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Introduction

The aim of this report is to highlight the major developments in the topics of dimension

subgroups and augmentation quotients.

The identification of certain normal subgroups determined by the powers of the

augmentation ideal of a group ring R(G), known as the dimension subgroups, is one

of the most challenging problems in group rings. The study of these subgroups is

supposed to be originated by W. Magnus [Mag35] when he conjectured that for any

group G, the lower central and the integral dimension series coincide. The works of

Magnus [Mag37] and E. Witt [Wit37] implied that the conjecture is true for finitely

generated free groups. The conjecture remained undecided until more than three

decades later, it was proved to be false by E. Rips [Rip72]. As of now, it is known that

the first three terms of the integral dimension series coincide with the lower central

series but the same cannot be said for the subsequent terms. The first chapter of

this report gives a broad overview of the results concerning dimension subgroups. We

begin with some basic definitions and as an example, compute the second dimension

subgroup of the group ring R(T ), where T = Q/Z. We then state and prove the

theorem of Magnus regarding dimension subgroups of free groups using the theory

of Lie algebras. We then list some special cases in which we can compute these

subgroups. The results concerning integral dimension subgroups in low dimensions

are stated next. In this section, we define polynomial maps and give their connection

with dimension subgroups, which forms a motivation for the next chapter.

The canonical filtration of the augmentation ideal by its powers gives us two

sequences of Abelian groups, known as the polynomial groups. These were first

computed by I.B.S. Passi for cyclic and elementary Abelian groups [Pas68b]. One of

these, known as the sequence of augmentation quotients has been extensively studied

by many authors. The second chapter begins with a brief description of some early

results. One of the important results regarding augmentation quotients due to F.

Bachmann and L. Grünenfelder [BG74] states that for all finite groups, the sequence

of augmentation quotients is periodic. In particular, for finite Abelian groups, it is

v
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stationary. This stationary structure was given by A. Hales in terms of generators and

relations [Hal85]. We study this result in some detail. The structure of augmentation

quotients for all finite Abelian groups was described by S. Chang and G. Tang [CT11].

Description of their proof forms the next part of this chapter. Finally, we conclude

by summarising some results regarding non-Abelian groups, in particular, the case

of symmetric groups [ZT08]. We also list some developments for the non-Abelian

case [LL79, ZY09, ZY10].



Chapter 1

Dimension Subgroups

To every group G, we can associate a series of normal subgroups determined by

commutators known as the lower central series, which is denoted by {γn(G)}n≥1.
On considering the group ring R(G), we obtain another series of normal subgroups,

determined by the powers of the augmentation ideals known as the dimension series,

denoted by {Dn,R(G)}n≥1. One of the oldest and the most challenging problems in

group rings is the identification of these subgroups. Of special interest is the case

when R = Z, the ring of integers.

Dimension subgroups were first studied by Magnus [Mag37] who proved that for

free groups the integral dimension series and the lower central series coincide. This led

to a conjecture known as the dimension conjecture that these series are the same for

all groups [Coh52]. This was proved to be false by Rips [Rip72] who gave an example

of a group G for which D4(G) 6= γ4(G). It is now known that for all groups Dn(G) ,i.e.,

the integral dimension subgroups for n = 1, 2, 3 are the same as the corresponding

lower central terms (see [Pas79]), while it is not necessarily true for the subsequent

terms.

This chapter focuses on some main results concerning dimension subgroups, in

particular, when the ring under consideration is Z.

1.1 Motivation

We begin with some definitions and notations which will be followed subsequently.

Definition 1.1.1 Let G be a group and R be a ring with identity. The set of all

formal R-linear combinations of elements of G forms a ring known as the group ring

1



2 CHAPTER 1. DIMENSION SUBGROUPS

of G with respect to the ring R and is denoted by R(G).

Definition 1.1.2 The trivial map from G to R which sends every element x ∈
G to 1R gives rise to a unique ring homomorphism ε : R(G) → R, known as the

augmentation map. The kernel of the augmentation map defined above is an ideal

of R(G), known as the augmentation ideal and is denoted by ∆R(G).

It can be easily seen that the augmentation ideal is a 2 sided ideal of R(G). For

the sake of simplicity of notation, we shall drop the subscript R when R = Z.

As an Abelian group, ∆R(G) is free on the set

W = {g − 1| 1 6= g ∈ G}. (1.1)

Also, if S is a generating set for G, then as a G-module, ∆R(G) is generated by the

set

S − 1 = {s− 1| s ∈ S}. (1.2)

LetN denote the set of all normal subgroups ofG and I denote the set of all 2-sided

ideals of R(G). Let N E G and let ∆R(G,N) denote the kernel of the epimorphism

R(G) → R(G/N) induced by the natural map G → G/N . Then, ∆R(G,N) is a

2-sided ideal of R(G). Hence, every normal subgroup of G defines a 2-sided ideal of

the group ring R(G).

In view of the above, we have a map

φ : N → I (1.3)

defined by φ(N) = ∆R(G,N).

On the other hand, to every I ∈ I, we can associate the normal subgroupG∩(1+I).

This gives a map

ψ : I → N (1.4)

defined by ψ(I) = G ∩ (1 + I).

For g ∈ G, if g − 1 ∈ ∆R(G,N), then g ∈ N . Hence, ψ ◦ φ = 1. But this may not

be true for φ ◦ ψ. For example, when we take I = R(G), then φ ◦ ψ(R(G)) = φ(G) =

∆R(G,G) = ∆R(G).

The above correspondence motivates us to study certain normal subgroups of the

group G which reflect the properties of the ring R as well. One such type, namely
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the dimension subgroups are obtained by considering the powers of the augmentation

ideal as given below.

Definition 1.1.3 The nth dimension subgroup of a group G with respect to a

ring R is defined as

Dn,R(G) = ψ(∆n
R(G)) = G ∩ (1 + ∆n

R(G)). (1.5)

Since ∆n+1
R(G) ⊆ ∆n

R(G), we have Dn+1,R(G) ⊆ Dn,R(G). Hence, we have the

following series of normal subgroups of G

G = D1,R(G) ⊇ D2,R(G) ⊇ . . . ⊃ Dn,R(G) ⊇ . . . (1.6)

known as the dimension series of the group G with respect to the ring R. When

R = Z, we denote Dn,Z(G) by Dn(G).

In this chapter, we shall denote the commutator x−1y−1xy of two elements x and

y by (x, y) to avoid confusion with the Lie bracket notation introduced later. We now

define the lower central series of a group G.

Definition 1.1.4 We define the subgroups γn(G) inductively as

γ1(G) = G, γn(G) = (G, γn−1(G)). (1.7)

Then, the normal series

G = γ1(G) ⊇ γ2(G) ⊇ . . . ⊇ γn(G) ⊇ γn+1(G) ⊇ . . . (1.8)

is known as the lower central series of the group G.

We shall denote the nth lower central terms of a group G by Gn, n ≥ 1 whenever

there is no scope of confusion. Using some results from commutator calculus, we shall

now see that for any group G, the lower central series is contained in the dimension

series.

Let G be a group and a, b ∈ G. Then, we define ab = b−1ab. The following theorem

can be proved using simple computations.

Theorem 1.1.5. (see [MKS75, p. 290]) For a, b, c ∈ G, we have

1. (a, b)−1 = (b, a)
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2. (a, bc) = (a, c)(a, b)((a, b), c)

3. (ab, c) = (a, c)((a, c), b)(b, c)

4. ((a, b), ca)((c, a), bc)((b, c), ab) = 1

5. ((a, b), c)((b, c), a)((c, a), b) = (b, a)(c, a)(c, b)a(a, b)(a, c)b(b, c)a(a, c)(c, a)b.

The identity (5) is known as the Hall-Witt identity.

Let A and B be subgroups of G. Then, we denote by (A,B), the subgroup

generated by all elements of the type (a, b), where a ∈ A and b ∈ B.

It is clear that if A and B are normal subgroups, then (A,B) is a normal subgroup

of G and (A,B) ⊆ A ∩B.

The following result can be easily proved using Theorem 1.1.5.

Theorem 1.1.6. Let A, B and C be any normal subgroups of a group G. Then, each

of the three normal subgroups

((A,B), C), ((B,C), A), ((C,A), B)

is contained in the product of the other two.

Definition 1.1.7 A series G = H1 ⊇ H2 ⊇ . . . ⊇ Hi ⊇ . . . of subgroups of a group

G is called an N-series if (Hi, Hj) ⊆ Hi+j for all i, j ≥ 1.

Definition 1.1.8 An N -series is called a restricted N-series relative to a prime

p, or an Np-series, if Hi
p ⊆ Hip for all i ≥ 1.

Remark 1.1.9 The condition (Hi, Hj) ⊆ Hi+j implies that the terms of the N -series

are normal subgroups of G (take j = 1).

The next result can be easily obtained using induction.

Theorem 1.1.10. The lower central series {Gi}i≥1 of a group G is an N-series.

Definition 1.1.11 A decreasing series

∆R(G) = A1 ⊇ . . . ⊇ An ⊇ . . . (1.9)

of two-sided ideals of R(G) is called a filtration of the augmentation ideal ∆R(G).
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One way to arrive at N -series is by filtrations of augmentation ideals by using the

correspondence stated in Proposition 1.1.12. In fact, it was proved by Lazard [Laz54]

that every Np-series is obtained by some filtraion of the augmentation ideal.

Proposition 1.1.12. Let G be a group and R be a ring with identity. Let

∆R(G) = A1 ⊇ . . . ⊇ An ⊇ . . . (1.10)

be a filtration of the augmentation ideal such that AiAj ⊆ Ai+j for all i, j ≥ 1. If

Hi = G∩ (1 +Ai), then {Hi}i≥1 is an N-series. Further, if the characteristic of R is

a prime p, then {Hi}i≥1 is an Np-series.

Proof. Let a ∈ Hi and b ∈ Hj. Then, a − 1 ∈ Ai and b − 1 ∈ Aj. Therefore, both

(a− 1)(b− 1) and (b− 1)(a− 1) belong to Ai+j. Hence,

(a, b)− 1 = a−1b−1((a− 1)(b− 1)− (b− 1)(a− 1)) ∈ Ai+j. (1.11)

Thus, {Hi}i≥1 is an N -series.

If the characteristic of R is p, then for x ∈ Hi, using the identity

(x− 1)p = xp − 1, (1.12)

we get xp − 1 ∈ Ap, i.e., Hi
p ⊆ Hip which proves that {Hi}i≥1 is an Np-series.

Clearly, since ∆R
i(G)∆R

j(G) ⊆ ∆R
i+j(G) for all i, j ≥ 1, we have the following

Corollary 1.1.13. If G is a group and R is a ring with identity, then the dimension

series of G with respect to R is an N-series. Further, if R is of characteristic p, then

it is an Np-series.

The next result shows that the lower central series is the ‘smallest’ N -series of the

group G.

Theorem 1.1.14. Let {γi(G)}i≥1 denote the lower central series of a group G. If

{Hi}i≥1 is any N-series of G, then γi(G) ⊆ Hi for all i ≥ 1.

In view of Theorem 1.1.14 and Corollary 1.1.13, we get that γn(G) ⊆ Dn(G). It

is thus a natural question whether γn(G) = Dn(G) and if not, what is the structure

of Dn(G)/γn(G). The next result is a reduction which says that to study the above

problem, it suffices to study the case of finite p-groups.
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Theorem 1.1.15. (see [Pas68b]) If Dn(G) 6= Gn, for some groups G, then there is a

finite p-group for which the same holds.

We also have the following result which states that for computation of dimension

subgroups over an arbitrary ring R, it is sufficient to consider the cases when R is

either Z or Z/rZ for some integer r.

Theorem 1.1.16. [PPS73, San72] Let G be a group and R be a commutative ring

with unity.

1. If characteristic of R is zero, then

Dn,R(G) =
∏

p∈σ(R)

{τp(G mod Dn,Z(G)) ∩Dn,Z/peZ(G)}

where σ(R) = {p|p is a prime and pnR = pn+1R for some n ≥ 0} and for p ∈
σ(R), pe is the smallest power of p for which pe = pe+1R. When σ(R) is empty,

the right hand side is interpreted as Dn,Z(G).

2. If characteristic of R is r > 0, then for all n ≥ 1,

Dn,R(G) = Dn,Z/rZ(G) = ∩iDn,Z/pieiZ(G)

where r =
∏

i pi
ei is the prime factorization of r.

Example 1.1.17 We calculate the 2nd dimension subgroup of the group ring R(T ),

where T = Q/Z and R is a commutative ring with identity.

We know that T =
∑
p

Z(p∞), where the sum is over all primes p. We shall write

T multiplicatively.

Claim 1.1.18

D2,R(T ) =
∑
p∈σ(R)

Z(p∞) (1.13)

where σ(R) = {p | p is a prime and pnR = pn+1R for somen ≥ 0}.
For p ∈ σ(R), let t ∈ Z(p∞). Then, since Z(p∞) is a divisible Abelian group,

∃n ≥ 0 and x ∈ Z(p∞) such that pnR = pn+1R and t = xp
n
. Thus,
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t− 1 = xp
n − 1

= pn(x− 1) +

(
pn

2

)
(x− 1)2 + . . .+ (x− 1)p

n

≡ pn(x− 1) mod ∆2
R(Z(p∞)) (1.14)

Let pm be the order of x in T . By the choice of p, there exists r ∈ R such that

pn = pn+mr. Also, the equation

0 = xp
m − 1 = pm(x− 1) +

(
pm

2

)
(x− 1)2 + . . .+ (x− 1)p

m

(1.15)

shows that pm(x− 1) ∈ ∆R
2(Z(p∞)).

Hence, t− 1 ≡ pn(x− 1) ≡ rpnpm(x− 1) ≡ 0 mod ∆R
2(Z(p∞)). Thus,∑

p∈σ(R)

Z(p∞) ⊆ D2,R(T ). (1.16)

Conversely, suppose t ∈ D2,R(T ). Then, for any prime p, on considering the

projection of T on its direct summand Z(p∞), we get that the p-primary component

of t, say tp is in D2,R(Z(p∞)).

Let H be the subgroup generated by the elements of Z(p∞) which appear in an

expression of tp−1 as an element of D2,R(Z(p∞)). Then, since Z(p∞) is locally cyclic,

H is a cyclic group of order pr, say, and tp ∈ D2,R(H). Now, suppose p /∈ σ(R). Then,

the rings R/pnR for n ≥ 1 have increasing characteristics and hence D2,R(H) ⊆
D2,R/pnR(H). Thus, tp − 1 ∈ D2,R/pnR(H) for all n ≥ 1.

Now, if tp = hp
s
, where h is a generator of H, then tp − 1 ∈ ∆2

R/pnR(H) and the

equation

tp − 1 = hp
s − 1 ≡ ps(h− 1) mod ∆2

R/pnR(H) (1.17)

imply that ps(h−1) ∈ ∆2
R/pnR(H). Thus, since ∆2

R/pnR(H) is generated by (h−1)2,

∃u ∈ R/pnR(H) such that

ps(h− 1) = (h− 1)2u. (1.18)

Let α = ps − (h− 1)u. Then, hα = α and on comparing coefficients on both sides, α

can be written as
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α = β(1 + h+ . . . hp
r−1) (1.19)

where β ∈ R/pnR.

Now, on applying the augmentation map ε : R/pnR(H) → R/pnR to both sides

of the equation

ps − (h− 1)u = β(1 + h+ . . . hp
r−1), (1.20)

we get that ps = 0 in R/pnR. Thus, s ≥ r and hence tp = 1. This proves that if

t ∈ D2,R(T ), then for every p /∈ σ(R), tp = 1. Thus,

t ∈
∑
p∈σ(R)

Z(p∞) (1.21)

and Claim 1.1.18 is established.

1.2 Dimension Subgroups of Free Groups

For a finitely generated free group F , the truth of the dimension conjecture was

established by Magnus [Mag37] using an identity of Witt [Wit37]. This result is

proved in this section using techniques from the theory of Lie algebras. The part

on Lie algebras have been derived from the books by J-P. Serre [Ser06] and N.

Jacobson [Jac79] and that on commutator calculus from [MKS75]. We begin with

a few definitions.

Let R be a commutative ring with identity.

Definition 1.2.1 An associative algebra A over R is a module along with a bilinear

map

θ : A× A→ A (1.22)

where θ is an R-homomorphism satisfying the condition

θ(θ(x, y), z) = θ(x, θ(y, z)). (1.23)
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Definition 1.2.2 A Lie algebra A over R is an algebra equipped with a bilinear

map [., .] called the Lie bracket which satisfies the following properties:

1. [x, x] = 0 ∀ x ∈ A,

2. [x, y], z] + [[y, z], x] + [[z, x], y] = 0.

By the first condition, we have

[x, y] = −[y, x]. (1.24)

Remark Any associative algebra can be converted to a Lie algebra by defining the

Lie bracket as:

[x, y] = xy − yx. (1.25)

Definition 1.2.3 A universal enveloping algebra of a Lie algebra L over R is an

associative algebra with identity, UL along with a map

ε : L→ UL (1.26)

satisfying the following properties:

1. ε is a Lie algebra homomorphism i.e. it is R linear and

ε[x, y] = εxεy − εyεx

2. If A is any associative algebra with identity and α : L → A is any Lie algebra

homomorphism, then there is a unique homomorphism of associative algebras

φ : UL→ A such that the diagram

L UL

A

ε

α
φ

is commutative.

This UL is unique up to isomorphism.
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Definition 1.2.4 A free associative algebra on a set X is an associative algebra

A along with a map θ : X → A such that if β : X → B is any map, where B is

an associative algebra, then there exists a unique associative algebra homomorphism

α : A → B such that β = θ ◦ α.

The notion of a free Lie algebra can be similarly defined. We denote the free

associative algebra on a set X by AX and the free Lie algebra on X by LX .

Let X be a set and F be the free group on X. Let us consider the lower central

series of F .

We have the associated graded ring
⊕∞

i=1 Fi/Fi+1. This is isomorphic to the free

associative algebra AX . Also, since every associative algebra can be viewed as a Lie

algebra by defining the Lie bracket as [x, y] = xy − yx, the above is a Lie algebra.

Let ULX be the universal enveloping algebra of LX . It is isomorphic to AX in

view of the following:

Theorem 1.2.5. (see [Jac79, p.168]) The universal enveloping algebra of the free Lie

algebra over a set X is the free associative algebra AX .

Poincaré-Birkhoff-Witt( [Poi00, Bir37, Wit37]) Theorem implies that the universal

map ε : LX → ULX ∼= AX , where LX and AX are as defined above, is an embedding.

Let Fn denote the terms of the lower central series of F . For xm ∈ Fm \Fm+1 and

yn ∈ Fn \ Fn+1, we define a multiplication in
⊕∞

n=1 Fn/Fn+1 as

[xFm+1, yFn+1] = (x, y)Fm+n+1. (1.27)

This can be extended linearly to all elements of
⊕∞

n=1 Fn/Fn+1 and converts it

into a Lie algebra over Z.

The following theorem shows that this is the free Lie algebra on the set X.

Theorem 1.2.6. (see [MKS75, p.337]) The canonical map X →
⊕∞

n=1 Fn/Fn+1

induces an isomorphism of Lie algebras

φ : LX →
∞⊕
n=1

Fn/Fn+1 (1.28)

where LX denotes the free Lie algebra generated by the set X.

Now, let us consider the dimension subgroups of F . Since Fn ⊆ Dn, we have the

canonical injection

Fi/Fi+1 ↪→ Di/Di+1. (1.29)
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Similar to the above construction,
⊕∞

i=1Di/Di+1 can be viewed as a Lie algebra.

There is a canonical map from
⊕∞

i=1 Fi/Fi+1 to
⊕∞

i=1Di/Di+1.

Next, let ZF be the integral group ring of F . Then, we have the filtration

ZF ⊇ ∆(F ) ⊇ ∆2(F ) ⊇ . . . ⊇ ∆n(F ) ⊇ . . . (1.30)

In view of the relations

(xy − 1) ≡ (x− 1) + (y − 1) mod ∆2(F ) (1.31)

and

(x−1 − 1) ≡ (x− 1) mod ∆2(F ), (1.32)

we get that

∆(F ) ≡
∑
i

αi(xi − 1) mod ∆2(F ). (1.33)

Similarly, we have with us

∆n(F )/∆n+1(F ) ≡ 〈
∑

(xi1 − 1) . . . (xin − 1) + ∆n+1(F )〉 (1.34)

We define the homogeneous elements of degree n as the elements of ∆n(F )/∆n+1(F ).

For two elements αi ∈ ∆i(F ) and αj ∈ ∆j(F ), we define a multiplication in⊕∞
i=1 ∆i(F )/∆i+1(F ) as follows

(αi + ∆i+1(F )).(αj + ∆j+1(F )) = αiαj + ∆i+j+1(F ). (1.35)

We extend this product by linearity to
⊕∞

i=1 ∆i(F )/∆i+1(F ). This converts it into

an associative graded algebra, denoted as Gr(F ).

It follows from a result of Quillen [Qui68] that for a free group F , Gr(F ) is

isomorphic to the free associative algebra over X, AX .

Now, we state the main result of this section and give its proof.

Theorem 1.2.7. Let F be the free group on the set X = {x1, x2, . . . , xr}. Then,

Dn(F ) = Fn for all n ≥ 1.

Proof. Since Fn ⊆ Dn(F ), there is a canonical map θn : Fn/Fn+1 → Dn/Dn+1 defined

by θn(x̄n) = xn +Dn+1.
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This map can be extended to the Lie algebra
⊕∞

n=1 Fn/Fn+1 by linearity. We thus

have a Lie algebra homomorphism

θ :
∞⊕
n=1

Fn/Fn+1 →
∞⊕
n=1

Dn/Dn+1. (1.36)

We also have a map

φn : Dn/Dn+1 → ∆n(F )/∆n+1(F ) (1.37)

given by

φn(x+Dn+1) = (x− 1) + ∆n+1(F ). (1.38)

As above, we extend this map linearly to
⊕∞

n=1Dn/Dn+1 to get an associative algebra

homomorphism

φ :
∞⊕
n=1

Dn/Dn+1 →
∞⊕
n=0

∆n(F )/∆n+1(F ). (1.39)

Combining the above, we have the following sequence of maps:

∞⊕
n=1

Fn/Fn+1
θ−→
∞⊕
n=1

Dn/Dn+1
φ−→

∞⊕
n=0

∆n(F )/∆n+1(F ). (1.40)

The universal envelope of the free Lie algebra is the free associative algebra, AX .

From the previous discussion,
⊕∞

n=0 ∆n(F )/∆n+1(F ) ∼= AX .

Also, by Poincare-Berkhoff-Witt theorem, the map α : LX → ULX ∼= AX is an

embedding. Thus, the map φ ◦ θ is one-to-one.

Now, the proof proceeds by induction. For n = 1, Dn(F ) = F = Fn. Suppose

the result holds for k ≤ n. Then, consider an element x ∈ Dn+1 \ Fn+1. Then,

x ∈ Dn+1 ⊆ Dn = Fn. Thus, x + Fn+1 is a non-zero element of Fn/Fn+1. Then,

φ ◦ θ(x+ Fn+1) = 0 and hence x ∈ Fn+1.

This completes the induction.

1.3 Dimension Subgroups over Fields

In this section, we study the results regarding dimension subgroups when the ring R

is a field. These subgroups have been studied extensively and a complete description

of them has been given, in terms of known subgroups of a group G.

In view of Theorem 1.1.16 for a field k, we have for any integer n ≥ 1,
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Dn,k(G) =

{
Dn,Q(G) if characteristic of k is 0,

Dn,Z/pZ(G) if characteristic of k is p > 0.

To state the main result, we need a few definitions.

Definition 1.3.1 For a subgroup H of a group G, we define a subgroup
√
H as the

set of all elements x ∈ G such that xm ∈ H for some m ≥ 0.

The following result gives us the dimension subgroups for fields of characteristic

zero.

Theorem 1.3.2. [Jen55, Hal70] For all n ≥ 1,

Dn,Q(G) =
√
γn(G). (1.41)

Next, we proceed to the case where k is of characteristic a prime p.

Definition 1.3.3 The Brauer-Jennings-ZassenhausM -series {Mn,p(G)}n≥1 of a group

G is defined inductively as:

M1,p(G) = G,Mn,p(G) = (G,Mn−1,p(G))Mp
(n
p
)(G) for n ≥ 2. (1.42)

where (n
p
) denotes the least integer ≥ n

p
. This series is the minimal with the property

Mp
n,p(G) ⊆Mnp,p(G).

By Corollary 1.1.13, the series Dn,Z/pZ(G) is an Np-series and hence Dp
n,Z/pZ(G) ⊆

Dnp,Z/pZ(G). This implies that

Mn,p(G) ⊆ Dn,Z/pZ(G), ∀n ≥ 1. (1.43)

Definition 1.3.4 We define a series {Gn,p}n≥1 of normal subgroups by setting

Gn,p =
∏
ipj≥n

γi(G)p
j

(1.44)

Since {Mn,p(G)}n≥1 is an Np-series and contains the lower central series, we have

Gn,p ⊆Mn,p(G), ∀n ≥ 1. (1.45)
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The next theorem states that the inclusions (1.43) and (1.45) are equalities and hence

gives us the dimension subgroups for fields of characteristic p.

Theorem 1.3.5. (see [Pas79]) For every group G and prime p,

Gn,p = Mn,p(G) = Dn,Z/pZ(G), ∀n ≥ 1. (1.46)

1.4 Integral Dimension Subgroups in Low Dimen-

sions

When the ring of coefficients is Z, the ring of integers, a lot of interesting results

regarding dimension subgroups have been proved. This section lists some of them.

We first study polynomial groups, which are an important tool in the computation of

the former and exhibit the connection between the two.

Definition 1.4.1 Let M be a monoid and G be an additive Abelian group. A map

f : M → G is called a polynomial map of degree ≤ n if the linear extension of f to

ZM vanishes on ∆n+1(M).

We denote the set of all polynomial maps of degree ≤ n from a monoid M to

an Abelian group G is denoted by Pn(M,G). If f : M → G is given by f(x) =

f1(x) + f2(x), x ∈M , then the map f is in Pn(M,G).

For every n ≥ 1, the map λn : M → ZM/∆n+1(M) defined by

λn(x) = x+ ∆n+1(M) x ∈M

is a polynomial map of degree ≤ n. For every polynomial map f : M → G of

degree ≤ n, there exists a unique homomorphism φ : ZM/∆n+1(M) → G such that

f = φ ◦ λn. Thus, the map λn is the universal polynomial map in this sense. This

gives us that

Pn(M,G) ∼= Hom(ZM/∆n+1(M), G).

The relationship between dimension subgroups and polynomial groups is given in

the form of the next theorem.

Theorem 1.4.2. [Pas68a] For every group G and integer n ≥ 0,

Dn+1(G) = {x ∈ G|φ(x) = φ(1)∀φ ∈ Pn(G,Q/Z)}. (1.47)
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Proof. Let δn+1(G) = {x ∈ G|φ(x) = φ(1)∀φ ∈ Pn(G,Q/Z)}. Let y ∈ Dn+1(G).

Then, y − 1 ∈ ∆n+1(G) and hence, since φ is a polynomial map of degree ≤ n,

φ(y − 1) = 0, i.e. φ(y) = φ(1). Thus, Dn+1(G) ⊆ δn+1(G).

Conversely, suppose y ∈ δn+1(G). If y /∈ Dn+1(G), then y − 1 + ∆n+1(G) is

a non-zero element of Z(G)/∆n+1(G). Thus, there exists a homomorphism φ :

Z(G)/∆n+1(G) → T such that φ(y − 1 + ∆n+1(G)) 6= 0. Let us consider the map

η : G → T defined as η(g) = φ(g − 1 + ∆n+1). Then, clearly, η is a polynomial map

of degree ≤ n. By the choice of φ, we have η(y) 6= η(1). But, since y ∈ δn+1(G), we

have η(y) = η(1), a contradiction!

Hence Dn+1(G) = δn+1(G).

The following theorem states that to compute the integral dimension subgroups

by induction on the class of a group G, we are faced with extending homomorphisms

from the last non-identity term in the lower central series to polynomial maps on the

whole group.

Theorem 1.4.3. ([Pas68a]) Let G be a nilpotent group of class n. then, γn(G) ∩
Dn+1(G) = 1 if and only if every homomorphism f : γn(G) → Q/Z can be extended

to a polynomial map θ : G→ Q/Z of degree ≤ n.

Thus polynomial maps have been effective in computation of integral dimension

subgroups. The following results can be obtained using polynomial maps.

Theorem 1.4.4. [Pas68a] For every group G, D2(G) = γ2(G).

Proof. It suffices to prove that for an Abelian group G, D2(G) = 1. Let 1 6= x ∈
D2(G). let H = 〈x〉, the subgroup generated by x. Then, we can find a non-trivial

homomorphism f : H → Q/Z. now, since T = Q/Z is a divisible Abelian group, f can

be extended to a homomorphism f ′ :→ T . SinceG is Abelian, it can be easily seen that

f ′ vanishes on ∆2(G). Thus, f ′(x−1) = 0. But, f ′(x−1) = f ′(x)−f ′(1) = f(x) 6= 0,

which is a contradiction. Hence D2(G) = 1.

In view of the above results, we note that polynomial maps play an important role

in the computation of dimension subgroups. This connection is a motivation for the

next chapter where we shall study the groups associated with these maps, known as

polynomial groups.

The following result gives us the third integral dimension subgroup and is inde-

pendently due to G. Higman and D. Rees independently.
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Theorem 1.4.5. (see [Pas79]) For every group G, D3(G) = γ3(G).

The next result states that the dimension conjecture holds for all p-groups, where

p is an odd prime.

Theorem 1.4.6. [Pas68a] If G is a p-group, where p is a prime other than 2, then

D4(G) = γ4(G). (1.48)

In fact, for all groups G, we have the following result which shows that there is an

upper bound to the exponent of the group D4(G)/γ4(G). It was proved by G. Losey,

J. Sjögren and K. Tahara.

Theorem 1.4.7. (see [Pas79]) For every group G, D4(G)/γ4(G) has exponent at

most 2.

This result shows that though the dimension subgroups Dn(G) are the same as the

lower central terms γn(G) for n = 1, 2, 3, it may fail to be the same for n = 4 when G

is a 2-group. The dimension conjecture was ultimately refuted by Rips [Rip72] who

constructed a 2-group G of order 238 such that γ4(G) = 1 but D4(G) 6= 1.

The fourth and fifth dimension subgroups were computed by Tahara for all finite

groups. Though the dimension subgroups may differ from the lower central terms,

there is an upper bound to the exponent of the groups Dn(G)/γn(G) for all groups

G. This was proved by Sjögren in form of the next result.

Theorem 1.4.8. [Sjö79] Let b(m) = lcm{1, 2, . . . ,m}, c(1) = c(2) = 1, c(n) =∏n−2
k=1 b(k)(

n−2
k ), n ≥ 3. Then, for every group G,

Dn(G)c(n) ⊆ γn(G), n ≥ 1. (1.49)

Several examples of groups without the dimension property, i.e., groups where

the lower central series does not coincide with the dimension series, are presented in

[MP09].



Chapter 2

Augmentation Quotients

In the last section of the previous chapter, we saw a connection between polynomial

groups and integral dimension subgroups. The group Qn(G) is termed as the nth

augmentation quotient for the group ring Z(G), and has been studied extensively. Qn,

for n ≥ 1 can also be considered as functors from the category of abelian groups, A to

itself. Some of these functorial properties have been studied in [Pas69]. The groups

Qn(G) for cyclic and elementary Abelian groups were computed by Passi [Pas68b]. In

[Kar83], Karpilovsky raised the problem of computing Qn(G) for n ≥ 1. Bachmann

and Grünenfelder proved that for all finite groups, the sequence {Qn(G)}n≥1 of aug-

mentation quotients becomes periodic [BG74]. In particular, for finite Abelian groups,

this sequence is stationary. This eventual isomorphism type was given by Hales [Hal85]

in terms of generators and relations. Motivated by his result, Chang and Tang [CT11]

solved Karpilovsky’s problem for finite Abelian Groups. They completely described

the groups Qn(G) and gave an explicit basis for them for all n ≥ 1.

The main aim of this chapter is an exposition of the results given in [Hal85] and

[CT11]. We end with some results concerning augmentation quotients for non-Abelian

groups.

2.1 Polynomial Groups

For an integral group ring ZG, we have the following filtration of the augmentation

ideal

∆(G) ⊇ ∆2(G) ⊇ . . . ⊇ ∆n(G) ⊇ . . .

17
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Using the above sequence, we can define the following two sequences of abelian groups

Pn(G) = ZG/∆n+1(G) (2.1)

Qn(G) = ∆n(G)/∆n+1(G). (2.2)

These are known as polynomial groups. The group Qn(G) is called the nth

augmentation quotient. They are described in some detail in the subsequent chapters.

The polynomial groups of cyclic and elementary Abelian groups were computed by

Passi using their correspondence with certain polynomial rings [Pas68b]. It was

evident from his results that the computation of the group Pn(G) is in general a

more difficult problem than that of Qn(G). In this section, we briefly study these

results.

We first give some simple identities in ZG which will be used throughout the

report. Let g, h ∈ G. Then,

(gh− 1) = (g − 1) + (h− 1) + (g − 1)(h− 1) (2.3)

Also, if an element g ∈ G is of exponent r, then using binomial theorem, we get

r(g − 1) ∈ ∆2(G). (2.4)

Remark 2.1.1 (2.4) shows that an exponent of G is an exponent of Qn(G).

Now, we demonstrate the computation of Qn(G) for a cyclic group G. First, let

G be a finite cyclic group of order m and let a be a genrator of G. Then, under the

correspondence a↔ X, the group ring ZG ∼= Z[X]/〈Xm − 1〉, where 〈α〉 denotes the

ideal generated by α in ZG. Let A = 〈Xm − 1〉. Then, we have

∆(G) = 〈X − 1〉/A, ∆n(G) = 〈(X − 1)n〉+ A/A. (2.5)

If G is the infinite cyclic group, then we have ZG = Z[X, Y ]/B where B =

〈XY − 1〉. Clearly, ∆G = 〈X − 1, Y − 1〉/B. In fact, the equation

XY − 1 = (X − 1) + (Y − 1) + (X − 1)(Y − 1) (2.6)
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in Z[X, Y ] shows that

∆(G) = 〈X − 1〉+B/B, ∆n(G) = 〈(X − 1)n〉+B/B. (2.7)

These correspondences are used in proving the following result.

Theorem 2.1.2. [Pas68b] If G is a cyclic group, then Qn(G) = G∀n ≥ 1.

Proof. For the integral group ring ZG, it is well known that ∆G/∆2(G) = G/G′ (see

[HS71, p. 192]), where G′ denotes the commutator subgroup of G.

Now, if G is cyclic, clearly G/G′ = G. Hence, in our case, Q1(G) = G. The result

will hence be proved if we establish an isomorphism between Qn(G) and Q1(G) for

all n ≥ 2.

Firstly, let G be a finite cyclic group, say of order m. In view of (2.5), for any

n ≥ 2, we have the homomorphism

α : ∆(G)→ ∆n(G) (2.8)

given by

α((X − 1)f(X) + A) = (X − 1)nf(X) + A (2.9)

where f(X) ∈ Z[X]. Now, α((X − 1)nf(X) +A) ∈ ∆n+1(G) if and only if there exist

polynomials g(X) and h(X) in Z[X] such that

(X − 1)nf(X) = (X − 1)n+1g(X) + (Xm − 1)h(X) (2.10)

that is possible if and only if

(X − 1)f(X) = (X − 1)2g(X) + (Xm − 1)h′(X) (2.11)

for some polynomial h′(X) ∈ Z[X]. In view of 2.5, this happens if and only if

(X − 1)f(X) + A ∈ ∆2(G). (2.12)

Thus, α induces a monomorphism

α′ : ∆(G)/∆2(G)→ ∆n(G)/∆n+1(G). (2.13)

Since α is an epimorphism, so is α′. Hence, α′ is an isomorphism.
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Now, suppose G is the infinite cyclic group. Using (2.7) and proceeding similar to

the previous case, we define a homomorphism α : ∆(G)→ ∆n(G) and we get that

∆(G)/∆2(G) ∼= ∆n(G)/∆n+1(G) n ≥ 2. (2.14)

Thus, Qn(G) = G for all cyclic groups G.

The groups Pn(G) are more complicated to compute and require more machinery.

We first state the following result which reduces the problem from arbitrary finite

Abelian groups to finite Abelian p-groups.

Theorem 2.1.3. [Pas68b] If G and H are groups, s and t integers, (s, t) = 1 such

that xs = 1 and yt = 1 for all x ∈ G and y ∈ H, then

1. Pn(G⊕H) ∼= Pn(G)⊕ Pn(H),

2. Qn(G⊕H) ∼= Qn(G)⊕Qn(H).

Proof. We consider the canonical projections f1 : G⊕H → G and f2 : G⊕H → H and

extend them naturally first to the integral group rings and then to the corresponding

polynomial groups, Pn and Qn. We shall use the same notation for the induced maps.

We can combine both maps to get a homomorphism θ : Pn(G ⊕ H) → Pn(G) ⊕
Pn(H) given by θ(z) = f1(z) + f2(z). It is clear that θ is an epimorphism.

A general element z of Pn(G⊕H) is of the form

z =
∑

x∈G,y∈H,α∈Z

α(xy − 1) + ∆n+1(G⊕H)

=
∑

α((x− 1) + (y − 1) + (x− 1)(y − 1)) + ∆n+1(G⊕H). (2.15)

Now, θ(z) = 0 implies that
∑
α(x− 1) ∈ ∆n+1(G) and

∑
α(y− 1) ∈ ∆n+1(H). Also,

s(x − 1) ∈ ∆2(G) implies that sn−1∆(G) ⊆ ∆n(G). Similarly, tn−1∆(H) ⊆ ∆n(H).

Since s and t are coprime, ∃ a, b ∈ Z such that sn−1a+ tn−1b = 1. Thus, we can write

(x− 1)(y − 1) = asn−1(x− 1)(y − 1) + b(x− 1)tn−1(y − 1). (2.16)

Thus (x − 1)(y − 1) ∈ ∆n+1(G ⊕H) and hence the element z is 0, proving that θ is

an isomorphism.
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On considering the restriction to Qn(G⊕H) of the map θ and combining them as

earlier, we get a homomorphism

φ : Qn(G⊕H)→ Qn(G)⊕Qn(H) (2.17)

which as above can be proved to be an isomorphism.

To compute the groups Pn(G), for a finite cyclic group G, we again establish a

relation between the integral group ring ZG and the polynomial ring Z[X]. In view of

Theorem 2.1.3, we only need to consider the case of a cyclic group G of prime power

order, say pm, for p prime.

The elements of ZG can be written as sums of the form

pm−1∑
i=0

αix
i (2.18)

where αi ∈ Z for 0 ≤ i < pm and x is a generator of G.

Let C denote the ideal 〈
∑pm

i=1

(
pm

i

)
X i〉. The map

θ : ZG→ Z[X]/C (2.19)

defined by

θ

(
pm−1∑
i=0

αix
i

)
=

pm−1∑
i=0

αi(1 +X)i + C (2.20)

is a ring isomorphism. It maps the ideal ∆(G) onto the ideal 〈X〉/C.

Thus, θ maps the ideal ∆n+1(G) onto 〈Xn+1,

pm∑
i=1

(
pm

i

)
X i〉/C. So, we have an

isomorphism

∆(G)/∆n+1(G) ∼= 〈X〉/〈Xn+1,

pm∑
i=1

(
pm

i

)
X i〉. (2.21)

For r, t ∈ N, Let Zr(t) denote the direct sum of t copies of the cyclic group Zr.
Using the above correspondence and a series of computations, the following result was

proved by Passi.

Theorem 2.1.4. [Pas68b] If m and n are integers ≥ 1 and p is a prime, then

Pn(Zpm) ∼= Z(r1)

pm+q1
⊕ Z(p−1−r1)

pm+q1−1 ⊕ . . .⊕ Z(rm)

pqm+1 ⊕ Z(pm−pm−1−rm)
pqm (2.22)
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for n > pm−1 − 1, and

Pn(Zpm) ∼= Z(r1)

pm+q1
⊕ Z(p−1−r1)

pm+q1−1 ⊕ . . .⊕ Z(rs−1)

pm−(s−1)+qs−1+1

⊕ Z(ps−1−ps−2−rs−1)

pm−(s−1)+qs−1
⊕ Z(n−ps−1+1)

pm−s+1

(2.23)

where ps−1 − 1 < n ≤ ps − 1, 1 ≤ s ≤ m − 1, qi and ri, 1 ≤ i ≤ m are integers

satisfying

n− pi−1 + 1 = (pi − pi−1)qi + ri, 0 ≤ ri < pi − pi−1. (2.24)

The groups Pn(Zr) for an arbitrary r can now be obtained by using Theorem 2.1.3

and Theorem 2.1.4.

Next, for elementary Abelian p-groups Zp(t), we have the following theorem which

gives an inductive formula for Pn(Zp(m)), for any m ≥ 1.

Theorem 2.1.5. [Pas68b] For any m ≥ 1,

Pn(Z(m)
p ) ∼= Pn(G)⊕ . . .⊕ Pn−p+1(G)⊕ Pn(Zp) (2.25)

where G is the group Z(m−1)
p .

Once the structure of Pn(Z(m)
p ) is known, the structure of the groups Qn(Z(m)

p )

can be easily determined. By Remark 2.1.1, Qn(Z(m)
p ) are of exponent p and hence it

suffices to know the order of these groups. Using the exact seqence

0→ Qn(Z(m)
p )→ Pn(Z(m)

p )→ Pn−1(Z(m)
p )→ 0, (2.26)

we get

|Qn(Z(m)
p )| = |Pn(Z(m)

p )|
|Pn−1(Z(m)

p )|
(2.27)

and hence the structure of Qn(Z(m)
p ) is determined.

From the above theory, it is easily observed that for G = Z(m)
p , if n ≥ (m− 1)(p−

1) + 1,

Qn(G) ∼= Z
(pm−1)
(p−1)
p . (2.28)

2.2 Stable Structure of Augmentation Quotients

We observed in the previous section that for an elementary Abelian p-group of rank

m, the groups Qn(G)’s are all isomorphic for n ≥ (m− 1)(p− 1) + 1. Thus, a natural
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question arises whether such a result is true for a larger class of groups, say all finite

groups. This question was answered by Bachmann and Grünenfelder [BG74] in the

form of the following result:

Theorem 2.2.1. [BG74] Let G be a finite group and c be the least integer such

that Gc+1 = Gc+2, where Gj denotes the jth lower central term of G. Let c̄ =

lcm{1, 2, . . . , c}. Then there exist positive integers n0 = n0(G) and π = π(G) such

that π | c̄ and Qn+π(G) ∼= Qn(G) ∀n ≥ n0.

For finite nilpotent groups, c is the class of the group. Theorem 2.2.1 says that for a

finite Abelian group G, the sequence {Qn(G)}n≥1 becomes stationary for n ≥ n0. The

type of this eventual isomorphism and the number n0 was determined by Hales [Hal85].

He gave the structure of this group, in terms of generators and relations. In this

section, we shall study his result in some detail.

In view of Theorem 2.1.3, it is enough to consider the case of finite Abelian p-

groups. For a finite Abelian p-group G, we first define an Abelian group QG additively.

Let P denote the set of all cyclic subgroups of G partially ordered by inclusion. We

say that a subgroup H of G is over K if

K < H ′ ≤ H =⇒ H ′ = H. (2.29)

For each cyclic subgroup H ∈ P , we define a generator xH of QG and impose the

following relation on the generators:

pxH = xK , K ≤ H (2.30)

whenever H is over K. Set x{1} = 0. It can be easily seen that if c = |P |, then any

element x of QG can be uniquely written as

x = m1xH1 + . . .+mc−1Hc−1 0 ≤ mi < p ∀ 1 ≤ i ≤ c− 1. (2.31)

Thus, the order of QG is pc−1. It is also evident from the definition that the minimum

number of elements required to generateQG is the number of maximal cyclic subgroups

of G.

Claim 2.2.2 The number of elements required to generate pkQG is the number of

maximal cyclic subgroups of Gpk .
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Proof. The result is clear for k = 0. We proceed by induction. Suppose every element

x of pkQG can be written as

x = a1xH1 + . . .+ acxHc , ai ∈ Z, 1 ≤ i ≤ c, (2.32)

where c is the number of maximal cyclic subgroups of Gpk . We observe that if H is

a cyclic subgroup of G, then it is over Hp. Now, using (2.32), we can write every

element y of pk+1QG as a linear combination

y = a1pxH1 + . . .+ acpxHc

= a1xH1
p + . . .+ acxHc

p (2.33)

Now, since Hj is a maximal cyclic subgroup of Gpk , xHj
p 6= 0 if and only if Hj

p

is a non-trivial maximal subgroup of Gpk+1
. Thus, by induction hypothesis, we are

done.

The following examples will help clarify the above definition.

Example 2.2.3 G = Cp2 = 〈a〉. In this case,

P = {H0 = 1, H1 = 〈ap〉, H2 = 〈a〉}. (2.34)

QG = 〈xH1 , xH2 : pxH1 = 0, pxH2 = xH1〉. (2.35)

Thus, any element of QG can be written as

m1xH1 +m2xH2 , 0 ≤ m1,m2, < p. (2.36)

Thus, |QG| = p2 = p3−1.

Example 2.2.4 G = Cpn × Cp = 〈a〉 × 〈b〉. In this case, the cyclic subgroups are

generated by the elements (ap
i
, 1), for 0 ≤ i ≤ n, (1, b) and (ap

n−1
, b). Thus, the

number of cyclic subgroups is n+ 1 + 1 + 1 = n+ 3. Thus, the order of |QG| is pn+2.

Let Q∞(G) denote the type of eventual isomorphism type of the groups Qn(G),

n ≥ n0. The following theorem is the main aim of this section:

Theorem 2.2.5. [Hal85] For a finite Abelian p-group G, Q∞(G) ∼= QG.

We first state the following two lemmas proved by Hales [Hal85] which will be used

subsequently.
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Lemma 2.2.6. Let G = 〈g〉 × 〈h〉, where g and h have orders pa and pb respectively,

where a ≥ b. Let x = g − 1 and y = h− 1. Then, for each 0 ≤ k < b,

pky(a−b)(p
b−k−pb−k−1)(xp

b−k

yp
b−k−1 − xpb−k−1

yp
b−k

) ∈ ∆l(G), (2.37)

where

l = (a− b)(pb−k − pb−k−1) + pb−k + pb−k−1 + 1. (2.38)

Let G = 〈g〉 × 〈h〉 × 〈a1〉 . . . × 〈ar〉, with g and h as in Lemma 2.2.6 and ai having

order pei for each i. Let x = g − 1, y = h− 1 and zi = ai − 1 for 1 ≤ i ≤ r. Let

Xm,n,k = y(a−b)(p
b−k−pb−k−1)(xp

b−k

yp
b−k−1 − xpb−k−1

yp
b−k

). (2.39)

Lemma 2.2.7. Suppose b = e0 > e1 > . . . er and for each 1 ≤ i ≤ r, ki is a positive

integer such that ei +ki ≤ ei−1. Suppose k ≥ 0 and define di = ei−
∑r

j=i+1 kj−k and

si = pdi−1 + ki(p
di − pdi−1). Let q =

∑r
i=1 ki + k. Then,

pkXm,n,kz1
s1 . . . zr

sr ∈ ∆l(G), (2.40)

where

l = (a− b)(pb−q − pb−q−1) + pb−q + pb−q−1 +
r∑
i=1

si + 1. (2.41)

Now, we move to describe the proof of Theorem 2.2.5.

It was proved by Singer [Sin77] that the order of the group Q∞(G) is pc−1, where

c is the number of cyclic subgroups of G. Thus, |Q∞(G)| = |QG|. Since both of these

are finite Abelian p-groups, to prove Theorem 2.2.5, it is enough to show that their

Ulm invariants are the same [Ulm33]. This is done once we show that for large n,

pkQn(G) can be generated by the number of elements required to generate pkQG. In

view of Claim 2.2.2, we are done if we prove that there is a set of elements generating

pkQn(G) having cardinality equal to the number of maximal cyclic subgroups of Gpk .

We shall do this by finding a partition of C(Gpk), the set of maximal cyclic subgroups of

Gpk . We shall then find a collection of subsets of pkQn(G) with the same cardinalities

as the corresponding subsets of C(Gpk) respectively. Finally, we shall show that the

elements of these sets generate pkQn(G). Let

G = 〈g1〉 × 〈g2〉 × . . .× 〈gm〉 (2.42)
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where gi has order pei and

e1 ≥ e2 ≥ . . . ≥ em. (2.43)

For each 0 ≤ i ≤ e1 − em, define mi such that mi < m is maximal with the property

emi
≥ em + i. (2.44)

For instance, m0 = m− 1. Set

Gi = 〈g1〉 × 〈g2〉 × . . .× 〈gmi
〉. (2.45)

Define xi = gi − 1 for 1 ≤ i ≤ m. The proof of Theorem 2.2.5 is presented

step-wise.

Step 1: Partition of C(G).

Let 〈(g1β1g2β2 . . . gmβm)〉 denote the cyclic subgroup generated by the element (g1
β1g2

β2 . . . gm
βm)

of G. Let o(h) denote the order of an element h. Let β1, β2, . . . , βm be such that

〈(g1β1g2β2 . . . gmβm)〉 is a maximal cyclic subgroup of G. The set C(G) can be parti-

tioned into e1 − em + 2 classes as

C(G) = S ∪ T0 ∪ T1 ∪ . . . ∪ Te1−em , (2.46)

where S and Ti are defined inductively as follows:

S = {〈(g1β1g2β2 . . . gmβm)〉 | o(gjβj) < pem ∀j < m}, (2.47)

and, for 0 ≤ i ≤ e1 − em,

Ti = {〈(g1β1g2β2 . . . gmβm)〉 | o(gjβj) < pem ∀mi < j < m,

〈(g1β1g2β2 . . . gmi

βmi )〉 ∈ C(Gi
pi)}.

(2.48)

It is clear that (2.46) is a partition of C(G).

Step 2: Computation of |Ti| and |S|.
It is clear from the previous step that

|T0| = pem|C(G0)|. (2.49)
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For 1 ≤ i ≤ e1 − em,

|Ti| = (pem − pem−1)p(em−1)(m−mi−1)|C(Gi
pi)|. (2.50)

|S| = (pem−1)m−1. (2.51)

Step 3: Construction of subsets of Qn(G).

Let

TG(n) = {α = (α1, . . . , αm)|
∑
j

αj = n}. (2.52)

We set

xα = x1
α1 . . . xm

αm . (2.53)

We shall denote the element xα + ∆n+1(G) of Qn(G) by its representative xα. Then,

Qn(G) is generated by all monomials of the form xα, where α ∈ TG(n). Let S(n,G)

denote a minimal set of generators for Qn(G). Let α ∈ TG(n). We define the sets Ci

for 0 ≤ i ≤ e1 − em and D(n) inductively, induction being on m.

C0(n) = {xα : 0 < αm < pem ,
m−1∏
j=1

xj
αj ∈ S(n− αm, G0)}. (2.54)

For 1 ≤ i ≤ e1 − em,

Ci(n) = {xα | pem−1 + i(pem − pem−1) ≤ αm < pem−1 + (i+ 1)(pem − pem−1),

αj < pem−1 ∀mi < j < m,

mi∏
j=1

xj
αj ∈ S(n−

m∑
j=mi+1

αj, G
pi

i )}.
(2.55)

D(n) = {xα : αj < pem−1 ∀ j < m}. (2.56)

Step 4: Computation of |D(n)| and |Ci(n)|, for 0 ≤ i ≤ e1 − em.

Since α ∈ TG(n), αm is fixed once we fix α1, . . . , αm−1. Hence, by the definition of

D(n), we get that

|D(n)| = (pem−1)m−1. (2.57)

Similarly,

|C0(n)| = pem|S(n− αm, G0)|. (2.58)
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Now, consider the sets Ci for 1 ≤ i ≤ e1 − em. We have

|Ci(n)| = (pem − pem−1)p(em−1)(m−mi−1)|S(n−
m∑

j=mi+1

αj, G
pi

i )|. (2.59)

Step 5: The sets Ci, 0 ≤ i ≤ e1 − em and D are disjoint for large n.

For m = 1, the statement is trivial. The proof proceeds by induction. Suppose n′ is

such that the result is true for G0. In view of (2.54), we only need to choose n such

that n− αm ≥ n′. Since αm ≤ pem − 1, any n ≥ n′ + pem − 1 suffices for G.

Step 6: |S(n,G)| = |C(G)|.
By induction hypothesis, we have |S(n−αm, G0)| = |C(G0)| and |S(n−

∑m
j=mi+1, G

pi

i )| =
|C(Gpi

i )|. Thus, from steps 2, 4 and 5, we get

|Ti| = |Ci|, 0 ≤ i ≤ e1 − em, (2.60)

|S| = |D|. (2.61)

Step 7: ∪e1−emi=0 Ci(n) ∪D generates Qn(G).

We shall show that every element xα = x1
α1 . . . xm

αm can be written as a Z-linear

combination of elements of Ci’s and D.

Let xα be an element of Qn(G) for large n which cannot be written as a linear

combination of elements of Ci and D. We pick α = (α1, . . . , αm) such that it is

lexicographically greatest with this property. Then, we have three cases:

Case I: αm < pem .

By induction,
∏m−1

j=1 xj
αj is a linear combination of elements of S(n− αm, G0). Let

m−1∏
j=1

xj
αj =

∑
k

rkx(k) (2.62)

where x(k) ∈ S(n−αm, G0). On multiplying both sides by xm
αm , we get that xα can

be written as

xα =
m∏
j=1

xj
αj =

∑
k

rkx(k)xm
αm . (2.63)

By definition of C0, each x(k)xm
αm is in C0 and we are done in this case.
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Case II: pem−1 + i(pem − pem−1) ≤ αm < pem−1 + (i+ 1)(pem − pem−1).
If for any mi < j < m, αj satisfies αj ≥ pem−1, then by Lemma 2.2.6, we can replace

αj by αj + (pem − pem−1) and αm by αm − (pem − pem−1) without changing its class

modulo ∆n+1(G). This contradicts the maximality of α and hence αj < pem−1 for

mi < j < m. Also, by induction, the element

mi∏
j=1

xj
αj of Qn−

∑m
j=mi+1 αj

(Gpi

i ) can be

written as a linear combination of elements of S(n−
m∑

j=mi+1

αj, G
pi

i ). This shows that

the element xα1
1 . . . xαm

m is a linear combination of elements of Ci.

Case III: αm ≥ pem−1 + (i+ 1)(pem − pem−1).
We proceed similar to the second case and use Lemma 2.2.6 to conclude that αj <

pem−1 for all j < m and hence xα ∈ D.

In view of Steps 1-7, we get that for large n, Qn(G) can be generated by a set

of cardinality equal to |C(G)|. Proceeding in a similar fashion as above and using

Lemma 2.2.7 for that k, we can show that the number of elements required to generate

pkQn(G) is equal to |C(Gpk)|. Now, in view of Claim 2.2.2, the proof of Theorem 2.2.5

is complete.

Corollary 2.2.8. Qn(G) is isomorphic to Q∞(G) if and only if

n ≥ (e1 − e2)(pe2 − pe2−1) + pe2−1 +
m∑
j=2

(pej − 1). (2.64)

Proof. Let

U = U(n) = ∪e1−emi=0 Ci ∪D. (2.65)

By the above discussion, for n ≥ n0 = (e1 − e2)(pe2 − pe2−1) + pe2−1 +
∑m

j=2(p
ej − 1),

the sets Ci and D are disjoint. If possible, let∑
α

rαx
α = 0 (2.66)

be a linear relation not implied by Lemma 2.2.6 in the set U(n). Then, by multiplying

this relation with xmj for a suitable value of j, we can convert (2.66) into a linear

relation in the elements of the set U(n+m) which form a generating set for Qn+m(G).

If m is large, Qn+m(G) ∼= Q∞(G) and hence we get a relation in Q∞(G). But no

relation not implied by Lemma 2.2.6 can hold in Q∞(G), and hence in Qn(G) for any

n.
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For k ≥ 1, we use Lemma 2.2.7 for the corresponding k and a similar argument as

above which concludes the proof of the result.

2.3 Finite Abelian Groups

The augmentation quotients for finite Abelian groups were computed by Chang and

Tang [CT11]. They also gave an explicit basis for the same. In this section, we present

their result in some detail.

Using the ideas of the previous section, it is clear that we only need to find a

minimal generating set for pkQn(G) for 1 ≤ k < e1. We shall do this by considering

all generators of Qn(G) and then defining an equivalence relation on them for each k

such that any two equivalent elements represent the same element of pkQn(G). A set

defined using at most one element from each equivalence class will give us a minimal

generating set for pkQn(G).

We set G as in (2.42) i.e.,

G = 〈g1〉 × 〈g2〉 × . . .× 〈gm〉 (2.67)

where gi has order pei and

e1 ≥ e2 ≥ . . . ≥ em. (2.68)

Let TG(n) denote the set of m-tuples as in previous section. To find a minimal

generating set for pkQn(G), we shall find subsets of TG(n), denoted by TG(k, n) such

that every generator pkxα of pkQn(G) is such that α ∈ TG(k, n).

Any element of Qn(G) can be written as a linear combination of elements of the

form

xα = x1
α1 . . . xm

αm . (2.69)

Instead of partitioning the set of monomials, we shall work with the set

TG(n) = {α = (α1, . . . , αm)|
m∑
j=1

αj = n} (2.70)

of m-tuples of integers, as for any m-tuple α, we can associate the element

xα = x1
α1 . . . xm

αm (2.71)

of ∆n(G). We shall write xα for the element xα + ∆n+1(G) of Qn(G), whenever there
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is no scope of confusion.

We define the set

TG(n) = {xα + ∆n+1|α ∈ TG(n)}. (2.72)

Remark 2.3.1 It is clear that Qn(G) is generated by TG(n).

We shall define a subset TG(k, n) of TG(n) for each 0 ≤ k < e1 such that the set

pkTG(k, n), where

TG(k, n) = {xα + ∆n+1(G)|α ∈ TG(k, n)}, (2.73)

is a minimal generating set of pkQn(G).

For the same, we now define a series of equivalence relations ∼G,k for each 0 ≤
k < e1 on the set TG(n). These are motivated by Lemma 2.2.6 and Lemma 2.2.7.

Definition 2.3.2 Let m ≥ 2, α = (α1, . . . , αm) ∈ TG(n). Suppose 1 ≤ i < j ≤ m

and 0 ≤ k < ei. If α satisfies

• αi ≥ pei−k−1, and

• αj ≥ (ei − ej)(pej−k − pej−k−1) + pej−k,

then we set

β = (α1, . . . , αi + (pej−k − pej−k−1), . . . , αj − (pej−k − pej−k−1), . . . , αm) (2.74)

and say that β ∈ TG(n) is the image of α under the map (G, k, i, j) and is denoted as

β = (G, k, i, j)(α). (2.75)

Remark 2.3.3 The element β of TG(n) is greater than the element α with respect

to the lexicographic ordering.

Motivated by the above definition, we now define a map (G, k, i, j0, j1, . . . , jr, k1, . . . , kr)

where 1 ≤ i < j0 < j1 < . . . < jr ≤ m, 0 ≤ k < eir and 0 < kt ≤ ejt−1 − ejt where

1 ≤ t ≤ r.

Definition 2.3.4 Let q =
∑r

t=1 kt + k and dt = ejt −
∑r

s=t+1 ks − k for 1 ≤ t ≤ r.

If α ∈ TG(n) satisfies

• αi ≥ pei−k−1,
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• αj0 ≥ (ei − ej0)(pej0−k − pej0−k−1) + pej0−k,

• αit ≥ pdt−1 + kt(p
dt − pdt−1) for each 1 ≤ t ≤ r,

then we set

β = (G, k, i, j0, j1, . . . , jr, k1, . . . , kr)(α). (2.76)

If β is of the form (2.76), we write

α = (G, k, i,−j0, j1, . . . , jr, k1, . . . , kr)(β). (2.77)

Definition 2.3.5 If α and β are elements of TG(n), we define a relation ∼G,k as:

α ∼G,k β ⇐⇒

{
β = σs ◦ . . . σ1(α) or α if m ≥ 2, k < e2,

α = β otherwise.
(2.78)

where σl = for 1 ≤ l ≤ s are maps defined in 2.3.4.

Remark 2.3.6 It follows trivially from the definition of∼G,k that it is an equivalence

relation.

The next lemma states that a minimal set of generators for pkQn(G) contains at

most one element from each equivalence class of TG(n) for the corresponding k.

Lemma 2.3.7. Let α, β ∈ TG(n) be such that α ∼G,k β. Then, pkxα − pkxβ ∈
∆n+1(G).

Proof. Since G is Abelian, we only need to consider the case for m = 2. The result is

clear if β = α. Otherwise, β = (G, k, 1, 2)(α) and in this case, the result follows from

Lemma 2.2.6.

Let

Mk = max{1 ≤ j ≤ m|ej > k}, 0 ≤ k < e1. (2.79)

Clearly, if ∃j > Mk such that αj > 0, then pkxj
αj ∈ ∆αj+1 and hence xα+∆n+1(G)

is zero in Qn(G). In view of this fact and Lemma 2.3.7, we define the sets TG(k, n)

as:

Definition 2.3.8 For each fixed integer 0 ≤ k < e1,

TG(k, n) = {α = (α1, . . . , αMk
, 0, . . . , 0) ∈ TG(n) | τk(α) = α} (2.80)
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where

τk(α) = max{γ ∈ TG(n) | γ ∼G,k α} (2.81)

deontes the lexicographically greatest element of the equivalence class containing α.

Remark 2.3.9 For 0 ≤ k < e2, Mk = 1 and hence TG(k, n) = {(n, 0, . . . , 0)}.
It is clear that m = M0 ≥M1 ≥ . . . ≥Me1−1. Thus,

TG(0, n) ⊇ TG(1, n) ⊇ . . . ⊇ TG(e1 − 1, n). (2.82)

We define TG(e1, n) = ∅.

Lemma 2.3.10. The set pkTG(k, n) generates pkQn(G) for each 0 ≤ k < e1.

Proof. In view of Remark 2.3.1, we only need to show that pkTG(k, n) generates

pkTG(n). Clearly, for α ∈ TG(n), if ∃ j > Mk, with αj > 0, then k > ej and hence

pkx
αj

j belongs to a higher power of the augmentation ideal, i.e, pkxα ∈ ∆n+1(G).

Hence the set

{xα + ∆n+1(G) |α = (α1, . . . , αMk
, 0, . . . , 0) ∈ TG(n)}. (2.83)

generates pkTG(n).

Remark 2.3.11 For each 0 ≤ k < e1, it follows from the definition of TG(k, n) that

TG(k, n) = {α t (0, . . . , 0) ∈ TG(n)|α ∈ T
Gpk (0, n)}, (2.84)

where α t β denotes the m + n-tuple obtained by juxtaposing an m-tuple α and an

n-tuple β. It remains to show that the set pkTG(k, n) is a minimal generating set for

pkQn(G) for each 0 ≤ k < e1. Proceeding in this direction, we state the next result

which gives a partition of TG(0, n) for large n. The proof is clear from the equivalence

of the sets TG(0, n) and S(n,G) in Step 6 of the Theorem 2.2.5.

Lemma 2.3.12. Let m ≥ 2 and α = (α1, . . . αm) ∈ TG(0, n). Then, α satisfies at

least one of the following conditions and these conditions are mutually exclusive if

n ≥ (m− 1)(pem−1 − 1) + pem−1 + (e1 − em + 1)(pem − pem−1):

1. αm < pem , (α1, . . . , αm−1) ∈ TG0(0, n− αm).

2. pem−1 + if(em) ≤ αm < pem−1 + (i + 1)f(em) for some fixed integer i with

1 ≤ i ≤ e1 − em, and
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• αj < pem−1 for mi < j < m,

• (α1, . . . , αmi
) ∈ T

Gi
pi (0, n−

∑
j>mi

αj).

3. αj < pem−1 for all j < m.

It is clear that the conditions 1 and 2 are mutually exclusive for all n. The following

result also follows from the previous section.

Theorem 2.3.13. There exists a positive integer n0 such that for any n ≥ n0, Qn(G)

is isomorphic to the group QG and pkTG(k, n) is a minimal generating set of pkQn(G)

for each 0 ≤ k < e1.

In view of Lemma 2.3.12, the set TG(0, n) can be partitioned as follows:

TG(0, n) = B ∪e1−emi=0 Ai, (2.85)

where

B = {α |α satisfies condition 3}, (2.86)

A0 = {α |α satisfies condition 1 but not 3}, (2.87)

Ai = {α |α satisfies condition 2 but not 3}. (2.88)

Now, for smaller n, we shall prove that this set is minimal by constructing maps

from TG(k, n) to TG(k, n+ 1). For the same, we shall use the following result:

Lemma 2.3.14. Let m ≥ 2, α = (α1, . . . , αm) ∈ TG(n), and 0 ≤ i ≤ e1 − em be a

fixed integer. If α satisfies the following conditions

1. αm < pem−1 + (i+ 1)f(em),

2. αj < pem−1 for mi < j < m,

3. (α1, . . . , αmi
) ∈ T

Gpi

i

(0, n−
∑

j>mi
αj),

then α ∈ TG(0, n).

Its proof is complicated and has been avoided here. We refer the reader to [CT11]

for the same.

Let us first consider the case for k = 0. We define this map inductively, induction

being on m. For m = 1, set

φG(α) = α + 1. (2.89)



2.3. FINITE ABELIAN GROUPS 35

For k ≥ 1, we define

φG(α) =

{
(α1, . . . , αm + 1) if α ∈ B,

φ
Gi

pi ((α1, . . . , αmi
)) t (αmi+1, . . . , αm) if α ∈ Ai.

(2.90)

By Remark 2.3.11, this map is well defined. Also, it is clear by definition that

φG(α) = α + εj for some 1 ≤ j ≤ m.

Claim 2.3.15 φG(TG(0, n)) ⊆ TG(0, n+ 1).

Clearly, φG(TG(0, n)) ⊆ TG(n + 1). The claim is trivial for m = 1. We proceed

by induction. Suppose the claim holds for groups with minimal number of generators

less than m. Let α ∈ TG(0, n). We have the following two cases depending upon α.

Case I: α ∈ B. In this case, the first m − 1 entries of φG(α) are less than pem−1.

If ∃ β ∼G,k α, then by the conditions on α and β in Definition 2.3.4, we arrive at

a contradiction. Hence the only element in the equivalence class of φG(α) is itself.

Thus, φG(α) ∈ TG(0, n+ 1).

Case II: α ∈ Ai for some 0 ≤ i ≤ e1− em. In this case, (α1, . . . , αmi
) ∈ T

Gi
pi (0, n−∑

j>mi
αj). By induction, we have

φ
Gi

pi ((α1, . . . , αmi
)) ∈ T

Gi
pi (0, n+ 1−

∑
j>mi

αj) (2.91)

and hence in view of Lemma 2.3.14,

φG(α) = φ
Gi

pi ((α1, . . . , αmi
)) t (αmi+1, . . . , αm) ∈ TG(0, n+ 1) (2.92)

and we are done.

Now, we define maps φG,k for each k as follows:

φG,k(α) = φ
Gpk ((α1, . . . , αMk

)) t (0, . . . , 0). (2.93)

We shall denote φG by φG,0. Thus, in view of Remark 2.3.11 and Claim 2.3.15, we

have

φG,k(TG(k, n)) ⊆ TG(k, n+ 1). (2.94)

We can now prove the following:
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Theorem 2.3.16. pkTG(k, n) is a minimal generating set of pkQn(G).

Proof. When n ≥ n0, the result is clear from Theorem 2.3.13.

For n ≥ n0, let l = n− n0. We shall prove the result by induction on l. The case

l = 0 is clear. We assume that the result is true for l − 1 , i.e., pkTG(k, n + 1) is a

minimal generating set for pkQn+1(G).

Now, if pkTG(k, n) is not a minimal generating set for Qn(G), then there exists an

element β ∈ TG(k, n) such that

pkxβ ≡
∑

α∈TG(k,n)\{β}

cαp
kxα (mod ∆n+1(G)) (2.95)

and β is the smallest with this property. If for some α < β, p - cα, then pkxα can be

written as a linear combination which contradicts the minimality of β. Thus, p | cα
for all α < β. Let φG,k(β) = β + εj for some 1 ≤ j ≤ Mk. On multiplying both sides

of (2.95) by xj, we get

pkxβ+εj = pkxφG,k(β) =
∑

α∈TG(k,n)\{β}

cαp
kxα+εj (mod ∆n+1(G)) (2.96)

By Lemma 2.3.7 and (2.84), we get that pkxα+εj − pkxτk(α+εj) ∈ ∆n+2(G). Thus, we

can replace pkxα+εj by pkxτk(α+εj) in (2.96).

We partition the set A = TG(k, n) \ {β} as follows:

A = A1 t A2, (2.97)

where

A1 = {α ∈ A | τk(α + εj) = φG,k(β)}, (2.98)

A2 = {α ∈ A | τk(α + εj) 6= φG,k(β)}. (2.99)

In view of the above, we can write

pkxφG,k(β) =
∑

α∈TG(k,n)\{β}

cαp
kxα+εj

=
∑

α∈TG(k,n)\{β}

cαp
kxτk(α+εj)

=
∑
α∈A1

cαp
kxφG,k(β) +

∑
α∈A2

cαp
kxτk(α+εj). (2.100)
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For any α ∈ A1, we have

α + εj ≤ τk(α + εj) = φG,k(β) = β + εj, (2.101)

and hence α < β which implies cα is a multiple of p. Thus, 1 −
∑

α∈A1
cα is coprime

to p, i.e., there exists an integer b such that

b

(
1−

∑
α∈A1

cα

)
≡ 1 (mod pe1). (2.102)

Multiplying both sides of the congruence (2.100) by b and using (2.102), we get

pkxφG,k(β) ≡
∑
α∈A2

bcαp
kxτk(α+εj) (mod ∆n+2(G)). (2.103)

For α ∈ A2, τk(α + εj) is in TG(k, n + 1). Thus, in view of (2.103), pkxφG,k(β) can

be written as a Z-linear combination of elements of pkTG(k, n + 1) contradicting the

induction assumption. Hence proved.

Theorem 2.3.16 gives us the Ulm invariants of the groups Qn(G).

Theorem 2.3.17. Let FG(k, n) = |TG(k, n)| − |TG(k + 1, n)|, 0 ≤ e1. Then, the Ulm

invariants of Qn(G) are

FG(0, n), FG(1, n), . . . , FG(e1 − 1, n). (2.104)

Consequently,

Qn(G) ∼= (Z/pZ)FG(0,n) ⊕ (Z/p2Z)FG(1,n) ⊕ . . .⊕ (Z/pe1Z)FG(e1−1,n). (2.105)

Having found the structure of the augmentation quotients, we now proceed to find

an explicit basis for the same.

Let

α = (α1, α2, . . . , αn) ∈ TG(k, n) \ TG(k + 1, n). (2.106)

We choose elements Xα
k ∈ Qn(G) as follows

Xα
k =


xα + ∆n+1(G) k = e1 − 1,

xα + ∆n+1(G) k < e1 − 1,
∑

j>Mk+1
αj > 0,

xα − xτk+1(α) + ∆n+1(G) k < e1 − 1,
∑

j>Mk+1
αj = 0.
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Remark 2.3.18 From the fact that pe1Qn(G) = 0, Lemma 2.3.7 and the argument

in the proof of Lemma 2.3.10, it is clear that Xα
k is pk+1 torsion.

When k < e1 − 1 and
∑

j>Mk+1
αj = 0, then from Lemma 2.3.7, we have

pk+1Xα
k ∈ ∆n+1(G). (2.107)

Thus, for any α ∈ TG(k, n) \ TG(k + 1, n), pk+1Xα
k = 0.

Remark 2.3.19 We observe that if k < e1 − 1 and
∑

j>Mk+1
αj = 0, then αj = 0

for all j > Mk+1. Hence, τk+1(α) ∈ TG(k + 1, n). Thus, ∪e1−1k=0 Xk generates TG(0, n).

Theorem 2.3.20. Let 〈Xk〉 denote the subgroup of Qn(G) generated by Xk. Then,

〈Xk〉 is a free Z/pk+1Z module and Qn(G) =
⊕e1−1

k=0 〈Xk〉.

Proof. By Remark 2.3.19, it is clear that ∪e1−1k=0 Xk generatesQn(G). Now, each element

X ∈ Qn(G) can be written as

X =
∑

0≤k≤e1

∑
α∈TG(k,n)\TG(k+1,n)

ck,αX
α
k (2.108)

where 0 ≤ ck,α < pk+1 in view of Remark 2.3.18. This expression gives at most∏e1−1
k=0 p

(k+1)|Xk| elements.

Also,
e1−1∏
k=0

p(k+1)|Xk| ≤
e1−1∏
k=0

p(k+1)FG(k,n) = |Qn(G)|. (2.109)

Thus, the expression (2.108) is unique and this proves the theorem.

We assign as positive integer T (G) to each G as follows:

T (G) =

{
1, if m = 1,

(e1 − e2)(pe2 − pe2−1) + pe2−1 +
∑m

j=2(p
ej − 1), if m ≥ 2.

(2.110)

It has been proved by Hales that Qn(G) ∼= Q∞(G) if and only if n ≥ T (G). Having

found a basis for Qn(G) for all n ≥ 1, we shall now see that the groups Qn(G) are
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non-isomorphic for all n ≤ T (G). We have by the definition of TG(k, n),

FG(k, n) = |TG(k, n)| − |TG(k + 1, n)|

= |T
Gpk (0, n)| − |T

Gpk+1 (0, n)|

= |T
Gpk (0, n)| − |T

Gpk (1, n)| = |F
Gpk (0, n)|. (2.111)

The above equations show that we can focus on FG(0, n) instead FG(k, n).

Lemma 2.3.21. The map φG : TG(0, n)→ TG(0, n+ 1) is injective for each n ≥ 1.

Proof. The proof is by induction on m. For m = 1, the statement is trivial. Suppose

the result holds for all finite Abelian groups with at most m − 1 summands in their

cyclic decompositions. Let α, β ∈ TG(0, n) such that φG(α) = φG(β).

Suppose one of α, β, say α ∈ B, then φG(α) = (α1, . . . , αm+1). Thus, φG(β) =

β + εj for some 1 ≤ j ≤ m implies that α + εm = β + εj for some 1 ≤ j ≤ m. Thus,

(α1, . . . , αm + 1) = (β1, . . . , βj + εj, . . . , βm). (2.112)

Since αj < pem−1, we get βj ≤ αj < pem−1 for all 1 ≤ j < m. Thus, β ∈ B and hence

α = β.

Now, suppose neither α nor β belongs to B. Then, φG(α) = φG(β) implies that

αm = βm. Hence both α and β have type Ai for some 0 ≤ i ≤ e1 − em. Thus, by

definition of φG, we get

φ
Gpi

i

(α1, . . . , αmi
) = φ

Gpi

i

(β1, . . . , βmi
) (2.113)

and

(αmi+1, . . . , αm) = (βmi+1, . . . , βm). (2.114)

The result follows from above and the induction hypothesis.

Since φG is injective, we have

FG(0, n) = |TG(0, n) \ TG(1, n)|

≤ |φG(TG(0, n) \ TG(1, n))|

≤ |TG(0, n+ 1) \ TG(1, n+ 1)|

≤ FG(0, n+ 1). (2.115)
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Theorem 2.3.22. The groups Q1(G), Q2(G), . . . , QT (G)(G) are pairwise nonisomor-

phic and

|Q1(G)| < |Q2(G)| < . . . < |QT (G)|. (2.116)

Moreover,

QT (G)(G) ∼= QT (G)+1
∼= . . . (2.117)

Proof. The second part follows from Theorem 2.2.5.

Now, we prove (2.116). For each 0 ≤ k < e2, the following is obtained by the

injectivity of the maps φG,k

FG(k, 1) ≤ . . . ≤ FG(k, T (Gpk+1

)) < . . . < FG(k, T (Gpk)). (2.118)

Suppose there are two positive integers n1 and n2 such that n1 < n2 < T (G) and

Qn1(G) ∼= Qn2(G). Then, their Ulm invariants are same, i.e., FG(k, n1) = FG(k, n2)

for each 0 ≤ k < e1. The equation (2.118) with k = 0 yields that n2 ≤ T (Gp). On

repeating this process, we get that n2 ≤ T (Gpe2 ) = 1. This implies that n1 < 1, which

is a contradiction. This proves the theorem.

Thus, in view of Theorem 2.1.3, the problem of Karpilovsky is now fully solved for

all finite Abelian groups. In the next subsection, we shall consider a simple example

and compute the augmentation quotients and an explicit basis for the same.

Example 2.3.23 Let

G = C9 × C3 × C3 = 〈g1〉 × 〈g2〉 × 〈g3〉, (2.119)

where Cr denotes the cyclic group of order r.

Here p = 3,m = 3, e1 = 2, e2 = e3 = 1. From earlier, we get

T (G) = (2− 1)(31 − 30) + 31−1 + (31 − 1) + (31 − 1) = 7 (2.120)

We also have m0 = 2, m1 = 1. Thus,

G0 = C9 × C3, G1 = C9. (2.121)

In this case, k = 0, 1. Now, we determine the sets TG(0, n) and TG(1, n).
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In view of Lemma 2.3.12 and Lemma 2.3.14, we get

TG(0, n) = An ∪Bn ∪ Cn (2.122)

where

An = {(0, 0, n)}, (2.123)

Bn = {(n− 3, 0, 3), (n− 4, 0, 4)}, (2.124)

Cn = {(n, 0, 0), (n− 1, 1, 0), (n− 2, 2, 0), (n− 3, 3, 0), (n− 4, 4, 0), (0, n, 0),

(n− 1, 0, 1), (n− 2, 1, 1), (n− 3, 2, 1), (n− 4, 3, 1), (n− 5, 4, 1), (0, n− 1, 1),

(n− 2, 0, 2), (n− 3, 1, 2), (n− 4, 2, 2), (n− 5, 3, 2), (n− 6, 4, 2), (0, n− 2, 2)}.
(2.125)

On computation, we get the following table for TG(0, n):

Table 2.1: Elements of TG(0, n)
n An Bn Cn
1 (0, 0, 1) ∅ (1, 0, 0), (0, 1, 0), (0, 0, 1)
2 (0, 0, 2) ∅ (2, 0, 0), (1, 1, 0), (0, 2, 0), (1, 0, 1), (0, 1, 1),

(0, 0, 2)
3 (0, 0, 3) (0, 0, 3) (3, 0, 0), (2, 1, 0), (1, 2, 0), (0, 3, 0), (2, 0, 1),

(1, 1, 1), (0, 2, 1), (1, 0, 2), (0, 1, 2)
4 (0, 0, 4) (1, 0, 3),

(0, 0, 4)
(4, 0, 0), (3, 1, 0), (2, 2, 0), (1, 3, 0), (0, 4, 0),
(3, 0, 1), (2, 1, 1), (1, 2, 1), (0, 3, 1), (2, 0, 2),
(1, 1, 2), (0, 2, 2)

5 (0, 0, 5) (2, 0, 3),
(1, 0, 4)

(5, 0, 0), (4, 1, 0), (3, 2, 0), (2, 3, 0), (1, 4, 0),
(0, 5, 0), (4, 0, 1), (3, 1, 1), (2, 2, 1), (1, 3, 1),
(0, 4, 1), (3, 0, 2), (2, 1, 2), (1, 2, 2), (0, 3, 2)

6 (0, 0, 6) (3, 0, 3),
(2, 0, 4)

(6, 0, 0), (5, 1, 0), (4, 2, 0), (3, 3, 0), (2, 4, 0),
(0, 6, 0), (5, 0, 1), (4, 1, 1), (3, 2, 1), (2, 3, 1),
(1, 4, 1), (0, 5, 1), (4, 0, 2), (3, 1, 2), (2, 2, 2),
(1, 3, 2), (0, 4, 2)

≥ 7 (0, 0, n) (n−3, 0, 3),
(n− 4, 0, 4)

(n, 0, 0), (n − 1, 1, 0), (n − 2, 2, 0), (n − 3, 3, 0),
(n − 4, 4, 0), (0, n, 0), (n − 1, 0, 1), (n − 2, 1, 1),
(n−3, 2, 1), (n−4, 3, 1), (n−5, 4, 1), (0, n−1, 1),
(n−2, 0, 2), (n−3, 1, 2), (n−4, 2, 2), (n−5, 3, 2),
(n− 6, 4, 2), (0, n− 2, 2)
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Also, TG(1, n) = {(n, 0, 0)} for all n ≥ 1.

Using the above, we get the following table for Ulm invariants.

Table 2.2: Ulm Invariants of Qn(G)
n FG(0, n) FG(1, n) Qn(G)
1 3-1 = 2 1 C3

2 × C9

2 6-1 = 5 1 C3
5 × C9

3 10-1 = 9 1 C3
9 × C9

4 14-1 = 13 1 C3
13 × C9

5 18-1 = 17 1 C3
17 × C9

6 20-1 = 18 1 C3
18 × C9

≥ 7 21-1 = 20 1 C3
20 × C9

For finding a basis of Qn(G), we use Theorem 2.3.20. Let x = g1 − 1, y = g2 − 1

and z = g3−1. Then, the following table lists the representatives of the basis elements

of Qn(G).

Table 2.3: Basis of Qn(G)
n X1 X0

1 x z, y
2 x2 z2, xy, y2, xz, yz
3 x3 z3, x2y, xy2, y3, x2z, xyz, y2z, xz2, yz2

4 x4 z4, xz3, x3y, x2y2, xy3, y4, x3z, x2yz
5 x5 z5, x2z3, xz4, x4y, x3y2, x2y3, xy4, y5, x4z, x3yz,

x2y2z, xy3z, y4z, x3z2, x2yz2, xy2z2, y3z2

6 x6 z6, x3z3, x2z4, x5y, x4y2, x3y3, x2y4, y6, x5z, x4yz,
x3y2z, x2y3z, xy4z, y5z, x4z2, x3yz2, x2y2z2, xy3z2,
y4z2

≥ 7 xn zn, xn−3z3, xn−4z4, xn−1y, xn−2y2, xn−3y3, xn−4y4,
yn, xn−1z, xn−2yz, xn−3y2z, xn−4y3z, xn−5y4z,
yn−1z, xn−2z2, xn−3yz2, xn−4y2z2, xn−5y3z2,
xn−6y4z2, yn−2z2

2.4 Non-Abelian Groups

Since we do not have a structure theorem for non-Abelian groups, the computation

of augmentation quotients in this case as compared to that for Abelian groups, is in

general, a much more difficult problem. In this section, we shall summarise the main

results obtained for some non-Abelian groups.
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The Augmentation Quotients for symmetric and dihedral groups were computed

by Zhao and Tang[ZT08]. We describe the case of symmetric groups in some detail.

We begin with a few definitions.

Definition 2.4.1 A group G is said to be perfect if it equals its own commutator

subgroup.

It is clear that for a perfect group, Dn(G) = G and hence ∆n(G) = ∆(G) for all

n ≥ 1. Thus, the set

Bn = {g − 1| g ∈ G \ 1} (2.126)

is a Z-basis for ∆n(G).

Lemma 2.4.2. Let G be a group and H be a perfect subgroup of G. Then, for any

n ∈ Z,

Qn(G) ∼= Qn(G/H).

Proof. The canonical epimorphism from G to G/H will give us an epimorphism

φ : Qn(G)→ Qn(G/H).

We are done if we show that ker (φ) = 0.

We first find a set of generators for Qn(G) and Qn(G/H).

Let X = {xi|i ∈ I} denote a representative set of preimages of G/H \ {eH} in G.

Then, G = H ∪ (∪xi∈XxiH) and G/H = {1̄, x̄i|i ∈ I}.
Thus, for any g ∈ G, ∃xi ∈ X, h, hi ∈ H such that x = h or x = xihi. Thus, either

x− 1 = h− 1 ∈ ∆n+1(G) (2.127)

or

x−1 = xihi−1 = (xi−1)(hi−1)+(xi−1)+(hi−1) ≡ xi−1(mod∆n+1(G)). (2.128)

In view of the above, Qn(G) is generated by the set

{(xi1 − 1) . . . (xin − 1) + ∆n+1(G)|xij ∈ X}. (2.129)

and Qn(G/H) is generated by the set

{(x̄i1 − 1) . . . (x̄in − 1) + ∆n+1(G)|xij ∈ X}. (2.130)
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Now, we consider the natural homomorphism

ϕ : ZG→ Z(G/H). (2.131)

Since G = H ∪ (∪xi∈XxiH), every element of Z can be written as

α =
∑
j

bj(hj − 1) +
∑
i,j

aij(xihj − 1). (2.132)

Thus, φ(α) =
∑

i,j aij(x̄i − 1). So, if φ(α) = 0, then for any fixed i,
∑

i,j aij = 0.

Hence,

ker(ϕ) = {
∑
j

bj(hj − 1) +
∑
i,j

aij(xihj − 1)|
∑
j

aij = 0}. (2.133)

For any α in ker(ϕ), we have

α =
∑
j

bj(hj − 1) +
∑
i,j

aij(xi− 1)(hj − 1) +
∑
j

∑
i

aij(hij − 1) ∈ ∆n+1(G). (2.134)

So, ker(ϕ) ⊆ ∆n+1(G).

Now, we consider the epimorphism

φ : Qn(G)→ Qn(G/H). (2.135)

Suppose an element β =
∑
ai1...n(xi1−1) . . . (xin−1) + ∆n+1(G) ∈ Qn(G) satisfies

φ(β) = 0. (2.136)

That is
∑
ai1...n(x̄i1 − 1) . . . (x̄in − 1) ∈ ∆n+1(G). Now, since ∆n+1(G) has genera-

tors (x̄j1 − 1) . . . (x̄jn+1 − 1), where xji ∈ X, there exists bj1...n+1 ∈ Z such that∑
ai1...n(x̄i1 − 1) . . . (x̄in − 1)−

∑
bj1...n+1(x̄j1 − 1) . . . (x̄jn+1 − 1) = 0, (2.137)

and hence∑
ai1...n(xi1 − 1) . . . (xin − 1)−

∑
bj1...n+1(xj1 − 1) . . . (xjn+1 − 1) ∈ ker(ϕ). (2.138)
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Now, since
∑
bj1...n+1(xj1 − 1) . . . (xjn+1 − 1), ker(ϕ) ∈ ∆n+1(G), so∑

ai1...n(xi1 − 1) . . . (xin − 1) ∈ ∆n+1(G) (2.139)

and hence ker(φ) = 0. Thus φ is an epimorphism and we are done.

The derived group of Sm is Am, which is the subgroup of Sm consisting of all even

permutations. Clearly, for m ≥ 5, Am is perfect. Also, Sm/Am is cyclic of order 2.

Hence, on applying the previous result, we get the following:

Theorem 2.4.3. Let m ≥ 5, Sm is the mth symmetric group and Am is the mth

alternating group. Then,

Qn(Sm) ∼= Z2. (2.140)

Alternative Method Now, we provide a method to obtain the augmentation

quotients of Sm for all m ≥ 1. Unlike the previous approach, this does not provide a

basis for ∆n(Sm).

We first note that if g ∈ G′, then it can be easily seen that g − 1 ∈ ∆2(G). Any

element of Sm can be written as either τ or tτ where τ is an element of Am and t is

a transposition.

Let n be a positive integer. Then, the Abelian group ∆n(Sm)/∆n+1(Sm) is gener-

ated by elements of the type

(σ1 − 1)(σ2 − 1) . . . (σn − 1) + ∆n+1(Sm). (2.141)

When σ = τ , where τ ∈ Am, we have

σ − 1 ∼= 0 mod ∆2(Sm) (2.142)

When σ = tτ , then

σ − 1 = tτ − 1

= (t− 1)(τ − 1) + (t− 1) + (τ − 1)

≡ (t− 1) mod ∆2(Sm).

(2.143)

Thus, Qn(Sm) is generated by elements of the type tn + ∆n+1(Sm).

Since t is a transposition, which is of order 2, we have t2 = 1. The equation
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0 = t2 − 1 = (t− 1)2 + 2(t− 1) (2.144)

shows that 2(t− 1) ∈ ∆2(Sm).

In view of the above, any element of Qn(Sm) is of the type αtn + ∆n+1(Sm), where

α = 0, 1. Thus,

Qn(Sm) ∼= Z2. (2.145)

We now consider the case of dihedral groups, Dn, n ≥ 1. The group Dk has a

representation

Dk = 〈r, s|rk = s2 = 1, rsr = s〉. (2.146)

The following theorem gives the augmentation quotients of Dk for odd k.

Theorem 2.4.4. Let Dk be a dihedral group, with k odd. Then, for any n ≥ 1,

∆n(Dk) has a Z-basis

Bn = {(s− 1)n, ri − 1, (ri − 1)(s− 1) | 1 ≤ i ≤ k − 1}. (2.147)

Consequently, Qn(Dk) ∼= Z2.

Proof. Since every element of Dk can be written as risj, 0 ≤ i ≤ k−1, j = 0, 1, we get

that every generator of ∆n(Dk) can be written as a Z-linear combination of elements

of Bn. Also, since |Bn| = 2k− 1 = |Dk|− 1, it suffices to prove that Bn ⊆ ∆n(Dk). In

view of the relations (2.3) and (2.4), this is done once we prove that r− 1 ∈ ∆n(Dk).

Since k is odd, the number k − 1/2 ∈ N. Also, sr = r−1s. The equation

r − 1 = (s− 1)(r
k−1
2 − 1)− (r

k+1
2 − 1)(s− 1)− (r

k−1
2 − 1)(r − 1) (2.148)

implies that r− 1 ∈ ∆2(Dk). On proceeding inductively and using 2.148, we get that

r − 1 ∈ ∆n(Dk) for any n ≥ 1. Thus, Bn ⊆ ∆n(Dk) for all n ≥ 1.

The augmentation quotients for non-Abelian finite groups in which the lower

central series is an N -series were determined by G. Losey and N. Losey [LL79]. For

groups of order p5, Q. Zhou and H. You [ZY09, ZY10] computed the augmentation

quotients using the group presentations. We have a complete description of the case

for finite Abelian groups, but in the case of non-Abelian groups, only little is known.
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