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Abstract

Artificial neural networks(ANN) imitated to biological neural networks constituting net-

work of neuron which learns from data and the computing systems. Machine Learning(ML)

is a subset of Artificial Intelligence(AI), which learns from data, examples, and without

being explicitly programmed. A variety of application has found of ANN in Qunatum In-

formation like Entanglement Detection of Quantum System, study NMR(Nuclear Magnetic

Resonance) spectra.

One can clasiify Artificial neural networks into discrete-variable and continuous-variable

artificial neural network. A comparison of efficiency has been made between these two

networks with their cost.

The PPT(Partial positive transpose) criterion uses to detect entanglement for bipartite quan-

tum systems, here we use ANN model and PPT criteria for qubit-qubit entanglement detec-

tion, and Entanglement criteria for Qutrits.

ANN enables quantification of spectra got from NMR, like structure elucidation, peak,

phase shift. Analyses Lineshift fitting and does lipoprotein isolation by density of protein

through ANN.

ix





Chapter 1

Introduction

Artificial neural networks(ANN) learns from data and computing systems, also said to be

methodologies of ML(Machine Learning). In early 1940s, it started but the growth and

power of computational gained in late 20th century, when it has got high-level representa-

tion by using successive layers of real-valued latent variables or binary with a Boltzmann

machine. Where unsupervised pre-training increased a computing power and also from

GPUs to allow the use of big networks.

The neural networks has been applied in different field and it’s appreciation can seen in

Quantum Mechanics also like detecting entanglement of quantum states, Phase shift, peak

detection of NMR Spectra, and also isolation of lipoprotein via density of protein through

ANN.

As discrete-variable network has unitary operators of hidden layers, which acts on input

sequentially with positive transpose map, while continuous have infinite dimensions Hilbert

space.

The PPT(Partial positive transpose) criterion can uses to detect entanglement for bipartite

quantum systems, here we use ANN model and PPT criteria for qubit-qubit entanglement

detection, and entanglement criteria for Qutrits, where qutrits were in a mixture of both

individually the maximally mixed state and a maximally entangled state.

ANN enables quantification of spectra got from NMR, like structure elucidation, peak,

phase shift.

We look entanglement for two qutrits system which are a mixture of both individually the

maximally mixed state and a maximally entangled state, where we derived that probability

should less than 1/4 for being separable.
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Most of the time we keep testing data set much larger than validation data sets, to get much

better learning, and if validation loss is more compare to testing, we can say, we have not

defined enough hidden layers, or bias function, because of that we can not have efficient

models of artificial neural networks.
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Chapter 2

Artificial Neural Networks

We will look the training of neural networks with Forward Propagation, Backward Prop-

agation with partial derivatives and Loss Evaluation, then about discrete-variable neural

network and continuous-variable neural networks.

2.1 Training the network

ANN is trained by using Perceptron, which has basic units of neurons, and associated with

learning rule.

Learning Steps: Randomization of parameter, Forward Propagation(Linear Combination,

Activation), Backward Propagation(partial derivatives, Loss Evaluation), Update parame-

ter. They try to minimize cost functions by using Gradient Descent rule.

Figure 2.1: The schematic diagram of the Neural Network

• X1, X2 and Xm are the inputs

•W1, W2 and Wm are the corresponding weights
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• For b to be the perceptron’s bias

• y is the output

The output of the perceptron y as, y=f(W1* X1+ W2* X2+...+ Wm* Xm+ b); A full con-

nection of network can be seen with linear activation function and sigmoid activation func-

tion.

Figure 2.2: Activation function and output of Network

Forward Propagation: The Forward Propagation needs the input (x) being fed to the

network, the activation function, and the weight function associated with the neurons. The

evaluation and storage of outputs includes the intermediate variables for the neural network,

and the network continues to propagates forward to generate its output say(y), if Xa×b be

the input matrix, and the output Yc×b. Then for the ith layer:

Zi
Nixb

= W i−1
Ni×a
∗ Ai−1a×b +Bi

Ni×b

AiNi×b
= f

(
Zi
Ni×b

)
The weight matrix between layers i − 1 and i is W i−1

Ni×a and Bi
Ni×b is the ith layer bias

function. We can use any of two activation function accordingly,

Two activation function: f (Zi) =

 tanh (Zi) i 6= Nf

sigmoid (Zi) = 1

1+e−Zi i = Nf

Backward Propagation: Once we evaluated the output, we can go back to check how it has

correlated with estimated output with partial derivatives, and loss Evaluation or function,

once we do the backward propagation then update the parameters accordingly,

Say Ŷc×b to evaluated output and Yc×b to the know output, then error function can be write

as,

E = L
(
Ŷc×b, Yc×b

)
(2.1)
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and the partial derivative can evaluate by chain rule and taking derivative of loss function

w.r.t. parameters A,[Wittek 14]

For the ith layer:

dA =
∂L
∂A

(2.2)

dZ =
∂L
∂Z

=
∂L
∂A
∗ ∂A
∂Z

= dA ∗ ∂A
∂Z

(2.3)

dW =
∂L
∂A
∗ ∂A
∂Z
∗ ∂Z
∂W

(2.4)

For the (i− 1)th layer:

dAi−1 =
∂L
∂Ai−1

=
∂L
∂Ai
∗ ∂A

i

∂Zi
∗ ∂Zi

∂Ai−1
(2.5)

= dZi ∗W i−1 (2.6)

So,

dZi−1 = dAi−1 ∗ ∂A
i−1

∂Zi−1 (2.7)

dW i−2 = dZi−1 ∗ ∂Z
i−1

∂W i−2 (2.8)

Similarly we can apply this for the Bias functions.

Then we can minimize the cost function, which is one half of the mean squared error, from

gradient descent method,

J (θ0, θ1) =
1

2N

N∑
i=1

(
fθ
(
x(i)
)
− y(i)

)2
(2.9)

We can see variation with learning rate too, It will not have always same trend. As good

learning rule, will have better cost function and so steeper loss throughout compared to in

very high and low learning rate, it varies with number of iterations and so on with each

iterations. The plot is figure 2.3 for learning rate with loss.

2.2 Discrete-Variable Artificial Neural Network

A discrete-variable network has unitary operators of hidden layers, acts on input sequen-

tially with positive tanspose map,

The network output can be write as the composite function:

ρout = ξout
(
ξN
(
· · · ξ2

(
ξ1
(
ρin
))
· · ·
))

(2.10)
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Figure 2.3: Loss vs Epoch for different learning rate

[Bose 19]

Cost function can be write by matching rate of learning network,

M (ρ, label)

=
1

|Dtrain|
∑
Dtrain

(Pr (0O| 0EO) + Pr (1O| 1EO))

=1− 1

|Dtrain|
∑
Dtrain

(Pr (1O| 0EO) + Pr (0O| 1EO)) (2.11)

0O tells the separable state, and 1O denotes systems are entangled, and similarly for yO(labels

for the evaluated output), yEO(for the expected output). From Matching rate we can also

defined some parameters like loss function, the cost function of the assigned networks.

The loss function from the expected outputs,

L =
1

Dtrain

∑
Dtrain

[
N ′O −NEO

(
ρ|ϕ〉
)]2 (2.12)

where N ′O is the output of the neural network.

2.3 Continuous-Variable Artificial Neural Network

The continuous-variable system can be analyses by assuming the vectors of density matrix

in their infinite dimensional Hilbert space. Qunatum Harmonic oscillator is one of the most

6



common example of continuous-variable quantum system, and these solution of QHO in

these states, known as Gaussian state, which has probability distribution.

So for 2 continuous-variable system, we can take analogue two-quantum mode Gaussian

state, then to find entanglement between two continuous-variable system, we need to detect

these two-qumode Gaussian states are separable or entangled. And the criteria is following

for two states (x̂1,p̂1) and (x̂2, p̂2):

〈
(∆λ̂)2

〉
+
〈

(∆δ̂)2
〉
≥c2 +

1

c2
+M2, (2.13)

λ̂ = |c| x̂1 + x̂2/c

δ̂ = |c| p̂1 − p̂2/c

M = |c|
√〈

(∆x̂1)
2〉+

〈
(∆p̂1)

2〉− 1

−
√〈

(∆x̂2)
2〉+

〈
(∆p̂2)

2〉− 1/|c|.

(2.14)

Label sets to 0 value, and then check whether this inequality holds or not. If this inequality

holds, the state is said separable and vice-versa.
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Chapter 3

Artificial Neural Networks in Quantum

Information

3.1 Entanglement for Qubits-Qubits system

The density matrix ρ for the Qubit(bipartite quantum systems) written as,

ρ =
∑

i1i2j1j2

ρi1j1,i2j2 |i1j1〉 〈i2j2| (3.1)

Applied PPT criterion as follows[PENG-HUI QIU 19],

ρPTi1j1,i2j2 =ρi1j2,i2j1 (3.2)

ρRi1j1,i2j2 =ρi1i2,j1j2 (3.3)

By matrix rearrangement for bipartite quantum state ρ to be separable if

sup‖T 2
ijρ‖1 6 1, i, j ∈ {1,..,4} (3.4)

T nij is the transposition of elements in general tensor-product space H⊗n. For 2 spin- 1/2

states, density

ρ = p |ϕ1〉 〈ϕ1|+ (1− p) |ϕ2〉 〈ϕ2| (3.5)

where |ϕ1〉 = a |00〉 + b |11〉, |ϕ2〉 = a |10〉 + b |01〉. Plot the value of f = ‖T 2
ijρ‖ with

respect to coefficient ”a”.

If f > 1, the state is said to be entangled, otherwise it is separable.

We made 3 neural networks to study the efficiency for the entangled and separable state.

For that we used 7000 two qubit states [3500 entangled and 3500 separable]. Keep the

Neural networks size as follow [25-25-5], [15-15-10-1], [10-10-5-5-2].

9



Figure 3.1: f vs a for entanglement and separability

[PENG-HUI QIU 19]

3.2 Entanglement for Qutrits

The partial positive transposition condition to determines entanglment for a general state of

two qutrits fails, as it is being system whose states belong to 3-D Hilbert space. However,

to provide the criterion for entanglement in the higher dimensional Hilbert-space, we have

different aprroach.

Like a joint state of a composite system is said to be separable if it can be decomposed into

a mixture of product states for their constituents. we consider the states of two qutrits which

are a mixture of both individually the maximally mixed state and a maximally entangled

state. These states are the generalization of Werner state for two qubits. Then the two-qutrit

system is supposed to be separable if and only if the probability outcome for the maximally

entangled state should not exceed 1/4.

For a qutrit, if |1〉, |2〉and|3〉 are an orthonormal basis, then pure state |ψ〉 can be written as

by normalization and overall phase,[Carlton M. Caves ]

|ψ〉 = eiζ1 sin θ cosφ|1〉+ eiζ2 sin θ sinφ|2〉+ cos θ|3〉 (3.1)

0 ≤ θ, φ ≤ π/2

0 ≤ ζ1, ζ2 ≤ 2π
(3.2)

We can look the matrix representations of hermitian operators of qutrits state, which is

SU(3) group generator:[Nielsen 00]

10



U =


1 0 0

0 1 0

0 0 1



u1 =


1 0 0

0 ω 0

0 0 ω2

 , u2 =


0 1 0

0 0 1

1 0 0



u3 =


0 1 0

0 0 ω

ω2 0 0

 , u4 =


0 1 0

0 0 ω2

ω 0 0


u5 = u†1, u6 = u†2

u7 = u†3, u8 = u†4

This representation of qutrits state is complete and a state can be written as,

ρ = −1 +
4∑

m=1

2∑
k=0

p(m, k)|mk〉〈mk| (3.3)

For maximally mixed state(M9) and maximally entangled state |Ψ〉

M9 =
1

9
I ⊗ I (3.4)

|Ψ〉 =
1√
3

(|1〉 ⊗ |1〉+ |2〉 ⊗ |2〉+ |3〉 ⊗ |3〉) (3.5)

These mixture will have form,

ρε = (1− ε)M9 + ε|Ψ〉〈Ψ| (3.6)

0 ≤ ε ≤ 1. These states of the two qutrits will be separable if it can be expressed as an

ensemble of the product states. So we can show it that the state is separable, if and only if

ε ≤ 1/4.

We can look at expansion for maximally entangled state, [Carlton M. Caves ]

|Ψ〉〈Ψ| =
∑
a,b

|a〉〈b| ⊗ |a〉〈b|

=
1

9

(
I ⊗ I +

3

2
(u1 ⊗ u1 − u2 ⊗ u2 + u3 ⊗ u3

+u4 ⊗ u4 − u5 ⊗ u5 + u6 ⊗ u6 − u7 ⊗ u7 + u8 ⊗ u8) (3.7)

11



For mixed state;

ρε =
1

9

(
I ⊗ I +

3ε

2
(u1 ⊗ u1 − u2 ⊗ u2 + u3 ⊗ u3

+u4 ⊗ u4 − u5 ⊗ u5 + u6 ⊗ u6 − u7 ⊗ u7 + u8 ⊗ u8) (3.8)

The expansion coefficient from equation 3.3 of density matrix of qutrits,

cαβ =
9

4
tr (ρuα ⊗ uβ) (3.9)

Density matrix of qutrits,

ρ =
1

9
cαβuα ⊗ uβ (3.10)

Coefficients would be,

c0j = cj0 = 0, cjk = 0 for j 6= k

c11 = −c22 = c33 = c44 = −c55 = c66 = −c77 = c88 =
3ε

2
(3.11)

12



Chapter 4

Artificial Neural Networks in Nuclear

Magnetic Resonance

Artificial neural network(ANN) analyses the NMR spectroscopy with different approach

which deals data quantification. It does lineshape fitting analysis, and performance has

been much better through ann models. When we talk about quantification of lipoprotein

in different density like(very low, intermediate, low, high density), then ANN increases the

value of 1H NMR lipoprotein quantification to the extends where it could be one’s choice

in advanced reserach setting.

4.1 Lineshape fitting(LF) analysis

Lineshape fitting is one of the reliable quantification of overlapping resonances got from

spectra of ’H NMR. So the model for the different density of lipoprotein can be write in

form of characteristic parameters which is individual Lorentzians Li(can be line widths,

chemical shifts and intensities);

MVLDL(f) = L1(f)VLDL + L2(f)VLD + L3(f)VLD

MIDL(f) = L1(f)IDL + L2(f)IDL + L3(f)ID

MLDL(f) = L1(f)LDL + L2(f)LDL + L3(f)LDL

MHDL(f) = L1(f)HDL

(4.1)

where MV IDL(f) is Model for very low density lipoprotein, and so on for intermediate,

low, and high density in the above expressions.

13



Then the model of the methyl resonance from a plasma spectrum can be look as,

MPLASMA(f) =MVLDL(f) + MIDL(f) + MLDL(f) + MHDL(f)

+ c0 + c1f
(4.2)

c0 + c1v is the background resonance due to residual water, or fatty acids or proteins.

4.2 Lipoprotein isolation by ANN

Here we can use sigmoid or linear function as the activation function

f (Zi) =

 linear(Zi) i 6= Nf

sigmoid (Zi) = 1

1+e−Zi i = Nf

Each neuron is first multiplied by their corresponding weighting factor which influence the

coming output, From different study group of 59 cases: 37 spectra choose to for the training

set and rest 22 spectra for the test data set.[M. Ala-Korpela 95]

Figure 4.1: spectra of lipoprotein and analysed with ann networks

[M. Ala-Korpela 95]

The number for input neurons (Nl) was kept around 950, hidden neurons (NH) was kept

between 0 to 100, and outputs(No) was kept 20. For the different no. of hidden layers it has

observed isolation of lipoprotein in very good extends.

14



Figure 4.2: lipoprotein of different density

[M. Ala-Korpela 95]

With 960 inputs, 20 outputs and 1000 iterations have made separation or isolation between

density of protein.
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Chapter 5

Analysis & Results

5.1 Efficiency for Bipartitie Quantum Systems

For the following 3 neural networks [25-25-5], [15-15-10-1], [10-10-5-5-2] to study the

efficiency for the entangled and separable state. And the given 7000 two qubit states

[3500 entangled and 3500 separable]. Parameters: Activation(sigmoid) function used,

sigmoid (Zi) = 1

1+e−Zi , Gradient descent otimization for loss and backward propagation.

Network 1 Network 2 Network 3

Entangled Separable Entangled Separable Entangled Separable

Efficiency 50.634 50.556 57.978 42.72 49.98 50.927

Rest of efficiency table for Qubit has been in appendix table-1.

[15-15-10-1] network stands for a network with 15 layers (input-15 hidden-output) with 15,

15, 10 and 1 neurons in the four hidden layers from input to output order. So more no. of

hidden layers make good enough efficient model upto an extent, but also more input biased

and weighted function done their job.

The cost function is one half of the mean squared error

J (θ0, θ1) =
1

2N

N∑
i=1

(
fθ
(
x(i)
)
− y(i)

)2
(5.1)

And loss function is defined as,

L =
1

Dtrain

∑
Dtrain

[
N ′AR −NAR

(
ρ|ϕ〉
)]2 (11)

Loss function for Qubit-Qubit entanglement model converges after around 600 iterations,

and test loss is more compare to train loss for at any time of iterations.

17



Figure 5.1: Loss Function vs Iteration

we looked the loss function for continuous-variable ann over 2000 epoch for training and

testing data sets,

Figure 5.2: Mean Square error vs No. of hidden layers of neuron

Convergence of the training loss for the ann model with 6 hidden layers. As by increasing

more hidden layers we can have more efficient model, but computational time would be

around double by increasing one more hidden layers. So we can fix our hidden layers till

we get a convergence of mean square error.

18



5.2 Efficiency for Qutrits

For the following 3 neural networks [25-25-20-5], [20-18-16-5], [16-12-12-5-2] to study

the efficiency for the entangled and separable state. And the given 1500 two qutrit states

[750 entangled and 750 separable]. We have here only those state of qutrit which are mixed

state of maximally entangled state and maximally mixed state.

[25-25-20-5] network stands for a network with 25 layers (input-25 hidden-output) with

25, 25, 20 and 5 neurons in the four hidden layers from input to output order. Network has

more than 90% efficiency, Network-2 has around 80% and Network-3 has around 75%. We

goes for more number of inputs state rather than more hidden layers for qutrits state.

Network 1 Network 2 Network 3

Entangled Separable Entangled Separable Entangled Separable

Efficiency 98.6 97.82 82.47 80.76 74.62 76.93

Rest 25 efficiency for different epochs of Qutrit-Qutrit entanglement has mentioned in

Table-2 of appendix. We see Network 1 is higher efficiency compare to Network-2, and

3. But in Qubit [15-15-10-1] hidden layer network has much better efficiency.

Validation or test data has been less loss means better trained for qutrit-qutrit entanglement

and got an convergence.

Figure 5.3: Accuracy vs Epochs for [25-25-20-5] networks

Training and Validation accuracy graph for [25-25-20-5] networks can been seen against

19



number of epochs.
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Chapter 6

Conclusion and Future work

• We have seen good correlation between number of epochs and hidden layers of net-

works, as below from 200 epochs faster drops, and for higher number of layers drop

becomes slow. So need to fit an optimal solution in consideration of those factors.

• Continuous-variable has 92% detecting rate of entanglement, which has very much

better than discrete-variable networks for 6 hidden layers in Qubit-Qubit systems.

• In Qutrit-Qutrit entanglement [25-25-20-5] network has good efficiency compare to

network having more number of hidden layers, as qutrit has more number of input

variables, it’s need more biased and weighted function compared to qubit. So in qubit

system [15-15-10-1] has better efficiency, which is having more hidden layers.

• Isolation of lipoprotein has been observed for Input variables around 900 and output

variables 20, where spectra frequency belonged between 300-500Hz.

• ANN model best can work on quantification of NMR spectra with analyses of phase

shift, peak and identification of various peak got from spectra.
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Chapter 7

Appendix

7.1 Data 1- Efficiency for qubit-qubit entanglement

Epochs Network 1 Network 2 Network 3

Entangled Separable Entangled Separable Entangled Separable

50.634 50.566 57.978 42.72 49.98 50.927

49.75 49.42 61.26 39.57 50.142 50.46

56.919 44.787 58.642 42.17 50.55 50.678

52.734 47.16 50.448 49.425 54.214 47.028

45.9 52.42 56.882 44.37 51.784 49.45

51.162 48.168 63.66 36.47 48.88 52.07

56.56 46.38 64.487 35.79 50.47 48.16

52.482 46.446 57.62 42.44 61.591 40.124

48.918 50.47 50.78 51.21 48.574 51.79

50.725 50.573 47.48 53.37 50.57 51.46

52.27 47.49 62.428 38.42 40.36 58.452

54.462 48.28 66.67 33.94 52.268 47.38

53.54 45.97 56.345 43.216 48.076 53.132

46.79 53.02 58.691 41.426 48.87 52.238

51.93 50.78 40.38 59.952 55.79 45.147

Neural networks size as follow Network1-[25-25-5], Network2-[15-15-10-1], Network3-

[10-10-5-5-2].
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7.2 Data 2- Efficiency for qutrit-qurit entanglement

Epochs Network 1 Network 2 Network 3

Entangled Separable Entangled Separable Entangled Separable

98.6 97.82 82.47 80.76 74.62 76.93

95.88 98.3 79.67 81.74 66.42 60.46

98.32 96.81 83.67 80.71 69.45 72.86

94.734 97.16 83.58 81.64 73.24 71.04

100 96.42 76.89 74.72 61.43 59.72

96.14 95.39 76.67 76.43 64.86 62.72

96.26 94.7 74.75 75.79 61.72 60.19

97.93 96.46 72.06 70.42 61.34 62.45

98.968 93.87 70.78 71.25 68.74 61.74

96.785 96.579 77.46 79.7 70.73 65.45

93.7 98.93 76.58 74.46 68.64 62.26

91.4 98.45 79.75 73.46 63.58 62.65

93.74 96.27 76.455 73.268 58.67 56.192

93.92 95.62 78.64 71.44 68.43 62.86

96.43 93.98 79.68 76.45 69.73 64.31

97.02 94.49 75.17 75.32 65.16 61.72

97.26 94.8 74.745 76.79 61.22 60.14

96.92 95.66 71.86 70.76 61.24 62.41

96.67 93.17 70.75 74.2 68.345 60.78

97.235 95.169 77.76 79.27 70.733 64.45

98.71 92.93 74.58 75.44 69.63 62.65

90.42 96.45 73.75 73.467 65.52 64.68

96.94 95.27 77.45 72.458 58.27 56.49

94.05 98.42 72.64 70.44 65.43 62.85

95.43 92.98 76.68 76.48 69.453 64.305

Neural networks size as follow Network1-[25-25-20-5], Network2- [20-18-16-5], Network3-

[16-12-12-5-2]

24



7.3 Tripartite qutrits SLOCC representation

Figure 7.1: Tripartite qutrits state representation

[Honda 01]
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