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Notations

• ξk(X) := collection of finite dimensional k-vector bundles over X.

• θnk (X) := n-dimensional trivial k-vector bundle over X.

• R := field of real numbers

• C := field of complex numbers

• GLn(kN) := Grassmannian maifold

• U(n) := group of n× n unitary matrices

• πk(X) := k-th homotopy group of X

• Sn(X) := n-th iterated suspension of X

• X ∧ Y := smash product of the pointed space X and Y

• CX := Cone of a topological space X

• L(A) := the category of all finitely generated free left (or right) A
modules for A, a ring with unit.

• P (A) := the category of all projective left (or right) A modules of finite
type for A, a ring with unit.

v



Introduction

• The study of K-theory started with Alexander Grothendieck. In the
context of the formulation of Grothendieck-Riemann-Roch theorem, he
defined a group using the isomorphism classes of sheaves on an alge-
braic variety as the generators of that group. The name K-theory
comes from the German word “Klasse”, which means class.

• Michael Atiyah and Friedrich Hirzebruch used the similar idea to study
a group generated by the isomorphism classes of vector bundles over
a topological space. They proved Bott periodicity theorem (3.1) and
extended their formulation to construct a generalized cohomology the-
ory. Topological K-theory is the first studied generalized cohomology
theory.

• The goal of this dissertation is to learn the formulation and some mar-
vels of classical topological K-theory. In chapter 1, the theory of vec-
tor bundles is introduced. In 1.7, an interesting approach to classify
vector bundles over some compact space is sketched. Serre-Swan theo-
rem(1.6.2) is included in 1.6. This connects topological and algebraic
K-theory.

• The main formulations for K, K−1 and relative K functors, shown in
appendix (4), are applicable for general additive categories and Banach
functors between Banach categories. In chapter 2, K groups are de-
fined for topological space (X). This is done as a special case of the
abstract framework done in 4.4, 4.5, 4.6. The cohomogical properties
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as well as the ring structure of K(X) is described.

• In chapter 3, The proof of Bott periodicity for complex K-theory, which
lies in the heart of the subject, as well as some of its immediate ap-
plications (3.2) are shown. The rest of the chapter 3 is dedicated to
introduce and prove Adam’s theorem on Hopf invariant, along with
its interesting application in finding the parallelizable spheres. Leray-
Hirsch theorem and splitting principle are introduced as technical tools
(3.3). Although these concepts in the context of generalized cohomol-
ogy theories are worth looking at for their sheer usefulness, in this
dissertation they are introduced only to facilitate the construction of
Adams operations (3.5). General operations in K-theory is not dis-
cussed as well.
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Chapter 1

Vector Bundles

1.1 Definition and Examples

The materials of this chapter are taken from [6], [1], [4].

Definition 1.1.1 Let, k be a field.A k-vector bundle of rank n is a triplet
(E,X, p), where E and X are topological spaces and p is a continuous sur-
jective map from E to X such that-

• ∀x ∈ X, p−1(x) is a finite dimensional k-vector space (kn).

• ∀x ∈ X, ∃U ⊆ X, an open set containing x such that p−1(U) is home-
omorphic to U × kn. (local triviality condition)

Remark 1.1.1 k has to be a field with some given topology. For our purpose
we would be exclusively considering R or C with usual metric topology.
A similar triple without the local triviality condition is said to be a quasi
vector bundle.

Example 1.1.1 Let X be any topological space and V be an n−dimensional
k vector space. X×V is a vector bundle. This is the n−dimensional k-trivial
bundle over X.

Example 1.1.2 Consider S1 (the circle) and the infinite cylinder E1 =
S1 ×R. E1 is a 1-dimensional R vector bundle over the base space S1. This
is a trivial bundle. To verify the local triviality condition, for each point
x ∈ S1, we can take the whole S1 as the neigborhood U .
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Example 1.1.3 Consider the quotient of S1×R with respect to the equiva-
lence relation (x, t) ∼ (εx, εt) where ε = ±1. This is same as the quotient of
I ×R with respect to (0, t) ∼ (1,−t). Let’s call this infinite mobius strip
E2.

These two are two one dimensional real vector bundles over S1.

Example 1.1.4 Consider tangent bundle TSn over Sn. TSn = (E, π, Sn),
where the total space E is described as the following-

E = {(x, v) ∈ Sn × Rn+1 | v ⊥ x}
π(x, v) = x

Let’s prove that TSn is actually a vector bundle by showing that local
triviality holds true. For x ∈ Sn, take U = {y ∈ Sn | 〈x, y〉 6= 0}. Here 〈, 〉
is the usual scalar product of Rn+1. Consider the map ϕ : TSn |U→ U × P0,
where P0 is the subspace of Rn+1 orthogonal to x. ϕ(x, v) = (x,w) where
w = v − 〈x, v〉x. This w is just the orthogonal projection of v onto P0. This
ϕ is a homeomorphism.

Example 1.1.5 Consider the normal bundleNSn over Sn. NSn = (E, π, Sn)
where E = {(x, tx) ∈ Sn ×R | t ∈ R}. Considering the map (x, tx)→ (x, t),
it is a trivial bundle.

Example 1.1.6 Consider RP n, the space of all one dimensional subspaces
of Rn+1. The canonical line bundle over RP n is defined as (E, π,RP n),
where the total space E = (l, v) ∈ RP n × Rn+1 | v ∈ l and π(l, v) = l. The
local trivialization is given using orthogonal projection (see example 1.1.4).
We are using the identification of RP n as quotient space of Sn with respect
to antipodal identification. Canonical line bundle over CP n can be defined
similarly. This particular bundle over CP 2 ∼= S2 will play a central role in
the proof of Bott Periodicity theorem.

1.2 Isomorphism of vector bundles

Definition 1.2.1 Let (E1, π1, X) and (E2, π2, X) are two k-vector bundles
over X. A homomorphism f between vector bundles is defined as follows-

• f : E1 → E2 is a continuous map.
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• The following diagram commutes-

E1 E2

X

f

π1 π2

• f |x: E1 |x→ E2 |x is a linear map ∀x ∈ X.

• If f is a homeomorphism and fx is a vector space isomorphism ∀x ∈ X,
f is an isomorphism between the vector bundles E1 and E2.

Example 1.2.1 The bundles TS1 and S1×R are isomorphic. We can write
the total space of TS1 as {(eıθ, ıteıθ) | eıθ ∈ S1, t ∈ R}. Now let’s consider the
vector bundle isomorphism ϕ : TS1 → S1 × R, where ϕ(eıθ, ıteıθ)) = (eıθ, t)

Example 1.2.2 Infinite cylinder and infinite mobius bundle are not iso-
morphic. If there were an isomorphism between these two, there would
have been a homeomorphism between these two spaces. So, following the
notation of example 1.1.2 and example 1.1.3, {E1 − (x, 0) | x ∈ S1} and
{E2− (x, 0) | x ∈ S1} have to be homeomorphic. But the first one is discon-
nected and the second one is connected.

Remark 1.2.1 For a topological space X, we will denote the category con-
sisting of all of its k- vector bundles and vector bundle homomorphisms as
ξk(X) or ξ(X) when underlying field k is understood from the context.

Remark 1.2.2 Let V and V ′ are finite dimensional vector spaces and X is
any topological space. As the following diagram commutes for any vector
bundle homomorphism g-

X × V X × V ′

X

g

∀x ∈ X, g induces a linear map gx : V → V ′. We get a map ǧ : X → L(V, V ′).
Here L(V, V ′) is the collection of all linear maps between V and V ′.

Theorem 1.2.1 There is a one to one correspondence between the vector
bundle homomorphisms between X × V and X × V ′, and the continuous
maps of the following form- g : X → L(V, V ′)

3



Proof First we have to show that in the notation of remark 1.2.2, ǧ :
X → L(V, V ′) is a continuous map with respect to the natural topology on
L(V, V ′). Let’s choose a basis e1, e2, ..., en of V and ε1, ε2, ...., εp of V ′. With
respect to this basis gx can be written as a matrix [αij(x)], where αij(x) is
the ith coordinate of the vector gx(ej). Now, the function x → αij(x) is the
following composition-

X X × V X × V ′ V ′ k
βj g π2 πi

Here βj(x) = (x, ej), π2(x, v′) = v′ and πi is the ithprojection of V ′(u kp) on
k. Being composition of continuous maps αij(x) are continuous and the map
ǧ induced by them is continuous.

Conversely, let, h : X → L(V, V ′) is a continuous map. The map ĥ,
induced by h is the following composition-

X × V X × L(V, V ′)× V X × V ′d1 d2

Here d1(x, v) = (x, h(x), v) and d2(x, f, v) = (x, f(v)). So, ĥ is continuous
and defines a vector bundle homomorphism.

Theorem 1.2.2 Let E and F be two vector bundles over a space X. f
is a homomorphism between them such that fx : Ex → Fx is vector space
isomorphism between Ex and Fx. Then f is a vector bundle isomorphism.

Proof We have to prove that f is a homeomorphism. Let h : F → E as
h(v) = f−1(v). We just have to show that h is continuous. ∀x ∈ X, consider
a neighborhood U of x and vector bundle isomorphisms β1 : EU → U × V1

and β2 : FU → U×V2. Let’s define f1 = β2fUβ1
−1. We know hU = β1

−1h1β2,

where we get h1 from ȟ1(x) = f̌1
−1

(x) following the notation of remark 1.2.2.
The map β → β−1 from Iso(V1, V2) to Iso(V2, V1) is continuous, so is h1. So,
we have shown the continuity of h on a neighborhood of every point of F ,
effectively proving continuity of h on the whole of F .

1.3 Clutching Construction

In this section we will try to construct vector bundles when we are given
information about their restrictions to suitable subsets of the base space.
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Theorem 1.3.1 (clutching of morphisms) Let ξ1 = (E1, π1, X) and ξ2 =
(E2, π2, X) are two vector bundles over X. Let’s consider an open cover
of X consisting of subsets Ui. If there exists a collection of morphisms
αi : ξ1 |Ui→ ξ2 |Ui such that- αi |Ui∩Uj= αj |Ui∩Uj , then there exists a unique
morphism α : ξ1 → ξ2 such that α |Ui= αi.

Proof • Uniqueness: Let’s take any point e ∈ E. As Ui is a cover of
X, e ∈ EUi for some Ui. Now α is uniquely defined by the following-
α(e) = Ii(αi(e)). Here Ii : E ′Ui ↪→ E ′ is the inclusion map.

• Existence: For e ∈ E, let αi(e) = α(e), where e ∈ EUi . From the
uniqueness we just proved this is independent of the choice of i. The
collection consisting of subsets of form EUi = π−1(Ui) gives an open
cover for E. α is continuous. As αx : Ex → E ′x is linear, the map α is
a morphism of vector bundles using theorem 1.2.1.

Theorem 1.3.2 (Clutching of bundles) Let Ui be an open cover of a space
X. We are given with the vector bundles ξi = (Ei, πi, Ui) on Ui’s. Let gij :
ξi |Ui∩Uj→ ξj |Ui∩Uj are the vector bundle isomorphisms satisfying the follow-
ing compatibility condition- gki |Ui∩Uj∩Uk= g′kj • g′ji, where g′kj = gkj |Ui∩Uj∩Uk .
Then ∃! ξ over X and gi : ξi → ξUisuch that the following diagram commutes-

ξi ξj

ξ |Ui∩Uj

gji

g′i
g′j

Proof • Existence: Let’s consider an equivalence relation ’∼’ disjoint
union tEi defined by the following: ei ∼ ej if gji(ei) = ej. Let E :=
tEi/ ∼. Let’s define π as follows: π(e) = πi(e) if e ∈ Ei. ∀x ∈ X.
π is well defined and continuous. π−1(x) are vector spaces because of
Ex ≈ Ei |x. Let gi : Ei → π−1(Ui) is defined by gi(e) = ē, where ē is the
class of e in E. By construction it is a quasi vector bundle isomorphism
between (Ei, πi, Ui) and (E |Ui , π |EUi , Ui).
Now we have to show local triviality for E. Let ξ = (E, π,X) is the
quasi vector bundle defined above. Let Ui be an open cover of X. For
some x ∈ Ui ⊆ X, let V ⊆ Ui be a locally trivial neighborhood of x.
We just showed ξi ≈ ξ |Ui . So, ξi |V≈ ξ |V and ξ is locally trivial.
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• Uniqueness: Let ξ′ be another bundle making the following diagram
commutative:

ξi ξj

ξ′ |Ui∩Uj

gji

g̃′i
g̃′j

Let’s consider the morphisms αi = g′i · g−1
i , which is an isomorphism

from ξUi to ξ′Ui . For Ui ∩ Uj we have gji = g′j
−1 · g′i = g̃′

−1

j · g̃′i. Using
theorem 1.3.1, ∃ α : ξ → ξ′, a vector bundle isomorphism making the
following diagram commutative:

ξi

ξ |Ui ξ′ |Ui

gi
g′i

α|Ui

Example 1.3.1 Let’s consider sphere Sn. Sn+ (respectively Sn−) denotes
the upper half (respectively lower half) sphere. Sn− ∩ Sn+ = Sn−1. Let
f : Sn−1 → GLp(k) be a continuous map. Now, by clutching the trivial
bundles Sn+ × kp and Sn− × kp with respect to the transition map f we
get a bundle over Sn. In later sections we will show that any contractible
space can only have trivial bundles effectively showing that all bundles over
Sn come from this kind of construction.

Now we will briefly introduce an approach of classification of vector bundles
over a fixed base space and prove some interesting results in this regard.

Remark 1.3.1 Let G be a topological group and X be a space. A G-
cocycle defined by an open cover (Ui) is a collection of continuous maps
of the following form: gij : Ui ∩ Uj → G with the following compatibility
condition: gij(x) · gjk(x) = gik(x), where x ∈ Ui ∩ Uj ∩ Uk.

Two cocycles (Ui, gij) and (Vi, hrs) are considered equivalent if ∃ f ri : Ui∩
Vr → G such that gsj (x) ·gji(x) ·gri (x)−1 = hsr(x), where x ∈ Ui∩Uj ∩Vr∩Vs.
This can be shown to be an equivalence relation. The collection of G cocycles
over X quotiented by this equivalence relation is denoted by H1(X;G).

Lemma 1.3.1 Let Φn
k(X) be the collection of all isomorphism classes of k

vector bundles (finite dimensional) over X. Then there is a bijection between
Φn
k(X) and H1(X;G)

6



Proof Here we will define two set theoretic maps h : Φn
k(X) → H1(X;G),

h′ : H1(X;G)→ Φn
k(X) and which are by construction inverse of each other.

Let’s consider ξ = (E, π,X) be a given vector bundle with trivialization cover
(Ui). Consider the isomorphisms φi : Ui×kn → EUi . gji(x) = (φj(x))−1 ·φi(x)
are the maps from Ui ∩ Uj to GLn(k).
We define h as follows: h(ξ) = (Ui, gji). Let (Vr, hsr) is another cocycle
associated to another trivialization cover (Vr) and trivialization maps ψr :
Vr × kn → EVr . For x ∈ Ui ∩ Uj ∩ Vr ∩ Vs, we have-
gsj (x) · gji(x) · (gri (x))−1 = (ψs)x

−1 · (φj)x · ((φj)x)−1 · (φi)x · ((φi)x)−1 · (ψr)x =

(ψs)x
−1 · (ψr)x = hsr(x)

So, the map h is well defined.
Conversely, let’s start with a cocycle (Ui, gji). Let ξ = (E, π,X) be

the vector bundle formed by clutching Ui × kn with the transition functions
gji. Let’s define h((Ui, gji)) = ξ. If (Vr, hsr) is an equivalent cocycle and
ξ′ = (F, π′, X) be the vector bundle we get by clutching Vr× kn with respect
to hsr. Now using the ideas of theorem 1.3.2 we get a unique map α : E → F
which makes the following diagram commutative-

Ei |Ui∩Vr Fr |Ui∩Vr

E |Ui∩Vr F |Ui∩Vr

gri

gi|Ui∩Vr hr|Ui∩Vr
αri

α does make sense because ∀x ∈ Ui ∩ Uj ∩ Vr ∩ Vs, we have the following-

hsr(x) = gsj (x) · gji(x) · (gri (x))−1

hsr(x) · gri (x) · gji(x) = gsj (x)

(hs(x))−1 · hr(x) · gri (x) · (gi(x))−1 · gj(x) = gsj (x)

hr(x) · gri (x) · (gi(x))−1 = hs(x) · gsj (x) · (gj(x))−1

It effectively makes h′ well defined and concudes our proof.

Now we would like to answer the following question: if we have two cocycles
described with respect to the same cover, when are the two resulting vector
bundles isomorphic?

7



Lemma 1.3.2 Let (Ui, gij) and (Ui, hij) be two GLn(k) cocycles of X. There
corresponding vector bundles E and F are isomorphic iff ∃ λi : Ui → GLn(k)
such that hji(x) = λj(x) · gji(x) · (λi(x))−1.

Proof If we have isomorphism α : E → F , we obtain the following com-
mutative diagram-

E |Ui∩Uj F |Ui∩Uj

Ej |Ui∩Uj Fj |Ui∩Uj

Ei |Ui∩Uj Fi |Ui∩Uj

gi|Ui∩Uj

gj |Ui∩Uj

α|Ui∩Uj

hi|Ui∩Uj

hj |Ui∩Uj

λi|Ui∩Uj
gji|Ui∩Uj

λj |Ui∩Uj

hji|Ui∩Uj

From here we get hji(x) = λj(x) · gji(x) · (λi(x))−1. The converse is by
definition of equivalence of cocycles.

Remark 1.3.2 Using the notation of lemma 1.3.2, if we choose hji = Id,
then F is a trivial bundle and we get gji(x) = (λj(x))−1 ·λj(x). So, for given
GLn(k) cocycle (Ui, gji), the corresponding bundle is trivial iff ∃ λi : Ui →
GLn(k) such that gji(x) = (λj(x))−1 · λj(x).

Now we want to use the previous results to look at the collection of all
p−dimensional vector bundles over a sphere Sn.

Let’s consider two maps fi : Sn−1 → GLp(k), where i ∈ {0, 1} and f0, f1

are homotopic. In section 1.7 we will prove that Ef0 and Ef1 are isomorphic.
Following the notation of example 1.3.1 Efi is the vector bundle formed by
clutching Sn−1

+ × kp and Sn−1
− × kp with respect to the clutching function fi.

Now consider the base point preserving maps between Sn−1 and GLp(k).
(f(e1) = Id ∈ GLp(k)). So, we get a correspondence f → Ef between
πn−1(GLp(k)) and φkp(S

n).
On the other hand, π0(GLp(k)) acts on πn−1(GLp(k)) by the following map:
(b, f) = b−1 · f · b. Now Ef and Eb−1·f ·b are isomorphic using lemma 1.3.2.
So, we get a well defined map from πn−1(GLp(k))/π0(GLp(k)) to φkp(S

n).

Theorem 1.3.3 The map πn−1(GLp(k))/π0(GLp(k))→ φkp(S
n) is injective.

In section 1.7 we will show this is surjective too.
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Proof Let’s consider f, g two base point preserving maps from Sn−1 to
GLp(k) such that Ef and Eg are isomorphic. From lemma 1.3.1, we have the
following diagram which commutes-

E1 E1

E2 E2

α1

f̂ ĝ

α2
where the vertical maps are defined only for E1 |Sn−1 .

The maps α′i = α̌′i |Sn−1 (following the notation of remark 1.2.2) are homo-
topic to constant maps (as they are restriction of maps defined over con-
tractible spaces). As both f and g are basepoint preserving maps, both
α′1 and α′2 are homotopic to the same constant map a. Again we have
g(x) = α′2(x) · f(x) · (α′1)−1. So, g and a−1 · f · a are homotopic.
Let h : Sn−1 × I → GLp(k) be the homotopy between g and α′2(x) · f(x) ·
(α′1)−1. Then h · (h(e, t))−1 is a homotopy between g and a(x) · f(x) · a−1(x)
in πn−1(GLp(k)) and we are done.

Remark 1.3.3 Let’s take k = C. U(n) is a deformation retract of GLn(C)
by Gram-Schmidt orthonormalization. GLn(C) is path-connected. So, π0(GLn(C)) =
π0(U(n)) = 0. So, φC

p (Sn) = πn−1(U(p)) . Let’s look at the locally trivial
fibration-

U(p− 1)→ U(p)→ S2p−1

From this we get the following exact sequence-

πi(S
2p−1)→ πi−1(U(p− 1))→ πi−1(U(p))→ πi−1(S2p−1)

πj(S
r) = 0 when j > r. Here for p > i/2 we have πi(U(p)) = πi(U(p + 1))

(As the end terms of the exact sequence are zero). We get πi(U(p)) = inj
lim πi(U(m)) = πi(U). Where U = inj lim U(m). See 4.1 for detailed
explanation. As an application of Bott’s periodicity, in remark 3.2.3, we will
prove πi(U) = Z for i odd and 0 for i even. So, classification of rank p
complex bundles over Sr has definitive solution when p > (r − 1)/2.

1.4 Operations on Vector bundles

Here we will try to extend vector space operations like direct sum, tensor
product, external product, dualization etc. for vector bundles.
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Let T be a functor which takes finite dimensional vector spaces to finite
dimensional vector spaces. We can think about the functor that takes a
vector space to its dual. Now, for simplicity of calculation we are taking T
to be a covariant functor of one variable.

We call T to be continuous if for all vector spaces V , W ; the map T ′ :
Hom(V,W )→ Hom(T (V ), T (W )) is continuous.

Suppose ξ = (E, π,X) is a given vector bundle. We define T (ξ) as follows:
T (E) =

⋃
x∈X T (Ex). For any continuous map (between vector bundles)

φ : E → F , we want to topologize T (E) in a way that makes the map
T (φ) : T (E) → T (F ) continuous. (Giving T (E) a suitable topology such
that T (π) becomes continuous is a special case of this.)

We start when E = X × V and F = X ×W for some k−vector spaces
V,W . Here T (E) = X × T (V ) with product topology. Now φ : X × V →
X×W is a continuous. So, (following the notation of remark 1.2.2), φ̌ : X →
Hom(V,W ) is continuous. It is given that T (φ̌) : X → Hom(T (V ), T (W ))
is continuous. So, by theorem 1.2.1, T (φ) : X × T (V ) → X × T (W ) is
continuous (as it is a vector bundle homomorphism).

Now let’s take any vector bundle E → X. If U ⊆ X is a trivializing
open set of X, we topologize T (EU) as above. We give T (E) the following
topology: V ⊆ T (E) is open if V ∩ T (EU) is open in T (EU) ∀U ⊆ X such
that EU is trivial.

Now Y ⊆ X, we get T (EY ) is homeomorphic to T (E)Y . So, for any
homomorphism φ : E → F we get T (φ) : T (E)→ T (F ) is a homomorphism,
thus showing φ is continuous.

Remark 1.4.1 Let’s consider the following diagram where (E, π,X) is a
vector bundle.

f ∗(E) E

Y X

f̃

f∗(π) π

f

f is a continuous map

f ∗(E) = {(y, e) ∈ Y × E | f(y) = π(e)}. This is called pull back bundle
of E on Y with respect to the map f . Given any map f : Y → X and a
vector bundle (E, π,X), this (f ∗(E), f ∗(π), Y ) is the unique vector bundle
with a map g̃ : f ∗(E)→ E taking the fibre of each y ∈ Y isomorphically to
the fibre of f(y) in E.

So, a map f : Y → X gives rise to a map f ∗ : φnk(X)→ φnk(Y ).

10



Here this is mentioned to state the following: for any map f : Y → X,
a continuous functor T (as considered above) and (E, π,X) a given vector
bundle we get-

T (f ∗(E)) ∼= f ∗(T (f))

Similar construction can be made for contravariant functors and functors of
several variable. We will show examples of the two cases which are going to
be used later.

1.4.1 Direct sum

Let ξ1 = (E1, π1, X) and ξ2 = (E2, π2, X) are two vector bundles overX.Their
direct sum ξ1 ⊕ ξ2 = (E1 ⊕ E2, π1 ⊕ π2, X) . Here (E1 ⊕ E2)x = E1x ⊕ E2x.

Example 1.4.1 The tangent bundle TSn over Sn may not be trivial. But its
direct sum with the normal bundle NSn is trivial. TSn⊕NSn ∼= Sn×Rn+1

considering the following map: φ : TSn ⊕ NSn → Sn × Rn+1. We know
TSn ⊕ NSn = {(x, v, tx) ∈ Sn × Rn+1 × Rn+1 | v⊥x} Here φ(x, v, tx) =
(x, v + tx).

1.4.2 Tensor product

In a similar fashion we define tensor product of vector bundles. Let ξ1 =
(E1, π1, X) and ξ2 = (E2, π2, X) are two vector bundles over X. Their tensor
product ξ1 ⊗ ξ2 = (E1 ⊗ E2, π1 ⊗ π2, X) . Here (E1 ⊗ E2)x = E1x ⊗ E2x.

Example 1.4.2 Consider the set of all line bundles over a space X. This
collection forms an abelian group Picard group with respect to tensor prod-
uct and the identity element is the trivial line bundle over X. For each line
bundle we get its inverse by clutching the trivial line bundles over the trivializ-
ing subsets of the given vector bundle with respect to the clutching functions
which are inverses of the clutching functions for the given line bundles.

Here because the multiplication in R − {0} or C − {0} is commutative,
compatibility conditions for a cocycle (remark 1.3.1) are satisfied. As we do
not have commutativity in matrix multiplication for higher dimension, we do
not have such simple group structure there.
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1.5 Sections

Definition 1.5.1 Let (E, π,X) be a vector bundle over X. A section is a
map s : X → E that assigns each element x ∈ X, a vector s(x) in π−1(x).
Or we can say a section is a map s : X → E such that π ◦ s = Id.

Here we will only think about continuous sections (the map s : X → E has
to be continuous.)

Example 1.5.1 The most trivial example is the zero section, taking each
element x of X to the 0 of the vector space Vx.

Remark 1.5.1 Let’s consider a vector bundle E with m continuous sections
s1, s2, ...., sm. If the vectors si(x)’s are linearly independent ∀x ∈ X, the
sections si’s are called linearly independent sections.

Consider the map: ψ : X × km → E defined as follows:
ψ(x, a1, a2, ..., am) = (x,

∑m
i=1 aisi(x)). If E is an m dimensional vector bun-

dle this is a vector space isomorphism in each fibre of E. As it is continuous
using theorem 1.2.2 it is a vector bundle isomorphism.

So, in a nutshell, an m-dimensional vector bundle E is trivial iff it
has exactly m linearly independent continuous sections.

Remark 1.5.2 Let’s consider the ccollection of all continuous sections of
(E, π,X) and denote it by Γ(X,E). It has a k-vector space structure as
follows: (s1 + s2)(x) = s1(x) + s2(x) and (kis)(x) = ki(s(x)), where sj ∈
Γ(X,E) and ki ∈ k. Now let’s consider Y ⊆ X or Y Xi . Following
the notion of pullback in remark 1.4.1, for s ∈ Γ(X,E), si ∈ Γ(Y, i∗(E)) =
Γ(Y,EY )

Now we are going to prove some technical results which will be used in
section 1.7. For this purpose we need to use the existence of partitions of
unity subordinate to any trivializing cover (for a given vector bundle E) of
the base space X. So, we will be considering Hausdorff paracompact
spaces unless otherwise mentioned.

Lemma 1.5.1 If Y is a closed subset of X, every element of Γ(Y,EY ) is the
restriction of some element of Γ(X,E).
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Proof At first we will prove it for trivial bundles and then using that we
will show it for the general case.

a. Let’s take a bundle E = X×V where V is a finite dimensional k-vector
space. Now using remark 1.5.1, we can identify Γ(X,E) with F (X,E), the
set of continuous functions from X to E with the special property that any
x ∈ X will go to an element of Ex. So, instead of talking about Γ(X,E)
and Γ(Y,EY ), we can consider F (X,E) and F (Y,EY ) respectively. But any
element of F (Y,EY ) can be extended to some element of F (X,E) using
Tietze extension theorem. (As any paracompact Hausdorff space is normal,
we can use this). So we have effectively shown that the restriction map
from Γ(X,E) to Γ(Y,EY ) is surjective.

b. Now let’s take any vector bundle E on X. Consider a trivializing
open cover (Ui | i ∈ I) of X which is locally finite. Let (Vi) be an open cover
of X such that V̄i ⊆ Ui. Let Wi := V̄i ∩ Y . For t ∈ Γ(Y,EY ), let’s denote
t | Wi by ti. Now using the previous argument, ∃si ∈ Γ(Vi, EVi) such that
si |Wi

= ti. Let’s consider αi be a partition of unity subordinate to the cover
(Vi). Now set s(x) :=

∑
i∈I αi(x)si(x). For y ∈ Y , s(y) =

∑
i∈I αi(x)t(x) =

(
∑

i∈I αi(x))t(x) = t(x). So we have got an s ∈ Γ(X,E) such that sY = t for
any arbitrary t ∈ Γ(Y,EY ).

Let’s consider two vector bundles E, F on X. We get a functor from
the category ξk(X) × ξk(X) to the category of k−vector spaces as follows:
(E,F )→ Homk(E,F ). We have come another functor from ξk(X)× ξk(X)
to the category of k−vector spaces given by (E,F )→ Γ(X,Hom(E,F ))

Lemma 1.5.2 The above mentioned two functors are equivalent.

Proof Consider α ∈ Hom(E,F ). The map x → α |Ex gives a section of
Hom(E,F ). We have to show it is continuous. Let’s consider the following
isomorphisms: EU ∼= U × V1 and FU ∼= U × V2. Here U is a trivializing
neighborhood of X. Now we get the following commutative diagram:

U × V1 U × V1

EU FU

α̌

αU
Here the vertical maps are isomorphisms.

Being composition of continuous maps the map x→ α |Ex has to be contin-
uous.
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On the other hand ∀s ∈ Γ(X,Hom(E,F )), let’s consider the following
correspondence: s → α, where α ∈ Hom(E,F ). αx = s(x). Similarly this
correspondence is continuous.

Remark 1.5.3 Using the identification of Γ(X,Hom(E,F )) andHom(E,F )
and lemma 1.5.1 we can conclude that ∀α ∈ Hom(EY , FY ), ∃β ∈ Hom(E,F )
such that β |Y = α.

.

Theorem 1.5.1 Following the notations of remark 1.5.3, for any isomor-
phism α : EY → FY , ∃U ⊆ X, a neighborhood of Y and an isomorphism
β : EU → FU such that βY = α.

Proof Let α̂ : E → F be the extension of α. Let V = {x ∈ X | α̂x :
Ex → Fx is an isomorphism}. We want to show V is open. ∀x ∈ V , we
have open set Wx ⊆ X such that E |Wx

∼= F |Wx
∼= Wx × kn. γx := α̂ |Wx .

Using the notation of remark 1.2.2, γ̌x : X → Hom(kn, kn) is a continuous
map. We can rephrase V ∩Wx as the set of points x ∈ Wx such that x ∈
(γ̌x)

−1(Iso(kn, kn)). As (Iso(kn, kn)) ⊂ Hom(kn, kn) is open, V ∩Wx is open
in Wx. As Wx ⊆ X is open so is V ∩Wx ⊆ X. U = ∪x∈V (Wx ∩ V ) is an
open neighborhood containing V , which does our job.

Theorem 1.5.2 Let, E and F be vector bundles over X and α : E → F
is a vector bundle morphism such that αx : Ex → Fx is surjective ∀x ∈ X.
Then ∃ a morphism ψ : F → E such that αψ = IdF .

Proof Let’s choose any arbitrary point x ∈ X. ∃ U subseteq X, a neighbor-
hood containing x such that EU ∼= U×V1 and FU ∼= U×V2. Again, using the
notations of remark 1.2.2, α̌U : U → Hom(V1, V2) is a continuous map. Using
the fact that V1 and V2 are vector spaces, we can write V1 = V2⊕Ker(α̌Ux).
Denote α̌Ux by φ. Now with respect to appropriate basis the map φ has the
following form:
φ(y) : V2 ⊕Ker(φ(x)) = (φ1(y), φ2(y))
Here φi’s are continuous functions such that φ1(x) = 1 and φ2(x) = 0. Now
again using the fact that Aut(V2) is open in End(V2), ∃Ux ⊆ X, an open set
containing x, where φ1(y) is an isomorphism.
We can construct φ′ : Ux → Hom(V2, V1), which can be written in the follow-

ing form:

(
φ1(y)−1

0

)
. So, we get an induced morphism φ̂′x : F |Ux→ E |Ux
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such that αUx · φ̂′x = Id. We can vary the point x and construct a locally fi-
nite open cover (Ui) of X and morphisms ψi : FUi → EUi , where αViψi = Id.
We have a partition of unity (ηi) subordinate to the open cover Ui. Now
we define ψ : F → E as follows: ψ(f) =

∑
i ηi(x)ψi(f), where f ∈ F and

f ∈ Fx.
(αψ)(e) =

∑
i ηi(x)(α · ψi)(e) = (

∑
i ηi(x))(α · ψi(e)) = e

1.6 Algebraic counterpart

In this section we are going to provide a connection between topological K-
theory and algebraic K-theory. In the later, the interesting objects of study
are collection of finitely generated projective modules over a given ring; just
like the collection of finite dimensional vector bundles over a given space is
of central interest in the previous one. For this we have thoroughly followed
[6, pp. 26–32].

Definition 1.6.1 We call a category C to be pre-additive if ∀ M,N ∈
Ob(C), HomC(M,N) has an abelian group structure and the composition
of morphisms is distributive over group addition (we are referring to the
addition defined in HomC(M,N)).

If in a pre-additive category all finitary products are coproduct, it is said
to be an additive category.

Lemma 1.6.1 The category ξk(X) is an additive category.

Proof For vector bundles E, F over X, we have seen Hom(E,F ) is equiv-
qlent to Γ(X,Hom(E,F )) (following the notation of remark 1.5.2), which is
a vector space. So, obviously it has an abelian group structure.

The composition Hom(E,F ) × Hom(F,G) −→ Hom(E,G) is bilinear.
So, ξk(X) is pre-additive.

Now we want to show that direct sum of vector bundles is actually the
coproduct in the category ξk(X). Let’s consider the following diagram-
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E1

E1 ⊕ E2 F

E2

i1 g1

g?

i2
g2

For j ∈ {1, 2}, ij : Ej → E1 ⊕ E2 is the canonical morphism. gj’s are
arbitrarily chosen morphisms between Ej and F . We have to prove the
existence and uniqueness of a map g.

uniqueness: As we want the diagram commute ∀x ∈ X, we want
gjx(ej) = gx ◦ ix(ej). So gx(e1, e2) = g1x(e1) + g2x(e2). We have essentially
shown a unique construction for g.

existence: We just have to show the above defined construction for g is
continuous. Let’s consider an open set U ⊆ X, such that Ej ∼= U × Vj and
FU ∼= U ×W . Using the notation of remark 1.2.2, ǧj |U : U → Hom(Vj,W ) is
a continuous map (see theorem 1.2.1). Similarly g |U : U×(V1⊕V2)→ U×W
is defined like gU(x, (v1, v2)) = (x, g1x(v1) + g2x(v2). Again by connstruction
this is continuous. So, we have shown the g we constructed is continuous.

Consider a vector bundle E on X.An element p ∈ End(E) is called a
projector if p2 = p. Kernel of any projector has a quasi vector bundle
structure but it is not obvious whether it should satisfy local triviality or
not. ker(p) is of special interest for us.

Lemma 1.6.2 Let E be a vector bundle over X. For any projector p ∈
End(E), Ker(p) ∈ Ob(ξ(X)).

Proof Here we have to show that Ker(p) =
⊔
x∈X Ker(px) is locally trivial.

As we are considering how Ker(p) looks like locally, Without loss of gener-
ality we can assume E = X × V for some finite dimensional vector space V .
Let’s fix some arbitrarily chosen x0 ∈ X. Set g : X → ξ(X)(E,E) as follows:
g := 1− (px + px0)

2 = 1− px − px0 − 2pxpx0 . By straightforward calculation
f(x) · px = px0 · f(x). We have the following diagram:
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0 Ker(p) X × V X × V

0 X ×Ker(px0) X × V X ×M

?

p

ĝ ĝ

IdX×px0

Again as g(x0) = 1, ∃Ux0 , a neighborhood of x0 such that f is an automor-
phism ∀x ∈ X. (As Aut(V, V ) ⊂ End(V ) is open and f is continuous). Now

we can define (ĝUx0 )−1 = ĝ |Ux0 . So we have shown Ker(p) ∼= X ×Ker(px0),
which is a vector bundle.

For the rest of this section we will take the base space X to be compact
unless otherwise stated.

Theorem 1.6.1 ∀ E ∈ ξ(X), ∃ E ′ ∈ ξ(X) such that E ⊕ E ′ ∼= X × kn for
some n ∈ N.

Proof Using the fact that X is compact, at first let’s choose a finite open
cover (Ui), i ∈ N ∩ [1, j] such that EUi

∼= Ui × kn. Let (ηi) be a partition
of unity subordinate to (Ui). Using remark 1.5.1, we can find n linear in-
dependent sections s1

i , s
2
i , ...., s

n
i of EUi . Now the sections σji := ηis

j
i can be

extended outside Ui as 0. They give us n linearly independent continuous
section for EVi , where Vi = η−1

i ((0, 1]). σji (x) generates the vector space Ex.
We have got the following morphism:

ψ : X × kn → E

. Here ψ(x, λ1, ..., λn) =
∑

j λjσ
j
i (x). ψx is surjective for all x. Now we use

theorem 1.5.2 to get a morphism φ : X × kn → E such that ψ · φ = IdE.
(φ · ψ)2 = φ · (ψ · φ) · ψ = φ · ψ So, p := φ · ψ is a projector of X × kn.

E ∼= Ker(1−p) and using lemma 1.6.1, ξ(X) is an additive category. So,
E ⊕Ker(p) ∼= X × kn. Using lemma 1.6.2, Ker(p) = E ′ ∈ ξ(X) and we are
done.

Let’s consider an abelian category C . if ∀E ∈ Ob(C) and for all p : E → E,
where p is projector of E; Ker(p) ∈ Ob(C), then C is called a pseudo abelian
category.

We have just shown that ξ(E) is a pseudo abelian category.
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For any arbitrary ring R with unit, P (R), the category consisting of all
finitely generated left ( or right) projective R modules and morphisms be-
tween them is a pseudo abelian category.

A non-example would be L(R) the category of all finitely generated left
free R modules and morphisms between them.

Let’s consider a pseudo abelian category C . E ∈ Ob(C). If p : E → E be a
projector so is (1− p). Now by definition Ker(p) ∈ Ob(C) and Ker(1− p) ∈
Ob(C). Now using Mitchell’s embedding theorem, (remark 4.2.1) we can
consider abstract abelian categories as rather concrete category of modules.
So, we can write E = Ker(p)⊕Ker(1− p) ∼= Im(p)⊕ Im(1− p). (For more
details see 4.2).

Lemma 1.6.3 Let C be an abelian category. Then ∃ C̃ , a pseudo abelian
category and and additive fuctor φ : C → C̃ with the following universal
property. If D is another pseudo abelian category with an abelian functor
ψ : C → D then ∃ ψ′ : C̃ → D such that the following diagram commutes-

C C̃

D

φ

ψ
ψ′

As a solution of a universal property problem the pair (φ, C̃) is unique upto
equivalence of categories.

Proof Let’s construct a pseudo abelian category we require. Consider the
collection of pairs (E, p). E ∈ Ob(C) and p : E → E is a projection. The
pair (E, p) is thought of as the image of p. A map between (E, p) and (F, q)
are C morphisms f : E → F such that fp = qf .

We digress a bit to make this formulation palatable. Now p and q are
projections of E. With respect to the decomposition E ∼= Im(p)⊕ Im(1−p)

the map f has the form

(
f1 0
0 0

)
. So it takes Im(p) to Im(q). We are

considering the decomposition E ∼= Im(q)⊕ Im(1− q).
Now the composition of morphism in C̃ is induced by the composition of

morphism in C . (E, p)⊕ (F, q) = (E ⊕ F, p⊕ q). The identity morphism for
(E, p) is p. As C is additive so is C̃ .

Let, f be a projector of (E, p). We want to show that Ker(p) ∈ Ob(C̃).
Let’s consider the following diagram-
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E E E

F

E E E

F

p−f

(1−f)·p

f

p p

h g

q

p−f f

h g

(1− f) · p is a projector of E. (E, (1− f) · p) ∈ Ob(C̃). p− f is a morphism
from this object to (E, p). Now our claim is that the pair consisting of the
object the image of E under (1 − f) · p (that is the object (E, (1 − f) · p))
and the morphism p− f is the kernel of f .

Let’s consider an object (F, q) and a morphism g : (F, q) → (E, p) such
that f · g = 0. If we take h : (F, q)→ (E, (1− f) · p) that makes the diagram
commutative, we have h = (1 − f) · ph = p(1 − f)h = g, so h is unique. If
we take h = g, the diagram anyway commutes.

Now we will construct the functor φ : C → C̃ . φ(E) := (E, Id) and
φ(f) = f .

Using the above argument (E, p) = Ker(E, 1 − p). So, φ(E) ∼= (E, p) ⊕
(E, 1− p).

Now we want to construct the functor ψ′. If ψ : C → D is an additive
functor such the following diagram commutes-

C C̃

D

φ

ψ
ψ′

We have for all projector f , ψ′(Ker(f)) ∼= Ker(ψ′(f)). So, ψ′(E, p) =
Ker(ψ(1−p)) and ψ′(f) = ψ(f)Kerψ(1−p). These formulas define ψ′ uniquely.

C̃ is called the pseudo abelian category attached to the additive category
C . A functor is called full ( respectively faithful) if it is surjective (respectively
injective) when restricted to each set of morphisms between given source and
target objects. A functor which is both is called fully faithful.
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Lemma 1.6.4 Let C be an additive category. D is a pseudo abelian category
and ψ : C → D is an additive fully faithful functor such that every object of
D is a direct functor of an object in the image of ψ. Then the functor ψ′ we
defined in lemma 1.6.3 is a categorical equivalence between C̃ and D.

Proof We want to show that ψ′ is fully faithful and dense.
Dense: Let G ∈ Ob(D). By hypothesis ∃ E ∈ Ob(C) and using the

formulation of 4.2, there exists a projector q : ψ(E) → ψ(E) such that
G ∼= Ker(q). As ψ is fully faithful, we can write q as ψ(p), where p : E → E
is a projector. Then G ∼= ψ′(E, 1− p).

Fully faithful: Let’s consider H,H ′ ∈ Ob(C̃), which are direct functors
of φ(E) and φ(E ′). Then we have the following diagram-

C̃(φ(E), φ(E ′)) C(E,E ′) C̃(H,H ′)

D(ψ(E), ψ(E ′)) D(ψ′(E), ψ′(E ′))

'

ψ′
φ(E),φ(E′)

ψE,E′ ψ′
H,H′

We get the horizontal maps due to the decompositions φ(E) = H ⊕H1 and
φ(E ′) = H ′ ⊕ H ′1. As ψE,E′ is an isomorphism, so is ψ′H,H′ . So, ψ′ is fully
faithful.

Remark 1.6.1 Let C = ξT (X), the subcategory of finite dimensional trivial
bundles over X and D = ξ(X). Let ψ : C → D be the inclusion functor.
Using theorem 1.6.1 every object of D is a direct functor of ψ(E) for some E
∈ Ob(C). Using lemma 1.6.4, D is equivalent to the pseudo abelian category
attached to C .

This is valid only when X is compact. Similarly for any arbitrary ring R
with unit, using the notation of 1.6, P (R) can be considered as the pseudo
abelian category attached to L(R).

Remark 1.6.2 Denote Ck(X), the ring of continuous functions from X to k
by A. Let E be a k-vector bundle over X. Using the notation of remark 1.5.2,
Γ(X,E) can be identified with An if E is the trivial bundle of dimension n.

If E is an arbitrary bundle, exists E ′ such that E ⊕E ′ ∼= An. Γ(X,E)⊕
Γ(X,E ′) ∼= An (isomorphic as A-modules). So, Γ(X,E) ∈ P (A). We have
actually got an additive functor Γ : ξ(X)→ P (A).

Theorem 1.6.2 (Serre-Swan) The functor defined in remark 1.6.2 induces
a categorical equivalence between ξ(X) and P (A).
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Proof At first we want to show that the restriction of Γ on ξT (X) gives an
equivalene: ΓT : ξT (X)→ L(A).

As An ∼= Γ(X,X × kn), Γ is dense. Consider f : X ×Kn → X ×Kp be
any morphism. Using the notation of remark 1.2.2, the map ΓT (f)x coincides
with f̌x, where f̌ : X → ξ(kn, kp) for any arbitrarily fixed x ∈ X. Now using
theorem 1.2.1, ΓT is fully faithful.

Let ψ be the composition of ΓT followed by the inclusion of L(A) into
P (A). Now, let’s consider the following commutative diagram-

ξT (X) ξ(X)

P (A)

ψ
Γ

Using lemma 1.6.4, Γ can be identified with ψ′ we constructed in lemma
1.6.3. We have shown Γ is a categorical equivalence.

We will use this identification in the proof of Bott’s periodicity theorem in
section 3.1.

1.7 Homotopy of vector bundles

Here we will take the base-space X to be compact unless otherwise stated.
I denotes the closed interval [0, 1].

Lemma 1.7.1 Let E be a vector bundle over X × I. βt : X → X × I and
π : X × I → X be defined as follows: βt(x) = (x, t) and π(x, t′) = x. Then
the vector bundles E0 = β∗0(E) and E1 = β∗1(E) are isomorphic.

Proof Let’s denote β∗t as Et. By construction E and π∗(Et) are isomorphic
over the closed subset X × {t} of X × I. Now using theorem 1.5.1, there
exists a neighborhood U of X × {t} in X × I such that π∗(Et) |U and EU
are isomorphic. Now as X is compact, using tube lemma U contains a
X × V , where V is an open neighborhood of t in I. Now if we fix t, we get a
neighborhood V of t such that E ′t

∼= Et, ∀t′ ∈ U . As I is connected, E0
∼= E1.

Theorem 1.7.1 Let f0, f1 : X → Y continuous maps which are homotopic.
If E is any vector bundle over Y , the pull-back bundles f ∗0 (E) and f ∗1 (E) are
isomorphic.

21



Proof Let H : X × I → Y be a homotopy between f0 and f1. We are
using the following convention: ft(x) = H(x, t) = H · βt(x) (βt is defined in
lemma 1.7.1). So, f ∗0 (E) = β∗0(H∗(E) = (H∗(E))0 and f ∗1 (E) = β∗1(H∗(E) =
(H∗(E))1. Now we just have to use lemma 1.7.1 on the bundle H∗(E) over
X × I.

Corollary 1.7.1 If we follow the notation of lemma 1.7.1, π∗E and E are
isomorphic.

Proof Let q : X × I × I → X × I defined as follows: q(x, t1, t2) = (x, t1t2).
Now Ẽ = q∗(E) is a vector bundle on X × I × I. Here Ẽ0

∼= π∗E0 and
Ẽ1
∼= E. Now we apply lemma 1.7.1 on q∗(E).

Corollary 1.7.2 If X is a compact contractible space every bundle over X
is trivial.

Proof Let x be any point of X. Let i : {x} → X be the inclusion and
j : X → x be the projection. As per assumption, i · j is homotopic to IdX .
Let E be any vector bundle on X. Using theorem 1.7.1, E ∼= (i · j)∗(E) ∼=
i∗(j∗(E)). As j∗(E) is trivial so is i∗(j∗(E)). So, E has to be trivial.

Theorem 1.7.2 The map πn−1(GLp(k))/π0(GLp(k))→ φkp(S
n), we defined

in theorem 1.3.3, is bijective.

Proof For this we are following the notation developed to prove theorem
1.3.3. We want to show that any bundle over Sn is of form Ef , where
f : Sn−1 → GLp(k) is a continuous map such that f(e) = Id. We have fixed
a base point e in Sn−1. If E is a bundle over Sn, its restriction over Sn+ and
Sn− are trivial (using corollary 1.7.2). Let, E1 := Sn+× kp and E2 := Sn−× kp.
Let g2 : E2 → ESn− and g1 : E1 → ESn+ are isomorphisms. Using theorem
1.3.2, E is isomorphic to the bundle we obtain by clutching E1 and E2 with
respect to the clutching function f(x) = ((g1 |Sn−1)−1g2 |Sn−1)(x) · ((g1 |Sn−1

)−1g2 |Sn−1)−1(e).

The following rather technical result will be used later.

Lemma 1.7.2 Let E be a vector bundle over X and p, p′ are two projectors
of E such that Im(p) ∼= Im(p′). Let’s define p̃ := p+ 0, and p̃′ := p′+ 0, two
projectors of E ⊕ E. Then ∃ δ ∈ Aut(E ⊕ E), isotopic to identity such that
p̃′ = δ · p̃ · δ−1.
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Proof E1 := Im(p), E2 := Im(1 − p), E ′1 := Im(p′), E ′2 := Im(1 − p′).
Using 4.2, we can write E⊕E as E1⊕E2⊕E ′1⊕E ′2. If we take an isomorphism
α : E1 → E ′1, from this we can construct an automorphism δ of E⊕E as the
following:

δ =


0 0 −α−1 0
0 1 0 0
α 0 0 0
0 0 0 1


With respect to the previous decomposition we get the following:

p̃ =


1 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0

 p̃′ =


0 0 0 0
0 0 0 0
0 0 1 0
0 0 0 0


We have got p̃′ = δ · p̃ · δ−1.
Now all we have to show is that δ is isotopic to Id.

δ =

(
0 −α−1

α 0

)
⊕ IdT2⊕T ′2(

0 −α−1

α 0

)
=

(
1 −α−1

0 1

)(
1 0
α 1

)(
1 −α−1

0 1

)
Now for t ∈ I, consider the following path in Aut(E)-

H(t) =

(
1 −tα−1

0 1

)(
1 0
tα 1

)(
1 −tα−1

0 1

)
So δ is isotopic to identity.

Now we will state an interesting standard approach taken in the context of
the problem of classifying vector bundles of a given rank for a given base
space. (For this we have thoroughly followed [6, pp. 35–37] and [4, pp. 27–
31].)

Let’s look at the topological space of all projection operators q on kN

such that the dimension of Im(q) is n. Let’s denote it as Projn(kN).
Let Y to be a compact space. Consider f : Y → Projn(kN), a continuous

map. Using the notation of remark 1.2.2, it gives us a projection f̂ : Y ×kn →
Y × kn. So, it defines a bundle Im(f) of rank n over Y .
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If we have another continuous map g : X → Y , we have Im(g · f) =
f ∗(Im(g)).

If we take the map f : X → Projn(kN) and Im : Projn(kN)→ Projn(kN),
the bundle Im(Id) is called the canonical line bundle over Projn(kN) and
denoted as ξn, N . Let’s denote the vector bundle f ∗(ξn, N) as ξf . The iso-
morphism class of the bundle ξf depends only on the homotopy class of the
map f when X is compact (Using theorem 1.7.1). So, we have a well defined
map Cn,N : [X,Projn(kN)]→ φkn(X), where Cn,N(f) = ξf .

We have a directed system of the collection of all Projn(kN) forN variable
with respect to the following inclusion-like map. For N ′ > N , we represent
an element q ∈ Projn(kN) as q̃ = q ⊕ 0 ∈ Projn(kN

′
).

Taking the direct limit of this directed system, we get an induced map
Cn : inj limit[X,Projn(kN)]→ φkn(X).

Lemma 1.7.3 The map Cn : inj limit[X,Projn(kN)] → φkn(X), defined
above is bijective when X is compact.

Proof a.surjectivity: IfX is compact, using the results in theorem 1.6.1 and

4.2, any vector bundle ξ ∈ φkn(X) is isomorphic to Im(p) for some projection
p : X × kN

′ → X × kN
′
. Now for any given bundle ξ over X, we have a

projector (to be more precise, the image of p ∈ limit[X,Projn(kN)] in inj
limit[X,Projn(kN)]) p ∈ inj limit[X,Projn(kN)] such that ξ ∼= ξp.

b.injectivity: We will be done if we manage to show that when we have

two continuous maps f0, f1 : X → Projn(kN) such that ξf0
∼= ξf1 , then

(denoting the inclusion map [X,Projn(kN1)]→ [X,Projn(kN2)] as iN1,N2 for
N2 > N2) the maps iN,2N(f0) and iN,2N(f1) are homotopic.

Again using the notation of remark 1.2.2, consider the projectors pi = f̂i
for i ∈ {0, 1} of X × kN . Now we can use lemma 1.7.2, ∃ δ ∈ Aut(k2N)
isotopic to identity, such that p1 = δ · p0 · δ−1. Here pi = pi ⊕ 0. So, p0 and
p1 are homotopic and so are iN,2N(f0) = p̌0 and iN,2N(f1) = p̌1.

Corollary 1.7.3 Let’s denote BGLn(k) := inj limit[X,Projn(kN)]. For X
compact we get a functor isomorphism induced from Cn, between BGLn(k)
and φkn(X).

Proof Projn(kN1) is closed in Projn(kN2) for N1 < N2. Now as X is
compact we can use 4.1 to conclude the following:

injlimit[X,Projn(kN)] = [X, injlimit(Projn(kN))] = [X,BGLn(k)]
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Remark 1.7.1 Let’s consider the usual bilinear form on kn (we are taking
k = R or C). An n-dimensional subspace V of kN gives a self adjoint projector
p of kN . Here V = Im(p) and V ⊥ = Im(1 − p). That’s how we get a set-
theoretic bijection between the collection of n-dimensional subspaces of kN

(GLn(kN)) and the subspace of self-adjoint operators of Projn(kN). We
give GLn(kN) subspace topology of Projn(kN). In 4.3, it is shown that the
Grassmannian GLn(kN) is a deformation retract of Projn(kN).

Theorem 1.7.3 Combining lemma 1.7.3 and remark 1.7.1, the maps Cn
induce functor isomorphisms
[X,BO(n)] ∼ φR

n(X) and [X,BU(n)] ∼ φC
n(X).

Here BO(n) = inj limGn(RN) and BU(n) = inj limGn(CN).

1.8 Forms on vector bundles

An inner product on a vector bundle E is a positive definite symmetric
bilinear from <,>: E ⊕ E → k, where k = R or C. In this section we
just want to show that if the base space X is Hausdorff paracompact, we
can induce an inner product on any vector bundle using the existing inner
product structure of kn.

Theorem 1.8.1 An inner product exist for any vector bundle over a Haus-
dorff paracompact base space X.

Proof Let’s consider a vector bundle P : E → X. Let (Uα) be a trivializa-
tion cover of X and we have the following homeomorphisms- hα : p−1(Uα)→
Uα × kn. We can take the exactly same inner product of kn for p−1(Uα).
Now set < e1, e2 >=

∑
α φαp(e1) < e1, e2 >Uα . Where (φα) is a partition of

unity subordinate to the cover (Uα) and <,>Uα is the pullback of the inner
product of kn for Uα.

Remark 1.8.1 Using theorem 1.8.1, we can get a similar result like theorem
1.6.1 for any paracompact base space X. So, for any vector bundle E, if
E0 is a sub bundle of E, then ∃ E⊥0 , a vector sub bundle of E; such that
E0 ⊕ E⊥0 ∼= E.
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Chapter 2

Introduction to K-theory

2.1 First K group

For this section the treatment given in [6] is followed. For the basic con-
struction of Grothendieck group of an additive category and its elementary
properties please see 4.4.

Remark 2.1.1 We have seen in lemma 1.6.1, that the category ξk(X) is
an additive category. We already consider the isomorphism class of vec-
tor bundles as objects of ξk(X). So, using the notation in remark 4.4.4,
Φ(ξk(X)) = ξk(X). Symmetrization of the monoid ξk(X) = K(ξk(X)) (which
is the Grothendieck group of the abelian category ξk(X)) is called the first
K- group of the space X and denoted as K(X).

Using theorem 1.6.2, ξk(X) and P (A) are categorically equivalent if X
is compact, Hausdorff. Here A is the ring of continuous maps from X to k
and P (A) is the category of all finitely generated left (or right) projective A
module. So, K(P (A)) and K(X) are isomorphic in this scenario.

For the rest of this dissertation the focus would be to study K(X) for
different base spaces (X) and we will mostly consider k = C and occassionally
k = R while talking about the abelian monoid ξk(X).

Just to add, in algebraic K-theory the focus is on studying K(P (A)) for
different rings A.

So far we have defined the first K-group for any compact, Hausdorff space
X. We will be considering this condition unless otherwise mentioned.

Proposition 2.1.1 We denote the n-dimensional trivial vector bundle over
X by θn. In K(X), any element can be written as [A]− [θm] for some m ∈ N.
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Here [A1] − [θm1 ] = [A2] − [θm2 ] if and only if ∃ m ∈ N ∪ {0}, such that
A1 ⊕ θm2+m ≈ A2 ⊕ θm1+m.

Proof We use the proposition 4.4.1 to get that every element x of K(X)
can be written as [E1] − [E2] for some E1, E2 ∈ ξ(X). Now using theorem
1.6.1, ∃ F2 ∈ ξ(X) such that E2 ⊕ F2 = θm for some m ∈ N ∪ {0}. Now we
can write [E1]− [E2] = [E1] + [F2]− [E2]− [F2] = [E]− [θm].

Again using proposition 4.4.1, [A1]− [θm1 ] = [A2]− [θm2 ] if and only if ∃
B ∈ ξ(X) such that A1 ⊕ θm2 ⊕ B ≈ A2 ⊕ θm1 ⊕ B. Again using theorem
1.6.1, ∃ B′ ∈ ξ(X) such that B ⊕ B′ ≈ θm. Now A1 ⊕ θm2 ⊕ B ⊕ B′ ≈
A2 ⊕ θm1 ⊕B ⊕B′ ⇒ A1 ⊕ θm2+m ≈ A2 ⊕ θm1+m.

Corollary 2.1.1 Let E1, E2 ∈ ξ(X). In K(X), [E1] = [E2] iff ∃ n ∈ N ∪ 0
such that E1 ⊕ θn ≈ E2 ⊕ θn.

Proof Again we get this by following corollary 4.4.1 for A = ξ(X).

Remark 2.1.2 This construction of first K-group actually gives us a con-
travariant functor from the category of compact, Hausdorff spaces to the
category of abelian groups.

Let f : Y → X be a continuous map between two compact spaces. Now
using the construction of pull-back bundle (remark 1.4.1), for any object
E ∈ ξ(X), we get an object f ∗(E) ∈ ξ(Y ). If we consider Id : X → X,
Id∗(E) = E and (f · g)∗(E) = f ∗ · g∗(E). So, this construction of pull-back
gives a contravariant functor from the category of compact spaces and con-
tinuous maps to the additive category of the monoid of collection of finite
dimensional vector bundles (upto isomomorphism) and monoid homomor-
phisms.

Now K(A) gives a covariant functor (remark 4.4.3) from any additive
category A to the category of abelian groups and group homomorphism. So,
combiing all this we get the claimed contravariant functor.

Remark 2.1.3 Using theorem 1.7.1, for two homotopic maps f0, f1 : Y →
X, [f ∗0 (E)] = [f ∗1 (E)] in K(X), for any E ∈ ξ(X).

If X, Y are homotopically equivalent, K(X) = k(Y ). So, K-group is a
topological invariant of the base space X.

Example 2.1.1 For any contractible space X, using corollary 1.7.1, ξ(X) ≈
N ∪ {0}. So, using example 4.4.2, K(X) ≈ Z.
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Now we will define reduced K-groups and show a very interesting formu-
lation of its representability following [6, pp. 57–59].

Remark 2.1.4 Let, x ∈ X be a point of the topological space X. Using
remark 2.1.2, the projection π : X → {x} gives rise to a homomorphism
i′ : K(x) → K(X). As K(x) ≈ Z, we get a homomorphism i : Z → K(X).

The cokernel of i is the reduced K-group of X and is denoted by K̃(X).
If X 6= φ, we have the following short exact sequence-

0 Z K(X) K̃(X) 0π∗ j

with a canonical splitting K(X) ≈ K̃(X)⊕Z, once we fix a point x ∈ X.Here
we consider the induced map (i∗) by the following incusion- i : x ↪→ X and
i∗ · π∗ = IdK(x).

Now by ξ(X), we have considered the isomorphism classes of finite di-
mensional vector bundles (over a fixed field) over X, following the notation
of remark 4.4.4, Φ(ξ(X)) = ξ(X). Now consider the following sequence of

maps-
ξ(X) K(X) K̃(X)s j

The map j · s : ξ(X)→ K̃(X) is surjective. As j(θn) = 0 and using proposi-
tion 2.1.1, any element of K(X) is of form [E] − [θm], where E ∈ ξ(X) and
m ∈ N ∪ {0}. So, j([E]− [θm]) = j([E]) = j · s(E).

Remark 2.1.5 Let α := j · s. In the group K̃(X), α(E1) = α(E2) if and
only if ∃ m1,m2 ∈ N ∪ {0} such that E1 ⊕ θm1 ≈ E2 ⊕ θm2 .

In K̃(X), α(E1) = α(E2) ⇒ [E1] − [E2] = [θm] = [θn2 ] − [θn1 ] ⇒ E1 ⊕
θn1 ⊕ θn ≈ E2 ⊕ θn2 ⊕ θn ⇒ E1 ⊕ θm1 ≈ E2 ⊕ θm2 , where ni + n = mi.

Proposition 2.1.2 Let f0, f1 : Y → X be homotopic maps between two
compact spaces Y , X. The induced maps from K̃(X)→ K̃(Y ) are same.

Proof Using remark 2.1.3, f0, f1 induce same homomorphism betweenK(X)
and K(Y ). Condider the following diagram-

K(Y ) K(X)

K(x)

f∗i

Here i ∈ {0, 1}.
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As the diagram commutes the induced map between K̃(X) and K̃(Y ) are
same.

We will show a property of K-groups, peculiar to a cohomology theory.

Proposition 2.1.3 Let X =
⊔i=n
i=1 Xi and Xi’s are open in X.The inclusion

ij : Xj ↪→ X induces the following decomposition of K(X): K(X) = K(X1)×
K(X2)× ...×K(Xn).

Proof Any element of ξ(X) is completely characterised by its restrictions
on each Xj. So, at the vector bundle level we have, ξ(X) = ξ(X1)× ξ(X2)×
...×ξ(Xn). So, doing symmetrization of the monoid we get K(X) = K(X1)×
K(X2)× ...×K(Xn).

This is not true for K̃(X). For example, let’s consider X = {x1} ∪ {x2}
Now K(X) ≈ Z⊕ Z and K̃(X) ≈ Z. But K̃({xi}) = 0 as K({xi}) = Z.

Remark 2.1.6 By ξ(X), let’s consider the collection of isomorphism class
of finite dimensional vector bundles over X. Considering direct sum by trivial
bundles, we get the following directed system-
ξ0(X) → ξ1(X) → .... → ξn(X). Let’s denote the direct limit by ξ(X). It
has a monoid structure induced by direct sum of vector bundles:
ξn1(X)× ξn2(X)→ ξn1+n2(X)

So far, we have considered vector bundles (E) whose dimension (di-
mension of Ex where x ∈ X) is constant for the whole of X. We can
do away with this condition when X is not connected. In that case we
consider H0(X,Z) := the abelian group of locally constant functions on
X with value in Z or the first Čech cohomology group of X. Let’s de-
fine K ′(X) := Ker(K(X) → H0(X,Z)). In case X is connected this is

Ker(K(X)→ Z) = K̃(X).
Similarly we have the following short exact sequence: 0 → H0(X,Z) →

K(X)→ K ′(X)→ 0.
In the reminder of the chapter we will be considering bundles with globally

constant dimensions and show an interesting result for K̃(X). Exactly same
thing can be done for K ′(X).

Considering the map E → [E]− [θn], where E ∈ ξ(X), we have a monoid

homomorphism between ξ(X) and K̃(X) (It makes sense because remark
2.1.5).

29



This homomorphism is actually an isomorphism. Surjectivity is shown
before. In K̃(X), [θn] denotes the class of [0]. So, [E1]− [θn1 ] = [E2]− [θn2 ]
if and only if [E1] = [E2].

Remark 2.1.7 We denote BO(n) := inj lim Gn(RN). Let’s denote the
directed system BO(1) → BO(2) → ... → BO(n) → ... The map between
BO(n) → BO(n + 1) is induced by the map jn : Gn(RN) → Gn+1(RN+1),
where the the subspace generated by eN+1 = (0, 0, ..., 1) is added to the
previous one.

Theorem 2.1.1 we have the following functorial equivalence:
K̃R(X) ≈ [X,BO]

Proof BO(n) is closed in BO(n + 1). As X compact, using 4.1, we have
[X,BO] ≈ injlim[X,BO(n)]. Using theorem 1.7.3, ξnR(X) ≈ [X,BO(n)].

Now we have K̃R(X) ≈ ξR(X) ≈ injlimξnR(X) ≈ injlim[X,BO(n)] ≈
[X,BO].

Remark 2.1.8 Similarly we have K̃C(X) ≈ [X,BU ]. Here BU is the direct
limit of the following directed system-
BU(1)→ BU(2)→ ...→ BU(n)→ ...

2.2 Relative K group

Our goal is to construct a cohomology theory starting from ξ(X). The K0(X)
or K(X) is defined for a compact space X. In this section the goal to define
K(X, Y ) for any compact pair (X, Y ). Excision for K(X, Y ) is shown and
an exact sequence concerning K(X) and K(X, Y ) is introduced.
For the basic construction and properties of Grothendieck group of a Banach
functor please see 4.5.

Remark 2.2.1 For a compact space X, ξ(X) can be given a Banach cat-
egory structure. Let’s denote the ring of all continuous functions from X
to k (k = R or C) by A. A is a Banach space. For any two vector bundles
E1, E2 ∈ ξ(X), there are M1,M2, projective A modules; such Ei corresponds
to Mi, using the categorical equivalence constructed in remark 1.6.2.So, it is
enough to show that HomA(M1,M2) has a Banach space structure. Now we
have surjections ui : Ani →Mi. So, Mi can be provided with a norm induced
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from the usual sup norm used for A. As M1, M2 are projective A modules, we
get decompositions of the following form: An1 ≈M1 ⊕M ′

1, An2 ≈M2 ⊕M ′
2.

So HomA(M1,M2) is a closed subspace of HomA(An1 , An2) = An1n2 . So, we
have given P (A) (equivalently ξ(X)) a Banach category structure.

Remark 2.2.2 Let’s consider a compact pair (X, Y ). As, Y ⊆ X is closed,
Y is compact and ξ(Y ) is a Banach category. Let’s consider the functor
φ : ξ(X)→ ξ(Y ). Here φ(E) = EY .

φ is full. As using remark 1.5.3, α ∈ Hom(EY , E
′
Y ), ∃ α′ ∈ Hom(E,E ′)

such that α′ |Y = α.

φ is quasi-surjective. For any object E ′ ∈ ξ(Y ), F ′ ∈ ξ(Y ) such that
E ′ ⊕ F ′ ≈ Y × km for some non-negative integer m. Now φ(X × km) =
Y × km ≈ E ′ ⊕ F ′.

φ is a Banach functor. Using lemma 1.5.2, the following maps are
identical: Homξ(X)(E,E

′) → Homξ(Y )(EY , E
′
Y ) and Γ(X,Hom(E,E ′)) →

Γ(Y,Hom(EY , E
′
Y )). The second correspondence is already shown to be con-

tinuous and linear.

Remark 2.2.3 Now, let’s consider the functor φ defined above. φ : ξ(X)→
ξ(Y ) is a quasi-surjective, full Banach functor. So, we can construct K(φ)
(remark 4.5.2). Here we write K(φ) as K(X, Y ) (when the basic field is not
clear from the context, KR(X, Y ) or KC(X, Y ) is specified.)

As φ is full, using remark 4.5.2, proposition 4.5.4 and corollary 4.5.1, every
element of K(X, Y ) is of form [E,E ′, β], where E,E ′ are vector bundles over
X. β : EY → E ′Y is an isomorphism. Two triples [E,E ′, β1], [F, F ′, β2] are
equivalent in the collection of triples if and only if ∃ [G,G, idGY ], [H,H, idHY ]
and isomorphisms g : E ⊕ G → F ⊕H, h : E ′ ⊕ G → F ′ ⊕H, which make
the following diagram commute.

(E ⊕G)Y (E ′ ⊕G)Y

(F ⊕H)Y (F ′ ⊕H)Y

β1⊕IdGY

gY hY

β2⊕IdHY

Remark 2.2.4 For any compact pair (X, Y ), directly from theorem 4.5.1,
we have the following exact sequence:
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K(X, Y ) K(X) K(Y )i j

Here i([E,E ′, α] = [E]− [E ′] and j([E]− [F ]) = [EY ]− [FY ].
If the inclusion i : Y → X has a left inverse, or in other words, Y is a

retract of X and we have the following:

Y X Yi r

ri = IdY .
Directly from theorem 4.5.2, we have the following short exact sequence:

0 K(X, Y ) K(X) K(Y ) 0i j

Remark 2.2.5 Using proposition 4.5.3, we get normalization property for
K(X, Y ) as K(X,φ) = K(X).

Example 2.2.1 Let’s consider the pair (X, Y ) = (B2, S1). The element
[E,F, α], we are going to define now will be extremely important in 3.1.
E = F = B2 × C and α(s, u) = su, where s ∈ S1 and u ∈ C. In 3.2, we will
see that K(B2, S1) ≈ Z and this [E,F, α] is a generator.

Proposition 2.2.1 The correspondence (X, Y )→ K(X, Y ) is functorial.

Proof Let, f : (X, Y ) → (X1, Y1) is a continuous map between pairs (ie.
f(Y ) ⊆ Y1). We get the following diagram that commutes:

ξ(X) ξ(Y )

ξ(X1) ξ(Y1)

f∗ f∗Y

So, the following correspondence makes sense:
f ∗([E,F, β]) = [f ∗(E), f ∗(F ), f ∗(β)].

Now, we will try to show excision for K-theory. Let’s Consider a compact
pair (X, Y ). X/Y is the compact space we get by identifying Y to a single
point. In case Y = φ, X/Y is the disjoint union of X and a single point (Let’s
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denote it by {∞}). Here X−Y is a locally compact space and
˙̂

X − Y = X/Y

(
˙̂

X − Y is the one point compactification of X − Y ).

Proposition 2.2.2 Let’s consider the projection π : X → X/Y . Using
proposition 2.2.1, we get the following induced map: π∗ : K(X/Y,∞) →
K(X, Y ). This map π∗ is an isomorphism.

Proof In case Y = φ, using proposition 2.2.5, K(X,φ) = K(X/φ, {∞}).
For Y 6= φ, we will prove the homomorphism π∗ is bilinear.

a. π∗ is injective. Let, [E,F, β] ∈ K(X/Y,∞) such that π∗([E,F, β]) =
0. Using proposition 2.2.1, [π∗(E), π∗(F ), π∗(β)] = 0. Using corollary 4.5.1,
∃T ∈ ξ(X) such that for π∗(β)⊕IdTY , we get an isomorphism α : π∗(E)⊕T →
π∗(F ) ⊕ T , such that β is the restriction of α. As in the proof of corollary
4.5.1, let’s assume T to be trivial. Let, T̃ be the trivial bundle over X/Y of
the same rank as of T . Let’s consider the isomorphism α′ : E ⊕ T̃ → F ⊕ T̃ ,
whose restriction on X−Y is is α and on {∞} is β. As, this α′ is an extension
of β⊕IdT ′Y on X/Y . Using corollary 4.5.1, [E,F, α] = [E⊕T̃ , F⊕T̃ , α⊕IdT̃ ].

b. π∗ is surjective. Let’s consider [E,F, β] ∈ K(X, Y ). As, X is
compact and ∃ F ′ ∈ K(X) such that F ⊕ F ′ ≈ θm. So, wlog we can take
the triple to be of form [E, θm, α]. We have to find the existence of a triple
[E1, F2, α

′] ∈ K(X/Y, {∞}) such that [π∗(E1), π∗(F1), π∗(α′)] = [E, θm, α].
Now, we use theorem 1.5.1 to find V ⊆ X (a close neighborhood of Y ) and
α : EV → FV , an isomorphism such that αY = β. Now, let’s clutch EX−Y
and θmV/Y with respect to αV−Y . Let’s denote the resultant bundle by E1.
Now because of the commutativity of the following diagram, we are done.

EY θm

π∗(E1)Y π∗(θm))Y

β

gY

π∗(β′)

Here f : E → π∗(E1) is the isomorphism such that fX−Y = Id (using
π∗(E1X−Y ) = E1X−Y = EX−Y ) and fV = Id (Using π∗(E1V ) = θmV ). β′ :
E1∞ → F1∞ is the isomorphism we get due to clutching.

Theorem 2.2.1 (Excision) Let, X = X1 ∪X2 and X1, X2 are closed sub-
sets of X. Now consider the inclusion i : (X1, X1 ∩ X2) → (X,X2). The
induced map i∗ : K(X1 ∪X2, X2)→ K(X1, X1 ∩X2) is an isomorphhism.
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Proof This directly follows because of the commutativity of the following
diagram.

(X1, X1 ∩X2) (X,X2) (X1 ∪X2, X2)

(X1/(X1 ∩X2), {∞}) ((X1 ∪X2)/X2, {∞})

Applying the fuctor K(, ) on the elements of the above mentioned diagram
we get:

K(X1 ∪X2, X2) K(X1, X1 ∩X2)

K((X1 ∪X2)/X2, {∞}) K(X1/(X1 ∩X2), {∞})

Here using theorem 2.2.2, the vertical maps are isomorphism, so is the map
between K((X1∪X2)/X2, {∞}) and K(X1/(X1∩X2), {∞}) as X1−(X1∩X2)
and (X1 ∪X2)−X2 are homeomorphic and so are their one point compacti-
fications.

Example 2.2.2 We can identify Bn/Sn−1 with Sn. Using remark 2.2.3 and
proposition 2.2.2, We have the following isomorphisms:
K(Bn, Sn−1) ≈ K(Sn, {∞}) ≈ K̃(Sn) = πn−1(GL(k)). In case k = R,

K̃(Sn) = πn−1(O) and if k = C, K̃(Sn) = πn−1(U).

So, K̃C(S1) = π1(U) = π1(U(1)) = Z. In general, in the following exact
sequence:

K(X ×Bn, X × Sn−1) K(X × Sn, X) K̃((X × Sn)/X)
u1 u2

u1 is an isomorphism. using proposition 2.2.2, u2 is isomorphism too. So is
the composition u2u1.

Remark 2.2.6 In a similar fashion to what was done for K() functor, here
two homotopic maps f0, f1 : (X1, Y1) → (X2, Y2) give rise to the same map
between K(X2, Y2) and K(X1, Y1).

We get the following exact sequence:
K̃(X/Y )→ K̃(X)→ K̃(Y )
Using remark 2.2.3 and proposition 2.2.2, we have that the following sequence
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is exact.
K̃(X/Y )→ K(X)→ K(Y )
Now as the following diagram is commutative and the vertical sequences are
exact, we have exactness of K̃(X/Y )→ K̃(X)→ K̃(Y ).

0 0 0

0 Z Z

K(X, Y ) K(X) K(Y )

K̃(X/Y ) K̃(X) K̃(Y )

0 0 0

≈

2.3 K−1 group

In this section our target is to construct the group K−1(X), for any com-
pact space X. It gives us a picture concerning the automorphisms of vector
bundles. Following what is done for K(X) and K(X, Y ), K−1(X) would be
constructed using arguments applicable for Banach categories in general. The
main objective is to construct a connecting homomorphism δ : K−1(Y ) →
K(X, Y ), for a compact pair (X, Y ). For the basic construction and proper-
ties of K−1 of a Banach category, please see 4.6.

Remark 2.3.1 For any compact space X, using remark 2.2.1, ξ(X) is a
Banach category. Using proposition 4.6.1, K−1 of ξ(X), which is denoted
by K−1(X) is collection of pairs (E, β), where E ∈ ξ(X) and β ∈ Aut(E);
upto the following equivalence relation: (E, β) ∼ (E ′, β′) if and only if ∃
F ∈ ξ(X) such that β⊕ IdE′⊕ IdF and IdE⊕β′⊕ IdF are homotopic within
Aut(E ⊕ E ′ ⊕ F ).

Using remark 4.6.1, K−1(X) is an abelian group. If we denote the class
of an element (E, β) in K−1(X) by [E, β], [E, β] = [0], when β is homotopic
to IdE within Aut(E).
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Remark 2.3.2 Following remark 2.2.1, remark 2.2.2 and remark 2.2.3, For
a compact pair (X, Y ), we consider the quasi-surjective Banach functor φ :
ξ(X) → ξ(Y ), where φ(E) = EY , for any vector bundle E over X. In
2.2, K(X, Y ) = K(φ) is constructed. Using remark 4.6.4, the connecting
homomorphism δ : K−1(Y ) → K(X, Y ), defined as follows is well-defined
and natural. δ(E ′, α′) = [E,E, α]. Here ∃ F ′ ∈ ξ(Y ) and an isomomorphism
h : EY → E ′ ⊕ F ′. α = h · (α′ ⊕ IdF ′) · h−1.

Following the notation of theorem 4.6.2, if we take A = ξ(X) and A ′ =
ξ(Y ), we get the following exact sequence:

K−1(X) K−1(Y ) K(X, Y ) K(X) K(Y )
j′ δ i j

Remark 2.3.3 Following the notation of remark 4.6.3, Let’s consider A =
ξT (X) and A ′ = ξ(X) (Here A ′ is the pseudo-abelian category attached to
the additive category A). ξT (X) is the category of finite dimensional trivial
bundles over X. Now, K−1(ξT (X)) = K−1(ξ(X)) = K−1(X).

Let, A be the Banach algebra of all continuous maps from X to k (the
base field R or C). Using theorem 1.6.2, ξT (X) ∼ L(A) and ξ(X) ∼ P (A)
(∼ implies categorical equivalence).

Using remark 4.6.2, K−1(L(A)) = π0(GL(A)). So, K−1(X) ≈ K−1(P (A)) ≈
K−1(L(A)) ≈ π0(GL(A)).

Remark 2.3.4 Let’s consider a compact space X. k denotes R or C. Be-
cause of compactness of X, using 4.1, [X,GL(k)] = [X, injlimGLn(k)] ≈
injlim[X,GLn(k)]. Here in [X,GL(k)], we consider the group structure in-
duced from matrix multiplication.

Now, we consider the map γ : injlim[X,GL(k)]→ K−1(ξT (X)) given by
γ(αn) = [X × kn, α̌n]. This γ is shown to be an isomorphism.

Let’s consider A, the ring of all continuous maps from X to k. Now
[X,GLn(k)] ≈ π0(GLn(A)). Now we have the map γ, which is factored as
follows:
injlim[X,GLn(k)] K−1(ξT (X)) K−1(ξ(X))

injlim(π0(GLn(A))) K−1(L(A))

≈

≈

≈

≈

So, γ is indeed an isomorphism.
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Example 2.3.1 We are thoroughly using the notation of remark 2.3.3. Let’s
considerX = {x}, a single point. Then, A ≈ k. So, K−1

C {x}) ≈ π0(GL(C)) =
0 and K−1

R {x}) ≈ π0(GL(R)) = Z/2Z.

2.4 Extending to a cohomology theory

In this section, at first, K-functor will be defined for locally compact Haus-
dorff spaces. Then, taking inspiration from a property of K−1(X), the higher
K-functors (K−n) will be defined. The goal here is to introduce the long ex-
act sequence concerning these higher K-groups. The approach taken in [6]
is more or less followed.

Remark 2.4.1 Let, X be a locally compact Hausdorff space. We denote its
one point compactification by Ẋ. K(X) is defined as Ker[K(Ẋ)→ K({∞})]
and similarly K−1(X) := Ker[K−1(Ẋ)→ K−1({∞})].

In case X itself is compact, Ẋ = X ∪ {∞} and K(X) = Ker[K(Ẋ) →
K({∞})] = K̃(X, {∞}). It matches with the definition of K(X), using
proposition 2.1.3.

Similarly using remark 2.3.4 and example 2.3.1, for compact space X, the
definition of K−1(X) matches with this.

Now we want to show that this construction ofK (orK−1) groups actually
defines a functor from the category of locally compact spaces (and continuous
maps) to the category of abelian groups. Let, X and Y are two locally
compact spaces. A continuous map f : Ẋ → Ẏ is such that f(∞X) = ∞Y .
Because of the commutativity of the following diagrams, the functors are well
defined.

K(Ẏ ) K(Ẋ)

K(∞Y ) K(∞X)

f∗

=

K−1(Ẏ ) K−1(Ẋ)

K−1(∞Y ) K−1(∞X)

f∗

=

For a proper map f ′ : X → Y , it can be extended into a continuous map
f : Ẋ → Ẏ , such that f(∞X) = ∞Y . But all such maps between Ẋ and Ẏ
does not come from these proper maps.

Remark 2.4.2 Let’s consider a compact pair (X, Y ). Now X−Y ≈ X/Y −
{∞}. So

˙̂
X − Y = X/Y . By definition, K(X − Y ) = K(

˙̂
X − Y , {∞}) =
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K(X/Y, {∞}) = K̃(X/Y ). Using proposition 2.2.2, K̃(X/Y ) ≈ K(X, Y ).
So, using remark 2.3.2, we have the following exact sequence:

K−1(X) K−1(Y ) K(X − Y ) K(X) K(Y )
j′ δ i j

Even for X locally compact and Y ⊆ X, closed; we get the same exact
sequence using commutativity of the following diagram:

0 0 0 0 0

K−1({∞X}) K−1({∞Y }) 0 K({∞X}) K({∞X})

K−1(Ẋ) K−1(Ẏ ) K−1(Ẋ − Ẏ ) K(Ẋ) K(Ẏ )

K−1(X) K−1(Y ) K−1(X − Y ) K(X) K(Y )

0 0 0 0 0

≈

All the vertical sequences are exact (actually split-exact). As, the first two
horizontal sequences are exact, so is the third (which is the required) one.

Theorem 2.4.1 Let, X be a locally compact space. Then we have: K−1(X) ≈
K(X × R).

Proof For any two locally compact space X1, X2, Ẋ1∨Ẋ2 := {(∞X1)×x2 |
x2 ∈ X2}∪{x2×(∞X2) | x1 ∈ X1}. Let’s consider the space X ′ := X× [0, 1).

So, X ′ and Ẋ × I − Ẋ ∨ I. We consider the base-point of ˙[0, 1) = [0, 1] to
be 1. So, Ẋ ′ = Ẋ × I/Ẋ ∨ I. Now, we have a homotopy h : Ẋ ′ × I → Ẋ ′,
where h(x, t1, t2) = (x, 1 + (1− t1)t2).

Now, K(X × [0, 1)) = K̃(Ẋ ′) = 0. Similarly, K−1(X × [0, 1)) = 0. Now,
as X ⊆ X × [0, 1) is closed, for the pair (X × [0, 1), X), we have the exact
sequence:

K−1(X × [0, 1)) K−1(X) K(Y × (0, 1)) K(X × [0, 1))

Y × (0, 1) ≈ Y × R (homeomorphic). So, K−1(X) ≈ K(Y × R).
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Remark 2.4.3 Using remark 2.4.2 and theorem 2.4.1, for a locally compact
space X and its closed subset Y , we have the following exact sequence:

K(X × R) K(Y × R) K(X − Y ) K(X) K(Y )
j′ δ i j

Definition 2.4.1 Let, X be a locally compact space and Y ⊆ X is closed.
We define K−n(X, Y ) := K((X − Y )× Rn).

For Y = φ, K−1(X) = K−1(X,φ). Previously we have defined, K−1(X, Y ) :=
Ker[K−1(X/Y )→ K−1({∞})]. This agrees with definition 2.4.1.

Remark 2.4.4 For a pair (X, Y ) (with the conditions for (X, Y ), used in
remark 2.4.3 ) we have the long exact sequence:

K−n−1(X) K−n−1(Y ) K−n(X, Y ) K−n(X) K−n(Y )

For n = 0, we have already shown this. For higher n, this directly follows
by using remark 2.4.3, for pair (X × Rn, Y × Rn). Similarly, we use remark
2.4.3 for the pair (X1−X3, X2−X3) to get the following long exact sequence:

K−n−1(X1, X3) K−n−1(X2, X3) K−n(X1, X2) K−n(X1, X3)

K−n(X2, X3)

Here X1 is a locally compact space. X2 is closed in X1 and X3 is closed in
X2.

Remark 2.4.5 Again we will consider a locally compact space X and its
closed subset Y . Sn(X/Y ) ≈ (Bn/Sn−1 ×X/Y )/(Bn/Sn−1 ∨X/Y ) ≈ X ×
Bn/(X × Sn−1 ∪ Y ×Bn)
Now we know, X × Bn −X × Sn−1 ∪ Y × Bn ≈ (X − Y )× (Bn − Sn−1) ≈
(X − Y )× Rn.

So, K−n(X, Y ) := K((X−Y )×Rn) ≈ K(X×Bn−X×Sn−1∪Y ×Bn)K̃(X×
Bn/(X × Sn−1 ∪ Y ×Bn)) ≈ K̃(Sn(X/Y )).

So, we have K−n(X, Y ) ≈ K̃(Sn(X/Y )). This is indeed expected from a

cohomology theory. In [4] and [7], K̃(Sn(X)) is given as definition ofK−n(X),
for a compact space X.
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Remark 2.4.6 K−n is a homotopy invariant functor of the category of
locally compact spaces. Let, f0, f1 : Y → X are homotopic maps. We want
to show that f ∗0 : K−n(X)→ K−n(Y ) is exactly same as f ∗1 . Enough to show
it for f ∗i : K(X)→ K(Y ), the rest follows by applying this result for X×Rn

and Y × Rn. We have already shown it for compact space X.
At first, we want to show that ḟ0 : Ẏ → Ẋ and ḟ1 : Ẏ → Ẋ are homotopic.
∃F : Y × I → X, a homotopy between f0 and f1 such that fj = F · ij, where
ij : X → X × I such that ij(x) = (x, j), for j ∈ {1, 2}. Now using the
following commutative diagram, ḟ0 and ḟ1 are homotopic.

Ẏ × I ˙̂
Y × I Ẋ

Ẏ
i̇j ḟj

So, ḟ0 and ḟ1 induce the same homomorphism between K(Ẋ) and K(Ẏ ).

K(Ẋ) K(Ẏ )

K(∞Y ) K(∞X)

As this diagram is commutative, we are done.

2.5 Mayer-Vietoris Sequence

For this section, the formulation given by Karoubi in [6] is followed.

Remark 2.5.1 Let, X be a locally compact space and T is a closed subset
of X. For notational purpose, the sequence T → X → X − T and any other
sequence X1 → X → X2 of locally compact spaces, which is isomorphic to
the previous one is called exact.
Using remark 2.4.4, we have the following exact sequence:

K−n−1(X) K−n−1(X1) K−n(X2) K−n(X) K−n(X1)
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Theorem 2.5.1 Let, X be a locally compact space. X1, X2 are two closed
subsets of X and X = X1 ∪X2. Then the following sequence is exact.

K−n−1(X1)⊕K−n−1(X2) K−n−1(X1 ∩X2) K−n(X1 ∪X2) K−n(X1)⊕K−n(X2)

K−n(X1 ∩X2)

u1 ∆ u2

u1

Here, u1(e1, e2) = e1 |X1∩X2 −e2 |X1∩X2 and u2(e) = (e |X1 , e |X2).

Proof We haave the following commutative diagram, where the vertical se-
quences are exact.

X1 X1 ∪X2 X −X1

X1 ∩X2 X2 X2 −X1 ∩X2

Applying remark 2.5.1, we get the following-

K−n−1(X1 ∪X2) K−n−1(X1) K−n(X1 ∪X2 −X1) K−n(X1 ∪X2) K−n(X1)

K−n−1(X2) K−n−1(X1 ∩X2) K−n(X2 −X1 ∩X2) K−n(X2) K−n(X1 ∩X2)

∆ is the zig-zag composition of maps K−n−1(X1 ∩X2)→ K−n(X1 ∪X2).
So, for n ≥ 0, we are done for-

K−n−1(X1)⊕K−n−1(X2) K−n−1(X1 ∩X2) K−n(X1 ∪X2)
u1 ∆

We have to show exactness of-
K(X1 ∪X2) K(X1)⊕K(X2) K(X1 ∩X2)

u2 u1

If we can show it for X1, X2 compact, we can easily extend the result for
X1, X2 locally compact using the following commutative diagram. As all the
vertical sequences are split-exact and first two horizontal sequences are exact,
so is the third (the required) one.
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0 0 0

0 K(∞Ẋ) K(∞Ẋ1
)⊕K(∞Ẋ2

) K(∞Ẋ1∩Ẋ2
) 0

K(Ẋ1 ∪ Ẋ2) K(Ẋ1)⊕K(Ẋ2) K(Ẋ1 ∩ Ẋ2)

K(X1 ∪X2) K(X1)⊕K(X2) K(X1 ∩X2)

0 0 0

Now, it remains to show it when X1, X2 compact. By definition, u1u2 = 0.
Let, e0 = E0 − T0 and e1 = E1 − T1, where ei ∈ K(Xi), Ti ≈ Xi × kn and
e0 |X1∩X2= e1 |X1∩X2 . Using 2.1.1, E0 |X1∩X2≈ E1 |X1∩X2 . We obtain an
isomorphism h : E0 |X1∩X2→ E1 |X1∩X2 . By clutching E1 and E2 with h as
the clutching function, we get a bundle E on X. [E] − θn ∈ K(X1 ∪X2) is
the required element. We have shown Ker(u1) ⊆ Im(u2).

Remark 2.5.2 Exactly same sequence is obtained when X1, X2 are open
subsets of X. We need to change the previous argument a bit to get exact
sequences of locally compact spaces. We consider-

X ′ X1 −X1 ∩X2 X1 X1 ∩X2

X ′ X1 ∪X2 − U2 X1 ∪X2 X2

Applying remark 2.5.1, we get-

K−n−1(X1) K−n−1(X1 −X1 ∩X2) K−n(X1 ∪X2) K−n(X1) K−n(X ′)

K−n−1(X1 ∪X2) K−n−1(X1 ∪X2 −X2) K−n(X2) K−n(X1 ∪X2) K−n(X ′)

Now, exactly by the previous argument used in the proof of theorem 2.5.1,
we are done.
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2.6 Ring structure

In any cohomology theory, multiplicative ring structure is found due to con-
travariance. For K-theory as well, we find ring structure in K(X).

Remark 2.6.1 External tensor product: Let, E1, E2 are vector bundles
respectively over X1, X2, two compact spaces. Let’s consider projections
π1 : X1 ×X2 → X1 are π2 : X1 ×X2 → X2. For notational simplicity, let’s
denote the pull-back of Ei with respect to πi by π∗(E1). Now on X × Y , we
have got a bundle π∗(E1)⊗ π∗(E2).
So, we have got a map ξ(X1) × ξ(X2) → ξ(X1 × X2) given by (E1, E2) →
π∗(E1)⊗π∗(E2). We denote this external product as E1�E2. This is actually
a bilinear functor. Let’s denote it by φ. φ(E1, E2) = E1 � E2.
Similarly, we get a map K(X1)×K(X2)→ K(X1 ×X2) as follows:
φ(([E1]− [F1]), ([E2]− [F2])) = [E1 �E2] + [F1 �F2]− [E1 �F2]− [E2 �F1].
This is called cup-product and denoted by x1 ∪ x2 for x1 ∈ K(Xi).

As tensor product is associative, for compact spaces X, Y, Z the following
diagram is commutative.

K(X)×K(Y )×K(Z) K(X × Y )×K(Z)

K(X)×K(Y × Z) K(X × Y × Z)

Because of commutativity of tensor product, the following diagram com-
mutes:
K(X)×K(Y ) K(X × Y )

K(Y )×K(X) K(Y ×X)

P P ∗

P is the following map. For (x1, x2) ∈ K(X)×K(Y ), P (x, y) = (y, x).

Remark 2.6.2 Ring structure in K(X): Let’s consider the diagonal map
∆ : X → X × X, ∆(x) = (x, x). Now we get the induced map ∆∗ :
K(X ×X)→ K(X). Now, let’s consider the following composition:

K(X)×K(X) K(X ×X) K(X)∪ ∆∗
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We have got a multiplicative structure for K(X). Using the last commutative
diagram of remark 2.6.1, K(X) is a commutative ring with this multiplication.
For k = R or C, [θ1], the class of rank one trivial bundle is the multiplicative
identity.

Remark 2.6.3 Now we want to extend this cup-product for K(X), K(Y ),
where X, Y are locally compact Hausdorff space. At first we will try to con-
struct a ”cup product” in this context which happens to be commutative
and associative. In case of compact spaces, the two construction match as
well. Then, we will show this the unique way to extend the cup product
construction for locally compact spaces.
Let, x ∈ K(X) = K(X,∞) and y ∈ K(Y ) = K(Y,∞). x ∪ y ∈ K(Ẋ × Ẏ )
and the restriction of x ∪ y on K(Ẋ ∨ Ẏ ) has to be zero. (Here, we are
considering the inclusion of the element x of K(X) in K(Ẋ)).
We already have θ′ : K(Ẋ) × K(Ẏ ) → K(Ẋ × Ẏ ). Its restriction θ :
K(X,∞)×K(Y,∞)→ K(Ẋ × Ẏ , Ẋ ∨ Ẏ ) gives us what we want.
Now, we have the following exact sequence:
K−1(Ẋ × Ẏ )→ K−1(Ẋ ∨ Ẏ )→ K(X × Y )→ K(Ẋ × Ẏ )→ K(Ẋ ∨ Ẏ )
If we can show that the sequence 0→ K(X×Y )→ K(Ẋ× Ẏ )→ K(Ẋ ∨ Ẏ )
is exact, due to commutativity of the following diagram, we will be done in
proving uniqueness of θ.

0

K(X)×K(Y ) K(X × Y )

K(Ẋ)×K(Ẏ ) K(Ẋ × Ẏ )

K(Ẋ ∨ Ẏ )

θ

Now, if we can show the map K−1(Ẋ × Ẏ )→ K−1(Ẋ ∨ Ẏ ), is surjective, we
are done in showing exactness of 0→ K(X×Y )→ K(Ẋ× Ẏ )→ K(Ẋ ∨ Ẏ ).

Following the identification showed in remark 2.3.4, for any [E, β] ∈ K−1(Ẋ∨
Ẏ ), β : Ẋ ∨ Ẏ → GL(k). Now β is just restriction of β′ : Ẋ × Ẏ → GL(k),
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where β′(x1, x2) = βẊ(x1)β−1

Ẋ
(∞)βẎ (x2).

Remark 2.6.4 Now, we want to extend the idea of inner product for com-
pact pairs. For compact pairs (X,X1) and (Y, Y1), we want a bilinear functor
K(X,X1)×K(Y, Y1)→ K(X × Y,X × Y1 ∪X1 × Y ).
As X ×Y −X ×Y1 ∪X1×Y = (X −X1)× (Y −Y1), using the construction
done in remark 2.6.3 for locally compact spaces (X −X1), (Y − Y1), we get
a product.
In case X = Y , we have the product : K(X,X1) × K(X, Y1) → K(X ×
X,X1∪Y1)→ K(X,X1∪Y1). The last map is induced by the diagonal map.

This section will be used in 3.2, to calculate the ring structure of K(X), for
certain ubiquitous spaces X.
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Chapter 3

Some computation regarding K
groups

3.1 Bott’s Periodicity

In this chapter, we are exclusively considering complex K-theory. For most of
these chapter, the focus will be on clarifying and summarizing the approaches
and ideas rather than meticulous technicalities. Bott’s periodicity lies in the
heart of classical K-theory. We have constructed infinitely many K-functors
from the category of locally compact spaces to the category of abelian groups.
Here we are going to show that upto group isomorphism K0

C and K−1
C are

the only ones. The approach taken in [6], following the ideas developed in
[8] is thoroughly followed.

Theorem 3.1.1 Let,X be a locally compact space and Y is a closed subspace
of X. Then, K−n(X, Y ) is isomorphic to K−n−2(X, Y ), for n ∈ N ∪ {0}.

Remark 3.1.1 As, K−n−2(X, Y ) ≈ K−n(X × B2, X × S−1 ∪ Y × B2), we
have to prove the existence of an isomorphism α : K−n(X, Y ) → K−n(X ×
B2, X × S1 ∪ Y ×B2).
If we can prove it for K(X, Y ) and K(X ×B2, X × S1 ∪ Y ×B2), the rest is
done just by replacing (X, Y ) by (X ×Bn, X × Sn−1 ∪ Y ×Bn).
Now, we have the following diagram that commutes:
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K(X, Y ) K(X ×B2, X × S1 ∪ Y ×B2)

K(X/Y, {∞}) K(X/Y ×B2, X/Y × S1 ∪ {∞} ×B2)

α

α

≈ ≈

So, it is enough to show for Y = {x}, a single point and X, a compact space.

So, we want to show the following:

Theorem 3.1.2 Let, X be a compact space. Then, we have a group isomor-
phism between K(X) and K(X ×B2, X × S1).

Now, as we have done before, let’s denote the ring of all continupus maps from
X to C by A. Now, we want to find a connection between K(X×B2, X×S1)
and GL(A), the direct limit of the inductive system: GL1(A)→ GL2(A)→
....→ GLn(A)→ ....

Proposition 3.1.1 Every element of K(X×B2, X×S1) is of form [T, T, β],where
T is a trivial bundle and β(x, e) = Id.
[T, T, β1] = [T, T, β2] iff ∃T ′(a trivial bundle) such that β1 ⊕ IdT ′|X×S1 is
homotopic to β ⊕ IdT̃ |X×S1 within normalized automorphisms of T ⊕ T ′.

Proof Let’s consider any element [E ′1, E
′
2, α] of K(X × B2, X × S1). As,

B2 is contractible, π : X × B2 → X is a homotopy equivalence. So, we
can consider E ′i to be of form π∗(Ei), for i ∈ {1, 2}. If we restrict the
isomorphism α on X × {e} (e is the arbitrarily fixed base point of S1), we
get an isomorphism π∗(αe) : π∗(E1)→ π∗(E2). Now, we have-
(Π∗(E ′1),Π∗(E ′2), α) = (Π∗(E ′1),Π∗(E ′2), α) + [Π∗(E ′2),Π∗(E ′1),Π∗(α−1

e |X×S1

)] = [Π∗(E ′1),Π∗(E ′1), γ] (Using proposition 4.5.3). Where γ = Π∗(α−1
e |X×S1

) · α. So, γ is normalized.
If F ′1 ∈ ξ(X), such that E ′1 ⊕ F ′1 ≈ T ′, a trivial bundle. [π∗(E ′1), π∗(E ′2), γ] =
[π∗(E ′1), π∗(E ′2), γ] + [π∗(F ′1), π∗(F ′2), Id] = [T, T, β]. Here, T = π∗(T ′), β is
normalized.

If an element [T, T, β] = 0 ∈ K(X×B2, X×S1), using proposition 4.5.1,
∃ T̃ ∈ ξ(X×B2), another trivial bundle such that we have an automorphism
β̃ : T ⊕ T̃ → T ⊕ T̃ . Here, β̃ |X×S1= β ⊕ Id.
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Let, dim(T ⊕ T̃ ) = n. Now, we want to construct a map h : X×S1×I →
GLn(C). Using the notations of remark 1.2.2, h(x, s, t) = ˇ̃β(x, st)( ˇ̃β(x, et))−1.
This h actually gives a normalized homotopy between β ⊕ IdT̃ |X×S1

and

IdT⊕T̃ |X×S1
.

Let’s take two triples [T, T, α1] = [T, T, α2]⇒ [T, T, α1(α2)−1] = 0. Using
the formulation we just did, α1(α2) ⊕ IdT̃ |X×S1 is homotopic to IdT⊕T̃ |X×S1

.

Just by right-multiplying by α2 ⊕ IdT̃ |X×S1 , we get α1 ⊕ IdT̃ |X×S1 and α2 ⊕
IdT̃ |X×S1

are homotopic within Aut((T ⊕ T̃ ) |X×S1) through normalized ho-

motopies.

Remark 3.1.2 Let’s consider a triple [E,E, β] ∈ K(X × B2, X × S1). So,
E can be considered a trivial bundle and β, a normalized automorphism.
Again using notations of remark 1.2.2, we get the following continuous map:
β̌ : X × S1 → GLn(C) and β̌(x, e) = Id, for any x ∈ X. Let’s denote the
space of all continuous maps from X to GLn(C) by H(X,GLn(C)). So, we
get a map σ : S1 → H(X,GLn(C)). Thus we get σ : S1 → GLn(A).

So, we get a correspondence from inj lim π1(GLn(A)) = π1(GL(A)) to
K(X × B2, X × S1) given by β → [E,E, β], where E is any trivial bundle
over X ×B2.

Using proposition 3.1.1, this is actually an isomorphism.

Now, instead of looking directly at K(X×B2, X×S1), we will try to find
an isomomorphism between K(X) and π1(GL(A)).

Remark 3.1.3 Using theorem 1.6.2, we have a categorical equivalence be-
tween K(X) and P (A), for compact X. Let, E ∈ P (A). So, we get a
projector q of Am, for some m ∈ N such that Im(q) ≈ E. Now, we get a map
γ : S1 → GLn(A) given by γ(u) = qu + 1 − q. So, thus we get a map from
P (A) to π1(GLn(A)). Passing through direct limit, we get a correspondence
from P (A) to π1(GL(A)).

Proposition 3.1.2 The correspondence γ is well-defined or the element γ(E) ∈
π1(GL(A)) does not depend on the choice of projector q.

Proof When E ≈ F , we want to show that γ(E, p1) = γ(F, p2) in π1(GLn(A)).Here,
E ≈ p1(An1) and F ≈ p1(An2) for some n1, n2 ∈ N.
We can represent p1 and p2 as follows:

p1 =

(
p1(n1×n1) 0

0 0(n2×n2)

)
p2 =

(
0(n1×n1) 0

0 p1(n2×n2)

)
set n1 + n2 = n
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Now using, proposition 1.7.2, In GL2n(A), ∃δ homotopic to Id such that
p2 = δp1δ

−1. Let, H be a homotopy between δ and Id within GL2n(A).
Now, we get the following homotopy (θ) between the loops associated to p1,
p2. θ : S1 × I → GL2n(A) such that θ(z, t) = H(t)(pz + 1 − p)H−1(t). So,
we are done.

Proposition 3.1.3 The correspondence γ is actually a group homomorphism.

Proof In π1(GL(A)), we consider the group structure we get from matrix
multiplication in GL(A) as the group structure gotten from concatenation
of loops is equivalent to the group structure induced from the existing group
operation in topological group are equivalent in fundamental group of any
topological group. Let, E1 ≈ p1(An1) and E2 ≈ p2(An2) in P (A). E1 ⊕
E2 ≈ Im(p1 ⊕ p2). We represent p1 as p1 ⊕ 0 and p2 as 0 ⊕ p2. Now,
(p1z + 1− p1)(p2z + 1− p2) = ((p1 ⊕ p2)z + 1− (p1 ⊕ p2)).

Remark 3.1.4 Let’s consider a special element u in K(B2, S1). u = [B2 ×
C, B2 × C, β], where β(s, x) = (s, sx)) for s ∈ S1. The map γ : K(A) →
π1(GL(A)) is actually cup-product by the element u. We essentially want to
show the following diagram is commutative.

K(X) K(X ×B2, X × S1)

K(A) π1(GL(A))

φ1

ψ

φ2

γ

Here φ1 and φ2 are isomorphisms and ψ is the cup product with u.
Let, E,E ′ ∈ ξ(X) such that E⊕E ′ ≈ An. Now, ψ([E]) = [E×B2, E×B2, β].
β : E×S1 → E×S1 and β(e, s) = (se, s). Now, ψ([E]) = [(E⊕E ′)×B2, (E⊕
E ′)×B2, β̃], where β̃ = β⊕ IdE′×S1 . Let, p : An → An, a projector such that
Im(p) ≈ E. Again, using notations of remark 1.2.2, β̌(s, t) = tp̌(s)+1− p̌(s).
So, φ2ψ([E]) = γφ1([E]).

Now we want to show that the map γ : K(A) → π1(GL(A)) is an isomor-
phism. At first we will show injectivity of γ by constructing its left inverse
γ̃.

At first, we will focus on π1(GL(A)).
A loop σ based at Id in π1(GL(A)) is called a Laurential if it is of the form∑k=N

k=−N akz
k.ak ∈Mn(A), z ∈ S1.
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Now, we consider only the Laurential loops and Laurential homotopy (at
each time t, the loop we get has to be Laurential) and call this collection
πL1 (GL(A).

Now, we want to show that πL1 (GL(A) is actually π1(GL(A). For every
loop in π1(GL(A), there is a Laurentian loop which is homotopic to it and
If we have any two homotopic Laurential loops, there has to be a Laurential
loop between them.

Proposition 3.1.4 πL1 (GL(A) and π1(GL(A) are equivalent.

Proof At first we will show that ∀σ ∈ π1(GL(A), ∃σL ∈ πL1 (GL(A) such
that they are homotopic in π1(GL(A).

Let, σ ∈ π1(GLn(A). Let’s define ak := 1
2π

∫ 2π

0
σ(eiθ)e−ikθdθ and sk :=∑l=k

l=−k akz
k. σ′k := s0+s1+...+sk

k+1
is the k-th Cesaro mean of σ. Now, σ :

S1 → GL(A), a continuous map. As, S1 is compact, using 4.1, σ has to
factor through a finite stage. So, we can consider the map σ : S1 → GLn(A),
for some n ∈ N. As, Mn(A) is a Banach space, we can use Fejer’s theorem
to say σ′k converges to σ uniformly. For a proof, please see [10, pp. 86–88].
Now, σ(e) = Id. So, for k large enough, σ′k(e) lies inside the open ball of
radius 1 in Mn(A), which is contained inside GLn(k). Now, as the norm
in Mn(A) follows triangle inequality, we have local convexity of GLn(k) in
Mn(A). So, the linear homotopy between σ′k (for large enough k) and σ′

uσ′k(s) + (1− u)σ(s) lies in GLn(k), ∀u ∈ [0, 1].
Now, we defne σk := σ′k • (σ′k(e))

−1. Considering the homotopy (s, t) →
(tσ′k(s) + (1− t)σ(s))(tσ′k(s) + (1− t)σ(s))−1 between σ and σk, we are done.

Let, s : S1 × I → GLn(A), be a homotopy between Laurentian loops
σ, τ . Now, consider the Bnach algebra A(I) of all continuous maps from I
to A. Now, s : S1 → GLn(A(I)) is a continuous map. Using the previous
argument, there exists a linear homotopy in GLn(A(I)) between sk and s.
for k large. sk is a Laurentian loop in GLn(A(I)). Now, we combine all the
data we have to get the following map r : S1 × I → GLn(A).

• r(z, t) = 3ts(z, 0) + (1− 3t)sk(z, 0) for 0 ≤ t ≤ 1
3

• r(z, t) = sk(z, 3t− 1) for 1
3
≤ t ≤ 2

3

• r(z, t) = (3t− 2)s(z, 1) + (3− 3t)sk(z, 1) for ≤ 1
3
≤ t ≤ 1

This r is a Laurential homotopy between σ and τ . So, we are done.
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Remark 3.1.5 Let’s consider the Banach algebra A = C(X), the ring of
continuous maps fromX to C. Let’s consider an A(I) module E. Let’s denote
the restriction of E on {0} and {1} by E0 and E1 respectively. Applying
proposition 1.7.1, we get that E0 and E1 have to be isomorphic as A modules.

Remark 3.1.6 Let, σz ∈ πL1 (GLn(A)) be any Laurential loop. We get its
inverse loop τ := (σ)−1, which is C∞. By construction of a Laurential loop
σz =

∑l=k
l=−k alz

l. Let’s consider the Fourier series of τ . Let’s denote it by

τz =
∑l=∞

l=−∞ blz
l. Now, we have σkz := zk

∑l=∞
l=−k alz

l, τ kz := zk
∑l=∞

l=−k blz
l. So,

σkz τ
k
z = z2k(1 + εk(z)). Here,εk(z)→ 0 as k → 0.

Let’s consider the Banach algebras
A < z >, A < z, z−1 >. Where A < z > consists of formal power series∑∞

k=0 akz
k, where

∑∞
k=0|ak| <∞ and

A < z, z−1 > consists of formal Laurent series
∑∞

k=−∞ akz
k, where∑∞

k=−∞|ak| <∞.

Remark 3.1.7 If we choose k large enough such that σkz ∈ End(A < z >
) = Mn(A < z >) and (1 + εk(z)) is invertible.
We define Mn(σ, k) := cokernel(σkz ). Under the assumptions of the previ-
ous line we want to show that Mn(σ, k) is a finitely generated projective A
module.

We have the following sequence:

A < z > A < z, z−1 > A < z >i P

Here i is inclusion and P (
∑∞

k=−∞ akz
k) =

∑∞
k=0 akz

k.
We have the exact sequence:

(A < z >)n (A < z >)n Mn(σ, k)
σkz

Let’s define θkz := Pz−kτzi.As, θkzσ
k
z = Id, we get a splitting for the previous

sequence:

(A < z >)n (A < z >)n Mn(σ, k)
σkz

θkz

So, Mn(σ, k) is a direct factor of (A < z >)n as an A-module. Now, we
want to show that it is a finitely generated projective A module. We get the
following commutative diagram.

51



0 (A < z >)n (A < z >)n Mn(σ, k) 0

0 (A < z >)n (A < z >)n (An)2k 0

σkz π1

sτkz (1+εk(z))−1

z2k π2

p

Now, the map p is surjective. So, we are done.

Remark 3.1.8 We have zlσkz = σk+l
z . Let’s consider the following sequence

of A-modules:

(A < z >)n (A < z >)n (A < z >)n
σkz zl

Now, we have the short exact sequence of cokernels-

0 cok(σkz ) cok(σk+l
z ) cok(zl) 0

0 Mn(σ, k) Mn(σ, k + l) Anl 0

As, Anl is free (thus projective) A module, the sequence splits. So, we get
Mn(σ, k + l) = Mn(σ, k)⊕ Aln.

Now we are ready to construct a map γ′ : πL1 (GL(A)) → K(A), which will
be proven to be the left inverse of γ.

Remark 3.1.9 Construction: Let, σ ∈ πL1 (GL(A)). γ′(σ) = Mn(σ, k) −
Ank ∈ K(A), k, n st zkσz ∈ Mn(A < z >). We choose k large enough
such that (1 + εkz) is invertible. Now, at first, we want to show that this
construction does make sense.

Proposition 3.1.5 γ′ is a well-defined homomorphism.

Proof Using remark 3.1.8, whenever (1 + εk(z)) is invertible the map γ′

does not depend on the choice of k.
Now, suppose we have two homotopic loops σ0 and σ1. We want to

show that γ′(σ0) = γ′(σ1). Now, here we have a laurential homotopy σ :
S1 × I → π1(GLn(A)) between σ0 and σ1. Basically, we have a loop σ :
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S1 → π1(GLn(A(I))) and the restrictions of σ on {0} and {1} are σ0 and
σ1 respectively. Similarly, the restriction of Mn(σ, k) on {0} and {1} are
Mn(σ0, k) and Mn(σ1, k) respectively. Now, using remark 3.1.5, Mn(σ0, k)
and Mn(σ1, k) are isomorphic. So, the map γ does make sense.

Now, we want to show that this is a homomorphism. Let’s consider two
Laurential loops σ, τ . We are again considering the group structure induced
from matrix multiplication in π1(GL(A)). For large enough k1, k2, we want to
show that [Mn(στ, k1+k2)]−[An(k1+k2)] = [Mn(σ, k1)]−[An(k1)]+[Mn(τ, k2)]−
[An(k2)]. It’s enough to show that [Mn(στ, k1+k2)] ≈ [Mn(σ, k1)]+[Mn(τ, k2)].
We have (στ)k1+k2 = σk1 ·τ k2 . So, we have the following short exact sequence
of A-modules:

0 cok(σk1z ) cok(σk1z τ
k2
z ) cok(τ k2z )) 0

0 Mn(σ, k1) Mn(στ, k1 + k2) Mn(τ, k2) 0

As, Mn(τ, k2) is a projective A-module, the sequence splits and we are done.

Proposition 3.1.6 γ′ is left inverse of γ.

Proof Let, E ∈ P (A). As, E is a finitely generated projective A-module,
∃ p, a projector of An, for some n ∈ N, such that p(An) = E. Let’s denote
(1− p)(An) by E ′. As defined before, γ(E) = pz + 1− p. Let’s consider the
following short exact sequence:

0 (A < z >)n (A < z >)n E 0
pz+1−p

(A < z >)n can be identified with An < z >≈ E < z > ⊕E ′ < z >. Now,
On E, pz + 1− p is multiplication by z and on E ′, it is Id. So, γ′γ(E) = E.
As, γ′γ is a homomorphism, γ′γ([E]− [F ]) = γ′γ([E])−γ′γ([F ]) = [E]− [F ].
So, we have shown that γ′γ = Id on K(A).

Now, we have to show that the map γ is surjective. The approach is rather
technical and a sketch is given.

Proposition 3.1.7 Each element of πL1 (GL(A)) can be written as difference
of polynomial loops [τ1]− [τ2].
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Proof Let’s denote the class of a loop τ ∈ πL1 (GLn(A)) by [τ ]. [zkτ ] =
[zk] + [τ ] ⇒ [τ ] = [zkτ ] − [zk]. As for k large enough zkσ is polynomial, we
are done.

Proposition 3.1.8 Any polynomial loop [τ ] ∈ πL1 (GLn(A)) is in class of a
loop of form a0 + a1z (affine loop).

Proof Let, τ(z) = a0 + a1z + ... + amz
m ∈ GLn(A < z >). We want to

show that it is homotopic to an affine loop. As, m ∈ N is finite, if we can
find a homotopy between τ and any polynomial of degree less than m − 1,
we will be done.

τ(z, t) =

[
1 −tzm−1

0 1

] [
τ(z) 0

0 1

] [
1 0

tamz 1

]
Now, τ(z, t)τ(1, t)−1 is a normalized homotopy between τ(z) and a loop of
degree < m− 1.

Remark 3.1.10 From straightforward calculation, we get the following. Let,
σ(z) = a0 + a1z ∈ GLn(A) is any Laurential loop and τ(z) =

∑k=∞
k=−∞ bkz

k in
GLn(A < z, z−1 >) is its inverse loop.Then-

• a0bk + a1bk−1 = bka0 + bk−1a1 = 1 if k = 1

• a0bk + a1bk−1 = bka0 + bk−1a1 = 0 if k 6= 1

• k < 0, l ≥ 0 or l < 0, k ≥ 0

– bkajbl = 0

– bkbl = 0

• ajbi = biaj for j = 0, 1

Proposition 3.1.9 q = a0b0 is a projector. σ can be written as σ(z) =
σ+(z)σ−(z−1)(pz+q) where p = 1−q and σ+(z) ∈ GLn(A < z >), σ−(z−1) ∈
GLn(A < z−1 >)

Proof q2 = a0b0a0b0 = a0b0(1 − a1b−1) = a0b0 − a0(b0a1b−1) = a0b0. So, q
is a projector.
We can take σ+(z) = p+σ(z)q and σ−(z−1) = q+σ(z)pz−1 and we are done.

Proposition 3.1.10 The map γ is surjective.
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Proof Following the previous propositions, it will be enough to show that
any affine loop [τ ] lies in Im(γ).
Let, [τ(z)] = [b0+b1z]. We can write τ(z) as τ+(z)τ−(z−1)(pz+q). Let’s con-
sider the mapH(z, t) : S1×I → GL(A) is defined asH(z, t) = σ+(zt)σ−(z−1t)(pz+
q). We have found a normalized homotopy H(z, t)H(1, t)−1 between τ and
[γ([Im(p)])].

So, we have proved Bott’s periodicity theorem for complex K-groups.

Remark 3.1.11 This proof does not work for real K-theory. One reason is
that we can not use Fejer’s theorem in that case.

3.2 First application of periodicity

Here we will explicitly compute complex K-groups of some ubiquitous base
space. In some cases effort is made to compute the ring structure of KC(X)
as well. Some immediate consequences of periodicity is also shown. Mostly
[10] and [4] are followed.

3.2.1 K-theory of Sn and Rn

Rn ∼= Rn × {p}. {p} is a single point.
So, K(Rn) ∼= K(Rn × {p}) ∼= K({p} × Rn) := K−n({p}).
Now,

K−n({p}) =

{
Z if n is even

0 if n is odd

So,

K(Rn) =

{
Z if n is even

0 if n is odd

In general, for n ∈ N and p ∈ Z,

Kp(Rn) =

{
Z if p+ n is even

0 if p+ n is odd

Now, Sn is the one point compactification of Rn. So, K(Sn, {p}) = K(Rn)
and K(Sn) = K(Rn)⊕K({p}).
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So,

K0(Sn) =

{
Z⊕ Z if n is even

Z if n is odd

Again, As, K̃−1(Sn) = K−1(Rn)-

K−1(Sn) =

{
0 if n is even

Z if n is odd

Remark 3.2.1 In remark 3.1.4, we have shown a generator u of K̃C(S2).
So, K̃C(S2n) ∼= Z, with generator un.

This generator u is actually H − 1, where H is the canonical line bundle
over CP 1 = S2. (defined in example 1.1.6).

Now, the composition of the following maps K̃(X)→ K̃(S2)⊗ K̃(X)→
K̃(S2X) is an isomorphism. Here, the first map is external product with
(H − 1), which is an isomorphism by periodicity theorem. As an iterate of
this the external product K̃(S2k)⊗ K̃(X)→ K̃(S2k ∧X) is an isomorphism.
Here S2k ∧ X is the smash product, which is equivalent to 2-fold reduced
suspension of X.

Remark 3.2.2 Now we will look the ring structure of K(S2) explicitly. Let,
H be the canonical line bundle over CP 1 = S2. Now, as shown in 4.7,
(H ⊗ H) ⊕ 1 = H ⊕ H ⇒ H2 + 1 = 2H ⇒ (H − 1)2 = 0. As, K(R2) is
generated by H−1. As, the group K(S2) is generated by H−1 and 1, which

is the generator of K({p}). Now let’s consider the polynomial ring Z[H]
(H−1)2

,

which is generated by {1, H}. We have a ring isomorphism between Z[H]
(H−1)2

and K(S2).

Now, using periodicity, K(S2m) ∼= Z[H]
(H−1)2

(this is a ring isomorphism).

K(S2m+1) ∼= Z is generated by 1, the trivial generator of K({p}).

Remark 3.2.3 Now, we have shown that ξCp (Sn) ≈ πn−1(GLp(C)). Us-
ing the fact that U(n) ↪→ GLn(C) is a homotopy equivalence, ξCp (Sn) ≈
πn−1(U(p)). So, K̃C(Sn) ≈ inj lim πn−1(U(p)) ∼= πn−1(U).

So,

πn(U) ∼= πn(GL(C)) =

{
0, when n is even

Z, when n is odd
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3.2.2 K-theory of torus (S1 × S1)

Let’s consider the sequence of inclusion and projection maps respectively:

S1 × {e} S1 × S1 S1 × {e}i π

Here, πi = Id and ((S1 × S1)− (S1 × {e})) ∼= S1 × R. So, we have-

K(S1 × S1) ∼= K(S1 × {e})⊕K(S1 × R) ∼= K0(S1)⊕K−1(S1) ∼= Z⊕ Z

K−1(S1×S1) ∼= K−1(S1×{e})⊕K−1(S1×R) ∼= K−1(S1)⊕K−2(S1) ∼= K−1(S1)⊕K0(S1) ∼= Z⊕Z

3.2.3 K-theory of figure eight (S1 ∨ S1)

Let, i : S1 ↪→ S1 ∨ S1 is the inclusion of one of the copies of S1 into S1 ∨ S1

and π : S1 ∨ S1 → S1 identifies both of the copies of S1 to a single cirle.
So, πi = IdS1 . (S1 ∨ S1/S1) ∼= R. So, we get the following:

K0(S1 ∨ S1) ∼= K0(S1)⊕K0(R) ∼= Z

K−1(S1 ∨ S1) ∼= K−1(S1)⊕K−1(R) ∼= Z⊕ Z

3.2.4 K-theory of complex projective space (CP n)

Here, we will focus on deriving the additive as well as multiplicative structure
of K(CP n). The treatment given in [4] and [2] is more or less followed.
At first, we want to show a result for the groups Ki(X),where i ∈ {0,−1}
and X is a finite CW complex.
K∗(X) := K−1(X) ⊕ K0(X), is a Z2-graded ring. Similarly, K̃∗(X) :=
K̃−1(X)⊕ K̃0(X)
. Because of Bott’s periodicity, instead of working with the full Z-graded
ring ⊕−∞r=0K

r(X), we can equivalently work with the Z2-graded ring K∗(X).
The following proposition focuses on the additive structure of K∗(X).

Proposition 3.2.1 Let, X be a finite CW complex which has n cells. Then
the group Ki(X) is finitely generated by at most n generators. Here, i ∈
{0,−1}.

Proof The proof is done using induction on the number of cells. Let’s as-
sume the statement works for a subcomplex A.
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Here, X is obtained by attaching a k-cell to A. Now, considering the ex-
act sequence (explained in proposition 2.2.6) for the pair (X,A), we have

K̃i(X/A)→ K̃i(X)→ K̃i(A). Now, we know X/A ∼= Sk. Now, K̃i(X/A) =
Z or 0. As the sequence is exact, Ki(X) requires at most one more generator
than Ki(A).

Proposition 3.2.2 If X has cells of even dimensions only, K−1(X) = 0
and K0(X) is a free abelian group with one generator for each cell.

Proof Let’s consider the exact sequence: K−1(X/A)→ K−1(X)→ K−1(A).
Now, if all cells are of even dimension, X/A ∼= S2m, for some m ∈ N. So, the
first term K−1(X/A) = 0. Now, K−1({p}) = 0. So, by induction on number
of cells K−1(X) = 0.

In this situation, we get a short exact sequence:
0 → K̃0(X/A) → K̃0(X) → K̃0(A) → 0 and K̃0(X/A) = K̃0(S2m) ∼= Z.
Again, we are assuming that the statement is true for K̃0(A). As, K̃0(A) is
free, the sequence splits. So, we get K̃0(X) ∼= Z⊕ K̃0(A) and we are done.

Corollary 3.2.1 CP n, as a CW complex has one cell of each dimension
0, 2, 4, ...., 2n. So, using proposition 3.2.2, K−1(CP n) = 0 and K0(CP n) =
⊕i=n+1
i=1 Zi and for all i, Zi = Z.

Now we will focus on computing the multiplicative structure of K∗(CP n).

Theorem 3.2.1 Let, L be the canonical line bundle over CP n. K(CP n) is
isomorphic (as a ring) to the quotient ring Z[L]/(L− 1)n+1.

Step 1: Let’s consider the short exact sequence for the pair (CP n,CP n−1),
we get-

0→ K(CP n,CP n−1)→ K(CP n)→ K(CP n−1)→ 0

We proceed by induction. We assume the statement to be true for K(CP n−1).
Let’s denote the map K(CP n) → K(CP n−1) by ρ. If we can prove that
Ker(ρ) is generated by (L − 1)n,we will be done. We have assumed that
K(CP n−1) = Z[L]/(L− 1)n. Due to exactness, we get that {1, L− 1, .., (L−
1)n} will be an additive basis of K(CP n). Now, (L− 1)n+1 = 0 in K(CP n).
So, K(CP n) has to be the ring Z[L]/(L− 1)n+1.

Step 2: One intuitive idea for what Ker(ρ) should be generated by
(L − 1)n is the following. Now, Ker(ρ) is to be identified with a copy of
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K(CP n,CP n−1) ∼= K̃(S2n). K̃(S2n) is generated by n-fold reduced external
product (L− 1) ∗ (L− 1) ∗ .... ∗ (L− 1).

Step 3: CP n is the quotient of S2n+1 ⊂ Cn with respect to scalar multi-
plication by S1 ⊂ C. Let’s consider D2

i , the unit disk in the ith coordinate
of Cn+1, for i ∈ {0, 1, ..., n}. Instead of S2n+1, we can consider the bound-
ary ∂(D2

0 × D2
1 × ... × D2

n) = ∪i(D2
0 × D2

1 × ... × ∂D2
i × ... × D2

n). The
S1 action (scalar multiplication) preserves this decomposition. The orbit
of D2

0 × D2
1 × ... × ∂D2

i × ... × D2
n under the scalar multiplication of S1 is

D2
0 × ....× D̂2

i × ...×D2
n. Let’s denote Ci := D2

0 × ....× D̂2
i × ...×D2

n.
So, we get CP n = ∪iCi. Ci ∼= D2n and Ci ∩ Ci′ = ∂Ci ∩ ∂Ci′ .
Let’s consider C0 = D2

1 × ...×D2
n and ∂C0 = ∪i(D2

1 × ....× ∂D2
i × ...×D2

n).
Let’s denote ∂iC0 := D2

1 × .... × ∂D2
i × ... × D2

n Considering the inclusion
(D2

i , ∂D
2
i ) ⊂ (C0, ∂C0) ⊂ (CP n, Ci), we get the following commutative dia-

gram.

K(D2
1, ∂D

2
1)⊗ ...⊗K(D2

n, ∂D
2
n)

K(C0, ∂1C0)⊗ ...⊗K(C0, ∂nC0) K(C0, ∂C0)

K(CP n, C1)⊗ ...⊗K(CP n, Cn) K(CP n, C1 ∪ .... ∪ Cn) K(CP n,CP n+1)

K(CP n)⊗ ...⊗K(CP n) K(CP n)

≈≈

≈

≈

≈

Here, all the maps between first and second columns are n-fold external prod-
ucts.
The map K(CP n, C1 ∪ .... ∪ Cn) → K(C0, ∂C0) is isomorphism as from the
inclusion C0 ↪→ CP n, the following homeomorphism is induced. C0/∂C0

∼=
CP n/(C1 ∪ ... ∪ Cn).
CP n/CP n−1 → CP n/(C1 ∪ ...∪Cn) is a homotopy equivalence if we identify
CP n−1 ⊂ CP n, in the last coordinates of Cn+1.

step 4: yi ∈ K(CP n, Ci) maps to L − 1 ∈ K(CP n) and yi maps to a
generator of K(C0, ∂iC0). As a result of commutativity, y1 ∗ .... ∗ yn gener-
ates K(CP n, C1 ∪ .... ∪ Cn). So, (L − 1)n generates Im(K(CP n,CP n−1) →
K(CP n)) = Ker(ρ). So, we are done.
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3.3 Splitting principle

Splitting principle is a technical tool that allows us to reduce the questions
about general vector bundles into questions regarding line bundles. this will
be used to prove Adam’s theorem in 3.5.
We give the statement first. We are considering complex vector bundles
exclusively. The proof will be done in several steps.

Theorem 3.3.1 (Splitting principle) Let, X be a compact Hausdorff space
and E is a vector bundle over X. Then we can get a compact Hausdorff
space F (E) and a map p : F (E)→ X, such that the pull-back p∗ : K∗(X)→
K∗(F (E)) is injective.
p∗(E) can be decomposed (or ‘split’) into Whitney sum of line bundles.

This is a general consequence of Leray-Hirsch theorem for K-theory. For
certain fiber bundles E → X, it allows us to consider K∗(E) as a finitely
generated free K∗(X) module. We will provide the statement and show a
sketch of its proof following [4].

Theorem 3.3.2 (Leray-Hirsch theorem) Let, E, X are compact Haus-
dorff spaces and (E, p,X) be a fiber bundle with fibre F such that K̃∗(F ) is
free. Suppose there exists elements c1, ..., ck ∈ K∗(E), restrictions of which
give a basis for K∗(F ), for each fiber Fx. Then, K∗(E) can be written as a
free K∗(X) module, with {c1, c2, ..., ck} as a basis if either

• X is a finite CW complex.

• F is a finite CW complex with cells of even dimension only.

Before getting into the proof, some clarifications are required.
K∗(E) is given a K∗(X) module structure as follows. For γ ∈ K∗(X) and
β ∈ K∗(E), γβ̇ := p∗(γ)β.
So, we can also state the theorem a bit differently. The map Φ : K∗(X) ⊗
K∗(F )→ K∗(E), where Φ(

∑
j bj ⊗ i∗(cj)) =

∑
j p
∗(bj)cj is an isomorphism.

Here i : F ↪→ E is the inclusion.

Proof We will prove the theorem for the two conditions differently.
a. Suppose, X is a finite CW complex. Consider any subspace X ′ ⊂ X,

let’s denote p−1(X ′) as E ′. Now, we have the following diagram.
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K∗(X,X ′)⊗K∗(F ) K∗(X)⊗K∗(F ) K∗(X ′)⊗K∗(F )

K∗(E,E ′) K∗(E) K∗(E ′)

Φ Φ Φ

The left most vertical map Φ is given by the same form Φ(
∑

j bj ⊗ i∗(cj)) =∑
j p
∗(bj)cj, but p∗(bj)cj corresponds to the relative product K∗(E,E ′) ⊗

K∗(E)→ K∗(E), defined in remark 2.6.4.
We define the right most vertical map (Φ) by taking into account the restric-
tions of ci’s on E ′.
Now we have to show that the diagram commutes.
Now, we factor Φ as∑

i bi ⊗ i∗(ci)
∑

i p
∗(bi)⊗ i∗(ci)

∑
i p
∗(bi)ci

Φ1 Φ2

We get the following enlarged diagram:

K∗(X,X ′)⊗K∗(F ) K∗(X)⊗K∗(F ) K∗(X ′)⊗K∗(F )

K∗(X,X ′)⊗K∗(F ) K∗(X)⊗K∗(F ) K∗(X ′)⊗K∗(F )

K∗(E,E ′) K∗(E) K∗(E ′)

Φ1 Φ1 Φ1

Φ2 Φ2 Φ2

The upper squares are commutative by construction. The lower squares are
commutative using the argument given in 4.8.
The lower is exact. As, K∗(F ) is assumed to be free and the upper row is
got by tensoring the exact sequence K∗(X,X ′)→ K∗(X)→ K∗(X ′) by the
free abelian group K∗(F ). So, the upper row is exact as well.
For the first condition, X is a finite CW complex, we use induction twice.
First, for dimension of X and then for a fixed dimension, for the number of
cells in X.
If Dim(X) = 0, X has to be a finite discrete set.
Let’s assume that X ′ is a subcomplex of X and to get X, we attach a cell
en with X ′. Let’s assume, for this the rightmost vertical map Φ in the first
diagram is an isomorphism. Here, if the left most Φ is an isomorphism, the
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middle one has to be (As in the diagram, a part of the long exact sequence is
shown, similar vertical maps can be considered and we can use five lemma).
Let, Ψ : (Dn, Sn−1) → (X,X ′) be the characteristic map for the attached
cell en, which is an n-cell. Using the fact that Dn is contractible, Ψ∗(E), the
pullback of E has to be trivial. Now, we have the following diagram, that
commutes.
K∗(X,X ′)⊗K∗(F ) K∗(Dn, Sn−1)⊗K∗(F )

K∗(E,E ′) K∗(Ψ∗(E),Ψ∗(E ′)) K∗(Dn × F, Sn−1 × F )

Φ

∼=

Φ
Φ

∼= ∼=

Here, the restriction of Ψ on the interior of Dn is a homeomorphism. So, we
get the homeomorphisms X/X ′ ∼= Dn/Sn−1 and E/E ′ ∼= Ψ∗(E)/Ψ∗(E ′),
which explains the horizontal isomorphisms. So, now, it is enough to show
that the left most Φ is an isomorphism.
Let’s consider the first diagram replacing (X,X ′) by (Dn, Sn−1). As, Sn−1

has lower dimension than X, we can assume the right most Φ to be an iso-
morphism. As, Dn is contractible, the middle Φ is isomorphism using discrete
case. Using, five-lemma again, the left Φ has to be an isomorphism. We are
done.

b. Now, we assume that F is a finite CW complex with cells of even
dimension only. Here, we will prove in two steps. At first, we will do it for
trivial bundles E = X × F . Then we will do it for general fibre bundles.

Step 1: Let’s take E = X × F . Here, Φ is just an external product,
which gives us the freedom to interchange F and X. Again, we consider the
first diagram of the previous argument taking F to be any compact Hausdorff
space and X to be a finite CW complex with only even dimensional cells.
Again we consider X ′ ⊂ X, a subcomplex, to which a cell en has to be
attached in order to get X. The upper row is obtained by tensoring the
following split exact sequence: 0→ K∗(X,X ′)→ K∗(X)→ K∗(X ′)→ 0 by
K∗(F ) (a fixed group). So, it is exact. If, somehow we manage to show that
the left Φ is an isomorphism, by induction (on cell number), we can assume
the right most one to be an isomorphism. So, thanks to five-lemma again,
the middle one will be an isomorphism.
As, X/X ′ ∼= Sn, without loss of generality, we can take (Dn, Sn−1) instead of
arbitrary (X,X ′). Here the middle Φ is an isomorphism. The left one will be
a isomorphism if and only if the right one is. If Sn−1 is even dimensional, Φ is
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an isomorphism. For odd dimensional sphere also this works by interchanging
K0 and K−1.

Step 2: Now, we consider any arbitrary fiber bundle E. As, X is not
a CW comlex and just a compact Hausdorff space, we have to change the
induction. Consider any compact subspace X ′ ⊂ X. If for all compact
subspaces X ′′ of X ′, we have Φ : K∗(X ′′) ⊗ K∗(F ) → K∗(p−1(X ′′)) to be
an isomorphism, we call X ′ to be ”good”. Using the previous step and local
triviality of fiber bundle, every point x of X has such a ”good” neighborhood.
As, finite number of such neighborhoods cover X, by induction all we have
to show is if X ′1 and X ′2 are ”good”, so is X ′1 ∪X ′2.
Let, U ⊂ X ′1 ∪ X ′2 is compact. Now, U is union of U1 := U ∩ X ′1 and
U2 := U ∩ X ′2. Again we consider the very first commutative diagram used
in the argument of (a.) for the pair (U,U2). The upper row is exact as
K∗(F ) is free. As, X ′2 is good, Φ is an isomorphism for U2. To show Φ
to be an isomorphism of U , we have to show that it is an isomorphism for
(U,U2). U/U2

∼= U1/(U1 ∩ U2). We will be done if we can prove Φ to be an
isomorphism for (U1, U1 ∩U2). Now, we consider the same diagram again for
(U1, U1 ∩U2). As, X ′1 is ”good”, Φ is isomorphism for U1 and U1 ∩U2. So, it
is an isomorphism for (U1, U1 ∩ U2). We are done.

Example 3.3.1 Let, E be a vector bundle over a compact space X with
fibre Cn. From this we get a fibre bundle p : P (E) → X with fiber CP n−1.
P (E) is the space of one dimensional linear subspaces of fibers of E.Let’s
consider the canonical line bundle L over P (E). It is the bundle over X,
whose fiber over x is the canonical line bundle over P (Ex). For each fiber
(CP n−1) of P (E), the classes of the elements 1, L, L2, ..., Ln−1 ∈ K∗(P (E))
restricts to a basis for K∗(CP n−1). Using the previous theorem, K∗(P (E))
is a free K∗(X) module with {1, L, L2, ..., Ln−1} as basis. As, 1 is among the
basis set of K∗(P (E)), the map p∗ : K∗(X)→ K∗(P (E)) is injective.

Now, we are ready to prove splitting principle.

Proof Let’s consider the pullback bundle p∗(E) over P (E), it contains the
line bundle L, which sits as a subbundle. So, we get another subbundle E ′ on
P (E), such that L ⊕ E ′ ∼= p∗(E). E ′ ⊥ L, for some choice of inner product
on p∗(E). Now, we do the same splitting where the pullback of E ′ on P (E ′)
splits off another line bundle. As, P (E ′) is consists of pairs of orthogonal line
in fibers of E, repeating finite number of time, we get the flag bundle F (E)
on X (described in 4.9). Elements of F (E) are n tuples of orthonal lines in
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the fibers of E. Here, E has dimension n.
The pullback of E on F (E) does split as a line bundle and induces an injec-
tion, using the argument used in the previous example.

3.4 Parallelizability of spheres

One of the most interesting application of classical K-theory is showing the
non existence of a division algebra structure on Rn, if n 6∈ {1, 2, 4, 8}. In
this section, we will focus on the question of finding values of n, for which
Rn is a division algebra or Sn−1 is parallelizable. The celebrated “Adam’s
theorem on the Hopf invariant” is the most crucial part of this quest. It will
be proved in 3.5.

Definition 3.4.1 A division algebra is a ring where each non-zero element
has a multiplicative inverse.

Here, the multiplication is not assumed to be commutative.
At, the same time, the existence of unit in the underlying ring R is not

assumed. All we want is the following. For any r ∈ R, the maps R → R,
given by x → rx and x → xr are linear (we are emphasizing distributive
property of ring multiplication over addition in a different way!) and for all
non-zero r, this map has to be invertible.
Examples

• Any field is a commutative division algebra. Most obvious non com-
mutative division algebra is the quaternions, H.

• On R8, we have a well-known multiplication structure called Cayley’s
octonions (O). Although the multiplication is non associative here.

As, the quaternions can be thought of ordered pairs of complex numbers,
similarly octonions can be represented as ordered pairs of quaternions. The
multiplication is defined as follow:

(p1, q1)(p2, q2) = (p1p2 − q̄2q1, q2p1 + q1p̄2)
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If we consider usual Euclidean norm on R8, we see this multiplication is
“norm-preserving”. In R, R2 (with the multiplication structure of C), R4

(with the multiplication structure of H) and R8 (with the multiplication
structure of O), the multiplications are “norm-preserving”.
By the phrase “norm-preserving”, we mean ‖c1c2‖ = ‖c1‖‖c2‖

Remark 3.4.1 Division algebra structure on Rn

To give Rn a division algebra structure, we consider a multiplication map
m′ : Rn × Rn → Rn.
For an arbitrarily fixed element a, the maps- x→ m′(a, x) and x→ m′(x, a)
are linear and for a 6= 0, it is invertible.

As, we are considering linear maps in Rn, we want these linear maps to
have trivial kernel. So, the multiplication does not have any zero divisors.
Here, existence of unit is not assumed

Although we can modify a bit to set a unit. Let’s fix a unit vector e ∈ Rn.
Let’s consider an invertible linear map Ψ in Rn that takes e2 = m′(e, e) to e.
Now if we compose m′ with Ψ. So, Ψm′(e) = e.
Let,

y yeα

and,

y eyα

The map (x, y)→ α−1(x)β−1(y) takes (y, e) to α−1(y)β−1(e) = α−1(y)e = y.
Similarly, (e, y) is mapped to y. The maps x→ ax and x→ xa are surjective
(they are invertible linear maps in GLn(R)!). So, ax = e and xa = e have
solution for all nonzero a.
So, we have a division algebra structure with a unit, where every nonzero
element has left as well as inverse.

Remark 3.4.2 If Rn has a division algebra structure with a ”norm-preserving”
multiplication, the same restricted on Sn−1 gives us a multiplicative map-

φ : Sn−1 × Sn−1 → Sn−1

If we have a multiplicative structure on Rn with no non zero structure, we
get a multiplication for Sn−1 as shown in 3.4.1.
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Definition 3.4.2 An H-space is a space X with with a continuous multi-
plication map φ : X × X → X, with a both sided identity element. So, ∃
e ∈ X such that φ(x, e) = φ(e, x) = x.

Any topological group is an H-space. Although, being an H-space is a
much weaker condition that being a topological group. In the former, the
existence of inverse is not assumed.

Proposition 3.4.1 Sn−1 is an H-space if-

• Rn is a division algebra.

• Sn−1 is parallelizable.

Proof • It is given that we have a division algebra structure on Rn with
two-sided identity. Now, on Sn−1, we get the following map (x, y) →
xy/|xy|. It is well-defined as the multiplication on Rn does not have
any zero-divisor and 0 6∈ Sn−1.

• As Sn−1 has trivial tangent bundle, at each point s of Sn−1, we have lin-
early independent tangent vectors v1, ..., vn−1. We use Gram-Schmidt
orthonormalization to get n orthonormal vectors s, s(v1), ..., s(vn−1).
We can take the vectors e1, e1(v1), ..., e1(vn−1) to be the standard or-
thonormal basis e1, e2, ..., en. Now, consider the element βs ∈ SO(n)
sending s, s(v1), ..., s(vn−1) to e1, e1(v1), ..., e1(vn−1). We may need to
change sign of s(vi) to get the same orientation, in order to find an
element in SO(n). Now consider the map (s1, s2) → βs1(s2). It gives
an H-space structure with e1 as identity.

In 3.2, we have shown that K(S2m) ∼= Z[H]
(H−1)2

(this is a ring isomorphism).

So, by a change of variable, we get K(S2m) ∼= Z[t]
t2

. Now, we will focus on
finding n, for which Sn is an H-space.

Proposition 3.4.2 For n > 0, S2n is NOT an H-space.

Proof Let, we have the following H-space multiplication.

φ : S2n × S2n → S2n

From this we get the induced homomorphism φ∗ between K-rings has the
following form.

φ∗ : Z[t]/(t2)→ Z[α, γ]/(α2, γ2)
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Suppose, φ∗(t) = c1α + c2γ + kαγ, where k, c1, c2 ∈ Z.
Now, we consider the composition, which is identity

S2n S2n × S2n S2ni φ

i is the inclusion of S2n×{e} (or {e} ×S2n). e is the identity of the H-space
map φ.
Considering i to be the inclusion of the first factor, we get

α t

β 0

As φ∗ ◦ ı∗ = Id, the coefficient of α in φ∗(t) has to be 1. Similarly, the
coefficient of β in φ∗(t) is 1.
Now,

φ∗(t2) = (α + γ + kαγ)2 = 2αγ 6= 0

But t2 = 0. That is the contradiction.

Now, we want to find k ∈ Z, for which S2k+1 is a H-space. It is not a trivial
problem. We approach the problem in several steps.

• Let, Sk−1 is an H-space. Let’s consider the H-space map

φ : Sk−1 × Sk−1 → Sk−1

We want to associate another map φ̂ : S2k−1 → Sk to the given φ. We
can write S2k−1 as ∂(Dk ×Dk) = ∂Dk ×Dk ∪Dk × ∂Dk.
Now we consider Sk to be the union of the disks Dk

+ and Dk
− (the upper

and lower hemispheres respectively) with their boundaries identified.
When none of x and y is 0, we define φ̂ as follows:

φ̂(x, y) =

{
|y|φ(x, y|y|) ∈ D

k
+, where (x, y) ∈ ∂Dk ×Dk

|x|φ( x
|x| , y) ∈ Dk

−, where (x, y) ∈ Dk × ∂Dk

In case any of the x or y is 0, just define φ̂(x, y) = 0. φ̂ is well-defined
and continuous and if we restrict it on Sk−1 × Sk−1, it agrees with φ.
This formulation is applicable on any map f : Sk−1 × Sk−1 → Sk−1.
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• Now, we replace k by 2k and consider any continuous map

f : S4k−1 → S2k

Let’s define
Cf := e4k ∪f S2k

. e4n is a closed 4k cell. For a ∈ ∂(e4K) = S4k−1, f(a) ∈ S2n.
Cf is a CW complex with one cell each in dimensions 0, 2n, 4n. So

K̃i(Cf ) =

{
0, i = -1

Z⊕ Z, i = 0

Cf/S
2k ∼= S4k. K̃−1(S2k) ∼= K̃−1(S4k) ∼= 0. We consider the exact se-

quence for the pair (Cf , S
2k), which becomes the following short exact

sequence

0 K̃(S4k) K̃(Cf ) K̃(S2k) 0
h1 h2

Let, α ∈ K̃(Cf ) is the image of 2k fold product of (H − 1), which is
the generator of K̃(S4k), under h1.
Let, β ∈ K̃(Cf ), such that h2(β) is k fold product of (H − 1), which is
the generator of K̃(S2k). β2 = 0 ∈ K̃(S2k). Using exactness, β2 = hα,
where h ∈ Z.
This integer h is called the Hopf invariant of f .

• Now, we want to show that h does not depend on the choice of β.
First of all β has to be unique upto adding integer multiple of α. As
α2 = 0, (β + mα)2 = β2 + 2mαβ. We will be done if we manage to
show αβ = 0.
h2h1(α) = 0 ∈ K̃(S2k). So, αβ = nα, for some integer n. nα = αβ ⇒
nαβ = α(β)2 = h(α)2 = 0. nαβ = 0 ⇒ αβ ∈ h1(K̃(S4k)) ∼= Z. So,
nαβ = 0 implies αβ = 0.

Theorem 3.4.1 Let, S2n−1 is an H-space and we have the H-space multi-
plication

φ : S2n−1 × S2n−1 → S2n−1
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Then the map
φ̂ : S4n−1 → S2n

is of Hopf invariant ±1.

Proof Let e ∈ S2n−1 be the identity element of φ and let’s denote φ̂ :
S4n−1 → S2n as g. The characteristic map Φ of e4n can be thought of as
map (D2n × D2n, ∂(D2n × D2n)) → (Cg, S

2n). Now, we have the following
commutative diagram.

K̃(Cg)⊗ K̃(Cg) K̃(Cg)

K̃(Cg, D
2n
− )⊗ K̃(Cg, D

2n
+ ) K̃(Cg, S

2n)

K̃(D2n ×D2n), ∂D2n ×D2n)⊗ K̃(D2n ×D2n), D2n × ∂D2n) K̃((D2n ×D2n, ∂(D2n ×D2n)))

K̃(D2n × {e}, ∂D2n × {e})⊗ K̃({e} ×D2n, {e} × ∂D2n)

≈

Φ∗⊗Φ∗ Φ∗

≈

≈ ≈

Here, the horizontal maps are internal product maps. The diagonal map is
an external product, which is an isomorphism, as it is equivalent to the iter-
ated Bott’s periodicity isomorphism: K̃(S2n)⊗ K̃(S2n)→ K̃(S4n).
If we restrict Φ on D2n×{e}, we get a homeomorphism onto D2n

− . Similarly

{e}×D2n → D2n
+ is a homeomorphism. As β goes to a generator of K̃(S2n),

the element β⊗β goes to a generator of K̃(D2n×D2n, ∂D2n×{e})⊗K̃(D2n×
D2n, {e} × ∂D2n). Thanks to commutativity, β ⊗ β is sent to ±α. So, we
have got β2 = ±α. We are done.

Remark 3.4.3 So, we have reduced the question of finding n, for which
S2n−1 is parallelizable into finding integers n such that the map φ̂ : S4n−1 →
S2n has Hopf invariant ±1. Here, φ : S2n−1 × S2n−1 → S2n−1 is the H-space
multiplication.
The following theorem completes the solution of the question described in
remark 3.4.3.

Theorem 3.4.2 There exists a map f : S4n−1 → S2n with Hopf invariant
±1, if and only if n ∈ {1, 2, 4}.
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If n ∈ {1, 2, 4}, it is obvious because of existence of division algebra structure
on R2,R4,R8 and our previous argument.
The next section is all about proving the other way statement of the theorem.

3.5 Adam’s theorem on Hopf invariant

An operation is a natural transformation from K0 to K0. It may not respect
the additive or multiplicative structure of K0. There are many operations for
generalized cohomology theories. We will not go into the details of operations
in K-theory. Here, for the sake of completing the quest described in 3.4, with
a goal to prove theorem 3.4.2, we will construct certain ring homomorphisms
(Adam’s operations) Ψk : K(X)→ K(X) and show some of their properties
quite mechanically.

Theorem 3.5.1 Let, X be a compact Hausdorff space and k ∈ N ∪ {0}.
There exists ring homomorphisms Ψk : K(X)→ K(X), which satisfies:

(1) Ψk is natural. For any map f : X → Y , Ψkf ∗ = f ∗Ψk.
(2) Ψk(L) = Lk, when L is a line bundle.
(3) Ψk ◦Ψk = Ψkl.
(4) Ψp(α)− αp = pβ, for some β ∈ K(X).

Remark 3.5.1 Let’s consider the case Ψk(L1⊕L2⊕ ...⊕Ln), where Li’s are
line bundles. Using property (2) and the fact that Ψk is a ring homomor-
phism, we get Ψk(L1 ⊕ L2 ⊕ ...⊕ Ln) = Lk1 ⊕ Lk2 ⊕ ...⊕ Lkn.
Now, we want a formula of Ψk for general vector bundles E. In case of direct
sum of line bundles it has to give us what we expect.
We want to use exterior powers Λk(E). We list some properties of exterior
power for our reference(for details please see [10, pp. 144–147]).

(a) Λk(E1 ⊕ E2) ≈
⊕

i(Λ
i(E1)⊗ Λk−i(E1)).

(b) Λ0(E) = θ1, the trivial line bundle.
(c) Λ1(E) = E
(d) Λk(E) = 0, if k > dim(E).

If we can find polynomials sk with integer coefficients such that sk(Λ
1(E),Λ2(E), ...,Λn(E)) =

Lk1⊕Lk2⊕ ...⊕Lkn, when E = ⊕i=ni=1Li and Li’s are line bundles. We can define
Ψk(E) = sk(Λ

1(E),Λ2(E), ...,Λn(E)).

Construction of Ψk:
We want to concretely find out the polynomial sk.
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• Let’s define Λt(E) =
∑

i Λ
i(E)ti ∈ K(X)[t]. This sum makes sense

because using property (b), it is a finite sum. Using (a), Λt(E1⊕E2) =
Λt(E1)Λt(E2).
When E = ⊕i=ni=1Li, we get Λt(E) =

∏
i Λt(Li) =

∏
i(1 + Lit) (Using

(d) and the fact that dim(Li) = 1). Λj, the coefficient of tj is σj, the
jth elementary symmetric polynomial in Li’s. So,

Λj(⊕i=ni=1Li) = σj(L1, .., Ln)

• We have (1+L1)(1+L2)...(1+Ln) = 1+σ1+...+σn. σi is the ith elemen-
tary symmetric polynomial in the Lj’s. Now, we use the fundamental
theorem of symmetric polynomials ([3]). Every degree k symmetric
polynomial in L1, L2, ..., Ln can be written uniquely as a polynomial in
σ1, σ2, .., σk. L

k
1 + Lk2 + ...+ Lkn is a polynomial sk(σ1, σ2, ..., σk).

sk is independent of n. If we substitute Li’s by variables t1, t2, .., tn,
setting tn = 0, we can pass from n to n− 1.

• Now, we want a recursive formula sk. Let’s take n = k. In the identity
(x + t1)(x + t2)...(x + tk) = xk + σ1t

k−1 + .. + σk, we replace x by −ti
and sum over i to get-

sk = σ1sk−1 − σ2sk−2 + ..+ (−1)k−2σk−1s1 + (−1)k−1σk

s1 = σ1

• In a nutshell, we define Ψk(E) = sk(Λ
1(E),Λ2(E), ...,Λk(E)).

• For E = ⊕i=ni=1Li,
Ψk(E) = sk(Λ

1(E), ...,Λk(E))
= sk(σ1(L1, L2, .., Ln), .., σk(L1, L2, .., Ln)) = Lk1 + Lk2 + ..+ Lkn.

Now, we want to show that this construction of Ψk indeed follows the prop-
erties described in theorem 3.5.1. In this we will heavily use splitting prin-
ciple.
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Theorem 3.5.2 A ring homomorphism K(X) → K(X), extended from
Ψk(E) := sk(Λ

1(E),Λ2(E), ...,Λk(E)) follows the required properties listed
in theorem 3.5.1.

Proof At first, the definition of Ψk will be extended for K(X). It will
be shown that it indeed preserves the additive as well as the multiplicative
structures.
Then the properties will be proved.
Splitting principle allows us to essentially prove the theorem for Whitney
sum of line bundles, in order to prove this for general vector bundles.

• (1) naturality follows because f ∗(Λi(E)) = Λi(f ∗(E)).

• (2) To show: Ψk(E1 ⊕ E2) = Ψk(E1) + Ψk(E2). Using splitting princi-
ple, we first pullback E1 and split. Then another pullback to split E2

is done. Using naturality and the fact Ψk(L1⊕ ...⊕Ln) = Lk1 + ...+Lkn,
we are done. As it preserves the additive structure at the vector bundle
level, in K(X), the map defined as Ψk(E1 − E2) = Ψk(E1) − Ψk(E2)
preserves additive structure.

• For this definition in K(X), property (1) and property (2) are satisfied.

• We want to show that it prserves the multiplicative structure. We
will use splitting principle again to prove this. If E1, E2 are sum of
line bundles Li’s and L′i’s respectively, E1 ⊗ E2 =

∑
i,j(Li ⊗ L′j). So,

Ψk(E1E2) = Ψk(E1 ⊗ E2) = Ψk(
∑

i,j(Li ⊗ L′j)) =
∑

i,j(Li ⊗ L′j)
k =∑

i,j L
k
i ⊗L′jk =

∑
i L

k
i

∑
j L
′
j
k. We can do this interchanging as this is

a finite sum. So, we have got Ψk(E1E2) = Ψk(E1)Ψk(E2). From addi-
tivity, it follows that multiplication is preserved for elements [E1]− [E2]
of K(X) as well.

• For property (3), using splitting principle and additivity, it is enough
to show for line bundles. Ψl ◦Ψk(L) = Ψl(Lk) = (Lk)l = Lkl = Ψkl(L).

• Using same argument, it is enough to show property (4), for sum of
line bundles. Let, L = L1 ⊕ L2 ⊕ ...⊕ Ln.
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Then Ψp(E) = Lp1 + ... + Lpn = (Ep) mod p. As, tensor product is
commutative, we can use binomial theorem.

Restricting Ψk on K̃(X):

K̃(X) := Ker[K(X) → K({x})]. So, using naturality, Ψk can be re-
stricted on K̃(X).
Now, we want to look at Ψk(α ∗ β) for α ∈ K̃(X) and β ∈ K̃(Y ). The ho-
momorphism K̃(X)⊗ K̃(Y )→ K̃(X ∧ Y ) is defined as (α, β)→ p∗1(α)p∗2(β).
Where, p1, p2 are projections of X × Y to X and Y respectively.

Ψk(α ∗ β) = Ψk(p∗1(α)p∗2(β))

= Ψk(p∗1(α))Ψk(p∗2(β))

= p∗1(Ψk(α))p∗2(Ψk(β))

= Ψk(α) ∗Ψk(β)

Our motive is to compute Ψk on K̃(S2n) ∼= Z. As, it is an additive homo-
morphism in Z, it has to be multiplication by some element in Z.

Proposition 3.5.1 The ring homomorphism Ψk : K̃(S2n) → K̃(S2n) is
multiplication by kn.

Proof We will prove it using induction.

• For n = 1, using additivity, we will be done if we manage to show
Ψk(β) = kβ. β is a generator of K̃(S2) ∼= Z. Without loss of generality,
we can take β = H − 1. H is the canonical line bundle over CP 1 ∼= S2.

Ψk(β) = Hk − 1

= (1 + β)k − 1

= 1 + kβ − 1

= kβ

We are simply using the fact that multiplication in K̃(S2) is trivial.
β2 = 0⇒ αi = 0, for i ≥ 2.
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• n > 1. Now, we use the following isomorphism (Bott’s periodicity)
involving external product:

K̃(S2)⊗ K̃(S2n−2)→ K̃(S2n)

By induction hypothesis, the theorem holds true for K̃(S2n−2). So,
for α ∈ K̃(S2) and β ∈ K̃(S2n−2), Ψk(α ∗ β) = Ψk(α) ∗ Ψk(β) =
kα ∗ kn−1β = kn(α ∗ β).

Now, we are ready to prove our holy grail Adam’s theorem on Hopf
invariant (theorem 3.4.2).

Proof Let f : S4n−1 → S2n be a map with Hopf invariant ±1. We are
using the notations, we used to define Hopf invariant in the previous section.
α, β ∈ K̃(Cf ), such that α is the image of the generator of K̃(S4n) and β
maps to a generator of K̃(S2n).
So, Ψk(α) = k2nα and Ψk(β) = knβ + φkα. φk ∈ Z. So

ΨkΨl(β) = Ψk(lnβ + φlα) = knlnβ + (k2nφl + lnφk)α

ΨkΨl = Ψkl = Ψlk = ΨlΨk. If we interchange l and k, the coefficient of α is
unchanged in ΨkΨl. So,

k2nφl + lnφk = l2nφk + knφl

⇒ (k2n − kn)φl = (l2n − ln)φk

Now, Ψ2(β) = β2 mod 2. Here, β2 = ±α. By the formula for Ψ2,

Ψ2(β) = 2nβ + φ2α

So, φ2 has to be an odd number.Putting k = 2, l = 3, we get-

(22n − 2n)φ3 = (32n − 3n)φ2

⇒ 2n(2n − 1)φ3 = 3n(3n − 1)φ2

So, 2n divides 3n(3n − 1)φ2.
As 3n, φ2 are odd, 2n divides 3n − 1.
If 2n divides 3n− 1 then n ∈ {1, 2, 4}.For the proof of this fact, please see [4,
p. 65].

So, we have shown that only for n = 1, 2 or 4, S2n−1 is a Hopf space. So, S1,
S3 and S7 are the only parallelizable spheres. Consequently, R, R2, R4 and
R8 are the only Rn to have a division algebra structure.
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Chapter 4

Appendix

4.1 On ‘finiteness’ of compact space

The idea of the proof is taken from [5, pp. 49–50].

Theorem 4.1.1 Let, X be a compact space. Let’s consider a directed system
A1 → A2 → ...→ An → ..., where Ai → Ai+1 is closed inclusion and Ai is a
T1 space for all i. Let’s denote the direct limit of the directed system by A.
Then, for any map f : X → A, ∃ m ∈ N, such that f(X) ⊆ Am.

Proof If for an arbitrarily fixed N ∈ N, let’s assume, f(X) 6⊂ An, for
any n ≤ N . Then, we can get a sequence of points {ai}∞i=1, such that
ai ∈ Ai+1 \ Ai. Let’s denote this collection of points by S. Now, for any
subset S ′ ⊆ S, S ′ ∩An is finite, so closed in An. An → A is closed inclusion,
so any subset is closed in A or with respect to subspace topology, S has
discrete topology. S ⊆ f(X), a compact space and S is infinite. A compact
set can not have an infinite, discrete subset. So, that is the contradiction
and we are done.

Remark 4.1.1 Let’s consider a directed system A1 → A2 → ... → An →
..., with the conditions above mentioned. The direct limit of the directed
system is denoted by A. [X,A] = [X, injlimAn] denotes the collection of
continuous maps from X to A upto homotopy. Now if X is compact, [X,A] =
[X, injlimAn] ≈ injlim[X,An]. For any class of element [f ] ∈ [X, injlimAn],
f has to factor through some An.
The reverse inclusion is by definition true.
In [5], the proof is done for any directed system using transfinite induction.
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4.2 On pseudo-abelian categories

In theorem 1.6.1, we have explicitly shown that for a compact base space X,
any finite dimensional vector bundle E over X is direct summand of a trivial
bundle over X. Here, similar result will be shown for any pseudo-abelian
category. So, necessarily theorem 1.6.1 is a very special case of the following.

Remark 4.2.1 Mitchell embedding theorem [9] says that for any small
abelian category C , we can find a ring R with unit, such that there exists
a fully faithful exact functor C → R-mod. R-mod is the category of all left
R-modules. So, while working with abelian categories, we can actually use
diagram-chasing techniques.

While working with pseudo-abelian categories and only projection mor-
phisms, as all the kernels and co-kernels are objects of the category; we are
allowed to use diagram-chasing.

Theorem 4.2.1 Let, A be a pseudo-abelian category and E ∈ Ob(C). p is
a projection of E. Then E has the following decomposition: E ≈ Ker(p) ⊕
Ker(1− p).

Proof Let’s consider j1 : Ker(p) ↪→ E and j2 : Ker(1 − p) ↪→ E, the
inclusions. We will be done if we can show the existence of j′1 : E → Ker(p)
and j′2 : E → Ker(1 − p) such that j′1j1 = IdKer(p) and j′2j2 = IdKer(1−p).
j′1j2 = 0 and j′2j1 = 0. j1j

′
1 + j2j

′
2 = IdE.

Let’s define j′1, j
′
2 as the unique homomorphisms to make the following dia-

grams commute:

Ker(p) E E

Ker(p) E

j1 p

Id

j1

j′1

1−p

Ker(1− p) E E

Ker(1− p) E

j2 1−p

Id

j2

j′2

p

j1j
′
1j1 = j1 and j2j

′
2j2 = j2. So, j′1j1 = IdKer(p) and j′2j2 = IdKer(1−p).

Again we use universal property of kernel to get:

Ker(p) E E

Ker(1− p) E

j1 p

0

j2

j′1

1−p

Ker(1− p) E E

Ker(p) E

j2 1−p

0

j1

j′2

p
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j′1j2 = 0 and j′2j1 = 0. As j2j
′
2 = p, j1j

′
1 + j2j

′
2 = p+ (1− p) = IdE.

4.3 Grassmannian manifold

In 1.7, the space of all projection operators p of kN (Projn(kN)) such that
dim(Imp) = n and the collections of all n-dimensional subspaces of kN

(Gn(kN)) or Grassmannian are described. There is a bijective correspondence
between Gn(kN) and the subspace of all self-adjoint projectors of Projn(kN).

Theorem 4.3.1 Gn(kN) is a deformation retract of Projn(kN).

Proof Any self adjoint positive operator p has a self-adjoint positive square
root

√
p. Let’s consider the map H : Projn(kN)× I → Projn(kN), given by

H(q, u) =
√

1 + u(2q − 1)∗(2q − 1)q(
√

1 + u(2q − 1)∗(2q − 1))−1.
If q∗q = Id, H(q, u) ∈ Gn(kN), H(q, 1) ∈ Gn(kN) and H(q, 0) = q.

4.4 Symmetrization of an abelian monoid

Definition 4.4.1 An abelian monoid is a set provided with a composition
law satisfying all properties of an abelian group except for the existence of
an inverse. The existence of inverse is not essential here.

Example 4.4.1 One example is N ∪ {0} (the set of all natural numbers
including 0.) with usual addition.

Remark 4.4.1 For each monoid M , we can attach an abelian group S(M)
and a monoid homomorphism s : M → S(M) with it which satisfies the
following universal property: For any abelian group G and group homomor-
phism f : M → G, ∃! f̃ : S(M) → G, a unique group homomorphism such
that the following diagram commutes:

M S(M)

G

s

f

f̃

77



Remark 4.4.2 Constructions of S(M)
There are equivalent (upto group isomorphism) construction for S(M).

Let’s consider the free abelian group F (M) generated by the elements [m] of
M . S(M) can be taken as the quotient of F (M) by the subgroup generated
by the elements of form: [m1 + m2] − [m1] − [m2]. For any m ∈ M , s takes
m to the class of [m] in the quotient.

Another formulation is the following. Consider the quotient of M ×M
with respect to the following equivalence relation- (m1,m2) ∼ (m′1,m

′
2) if ∃

m ∈M such that m1 +m′2 +m = m2 +m′1 +m. s(m) = [(m, 0)]
The following is equivalent as well. Consider the quotient of M × M

with respect to the following equivalence relation- (m1,m2) ∼ (m′1,m
′
2) if

∃ m,n ∈ M such that (m1,m2) + (m,m) = (m′1,m
′
2) + (n, n). Here also

s(m) = [(m, 0)]. Now for any element (m,n), its inverse is (n,m) in S(M).
Any element (m,n) can be written as (m, 0) + (0, n) = s(m)− s(n).

Example 4.4.2 If we take M = N ∪ 0 with addition, S(M) = Z.
Taking M = Z− {0}, S(M) = Q− {0}.

Example 4.4.3 Let M is a monoid where ∃ ∞, an element of M such that
m ·∞ =∞, ∀m ∈M . In this case, S(M) = 0. We can write each element of
S(M) as s(m)−s(n) for some m,n ∈M . s(m)−s(n) = s(m)+s(∞)−s(n)−
s(∞). As s is a monoid homomorphism, s(m+∞) = s(∞) = s(m) + s(∞).
So, s(m)− s(n) = s(∞)− s(∞) = 0.
If we take M = Z with respect to multiplication, as 0.m = 0, ∀m ∈M , using
the previous argument S(M) = 0.
Here the map s is definitely not injective.

Remark 4.4.3 For any abelian monoid M , the construction of S(M) gives
us a covariant functor from the category of abelian monoids and monoid
homomorphism to the category of abelian groups and group homomorphisms.

Let’s consider f : M → N , a monoid homomorphism. As sN · f : M →
S(N) is a group homomorphism, using the universal property of S(M), we
get a unique map (let’s call it S(f)) between S(M) and S(N) making the
following diagram commutative-

M N

S(M) S(N)

f

sM sN

S(f) S(g · f) = S(g) · S(f) and S(IdM) = IdS(M)
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Remark 4.4.4 (Grothendieck group of an additive category)
Let’s consider any additive category A. For any E ∈ Ob(A), let’s denote

its isomorphism class by Ė. Defining, Ė1 + Ė2 =
˙̂

E1 ⊕ E2 does make sense

as
˙̂

E1 ⊕ E2 (the isomorphism class of E1 ⊕ E2 depends only on Ė1 and Ė2.
E1 ⊕ (E2 ⊕ E3) ≈ (E1 ⊕ E2)⊕ E3. E1 ⊕ E2 ≈ E2 ⊕ E1. So, considering the
isomorphism classes of objects of A, we have got an abelian monoid out of
the abelian category. Let’s denote it by Φ(A).
Following the construction in remark 4.4.2, we can attach a unique abelian
group with the abelian monoid just defined above. This is called the Grothendieck
group of the additive category A and is denoted as K(A).

Let, ψ : A → A ′ be an additive functor, we get a monoid homomorphism
Φ(ψ) : Φ(A) → Φ(A ′). Now using remark 4.4.3, we get a group homomor-
phism K(Φ(ψ)) : K(A)→ K(A ′).

Again if we have another abelian category and additive functor ψ′ : A ′ →
A ′′, K(Φ(ψ′ · ψ)) = K(Φ(Ψ) · Φ(Ψ′)) = K(Φ(Ψ)) ·K(Φ(Ψ′)) and K(IdA) =
IdK(A).

Proposition 4.4.1 Let’s consider an additive category A. We denote the
the class of an object A of A as [A] in K(A).Then [A] can be written as
[A1]− [A2] for some objects A1, A2 in A.

Two objects [A1]−[A2] = [B1]−[B2], iff ∃ C ∈ A, such that A1⊕B2⊕C ≈
A2 ⊕B1 ⊕ C.

Proof Using remark 4.4.2, as the formulation of K(A) for A is exactly what
we do for any monoid, any element can be represented as difference of the
classes of two other objects of the category A.

Again using the second formulation of remark 4.4.2, if s(Ȧ1) − s(Ȧ2) =
s(Ḃ1)−s(Ḃ2), ∃ C ∈ A such that Ȧ1+Ḃ2+Ċ = Ȧ2+Ḃ1+Ċ ⇒ A1⊕B2⊕C ≈
A2 ⊕B1 ⊕ C.

Corollary 4.4.1 Suppose A1, A2 ∈ Ob(A). In K(A), [A1] = [A2] iff ∃ B ∈
Ob(A) such that A1 ⊕B ≈ A2 ⊕B.

Proof We know for any object A of A, in K(A), [A] = [A] − [0]. Here 0
is the identity element of the monoid Φ(A) (using the notation of remark
4.4.4). Now we just use proposition 4.4.1 to get the required result.
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4.5 Grothendieck group of a Banach functor

Remark 4.5.1 A Banach category A is an additive category where ∀
E1, E2 ∈ Ob(A), Hom(E1, E2) can be provided with a Banach space structure
over some fixed field R or C.

ξ(X) is a Banach category for X compact (described in 2.2).

An additive functor φ : A → A ′ is said to be quasi-surjectve if for every
object E of A ′, ∃ E ′, another object of A ′ such that E⊕E ′ = φ(F ), for some
F ∈ Ob(A).

An additive functor φ : A → A ′ between two Banach categories A and A ′

is said to be a Banach functor if ∀ E,E ′ ∈ Ob(A), the map A(E,E ′) →
A ′(φ(E), φ(E ′)) is linear and continuous.

For a compact pair (X, Y ) (X is a compact space and Y ⊆ X is closed),
the functor φ : ξ(X)→ ξ(Y ) taking any vector bundle over X to its restric-
tion over Y is quasi-surjective, Banach functor. (described in 2.2)

Now we will be defining the Grothendieck group of a quasi surjective, Banach
functor. For the definition quasi surjectivity is not necessary but for the
interesting ( and useful to describe relative K-groups) properties regarding
exact sequences, it will be useful.

Remark 4.5.2 Let φ : A → A ′ be a quasi-surjective Banach functor. Let’s
consider triples (E1, E2, β), where E1, E2 ∈ Ob(A) and β : φ(E1)→ φ(E2) is
an isomorphism.

Two triples (E1, F1, β1) and (E2, F2, β2) are isomorphic if there exists
isomorphism f1 : E1 → E2 and f2 : F1 → F2 such that the following diagram
commutes-

φ(E1) φ(F1)

φ(E2) φ(F2)

β1

φ(f1) φ(f2)

β2

Consider the collection of all such triples upto isomorphism and denote
it by Γ(X).

We call a triple (E,F, β) to be elementary if E = F and β is homotopic
to Idφ(E) within Aut(φ(E)). We define sum of triples like the following:
(E1, F1, β1)⊕ (E2, F2, β2) = (E1 ⊕ E2, F1 ⊕ F2, β1 ⊕ β2)
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Consider an equivalence relation (∼) in Γ(X). Two triples σ1, σ2 are
equivalent if there exists elementary triples τ1, τ2 such that σ1⊕ τ1 ≈ σ2⊕ τ2.

Now consider K(φ) := Γ(X)/ ∼. K(φ) has a monoid structure with
respect to sum of triples.

Let’s denote the class of a triple (E,F, β) in the monoid K(φ) by [E,F, β].
An element [E,F, β] = 0 in K(φ) if there exists G,H ∈ Ob(A) and isomor-
phisms u1 : E ⊕G→ H, u2 : F ⊕G→ H and φ(u2) · (β ⊕ Idφ(G)) · (φ(u1))−1

is homotopic to Idφ(H) within the automorphisms of φ(H).

Proposition 4.5.1 The abelian monoid K(φ) is actually a group.

Proof Let [E,F, β] ∈ K(φ). [E,F, β] + [F,E, β−1] = [E ⊕ F, F ⊕ E, β ⊕

β−1] ≈ [E ⊕ F,E ⊕ F, α]. Here α is represented by:

(
0 −β−1

β 0

)
In Aut(φ(E)⊕ φ(F )), we have-(

0 −β−1

β 0

)
=

(
1 −β−1

0 1

)
·
(

1 0
β 1

)
·
(

1 β−1

0 −1

)
So, within Aut(φ(E)⊕φ(F )), we have the following path between Id and α.
γ : I → Aut(φ(E)⊕ φ(F )), where-

γ(t) =

(
1 −tβ−1

0 1

)
·
(

1 0
tβ 1

)
·
(

1 tβ−1

0 −1

)
So, the triple [E ⊕ F, F ⊕ E, β ⊕ β−1] is elementary and for any element
[E,F, β], we have got its inverse [F,E, β−1].

Remark 4.5.3 Consider φ : A → A ′ and the following homomorphism j :
K(φ) → K(A) given by j([E,F, β]) = [E] − [F ]. If A ′ = 0, [E,F, β] is
essentially determined by E and F and j is an isomorphism.

So, K(A) = K(φ) if A ′ = 0.

Now we will determine easier to implement conditions of equivalence of class
of triples and some other technical results which is used in 2.2.

Proposition 4.5.2 Let [E,F, β1] and [E,F, β2] are elements of K(φ), where
β1 and β2 are homotopic within IsoA′(φ(E), φ(F )). Then [E,F, β1] = [E,F, β2].
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Proof We will show [E,F, β1]− [E,F, β2] = 0 in K(φ) ( Here the class of el-
ementary triples is the 0 of the monoid). [E,F, β1]− [E,F, β2] = [E,F, β1] +
[F,E, β−1

2 ] = [E ⊕ F,E ⊕ F, α]. α ∈ Aut(φ(E) ⊕ φ(F )) is represented by(
0 −β−1

2

β1 0

)
. As β2 is homotopic to β1 within IsoA′(φ(E), φ(F )), α is ho-

motopic to

(
0 −β−1

1

β1 0

)
, which is homotopic to Idφ(E)⊕φ(F ), using the proof

of proposition 4.5.1.

Proposition 4.5.3 Let, [E,F, β1], [F,G, β2] ∈ K(φ). Then [E,F, β1]+[F,G, β2] =
[E,G, β2β1].

Proof [E,F, β1] + [F,G, β2] = [E ⊕F, F ⊕G, β1⊕ β2] = [E ⊕F,G⊕F, γ1].

Here γ1 =

(
0 −β2

β1 0

)
. Now [E,G, β2β1] = [E ⊕ F,G ⊕ F, β2β1 ⊕ Idφ(F )] =

[E ⊕ F,G ⊕ F, γ2]. Now γ1γ2 =

(
0 −β2

β−1
2 0

)
. So, γ1γ2 is homotopic to

Idφ(E)⊕φ(F ) within Aut(φ(E) ⊕ φ(F )). So, γ1 is homotopic to γ2 within the
Aut(φ(E)⊕ φ(F )).

Example 4.5.1 Consider the functor φ : ξR → ξR. Here ξR is the category
of finite dimensional real vector spaces and φ(V ) = V ⊕ V . Now GLn(R),
for any n ∈ N, has two path connected components. The matrices of pos-
itive determinant and the matrices of negative determinant form these two
components. Let, beta : E ⊕ E → F ⊕ F be an isomorphism. For any
v ∈ Iso(F,E), the sign of the determinant of the composite (v ⊕ v) · β is
independent of v. We are considering

E ⊕ E F ⊕ F E ⊕ E.β v⊕v

Now the only possible triples are of form [E,E ′, α], where E and E ′ are iso-
morphic and it is totally characterized by the sign of determinant of α. So,
K(φ) ≈ Z2. For the similar functor φ in case of ξC, K(φ) = 0.

Now we will introduce the exact sequence for which all this formulations are
done.

Theorem 4.5.1 Let, φ : A → A ′ be a quasi-surjective, Banach functor. Let
i : K(φ)→ K(A) be defined by i([E,F, α]) = [E]−[F ] and j : K(A)→ K(A ′)
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is defined as follows. j([E]− [F ]) = [φ(E)]− [φ(F )]. Then we have the fol-
lowing exact sequence-

K(φ) K(A) K(A ′)i j

Proof a. Im(i) ⊆ Ker(j)
Let [E,F, β] ∈ K(φ). j · i([E,F, β]) = j([E]− [F ]) = [φ(E)]− [φ(F )] = 0, as
β : φ(E)→ φ(F ) is an isomorphism.

b. Ker(j) ⊆ Im(i)
Let [E] − [F ] ∈ K(A) such that [φ(E)] − [φ(F )] = 0, then using corollary
4.4.1, ∃E ′ ∈ A ′ such that φ(E) ⊕ E ′ ≈ φ(F ) ⊕ E ′. As the functor φ is
quasi-surjective, ∃ T ∈ A and ∃ T ′ ∈ A ′ such that φ(T ) ≈ E ′ ⊕ T ′. So,
φ(E⊕T ) ≈ φ(E)⊕E ′⊕T ′ is isomorphic to φ(F ⊕T ) ≈ φ(F )⊕E ′⊕T ′. So,
[E]− [F ] = [E ⊕ T ]− [F ⊕ T ] = i([E ⊕ T, F ⊕ T, γ]). Here γ : φ(E ⊕ T )→
φ(F ⊕ T ) is an isomorphism.

Theorem 4.5.2 Considering the premise of theorem 4.5.1, if there exists a
functor Ψ : A ′ → A ′ such that φΨ = IdA′, we get the following split exact
sequece-

0 K(φ) K(A) K(A ′) 0i j

Proof a. i injective.
Let i([E,F, β]) = 0. We want to show that [E,F, β] is an elementary
triple. So, ∃ T ∈ Ob(A) such that E ⊕ T ≈ F ⊕ T . Now, [E,F, β] =
[E ⊕ T, F ⊕ T, β ⊕ Id] := [H,H, α]. We denote H := E ⊕ T ≈ F ⊕ T . We
get the following diagram that commutes:

φ(H) φ(H)

φ(φΨ(H)) φ(φΨ(H))

α

γ γ

φΨ(α)

γ is an isomorphism taken to make the diagram commute.Using proposi-
tion 4.5.3, we get [H,H, α] = [H,φΨ(H), γ] + [Ψφ(H),Ψφ(H), φΨ(β)] +
[Ψφ(H), H, γ−1]. Using proposition 4.5.1, [H,Ψφ(H), γ] + [Ψφ(H), H, γ−1] =
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0 Because of the commutativity of the following diagram [Ψφ(H),Ψφ(H), φΨ(β)] =
0 in K(φ), being isomorphic to [Ψφ(H),Ψφ(H), Id].

φ(Ψφ(H)) (φΨ)(φ(H))

φ(Ψφ(H)) (φΨ)(φ(H))

φΨ(α)

φΨ(α) Id

Id

b. j surjective
Even without the existence of the functor Ψ, j is anyway surjective because
of quasi-surjectivity of φ. For any [E ′1] − [E ′2] ∈ K(A ′); ∃ T ′1, T ′2 ∈ Ob(A ′)
and T1, T2 ∈ Ob(A) such that φ(T1) = E ′1 ⊕ T ′1 and φ(T2) = E ′2 ⊕ T ′2. So,
φ([T1]− [T2]) = [E ′1 ⊕ T ′1]− [E ′2 ⊕ T ′2] = [E ′1]− [E ′2].

Now some technical results will be introduced to give a simpler description
of the elementary triples in K(φ), when φ is a full Banach functor.

Remark 4.5.4 Let C,C ′ be two Banach algebras with unit and f : C → C ′

is a continuous map, which is surjective. Let, σ : I → C ′ be another continu-
ous map such that Im(σ) ⊆ C ′∗ (The group of invertibles in C (respectively
C ′ is denoted by C∗ (or C ′∗). ∃ a ∈ C∗ such that f(a) = σ(0). Then ∃
a′ ∈ C∗ such that f(a′) = σ(1).

Consider X, a compact space and C(X) denotes the Banach algebra of
all continuous functions from X to C. In that case if if f : C → C ′ (with
properties same as proposition 4.5.4) gives rise to a surjective homomorphism
f ∗ : C(I) → C ′(I). We get this just by using the previous result for f ∗ :
C(I)→ C ′(I).

Proposition 4.5.4 Let φ : A → A ′ is a full Banach functor and [E,E, β] =
0 in K(φ). Then [E,E, β] ≈ [E,E, Id].

Proof Consider the Banach algebras (E) and End(φ(E)). As φ is full, φ
induces a surjective ring homomorphism between End(E) and End(φ(E)).
As there is a continuous path within Aut(φ(E)) between Id and β, we have
got a σ : I → End(φ(E))∗, where σ(0) = Id, σ(1) = β. Using remark 4.5.4,
∃ α ∈ Aut(E) and φ(α) = β.
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φ(E) φ(E)

φ(E) φ(E)

β

φ(α) φ(Id)

Id

Because of the commutativity of the following diagram, [E,E, β] is isomor-
phic to [E,E, Id].

So, we get a simpler definition ofK(φ), when φ is full, quasi-surjective Banach
functor. In that we can replace the definition of elementary triples by the
triples of form [E,E, Id] or [E1, E2, α] of the form defined in corollary 4.5.1.

Corollary 4.5.1 Let, φ : A → A ′ be a full, quasi-surjective Banach functor.
An element [E,F, β] = 0 in K(φ) if and only if ∃ H ∈ Ob(A) and α : E⊕G→
F ⊕G, an isomorphism, where φ(α) = β ⊕ Idφ(H).

Proof If [E,E, β] is an elementary triple, then using proposition 4.5.4,
there exists elementary triples [G,G, Id], [H,H, Id] ∈ K(φ) such that [E ⊕
H,F ⊕H, β ⊕ Idφ(H)] ≈ [G,G, Idφ(G)]. Let’s consider f1 : E ⊕H → G and
f2 : F ⊕ H → G, the corresponding isomorphisms. The following diagram
commutes.

φ(E ⊕H) φ(F ⊕G)

φ(G) φ(G)

β⊕Idφ(H)

φ(f1) φ(f2)

Idφ(G)

4.6 K−1 of a Banach category

Here we will try to define the functor K−1(A), for a Banach category A. The
main aim is to construct the connecting homomorphism, for a Banach functor
φ : A → A ′, δ : K−1(A ′)→ K(φ), which makes the following sequence exact:

K−1(A) K−1(A ′) K(φ) K(A) K(A ′)δ
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Remark 4.6.1 Let A be a Banach category (although for the definition
additive category would suffice). Let’s consider pairs of the following forms:
(E, β). Here E ∈ Ob(A) and β ∈ Aut(E). Two pairs (E1, β1) and (E2, β2)
are said to be isomorphic if ∃ h : E1 → E2, an isomorphism that makes the
following diagram commute.

E1 E2

E1 E2

h

β1 β2

h

A pair (E, β) is considered elementary if β is homotopic to IdE within
Aut(E). We define (E1, β1) + (E2, β2) = (E1 ⊕ E2, β1 ⊕ β2).

Consider the collection of all such pairs with respect to the following
equivalence relation: (E1, β1) ∼ (E2, β2) if ∃ τ1, τ2, elementary triples such
that (E1, β1)+τ1 ≈ (E2, β2)+τ2. This collection (quotiented out by the above
mentioned equivalence relation) is a group with respect to the addition of
pairs defined and is said to be K−1(A). In K−1(A) the class of a pair (E, β)
is denoted by [E, β]
To show K−1(A) indeed is a group, we will show that for any class of pair
[E, β], [E, β−1] is its inverse (ie. [E, β] + [E, β−1] = [0] in K−1(A).)
Now, [E, β] + [E, β−1] = [E ⊕ E, β ⊕ β−1]. β ⊕ β−1 can be represented by
the following matrix-(

β 0
0 β−1

)
=

(
0 −β
β−1 0

)(
0 1
−1 0

)
So,

(
β 0
0 β−1

)
is homotopic to IdE⊕E within Aut(E⊕E) and (E⊕E, β⊕β−1)

is an elementary pair and we are done.

Now we will show some technical results in order to provide a simpler de-
scription of K−1(A).

Proposition 4.6.1 If β1, β2 ∈ Aut(E) such that β1 is homotopic to β2

within Aut(E), then in K−1(A), [E, β1] = [E, β2].

Proof [E, β1] − [E, β2] = [E, β1] + [E, β−1
2 ] = [E ⊕ E, β1 ⊕ β−1

2 ]. By as-

sumption

(
β1 0
0 β−1

2

)
is homotopic to

(
β1 0
0 β−1

1

)
within Aut(E⊕E), which

again using remark 4.6.1 is homotopic to IdE⊕E, within Aut(E ⊕ E).
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Proposition 4.6.2 In K−1(A), [E, β1] + [E, β2] = [E, β1β2] = [E, β2β1]

Proof [E, β1] + [E, β2] = [E ⊕ E, β1 ⊕ β2] and [E, β1β2] = [E ⊕ E, β1β2 ⊕
IdE]. So, we want to show that β1 ⊕ β2 is homotopic to β1β2 ⊕ IdE within
Aut(E ⊕ E). Now (

β1 0
0 β2

)−1(
β1β2 0

0 1

)
=

(
β2 0
0 β−1

2

)
(
β2 0
0 β−1

2

)
is homotopic to IdE⊕E within Aut(E ⊕ E). Again [E, β2β1] =

[E, β2] + [E, β1] = [E, β1] + [E, β2].

Proposition 4.6.3 In K−1(A), [E, β] = 0 if and only if exists F ∈ Ob(A),
such that β ⊕ IdF and IdE⊕F are homotopic within Aut(E ⊕ F ).

Proof Let’s consider [E, β] = [0] (ie.(E, β) is an elementary pair). By
definition ∃ (F, α), (F ′, α′) ∈ K−1(A) (elementary pairs) and g : E⊕F → F ′,
an isomorphism, which makes the following diagram commute.

E ⊕ F F ′

E ⊕ F F ′

g

β⊕α α′

g

So, β ⊕ α = g−1 · α′ · g, which is homotopic to g−1 · IdF ′ · g = IdE⊕F . As,
β ⊕ IdF and β ⊕ α are homotopic, we are done.
The converse is true by definition.

With the following theorem, the group K−1(A) can be defined in a much
easier way equivalently.

Theorem 4.6.1 In K−1(A), two elements [E, β1] = [F, β2] iff ∃ H ∈ Ob(A),
such that β1⊕ IdF ⊕ IdH and IdE⊕β2⊕ IdH are homotopic within Aut(E⊕
F ⊕H).

Proof Let, [E, β1] = [F, β2] ⇒ [E, β1] + [F, β2
−1] = 0 ⇒ [E ⊕ F, β1 ⊕

β−1
2 ] = 0. Using proposition 4.6.3, ∃H ∈ Ob(A), such that β1 ⊕ β−1

2 ⊕ IdH is
homotopic to IdE⊕F⊕H . Multiplying by IdE⊕β2⊕IdH , we get β1⊕IdF⊕IdH
is homotopic to IdF ⊕ β2 ⊕ IdH .
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Now a very interesting formulation of K−1 is given for a particular case.

Remark 4.6.2 Let’s cosider a Banach algebra A and L(A), the category
of finitely generated free (left or right) A modules. As A is a Banach al-
gebra, L(A) is a Banach category. We want to describe K−1(L(A)). Let’s
consider the directed system: GL1(A) → GL2(A) → .... → GLn(A) → ....
Let’s denote the direct limit of this system by GL(A). Now we will show
K−1(L(A)) and π0(GL(A)) are isomorphic as groups. (In π0(GL(A)), we
consider the group structure induced from matrix multiplication). Consider
the map γ : K−1(L(A))→ π0(GL(A)), given by γ takes ([Am, β]) to the class
of β in π0(GL(A)). This is well defined because according to computation in

remark 4.6.1,

(
β 0
0 Id

)
and

(
Id 0
0 β

)
are in the same path-connected compo-

nent in GL2n(A), using proposition 4.6.1, it makes sense. Using proposition
4.6.2, γ is a group homomorphism, which is injective because of proposition
4.6.3 and surjective by construction.

Remark 4.6.3 For any additive category A, in lemma 1.6.3, we have con-
structed its pseudo-abelian category A ′. We want to focus on K−1(A ′). A
functor φ : A → A ′ has been constructed. Now the group homomorphism
K(φ) is definitely not bijective. (For example we can think about, for any
Banach algebra with unit A, the the category of finitely generated (left) free
A-modules (L(A)) and its associated pseudo-abelian category consisting of
all finitely generated (left) projective A modules (P (A)). K(L(A)) ≈ Z but
K(P (A)) is usually hard to compute.)

But the homomorphism K−1(φ) : K−1(A)→ K−1(A′) is bijective.
Let, [E, β] ∈ K−1(A ′). Let, E1 ∈ A and F ∈ A ′, such that E⊕F ≈ φ(E1).

Let’s denote this isomorphism by f . Now [E, β] = [E⊕F, β⊕IdF ] = [E1, α] ∈
K−1(A), where α is such that φ(α) = f−1 · (β ⊕ IdF ) · f . So K−1(φ) is
surjective.

If [E, β] ∈ K−1(A) such that K−1(φ)([E, β]) = 0 ∈ K−1(A ′). Using
proposition 4.6.3, ∃ F ∈ A ′(wlog we can take it of form φ(F ′) using quasi-
surjectivity of φ) such that φ(β) ⊕ Idφ(F ′) and Idφ(E)⊕φ(F ′) are homotopic
within Aut(φ(E) ⊕ φ(F ′)). So, [E, β] = [E ⊕ F ′, β ⊕ IdF ′ ] = 0 ∈ K−1(A).
So, K−1(φ) is injective.

Now we will be considering a quasi-surjective Banach functor φ : A → A ′

and trying to construct the connecting homomorphism δ : K−1(A ′)→ K(φ).
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Remark 4.6.4 Let’s consider an element [E ′, β′] ∈ K−1(A ′). Because of
quasi-surjectivity of φ, ∃F ′ ∈ Ob(A ′) and ∃F ∈ Ob(A) such that we get an
isomorphism g : E ′ ⊕ F ′ → φ(F ). Let’s denote the isomorphism from φ(F )
to φ(F ) by β, that makes the following diagram commute:

E ′ ⊕ F ′ φ(F )

E ′ ⊕ F ′ φ(F )

g−1

β′⊕Id′F β

g−1

Now we define δ([E ′, β′]) := [F, F, β].

At first, we have to show δ makes sense, that is it does not depend on
the choice of F ′ and g′. Let’s consider another choices H ′, H, g′, for which
we get a new element [H,H, β] = δ([E ′, β′]).

As [F, F, β] = [F⊕H,F⊕H, β⊕1]. Now we get the following commutative
diagram:

(E ′ ⊕ F ′)⊕ (E ′ ⊕H ′) φ(F )⊕ φ(H)

(E ′ ⊕ F ′)⊕ (E ′ ⊕H ′) φ(F )⊕ φ(H)

g−1⊕g′−1

(β′⊕IdF ′ )⊕(IdE′⊕IdH′ ) β⊕Idφ(H)

g−1⊕g′−1

Now, (β′⊕ IdF ′)⊕ (IdE′ ⊕ IdH′) is homotopic to (IdE′ ⊕ IdH′)⊕ (β′⊕ IdF ′)
within Aut(E ′ ⊕ F ′ ⊕ E ′ ⊕H ′).

(E ′ ⊕ F ′)⊕ (E ′ ⊕H ′) φ(F )⊕ φ(H)

(E ′ ⊕ F ′)⊕ (E ′ ⊕H ′) φ(F )⊕ φ(H)

g−1⊕g′−1

(IdE′⊕IdH′ )⊕(β′⊕IdF ′ ) Idφ(E)⊕β

g−1⊕g′−1

As the last diagram commutes and β⊕Idφ(H′) and Idφ(E)⊕β are homotopic,
we have [E⊕H,E⊕H, β⊕Idφ(H)] = [E⊕H,E⊕H, Idφ(E)⊕β′] = [H,H, β′].
So, δ is well-defined.

At the same time we have shown that δ is natural.

Theorem 4.6.2 Using the notation used in theorem 4.5.1, we get the fol-
lowing exact sequence:
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K−1(A) K−1(A ′) K(φ) K(A) K(A ′)
j′ δ i j

Proof a. exactness at K(φ) : Because φ is quasi-surjective, for any element
in K−1(A ′), without loss of generality, we can assume E ′ to be of form φ(E).
Now, δ([E ′, β′]) = [E,E, β′]. i · δ([E ′, β′]) = i([E,E, β′]) = 0.

Let [E,F, β] ∈ K(φ) and i([E,F, β]) = 0 = [E]− [F ]. Using proposition
4.4.1, ∃ H ∈ Ob(A) and there is an isomorphism g : E ⊕ H → F ⊕ H. So,
[E,F, β] = [E⊕H,F ⊕H, β⊕Idφ(H)] = [E⊕H,F ⊕H,φ(g−1) · (β⊕Idφ(H))].
As [E ⊕H,F ⊕H,φ(g−1) · (β ⊕ Idφ(H))] and [E ⊕H,F ⊕H, β ⊕ Idφ(H)] are
isomorphic, δ([φ(E)⊕ φ(T ), β]) = [E,F, β]

b. exactness at K−1(A ′): Let, [E, β] ∈ K−1(A). δ·j′([E, β]) = [E,E, β] =
0 as [E,E, β] and [E,E, Idφ(E)] are isomorphic.

Again, using quasi-surjectivity of φ, we can choose an arbitrary element
[E ′, β′] ∈ K−1(A ′) such that E ′ = φ(E), for some E ∈ Ob(A). If δ([E ′]) =
[E,E, α′] = 0, there are [H1, H1, η1] and [H2, H2, η2], two elementary triples
and isomorphisms u1 : E ⊕H1 → H2 and u2 : E ⊕H1 → H2, such that the
following diagram is commutative:

φ(E)⊕ φ(H1) φ(E)⊕ φ(H1)

φ(H2) φ(H2)

β′⊕η1

φ(u1) φ(u2)

η2

So, (E,E, β′)⊕ (H1, H1, η1) ≈ (H2, H2, η2).
Now, we have [E ′, β′] = [φ(E) ⊕ φ(H1), β′ ⊕ η1] = [φ(H2), φ(u1)φ(u−1

2 )] =
[φ(H2), φ(u1 · u−1

2 )] = j′([H, u1 · u−1
2 ]).

The rest is done by theorem 4.5.1.

4.7 Canonical line bundle over CP 1

Here, we want to prove a technical result about the canonical line bundle H
over CP 1 ∼= S2, which is used throughout the text.

Theorem 4.7.1 Let, 1 be the trivial line bundle. Then (H⊗H)⊕1 ≈ H⊕H.
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Let’s look at the clutching functions (here these are maps S1 → GL2(C))

of (H ⊗ H) ⊕ 1 and H ⊕ H. These are z →
(
z2 0
0 1

)
and z →

(
z 0
0 z

)
respectively. As, GL2(C) is path connected, we have a path γ between Id
and the matrix that interchanges the elements of the main diagonal of any
matrix in GL2(C). Now, the path (z ⊕ 1)γ(1 ⊕ z) : I → GL2(C) gives a
required homotopy between the two clutching functions. So, we are done.

4.8 Module structure on K̃∗(X,A)

Let’s consider a compact pair (X,A). We have defined and used the ring
K̃∗(X). Here, at first, we will give K̃∗(X,A) and K̃∗(A), K̃∗(X) module
structure.

Consider the inclusion map i : A ↪→ X. For α ∈ K̃∗(A) and ε ∈ K̃∗(X),
ε · α := i∗(ε)α.

Let’s consider the diagonal map: X → X ∧X. It induces a well defined
map X/A→ X ∧X. So, we get an external product K̃∗(X)⊗ K̃∗(X,A)→
K̃∗(X,A).

Proposition 4.8.1 The following exact sequence is an exact sequence of
K̃∗(X) modules and module homomorphisms.

K̃∗(X,A) K̃∗(X)

K̃∗(A)

4.9 Some associated fiber bundles

Let’s consider a vector bundle E over X. We can associate a fiber bundle
P (E) over X, whose fiber P (E)x is the projective space associated to the
vector space Ex, P (Ex). Here, x ∈ X, any arbitrary point.
This is the projective bundle, associated to E over X.
This space can be topologized as the quotient space of the sphere bundle
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S(E), where we factor out scalar multiplication in each fiber.
For any x ∈ X, we get a neighborhood U of x, such that EU ∼= U × kn, for
some non-negative integer n. So, P (E)U ∼= U × kP n−1. Here, k = C or R.

Now, again we consider an n-dimensional vector bundle E over X. We
construct the associated flag bundle F (E) over X.
Here, F (E) is the subspace of the n-fold product P (E)×P (E)× ...×P (E),
consisting of n-tuples of orthogonal lines from the fiber of E. The fiber of
F (E) consists of n-tuples of orthogonal lines through origins in kn. Local
triviality follows using the argument given for P (E).
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