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Abstract

Brains are complex networks of neurons that enable animals to survive and thrive in their

environment. They are capable of sensory transduction, information processing, memory

storage, and motor output. However, the manner by which they perform these functions is

not well understood. Computational neuroscientists attempt to construct models of the brain

that will eventually address these, through various approaches. A promising new approach

in this era of burgeoning data is the use of artificial neural networks. In this work, the author

explores the applicability of artificial neural networks to the understanding of biological

neural networks by modelling a simple circuit - thermotaxis, in a simple organism - C.

elegans.
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Chapter 1

Introduction

Since the advent of multicellular life on Earth, communication between cells became vi-

tal for the survival of organisms. Cells use electrochemical signalling in order to respond

to stimuli, both external and internal to the organism, through various types of membrane

transport proteins. Prior to the evolution of the nervous system, long distance communica-

tion was very limited, as most of it depended on passive processes such as simple diffusion

or water flow to transport ions or chemical messengers.

The basic unit of the nervous system is the neuron (Figure 1.1), a cell specialized for elec-

trical conduction. While there exist anatomical and physiological differences between neu-

rons within and between organisms, their defining features include the presence of long

cytoplasmic processes called neurites (dendrites and axons), gated ion channels and trans-

membrane pumps that help maintain an electrochemical gradient, and defined contact points

between neurons at axon terminals termed as synapses. Unlike conventional modes of cel-

lular communication, these features allow the nervous system to behave like an electrical

circuit, which processes signals in a rapid, coordinated manner.

Such a system offers a significant evolutionary advantage to animals that can leverage it.

Organisms using a nervous system are able to respond quickly to external stimuli, usually

in the context of locomotion. For example, an escape response to predators is well charac-

terized in several species (Figure 1.2). At the simplest level, behaviors are due to a neural

circuit composed of sensory neurons (that detect a stimulus), motor neurons (that synapse

onto muscles, enabling movement), and interneurons that bridge and modulate the two. As

1



Dendrite

Cell body

Node ofRanvier

Axon Terminal

Schwann cell

Myelin sheath

Axon

Nucleus

Figure 1.1: Vertebrate Multipolar Neuron [Dhp19]. Electrical signals are conducted from

dendrites (left) to axon terminals (right) via the axon.

multicellular organisms grew in size, the nervous system became a persistent feature.

Nearly all extant animal species have nervous systems. Its importance is conjectured from

phylogenetic relationships, suggesting an approximate ten-fold increase in neuron count

every 100 million years (Figure 1.3, corresponding data in Table 1.1). This isn’t enough to

draw a conclusion, after all, confounds such as allometric scaling and network complexity

exist. However, the trend of increasing network size across different metrics and species is

worth investigating. Network science offers insight into the topology of nervous systems,

and how they might have upscaled over evolutionary time.

As defined by Nature: Computational neuroscience is the field of study in which mathe-

matical tools and theories are used to investigate brain function. It can also incorporate

diverse approaches from electrical engineering, computer science and physics in order to

understand how the nervous system processes information [noa]. It serves to complement

data obtained from experimental neuroscience approaches, using a model. As with much

of science, there is no unified framework till date that explains how the brain works. (Note:

the word brain is often used interchangeably with the nervous system, but the former is

a part of the latter, located in the head region of more recent species. Unless otherwise

mentioned, the author will default to this standard practice as the term ‘brain’ is terse and

2



Figure 1.2: Crayfish Escape Circuit. Touch or high frequency water movements cause sen-

sory receptors (R) to fire simultaneously, exciting downstream sensory interneurons (SI),

which further excite the lateral giant (LG) and other command interneurons (Section 2.3),

which are sufficient to elicit a motor response (FF - fast flexor motor neurons) known as

‘tail-flipping’. (a) Schematic circuit. Chemical and electrical synapses (Section 3.2). (b)

Anatomic circuit.

ubiquitous in usage).

Researchers in the mid 20th century realized that artificial neurons loosely based on their

biological counterparts were capable of universal computation. Viewed as more generalized

versions of their logic gate predecessors, computer scientists had already proven the univer-

sality of NAND and NOR gates in forming the basis of Boolean algebra, and consequently,

all of computation [Nie15]. However, unlike logic gates, their parameters need to be set

appropriately before they become useful. The ingenious work of several researchers from

the 80s onward gave rise to the field of deep learning, which is essentially a branch of ma-

chine learning methods that train these parameters in multilayer artificial neural networks

(ANNs) to learn patterns in data.

3



Figure 1.3: Evolution of the Nervous System. Semi Log Y plot of Number vs. Time. Time

corresponds to the number of years (108) since the first known organisms with nervous sys-

tems (ctenophores), and the most recent common ancestor (MRCA) between an organism

and humans. Number corresponds to neuron and synapse counts in that organism. Organ-

ism names, Time, and Number values taken from Table 1.1. The plot takes the form of an

exponential relationship Y = 10mX+C . A linear regression yields m = 1.02 · 10−8, which

corresponds to a 10.49 fold increase in neuron count every 100 million years.

In recent years, a growing body of work has been published using ANNs to model biological

neural networks (BNNs). Connectionism, as opposed to computationalism/symbolism, is

the term given to this paradigm. Here, the biophysical functions of individual neurons are

abstracted in exchange for a model that explains behavior as a consequence of connection

weighted non-linear transformations to input. While critics of this approach emphasize that

ANNs and their learning methods are biologically implausible, the author recognizes that a

mechanistic understanding of how BNNs compute functions remains an unsolved challenge

that could benefit from a fresh perspective [KBSK20]. Studying the brain’s architecture

carefully can help one build a more realistic ANN, with the hope of eventually revealing

the secrets behind the complex wiring that explains how a BNN learns. Connectomics, as

defined on Scholarpedia is: The field of science dealing with the assembly, mapping and

analysis of data on neural connections [Spo10].

In this thesis, the author starts by presenting the reader with a broad overview of a sim-

4



TABLE 1.1 Ctenophore C. elegans Fruit Fly Honey Bee Zebrafish Frog Zebra Finch

Time 0.00E+00 6.00E+07 6.00E+07 6.00E+07 2.15E+08 2.68E+08 3.23E+08

Neurons 1.00E+02 3.02E+02 1.00E+05 9.60E+05 1.00E+07 1.60E+07 1.31E+08

Synapses 2.00E+02 7.50E+03 8.00E+07 1.00E+09 NA NA NA

Forebrain Neurons NA NA NA 1.70E+05 NA NA 5.50E+07

TABLE 1 (cont.) African Elephant House Mouse Brown Rat Marmoset Rhesus Macacque
Chimp-

anzee
Human

Time 5.23E+08 5.70E+08 5.70E+08 5.92E+08 6.10E+08 6.29E+08 6.35E+08

Neurons 2.57E+11 7.10E+07 2.00E+08 6.36E+08 6.38E+09 2.80E+10 8.60E+10

Synapses NA 1.00E+12 4.48E+11 NA NA NA 1.50E+14

Forebrain Neurons 5.60E+09 1.40E+07 3.10E+07 2.45E+08 1.71E+09 7.40E+09 1.63E+10

Table 1.1: Neuron and synapse count data [noa20] used in Figure 1.3. Up - Time increases

along columns. Down - Table 1 continued. NA - Data unavailable.

ple nervous system, the hermaphrodite C. elegans connectome. It is one of few organisms

to have its entire nervous system mapped to the synaptic level, and has been well charac-

terized through decades of experimentation. Concepts from network science will provide

a descriptive understanding of the same. Next, the author focuses on a particular BNN

within this connectome, namely, the thermotaxis circuit. After summarizing its structure

and experimental evidence for its involvement in temperature navigation behavior, the au-

thor attempts to model the same with an ANN. To conclude, the author discusses the results,

their implications, and future directions in this area.
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Chapter 2

C. elegans and Connectomics

2.1 Caenorhabditis elegans

Caenorhabditis elegans is a free-living nematode found in the soil of temperate regions

worldwide. At an adult length of 1mm, it is primarily a bacterial feeder. It has several desir-

able properties that make it a model organism for biologists. For starters, it (hermaphrodite

variant, see Section 2.3) has a short life cycle ( 2.5 days) and a short lifespan ( 3 weeks in

normal environmental conditions). Next, it is transparent throughout development (Figure

2.1a). Third, it has a stereotyped mosaic development pattern and exhibits eutely, i.e., has a

small and constant cell count on reaching maturity (Figure 2.1b). Fourth, it has high fecun-

dity, laying 300 eggs via self-fertilization [AHW+20]. Add to these the benefits of being

cost effective, easy to handle, cryopreservable, and non pathogenic, and it can be seen why

Sydney Brenner, the founding father of C. elegans biology, chose to work with this species.

These features made it the first multicellular organism to have its entire genome (1998)

and connectome (1986) sequenced. Remarkably, as of 2020, it remains the only model

organism to have had both these ‘omes’ published, and to have a connectome descrip-

tion prior to a genome. In all the others, including humans, whole genomes have been

published, whereas connectome mapping remains far from complete, with the fruit fly

(Drosophila melanogaster) connectome touted to be released to the public by 2021, after

surpassing mammoth challenges in electron microscopy and image reconstruction technol-

ogy [XJL+20]. Currently, feasible methods for connectome reconstructions in mammals

are unavailable, owing to the sheer enormity of the task at hand.
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Figure 2.1: C. elegans Anatomy and Development.(a): Transparent hermaphrodite C. ele-

gans adult worm, with anterio-posterior (A/P) and dorsoventral (D/V) axes labelled. The

worm moves on one of its sides (L or R, not shown). Eggs conspicuously present on the

ventral side. Adapted from [Lea]. (b): The complete lineage (1031 cells). The upper left

panel indicates embryonic blastomeres. Neurons/glia are shown in red, and predominantly

arise from the AB germ cell. The bottom left panel shows examples of lineage symmetry

and asymmetry across the LR axis. Source [Hob10].

2.2 Connectomes

But what is a connectome? The definition of a genome is rather straightforward. It is the

sequence of nitrogenous bases that makes up the genetic material of an organism. In some

cases, a very long sequence, but nevertheless, one dimensional, and generated from no

more than five letters. The same can’t be said for a connectome. Sporns and Hagmann have

defined it as the complete description of the structural connectivity (the physical wiring) of

an organism’s nervous system [Spo10]. What does this structural connectivity entail? The

answer differs depending on the resolution under consideration, much like looking at the

8



branches of a tree. From afar, one might fail to notice anything but the trunk and its major

branches. On zooming in, each branch can be seen branching further, and these branches

even further, until either a limit is reached in structural definition or the resolution of the

instrument being used. In the process, the trunk and its major branches are out of the field

of view.

The macroscale connectome is the lowest resolution (mm - cm) of a connectome, and cor-

responds to white matter tracts and bundles between large anatomically segregated brain

regions. DTI-MRI is typically used for this. The Human Connectome Project (HCP) is

one such ongoing effort [Spo10]. The mesoscale connectome/projectome has higher reso-

lution (µm - mm), and can distinguish circuits of neurons via axonal projections, using high

resolution microscopy like STP tomography in conjunction with viral tracing. The Allen

Mouse Brain Connectivity Atlas is a good example [OHN+14]. Finally, the microscale

connectome has the highest resolution (nm - µm), and can capture details at the level of

the synapse, with techniques for the same being limited exclusively to EM (Figure 2.2).

In some sense, this is the most complete description of the connectome, both due to tech-

nological limitations in resolving characteristics of individual synapses and the fact that

this resolution suffices for most ongoing modelling efforts, including the ones presented

here. As seen from Fig. 2.2, the log linear relationship between resolution and informa-

tion content underscores the enormity of microscale connectome datasets. Henceforth, the

term connectome will imply the microscale connectome, unless mentioned otherwise. The

mesoscale and macroscale connectomes are compact versions of this.

2.3 The Worm Connectome

In 1986, White et.al. published the connectome of the hermaphrodite C. elegans worm

[WSTB86]. Unless specified otherwise, the author refers to this sex variant when using the

convenience term ‘worm’. Male worms also exist, but arise infrequently in the population,

and are omitted from consideration. This connectome was the result of a 15 year long

effort that involved manually analyzing thousands of 50nm thick transverse EM slices from

5 individual worms and identifying the synaptic contacts between each of their 302 neurons

(Figure 2.3).

The connectome is divided into two distinct components, a pharyngeal nervous system

9



Figure 2.2: Human Connectome at Three Different Scales. A 100 fold increase in resolu-

tion results in nearly a million fold increase in storage requirements, consistent with a 3D

volume. At the microscale, synaptic terminals become visible, with the postsynaptic den-

sity (PSD, a dense receptor cluster on the postsynaptic neuron) as a characteristic feature.

Adapted from [BKF18] and [KL07].

with 20 neurons and a somatic nervous system 282 neurons, connected by a single pair of

interneurons (RIPL/R) from the latter. We restrict our focus to the latter, which contains

the neurons of the thermotaxis circuit (Section 4). This has been updated to consist of

6393 chemical synapses, 890 electrical synapses (gap junctions), and 1410 neuromuscular

junctions. Of these, 3 neurons (CANL/R and VC06) are isolated. Excluding them results in

a connected component of 279 neurons which is amenable to network analysis [VCP+11].

It is important to remember the motivation behind constructing the worm connectome in

the first place. Brenner, an experienced geneticist, knew that gene mutations rarely had a

one-to-one effect on the phenotype of an organism. This is especially true for behavior,

in which the nervous system has long been implied to be the substrate. While a complete

10



Figure 2.3: Nervous System in C. elegans. Top: Drawings from The Mind of a Worm. The

head and body segments are labelled separately, showing noticeable anatomical features.

Bottom: A hermaphrodite worm expressing GFP in all neurons. Most sensory neurons are

located in the head and connect to the nerve ring, the ‘brain’ of the worm. These further

connect to the ventral nerve cord which controls locomotion. Another cluster of neurons is

also present in the tail, forming the posterior ganglia. Source [Emm15].

structural description is insufficient to explain functional properties in both the genome and

connectome, it is necessary, as interactions between their parts need to be known to explain

function. Hence, knowing the connectome would enable scientists to connect the dots be-

tween genes that affect behavior, via alterations to the nervous system [Emm15]. Mutants in

a controlled environment would be expected to behave abnormally if the mutation affected

the nervous system. Moreover, in isogenic lines, one could then posit that any changes in

behavior must be due to a rewiring of the connectome from changes in the environment

alone.

This line of reasoning motivated laser ablation based experiments in the worm, where

11



killing particular neuron classes caused quantitative changes in behavior. Albeit simple

in organization, worms show a repertoire of behaviors necessary for survival, such as sen-

sation, locomotion, and egg-laying. More complex behaviors like learning, memory, and

behavior also play a role as a result. Determining a neural circuit (a subnetwork of the

connectome) which is necessary for a behavior is the first step towards a mechanistic expla-

nation for the same. Some circuits, such as the crayfish escape circuit shown earlier (Fig.

1.2), can be gleaned from inspection. This is due to the sparser connectivity of neurons

in peripheral locations, and the presence of large command neurons [KW78], interneurons

that are necessary and sufficient to elicit behavior. Others are entangled in a quagmire of

connections, especially those in a cephalized location that form the brain. In the worm, the

ventral motor nerve (a bundle of axons) cord that controls locomotion is an example of the

former, while the nerve ring of the worm is an example of the latter.

Despite the worm being one of the smallest multicellular model organisms with a defined

development plan, there is uncertainty in synapse placement across individuals ( 75% over-

lap in chemical synapses). While this makes prospects of arriving at a consensus con-

nectome for larger organisms challenging, it highlights the role of plasticity in the brain.

Changes at the synaptic level could serve as the structural substrate for learning and mem-

ory. A sufficiently large number of changes could alter connectivity patterns at the level of

neurons and circuits (Figure 2.4):

12



Figure 2.4: Plasticity in the Connectome, visualized by graphs (discussed in the next sec-

tion), with time on the X axis. Neurons are represented as colored dots, and arrows rep-

resent synapses. (a) In synaptic plasticity/rewiring, neurons remain connected while the

number of synapses between them may change. Such changes are only captured at the mi-

croscale (b) Changes in neuronal connectivity generally have more drastic implications for

circuit function. Source [BKF18].
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Chapter 3

C. elegans Connectome as a Network

3.1 Networks

Network science or graph theory is the interdisciplinary study of networks. In informal

terms, networks/graphs are collections of vertices/nodes and the edges/links connecting

them [New10]. When each edge uniquely connects a pair of vertices, it is called a simple

graph. When the order of the pair matters, there can exist two edges in each direction for

a pair of vertices. Such a graph is called a simple directed graph or simple digraph. A

class of graphs called mixed graphs exist, that have both types of edges. However, they add

additional complexity to analyses. In such graphs, it is common practice to substitute the

undirected edges for a pair of anti-parallel directed edges, without sacrificing context. Fur-

thermore, edges can have weights, to signify a quantitative relationship between vertices.

Examples include the length of a road in a road network, friendship/animosity in a social

network, etc. Sometimes, it isn’t enough to specify a single edge between two vertices.

Multigraphs and multidigraphs are extensions to the aforementioned, that allow multiple

edges to exist between vertices. Shown in Figure 3.1a is an example network of a weighted

multi mixed graph, the most generalizable class.

Figure 3.1b is a convenient alternative representation of the same network, called an adja-

cency matrix (A). Anxn is a square matrix with n rows and columns, for a network with n

vertices, where Aij is an element of A, and is the weight of the edge connecting vertex i to

vertex j. While convenient and indispensable for implementing various network algorithms

in this section, note that adjacency matrices fail to preserve mixed and/or multiple edge

15



Figure 3.1: Example Network. (a): Network representation, with vertices/nodes labelled

from 1 - 6 (red). Grey arrows represent directed edges, while grey lines denote undirected

edges. Numbers on edges (black) correspond to weights. Vertex 4 is connected to itself via

a self loop. (b): Adjacency matrix representation of Fig. 3.1a. A23 6= A32 as a consequence

of directionality and weights. Edges between vertices 1 and 5 can be replaced with a single

undirected edge, conversely, the edge between 1 and 4 can be replaced with a pair of anti-

parallel edges. Both vertex pairs are symmetric on A.

information. Given Aij > 1, it is impossible to ascertain if that element represents a single

weighted edge or multiple unit/weighted edges, or their directionality for that matter. As in-

ferred from A, one solution is to convert all edges to being directed, and to sum the weights

on multiple edges between a pair of vertices in a network to reduce it to a weighted sim-

ple digraph. Again, it’s important to ensure that any data transformation doesn’t sacrifice

context, or has an appropriate explanation.

3.2 Connectome Dataset Visualized

The 279 neuron connectome dataset [VCP+11] is displayed in Figure 3.2:

16



Figure 3.2: C. elegans Connectome [VCP+11]. Left - C. elegans connectome as a weighted

multidigraph. Neurons are grouped in layers according to category (sensory (S), inter (I),

motor (M)) roughly corresponding to signal flow hierarchy. Polymodal (P) neurons are

arranged vertically on the left owing to variable placement options. The neuromuscular

junction (NMJ) is located at the bottom. It, along with 11 interneurons, are shown enlarged,

as they have the highest degree (discussed in the next section). Electrical (E) synapses (light

blue) are distinguished from chemical (C, grey) synapses. Right - Legend, with all vertex

and edge details. Prepared using [SMO+03].

In addition to sensory (S), inter (I), and motor (M) neurons, some neurons perform multi-

ple functions and are classified as polymodal (P) [AHW+20]. The edges connecting these

layers represent two types of synapses: chemical and electrical. Chemical synapses, as es-

tablished by Cajal more than a century ago in what is now known as the neuron doctrine,

are represented with directed edges representing unidirectional flows of neurotransmitters.

The postsynaptic neuron’s dendrite has a dense aggregation of receptors here, termed the

postsynaptic density (PSD, refer Fig. 2.2). In contrast, electrical synapses are represented

with undirected edges. They carry information bidirectionally via gap junctions, creating
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TABLE 3.1 Count Count Count

Vertices 280 Edges 3339 Synapses

Sensory (S) 67 Chemical (C) 2308 Chemical (C) ∼7803

Inter (I) 75 Electrical (E) 1031 Electrical (E) ∼1777

Motor (M) 88

Polymodal (P) 49

NMJ 1

Table 3.1: 3.1: Neuron, edge, and synapse count from Fig. 3.2. Three electrical self loops

exist. The remaining electrical edges are twice counted owing to the digraph representation.

Based on data from [VCP+11]

.

reticular networks as envisioned by Golgi [Gli06]. Chemical synapses are more abundant,

especially in higher organisms. They are slower than electrical synapses in signal trans-

mission, but unlike the latter, have modulatory activity on postsynaptic neurons rather than

being purely excitatory. As information is processed from S to I to M neurons, it terminates

in a single vertex, the neuromuscular junction (NMJ), via chemical synapses. This vertex

represents any muscle fiber triggered in this manner. The width of the edge is a proxy for

the number of synaptic contacts (weight) between a pair of neurons.

In order to represent the connectome with an adjacency matrix, the author converted all

electrical synapses to paired antiparallel directed edges and summed their weights with

any parallel chemical synapses, essentially creating a weighted simple digraph. This is the

most general version, and will be suitably converted with justifications in the analyses that

follow.

3.3 Degree Centrality and Hubs

The first goal is to identify the most important vertices, and consequently, neurons in the

connectome. Being a directed network with the aim of communicating electrochemical sig-

nals, a first measurement to make would be to check how many connections exist between

a single neuron and its partners. This leads to the notion of degree centrality (k), which is
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simply the degree of a vertex. For a directed graph, a vertex has an in-degree (kin):

kinj =
n∑
i=1

Aij (3.1)

And an out-degree (kout):

kouti =
n∑
j=1

Aij (3.2)

The reader familiar with elementary linear algebra will recognize that these equations cor-

respond to the summation of elements along a column vector aj and row vector ai respec-

tively. Taking means of either n of these vectors yields the mean degree (c) of the network:

c =

∑n
j=1 k

in
j

n
=

∑n
i=1 k

out
i

n
=

∑n
i=1

∑n
j=1 Aij

n2
(3.3)

The synaptic weights are inconsequential in this calculation, as the strength of coupling

between a pair of neurons is not considered. Hence, all nonzero weights in A are set to 1, to

yield an unweighted simple digraph. Plotting degree histograms and a bivariate scatterplot

of kin and kout yields Fig. 3.3.

The histograms are both right-skewed, with mean kin, kout = c = 11.10. The long right

tail is indicative of a power law distribution, suggestive of the Pareto principle, that few

neurons in the connectome have a much larger share of connections than the majority. The

networks literature term for such vertices is hubs. Moreover, the variables have a correlation

coefficient of r = 0.57, which is moderately strong, suggesting that a neuron with high in-

degree is likely to have a high out-degree, and vice-versa. A notable exception to this

observation can be seen in NMJ, which has the highest kin = 114, but the lowest kout =

0. This is to be expected, as NMJ is a terminal vertex in this directed network. AVEL/R

are bilateral command interneurons. Together with AVAL/R (the highest ranking hubs in

both metrics) and AVDL/R, they form major drivers of the backwards locomotory circuit.

Unlike the latter two however, these innervate the ventral motor nerve only till the anterior

region, explaining their low total degree (Table 3.2). DVA is another interesting neuron,

but with a relatively low kin = 22 compared to kout = 37. This is in part due to its posterior

location, far from the nerve ring with a denser neuron concentration. DVA has polymodal

capabilities, providing sensorimotor integration for anterior and posterior touch circuits

by virtue of being stretch sensitive. This may put it higher in the directional processing

hierarchy, resulting in fewer pre-synaptic partners than other interneurons with comparable

out-degree.
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Figure 3.3: Joint Plot of Connectome in-degree (kin) and out-degree (kout. Most neurons

(purple) occupy the bottom left corner of the plot, with low kin and kout. Few neurons

extend further diagonally into the plot. A moderately positive correlation of r = 0.57 exists

between the metrics. The top 10 neurons by total degree (see Table 3.2 below) are termed

hubs (dark purple), and are located anteriorly or posteriorly. Some hubs lie on the periphery

of the scatter, most notably NMJ, which has a zero out-degree owing to its terminal position

in the network. Top - kin histogram. Right - kout histogram.

We now explore the total degree (k):

k = kin + kout (3.4)

which is simply the sum of the in-degree and out-degree of a vertex. It is a trivial exercise

to show that the mean of k for a directed network is 2c. Shown in Figure 3.4 is the resulting

histogram.

As one might expect, adding two right skew distributions with a moderately positive corre-

lation yields another right skew distribution. Here, kmean = 2c = 22.20 as expected. Table

3.2 summarizes these results for the top 10 neurons and NMJ (which we remind the reader,
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Figure 3.4: Total degree (k) distribution. As shown, kmean = 22.20, and falls to the right of

the peak (mode, yellow) and median (orange), making it right skewed.

isn’t a neuron):

TABLE 3.2 Neuron k k in k out

1 AVAR 137 80 57

2 AVAL 134 83 51

3 NMJ 114 114 0

4 AVBR 104 64 40

5 AVBL 102 60 42

6 PVCR 69 31 38

7 PVCL 64 30 34

8 AVER 63 39 24

9 AVDR 63 35 28

10 AVEL 62 41 21

11 DVA 59 22 37

Table 3.2: Top 11 vertices by total degree (k)

The AVB and PVC neurons are command interneurons for the forward locomotory circuit.

The corresponding rug plot (1D version of a scatter plot) seems to indicate a drop in hub

density after k = 40.

21



3.4 The Power Law and Scale-freeness

To verify the nature of the distribution in this tail region, the author employs a survival

function [VCP+11]:

P (d) =
∞∑
k=d

p(k) (3.5)

Which is a complement of the cumulative distribution function. P(d) represents the fraction

of vertices with k ≥, where d goes from 0 to kmax. Figure 3.5 shows the same, with axes

log-log scaled (base 10):

Figure 3.5: Survival function (P(d)) of total degree (k = d). Note the log scaling, vertical

line at d = 40 suggesting the hub cutoff value, and linear fit (r = -0.96) with negative slope

(α = 2.10), indicating a power law.

As seen in the figure, the survival function shows a linear drop-off soon after d = 10. The

author employs the power law to fit the same:

P (d) = Cd−α, Range = [0, 1] (3.6)

Where C and α are constant terms. This function has the nice property of scale invariance,

i.e., P(ad) is always proportional to P(d), for a constant a. Furthermore, a log transformation

yields:

logP (d) = −αlog(d) + c (3.7)

Which is a linear function with slope -α. When applied to Figure 3.5 for d geq 40, the

author found α = 2.10, with an r = 0.96 making it a good linear fit. Networks with degree
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distributions obeying the power law for their high degree vertices are said to be scale-free

networks, with 2 ¡ α ¡ 3 typically. Intriguingly, many artificial and biological networks are

scale-free, such as the internet and protein-protein interaction networks. Studies with per-

colation theory show that scale-free networks have remarkable fault tolerance, i.e., random

vertex failures are unlikely to impact hubs (owing to their rarity), hence the network remains

connected even under those circumstances [CEbAH00]. This is important for connectomes,

as this implies that the underlying structure is robust to minor random damage.

3.5 Small World Properties

Next, we turn our attention towards looking at properties concerning vertex pairs or edges.

For the theory relevant to this section, we will relax this digraph to a graph. Doing so will

result in several chemically synapsed neuron pairs to become bidirectional if they weren’t

already, however it won’t affect the final observation. The geodesic distance or shortest

path (dij) between two vertices i and j is the minimum number of edges that need to be

traversed to get from vertex i to vertex j. The vertex mean shortest path (li) is given by the

mean of dij:

li =

∑n
j=1 dij

n
(3.8)

over all vertices in the same component, which is the case with our undirected graph. Fur-

thermore, averaging over all vertices yields the network mean shortest path (L):

L =

∑n
i=1 li
n

(3.9)

For the undirected connectome, we get L = 2.31. The clustering coefficient (Ci) of a vertex

i is defined as:

Ci =
2E(Ni)

ki(ki − 1)
, Range = [0, 1] (3.10)

where E(Ni) is the number of edges between neighbors of vertex i. Since the maximum

number of edges between Ni in an undirected graph is
(
Ni

k

)
, and Ni = ki as the degree of

i, Ci represents the fraction of connectivity between the neighbors of a node. As we have

done with previous metrics, we can define the mean clustering coefficient (C):

C =

∑n
i=1Ci
n

(3.11)

This is the Watts-Strogatz definition of C. Since Ci is inversely proportional to the square

of the degree ki, it is biased in favor of low degree nodes. For the undirected connectome,
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C = 0.35. L and C are parameters that define small world networks, an important class of

networks, that are defined to have:

L ∝ log(N) (3.12)

where N is the total number of vertices/nodes in the network. Watts and Strogatz (WS)

identified them to be a category of random graphs, that could be constructed starting from

an undirected radially symmetric regular graph having an even and uniform integer degree

k (Figure 3.6) [WS98]:

Figure 3.6: The Watts-Strogatz (WS) Model. WS model on 20 vertices starting with degree

4 each. Left - A regular graph with reassignment probability p = 0. Middle - A small-world

graph with 0 < p < 1. Right - A random graph with p = 1. Source [WS98].

Then, each edge in the network is randomly connected to any other vertex with a reassign-

ment probability 0≤ p≤ 1. As seen from the figure, setting p = 0 ensures the regular graph

remains, while p = 1 results in a random graph but with a fixed number of edges. From the

very construction, it becomes apparent that small world networks seem to have dense local

clustering, along with a handful of long range connections, making them distinct from their
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random and regular counterparts which lack them respectively. This difference is described

quantitatively with the small world coefficient (S) [HG08]:

S =
C

Cr
/
L

Lr
(3.13)

Where Cr and Lr are network clustering and network mean shortest path respectively, for

an equivalent random graph (p = 1). Hence, an S ≈ 1 indicates a random graph. To check

the small worldness of the C. elegans connectome, we must prepare an equivalent random

graph, with N = 279 and E = 2404. This yields k = 17.17, which is neither even nor an

integer. Hence, the author constructed a WS random graph with k = 18, then removed

edges at random until the number of edges was 2404. This process was repeated (Monte

Carlo N = 100) to arrive at Cr and Lr. The same was done for a WS regular graph for

comparison (while such graphs are fixed, the random removal of edges isn’t, thus resulting

in minor fluctuations in Creg and Lreg between realizations). The resulting L and C values

by node are displayed as density plots (Figure 3.7 and Table 3.3), which use representative

realizations for the regular graph and random graph.

TABLE 3.3 Network L C S

1 Random 2.25 0.06 1.00

2 C. elegans 2.31 0.35 5.75

3 Regular 8.27 0.67 3.12

Table 3.3: L, C, and S (small-world coefficient) for the 3 networks in Fig. 3.6

Immediately, two separate clusters of points are noticed. The regular graph vertices (green)

have high L and C, while the random graph vertices (blue) have low L and C. Both his-

tograms have a smaller spread, compared to that of the worm connectome (orange). The

mean values of Li nearly overlap between the connectome and random graphs. The major

distinction between these two occurs due to Ci, which has a large spread and C lying be-

tween the expected C values of the random and regular graphs. As a result, we get S = 5.75

> Sreg = 3.12 > Sr = 1.00. Indeed, the worm connectome is a small world network.

One important consequence of small world networks, as their name suggests, is the fact

that L scales slowly with N, implying that vertices in a network that may be separated by

large physical distances are still topologically close due to long range connections. To en-

sure that this happens requires hubs (discussed in the next section), giving these networks
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Figure 3.7: L vs. C Plot. Pair plots for mean shortest path (L) and mean clustering coeffi-

cient (C) for the C. elegans connectome and equivalent random and regular graphs. Bottom

Left - L vs. C scatterplot. Diagonal - Kernel density histograms for L and C.

a right tailed degree distribution. Indeed, the scale-free networks mentioned earlier are

special instances of small world networks that have a power law distribution, hence the

undirected graph treatment applied by the author holds [CH03]. Another important conse-

quence is cliquishness, or the tendency for vertices to locally organize in a compact manner

with high clustering, and clique (a group of vertices that are fully connected) formation.

Calculations have shown an overabundance of 2 and 3 degree cliques in the worm connec-

tome compared to equivalent random graphs, in line with the high clustering property of

small world networks [VCP+11]. This close knit structure hints at a functional role played

by these motifs.
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3.6 3.6 Hubs form a Rich Club

The rich club coefficient (Φ(k)):

Φ(k) =
2E>k

N>k(N>k − 1)
(3.14)

is reminiscent of the clustering coefficient discussed in the previous section. It is also a

measure of connectedness, but as the ratio of the number of existing edges (E>k) to the

maximum number of edges between nodes with a degree greater than k (N>k) [MdFCC07].

At k = 0, this yields the connectance or density of an undirected graph. A plot of Φ(k) vs.

k (Figure 3.8) shows a peak value of Φ(k = 44) = 0.73:

Figure 3.8: Rich Club Coefficient (Φ(k)) Plot. The minimum k (44) for Φmax (0.73) is

shown. Table 3.4 (below) corroborates this value as serving as a cutoff for hubs. Φ(0) =

0.06 is the connectome density. Therefore, hubs form a highly connected ‘rich club’.

Doing so yields the hubs to be the same top 10 neurons from Table 3.2 ordered differently

and with different values for degree owing to the undirected graph conversion applied.

(AVDL having k = 44 is included in Table 3.4 as it touches the threshold). As discussed
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TABLE 3.4 1 2 3 4 5 6 7 8 9 10 11 12

Neuron NMJ AVAR AVAL AVBL AVBR AVER AVDR AVEL PVCL PVCR DVA AVDL

k 114 93 92 75 74 56 55 55 54 53 50 44

Table 3.4: Neurons arranged in descending order by undirected degree ( k ≥ 44) based on

cutoff from Fig. 3.8. With the exception of AVDL, all other neurons are hubs from Table

3.2.

in Section 3.3, these hubs are largely involved in locomotion, and are anterio-posteriorly

(A/P) (Figure 3.9) located. This adds evidence to the long range integration provided by

hubs in the connectome. Moreover, the hubs are densely connected (for comparison, the

connectome density Φ(0) = 0.06).

Figure 3.9: The C. elegans Rich Club. All hubs are concentrated anterio-posteriorly (A/P),

necessitating long range connections. Small blue dots correspond to other unlabelled neu-

rons. Adapted from [TVA+13].
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3.7 Modular Organization

Finally, we look at the modularity (Q):

Q =
1

2m

∑
ij

(
Aij −

kikj
2m

)
δcicj (3.15)

where m is the number of edges in an undirected graph, δ is the Kronecker delta, and c de-

notes the category of the vertex. Breaking down the expression into its component parts, the

modularity is a measurement of the fraction of total edges between two vertices minus the

fraction of edges existing between them by chance provided they have the same attributes,

i.e., they belong to the same category. Even in a network with perfect modularity, i.e., only

intra attribute connections, |Q| < 1. Hence, a normalized version called the attribute as-

sortativity coefficient (r) is preferred by the author. Here, r = 1 implies perfect assortativity,

r = -1 implies perfect dissortativity (vertices have only inter attribute connections), and r =

0 is expected when connections are made at random.

Modularity is useful, because it usually underlies specific relationships between vertices.

A class of algorithms in network science revolves around the problem of community detec-

tion, where one searches for the ideal partitioning of vertices in the network, by maximizing

Q. One such algorithm is the Clauset-Newman-Moore greedy algorithm [CNM04], which

tackles this problem by pairing all N vertices into communities over ∼ log2N steps, with

each step taking ∼ N log2N comparisons between the potential communities to choose

the grouping that maximizes (or least decreases) Q at that step, and settles for the number

of communities for which Q reached a maximum. Greedy optimization based algorithms

aren’t always guaranteed to provide optimal solutions, but make up for this with their fast

run times. For a sparse graph (one with low density or having a sparse adjacency matrix)

such as the worm connectome, this algorithm has a run-time of O(n log 2n), making it

significantly faster than other approaches. The exponential scaling of connectomes shown

earlier (Fig. 2.2) serves to remind the reader the importance of developing tractable algo-

rithms for studying connectomes [Ram19]. Figure 3.10 shows the results of applying the

greedy algorithm to the undirected connectome.

Neurons are arranged in three circular communities. With r = 0.61, this split shows moder-

ate assortative mixing. Inter (red) and motor (black) neurons are the most abundant while

polymodal (yellow) and sensory (blue) neurons are lesser in number. The smallest commu-
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Figure 3.10: C. elegans Connectome Communities. Detected by greedy modularity max-

imization. Attribute assortativity coefficient r = 0.61. Labelling repeated from Fig. 3.2.

Upper left - Medium community, having the largest fraction of polymodal neurons. Middle

- Small community, dominated by amphid (Section 4.1) sensory neurons of the thermotaxis

and chemotaxis circuits. Upper right - Large community, dominated by motor neurons.

Arrows between communities show hypothetical signal flow.

nity has an abundance of sensory neurons responsible for thermosensation and chemosen-

sation. The medium community has a roughly even split amongst all neuron classes (but

possesses the largest fraction of polymodal neurons) with the exception of motor neurons,

which become a defining feature for the largest community. This is in part due to the pres-

ence of the NMJ in this community. On looking for thermotaxis circuit (discussed in the

next section) neurons, the sensory neurons including the crucial AFD were all found in the

smallest community. The interneurons were divided however, in an L/R independent man-

ner between the small and medium communities. The command neurons AVA and AVB

are known to be hubs, and belong in the large community. Curiously, the hubs are also

distributed in a manner that seems to be independent of anatomical axes. These observa-
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tions suggest that the communities indicate a rough signal flow hierarchy, from smallest

community to largest, without any obvious structural organization.

In summary, we find that the 280 neuron C. elegans connectome forms a sparsely connected

component with small world and scale-free properties. Furthermore, all hub neurons are

interneurons that integrate information over a long range, and form a rich club. These

structural properties have biological underpinnings. Cross connectome comparisons have

suggested that connectomes in general are sparse owing to constraints on wiring cost, but

by remaining small world and scale-free, have transcended these limitations. They have

modular organization with anatomical compartments formed by local neural circuits being

integrated by hubs to perform complex behaviors [vdHBS16].
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Chapter 4

Thermotaxis in C. elegans

4.1 Thermotaxis as a Vital Adaptation

Worms explore their surrounding environment via sensory neurons, mostly organized into

ciliated clusters termed sensilla (Figure 4.1a). They help the worm to navigate gradients of

temperature (thermotaxis), odor (chemo/odorsensation), and oxygen concentration (aero-

taxis). Locomotory behavior in the worm is manifested as a biased random walk composed

of variable speed runs, and turns (Figure 4.1b). The default movement of the worm is a for-

ward sinusoid, however, curves/pirouettes ensure that they eventually approach attractive

cues. Aversive/noxious stimuli result in a stereotyped pirouette with a 180◦ omega turn.

The run-time to turn ratio is a function of the gradient being navigated, and increases with

time if a favorable location exists nearby [GHB05]. The circuit mechanisms generating

this partly stochastic behavior are what researchers are trying to elucidate. An in-depth

understanding of a neuron’s function in a circuit can be examined with electrophysiological

techniques. The diminutive nature of C. elegans neurons requires special methods such as

Ca2+ imaging and optogenetics to do so.

The C. elegans thermotaxis circuit is a highly studied BNN. The worm adapts to a tem-

perature range of (∼12◦C-27◦C)Temperatures outside this range yield noxious avoidance

responses, and prolonged exposure to a heat/cold shock can result in the temporary cessa-

tion of egg-laying or even death. Within this range, worms show remarkable adaptability.

When grown at a cultivation temperature (TC) with adequate food, adult worms show a

preference for TC and migrate towards it. However, this preference behavior is reset to a
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Figure 4.1: Sensorimotor Description of C. elegans(a) Cross section of an amphid sen-

sillum, containing chemosensory and thermosensory (AFD, AWC) neurons. Source

[AHW+20]. Ciliated endings are the site of transduction. Thermosensory neurons are

embedded within the sheath cell. (b) Stereotyped movement patterns in C. elegans. Source

[Xu19].

different temperature on starvation for 2 - 4 hours, indicating a learned association between

temperature and food. This behavioral adaptation is vital to the worm’s survival in its nat-

ural environment, soil, where temperature fluctuations are common. Figure 4.2 shows the

typical results of thermotaxis assays.

When well fed adult worms are placed on agar plates in a linear thermal gradient as shown

above, they exhibit one of three movements depending on TC and T of their initial location:

negative thermotaxis (cryophily) when T > TC , positive thermotaxis (thermophily) when

T < TC , and isothermal tracking when T ∼ TC . Most thermotaxis assays quantify this

behavior with the help of a thermotaxis index (TI), which has multiple definitions, but is

measured on a scale of -1 to 1, and is accurate at a population level [Goo14].

4.2 The Two-Drive Model

Cell ablation studies have identified the critical componentry on the thermotaxis circuit to

consist of 5 neurons (Figure 4.3).

The most important of these neurons is AFD, the primary thermosensor. Also called a finger
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Figure 4.2: Population Thermotaxis (Ttx) Assays. Describes trajectories traced by 15

worms on agar plates in a temperature gradient. Left - Negative thermotaxis (cryophily)

shown by worms having TC = 15◦C. Initial placement at 20◦C, aggregate movement to a

lower temperature results in a negative thermotaxis index (TI). Right - Worms at or near

TC , track isotherms, with a TI ∼ 0. Source [Goo14].

cell, it has bristle-like dendritic projections (refer Fig. 4.1) that are sensitive to temperature

change, making it act like a contrast detector. Furthermore, it gates TC information presy-

naptically to its downstream partner, the interneuron AIY, serving as memory (suppressed

when T ≤ TC) [HCL+18]. These functions are indispensable for thermotaxis, as killing the

AFD renders the worm athermotactic. The AWC is a secondary thermosensor that shows a

more stochastic response to temperatures further from TC , while the response is suppressed

at T ∼ TC [BWT+08]. Studies have implied the necessity of the AIY and AIZ first layer

interneurons as their ablation leads to constitutive negative and positive thermotaxis respec-

tively. They synapse onto the second layer command interneuron RIA, which connects to

head motor neurons SMD and RMD for thermotaxis (Section 5.2). The circuit arrangement

suggests that AIY and AIZ act in an antagonistic fashion, giving rise to the “two-drive

model” (Fig. 4.3) [NSNM11].

While the aforementioned circuit is necessary, it is insufficient. It ignores a plethora of
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Figure 4.3: Updated “Two-Drive” Model for Thermotaxis in C. elegans.. Here, AIY and

AIZ promote thermophily and cryophily respectively, via RIA. ‘+’ and ‘-’ labels indicate

excitatory and inhibitory postsynaptic effects respectively. Therefore, when T > TC , the

former’s activity decreases, and vice versa. At T ∼ TC , both drives are significantly re-

duced, and isothermal tracking predominates. Adapted from [NSNM11].

connections from interneurons that fine tune the worm’s movement, and the motor neurons

themselves, which are required for locomotion. Since a connectome is an organism’s ulti-

mate BNN, it is a sufficient circuit for its entire behavioral repertoire. By testing a model

that incorporates as many necessary neurons and their neighbors (a neuron in a network

that is isolated from its partners is equivalent to being deleted) as possible, one could hope

to narrow the search to a minimal circuit and eventually interpret its mechanism. This is

the aim of the author in the next section.
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Chapter 5

An ANN Model of Thermotaxis

5.1 Artificial Neural Networks (ANN)

In Fig. 1.1, we saw the typical features of a neuron. For a neuron to transmit an electri-

cal signal, it needs to experience a change in membrane potential, resulting in ion flow.

This occurs due to postsynaptic potential differences contributed by sensory transduction

or presynaptic neurons. This process can occur at every synapse. While synapses are usu-

ally found between axon terminals and dendrites, they can be formed between any region

of the axon and an entire neuron, termed en passant synapses (predominant in C. elegans)

[WSTB86]. The spatiotemporal mixing of these potentials is complex, but the change if

sufficiently large, can result in a current that reaches a synapse. In a nutshell, artificial

neurons are simplified versions of their biological counterparts (Figure 5.1).

Artificial neurons summarize all of the features of biological neurons succinctly:

alk = φ(
n∑
j=1

(al−1j wljk) + blk) (5.1)

where alk is the activation of the kth neuron in the lth layer of an ANN. It is the result of a

nonlinear transformation (φ) applied to the weighted (w) sum of activations of presynaptic

neurons (indexed as j) plus an additive bias (b). The purpose of φ becomes relevant for

chemical synapses. As discussed in Section 3.2, chemical synapses are sites of both ex-

citatory (E, +ve) and inhibitory (I, -ve) postsynaptic potentials (PSP) which compete for

determining the final PSP of the postsynaptic neuron. If not depolarized sufficiently, an

action potential won’t be generated and/or voltage gated ion channels at the next chemical
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Figure 5.1: Artificial Neuron. Activations (a) are a result of current influx from presynap-

tic neurons. Weights (w) act as proxies for synapses. Weighted activations are summated

(z), in a manner similar to the addition of postsynaptic potentials (PSP) in the cell body

(see Fig. 1.1). The activation function (φ) transforms z non-linearly to yield the neuron’s

a, continuing the process. The bias or threshold (b) is an additional additive term to z that

can alter the probability of φ giving a non-zero a.

synapse will fail to open, and so will neurotransmitter release. The bias term can be under-

stood as the final PSP threshold for depolarization/neurotransmitter release. Weights can be

positive/negative to indicate the nature of incoming PSPs, besides the number of synapses

involved. When the summation of weighted activations of presynaptic neurons exceeds the

bias term, z > 0 (Eqn. 5.1), the activation function should output a positive value. Else, it

should output 0. The ReLU function is one such example (next section).

As indicated from Eqn. 5.1, an artificial neuron is rarely employed individually, rather, is a

unit of a much larger artificial neural network (ANN, Figure 5.2):

ANNs come in many flavors. They are unified by their basic entity, the artificial neuron,

and a processing depth, i.e., from input to output, there is a defined flow of activations

such that every artificial neuron has all of its incoming weights associated with either the

input or an activation. Such a hierarchy allows for layers of neurons to be formed, within

which all neurons are activated simultaneously, in a feed-forward fashion as seen in Fig.

5.2. This normally prohibits neurons in deeper layers from sending activations to those

before, within the same layer, or to themselves. Such connections are called feedback-

/recurrent connections. They can exist, provided that recurrent activations are stored in
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Figure 5.2: Simple Feed-forward ANN. This ANN has 4 layers, one input layer, one output

layer with a single artificial neuron, and two ‘hidden’ layers with 4 and 3 artificial neurons

respectively. Layers are demonstrated to be ‘affine’, i.e., fully connected, but can be made

sparse by setting some weights to zero. Source [LeD].

memory and are utilized in a future pass (one complete input to output process). Addi-

tionally, feed-forward connections can skip layers to provide input deeper in the network,

through skip/residual connections. Designing ANN architectures and methods to train their

free parameters (weights and biases) to extract patterns from large datasets is the focus of

the field of Deep Learning (DL). While a full discussion is beyond the scope of this work,

it suffices to say that ANN variants such as CNNs, LSTMs, and ResNets have started to

achieve human level performance on tasks such as image classification and forecasting in

the last decade [Nie15].

5.2 Designing an ANN for Thermotaxis

Motivated by the successes of DL, one might ask if BNNs provide an encoding for be-

havior. If yes, could an ANN simulate the same? Recent experiments have shown that

ANNs built like BNNs and trained to perform behaviors yield neurons with experimentally

observed properties [TRT18][HSE18]. To design an ANN for the thermotaxis circuit, the

author combined information from the two-drive model (Section 4.2) and combined it with

previously studied navigation circuits in C. elegans. Chemotaxis and thermotaxis circuits

share many neurons downstream as well as at the sensory level, hence the circuit by Gray

et. al inspired the author to make a 4 hidden layer ANN [GHB05]. Further scrutiny of

a candidate thermotaxis circuit came from Monte Carlo simulations of various recorded
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movement patterns by Ikeda et. al., resulting in the identification of neurons responsible for

reversal turns and curves, determined to be the most important components of thermotaxis

behavior [ING+20]. Figure 5.3 summarizes the resulting ANN:

Figure 5.3: Proposed ANN for Thermotaxis. Subnetwork of the connectome (refer Fig.

3.2) for Ttx identified and organized in 4 layers to form a directed acyclic graph (DAG)

corresponding to most likely signal flow hierarchy. Red and green arrows correspond to

inhibitory and excitatory weights (refer Fig. 4.3 for individual detail). Grey boxes indicate

engineered layers (3 in total) to derive meaningful information from the circuit. Pink boxes

contain relevant transformations and activation functions between layers. The circuit is

designed to operate at a frequency of one cycle per second, with input giving rise to output

and vice-versa.

The ANN’s construction keeps Ttx behavior in context. The 7 layer ANN was constructed

as follows:

• Layer 1 (Input) - Based on the worm’s initial position on a linear thermal gradient,

the temperature (T) is calculated in ◦C, then compressed into a range of acceptable

40



values [0, 1] using a minmax function:

f(T ) =
T − Tmin

Tmax − Tmin
, Range = [0, 1] (5.2)

where Tmin and Tmax are the minimum and maximum values that T can take respec-

tively. This value is fed to all neurons in layer 2.

• Layers 2 - 5 (Ttx circuit) - The author constructed a directed acyclic graph (DAG)

utilizing all previously mentioned experimental results. This graph has the prop-

erty of having no feedback connections or cycles (discussed in the previous section),

though unidirectional edges within layers are permitted. To do so, all electrical con-

nections within layers were removed, followed by the removal of reciprocal feedback

edges between layers. Within a layer, the weakest connection in a given loop was re-

moved. Hence, information flows in the network only to the next layer, while having

a depth hierarchy within each layer to ensure all neurons have defined input. A DAG

is justified as the network is designed to have no memory apart from the temperature

dependent weights between AFD and AIY, as well as T and AWC (further justifica-

tion is provided when discussing the output layer below).

Furthermore, rectified linear units (ReLU) activation functions were used for all lay-

ers:

φ(z) = max(0, z) (5.3)

except layer 5, where two distinct groups of neurons are found: the red command

interneurons for locomotion, and yellow polymodal neurons for head turns (Fig. 5.3).

The latter form a terminal processing layer, and their outputs are taken as is. The

biggest caveat is that the signs of weights, apart from those determined from the two-

drive model, remain unknown. Hence, the author invoked the strategy of assigning all

outgoing edges from interneurons as inhibitory (not shown in 5.3), which has been

shown to yield computational results in best agreement with experimental data on

locomotion [RK17].

• Layer 6 (Drive) - Based on the function and/or location of neurons in layer 5, layer 6

simply sums the outputs into four independent groups, termed ‘drives’. They encode

forward/backward movement and ventral/dorsal rotation respectively. Within each

pair, the drives are antagonistic, hence a difference (∆) of their sums is considered
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to instruct the worm the extent to which it must execute a drive. To yield physically

meaningful values, they are compressed with the functions:

vt = tanh(∆) · vmax (5.4)

where vt is the velocity of the worm, tanh takes any real valued input and squeezes it

to (-1, 1), and vmax = 0.52 mms−1 is an experimental value for the maximum velocity

of a worm for a second [HKD+15].

θt = θt−1 + (Σ−1 ·∆)θmax (5.5)

Here, θt and θt−1 are the current and previous head orientation angles w.r.t. the X

axis, θmax lies on [-π, π]. This is the maximum turn angle to the ventral or dorsal

side, which is seen as anticlockwise or clockwise to the experimenter, if using the

convention in Fig. 4.1a. The inverse of the sum (Σ−1) term scales the drive on [-1, 1]

if one of the drives is zero.

• Layer 7 (Output) - Finally, the drives from layer 6 are used to determine the next

location visited by the worm:

(xt, yt) = (vtcos(θt), vtsin(θt)) (5.6)

where (xt, yt) represents the new coordinates of the worm. The entire 7 layer network

is defined for a single second of movement in the worm. Therefore, the process is

iterated to obtain the worm’s trajectory, represented by a feedback connection to layer

1.

5.3 Simulation and Results

To test the ANN’s performance, the author designed a simple mock Ttx experiment pro-

tocol. All code was written in Python [VRDJ95] with the SciPy libraries NumPy [Oli06],

pandas [M+10], and NetworkX [HSS08] for array operations, data handling, and network

preparation respectively. Plotting and visualizations were done with Matplotlib [Hun07]

and Seaborn [WBO+17] respectively:

1. Gradient Preparation - An artificial linear temperature gradient was established

horizontally across a 20x20 cm2 square, resulting in a 0.5◦Ccm−1 increase ranging
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from 15 - 25◦C, (similar to Fig. 4.2R in Section 4.1) [Goo14]:

T (x) =
x

2(Tmax − Tmin)) + Tmin
(5.7)

where x is the abscissa and Tmax = 27◦C and Tmin = 12◦C are considered to be the

physiological limits of favorable temperature (Section 4.1).

2. Hyperparameter Tuning - Qualitative variables in the two-drive circuit (Fig. 4.3,

Section 4.2) need to be quantified. AFD neurons were assigned an incoming weight

of w = 10 while AWC neurons were assigned an incoming weight of w = 5 from

morphological considerations (see Fig. 4.1a). Stochastic jitter ε was added to AWC

taken from a Gaussian distribution with µ = 0 and σ = 0.1 (so that stochastic effects

are small w.r.t. the input.)

3. Initialization - 3 groups of 15 ‘worms’ each were encoded to have TC representing

cold (17◦C), moderate (20◦C), and hot (23◦C) populations. Then, they were placed

on the square at 3 positions corresponding to 23◦C, 20◦C, and 17◦C respectively,

along the Y axis midline. Since this setup is a computational one, interaction effects

between the worms are nil and can hence be placed atop each other. Initial orientation

angles are selected at random.

4. Iteration - The ANN is iterated repeatedly, for t = 3600s / 1hr. (see Fig. 5.3).

Figure 5.4 summarizes the results obtained.

The trajectories obtained cover a roughly spherical area. This is the result that would be

expected from a 2D random walk, i.e., behavior in the absence of thermotaxis. Looking at

the displacements of individual worms, there seems to be no preferred orientation for the

green population, while the red and blue populations show some diagonal preference. This

needs to be investigated in more detail. Reversing the gradient (to ensure no bias along the

horizontal, not shown) yielded similar results.
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Figure 5.4: Results of Ttx Simulation. Red, green, and blue trajectories correspond to

hot, moderate, and cold population worms. Dashed black lines denote displacement of

individual worms over an hour. Red worms and blue worms are expected to exchange

positions while green worms are expected to track isotherms along the Y axis. Instead, all

three populations show random walk behavior.
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Chapter 6

Discussion

The C. elegans connectome serves as a beacon to the field of connectomics. As an example

of a primordial nervous system, it gives insights into how a 302 neuron nervous system

could have evolved from a simpler nerve net, while increasing its connections by an order

of magnitude. Despite reconstructions of the same being feasible, there is still uncertainty

in some of its connections due to technological limitations and variability among worms.

This is only expected to get worse as nervous systems become increasingly complex.

However, this complexity seems to follow certain rules to maximize efficiency. By ana-

lyzing the worm connectome as a network, it becomes clear that not all neurons are cre-

ated equal. A handful of interneurons possess a disproportionately large share of connec-

tions, and are well connected to each other. These hubs play vital roles in coordinating

the locomotion of the worm, as well as integrating information. Comparative studies with

macroscale connectomes indicate similar structure, on a larger scale. This is a consequence

of scale-freeness, which comes with a power law degree distribution. Moreover, the C.

elegans connectome is a small world network, making it efficient for information flow.

While small structural modules are expected from such a network, greedy algorithms fail

to capture large anatomical compartments. This isn’t unexpected, given the rudimentary

organization of the worm connectome. Still, there is a definite sense of direction and signal

flow in this connectome.

The connectome has served as a map for experimentalists to deduce behavior in the worm.

Thermotaxis is a deceptively simple behavior which is not unique to C. elegans, but crucial
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for its survival. Decades of experimentation has confirmed the necessary elements of the

connectome responsible for this behavior, but the full mechanism remains unknown. One

of the criticisms of connectomics has remained that the structure alone explains little about

overlying function. However, artificial neural networks have shown us the importance of

network structure in solving tasks previously believed to be inaccessible to computers.

Taken together, the author proposes that the future of connectomics and systems neuro-

science requires us to start by solving a ‘simple’ problem of thermotaxis in the ‘simple’

nervous system of C. elegans by modelling an ANN on the connectome. While studies

have shown that connectome inspired ANNs are capable of predicting individual neuron

function, they all involve training the model to various extents. Since thermotaxis is an

innate behavior, the author attempted to model thermotaxis with an untrained ANN, hy-

pothesizing that the connectome is sufficient for the same.

The results obtained from the model are reminiscent of a 2D random walk, suggesting that

the ANN constructed was unable to reproduce experimental observations in line with the

two-drive model. However, this is just the first step, and the author acknowledges the fol-

lowing shortcomings. First and foremost, the model is constructed without knowing the

appropriate signs of connection weights. While all interneuron outgoing edges were set

to be inhibitory based on locomotory simulations, twenty other neurons are assumed to be

excitatory in nature. This is unjustified. Other ANN experiments have taken into consider-

ation neurotransmitter expression and receptor profiles for making educated guesses about

the nature of each edge, and will be followed up by the author in the near future.

Secondly, the engineered layers 6 and 7 need to be trained to give desirable output. Doing

so would not go against any of the principles of the author, as these layers are not naturally

present in the connectome, but are abstractions. If the model shows thermotaxis behavior

on training these layers, it would imply that the connectome has a representation of the

input which can be mapped to the thermotaxis output. However, interpreting these layers

and relating them to downstream neurons would be the next task. Other assumptions such

as input weights, stochastic mixing in AWC, and the feed-forward nature of the model may

be imperfect, but are nevertheless experimentally or theoretically motivated.

Once the model is able to show thermotaxis, it could be analyzed every second, to check

neuronal activation for thermotaxis and cryotaxis respectively. If the representations in-
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clude the well established two-drive model, it could serve as a guide to experimentalists

to deduce the complete circuit. This interface between deep learning and neuroscience is

exciting, and has promise to grow synergistically. In conclusion, there is much we still

don’t know about how the brain function depends on its architecture, and presented here is

an attempt the author considers a worthwhile starting point.
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[TVA+13] Emma K. Towlson, Petra E. Vértes, Sebastian E. Ahnert, William R. Schafer,

and Edward T. Bullmore, The Rich Club of the C. elegans Neuronal Connec-

tome, Journal of Neuroscience 33 (2013), no. 15, 6380–6387 (en), Publisher:

Society for Neuroscience Section: Articles.

[VCP+11] Lav R. Varshney, Beth L. Chen, Eric Paniagua, David H. Hall, and Dmitri B.

Chklovskii, Structural Properties of the Caenorhabditis elegans Neuronal

Network, PLOS Computational Biology 7 (2011), no. 2, e1001066 (en), Pub-

lisher: Public Library of Science.

[vdHBS16] Martijn P. van den Heuvel, Edward T. Bullmore, and Olaf Sporns, Compar-

ative Connectomics, Trends in Cognitive Sciences 20 (2016), no. 5, 345–361

(en).

[VRDJ95] Guido Van Rossum and Fred L Drake Jr, Python reference manual, Centrum

voor Wiskunde en Informatica Amsterdam, 1995.

[WBO+17] Michael Waskom, Olga Botvinnik, Drew O’Kane, Paul Hobson, Saulius

Lukauskas, David C Gemperline, Tom Augspurger, Yaroslav Halchenko,

John B. Cole, Jordi Warmenhoven, Julian de Ruiter, Cameron Pye, Stephan

Hoyer, Jake Vanderplas, Santi Villalba, Gero Kunter, Eric Quintero, Pete

Bachant, Marcel Martin, Kyle Meyer, Alistair Miles, Yoav Ram, Tal Yarkoni,

Mike Lee Williams, Constantine Evans, Clark Fitzgerald, Brian, Chris Fon-

nesbeck, Antony Lee, and Adel Qalieh, mwaskom/seaborn: v0.8.1 (septem-

ber 2017), September 2017.

[WS98] Duncan J. Watts and Steven H. Strogatz, Collective dynamics of ‘small-world’

53



networks, Nature 393 (1998), no. 6684, 440–442 (en), Number: 6684 Pub-

lisher: Nature Publishing Group.

[WSTB86] John Graham White, Eileen Southgate, J. N. Thomson, and Sydney Brenner,

The structure of the nervous system of the nematode Caenorhabditis elegans,

Philosophical Transactions of the Royal Society of London. B, Biological

Sciences 314 (1986), no. 1165, 1–340, Publisher: Royal Society.

[XJL+20] C. Shan Xu, Michal Januszewski, Zhiyuan Lu, Shin-ya Takemura, Ken-

neth J. Hayworth, Gary Huang, Kazunori Shinomiya, Jeremy Maitin-Shepard,

David Ackerman, Stuart Berg, Tim Blakely, John Bogovic, Jody Clements,

Tom Dolafi, Philip Hubbard, Dagmar Kainmueller, William Katz, Takashi

Kawase, Khaled A. Khairy, Laramie Leavitt, Peter H. Li, Larry Lindsey,

Nicole Neubarth, Donald J. Olbris, Hideo Otsuna, Eric T. Troutman, Lowell

Umayam, Ting Zhao, Masayoshi Ito, Jens Goldammer, Tanya Wolff, Robert

Svirskas, Philipp Schlegel, Erika R. Neace, Christopher J. Knecht, Chelsea X.

Alvarado, Dennis A. Bailey, Samantha Ballinger, Jolanta A. Borycz, Bran-

don S. Canino, Natasha Cheatham, Michael Cook, Marisa Dreher, Octave

Duclos, Bryon Eubanks, Kelli Fairbanks, Samantha Finley, Nora Forknall,

Audrey Francis, Gary Patrick Hopkins, Emily M. Joyce, SungJin Kim,

Nicole A. Kirk, Julie Kovalyak, Shirley A. Lauchie, Alanna Lohff, Charli

Maldonado, Emily A. Manley, Sari McLin, Caroline Mooney, Miatta Ndama,

Omotara Ogundeyi, Nneoma Okeoma, Christopher Ordish, Nicholas Padilla,

Christopher Patrick, Tyler Paterson, Elliott E. Phillips, Emily M. Phillips,

Neha Rampally, Caitlin Ribeiro, Madelaine K. Robertson, Jon Thomson

Rymer, Sean M. Ryan, Megan Sammons, Anne K. Scott, Ashley L. Scott,

Aya Shinomiya, Claire Smith, Kelsey Smith, Natalie L. Smith, Margaret A.

Sobeski, Alia Suleiman, Jackie Swift, Satoko Takemura, Iris Talebi, Dorota

Tarnogorska, Emily Tenshaw, Temour Tokhi, John J. Walsh, Tansy Yang,

Jane Anne Horne, Feng Li, Ruchi Parekh, Patricia K. Rivlin, Vivek Ja-

yaraman, Kei Ito, Stephan Saalfeld, Reed George, Ian Meinertzhagen, Ger-

ald M. Rubin, Harald F. Hess, Louis K. Scheffer, Viren Jain, and Stephen M.

Plaza, A Connectome of the Adult Drosophila Central Brain, bioRxiv (2020),

54



2020.01.21.911859 (en), Publisher: Cold Spring Harbor Laboratory Section:

New Results.

[Xu19] Nan Xu, Deep phenotyping in C. elegans, 16 (en).

55


