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Abstract

We show the pattern formation in living systems by incorporating the simplest mod-

els. Mechanochemical patterning was the main aim of consideration to describe the

morphogenesis process. Firstly, we showed the pattern formation for single chemical

species in one - dimension with the help of active stress and linear turnover. The chem-

ical species was active stress up regulator. Active stress leads to the non-homogeneous

concentration profile with the help of hydrodynamic flows generated and having spon-

taneous stationary patterns. Then we had a linear turnover in the advection-diffusion

system for the single diffusing chemical species which showed travelling and oscilla-

tory patterns as well as stabilization of multiple peaks in the concentration profiles.

We then showed pattern formation for two chemical species in one-dimension. Here,

one was active stress up-regulator diffusing fastly, and other was active stress down-

regulator diffusing slow. This system showed pulsatory patterns. Afterwards, we

incorporated linear turn over into the advection-diffusion system where we observe

patterns only if active stress up regulator turns over fast as compared to active stress

down regulator, for which turnover is slow. The whole work is motivated by the two

PRL papers cited in the reference.
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Chapter 1

Introduction

Pattern formation is a fundamental property of life and is a beautiful phenomenon.

Patterns are seen everywhere in the physical world and in living systems ; also, they

vary from being simple to complex. We have seen patterns like in peacock feathers,

leopard spots, zebra stripes, water waves, rock layers and dunes. Patterns can be seen

in non-living systems also. The most exciting part of pattern formation is observed

for biological systems during the generation of complex organisms which is called

morphogenesis. Morphogenesis process got the attention of many scientists about the

question that how pattern formation in this process can be understood from physics

principles.

1.1 Some fundamental aspects of Pattern forma-

tion

The human eye is always bored with monotonous views. Complexity always attracts

us, which occurs spontaneously, especially spatiotemporal complexity [2]. We will

be looking at such systems which are changing with spatial coordinates as well as

time. For example, many patterns established have different time and length scales

associated with them due to various conditions. It is seen when the embryo is getting

developed; there are multiple shapes observed on it. Alan Turing discussed in his

paper that this process can be best explained by a reaction-diffusion system where

two chemical species are reacting with each other and diffusing with the difference in

their diffusion rates which leads to different concentration profiles [3].
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The chemical species which govern the morphogenesis process are called morphogens.

These morphogens where one is an activator and other inhibitor are adequate for

morphogenesis process when the system is disturbed from its unstable homogeneous

state by various chemical signals. Alan Turing, in his paper, only discussed the pattern

formation due to the chemical part. He neglected the mechanical part, which is also

an essential part for morphogenesis.

1.2 The mathematical equation for reaction-diffusion

systems

For seeing different kinds of pattern formation for the chemical part, we need various

chemical species which are reacting and diffusing in the system from their initial

uniform state - this results in different concentration profiles which depends upon the

space and time.

Let us first consider a chemical species whose concentration is varying spatiotempo-

rally c(x, t), in a one dimensional system. Diffusion here plays an important part

where concentration is dependent on the diffusion constant represented by D. These

kinds of system are best represented by Fick’s equation where net flux Jx at x and t

is directly proportional to the concentration gradient. where proportionality constant

is D [4].

Jx = −D∂c

∂x
(1.1)

This is Fick’s first equation. For the concentration of chemical species, we can write

the continuity equation, which is the second equation.

∂c

∂t
= −∂Jx

∂x
(1.2)

Here the concentration is going from a high concentration region to low concentration

region. But for the reaction-diffusion system, reaction is also playing a vital role.

Reaction rate r(c, c1, c2, c3,........) is also affecting the rate of change of concentration

for chemical species where r is the reaction rate due to interaction with other chemical
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species with concentrations c1, c2, .... Therefore, Eq. 1.2 gets modified to

∂c

∂t
= −∂Jx

∂x
+ r(c, c1, c2.c3,........) (1.3)

When we combine equations Eq. 1.3 and Eq. 1.2 we get the equation for rate of change

of concentration in reaction diffusion systems :

∂c

∂t
= D

∂2c

∂x2
+ r(c, c1, c2, c3,........). (1.4)

Alan Turing suggested that at least two chemical species are required to observe

patterns [3] and their diffusion constants should have meaningful difference. For

higher dimension the same equation is written in the form :

∂c

∂t
= D∇2c+ r(c, c1, c2, c3,........). (1.5)

For three dimension ∇2 can be written as ∇2 −→ ∂2
x + ∂2

y + ∂2
z .

1.3 Linear stability analysis for Turing systems

As we discussed earlier, we require at least two chemical species for forming patterns

in Turing system, but is it a sufficient condition? Equations described for reaction-

diffusion systems are evolving in time and space. These systems form pattern when

they are perturbed from their homogeneous state only if it is an unstable state. To see

whether the initial uniform state is stable or not, we do linear stability analysis [5].

Let us consider two chemical species in a reaction-diffusion system which is represented

by the given set of equations below.

∂u

∂t
= Du

∂2u

∂x2
+R1(u, v) (1.6)

∂v

∂t
= Dv

∂2v

∂x2
+R2(u, v) (1.7)

where R1, R2 are the reaction rates for the interacting chemical species and Du, Dv are

the respective diffusion constants. For calculating homogeneous state put equation

(1.6) and (1.7) equal to 0 which leads to R1(u, v) = 0 and R2(u, v) = 0. Solving

them gives the homogeneous state given by (u∗, v∗) simultaneously. For performing
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linear stability analysis, we perturb our homogeneous state by the small perturbation

u→ u∗ + up, v → v∗ + vp. Then,

∂t(u
∗ + up) = Du∂

2
x(u
∗ + up) +R1(u∗ + up, v

∗ + vp) (1.8)

∂t(v
∗ + vp) = Dv∂

2
x(v
∗ + vp) +R2(u∗ + up, v

∗ + vp). (1.9)

For the reaction part, we do Taylor series expansion about the homogeneous state up

to the linear terms and neglect higher-order terms for simplicity.

∂t(up) = Du∂
2
x(up) +R1uup +R1vvp (1.10)

∂t(vp) = Dv∂
2
x(vp) +R2uup +R2vvp (1.11)

where, Rij = ∂Ri

∂j
and i = 1, 2, j = u, v. Further, the equation is linear with constant

coefficients and also the boundary conditions are periodic or at infinity. For finding

the exact form of the perturbed state we use Fourier analysis which leads to the

following solution [5].

Xp = Xke
λkteιkx =

(
uk

vk

)
eλkteιkx (1.12)

Here Xp =

(
up

vp

)
is the perturbed state, Xk is the constant vector and k is Fourier

mode. Let us substitute this expression of perturbed state in equations Eqs. 1.10 and

1.11 and collect the terms to get an eigenvalue problem :

AkXk = λkXk (1.13)

Here, A is the real 2× 2 matrix.

A =

(
R1u − k2Du R1v

R2u R2v − k2Dv

)
(1.14)

After solving the eigenvalue equation, we get two linearly independent eigenvectors

up and vp with corresponding eigenvalues λ1k and λ2k.

Xk = c1upe
λ1k + c2vpe

λ2k (1.15)
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If both the eigenvalues calculated are such that Reλik < 0 for i = 1, 2 then the

perturbation will decay and the system comes back to its original homogeneous state.

But as we know, the perturbation solution is the combination over all the Fourier

modes, so if this condition is true maximaxkλik < 0 then the homogeneous state is

stable.

For calculating the eigenvalues, we solve the following equation.

det(Ak − λkI) = 0 = λ2
k − (TrAk)λk + detAk (1.16)

Solving this quadratic equation gives the value of the eigenvalues.

λk =
1

2
TrAk ±

1

2

√
(TrAk

2)− 4detAk (1.17)

Figure 1.1: Different regions of Turing system in TrAk − detAk plane.

From the Fig. 1.1, we can see that if TrAk < 0 and detAk > 0 then we have a

stable region. These conditions lead to some constraint for all Fourier modes.
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TrAk = R1u +R2v − (Du +Dv)k
2 < 0 (1.18)

detAk = (R1u −D2
u)(R2v −Dvk

2)−R1vR2u > 0 (1.19)

1.3.1 Physical insights

Let us for the Turing system switch off the diffusion constant which implies stirring

the solutions at a fast rate. We find that Eqs. 1.18, 1.19 leads to R1u + R2v < 0 and

R1uR2v−R1vR2u > 0 for the stability of uniform state when perturbed. Further, If we

include the diffusion constant, then the same equation 1.18 for the trace remains less

than zero for different modes. But the Eq. 1.19 behaves differently when we include

diffusion constants.

The detAk is an upward parabola for k2 when the sign of this change which we can see

from the fig. 1.1 then there are stable patterns observed in the system at a minimum

Fourier mode km when detAk is minimum for k2.

Km =
DuR2v +DvR1u

2DuDv

(1.20)

From R1u + R2v < 0 and (1.20), we obtain that one is an activator, and other is an

inhibitor for the patterns to get formed. let R1u > 0 be an activator, and R2v < 0 be

an inhibitor. Moreover, for the Turing instability diffusion constant of inhibitor should

be higher from the diffusion constant of activator by at least one order (Dv

Du
> 1) [6]

which is also refered as ”Local activation with long-range inhibition”.
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Chapter 2

Role of active stress and turnover

in pattern formation for one

chemical species

Embryo development is a fascinating process if we see from the physics point of view.

This developmental process is a tight integration of mechanical forces and biochem-

ical signalling [1]. In 1952, Alan Turing suggested that reaction-diffusion equations

can best describe this pattern formation in multicellular organisms. Still, he also

mentioned about the mechanical effect, which should also be taken into account. It

has been seen in the development context that mechanical forces play a vital role in

pattern formation and shaping the embryo (see Fig. 2.1). This mechanism generally

happens at the cellular cytoskeleton cortex beneath the cell membrane. There is a

connection between pattern formation and morphogenesis which can be explained by

active mechanochemical patterning [1].

Figure 2.1: Embryo development first encounters pattern formation followed by the
shape change due to mechanical stresses regulated by biochemical signalling proteins
hence increasing spatial complexity.Taken from [1]

7



Talking about the cytoskeleton, it consists of a meshwork of filamentous proteins

called cytoskeleton filaments such as actins and microtubules and molecular motors

like myosin. Myosin motors are considered as active matter as they have self-propelled

movement on actin filaments by consuming energy from the ATP(adenosine triphos-

phate) hydrolysis. Myosin motors lead to a contraction in the actin filaments by

cross-linking them. More the myosin motors in a particular area larger is the con-

traction leading to mechanical stress on long length scales, reaching up to the cellular

and tissue scale (see Fig. 2.2). This mechanical forces which are being generated in

the cellular cytoskeleton take the system far from thermal equilibrium.

Figure 2.2: The figure shows the mechanics happening at the cellular scale in the
actomyosin cortex(which is beneath the cell membrane), leading to additional active
stress.Taken from [1]

2.1 Mechanical aspect of pattern formation

Cells and tissues show a beautiful property of autonomously generating forces. Active

mechanical stresses play a crucial role in pattern formation for developing multicellular

organism. So, here we present a model which involves the mechanical part. This model

was given by Bois et. al. [7].

Here, actomyosin cortex (a thin cytoskeleton meshwork) is considered as an active

fluid for specific time scales. The reason for choosing it as an active viscous fluid is

because for time scale for turnover happening with the cytoplasm is very much less

than the time scale for which it is behaving like a fluid. The main aim of this paper

was to look for the pattern formation in an active fluid with only one chemical species

with hydrodynamical flows generated. In Turing system, we needed at least two

reaction-diffusion equations for pattern formation. Here we need only one advection-

diffusion equation as actively generated hydrodynamic flows leads to the advection
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of chemical species which upregulates the active stress. These flows are generated if

there is spatial inhomogeneity of active stress profiles.

Let us consider a thin film of active fluid which is having a constant thickness as we

have in actomyosin cortex which is maintained by exchanging the material with the

cytoplasm. Movement is taken only in one-dimension along the x-axis. In this model,

we consider only one chemical species. The concentration of the regulator c(x, t)

(like myosin in the cytoskeleton) is given by the conservation equation (equation of

continuity) in one dimension. It involves a diffusion component (diffusion constant

D) and an advective component. Advective part comes due to the flow of regulatory

species with a velocity v.

∂tc = −∂xj (2.1)

j = −D∂xc+ vc (2.2)

where j is the flux for the regulatory species. Mechanical effect is included in the form

of mechanical stress. For the hydrodynamic flows, the total stress part in actomyosin

cortex is given by

σ = σp + σa (2.3)

= η∂xv + (ζ∆µ)0f(c) (2.4)

where σp is the passive stress, caused by the viscosity of the fluid (η : viscosity) and σa

is the active stress which arises due to the molecular motor activity and is dependent

on the concentration of the chemical species. It is an isotropic stress meaning it has

the same value in different directions. Active stress is positive for contraction and is

dependent on the change in the chemical potential (∆µ) by ATP hydrolysis. f(c) is

the function which depends upon the concentration.

At the cellular scale, Reynold’s number is low, so for the actomyosin cortex, we

can neglect the inertial forces (viscocity is very high) which leads to a force balance

equation on the fluid element. Force balance equation is written as follows :

∇ · σ = γv (2.5)

where γ is the friction coefficient of the thin layer, which describes the friction between
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the layer and the cell membrane or substrate. As the system is in one-dimension, so

the force balance equation changes to,

∂xσ = γv. (2.6)

Active stress and force balance equation can be simplified further by substituting (2.4)

in (2.6), which leads to an equation where velocity is dependent on the concentration

of the regulator.

η∂2
xv − γv = −(ζ∆µ)0∂xf(c) (2.7)

The function f(c) which is dependent on the concentration is taken to be of the form

c/(c + 1). It is also known as Hill’s equation this function shows saturation after

some time and ∂cf(c0) > 0 which means active stress is up regulated by the regulator.

Eqn 2.1 can be simplified further which gives advection-diffusion equation

∂tc = −∂x(vc) +D∂2
xc (2.8)

Eqs. 2.7 and 2.8 are two coupled equations where concentration and velocity are

dependent on each other. Solving the equations above simultaneously gives the desired

mechanochemical pattern in 1-D.

2.2 Linear stability analysis for the steady state

To obtain the criterion for stationary stable patterns from a homogeneous steady state,

we perform a linear stability analysis about the steady-state which is c = c0 and v = 0.

Here stable states are perturbed with small perturbation. The perturbations are

c = c0 + cp v = vp (2.9)

cp = δc = δc0e
qkt+ιkx and vp = δv = δv0e

qkt+ιkx where K = ±βnπ
L

is the wave number

for the spatial perturbation with n ∈ Z. Consider equation (2.4) with perturbed state.

10



Taylor expanding the function f(c0 + δc) till linear order terms we get [7],

σ = η∂xv + (ζ∆µ)0f(c0 + δc) (2.10)

= η∂xv + (ζ∆µ)0(f(c0) + ∂cf(c0)δc). (2.11)

. Substitute this in the equation (2.6) and performing the Fourier transform, we get

(ηk2 + γ)v = (ζ∆µ)0∂cf(c0)ιkδc. (2.12)

From Eq. 3.8 we obtain velocity as,

v(k) =
(ζ∆µ)0∂cf(c0)ιkδc

(ηk2 + γ)
. (2.13)

Insert Eq. 2.13 into Eq. 2.8 and taking only linear order terms, we get the eigenvalue

λ(k) of the form which is the dispersion relation. Some parameters which are necessary

for the dispersion relation are defined as Pe = (ζ∆µ)0
Dγ

= Ul
D

, where U = (ζ∆µ)0√
ηγ

. Pe is

the Peclet number which is the ratio of diffusive to advective time scales, l =
√

η
γ

is

the characterisitic length [8]. The eigenvalue is obtained as

λ(k) = −k2D(1− Pec0∂cf(c0)

1 + k2l2
). (2.14)

This dispersion relation is the main governing factor for spontaneous pattern formation

from the uniform steady state. If the steady-state is unstable then when we perturb

the state, it forms a pattern, and the condition for the eigenvalue is it should be

positive for some k. The condition which needs to be fulfilled for eigenvalue to be

positive for periodic boundary condition and when the wave number k = 2π
L

(L :

domain size) is as follows

Pec0∂cf(c0)

1 + (2πl
L

)2
> 1. (2.15)

If we take L
l

= xπ(x ∈ Z) then the condition for the minimum Pe from which we

start observing patters for some k is

Pe = (1 +
4

x2
)
(1 + c0)2

c0

. (2.16)
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2.3 Numerical solution and Analysis

We took the two coupled equations Eqs. 2.7 and 2.8 and solved them numerically

in python with the help of Fourier transform method, which is mentioned in the

Appendix-A. Following were the plots observed for the periodic boundary condition

where x ∈ [0, L].

Figure 2.3: Concentration and velocity profile at steady state for L
l

= 2π, c0 = 1 and
Pe = 16.

Fig. 2.3 shows the emergence of stationary patterns. Concentration profile evolution

is seen due to the advection and diffusion part. We can see that the velocity profile

is crossing the zero at the extremum of the concentration profile showing that the

flow of regulator is into the peaks and out of the valleys [7]. Diffusion tries to smooth

the concentration profile while advection leads to clumping due to non- homogeneous

active stress profile. Stationary patterns are observed when the advective flux balances

the diffusive flux at some point.

λ(k) = −k2D(1− Pec0∂cf(c0)

1 + k2l2
) (2.17)
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In Fig. 2.4, we look at the dispersion relation (Eq. 2.14) for different activity by

Figure 2.4: Dispersion relation (λ(k)) for Pe = 3, 8, 10 and 25 after performing linear
stability analysis. The eigenvalue λ(k) is non-dimensionalized by the diffusive time
scales τD = l2

D

varying Pe. We have already established that there is a critical value of Pe after

which the eigenvalue is positive and patterns starts to form. Patterns grow when λ(k)

is maximal for wavenumber k. For low Pe, λ(k) is negative for all k. With increasing

Pe, the regime of postive λ(k) emerges.

For a given set of parameters system, we can sometimes get multiple peaks at the

start. However, these are not steady states. If we wait for long time, then these

multiple peaks disappear and we get single peak. In Fig. 2.5, we see the situation for
L
l

= 5π where there are three peaks initially. As time progresses, the peaks merge

and form a single stable peak.
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Figure 2.5: Concentration and velocity profile at steady state for L
l

= 5π, c0 = 1 and
Pe = 16, system goes from multipeak to single peak (top to bottom).

14



2.4 Pattern formation in active fluid with linear

turnover

Here we consider pattern formation in a thin film of active fluid with linear turnover

rate R. The tunrnover can be motivated as actin filaments polymerizing and depoly-

merizing. The equations get slightly changed as chemical kinetics is also having a

contribution to the concentration change of the chemical species.

∂tc = D∂2
xc− ∂x(vc)−R(c− c0), (2.18)

η∂2
xv − γv = −(ζ∆µ)0∂xf(c) (2.19)

Figure 2.6: Dispersion relation λ(k) for Pe = 10 for R = 0, 0.25 and 0.7. The
eigenvalue λ(k) is made dimensionless by the diffusive time scales τD = l2

D
.

0.5cm

15



Figure 2.7: Travelling of pattern from right to left seen for different times at L
l

= 5π,
c0 = 1, Pe = 50, R = 0.5.

We can again do the linear stability analysis in the presence of turnover and get the

dispersion relation. In this case we obtain the λ(k) as

λ(k) = −k2D

(
1− Pec0∂cf(c0)

1 + k2l2

)
−R. (2.20)
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Figure 2.8: Travelling of pattern from right to left seen for different times at l
L

= 2π,
c0 = 1 and Pe = 25.

In Fig. 2.6, we plot λ(k) as function of k for different Pe and R values. As we can

see, at a given Pe, the dispersion curve is shifted downward when the linear turnover

rate is increased. Therefore, the critical Pe required for patterning to be observed is

17



more as compared to the case R = 0. Indeed the condition for critical Pe is obtained

from
Pecc0∂cf(c0)

1 + (2πl
L

)2
= 1 +

R

(2π
L

)2D
. (2.21)

We observe two interesting things when R 6= 0. Firstly, for the parameters where

multiple peaks were observed to merge in the R = 0 case, multiple peaks are now

found to be stable and they do not merge. This can be seen in Fig. 2.7. Here the

three peaks that are observed initially do not merge into a single peak even at long

times. Therefore, multiple peaks are stabilized.

The other interesting feature is that for certain parameters, the peaks that are formed

are not stationary but are moving and oscillating. The peaks do not merge to form

single peak, but there are oscillations in the system with peaks going down and ap-

pearing in regions where there were no peaks. In Fig. 2.8, we plot the concentration

and velocity distributions at different times to show this behavior.
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Chapter 3

Role of active stress for two

chemical species

In the previous chapter we have seen that patterns can form even in the absence

of chemical instabilties as proposed by Turing. The patterning is brought about by

activity. In this chapter we will explore what happens when on top of activity we have

two types of chemical species with one being the activator and the other an inhibitor.

In this case we see pulsatory patterns [9].

3.1 Two chemical species and activity

Consider two chemical species one is activator with concentration profile A(x, t) and

other is inhibitor with concentration profile I(x, t) dependent on position x and time

t. They both are taken in an active film of finite length L in one-dimension. Concen-

tration evolution is considered with the help of advection and diffusion terms.

∂tA = −∂x(vA) +D1∂
2
xA, (3.1)

∂tI = −∂x(vI) +D2∂
2
xI, (3.2)

where D1 and D2 are the diffusion constants for the two chemical species and v is the

hydrodynamic flow velocity. We let D2/D1 = α > 0.

The stress is again divided into the passive and active parts with the active stress

being independent of the chemical species. Therefore, for both activator and inhibitor,

σa = (ζ∆µ)0f(c). However, f(c) is now a function of both activator and inhibitor
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concentrations and obeys the Hill form

f(c) = (1 + β)
A

A+ Am
+ (1− β)

I

I + Im
. (3.3)

Here Am and Im are the values when saturation is reached and β is an asymmetry

parameter.

3.2 Linear stability analyses for the steady state

. Let us consider the homogeneous steady state for the system under consideration

where concentration is c0 = (A0, I0) and velocity is v = 0. To see whether the steady

state is stable or unstable we perturb it from the steady state. Perturbations are

taken of the form c = c0 + δc0e
ιkx. Consider equation (2.4) with perturbed state and

Taylor expanding the function f(c0 + δc) upto linear terms.

σ = η∂xv + (ζ∆µ)0f(c0 + δc) (3.4)

= η∂xv + (ζ∆µ)0f(A0 + δA, I0 + δI) (3.5)

= η∂xv + (ζ∆µ)0(f(A0, I0) + ∂AfδA+ ∂IfδI) (3.6)

.

Substitute this in the equation (2.6) and perturbed state of v we get.

η∂2
xv + (ζ∆µ)0(∂AfδA+ ∂IfδI)ιk = γv (3.7)

(ηk2 + γ)v = (ζ∆µ)0(∂AfδA+ ∂IfδI)ιk (3.8)

From (3.8) we obtain velocity as.

v(k) =
(ζ∆µ)0(∂AfδA+ ∂IfδI)ιk

γ(1 + k2l2)
(3.9)

Now, take equations (3.1) and (4.2) with perturbed state and considering only linear
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order terms we get,

∂t(δA) = −ιkv(k)A0 − k2DδA, (3.10)

∂t(δI) = −ιkv(k)I0 − k2DδI. (3.11)

Now, as we substitute value of v(k) into equations (3.10) and (3.11), we get an eigen

value equation with a 2× 2 stability matrix given as

τL = −k2l2

(
1 0

0 α

)
+

Pek2l2

1 + k2l2

(
A0fA A0fI

I0fA I0fI

)
. (3.12)

Here, Pe = (ζ∆µ)0
γD

and τ = l2

D
is a diffusive time scale. Also, fA ≡ ∂Af(c0), fI ≡

∂If(c0). For finding the eigen values we set det(L − λ(k)I) = 0. As it is a 2 X 2

matrix there will two eigen values given by

λk =
1

2
TrL± 1

2

√
(TrL2)− 4detL. (3.13)

The stability of the system will be determined from trL and the discriminant ∆L =

(trL)2 − 4detL(detL :

trL = −Dk2[(1 + α)− Π(k)(A0fA + I0fI)], (3.14)

∆L = D2k4[(1− α)2 + Π2(k)(A0fA + I0fI)
2 − 2Π(k)(1− α)(A0fA − I0fI)] (3.15)

with Π = Pe
(1+k2l2)

. For the homogeneous state to be unstable, largest eigen value of

the linear stability matrix should have real part to be positive Re[λ(k)] > 0. The wave

number is kn = 2nπ
L

where L is the size of the system. The first mode k1 becomes

unstable when the Peclet number is increased above the critical value of Pec. In the

previous chapter we saw that the instability was stationary. Here for having oscillatory

instability we should have trL(k1) > 0 and ∆L(k1) < 0 (see Fig. 1.1). The critical

Pec is obtained as

Pec =
(1 + α)(1 + 4π2l2

L2 )

(A0fA + I0fI)
(3.16)

We analyze the situations for the patterns to happen :
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Figure 3.1: Phase Diagram for two-chemical species with α = 0.1, and parameters
which control the patterns are Peclet number (Pe) and β. Here blue colour points
represent stationary patterns, Red colour points represent pulsatory patterns, and
olive colour shows the homogeneous state.

• if fA > 0 and fI < 0 for α < 1,or

• if fI > 0 and fA < 0 for α > 1

For oscillatory instability, fA > 0 implies that A is the stress up - regulator, while

fI < 0 implies that I is a stress down regulator. So, A diffuses faster as compared

to I and α < 1 [9]. These conditions are similar to what Turing defined for reaction-

diffusion systems. Also, β > 1 when the above condition is applied to the regulator

function of active stress. If both A and I have the same diffusion constants or both

up-regulate the active stress, then there are stationary patterns formed.
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Figure 3.2: Oscillatory pattern. Concentration of I is represented by green and of A
by blue. β = 1.77 and Pe = 1.4.

3.3 Numerical solutions and Analysis

Let us take the coupled equations with the hydrodynamic flow and the two chemical

species and solve them numerically in python with small perturbation about the ho-

mogeneous state for results. We have taken periodic boundary conditions with L = 2π

domain size and α = 0.1. Saturation value of active stress are taken as Am = ζA0

and Im = ζI0 .
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Figure 3.3: Sharpening of the peak due to convergent flow inside the region of I and
A.

Fig. 3.1 shows that for different points in the phase space, we get different kind

of patterns where the governing parameters are peclet number and β. There is an

exciting thing to note that for massive Pe and β > 1, there is a transition from

oscillatory patterns to stationary patterns. Now, for understanding the behavior of

the concentrations of the activator and inhibitor, we choose some points from the
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Figure 3.4: Flattening of the curve due to diffusion leading to divergent flows.

phase diagram and show the results obtained.

Fig. 3.2 shows that the concentration of inhibitor is low as compared to activator lead-

ing to convergent flows as active stress is higher. This hydrodynamic flow generated

takes inhibitor and activator both to the region, where it forms a sharper peak due to

less diffusivity Fig. 3.3. Further this reduces flow as active stress becomes less. These
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peaks get shortened as hydrodynamic flow is less and gets relaxed by diffusion leading

to divergent flows. The main point here is inhibitor peak remains high compared to

activator as diffusion constant of I is less compared to A. Cycle is repeated again

with specific time period.
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Chapter 4

Role of Linear turnover for two

chemical species

As discussed in Chapter 3, pulsatory patterns were regulated by the two chemical

species with different diffusive relaxation time scales. In this, we will give a general

overview of how we can introduce different relaxation time scales with linear turnover.

4.1 Including turnover

Consider two chemical species A and I discussed in the previous chapter now with

linear chemical kinetics having the same diffusion constant but different linear turn

over rates [9].

∂tA = −∂x(vA) +D1∂
2
xA− k1(A− A0) (4.1)

∂tI = −∂x(vI) +D2∂
2
xI − k2(I − I0) (4.2)

where k1, k2 gives the different relaxation rates of the activator and inhibitor. In our

analysis, we choose k2/k1 = ρ. The forms of the active and passive stress remains

the same as before. We again perform the linear stability analysis in the presence

of turnover and the two chemical species to find the criterion of stable and unstable

regimes.
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4.2 Linear stability analysis for steady state

Let us consider the homogeneous steady state for the system under consideration

where concentration is c0 = (A0, I0) and velocity is v = 0. To see whether the steady

state is stable or unstable we perturb it from the steady state. Perturbations are

taken of the form c = c0 + δc0e
ιk·x. Proceeding as before, we obtain the following

stability matrix in the presence of turnover

τL = −k2l2

(
1 + 1

k2D
0

0 1 + ρ
k2D

)
+

Pek2l2

1 + k2l2

(
A0fA A0fI

I0fA I0fI

)
. (4.3)

Note that the critical Pec will now be shifted in analogous way as we found in Chapter

2. Here we analyze the results obtained from the numerical simulations.

4.3 Numerical solution and Analysis

We considered two coupled advection-diffusion equations and incorporated linear turn-

over for both the equation in 1-D for periodic domain L = 2π.

∂tA = −∂x(vA) +D∂2
xA− (A− A0), (4.4)

∂tI = −∂x(vI) + αD∂2
xI − ρ(I − I0) (4.5)

η∂2
xv − γv = −(ζ∆µ)0∂xf(c) (4.6)

We choose α = 1. Therefore, we have activator and inhibitor with same diffusion

constants but linear turnover rates are different. The ratio of linear turnover rate of

I and A is given by ρ > 0. Interestingly we observed pulsatory pattern if ρ < 1 which

mean active stress up-regulator A turns over fast as compared to active stress down-

regulator I. Different results were observed after solving above coupled equations

numerically.

4.3.1 Stationary Pattern

In Fig. 4.1 we show that the patterns that are formed in the activator and inhibitor

concentrations are stationary for low Pe.
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Figure 4.1: Stationary patterns for Activator and Inhibitor with linear turnover. β =
1.4, Pe = 3.0 and ρ = 0.1.

4.3.2 Drifting pattern with time

In Fig. 4.2 we show that the patterns that are formed in the activator and inhibitor

concentrations are not stationary for higher Pe. The peaks move although the shapes

are retained over time. Their velocity profiles also retain their shape as expected (not

shown).
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Figure 4.2:

4.3.3 Oscillatory pattern with time

Starting from the fig. 4.3 where we have the pattern formed in which inhibitor has a

sharp peak as compared to the activator. This leads to a decrease in active stress for

that particular region. Now, this reduces flows, and the concentration peaks began

30



Figure 4.3: Concentration and velocity profile for activator and inhibitor at initial
time t. Inhibitor is represented by green peak and activator by red.β = 1.4, pe = 6.0
and ρ = 0.1

to decline due to diffusion and linear turnover rate. We took diffusion constant to be

same but linear turnover rates to be different by the ratio of ρ = 0.1 for inhibitor to

activator. From fig. 4.4 we can see there is a decline in peak length for both activator

and inhibitor, but there is more decline in the activator peak as it has a more linear

turn over rate as compared to inhibitor. Now as the large peak goes down, there is a
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Figure 4.4: Decrease of peaks for both inhibitor and activator leading to the generation
of small peak.

generation of another peak nearby, which is having activator to be more as compared

to the inhibitor peak. Concentration for both species is conserved. In fig. 4.5 we

see that the big pattern gets shifted towards left but also regains height with smaller

peaks merging into it coming from left, and the lower peak to its right merge into

another prominent peak onto its right. Further, this peak again goes down but also
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Figure 4.5: Oscillation of larger peak for both activator and inhibitor.

moves towards the right with the generation of the little peak which now after short

time merges into the large peak and still comes back to fig. 4.3 which means this is a

periodic cycle with a specific period.

We will explore the situation where we start with multiple peaks and see if they are

stabilized in the presence of linear tunrnover of the activator and inhibitor. Further a
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Figure 4.6: Merging of larger peak and smaller peak leading to the initial looking
profile as seen in fig. 4.3

scan of the parameter space in ρ is also required to see the behavior. We are currently

trying to build up the system for two dimensions.
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Appendix A

Appendix Name

A.1 Spectral method for Equations

For approximating a derivative of the function numerically the simplest method what

we use is Finite difference method. where for a given set of points yi we have cor-

responding functional values as f(yi). The order of error is O(h2) and 0(h4) which

implies if we have more data points, the error will become less and approximation

gets good. How is the spectral method different from finite difference method? So the

answer to it is let say we have N number of points as N increases the error for finite

difference, or finite element scheme decreases of the order O(N−m) for some arbitrary

constant m which is dependent upon the order of approximation and smoothness of

the solution[10]. But on the other hand spectral method convergence is of the order

O(N−m) for every m is obtained given a condition function is infinitely differentiable

and at faster convergence rate O(cN)(0 < c < 1)[10].

Spectral methods use Fourier transformation technique. Fourier transform of a func-

tion f(x) is given by f̂(k)

f̂(k) =

∫ +∞

−∞
e−ιkxf(x)dx, (x ∈ R and k ∈ R) (A.1)

Inverse Fourier transform is also used to reconstruct f(x) from f̂(k).
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f̂(x) =
1

2π

∫ +∞

−∞
eιkxf̂(k)dk (A.2)

If we have discretised points instead of the continuous function, then a Discrete Fourier

transform method is used to evaluate the function. For a discretised periodic spatial

domain we have points given as xj = jh with N as the number of points we will take

N to be even(h = xj+1 − xj = 2π
N

), on the other hand, wave number k will also be

discretised, and the domain is bounded with the interval length 2π
h

having the same

number of point as in real space. Hence the interval is taken as [−N
2
, N

2
].

f̂(k) = h
N∑
j=1

e−ιkxjfj, k = −N
2

+ 1, ........,
N

2
(A.3)

Also the inverse Fourier transform here is given as.

f(x) =
1

2π

N
2∑

k=−N
2

+1

eιkxj f̂(k) (A.4)

Discritised version is helpful when solving equations numerically for e.g. solving ODE,

PDE etc. let us take vj is the best approximation of f
′
j which is the derivative of f

with respect to the x. Now if we have a differential equation which is tough to solve,

then we go in the Fourier space solve there and get the answer in real space by inverse

Fourier transform. In Fourier space we can approximate the derivatives, for f
′
j it will

be vk = ιkv̂k and if we want to approximate sth derivative it would be (ιk)sv̂k. This

technique helps to solve complicated time-dependent PDE in an easy manner with

less error and computationally fast.

For e.g., if we have a PDE ∂2
xu + ∂4

xu = 4 to solve then doing with the finite

difference method would be complicated but if we use the spectral method, it is

easy. let us take this equation in Fourier space then the equation gets simplified to
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−k2û(k) + −k4û(k) = 4 now we have value of function at each wavenumber. For

getting the exact solution, we take the inverse Fourier transform of the function.

A.2 Spectral method for one chemical species

The coupled equations used for numerical simulations are.

∂tc = −∂x(vc) +D∂2
xc (A.5)

η∂2
xv − γv = −(ζ∆µ)0∂xf(c) (A.6)

Here f(c) = c
c+1

. Solving these equations give the required pattern.

A.2.1 Code for simulation

#Pattern formation in active fluids in 1-D with active flows v(x,t) and diffusion for

one-species concentration c(x,t) like myosin flows in actomyosin cortex in cell

import numpy as np

import scipy.fftpack as fft

import time

from scipy.integrate import odeint

import matplotlib.pyplot as plt

from scipy.interpolate import interp1d

from matplotlib.widgets import Slider

length = 2.0*np.pi

s_len = 1.0

nx = 256

x = np.arange(0.0,length,length/nx)

times = np.linspace(0,100.0,100.0)

c0 = 1.0

D = 1.0

gamma = 1.0

zeta_del_mu_not = 16

k = fft.rfftfreq(nx, length / (2.0*np.pi*nx))

k_sq = k**2

pole = 1.0/(gamma * s_len**2 * (s_len**(-2) + k_sq))
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def Active_Stress(c,t):

active_stress = zeta_del_mu_not * (c / (1.0 + c))

return active_stress

def flow_velocity(c,t):

active_stress1 = Active_Stress(c, t)

dx_active_stress = fft.diff(active_stress1, order=1, period=length)

v_x = fft.irfft(fft.rfft(dx_active_stress) * pole)

return np.real(v_x)

def time_derivative(c,t):

vx = flow_velocity(c,t)

dcdt = np.real(-fft.diff(vx * c, order=1, period=length) +

D * fft.diff(c, order=2, period=length))

return dcdt

c_int = c0 * (np.ones_like(x) + 0.01*(1-2*np.random.rand(nx)))

c = odeint(time_derivative, c_int, times)

vx = np.zeros_like(c)

for i in range(len(times)):

vx[i,:] = flow_velocity(c[i,:], times[i])

fig, ax = plt.subplots(1, sharex=True, figsize=(8,6))

fig.subplots_adjust(left=0.15, bottom=0.1, top=0.92, right=0.94,

wspace=0.3, hspace=0.1)

ax.set_xlabel(’c(x,t), vx(x,t)’)

ax.set_ylabel(’x’)

ax.set_ylim(min(c.min(), vx.min()), max(c.max(),vx.max()))

ax.set_xlim(0, length)

ax.get_xaxis().set_label_coords(0.5,-0.15)

ax.get_yaxis().set_label_coords(0.5,-0.15)

ax.grid(False)

cline, = ax.plot(x, c[0,:], color=’#659CEF’,lw=1.5,)

vxline, = ax.plot(x, vx[0,:], color=’#7DBD00’, lw=1.5)
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def update(val):

ti = (abs(times-val)).argmin()

cline.set_ydata(c[ti,:])

vxline.set_ydata(vx[ti,:])

plt.draw()

sax=plt.axes([0.125, 0.95, 0.75, 0.015])

slider = Slider(sax, ’t’, min(times), max(times), valinit=min(times), valfmt=’%+4.2f’

,fc=’#999999’)

slider.drawon = False

slider.on_changed(update)

plt.legend(loc=’best’)

plt.show()

plt.plot(x,c[99,:],’b-’,label=’Concentration’)

plt.plot(x,vx[99,:],’g-’,label=’Velocity’)

plt.ylabel(’C(x,t),v(x,t)’)

plt.xlabel(’x’)

plt.legend(loc=’best’)

plt.show()

A.3 Spectral method for two chemical species

Here we have three coupled equations two equations are of concentration field and

one is hydrodynamical flow. Solving them numerically gives the required patterns.

∂tA = −∂x(vA) +D∂2
xA, (A.7)

∂tI = −∂x(vI) + αD∂2
xI, (A.8)
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η∂2
xv − γv = −(ζ∆µ)0∂xf(c) (A.9)

Here f(c) = (1 + β) A
A+Am

+ (1− β) I
I+Im

.

A.3.1 Code for simulation

#Pattern formation in active fluids in 1-D with active flows v(x,t) and

diffusion for 2-species concentrations A(x,t) and I(x,t) like myosin flows in actomyosin

cortex in cell

import numpy as np

import scipy.fftpack as fft

import time

from scipy.integrate import odeint

import matplotlib.pyplot as plt

from scipy.interpolate import interp1d

from matplotlib.widgets import Slider

length = 2.0*np.pi

s_len = 1.0

nx = 256

beta = 2.5

x = np.arange(0.0,length,length/nx)

times = np.linspace(0,200.0,200.0)

D = 1.0

D1 = 0.1

A_S = 3.0

I_S = 3.0

gamma = 1.0

zeta_del_mu_not = 0.6

k = fft.rfftfreq(nx, length / (2.0*np.pi*nx))

k_sq = k**2

pole = 1.0/(gamma * s_len**2 * (s_len**(-2) + k_sq))

def Active_Stress(c,t):

A, I = np.split(c, 2)

active_stress = zeta_del_mu_not * (16.0/3.0) * ((1 + beta) * (A / (A_S + A)) +

(1 - beta) * (I/ (I_S + I)))
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return active_stress

def flow_velocity(c,t):

active_stress1 = Active_Stress(c, t)

dx_active_stress = fft.diff(active_stress1, order=1, period=length)

v_x = fft.irfft(fft.rfft(dx_active_stress) * pole)

return np.real(v_x)

def time_derivative(c,t):

A, I = np.split(c, 2)

vx = flow_velocity(c,t)

dAdt = np.real(-fft.diff(vx * A, order=1, period=length) +

D * fft.diff(A, order=2, period=length))

dIdt = np.real(-fft.diff(vx * I, order=1, period=length) +

D1 * fft.diff(I, order=2, period=length))

return np.concatenate([dAdt, dIdt])

ssvals = (1.0, 1.0)

c_int = np.concatenate(np.array([ss * np.ones(nx) + 0.01*(1-2*np.random.rand(nx)) for ss in

ssvals]))

c = odeint(time_derivative, c_int, times)

A_x, I_x = np.split(c, 2, axis=1)

vx = np.zeros_like(A_x)

for i in range(len(times)):

vx[i,:] = flow_velocity(c[i,:], times[i])

fig, ax = plt.subplots(1, sharex=True, figsize=(8,6))

fig.subplots_adjust(left=0.15, bottom=0.1, top=0.9, right=0.94,

wspace=0.3, hspace=0.1)

ax.set_xlabel(’x’)

ax.set_ylabel(’c(x,t), vx(x,t)’)

ax.set_title(’Velocity Profile’)

ax.set_ylim(min(vx.min(), I_x.min()), max(vx.max(),I_x.max()))

ax.set_xlim(0, length)

ax.get_xaxis().set_label_coords(0.5,-0.15)
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ax.get_yaxis().set_label_coords(0.5,-0.15)

ax.grid(False)

cline, = ax.plot(x, vx[0,:], color=’#659CEF’,lw=1.5,)

vxline, = ax.plot(x, I_x[0,:], color=’#7DBD00’, lw=1.5)

def update(val):

ti = (abs(times-val)).argmin()

cline.set_ydata(vx[ti,:])

vxline.set_ydata(0)

plt.draw()

sax=plt.axes([0.125, 0.95, 0.75, 0.015])

slider = Slider(sax, ’t’, min(times), max(times), valinit=min(times), valfmt=’%+4.2f’

,fc=’#999999’)

slider.drawon = False

slider.on_changed(update)

plt.legend(loc=’best’)

plt.show()

fig, ax = plt.subplots(1, sharex=True, figsize=(8,6))

fig.subplots_adjust(left=0.15, bottom=0.1, top=0.9, right=0.94,

wspace=0.3, hspace=0.1)

ax.set_xlabel(’c(x,t), vx(x,t)’)

ax.set_ylabel(’x’)

ax.set_title(’concentration of Activator and Inhibitor’)

ax.set_ylim(min(A_x.min(), I_x.min()), max(A_x.max(),I_x.max()))

ax.set_xlim(0, length)

ax.get_xaxis().set_label_coords(0.5,-0.15)

ax.get_yaxis().set_label_coords(0.5,-0.15)

ax.grid(False)

cline, = ax.plot(x, A_x[0,:], color=’#659CEF’,lw=1.5,)

vxline, = ax.plot(x, I_x[0,:], color=’#7DBD00’, lw=1.5)

def update(val):

ti = (abs(times-val)).argmin()

cline.set_ydata(A_x[ti,:])

vxline.set_ydata(I_x[ti,:])
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plt.draw()

sax=plt.axes([0.125, 0.95, 0.75, 0.015])

slider = Slider(sax, ’t’, min(times), max(times), valinit=min(times), valfmt=’%+4.2f’

,fc=’#999999’)

slider.drawon = False

slider.on_changed(update)

plt.legend(loc=’best’)

plt.show()

43



44



Bibliography

[1] Peter Gross, K Vijay Kumar, and Stephan W Grill. How active mechanics and

regulatory biochemistry combine to form patterns in development. Annual review

of biophysics, 46:337–356, 2017.

[2] Len M Pismen. Patterns and interfaces in dissipative dynamics. Springer Science

& Business Media, 2006.

[3] A Turing. The chemical basis of morphogenesis, phil. trans. roy. soc. b, 237

(1952), 37-72. Reprinted in Bull. Math. Biol, 52:153–197, 1990.

[4] Howard C Berg. Random walks in biology. Princeton University Press, 1993.

[5] Michael Cross and Henry Greenside. Pattern formation and dynamics in nonequi-

librium systems. Cambridge University Press, 2009.

[6] Pierre Recho, Adrien Hallou, and Edouard Hannezo. Theory of mechanochemical

patterning in biphasic biological tissues. Proceedings of the National Academy of

Sciences, 116(12):5344–5349, 2019.
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