms of the amplitude of

oscillations of the asymptotic states.

2. The (ḡK , ḡNa) two parameter plane (Figure 3.8) consists of a region of stable self

sustained action potentials that is bounded on three sides but open on the fourth. Out-

side this region, steady state solutions (damped potentials) exist. Boundaries of this

region are approximated as straight lines. Increasing the third parameter (Input cur-

rent, I) decreases the slope of the first transition boundary (from damped oscillations

to stable self sustained action potentials) until it converges to a fixed value. Also,

increasing the input current shifts the second boundary (from stable self sustained

action potentials to damped potentials) downwards by a value proportional to the in-

crease in the input current. In other words the value of the constant (intercept, in the

equation of a line) decreases linearly with increase in input current for the second

boundary of transitions.

70



3. The two boundaries (upper and lower) of the enclosed region in the (gK -I) two pa-

rameter plot (Figure 3.2), showed an interesting difference in the transition dynam-

ics from inside to outside. A neuron always exhibited self-sustained oscillations for

parameters in the inside region, and the asymptotic dynamics was fixed point for pa-

rameters at the outside. The nature of change in dynamics, on changing parameters,

is different along the two boundaries. Simulations show that in the lower bound-

ary (orange points) from damped oscillations to self sustained action potentials, the

spike amplitude of the oscillations rises abruptly as parameters are closer to the first

boundary, whereas near the upper boundary (blue set of points) this is not seen, and

sustained oscillations reduced to damping oscillations very gradually for some values

of gK and abruptly for other gK values on crossing the boundary.

Below, we give two perspectives with which one could examine the transitions in dynamic

behaviour in the ḡK , I parameter plane. In the results given in Chapter 3, these transitions

were computed numerically, and viewed in terms of the variation of the amplitude of oscil-

lations upon transition, which is elaborated in point 3 above. In that light, these results can

be interpreted from two perspectives as given down below : -

1. Bifurcation perspective - Stability analysis of HH equations are prohibitively diffi-

cult. Thus, obtaining these boundaries from stability analysis to denote changes in

stability characteristics of the HH equations from unstable (limit cycle) to fixed point

(outside) in the two-parameter plots is rather difficult. Yet, rather than trying to as-

certain properties based on the amplitude of oscillation, if we try to focus along the

I-axis for a fixed value of ḡK and ḡNa, we can view this result in terms of bifurcations.

To illustrate this, we notice that at smaller I values, one gets asymptotic steady state

dynamics with damped oscillations. Linear stability analysis should give a stable

fixed point here. Upon increasing the input current, the steady state loses its stability,

and bifurcates on crossing the boundary into a region of unstable steady state solu-

tions marked by large amplitude oscillations (Stable self sustained action potentials)

as seen by the orange points in Figure 3.2. At the other boundary, on increasing the

I-value still further, the system shows reverse-bifurcation from unstable steady state

to the fixed point state with damped oscillations dynamics (blue points in Figure 3.2).

Whether the transition of going back to the steady state solution is through gradual

or abrupt change, in the amplitudes of oscillation, is dictated by the ḡk value at fixed
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value of ḡNa. This is a classic example of bifurcation happening in a low dimensional

(single neuron) system. The plots in Figure 7.1 schematically represent the dynamics

of change in amplitude of sustained oscillations in the two boundaries at bifurcation

using the blue region.

Figure 7.1: Schematic for the bifurcation perspective: (Left) - ḡK < 10.0, where increasing

I results in abrupt increase in amplitude of oscillation at the lower boundary (orange set

of points in Figure 3.2) and an abrupt decrease in amplitude of oscillations at the upper

boundary (blue set of points in figure 3.2); (Right) - ḡK ≥ 10, where increasing I results

in abrupt increase in amplitude of oscillation at the lower boundary (orange set of points in

Figure 3.2) and then further increasing the I results in a gradual and continuous decrease in

amplitude of oscillation at the upper boundary (blue set of points in Figure 3.2) for value of

ḡNa = 120.0 mS
cm2 . The dark line outside the blue region in both graphs representing stable

fixed points also represents zero amplitude of oscillations.

Bifurcation theory is usually the accepted nomenclature in the context of explaining

and understanding the dynamics of stable-unstable transitions in low dimensional

dynamical systems. Figure 7.1 gives a schematic perspective of looking at the single

neuron results through the lens of bifurcation dynamics. This is the widely accepted

theory of looking at low dimensional dynamical systems.

2. Phase Transitions perspective - Here we show that the theory of phase transitions

could be another way of viewing these results. We give the phase transition perspec-

tive of looking at these results for single neuron dynamics. If we view the amplitude

of oscillations as an order parameter and try to classify the transitions into either first

order phase transitions or continuous phase transitions, we note that transitions ac-

companied by an abrupt change in the order parameter are referred to as first order
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phase transitions, and transitions accompanied by a gradual and continuous change in

the order parameter are referred to as continuous phase transitions. Thus, according

to the results regarding amplitude mentioned above in the subsection on properties

of transitions, we would label all the transitions marked by orange points in Figure

3.2 as first order phase transition. Similarly, we would label blue transition points

with ḡK < 10.0 mS
cm2 as first order transitions and those with ḡK ≥ 10 mS

cm2 as con-

tinuous transitions. Also note that usually, a first order transition is accompanied by

a loss function. An example of a loss function accompanying first order transitions

in states of matter is latent heat. Something similar to that could be expected in this

case too. Such loss functions could be ascertained experimentally. Knowing what the

loss function is, in this case, could be interesting. Along with, for the second set of

transition, why does this loss function go away for ḡK ≥ 10 ms
cm2 for ḡNa = 120 ms

cm2

case would also be interesting to know. We point out that even though we give an

analogy with phase transitions here, it requires a deeper understanding of the phases

associated to conclusively talk about phase transitions in the single neuron case. We

just consider the stable self sustained action potentials as one phase and the damped

potentials as the other phase. Thus, looking at these as phase transitions could be an

alternative way of looking at these results.

The overall dynamics is similar even for other values of ḡNa. For example, for ḡNa =

150.0 ms
cm2 also, we get all our first set of transitions as first order. Also the second

set of transitions follow a similar dynamics with lower ḡK values showing first order

transitions while higher ḡK values showing continuous phase transitions. Though this

change in order of transition does not occur at ḡK = 10 ms
cm2 . It occurs at a slightly

higher ḡK value. The dynamics is however similar.

7.2 Multiple Coupled Neurons - Future Perspectives and

Anomalies

Chapter 4 and Chapter 5 deal with the dynamics of electrically coupled neurons (uni and

bidirectionally) and their ability to exhibit synchronized sustained oscillations with chang-

ing parameters when only the first neuron has Input current. The results obtained are sum-
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marised below.

For two neurons:-

1. Increasing the coupling strength (gC) leads to increased synchronization in the two

neuron network. The activity shifts from asynchronous to phase synchronized and

subsequently to complete synchronized activity.

2. Increasing input current makes it harder to synchronize the two neurons.

3. Bidirectional coupling between two neurons results in better synchronization than

unidirectional coupling.

For multiple (more than two) neurons:-

1. Synchronization increases upon increasing the coupling strength (gC) and the state of

the network goes from asynchronized state to phase synchronized and subsequently

to complete synchronization. Increasing the input current in the driving neuron 1,

makes it difficult to synchronize the multiple neuron network.

2. Increasing the number of neurons makes it harder to synchronize the network.

3. The bidirectional ring offers better synchronization than a unidirectional chain. This

result is always valid for small networks. Even though observation for 50 neurons

have been reported in Chapter 5, the results for larger networks (50 neurons and

more) can be summarised only after longer simulations on larger networks.

Below, we point out a few interesting observations for the case of multiple neurons. We also

discuss future prospects and possible questions that could be answered for the dynamics of

coupled neurons using a similar approach used here.

• Our results have shown that a bidirectional ring is better than a unidirectional chain

for synchronization of the network. However, the precise difference in ability to syn-

chronize a network between the ring and the chain arrangement, for a particular type

of coupling (unidirectional or bidirectional), can only be ascertained by doing further

simulations of bidirectional chains and unidirectional rings. However, we can state

with reasonable confidence that a ring arrangement is better for synchronization that
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a chain arrangement. The following is an argument supporting the premise. Upon

comparing the results of a 5 neuron bidirectional ring with I = 50.0 mA (Figure 5.4)

to results for two neuron bidirectional coupling with I = 50.0 mA (green line plot in

4.14), it is observed that in both cases, complete synchronization (R = 1.0) is achieved

at around gC = 5.0 mS
cm2 . Thus, the negative effect of increasing network length in the

ability to synchronize is not markedly seen here. In fact, the ring arrangement (for the

5 neurons) is nullifying or maybe even overpowering the negative effect of increasing

the number of neurons on gC values. The two topologies of connections not studied

here are - the “unidirectional ring” and “bidirectional chain” arrangements. Simula-

tions with these network structures are necessary to validate the claim with certainty,

and this could be an interesting avenue of future prospects in modelling of multiple

electrically coupled neurons.

• The ability of a synchronized circuit of multiple electrically coupled neurons to drive

itself is another interesting aspect that could be looked into. This could be done by

replacing the constant input current that is given to our multiple coupled neurons (in

Chapter 4 and 5) with a step down input current which inputs a constant positive

value of I to the driving neuron (neuron 1) initially, and then shut the input current

off after some time interval. It would be interesting to note if the multiple neuron

system continues to show sustained action potential generation after the input current

is turned off. If it does, then its dependence on coupling strength (gC) and pre-step

input current value (Iinitial) can be studied.

• The simulations done so far could be done for higher network sizes (requiring more

powerful computing systems and longer simulation times). It would be interesting

to note whether the results obtained so far hold for larger networks as well. It would

also be important to then study the spatiotemporally locally stable transient dynamics

that these networks will show as are seen in many realistic neural systems [37–39].

The last point brings us to some anomalies that exist for the multiple neuron results.

There are certain parametric combinations for coupled multiple neurons where stable

self sustained action potentials are not sustained in coupled neurons. For example -

for the combination of five neurons, bidirectional coupling, ring arrangement at 10.0

mA input current, we just get graded potentials in all neurons and stable self sustained
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action potentials are not sustained for gC ≥ 0.3 mS
cm2 . These instances of the network

unable to sustain stable sustained action potentials are relatively low for input current

values less that 100.0 mA though. At input current of 200.0 mA in driving neuron, the

network is often not able to sustain self sustained action potentials in all connected

neurons. In this thesis, work has ben done with input currents, I ≤ 100.0 mA, where

these exceptions are rare. Thus, our generalization of results needs to be considered

based on the limitations mentioned above. Besides that, another unusual result that

we obtained is easier synchronization for unidirectional chain of 50 neurons with

input current as 50.0 mA and 25.0 mA than the bidirectional ring case (explained in

detail in section 5.3). This result needs to be tested more extensively and whether

this is an anomaly or if this happens for all large networks has to be ascertained with

more simulations on higher number of neurons for longer simulation times.

The Chapter 6 highlights future perspectives to this work using the Bayesian approach of

parameter estimation. It may be noted that the noisy time series have been obtained by

introducing stochasticity (from different distributions) to the voltage variable of the HH

equations. It is also possible to have noisy parameters. There are several ways to introduce

variability in the network of neurons. In this thesis, all neurons have been considered iden-

tical. But in reality each neuron may have a slightly different maximum ionic conductance

or coupling strength. This also introduces heterogeneity in the system which may affect the

readout voltage of the network. These can be considered in future work.

In summary, this thesis reports detailed analyses based on extensive simulations of the

Hodgkin-Huxley model neurons - single and coupled networks - to study the dependence

of several parameters (ion channel conductances, input current, coupling strength, topol-

ogy of coupling, and network length) on the nature and synchronization potential of the

action potentials. Limitations and possible discrepancies in the results have been discussed

clearly, and future work that may add more understanding to these properties have also been

proposed to be undertaken in the future.
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Appendix A

Codes

Python 3 in Jupyter was used for computational modelling and coding purposes.

1. Single Neuron sample code

from fractions import Fraction
import numpy as np
import matplotlib.pyplot as plt
import pandas as pd
from scipy.integrate import odeint
import matplotlib as mpl
mpl.rcParams[’figure.dpi’] = 300

def alpha_n(V):
return (0.01*(10.0-V))/(np.exp(1.0-(0.1*V))-1.0)

def beta_n(V):
return 0.125*np.exp(-V/80.0)

def alpha_m(V):
return (0.1 * (25.0 - V)) / (np.exp(2.5 - (0.1 * V)) - 1.0)

def beta_m(V):
return 4.0 * np.exp(-V / 18.0)

def alpha_h(V):
return 0.07 * np.exp(-V / 20.0)

def beta_h(V):
return 1.0 / (np.exp(3.0 - (0.1 * V)) + 1.0)

VK = -12.0
VNa = 115.0
Vl = 10.613
gK_mat = np.linspace(5.0,50.0,10)
gNa = 120.0
gL = 0.3
Cm = 1.0
tstart = 0.0
tend = 150.0
timesteps = 10000

T = np.linspace(tstart,tend,timesteps)

def I(t):
return I_val

def action_potential(x, t):
dx = np.zeros(4)
n = x[0]
m = x[1]
h = x[2]
V = x[3]
dx[0] = alpha_n(V)*(1-n) - beta_n(V)*n
dx[1] = alpha_m(V)*(1.0-m) - beta_m(V)*m
dx[2] = alpha_h(V)*(1.0-h) - beta_h(V)*h
dx[3] = (1/Cm)*(I(t)-(gK*np.power(n,4)*(V-VK))-(gNa*np.power(m,3)*h*(V-VNa))-(gL*(V-Vl)))
return dx

V0 = np.array([0.0,0.0,0.0,0.0])
%matplotlib inline
count_I_loop = 0
count_gK_loop = 0

for gK in gK_mat:
for I_val in I_val_mat:

Vx = odeint(action_potential,V0,T)
plt.figure()
plt.plot(T,Vx[:,3])
plt.title("Current value : {} mA, gK value : {} mS/cmˆ2".format(I_val,gK))
plt.xlabel(’time in msec’)
plt.ylabel(’Voltage (mV)’)
count_I_loop = count_I_loop + 1

count_gK_loop = count_gK_loop + 1

count_I_loop = 0
count_gK_loop = 0
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This code was modified from a code given by Giusseppe Bonaccorso. The link is

given in the footnote. 1

2. Peak counting in action potentials

Vx = odeint(action_potential,V0,T)
plt.figure()
plt.plot(T,Vx[:,3])
plt.title("Neuron - current value : {}".format(I_val))
plt.xlabel(’time in msec’)
plt.ylabel(’Voltage (mV)’)
count_peaks = 0
for t in range(int(timesteps/2),timesteps-1):

if Vx[t,3]>20.0:
if Vx[t-1,3]>20.0 and Vx[t+1,3]>20.0:

count_peaks=count_peaks
else:

count_peaks=count_peaks+1
print(int(count_peaks/2))

3. Multiple coupled neurons

The code is similar to that of single neuron except for higher number of output vari-

ables for larger number of neurons. The coupling is introduced according to theory

given above in the thesis.

4. Space-Time plot generating script
count_gC_loop = 0
count_I_loop = 0
import numpy as np; np.random.seed(0)
import seaborn as sns; sns.set()

for I_val in I_list:
for gC_val in gC_list:

Vx = odeint(neuron1,V0,T)
plt.figure()
uniform_data = [Vx[3000:timesteps,3],Vx[3000:timesteps,7],
Vx[3000:timesteps,11],Vx[3000:timesteps,15],
Vx[3000:timesteps,19],Vx[3000:timesteps,23],
Vx[3000:timesteps,27],Vx[3000:timesteps,31],
Vx[3000:timesteps,35],Vx[3000:timesteps,39]]
ax = sns.heatmap(uniform_data)

plt.title("10 neuron bidirectional ring : I = {} mA, gC = {} $mS/cmˆ2$".format(I_val,gC_val))
plt.xlabel(’Time (in msec)’)
plt.ylabel(’Neuron number’)

count_gC_loop = count_gC_loop + 1
count_I_loop = count_I_loop + 1

count_I_loop = 0
count_gC_loop = 0

5. Calculation Synchronization Order parameter

for I_val in I_list:
R = []
for gC_val in gC_list:

Vx = odeint(neuron1,V0,T)
onlyV = (Vx[3000:timesteps,3],Vx[3000:timesteps,7],
Vx[3000:timesteps,11],Vx[3000:timesteps,15],
Vx[3000:timesteps,19],Vx[3000:timesteps,23],
Vx[3000:timesteps,27],Vx[3000:timesteps,31],
Vx[3000:timesteps,35],Vx[3000:timesteps,39])
onlyV = np.transpose(onlyV)

num_1stterm = (np.sum((np.sum(onlyV,axis = 1)/len(onlyV[0]))**2))/timesteps
num_2ndterm = ((np.sum(np.sum(onlyV,axis = 1)/len(onlyV[0])))/timesteps)**2
num = num_1stterm - num_2ndterm
num
den_1stterm = (np.sum(onlyV**2,axis = 0))/timesteps
den_2ndterm = ((np.sum(onlyV,axis = 0))/timesteps)**2
den_t = den_1stterm - den_2ndterm
den = np.sum(den_t)/len(den_t)

synchronization_par = num/den
print(synchronization_par)
R.append(synchronization_par)

1https://www.bonaccorso.eu/2017/08/19/hodgkin-huxley-spiking-neuron-model-python/
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