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Abstract

Real projective plane algebraic curves and their classification problems are introduced.

Topological classification problem and its solution is discussed. Isotopy classification prob-

lem is discussed and the isotopy classification of curves upto degree 5 is looked upon.

Isotopy types of curves upto degree 5 are constructed using marking method or small per-

turbation method.
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Chapter 1

Preliminaries

1.1 Real Projective plane

Real projective plane, denoted by RP2 is the set of all lines passing through origin in R3.

The topology given to RP2 is the quotient topology induced by the surjective map q : R3

→ RP2 that maps a point in R3 to the line passing through that point and the origin. A

line in RP2 passing through a point (x0,x1,x2) is denoted as (x0 : x1 : x2). Two points

(x0 : x1 : x2) and (y0 : y1 : y2) ∈ RP2 are equal iff (x0,x1,x2) = c(x0,x1,x2) for c ∈ R. So

they are called as homogeneous coordinates. Consider the unit sphere S2 centered in origin

in R3. Then every line passing through the origin intersects S2 in two antipodal points.

Hence we can also get RP2 with a quotient map on S2 that identifies antipodal points of S2.

RP2 is compact and connected since it is the continuous image of a compact and connected

space. RP2 is a smooth manifold of dimension 2. R2 is embedded in RP2 via the map i :

R2→ RP2 defined by i(x,y) = (x:y:1).
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Chapter 2

Real Algebraic Curves

2.1 Curves

Definition 2.1.1 A real projective algebraic plane curve of degree n is an equivalence class

of homogeneous polynomials f (x0,x1,x2) of degree n in three variables, in R[x0,x1,x2], with

the equivalence relation f ≡ λ f , for λ ∈ R\0.

An important source of most of the topic on curves discussed here is [Vir]. When we say

real affine plane curve, we mean the zero set of a polynomial in two variables in R[x0,x1].

As mentioned in the preliminaries, R2 is embedded in RP2 via the map i : R2→ RP2 de-

fined by i(x,y) = (x:y:1). In all discussions, we use the word curve to mean a real projective

algebraic plane curve, unless stated otherwise.

Example 2.1.2 1. Consider the polynomial a1(x0,x1,x2) = x0 + x1 + x2. The equivalence

class of a1 consisting of all λa1, λ ∈ R\0 is a degree 1 curve. Let us denote it by A1.

2. Consider the polynomial a2(x0,x1,x2) = x2
0 + x2

1− x2
2. The equivalence class of a2 is a

degree 2 curve, we denote it by A2

3. Consider the polynomial a3(x0,x1,x2) = x2x2
1− x3

0− x2x2
0. The class of a3 is a degree 3

curve. We denote it by A3.

See [Fis01] for details on projective algebraic plane curves

Definition 2.1.3 If C is a curve with an underlying homogeneous polynomial f , then the

set {(x0 : x1 : x2) ∈RP2 :f(x0,x1,x2) = 0}, denoted by RC, is called the set of real points of

the curve C.

3



Note that f being homogeneous is necessary for the well definedness of set of real points.

Let us look at the sets of real points of the examples mentioned earlier. We know that R2 is

embedded in RP2 via the map i(x1,x2) = (x1 : x2 : 1). It is easier to visualise the set of real

points with their projections in this embedded plane.

1. RA1 is a line in the plane. It is called a projective line.

2. RA2 is a circle in the plane, since a2 is the homogenisation into 3 variables of the circle

x2
0 + x2

1 = 1.

3. The polynomial a3 is the homogenisation of the nodal cubic x2
1 = x3

0−x2
0. Therefore RA3

is a nodal cubic in the plane.

Definition 2.1.4 (Singular Point) A point (x0 : x1 : x2) ∈RP2 is called a singular point of

the curve C with a corresponding polynomial f , if all the partial derivatives of f vanish at

(x0,x1,x2) ∈ R3. A curve with no singular points is called a non-singular curve.

For a curve to have a singular point, partial derivatives of underlying polynomial has to be

zero at a non-zero point of R3. The nodal cubic RA3 is not a non-singular curve.

∂a3
∂x0

= ∂

∂x0
(x2x2

1− x3
0− x2x2

0) =−3x2
0−2x2x0

∂a3
∂x1

= ∂

∂x1
(x2x2

1− x3
0− x2x2

0) = 2x2x1

∂a3
∂x2

= ∂

∂x2
(x2x2

1− x3
0− x2x2

0) = x2
1− x2

0

The partial derivatives vanish at (0,0,1). Hence (0 : 0: 1) is a singular point of A3. But the

curves RA1 and RA2 are non-singular.

∂a1
∂x0

= ∂

∂x0
(x0 + x1 + x2) = 1, ∂a1

∂x1
= ∂

∂x1
(x0 + x1 + x2) = 1,

∂a1
∂x2

= ∂

∂x2
(x0 + x1 + x2) = 1

∂a2
∂x0

= ∂

∂x2
(x2

0 + x2
1− x2

2) = 2x0, ∂a2
∂x1

= ∂

∂x1
(x2

0 + x2
1− x2

2) = 2x1

∂a2
∂x2

= ∂

∂x2
(x2

0 + x2
1− x2

2) = 2x2

As we can see, partial derivatives is nowhere zero for a1 and only vanish at (0,0,0) for a2.

Two curves are said to be homeomorphic if their respective sets of real points are home-

omorphic as subspaces of RP2. Two curves C1 and C2 are said to be isotopic or equivalently

(RP2,RC1) and (RP2,RC2) are said to be homeomorphic as pairs if there exists a homeo-

morphism of RP2 that maps RC1 homeomorphically to RC2. When we say two curves A1

and A2 are situated in RP2 in topologically distinct ways, we mean that the pairs (RP2,RC1)

and (RP2,RC2) are not homeomorphic or equivalently the curves are not isotopic.
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2.1.1 Classification Problems

Problem 2.1.5 Topological Classification Problem : For n ∈ N, find the possible sets of

real points of curves of degree n, upto homeomorphism.

Problem 2.1.6 Isotopy Classification Problem : For n ∈N, find possible sets of real points

of curves of degree n, upto isotopy.

There are general versions of both classification problems above, extending to singular

curves also. But classification of non-singular curves is a lot more easier because non-

singularity guarantees theorems like Bezout’s theorem and Harnack’s theorem that simpli-

fies classification to a large extend.

2.2 Bezouts Theorem And Corollaries

Theorem 2.2.1 The set of real points of a curve is a smooth, one-dimensional, closed sub-

manifold of the projective plane.

Proof Let C be a curve with associated polynomial f . We know that RP2 can be covered

by an atlas of three charts {Ui,ψi}, ψi : Ui→ R2 where,

U0 = {(x0 : x1 : x2) : x0 6= 0} , ψ0((x0 : x1 : x2) = (x1
x0
, x2

x0
)

U1 = {(x0 : x1 : x2) : x1 6= 0} , ψ0((x0 : x1 : x2) = (x0
x1
, x2

x1
)

U2 = {(x0 : x1 : x2) : x2 6= 0} , ψ0((x0 : x1 : x2) = (x0
x2
, x1

x2
)

We can consider the functions fi : Ui→ R defined as,

f0(x0 : x1 : x2) = f (1.x1
x0
, x2

x0
)

f1(x0 : x1 : x2) = f (x0
x1
,1, x2

x1
)

f2(x0 : x1 : x2) = f (x0
x2
, x1

x2
,1)

The zero set of fi is precisely the intersection of the zero set of f , i.e, RC with Ui. The

union of zero sets of fi gives RC. Non-singularity of C guarantees that f has no critical

points. By regular level set theorem, we know that f−1
i (0) is a submanifold of Ui of co-

dimension 1 , i.e, of dimension 1. It follows that for any point p ∈ RC, there is an open set

U containing p and coordinate chart ψ of RP2 such that ψ(U ∩RC) = ψi(U)∩R. This way

we can show that RC is a one dimensional closed submanifold of RP2.

https://www.overleaf.com/project/5ee71c342d7ae30001ed4541
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Theorem 2.2.2 A component of the set of real points of a curve is homeomorphic to a

circle.The number of components of the set of real points of a curve determines it’s topology.

Proof From the classification of 1-dimensional manifolds we know that a connected closed

1-dimensional manifold is homeomorphic to a circle. By the previous theorem set of real

points of a curve is a closed 1-dimensional manifold. See [LJ03] for details on Manifolds.

Let us look at two different types of components of a curve. In the quotient map

from S2 to RP2, a circle in RP2 is the image of either a circle, or a union of two antipodal

circles on the sphere. The former is called a one-sided component and the latter is called a

two-sided component. Although both are homeomorphic, the pairs (RP2,RA) of both are

not homeomorphic. The complement of a ’two-sided component’ has two components; a

’disc’ which is called an inside component and a ’mobius strip’ which is called an outside

component. A two-sided component of a curve is also called an oval of the curve. An oval

that is contained in the inside component of another is said to be inside the second.

Definition 2.2.3 A set of ovals of a curve is called a ’nest’, if in any pair of ovals in the set,

one of the ovals is inside the other one.

Theorem 2.2.4 A curve has at most one one-sided component.

Proof We prove that two one-sided components of a curve intersects each other. The first

homology group of the projective plane with coefficients in Z2 , H1(RP2,Z2), is isomorphic

to Z2. A projective line realises the non-zero element of H1(RP2,Z2) . If there are two one-

sided components, they have to intersect because in H1(RP2,Z2) intersection product of

non-zero element with itself is non-zero. But two distinct components of a curve cannot

intersect. Therefore atmost one one-sided component is possible for a curve.

A curve with a one-sided component is called a one-sided curve. A curve that does

not have a one-sided component is called a two-sided curve. We are using some properties

of intersection product in H1(RP2,Z2) in proofs like the one above. See [Hut11] for details

on intersection product. See [Bre13] for details on homology groups.

Definition 2.2.5 Two submanifolds of a given finite-dimensional smooth manifold are said

to intersect transversally if at every point of intersection, their separate tangent spaces at

that point together generate the tangent space of the ambient manifold at that point.

6



Theorem 2.2.6 (Bezout’s Theorem) If the intersection of sets of real points of two non-

singular curves is finite, then the intersection contains atmost n1n2 points, where n1 and

n2 are the degrees of the curves. For transversal curves number of points of intersection is

congruent to n1n2 modulo 2.

Using Bezout’s theorem we can prove a lot of corollaries on the relation between degree of

a curve and number of components. Harnack’s Inequality is the most important corollary.

A curve C can be identified with the preimage of RC under the embedding i : R2→ RP2

defined by i(x,y) = (x:y:1). For the purpose of geometrical proofs, curve is considered as

an affine plane curve in R2 using the above map. We pictorially depict a curve in plane as

it’s preimage under the above map.

Corollary 2.2.7 (Harnack’s Inequality) A degree n curve has atmost
1
2(n−1)(n−2)+1 components.

Lemma 2.2.8 For any given set of 1
2t(t + 3) points in R3, there exists a degree t homoge-

neous non-zero polynomial in R[x,y,z] passing through all of those points.

Proof A degree n homogeneous polynomial in three variables is determined by 1
2n(n+

3)+1 coefficients of monomials. One can show this with the following combinatorial way.

The monomials xiy jzk of a degree n homogeneous polynomial are such that i+j+k = n. So

fixing i and j will automatically fix k.

i can range from 0 to n.

if i is 0, j can range from 0 to n.

if i is 0≤ r ≤ n , j can range from 0 to (n-r).

if i is n, j can range from 0 to 0.

So there is a total of 0+1+2+....+ (n+1) possible arrangements for (i,j,k). 1+2+.... + (n+1) =
1
2(n+1)(n+2) = 1

2(n)(n+3)+1.

The set An of all n degree homogeneous polynomials in R[x,y,z] forms a vector space

with the usual addition and scalar multiplication in polynomials. A basis for this vector

space is the set of monomials {xiy jzk : (i+ j + k) = n}. The dimension of the space is
1
2n(n+3)+1. If we take a non-zero point p ∈ R3 and consider the subset consisting of all

polynomials in An passing through p, we get a subspace of An. The co-dimension of this

subspace is one. Choosing a non-zero point p gives a linear equation of our coefficients

7



which reduces dimension by one. If we intersect two such subspaces the dimension of the

resulting subspace is reduced atmost by 1. Given 1
2n(n+3)+1 points in R3, Consider the

subspaces of polynomials passing through each point. We have 1
2n(n+ 3) subspaces. If

we take their intersection the dimension decreases atmost by 1
2n(n+3)−1. Therefore the

intersection of all the subspaces has a dimension not less than 1. Any non-zero polynomial

in this subspace passes through all of the given 1
2n(n+3)+1 points.

Before proceeding to a general proof of Harnack’s inequality, let us see why this is

true for smaller degree curves. According to Harnack’s inequality curves of degree 1 and

2 can have at most one component, a degree 3 curve can have atmost 2 components, and

a degree 4 curve can have atmost 3 components. Suppose a degree 1 curve has more than

one component. We already know the one essential component, one-sided component. The

remaining components have to be ovals. Now choose a point inside one oval and a point on

the line (one can easily visualize this for the affine part in the embedded plane). Consider

the projective line passing through these two points. This line intersects our degree 1 curve

at minimum 3 points. This is because the intersection of line and oval must be even and we

have chosen the line such that it intersects te oval at least at one point. But the product of

their degrees is one . Since both are non-singular we have a violation of Bezout’s theorem.

Let us look at a degree 2 curve. Suppose a degree 2 curve has more than one components.

All components have to be ovals. Take two points inside any two ovals and consider the line

passing through them. We have minimum 4 intersections of the line and the curve while

product of their degrees is 2. A violation of bezout’s theorem. The same proof works for

degree 3. For a degree 4 curve we need a conic instead of a line. Suppose a degree 4 curve

has more than 4 ovals. Take 5 points inside 5 distinct ovals. We can construct a degree 2

curve passing trough these points. This curve intersects the degree 4 curve at least at 10

points, but product of their degrees is 8.

Lemma 2.2.9 For any given set of 1
2t(t + 3) points in R3, there exist a degree t homoge-

neous polynomial in three variables passing through all of those points.

Proof (of Harnack inequality)

Let n> 2 be an integer. Assume that a degree n curve C has more than r = (n−1)(n−2)
2 +1

components. At least r components has to be ovals, as there can only be atmost one one-

8



sided component. We use the fact that one can construct a degree t curve passing through

any t(t+3)
2 points. Consider r points one inside each oval on r ovals and (n− 3) points on

one of the remaining components. We have a total of (n−2)(n−2+3)
2 points, So there is a

degree (n−2) curve C2 passing through these points. We have chosen the curve such that

it intersects each oval at least at one point.But by the intersection product, we know that

number of intersections of an oval and any transversal curve must be zero modulo 2. This

curve intersects curve C at least at n(n−2)+1 points because it intersects each oval twice.

This is a contradiction to Bezout’s theorem.

Corollary 2.2.10 A degree n curve, has a one-sided component if and only if n is odd.

Proof We again make use of intersection product in H1(RP2,Z2). A projective line and

oval realise the non-zero and zero elements of H1(RP2,Z2) respectively. The number of

intersections of a projective line and an oval is congruent to mod 2 and the intersection is

transversal. A two-sided curve only has two-sided components, i.e ovals. The intersection

number of a two-sided curve with the projective line must be even. Let the degree of the

curve be n. Projective line has degree 1. But since the intersection is transversal, we know

by Bezout’s theorem, that the intersecton number is congruent to n modulo 2, where n is

the product of their degrees. Hence n has to be an even number.

Conversely if the degree n of a curve is even. Then the intersection number with projective

line has to be even. But this means that the curve has no one-sided component.

Corollary 2.2.11 For a degree n curve, union of two nests contains atmost n/2 ovals.

Proof Suppose there exist curve C of degree n with two nests N1 and N2 such that their

union has more than n/2 ovals. Let O1 be the most interior oval (.i.e the one that is inside

any other oval in the nest) in N1 and O2 that in N2. Let P1 and P2 be points lying in the

inside components of O1 and O2 respectively.Then a line passing through the two points

will intersect the curve C at least at n+1 points, which contradicts Bezout’s theorem.

Corollary 2.2.12 For a degree n curve, union of five nests contains atmost n ovals, if there

is no oval enveloping all the other oval.

9



Proof Proof is similar to the previous one. Instead of 2 interior points take 5 interior

points in each nest. Then a degree 2 curve C can be constructed that passes through these

5 points.This curve intersects each oval twice. Assume that union of nests has more than

n ovals. Then C intersects the curve at least at 2(n+ 1) points. This contradicts bezout’s

theorem, since the product of degrees of the curves is 2n.

From the discussions of this section, we can conclude that topological type of a curve

is determined by the number of components and isotopy type is determined by number of

components and the relative arrangement of ovals. The general notation used for denoting

different arrangement of components is as follows. A one-sided component is denoted as

[P]. An empty curve is denoted as [0]. A set of n ovals such that no oval lies in the inside

component of any oval is depicted as [n]. For some arrangement of ovals X , [1[X ]] denotes

the arrangement X enveloped inside another oval. For X and Y that are two arrangements

of ovals, [X +Y ] denotes their disjoint union.

2.3 Isotopy Classification Of Curves Of Degree 5 and Less

To find the possible isotopy types of curves we consider all possible arrangement of ovals

which is finite due to Harnack’s theorem. From them the ones that contradict Bezout’s

theorem are ruled out. Then we construct the remaining curves to prove their existence.

2.3.1 Restrictions on possible arrangements

Degree 1

By Harnack’s inequality there is at most 1
2(1− 1)(1− 2)+ 1 = 1 component. Since the

degree is odd there exists a one-sided component. Therefore a degree 1 curve has one and

only one component which is a projective line.

Degree 2

The upper bound for number of components equals 1
2(2−1)(2−2)+1= 1. As the degree is

even components are all ovals and least possible number of components is zero. Therefore

zero ovals, i.e an empty curve and one oval are the two possibilities for a degree 2 curve.

10



These are listed in table 2.3 and are constructed in the next section.

In fact we can show this without using Harnack’s inequality.

Theorem 2.3.1 The set of real points of any degree 2 curve is either empty or an oval, upto

isotopy.

Proof let f ∈ R[X0,X1,X2] be a degree 2 homogeneous polynomial of a degree 2 curve.

f = a00X2
0 +a01X0X1+a02X0X2+a10X1X0+a11X2

1 +a02X1X2+a01X2X0+a02X2X1+a00X2
2 .

f can be described in the matrix form,

[
X0,X1,X2

]
a00 a01 a02

a10 a11 a12

a20 a21 a22




X0

X1

X2


The coefficient matrix can be made symmetric in the following way,

[
X0,X1,X2

]
b00 b01 b02

b10 b11 b12

b20 b21 b22




X0

X1

X2


where bi j = b ji =

1
2(ai j +a ji).

Consider the matrix equation,

[
X0,X1,X2

]
b00 b01 b02

b10 b11 b12

b20 b21 b22




X0

X1

X2

= 0 (2.1)

Let us call the coefficient matrix B. The solution set [x0,x1,x2] considered in RP2 is the

curve associated with f . An important observation that we use here is that, if we linear

transform the solution set with an invertible matrix, we get a curve isotopic to our original

curve. This follows from the fact that SO(n) is connected.

We can diagonalize a symmetric matrix with an orthogonal matrix. So B= PT ∗M∗P

where M is a diagonal matrix. We can rewrite the matrix equation as V T (PT ∗M ∗P)V = 0,
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where V is the column vector [X0,X1,X2]
T . This can be further modified as (P∗V )T ∗M ∗

(P∗V )= 0 . Let us denote P∗V by W .

W T ∗


d1 0 0

0 d2 0

0 0 d3

∗W

The corresponding polynomial is d1X2
0 +d2X2

1 +d3X2
2 = 0.

If we transform W with the matrix J given by,

J =


√

1
|d1| 0 0

0
√

1
|d2| 0

0 0
√

1
|d1|


Then the new transformed curve has the following posssible equations

±X2
0 ±X2

1 ±X2
2 = 0.

We can further transform it, if needed, to make the first coefficient +1. The posibilities are

X2
0 +X2

1 +X2
2 = 0 which gives an empty curve.

X2
0 +X2

1 −X2
2 = 0 which gives a circle in the affine plane.

X2
0 −X2

1 +X2
2 = 0 which gives a hyperbola in the affine plane.

X2
0 −X2

1 −X2
2 = 0 which gives a hyperbola in the affine plane.

But all of the three non-empty among these are ovals in the projective plane. Therefore any

degree 2 curve is an oval, upto isotopy.

Degree 3

By Harnack’s inequality, there are at most 1
2(3−1)(3−2)+1 = 2 components. One neces-

sarily has to be a projective line. Therefore two possibilities are one projective line compo-

nent, [P] only or two components were one is a projective line and other is an oval, [P+1].

Both are constructed in the next section.

Degree 4

Maximum Possible number of components is 1
2(4− 1)(4− 2)+ 1 = 4, by Harnack’s in-

equality. All components must be ovals. Let us look at all arrangements, that are combina-

torialy possible. See table 2.1.
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Number of components Possible arrangements
0 [0]
1 [1]
2 [2] , [1[1]]
3 [3], [1[2]], [1[1[1]]], [1+1[1]]
4 [4],[1[3]], [1[1[2]]], [1[1+1[1]]],[1[1[1[1]]]

[1+1[2]], [2+[1[1]]], [1+[1[1[1]]], [1[1]+1[1]]

Table 2.1: All combinatorial possibilities for degree 4

But out of these [1[2]], [1[1[1]]], [1+1[1]], [1[3]], [1[1[2]]], [1[1+1[1]]],[1[1[1[1]]],

[1+1[2]], [2+[1[1]]], [1+[1[1[1]]], [1[1]+1[1]] cannot be realised as sets of real points of

a non-singular curve. To see this, observe that all of them have, in common, one oval that

is contained inside another. Suppose one of them can be realised with a non-singular curve.

Choosing a point inside the inner oval and another point inside an oval not in this pair, we

can construct a line that intersects the curve at more than 5 points. This contradicts Bezout’s

theorem, as the product of their degrees is 4. An example is illustrated in figure2.1. The

line intersects the arrangement of ovals at 6 points.

RL

Figure 2.1: Illustration of [2+1[1]]

All possible arrangement of ovals except the ones ruled out so far, are listed in table2.2.

All of these can be realised as sets of real points of curves of degree 4.

Degree 5

Maximum of 1
2(5−1)(5−2)+1 = 7 components possible. One component is a projective

line. The only possible arrangement that has a nest of 2 ovals,which can be realised as set

of real point of a degree 5 curve is the case with 3 components. Out of the possible arrange-

ments of 4 or more components those those arrangements having an oval contained inside

another is ruled out. To show this, suppose one of them can be realised with a non-singular

curve. We proceed in the same way as in the case of degree 4. Choosing a point inside

the inner oval and another point inside an oval not in this pair, we can construct a line that

intersects the curve at more than 5 points. This contradicts Bezout’s theorem, as the product
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of their degrees is 5.

Number of components Possible arrangements
0 0
1 [P]
2 [P+1]
3 [P+2] , [P+1[1]]
4 [P+3], [P+1[2]], [P+1[1[1]]], P+[1+1[1]]
5 [P+4],[P+1[3]], [P+1[1[2]]], [P+1[1+1[1]]]

[P+1[1[1[1]]],[P+1+1[2]],[P+2[1]]
[P+2+[1[1]]], [P+1+[1[1[1]]]

6 [P+5] and rest
7 [P+6] and rest

Table 2.2: All combinatorial possibilities for degree 5

All of the remaining possible arrangements are listed in table2.3. In fact all of these

possible arrangements listed in table2.3 can be realised as sets of real points of the corre-

sponding degree curves. To prove this, we have to construct curves of those degrees with

the respective arrangement of components.

Degree Isotopy types
1 [P]
2 [0],[1]
3 [P], [P+1]
4 [0], [1], [2], [1[1]],[3],[4]
5 [P], [P+1], [P+2], [P+1[1]], [P+3], [P+4], [P+5], [P+6]

Table 2.3: Isotopy Types of curves of degree 5 and less

2.3.2 Construction of Isotopy Types

Degree 1

Consider the polynomial a(x0,x1,x2) = x0 +x1 +x2. A curve with associated polynomial a

gives the isotopy type [P]. The polynomial a is the homogenisation of the line x0+x1 =−1

in R2.
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Degree 2

Consider the polynomial a(x0,x1,x2) = x0
2 + x2

1 + x2
3. This gives the empty curve [0].

Consider the polynomial a(x0,x1,x2) = x0
2 + x2

1− x2
3. It is a degree 2 homogenisation of

the affine plane curve x0
2 + x2

1 = 1. It gives the isotopy type [1].

For degree 3 and above we use the marking method also known as small perturbation

method to construct the curves.

The Marking Method

Theorem 2.3.2 (The Marking Method) Let Cn and Cm be curves of degrees n and m with

associated polynomials cn and cm, respectively. Suppose that RCn and RCm intersect in

mn distinct points, l of which are real: z j,1 < j < l. Let Bn+m be a curve(not necessarily

non-singular) of degree n+m, with associated polynomial bn+m such that RBn+m intersects

RCn∪RCm in (n+m)2 distinct points, r of which are real: Ai, 1 < i < r. Also there is no

point of intersection of all three of RCn, RCm and RBn+m. Then for sufficiently small t > 0

the curve Cn+m given by the polynomial cncm + tbn+m is non-singular, lies (in RP2) in a

small neighbourhood of RCn∪RCm and intersects RCn∪RCm only at Ai, 1 < i < r, without

tangency. The components of the curve can be constructed by the following method:

1. We construct RCn and RCm and , whose intersection points z j are nodes of the curve

given by cncm.

2. We draw RBn+m in neighbourhoods of the intersection points Ai.

3. Near each arc of RCn∪RCm bounded by two Ais, we place the signs of the polynomials

cncm and bn+m on each side of the arc.

4. Take any point a of RCn∪RCm except Ais and z j, and we take a point a∗ in a sufficiently

small regular neighbourhood of a of RCn∪RCm∪RBn+m in a domain where cncm(a) and

bn+m(a) have different signs.

5. A component of Cn+m passes through a∗, is slightly shifted from the nearby arc of RCn∪

RCm, and intersects (without tangency) RCn∪RCm∪RBn+m only at the Ai

6. All components of Cm+k are constructed in this manner.

The curve Bn+m is also called as auxiliary curve used for the perturbation. We need

an auxiliary curve of the degree same as the degree of cncm for the resulting polynomial

cncm+tbn+m to be homogeneous. Marking method guarantees that the curve Cn+m given by
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cncm+tbn+m is non-singular. Let us see why the resulting curve passes through Ais and why

it lies in regions where cncm(a) and bm+k(a) have different signs. Ais are intersecting points

of RCn∪RCm and RBn+m. Let Ai =(ai1 : ai2 : ai3). Since Ai belongs to RCn∪RCm and RBn+m

polynomials cncm(ai1 ,ai2 ,ai3) and bm+k(ai1 ,ai2,ai3) are zero. Hence (cncm + tbn+m)(ai1 :

ai2 : ai3) is zero. Therefore Ai ∈RCn+m. Suppose RCn+m intersects one of RCn∪RCm and

RBn+m at a point. Then cncm or bm+k is zero at the corresponding point in R3. But one of

them being zero forces the other to be zero, as cncm + tbn+m is already zero at the point.

That means the point of intersection is one of the Ai.

The new curve lies in regions where cncm(a) and bm+k(a) have different signs, simply

because t is greater than zero. Hence at any point where cncm+ tbm+k is zero, except Ai, cncm

and bn+m have different signs. This theorem on marking method is taken from [Gud74].

See [Gud74] for more details on marking method.

Degree 3

Consider the following curves: C and L given by polynomials c(x0,x1,x2) = x0
2 + x2

1− x2
3

and l(x0,x1,x2) = x1.

L1 given by l1(x0,x1,x2) = x0 + x3, L2 given by l2(x0,x1,x2) = x0 − 2x3, L3 given by

l3(x0,x1,x2) = x0−2x3, L4 given by l4(x0,x1,x2) = x0.

Using marking method we can prove that the curve given by cl + tl1l2l4, for small

enough t, is of isotopy type [P].
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Figure 2.2: Isotopy type [P] by perturbing union of conic and line.

Using marking method we can prove that the curve given by cl + tl1l2l3, for small

enough t, is of isotopy type [P+1].
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Figure 2.3: [P+1] by perturbing union of conic and line

Degree 4

An empty curve [0] is given by a = x4
0 +x4

1 +x4
2. All other isotopy types can be constructed

by perturbing union of two conics that intersects in 4 points. The auxiliary curve used is

union of 4 lines.
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Figure 2.4: Isotopy type [4]
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Figure 2.5: Isotopy type [1[1]]
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Figure 2.6: Isotopy type [2]
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Figure 2.7: Isotopy type [3]
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Figure 2.8: Isotopy type [1]
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Degree 5

Instead of constructing all isotopic types of degree 5 curve, we can use Harnack’s theorem

proven in the next section, to prove their existence. Harnack’s theorem guarantees the

existence of a degree 5 non-singular curves with number of components ranging from 1 to

5. Since there is only one possible isotopy type for number of components 1,2,4,5,6 and 7,

their existence is guaranteed by the theorem. But for a degree 5 curve with 3 components,

two isotopy types are possible. We will construct both using small perturbation method on

union of two curves and a line as in figure 2.9. The auxiliary curve used is a union of 5

lines.

RL
RC1

RC2

Figure 2.9: Union of two conics and a line with auxiliary curve

Figure 2.10: Isotopy type [P+1[1]]
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RL
RC1

RC2

Figure 2.11: Union of two conics and a line with auxiliary curve

The other isotopy type can be constructed with a different choice of lines.

Figure 2.12: Isotopy type [P+2]
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2.4 Harnack Theorem And Topological Classification Of

Curves

From this section onwards, a curve is not assumed to be non-singular. If it is not explicitly

stated as non-singular, a curve can be either singular or non-singular.

Theorem 2.4.1 Harnack Theorem : Let n ∈ N . If n is odd, then for any 1<= r <=

(n−1)(n−2)
2 + 1, there exists a degree n non-singular curve with exactly r components. If n

is even, then for any 0 ≤ r ≤ n, there exists a degree n non-singular curve with exactly r

components.

The proof of Harnack theorem is done in two parts. First part is showing that for any n ∈N

there exist a non-singular curve with exactly (n−1)(n−2)
2 +1 components. This is done with

the help of small perturbation method.

Lemma 2.4.2 For any n ∈ N there exist a non-singular curve with exactly 1
2(n− 1)(n−

2)+1 components.

A degree n non-singular curve with 1
2(n− 1)(n− 2)+ 1 components is also called an M-

curve of degree n.

Proof Proof is by induction on the degree of curves. Since M-curves upto degree 5 were

constructed in the previous section, we start with degree 5 M-curve. We inductively con-

struct M-curves of higher degrees. Let us denote a degree n M-curve by Mn. M5 is con-

structed using small variation method on the union of 2 conics C1, C2 and a line L as in

figure 2.8, with union of five lines as auxiliary curve . The method of construction of Mn+1,

for n≥ 5, is as follows (figures 2.9 to 2.11):

1. Take the union of Mn and L.

2. (Let us denote the auxiliary curve used for constructing Mn+1 from Mn, as An+1). Take

An+1 as a union of n+1 lines that intersect L at n+1 distinct points such that,

If n is odd, RAn+1 intersects RL at any one component of RL\RAn.

If n is even, RAn+1 intersects RL only at a particular component of RL\RAn, namely, the

one which intersects with RL\RAn−1.

3. Now construct Nn+1 by perturbing the union of Mn and L, using the auxiliary curve An+1.

The curve obtained this way has exactly 1
2n(n−1)+1 components. To observe this a few
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facts has to be noted. The curve Mn passes through all points of intersection of RL and

RAn and it changes direction with respect to L after passing through each of these points.

Only one component of Mn passes through RL∩RAn. The 1
2(n−1)(n−2) components of

Mn except this one, after perturbation, gives exactly the same number of components for

Nn+1, because they undergo slight changes only. But the remaining one component after

perturbation, transforms into exactly n components. This is because Mn changes direction

with respect to L after passing through each of the n points in RL∩RAn. Therefore the

total number of components of Nn+1 equals 1
2(n−1)(n−2)+(n−1) = 1

2(n−1)(n−2)+1.

Thus Nn+1 is Mn+1.

RL RC1

RC2

Figure 2.13: Construction of M5

The inductive construction of M6 is illustrated in the next page.
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RA6

Figure 2.14: M5 union L with RA6

RA7

Figure 2.15: M6 union L with RA7

Construction of M7 is illustrated in the next page.
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Figure 2.16: M7

The first step of proving Harnack’s theorem is done. Before proceeding to the second

part let us look at some definitions.Let us denote the matrix of second partial derivatives of

the associated polynomial c of a curve C at a point (a0 : a1 : a2) as M[c](a0 : a1 : a2).

Definition 2.4.3 A singular point (a0 : a1 : a2) of a curve C with associated polynomial c

is called a nondegenerate double point if M[c](a0 : a1 : a2) is of rank 2.

A non degenerate double point (a0 : a1 : a2) is called a crossing, if M[c](a0 : a1 : a2) has a

positive and a negative eigen value.

A non degenerate double point (a0 : a1 : a2) is called ’solitary’, if M[c](a0 : a1 : a2) has both

positive or both negative eigen values. A solitary point of a curve C is an isolated point in

the set of real points of the curve.

Now let us look at the second part of the proof. This proof is taken from [Vir]. Let Cm

be the set of all m-degree curves (not necessarily non-singular). Cm can be identified as a

real projective space of dimension 1
2m(m+3). For a curve C with degree m, an associated

polynomial c has 1
2m(m+3)+1 coefficients. Once we fix a general indexing for the coeffi-

cients depending on the monomials, we can consider the mapping of a curve to the point of

RP1
2 m(m+3) that has the coefficients,in the same order, as homogeneous coordinates. Since

two associated polynomials of a curve are constant multiples of each other, the map is well-

defined and a bijection. We take coefficients of c(x0,x1,x2) with the indexing that gives ci j

as the coefficient of xm−i− j
0 xi

1x j
2.

Consider two subsets of the space Cm,

NCm = {C ∈Cm : C is non-singular }.

SCm = {C ∈Cm : C is singular }.
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NCm has some important properties. Firstly NCm is an open subset of Cm. Also every curve

in NCm has a neighbourhood of isotopic curves in NCm, because slight modifications of

coefficients of associated polynomial results in associated polynomial of smooth sections

of a tubular fibration of original curve. The set of curves in SCm having singularity at a

fixed point x ∈ RP2 is a subspace of Cm of dimension 1
2m(m+3)− 3. Look at the subset

I = {(x,C) ∈ RP2×Cm : C is a singular curve with singularity at x} of RP2×Cm. I is an

algebraic subvariety of RP2×Cm. I is, in fact , a 1
2m(m+3)−1 dimensional manifold.

SCm is the image of I under a smooth map, namely, restriction of the projection RP2×Cm→

RP2 to I. Therefore SCm is a manifold whose dimension does not exceed 1
2m(m+3)− 1.

Consider the subset of SCm, S1Cm consisting of curves with only one singular point. SCm \

S1Cm is a manifold whose dimension does not exceed m(m+ 3− 2). The subset of SCm

consisting of curves C such having singularity such that rank of matrix of second partial

derivatives at that point is at most 1 is also a manifold whose dimension does not exceed

m(m+ 3− 2). We can show this using similar arguments used above for SCm. Let us as-

sume that dimension of SCm is less than or equal to 1
2m(m+3)− 2. A submanifold of

codimension less than or equal to two, will not seperate the manifold Cm. If SCm does not

separate Cm, then there would exist only one isotopy class of degree m non-singular curves.

Therefore dimension of SCm is at least 1
2m(m+3)−1 and therefore equal to 1

2m(m+3)−1.

From these results, the existence of an everywhere dense open subset of SCm contained in-

side S1Cm, follows. We call this subset principal part of SCm, denoted by PSCm. Principal

part of SCm can be divided into two open sets; One consisting of curves with crossing and

the other consisting of curves with solitary point. We denote them as P1SCm and P2SCm

respectively.

A curve C, considered as a point of Cm, moving along an arc that intersects P2SCm transver-

saly has two possible modifications. It will contract one oval to a solitary point that vanishes

or develops a solitary point in RC, that gives an oval. A curve C, considered as a point of

Cm, moving along an arc that intersects P1SCm transversaly will develop a crossing by merg-

ing arcs of the curve and then diverges. We call a line in Cm, a pencil of degree m. Consider

two curves in a pencil given by polynomials c1 and c2. Then the associated polynomial of

any curve in the pencil is a linear combination of c1 and c2 with non-zero real coefficients.

The pencils that intersect SCm at points of PSCm and only transversally form an open ev-

erywhere dense subset of set of all real pencils of curves of degree m. We have already
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shown that for m ∈ N there exist degree m non singular curves with maximum number of

components allowed by Harnack’s theorem. Also there exist degree m non singular curve

with least number of components allowed by Harnack’s theorem which is 0 and 1 for even

and odd m respectively. The degree m non-singular curve xm
0 + xm

1 + xm
2 = 0 is an empty

curve for even m and has only one component when m is even.

What remains to show is the existence of non-singular curves of degee m with the interme-

diate values of number of components. A set of isotopic non-singular curves is open in Cm.

So, there exist a pencil of degree m curves that connects curves of the maximum and least

number of components and intersects SCm only transversally in only PSCm. This pencil

contains non-singular curves with all intermediate number of components. To see this, re-

call that moving from the curve with least number of components to that with most number

of components, modifications that curves undergo change the number of components by 1.

2.4.1 Topological classification problem

Harnack’s theorem, in fact, is the solution for the topological classification problem. For

any n, we know the different types of non-singular curves upto homeomorphism. If n is

odd, then for any 1≤ r ≤ (n−1)(n−2)
2 + 1, there exists a degree n non-singular curve with

exactly r components. If n is even, then for any 0 ≤ r ≤ (n−1)(n−2)
2 + 1, there exists a

degree n non-singular curve with exactly r components. Harnack’s inequality shows that
(n−1)(n−2)

2 + 1 is the maximum number of components possible for a degree n curve. We

know that the number of components determines the topological type of a curve.
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