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Abstract 

Electromicrobiology deals with the study of extracellular electron transfer (EET) processes 

between microorganisms and insoluble, solid-state electron donors or acceptors, and their 

roles in different environments. Different microorganisms are known to possess EET 

capabilities to fulfil their respiratory and metabolic requirements in various environments. 

EET seems to be a widespread metabolic trait by which microorganisms use multivalent 

metal ions associated with minerals and other insoluble compounds as either a sink or source 

for the electrons. It is classified into two types, viz. outward EET (from cells to electron 

acceptor) and inward EET (from an electron donor to cells). The microorganisms bearing 

such unique capabilities are termed as Electroactive Microorganisms (EAMs). Based on the 

type of EET, EAMs are further categorized into two groups, namely, exoelectrogens and 

electrotrophs. The microorganisms possessing outward EET are termed as exoelectrogens, 

whereas the microorganisms which take up electrons from an extracellular electron donor to 

uphold their metabolic processes are termed as electrotrophs. Exoelectrogens and outward 

EET mechanisms have been well documented and understood, whereas very little is known 

about the electrotrophs and the inward EET mechanisms they possess. Furthermore, not much 

research has been conducted on the electrotrophic microorganisms. Only a handful of pure 

cultures of electrotrophs are known to date, including, nitrate or sulphate reducing 

microorganisms. More importantly, the extreme environments have been barely explored for 

such microorganisms, which can be of interest for biotechnological applications. 

This study aimed at investigating the EET capable anaerobic nitrate-reducing bacteria (NRB) 

and sulphate-reducing bacteria (SRB) from a hypersaline-alkaline soda lake (Lonar Lake, 

Maharashtra, India), which is known to host a wide diversity of haloalkaliphilic 

microorganisms. Two different approaches were used for this purpose. The first one was 

based on the use of electrochemical cultivation, wherein the electrode, i.e., cathode poised at 

a specific electric potential, was used as the source of electrons. The second approach 

involved the enrichment in serum flasks with soluble electron donor source and further 

testing of the enriched culture for its ability to draw electrons from the cathode via EET for 

growth. A highly saline (20 g NaCl/L) and alkaline (9.5 pH) growth medium supplemented 

with either acetate (10 mM) or bicarbonate (10 mM) was used for enrichment experiments. 

The successful enrichment of NRB was achieved via both the enrichment approaches. 

However, SRB was enriched via the electrochemical approach only. Particularly the increase 
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in the cathodic reduction current confirmed the enrichment of both electrotrophic NRB and 

SRB. The cyclic voltammetry recorded with the enriched NRB revealed two redox-moieties 

with the formal potentials of -0.622 V and -0.433 V vs. Ag/AgCl. Further, the decrease in 

nitrate and sulphate concentrations in the electrochemical reactors confirmed the growth of 

NRB and SRB, respectively. In the case of serum flasks, the increase in optical density, and 

the decrease in nitrate concentration confirmed the enrichment of NRB. Its EET capability of 

this culture remains to be checked via the electrochemical cultivation approach. Microscopic 

analysis of the enriched cultures revealed the abundance of oval-shaped cells in all cases.  

These results indicate the successful enrichment of the electrotrophic NRB and SRB from the 

sediment samples of an extreme halo-alkaline environment. Their EET capabilities will be 

confirmed via additional electrochemical tests. Further characterization of the enriched 

cultures through 16S rRNA metagenome sequencing is envisioned to understand the 

dominant haloalkaliphilic electrotrophs. It will be followed up by isolation of the novel 

electrotrophs and identification and characterization of the observed redox-moieties involved 

in the inward EET processes. Detailed understanding of the haloalkaliphilic electrotrophic 

microorganisms is expected to increase our existing knowledge of this novel microbial group 

and electron uptake mechanisms, which have implications for strengthening 

electromicrobiology discipline and developing microbial electrochemistry-driven 

biotechnologies.  
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Chapter 1 

Introduction 

1.1. Electromicrobiology 

Electromicrobiology is an emerging (Environmental) Microbiology sub-discipline that 

explores the electrochemical interactions or electron transfer processes between 

microorganisms and solid-state electron donors or acceptors as well as its implications in 

the environment (Lovley, 2012). The involved electrochemical interactions or electron 

transfer, either inward or outward of the microbial cell and from or to the solid-state 

electron donor or acceptor, is known as Extracellular Electron Transfer (EET). A wide 

diversity of microorganisms is known to possess the EET trait. Examples include several 

species belonging to Shewanella and Geobacter genera, which use EET to sustain their 

respiratory or metabolic processes in various environments (Coursolle et al., 2010; 

Nealson et al., 2017). Electromicrobiology can be pursued and applied using 

bioelectrochemical systems (BES). The electrochemical systems utilizing microbial 

catalysts for different applications based on anodic and cathodic reactions or processes 

are termed as microbial BES (Lovley, 2006; Rabaey et al., 2007). 

1.2. Bioelectrochemical systems (BES) 

Microbial BES can be of different types, viz. Microbial Fuel Cell (MFC), Microbial 

Electrosynthesis Cell (MES), Microbial electrolysis cell (MEC), Microbial Solar Cell 

(MSC), and Microbial desalination cell (MDC) based on the target process and 

application (Katz et al., 2003). The basic working principle of BES is substrate oxidation 

either electrochemically or microbially linked to transfer of liberated energy (electrons) to 

the electrode (anode) and later to the cathode via an external circuit where they are used 

to reduce several oxidized substrates viz. sulphate, nitrate, CO2, heavy metals, etc. 

(Bajracharya et al., 2016). BES can be used for various biotechnological applications like 

H2 production, wastewater treatment, electricity production, value-added chemical 

production, CO2 sequestration, and bioremediation of heavy metals, polyaromatic 

hydrocarbons, dyes, etc. The microbial catalysts that possess EET capabilities and used 
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widely in BES are generally termed as electroactive microorganisms (EAM) (Lovley, 

2012; Nealson et al., 2016). These are cost-efficient (can be generated from inexpensive 

feedstock), eco-friendly (less waste generation and no hazardous compounds are used), 

and are sustainable (self-repair and replicate) than the conventional or chemical catalysts 

(Ali et al., 2018; Chen et al., 2008). 

1.3. Electroactive microorganisms (EAM) 

EAM possess either inward or outward EET or both capabilities. Some of them also 

possess the capabilities to transfer electrons to another microorganism, either belonging to 

the same or other species directly without the involvement of any soluble mediator. This 

process of transferring electrons between two microbial species is known as Direct 

Interspecies Electron Transfer (DIET) (Logan et al., 2019; Rotaru et al., 2014; Kato et 

al., 2012). Among EAM, the microorganisms capable of transferring electrons 

extracellularly to the solid terminal electron acceptors such as mineral oxides or 

electrodes are known as Exoelectrogens (Lovley, 2012). There are several known 

examples of exoelectrogens (Kiran et al., 2019).  The most well-studied EAM include 

Shewanella and Geobacter spp. Exoelectrogens can achieve EET via direct and 

indirect/mediated mechanisms. The direct EET involves electron transfer through either 

cell membrane-bound proteins or cytochromes or conductive nanowires and pili. The 

indirect/mediated EET involves the electron transfer with the help of some reduced 

mediators or compounds such as flavins, H2, etc. (Lovley, 2008). Due to the presence of 

these electronic properties, these biofilms and associated components are known to act as 

supercapacitors, transistors and possess metal like conductivities (Malvankar et al., 2011; 

Malvankar et al., 2012). 

The microorganisms that can achieve inward EET, i.e., capable of drawing electrons from 

the solid electron donors such as reduced minerals or electrodes to achieve their 

respiration and other metabolic processes, are termed as Electrotrophs. These microbes 

can use the gained energy (electrons) to reduce oxidized substrates like Carbon Dioxide, 

Nitrate, Sulphate, etc. Hence, they can be used to treat nitrate, sulphate or heavy metals 

containing wastewaters and to produce some value-added chemical products such as 

short-chain fatty acids from CO2 (Lovley, 2011; Lovley, 2012). Although the modes of 

electron transfer (either direct or mediated) are postulated for inward EET, the 
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components that are involved in EET remain poorly understood (Rosenbaum et al., 

2011; Song et al., 2018). 

1.3.1. Electrotrophic microorganisms 

Some pure and several mixed cultures, CO2, O2, and heavy metal ions reducing 

microorganisms have been reported to uptake electrons directly from the cathode 

(Kiran et al. 2019). However, most remain poorly studied for EET mechanisms and 

components. Some of the prominent electrotrophic microorganisms include sulphate-

reducing bacteria (SRB) and nitrate-reducing bacteria (NRB) (Su et al., 2012; Cordas et 

al., 2008; Tingzhen et al., 2019).  

Sulphate-Reducing Bacteria (SRB) 

SRB group belongs to prokaryotes that use SO4
2- as a terminal electron acceptor (TEA) to 

achieve their respiration in diverse anoxic environments and plays a significant role in the 

global cycling of carbon and sulphur (Jørgensen, 1982). Most of the known sulphate-

reducing microbial communities belong to Deltaproteobacteria, Nitrospirae, Firmicutes, 

Thermodesulfobacteria phyla among bacteria and Euryarchaeota, Crenarchaeota phyla 

among archaea (Rabus et al., 2006; Muyzer et al., 2008). Some haloalkaliphilic SRB 

isolated from soda lakes across the world belong to Desulfonatronovibrio, 

Desulfonatronum and Desulfonatronospira genera (Pikuta et al., 1998; Sorokin et al., 

2008; Sorokin et al., 2008; Sorokin et al., 2011). A study on enriching haloalkaliphilic 

SRB using only high-throughput 16S rDNA sequencing revealed the dominance of 

different genera such as Halanaerobium, Halothiobacillus, Desulfonatronum, 

Syntrophobacter, Fusibacter, etc. (Zhou et al., 2015). SRB are known to convert sulphate 

to sulphide by oxidising organic substance or hydrogen (dissimilatory sulphate 

reduction). As shown in reaction R1, the whole process involves eight electrons to 

convert sulphate to sulphide through sulphite as an intermediate (Agostino et al., 2018). 

After entering the cell membrane, sulphate is converted to APS (Adenosine 5′-

phosphosulfate) by ATP (Adenosine Triphosphate), which is then converted to sulphite 

and finally to sulphide using APS reductase and sulphite reductase complex, respectively 

(Peck et al., 1959; Lampreia et al., 1994; Fike et al., 2016).  

SO4
2− + 8e− + 10H+  ↔  H2S + 4H2O                   R1 
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Nitrate-Reducing Bacteria (NRB) 

NRB group uses NO3
- as the terminal electron acceptor in an anoxic environment to 

complete their respiration and contribute significantly in the global nitrogen cycle by 

recycling nitrate to nitrite (R2) (Winnerberger, 1982). A few studies on mixed culture and 

pure biofilms of electrotrophic NRB have been reported (Tingzhen et al., 2019). The pure 

culture isolates of electrotrophic NRB includes Thiobacillus denitrificans (Yu et al., 

2015), Pseudomonas alcaliphila (Su et al., 2012), and Pseudomonas aeruginosa (Niepa 

et al., 2017). While the mixed culture biofilms of NRB were found rich with the species 

of Thiobacillus (Pous et al., 2014), Rhodocyclales and Burkholderiales (Gregoire et al., 

2014). Some studies have reported on switchable electroactive biofilms dominated with 

Geobacter spp. that is capable of complete denitrification. Such biofilms can perform 

both oxidation and reduction by polarity reversion process (Lianga et al., 2019; Pous et 

al., 2015).  

NO3
− + 2e− + 2H+  ↔  NO2

− + H2O                    R2 

As it has been studied that nitrate crusts and certain microorganisms are responsible for 

the decrementing material surfaces in cultural heritages (Webster et al., 2006; Gioventu et 

al., 2011; Troina et al., 2013), various NRB such as Pseudomonas denitrificans, 

Pseudomonas stutzeri, Pseudomonas aeruginosa, Pseudomonas pseudoalcaligenes, and 

Paracoccus denitrificans are used to remove nitrate crusts from the surface of stony 

materials (Ranalli et al., 1996; Ranalli et al., 2003). Haloalkaliphilic NRB can also be 

used to treat and to ensure no further microbial growth on material surfaces, even in 

neutral conditions (Romano et al., 2018).  

Both nitrate and sulphate are toxic to humans. For instance, nitrate can cause ‘blue baby 

syndrome’ in infants. Nitrate can also be converted to other toxic compounds that can be 

carcinogenic to humans (Winnerberger et al., 1982; Claudio et al., 2005). While the 

inappropriate sulphate levels in drinking water can cause diarrhoea and dehydration in 

humans and possess a severe risk to infants (Pineau, 2008; Silva et al., 2012). Different 

conventional approaches including precipitation, adsorption, nano-filtration, ion 

exchange, etc. and electrochemical treatment, ion exchange, reverse osmosis, 

electrodialysis and heterogeneous have been used for sulphate and nitrate removal, 

respectively (Ashane et al., 2018; Park et al., 2009; Gupta, 2016; Reinsel 2015). 
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It has been reported that high concentrations of sulphide are even toxic to SRB 

(Kalyuzhnyi et al., 1997; Reis et al., 1992). In haloalkaliphilic conditions, hydrogen 

sulphide gas is converted into sulphide ions that are not capable of entering microbial 

cells (Mora-Naranjo et al., 2003). Removal of sulphate at these conditions using 

extremophiles has an advantage over normal conditions (Jing, et al., 2013; Wu et al., 

2009).  

Although several studies have reported on nitrate and sulphate removal in BES, only a 

few pure cultures of electrotrophic SRB and NRB are known to date. Furthermore, very 

little is known about the inward EET mechanisms they possess. Importantly, the extreme 

environments have barely been explored for such microorganisms. Studying such 

microorganisms will not only add to the existing knowledge about electrotrophs and their 

EET mechanisms but would also probably have implications to astrobiology (Shrestha et 

al., 2018; Babu, et al, 2015; Dopson, et al, 2016). Therefore, in this study, we aimed to 

explore a highly saline and alkaline environment of Lonar Lake, located at Buldhana 

District, Maharashtra, India for enriching and isolating electrotrophic SRB and NRB. The 

sediments of this lake have been reported to be rich in sulphate and nitrate content (Borul 

et al., 2012; Sengupta et al., 1997; Misra et al., 2009; Koshy et al., 2012). It is a 

hypersaline soda lake that supports a wide diversity of haloalkaliphilic microorganisms 

(Borul et al., 2012; Sengupta et al., 1997). For enriching haloalkaliphilic electrotrophs, 

we used two different anaerobic enrichment approaches. The first one was based on the 

use of electrochemical cultivation, wherein the electrode, i.e., cathode poised at a certain 

electric potential, is used as the source of electrons. The second approach involved the 

enrichment in serum flasks with mainly a soluble electron donor source and further 

testing of the enriched culture for its ability to draw electrons from the cathode electrode 

via EET for growth. It was then followed by the understanding of their EET capabilities 

and morphological features via electrochemical and microscopic techniques, respectively. 
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Chapter 2 

Materials and methods 

2.1. General experimental conditions 

All chemicals and gases were obtained from either Sigma-Aldrich or SRL chemicals. For 

electrochemical and serum flask enrichments, all the reactors were operated at 23±2 ºC 

and 30±2 ºC, respectively (Kumar et al., 2013).  All the experiments were conducted in at 

least triplicates under strictly anaerobic conditions. All the electric potentials, either 

applied or reported, are with respect to 3.5 M KCl Ag/AgCl reference electrode (0.205 V 

vs. SHE (standard hydrogen electrode)). The pH and salinity of the microbial growth 

medium were maintained at 9.5 and 20 g/L throughout the experiments. 

2.2. Sediment sampling and characterization 

Sediment samples from a depth of up to ~1 ft. from three sampling sites located at the 

periphery of the Lonar Lake were collected in the amber-coloured plastic sampling 

bottles. The sampling was conducted in the monsoon season in August 2019. This 

reduced the possible physiochemical variation that could be present in the samples due to 

the location variations (Table 2). When not in use, all bottles were stored airtight at 4 ºC. 

The sediment samples were analyzed for different physical and chemical parameters by 

following the standard analytical protocols as per APHA 2012. These include pH, 

salinity, conductivity, ammonia, COD, phosphate, sulphate, and nitrate. 

2.3. The experimental set-up, growth medium and inoculum source 

For the enrichment of electrotrophic microorganisms, serum flask and electrochemical 

cultivation approaches were used. Before starting the enrichment experiments, the 

inoculum was prepared by mixing the sediment samples in the modified M9 medium 

(Patil et al., 2015) (Table 1) followed by sonication and centrifugation for 10 minutes. 

Then the suspension was used to inoculate the serum flasks and electrochemical reactors. 
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Table 1: Microbial growth medium composition (9.5 pH and 20 g/L salinity).  

S. No. Components Concentration (g/L) 

1. NaH2PO4 2.69 

2. Na2PO4 4.33 

3. NaCl 20 

4. Na2CO3 4.2 

5. KCl 0.13 

6. NH4Cl 0.30 

7. Vitamins* 12.5 ml/L 

8. Trace Metals** 12.5 ml/L 

(Note: for * and ** refer to appendix) 

Serum Flask experiments: 100 mL capacity serum flasks were used for the 

experiments (Figure 1). The total working volume for cultivating the microorganisms was 

fixed at 40 mL. It contained a modified M9 medium with pH 9.5 and salinity 20 g/L as a 

growth medium (Table 1). It was amended with either solid iron particles (Fe0) or acetate 

(10mM) as the source of electrons. In the case of Fe0 condition, bicarbonate served as the 

carbon source whereas, in the case of acetate, it served as both the carbon and electron 

source. For the enrichment of nitrate or sulphate reducing microorganisms, the medium 
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was supplemented with 100 mg/L of either nitrate or sulphate, which acted as the terminal 

electron acceptor. No other electron acceptors were provided in the medium. Flasks filled 

with the growth medium were sparged with 99.999% pure inert N2 gas for at least 10 

minutes to make it completely anaerobic. Then the flasks were sealed with butyl rubber 

stoppers and crimp seals followed by autoclaving. 

Along with the main enrichment experiments, two controls were also set up. The biotic 

control lacked the electron acceptor but contained all other components, including 

inoculum, whereas the abiotic control contained all components but the microbial 

inoculum. The main experiments were conducted in three fed-batch cycles. The sampling 

and analysis were done every 24 hours for the carbon source, pH, optical density (OD600), 

nitrate, sulphate, nitrite, and sulphide concentrations. In the case of enrichment using Fe0, 

the serum flasks were incubated undisturbed at 30 ̊ C. After successful enrichment of 3.5 

months of incubation, turbidity, Fe2+/3+ concentration, and sulphide concentration were 

analysed using standard protocols as per APHA 2012 (Greenberg, 1992). 

 

Figure 1: Serum Flask 

Electrochemical reactor setup: A two-chambered electrochemical reactor setup with a 

three-electrode configuration was used to enrich electrotrophic microorganisms that are 

capable of drawing electrons from the electrode (cathode) to reduce nitrate or sulphate 

(Figure 2) (Patil et al., 2012). The cathodic chamber hosted a graphite-working electrode 

with a projected surface area of (7.0125 cm2) and an Ag/AgCl reference electrode. The 

anodic chamber contained a Mixed Metal Oxide coated titanium electrode, which is an 
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efficient catalyst for water oxidation. A Proton Exchange Membrane (PEM) was used to 

separate both the anodic and cathodic chambers, and thereby the respective reactions 

(Figure 2). Both the electrodes and PEM were pre-treated before the installation in the 

system by following standard protocols. For instance, the acid-alkali treatment method 

was used to remove any kind of impurities present over the electrodes (Feng et al., 2010). 

The PEM treatment was done by heating it at 60-70°C for one hour each in distilled 

water, 2% H2O2, distilled water, H2SO4 solution (4.9 mL in 100 mL distilled water) 

followed by distilled water sequentially. Titanium wire was used as the current collector 

and to establish connectivity with the potentiostat channels. 

The same microbial growth medium, as used in the serum flask experiments, was used in 

the electrochemical reactors. The working electrode (cathode) acted as an analogue to the 

electron donor, and only bicarbonate was used as the carbon source.  

 

Figure 2: Schematic of the two-chambered electrochemical reactor setup. The 

proposed anodic and cathodic reactions are depicted. 
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2.4. Electrochemical enrichment of haloalkaliphilic nitrate and 

sulphate reducing electrotrophs 

The electrochemical enrichment experiments were conducted with the aid of a 

potentiostat (VMP3 multichannel electrochemical workstation, BioLogic Science 

Instruments, France). The cathodes were poised at the potential of -0.300 V and -0.755 V 

vs. Ag/AgCl for the enrichment of NRB and SRB, respectively, and the cathodic current 

drawn by the microorganisms as a function of time was recorded using 

Chronoamperometry (CA) technique. Before starting CA, cyclic voltammograms (CV) 

were recorded at two different conditions, namely before and after inoculation to check 

for any redox-active components in the medium and at the electrode surface and also to 

understand the development of any redox activity at the electrode after the experiments 

(Harnisch et al., 2012; Labelle et al., 2005; Carmona et al., 2011). For this purpose, a 

potential window from -1.0 V to 0.0 V and a scan rate of 1 mV/s were chosen. After the 

completion of one batch cycle, the reactors were replenished by a fresh complete growth 

medium. 

For testing the EET capabilities of the enriched NRB in the serum flask experiments 

conducted with acetate and Fe0 as the electron donors, two more electrochemical reactors 

were started. Two control experiments, abiotic-connected (without inoculation but 

applied with the desired potential) and biotic-unconnected (inoculated but without any 

applied potential), were also conducted to confirm any electrochemical and microbial 

activity at the same applied potential and conditions. The current density data is presented 

by normalizing the absolute current with the projected surface area of the working 

electrode. Analysis of pH, decrease in nitrate or sulphate concentration, and increase in 

sulphide concentration was done at a regular interval of every 24 hours.  

2.5. Characterization of enriched electrotrophic microorganisms 

2.5.1.  Microscopy 

Two microscopic techniques, viz., light and scanning electron microscopy (SEM) were 

used to confirm the growth and morphology of electrotrophic microorganisms. 
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Light Microscopy 

Microbial samples at different growth stages were stained using gram staining kit (Sigma-

Aldrich) according to manufacturer instructions. For this, a drop of the sample was heat-

fixed to prepare a smear over the slide. Then the smear was flooded with crystal violet 

solution for 1 minute, followed by rinsing with water. Then the Iodine solution was 

allowed to retain for 1 minute, followed by rinsing with water. Later, the slide was 

flooded with decolourizer for 1-5 seconds, followed by rinsing with water, incubation for 

1 minute with safranin and again rinsed off with water. Excess water was removed with 

the help of tissue paper, and the slides were observed under a Light Microscope (Nikon). 

Scanning Electron Microscopy 

The samples were passed through 0.2 µm PC isopore membrane filters (Sigma-Aldrich), 

and the retained cells on filters were fixed overnight in a mixed fixative solution of 2% 

glutaraldehyde and 2.5% paraformaldehyde at 4 ºC. The samples were dehydrated using 

different ethanol concentrations (30%, 50%, 70%, 80%, 90%, and 100%) sequentially for 

20 minutes in each. This was followed by sample drying in a silica desiccator overnight. 

Then the samples were coated with gold nanoparticles by JEOL JEC-1600 Auto-Fine 

Coater (JEOL Ltd., Japan) at 20 mA for 45 seconds and finally analyzed using a JEOL 

JSM-6010PLUS/LS Scanning Electron Microscope (JEOL Ltd., Japan). 

2.5.2. Electrochemical characterization 

Cyclic voltammetry as performed before and after inoculating the reactors, and at the end 

of the enrichment experiments to find out the role of enriched electrotrophic biofilm in 

current drawn from the cathode (Harnisch et al., 2012; Labelle et al., 2005; Carmona et 

al., 2011).  
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Chapter 3 

Results and Discussion 

3.1. Physicochemical properties of sediment samples 

A high pH condition, as reported in the literature, was observed in the collected sediment 

samples (Table 2). The variation in salinity of the Lonar Lake has also been reported by 

several other research groups. It ranges from 5 to 24 g/L (Borul, 2012). This might be 

because of the variations in the seasons and sampling locations. The low salinity level of 

the sediments collected in the monsoon season in this study might be due to the more 

inflow of freshwater in the lake. 

Table 2: Sediment Characteristics 

Parameters August 2019 

pH 9.6 ± 0.2 

Salinity (ppt or g/L) 14.3 ± 1.0 

Conductivity (mS/cm) at 24ºC 22.0 ± 1.5 

Ammonia (mg/L) 2.2 ± 0.1 

COD (mg/L) 526.4 ± 13.7 

Phosphate (mg/L) 47.2 ± 2.6 

Sulphate (mg/L) 62.8 ± 1.2 

Nitrate (mg/L) 222.4 ± 7.0 
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The high Chemical Oxygen Demand (COD) values suggest the eutrophic nature of the 

lake. Various soluble ions, including sulphate (SO4
2-), ortho-phosphate (PO4

3-), 

ammonium ion (NH4
+), and nitrate (NO3

-) were also present in considerable amounts. The 

presence of, in particular, SO4
2- and NO3

- suggests their availability as electron acceptors 

under anoxic conditions in sediments. Acetate was found to be the dominant short-chain 

organic acid in the sediment samples.  

3.2. Enrichment of the haloalkaliphilic nitrate-reducing 

microorganisms 

3.2.1.  Enrichment in serum flask reactors 

In the first batch enrichment cycle, visible turbidity in the bulk phase was observed in the 

inoculated flasks with acetate as an electron donor. A continuous increase in OD was 

observed during the incubation period of 6 days (Figure 3). It correlated with the decrease 

in the concentration of nitrate (Figure 4). After the depletion of nitrate in medium, 10 % 

of the enriched culture was transferred to the fresh medium in subsequent batch cycles. In 

the second and third batch cycles, the serum flask reactors followed similar trends for OD 

and nitrate concentration (Figures 3 and 4). The pH remained almost constant at around 

9.6-9.7 throughout the batch enrichment experiments.  Neither increase in OD nor 

decrease in the nitrate concentration was observed in the control experiments. These 

observations suggest the enrichment of nitrate-reducing microorganisms in the main 

experiments. 

 

Figure 3: Turbidity or OD600nm variation throughout the three batch cycles of the 

serum flask enrichment experiments. (Electron donor: acetate, TEA: nitrate) 
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In the case of SRB enrichment using serum flask approach with acetate as the electron 

donor, neither increase in optical density nor decrease in sulphate concentration was 

observed.  

 

Figure 4: Nitrate concentration profiles in three batch cycles of the serum flask 

enrichment experiments. 

As electrotrophs are very slow-growing microorganisms, so in the enrichment 

experiments using Fe0, two serum bottles with nitrate and sulphate were left incubated 

and undisturbed for 3.5 months. At the end of 3.5 months, turbidity was observed in both 

cases. The growth medium started to turn in greenish or greenish-black colour in the case 

of NRB and SRB within the second week of the incubation period, respectively. The 

appearance of green color and increased Fe2+ concentration suggested the growth of NRB 

using solid iron particles as an energy source. While black color and increased sulphide 

concentration also suggested the growth of SRB using solid iron particles as an energy 

source. 

3.2.2.  Electrochemical enrichment of nitrate and sulphate reducing 

electrotrophs 

It has been shown that electrotrophs can be grown by forcing the microorganisms with 

EET capabilities to take up electrons from the solid electrode, in the absence of any 

soluble and easily available electron donors, to reduce components like nitrate and 

sulphate (Su et al., 2012; Cordas et al., 2008; Lovley, 2011). The microbial growth at the 

electrode can be monitored by observing the electric current (which is the result of the 

electron transfer process) as a function of time under a fixed potential using the CA 

technique. It took almost 1.5 months for the microorganisms to produce any observable 
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reduction current from the cathode electrode in the case of sulphate electron acceptor 

condition (Fig 5). Even after 2.5 months of incubation, the reduction current kept on 

increasing. The reactor has been kept undisturbed to allow and acclimatize the growth of 

electrotrophic microorganisms over the cathode surface. After the completion of the first 

cycle, the reactor will be replenished with fresh microbial growth medium for further 

enrichment cycles. So far, a maximum current density of around – 25 µA/cm2 has been 

achieved (Fig. 5). The earlier studies on enriching SRB using the electrochemical 

approach have reported that the pure biofilm of sulphate reducing bacteria Desulfovibrio 

desulfuricans 27774 strain can produce a maximum current density of -27µA cm-2 

(Cordas et al., 2008) while other reported biofilms are known to produce reduction 

current densities which are less than 1 µA cm-2 (Logan, et al., 2019). Moreover, different 

studies showed that DET performing electrotrophs were able to generate maximum 

current densities of -23.64 µA cm-2 (Su et al., 2012) and -80 µA cm-2 (Toshiyuki et al., 

2018). These observations indicate the enrichment of the haloalkaliphilic sulphate 

reducing electrotrophs via electrochemical cultivation approach. 
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Figure 5: Chronoamperometric profile showing the increase in bioelectrocatalytic 

reduction current in a sulphate fed reactor. 

In the case of nitrate, the start-up in the cathodic reduction current generation was 

comparatively faster. A maximum current density of – 25 µA/cm2 was produced in this 

case (Figure 6). The increase in the current generation was linked to a decrease in nitrate 

concentration. These observations indicate the electrochemical enrichment of NRB at the 

cathode surface. Two replicate reactors have been set up to check the reproducibility of 

electrotrophic NRB using the enriched inoculum from the electrochemical reactor 1. 
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Figure 6: Chronoamperometric and nitrate concentration profiles showing the 

increase in the bioelectrocatalytic reduction current in the nitrate fed 

electrochemical enrichment reactor. 

In the abiotic (uninoculated-connected) and biotic (inoculated-unconnected) control 

experiments, no increase in the reduction current was observed (Fig. 7). It thus confirms 

that the reduction current generation in the main experiments was due to the enrichment 

of electrotrophic nitrate-reducing microorganisms at the cathode. 
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Figure 7: Chronoamperometric graph showing almost negligible or zero change in 

the reduction current at an applied cathode potential of -0.3 V for the control 

experiments with nitrate. 

3.3. Characterization of enriched haloalkaliphilic electrotrophic 

microbes 

3.3.1.  Microscopy 

The bulk-phase samples from the serum flask and electrochemical reactors were analysed 

using two different microscopic techniques.  

Light Microscopy 

It revealed the presence of small oval-shaped microbial cells in the enrichment cultures.  

Some representative microscopic figures at different resolutions and observation scales 

from the serum flask and electrochemical reactors are shown in Figures 8 and 9, 

respectively. 
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Figure 8:  Representative light microscopic images of the enriched nitrate-reducing 

microorganisms in the serum flask reactors. 

 

 

Figure 9: Representative light microscopic images of the enriched nitrate-reducing 

microorganisms in the electrochemical reactors. 

Scanning Electron Microscopy 

The SEM analysis of the bulk phase samples confirmed the presence of small rod or oval-

shaped microbial cells in the enrichment cultures (Figures 10 and 11). The SEM of the 

cathode surfaces will be conducted at the end of the experiments to confirm the formation 

of electrotrophic biofilms. 
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Figure 10: Representative SEM images of the enriched nitrate-reducing 

microorganisms in the serum flask reactors. 

 

 

Figure 11: Representative SEM images of the enriched nitrate-reducing 

microorganisms in the electrochemical reactors. 

3.2.2. Electrochemical characterization 

Both the cyclic voltammograms, before and after inoculum, confirmed the absence of any 

redox-active components in the used growth medium as well as at the cathode surface in 

the case of sulphate and nitrate fed reactors (Figures 12 and 13). It also helped us to find 

out the safe potential window to conduct our desired enrichment experiments both for the 

nitrate-reducing and sulphate-reducing electrotrophs. The CVs recorded after/during the 

enrichment of SRB revealed the presence of one redox-active peak (E1) with mid-
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potential of -0.409 V, vs. Ag/AgCl (Figure 12). More importantly, an increase in the 

reduction current was observed in this CV trace compared to control CVs. These 

observations suggest the role of microbial electrocatalysis in current drawn from the 

cathode. Earlier, for some electrotrophic SRB redox-peaks at 0.1 V and -0.2 V vs. 

Ag/AgCl (Su et al., 2012) have been reported. However, the redox moieties or 

components have not been identified or characterized to date. The involvement of the 

observed redox peak and associated redox-active components in the direct electron uptake 

process of enriched SRB from the cathode needs to be investigated further. 

 

Figure 12: Representative cyclic voltammograms before and after inoculation, and 

during the enrichment experiment in the sulphate fed electrochemical reactor. 

While in the case of nitrate condition, the CV recorded after two months of enrichment 

experiment revealed the presence of two redox-active peaks (E1 and E2) with mid-point 

potentials of -0.622 V and -0.433 V vs. Ag/AgCl (Figure 13). The presence of these two 

redox-moieties can be attributed to the cell membrane-bounded proteins or components 

that are most likely involved in inward EET or the cathodic electron uptake mechanism. 
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However, it needs to be investigated further through additional experiments. The CV 

results suggest the probability of direct electron uptake by both sulphate and nitrate-

reducing microorganisms. No reports are available in the literature concerning the 

involvement of such proteins/components in the direct electron uptake by SRB and NRB 

to the best of my knowledge. So, further research, including confirmation, isolation, 

identification, and characterization of such proteins or components is envisioned. The 16S 

rRNA metagenomic sequencing of the enriched cultures at the end of experiments would 

reveal the dominant electrotrophic NRB and SRB. 

 

Figure 13: Representative cyclic voltammograms recorded before and after 

inoculation, and during the enrichment experiment for the nitrate fed 

electrochemical reactor. 
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Chapter 4 

Conclusions and future prospects 

In this study, the enrichment of haloalkaliphilic electrotrophs that can uptake the electrons 

directly from solid-state electron donors and reduce substrates like nitrate and sulphate 

was successfully demonstrated. The NRB was enriched through both serum flask and 

electrochemical enrichment approaches, whereas SRB was enriched only through the 

electrochemical approach. The enriched NRB was able to reduce nitrate completely 

within 7 days of the growth cycle in the serum flask experiments. Both NRB and SRB 

enriched electrochemically, were able to draw current from the cathode, and achieved up 

to -25 µA/cm2 and -25 µA/cm2 current densities, respectively. The increase in the 

reduction current correlated well with the decrease in the electron acceptor concentration. 

The cyclic voltammograms recorded during the enrichment experiments revealed the 

redox-active peak with a mid-point potential of -0.409 V for SRB and two redox-active 

peaks with mid-point potentials of -0.622 V, -0.433 V for NRB. The electrochemical data 

suggests the enrichment of electrotrophic NRB and SRB at the cathodes.  Microscopy of 

microorganisms enriched in the suspension of electrochemical reactors confirmed their 

oval-shaped morphology. Further microscopic analysis of the enriched NRB and SRB at 

the cathode surfaces will be conducted at the end of enrichment experiments.  

The enrichment of haloalkaliphilic electrotrophic NRB and SRB suggests the presence of 

the EET capable microorganisms in such extreme habitats. Further work on isolation and 

characterization of the enriched electrotrophs, their EET mechanisms, and the cell 

membrane-associated components involved in the electron uptake process using a 

multidisciplinary toolkit would strengthen the extreme electromicrobiology discipline. 

These microorganisms can also be used for the bioelectrochemical removal of nitrate or 

sulphate from the contaminated waters or wastewaters.  
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Medium composition, 7 

modified M9, 6 

nanowires, 2 

nitrate-reducing, 3 

NRB, vi, 3 

PEM, 9 

pili, 2 

potentiostat, 10 

Serum Flask, 7 

Shewanella, 1 

soda, 5 

sparged, 8 

SRB, vi, 3 

sulphate-reducing bacteria, 3 

TEA, 3 
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APPENDIX 

*Vitamin Solution composition (Patil et al., 2015) 

S. No. Component Concentration (mg/L) 

1. Sodium ascorbate  10  

2.  Biotin  4  

3. Folic acid  4  

4. Pyridoxine hydrochoride  20  

5. Thiamine hydrocloride  10  

6. Riboflavin  10  

7. Nicotinic acid  10  

8. DL-calcium pantothenate  10  

9. Vitamin B12  0.2  

10. p-aminobenzoic acid  10  

11. Lipoic(thioctic) acid  10  

12. Myo-inositol  10  

13. Choline chloride  10  

14. Niacinamide  10  

15. Pyridoxal hydrochloride  10  

16. Tungstate- Selenium solution Composition: 0.1mM Na2WO4 + 0.1mM Na2SeO3 in 

20mM NaOH 
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**Trace Metal Solution composition (Patil et al., 2015) 

S. No. Component Concentration (g/L) 

1. Nitrilotriacetic acid (dissolve with KOH; pH 

6.5)  

1.5  

2. Mg2Cl2.6H2O  3.0  

3. MnCl2.2H2O  0.5  

4. NaCl  1  

5. FeCl2  0.1  

6. CoCl2  0.1  

7. CaCl2.2H2O  0.1  

8. ZnCl2  0.1  

9. CuCl2  0.01  

10. AlCl3.6H2O  0.01  

11. H3BO3  0.01  

12. Na2MoO4.2H2O  0.01  

 


