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Chapter 1

What are Biological Ratchets?

A ratchet is essentially a device permitting only unidirectional motion. Movement or
changes happen in irreversible steps. However, this ratchet cannot exist in an isotropic
medium, even in the presence of brownian noise. Structural features alone cannot bias
Brownian motion to create a ratchet.[1] This has been illustrated by Feynman in [16]

using a toothed gear and a weather vane. In an isotropic medium with Brownian
noise, there will be no net motion averaged over time as any forward motion will
cancel out any backward motion. A gradient of some sort or an anisotropy to drive
the ratchet (usually created by external active forces in most biological systems) is
needed to produce net unidirectional motion and do work. This has been also been
illustrated by Feynman with the help of a toothed gear and a pawl.

Figure 1.1: Ratchet and Pawl, as taken from Feynman [16]

Here, the device is set up as a weather vane in a box of gas particles at a temperature
TH . The toothed gear is connected to a pawl in a box with gas particles at a
temperature TC . They are connected by an axle and a wheel with a load which
can be used to measure work done, if any. We set up a thermal gradient by TH > TC .
In the TH box, the gas particles randomly bombard the weather wane, causing it to
‘jiggle’ and move the connected gear in both, forward and backward, directions. This
bombardment is random and Brownian in nature and we expect there to be no net
motion in a given direction. However, the pawl prevents the backward motion in the
TC box and only unidirectional forward motion is allowed. 1

1
This seemingly causes the second law of thermodynamics to be violated. But we must remember that the second law is statistical in

nature and it has been proven that entropy can spontaneously decrease in a system with an exponentially decreasing probability[14],[15].)
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Each movement of the teeth in the gear also cause the pawl to ’bounce’ when it opposes
the backward motion. The energy produced in this causes the air around the gear to
heat up. As the TC box heats up, Brownian motion and bombardment occurs here
on the pawl too. While the pawl is bouncing around, the tooth can slip even in the
backward direction. Hence, at TH = TC , when the bombardment on the weather vane
and the pawl is the same, the motion of the gear is completely random and there is
no net movement. Purely equilibrium thermal fluctuations cannot cause a movement
current. To cause uni-directional motion, some energy ε must be provided to the vane
end or the driving end of the ratchet to ensure that TH > TC is maintained.

However, even within a ratchet, some amount of backward motion is permitted, often
called ’backlash’. This backward motion is heavily energetically penalised. In a long-
time limit, the backward motion is negligible (unless there is an external driving force
in that direction) and we have effective one-directional motion. This backlash can be
used as a potential measure of the quality of the ratchet.

Analogies can easily be drawn between such ratchets and biological active systems. In
most biological systems where random diffusion can dominate, ratchet mechanisms are
often used to explain unidirectional motion and movement. Notably, most biological
ratchets do not use gradients to cause motion but rather non-directional sources of
energy like heat or chemical forces.

1.1 Some examples of biological ratchets

1. Molecular Motors in muscles: Molecular motors that depend on ATP consumption
for activity often have to contend with thermal noise on comparable orders of
magnitude. Despite this, there are very few backsteps when a motor is carrying
a load. However, spontaneous reduction of entropy coupled with phenomena like
forward fluctuations cause conformational changes in the substrate and keeps
the motor to keep moving forward in a ratchet-like manner.[9]

2. GTP-GEF Cascades in cargo trafficking: Rab GTPase Enzymes are thought
to be master regulators for trafficking cargo across the cisternae of golgi in
cells. This is a complex molecular mechanism involving SNARE proteins, GEF’s
(guanine nucleotide exchange factors) and GAP’s (GTPase activating proteins).
These are often set up as a cascade in a ’ladder’ formation and follow the same
irreversible ratchet mechanism to facilitate transport across the golgi.[11]

For this thesis, we will be focusing on cellular junction shrinkage while attempting
to model it as a ratchet. During tissue morphogenesis and remodelling, inter-cellular
junctions must shrink to allow cell shape changes. This has been seen during tissue
extension in the Drosophila Embryo which is known to be initiated by the active
shrinkage of the vertical junctions. Experimentally it has been observed that this
shrinkage happens in a ratchet-like manner, with steps being controlled by the density
of molecular motors (Myosin II and E-Cadherin clusters) with noisy dynamics at the
cell junction.
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Chapter 2

Cellular Junction Shrinkage

Any tissue is composed of multiple cells and all of these cells must interact with each
other for all physiological processes, ranging from development to having mechanical
stability. These interactions often involve ‘cell junctions’ or ‘inter-cellular bridges’
which are specialised plasma membranes. Different kinds of such junctions mediate
interactions, either between different cells or between the plasma membrane and the
extracellular matrix. There are 3 particular types of junctions that can be found
between the plasma membrane of neighbouring cells in animal cells.

Figure 2.1: Illustrative example of types of cell junctions in animal cells. We focus on the
Adherin Junctions. The junction consists of Actin Filaments that extend into the cell as
well as Cadherin Proteins that live on the junction itself.
Image Source: Wikipedia (Public Domain)

1. Occluding Junctions or Tight Junctions: These junctions use multi-protein
complexes in vertebrates to prevent leakage of fluid across cells. They could
either form seals or pathways for ’leakage’ of selective material. In invertebrates,
an analog is found in the form of ”separate” junctions.

2. Communication Junctions or Gap Junctions: These junctions connect the cytoplasm
between neighbouring cells. (The analogue in plant cells would be the plasmodesmata)
They facilitate electronic, chemical and trans-membrane communication between
cells.

3. Anchoring Junctions: They can be of multiple types, Adherin Junctions, Desmosomes,
and Hemidesmosomes. Adherin junctions are directly connected to the actin
cytoskeleton and composed of various proteins; of which Cadherins (from ”calcium-
dependent adhesion”) are key. Since they are directly connected to the cytoskeleton,
the motor protein Myosin also plays a direct role in its dynamics.

We will focus on adherin junctions in this work, and particularly on the dynamics of
the cell junctions during the germband extension of Drosophila embryo.
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2.1 A detailed look at cell shrinkage in the Drosophila

embryo

During early development of drosophila, the germ band extension is an important
step. The germ band is a primary layer of cells that formed during the embryonic
development and eventually develops into the trunk of the embryo. It is seen to
almost double in length (along the anterior-posterior or head-tail axis of growth)
while narrowing along the perpendicular (dorsal-ventral or side-side) axis.[8]

Figure 2.2: A) The germ band, marked in grey, undergoes tissue remodelling to double
in length and narrow in shape, eventually folding upon itself and forming the trunk of the
embryo. B) This extension happens via a process of tissue remodelling where cells undergo
shape changes by stretching in one direction (as in this embryo) or by cell rearrangement.
[8]

Time Lapse Microscopy on the Drosophila embryo has shown this tissue extension
happens through changes in neighbouring cell shapes. The changes happen in a
manner that maintains the structural integrity of the epithelial tissue and adherin
junctions (and often involves cellular intercalation). The tissue gets remodelled when
the cellular junctions shrink according to the topological T1-T2-T3 transitions. Notably,
no cell division takes place during this process. The junctional collapse happens
only along the vertical junctions of the cell due to the planarity and polarity in the
embryo. The vertical cell junction (red line in Fig. 2.3) must collapse before the
junction can extend in the perpendicular direction (blue line in Fig. 2.3).

Figure 2.3: In the tissue, initially the grey cells are in contact with each other and the
green cells are separated by a cell junction, marked in red (T1). After initiation of shrinkage,
this junction collapses and all four cells share a common point of contact (T2). A new
cell junction is formed by extension, perpendicular to the original one, marked in blue.
The tissue has now extended in length in the horizontal level but narrowed in the vertical
direction (remodelled). [8]
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2.2 Molecular Ingredients of Shrinkage

It is believed that shrinkage is induced by an interplay of force generators (Myosin II)
and force sensors (E-Cadherin). The actin network also plays an important role.

1. The Myosin super-family consists of a large number of ATP-dependent motor
proteins with actin-based motility. Consisting of a head, a neck and a tail, these
proteins ‘walk’ along the actin filaments and are capable of carrying cargo that
interacts with the tail. Linker proteins form the neck. The head binds to the
filament and does the ‘walking’. The head also generates force (based on a
ATP Hydrolysis fuelled mechanism) during its walk and hence the Myosin is a
Force generator here. There is a large variety of proteins and isoforms in this
super-family. For this thesis, we shall be focusing on the non-muscle, junctional,
Myosin-II.

2. Cadherin (from Ca2+ Dependant Adhesion) are cell-adhesion molecules that
play important roles in Adherin Junctions. The Cadherin super-family consists
of a large number of proteins divided into four sub-groups. For this thesis,
we shall be focusing on Epithelial Cadherins (E-Cadherin) that belongs to
the ‘Classical’ subfamily. These E-Cadherin exist as various clusters near the
junction and within the context of the junctional shrinkage, these are the Force
Sensors. E-cadherin plays a very important role in cell-cell force transduction
and it is strongly coupled with the actomyosin network.

Figure 2.4: Cellular Junction Shrinkage is mediated by Myosin Pulses (marked with black
arrows). The Myosin-II protein lives on the F-Actin mesh (marked in red) and gets enriched
at the junction during shrinkage. This causes the vertical junction to shrink (marked with
the red arrows). This constriction is opposed by Epithelial Cadherin Proteins that live on
the membrane (marked in Blue) by redirecting the myosin enrichment.
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Junction shrinkage is believed to be driven by the enrichment of Myosin on the
junction[8],[13]. Once shrinkage is initiated, a myosin pulse has been observed to
periodically enrich the junction with Myo-II. The pulse acts as a force transducter
and transmits the tension. The pulse also seems to coincide with the step wise
shrinkage. The cell adhesion proteins, mostly Epithelial-Cadherins (E-Cadherins)
oppose this shrinkage and hence act as force sensors. E-Cadherin forms different
kinds of clusters[6], far from and at the junction. Non-junctional Cadherin clusters
stabilise and resist the cortex flow. It is also believed that these clusters resist furrow
ingression during cytokinesis[12]. At the junction, the cis and trans E-Cad clusters
form, linked to the actin cytoskeleton and respond differently to the myosin pulse.
The junction is two lipid bi-layers stuck together. The cis clusters form on the same
side the bi-layers and the trans clusters form across the bi-layers, binding to the E-Cad
from the neighboring cell. There is constant decay and formation of these monomers,
cis and trans clusters. The trans clusters redirect the myo-II away from the junction
upon enrichment and oppose the shrinkage.

2.3 The Myosin Driven Ratchet

Experimental work has proven that the Myosin-II driven shrinkage mechanism is
indeed a ratchet. The Myosin pulse and the E-Cad response has been experimentally
visualised (As seen in [2]).

Figure 2.5: Myosin Enrichment at Cell Junction [2]. Each subsequent frame ahead in
time. The Myo-II has been marked using the Pink marker and the E-Cad Protein has been
marked using the Green marker. We can observe myosin enrichment at the collapsing cell
junction(marked by the white arrow).

In the experiment, the Myo-II are tagged by mCherry, a protein marker that fluoresces
red/pink when imaged and the E-Cad were tagged by the GFP (Green Fluorescent
Protein) which fluoresces green under imaging. The E-Cad is observed all along the
cell membrane. As time goes on, periodic enrichment of the cell junction in Myo-II
(by a Myosin Pulse) is observed. At each pulse, the length of the cellular junction
can be measured.
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Figure 2.6: Myosin Pulse [13] dynamics with time on the horizontal axis. On the vertical
axis, the junctional length is expressed in µm in black. This is overlaid with the Myosin
Pulse (independent of the y-axis) in red.

It is observed that the junctional length shrinks down in a step wise manner (with
noise due to noisy dynamics of the molecular ingredients). Each step-wise shrinkage
coincides directly with a myosin pulse as see in Fig. 2.6. We can reliably conclude that
junctional shrinkage happens in a ratchet like irreversible manner and this ratchet is
driven by Myosin Pulses and enrichment of Myo-II at the cell junction. To understand
this ratchet mechanism in greater detail, we study an already existing microscopic
model of the cell junction.

2.4 Microscopic model of the Cell Junction

Figure 2.7: Microscopic Model of Cell Junction, as taken from [2]. We focus on junctional
myosin (marked in purple) and E-Cad clusters (marked in yellow) tha exist in their trans
forms. A) The molecular ingredients of the shrinkage mechanism can be seen. It is
important to note how the trans E-Cad clusters form bonds extending into the cells across
both the lipid bi-layers. B) An effective 1-D model of the cellular junction can be seen
with a junction length of L(t). This model has been described mathematically in the next
section.
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The preceeding figure and details of the microscopic model have been taken from [2].
Only the trans-cadherin clusters are actually involved in opposing shrinkage. The
real biological junction is a two dimensional object, composed of 2 lipid bi-layers in
the horizontal dimension (in plane) and groups of trans and cis E-Cadherin clusters
in the vertical (in plane) dimension. Microscopic descriptions using the molecular
densities of Myo-II and the E-Cad protein were written down in [2] in full microscopic
detail. This can be modelled as an active spring motivated by the spatio-temporal
dynamics observed in experiments. The actomyosin network can can be considered
a visco-elastic element due to the presence of active stress generators in the form of
Myo-II motors. The amount of stress depends on the Myo-II density, the dynamics
of which were written down using a basic binding-unbinding model. There is also
stress dissipation, in part by the E-Cad molecules. A similar description, using a
visco-elastic element with dissipation terms like in a Kelvin-Voight model can also be
found in [5]. A hydrodynamic theory for the same was developed in [2] to end up
with an effective 1-D model for the junction (Fig 2.7 b). This model has also been
proven to capture features of actomyosin pulsation and local contractile forces in [2].
This active spring is characterised by the dynamic variable L(t) - the junction length.
The length dynamics were written down as follows:

γ ˙L(t) = −B(L(t)− L0(t))− Fα(t) (2.1)

Here, γ is the damping coefficient, B is the elastic coefficient for the spring, L0(t) is
the time dependant rest length and Fα is the active contractile force.
Here, the external active force is already known and is strictly speaking, not tunable.
The addition of a time dependant rest length L0(t), motivated by the ratchet like
mechanism in shrinkage and explained in section 2.6, makes the equation detailed
balance violating. This will be the crux of our model.

2.5 Writing down a coarse grained model

The microscopic details of the model have already been worked out in [2], along with a
hydrodynamic description. However, there is merit to writing a more coarse-grained
model to try and understand the thermodynamics of a non-equilibrium process to gain
a deeper understanding. We take this more coarse grained approach, assume equation
2.1 to govern the junction dynamics and attempt to understand the underlying dynamics
of the rest length L0(t). There are several assumptions that already go into this:

1. The first term is ’restoring force’ like. The negative sign accounts for the
restoring effect and hence puts a restriction such that B > 0
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2. The active force Fα(t) is a contractile force based on phenomenology. The
negative sign also constrains the magnitude of the force to be positive such that
|Fα(t)| = A > 0. There are 2 timescales (when the myosin pulse is on ∆t1 and
when the myosin pulse is off ∆t2), and the amplitude of the force A

Fα = Afα(t) (2.2)

Here fα(t) can take multiple forms. An obvious choice would be a box function
like sgn(sin 2ft), corrected to having an unequal duty cycle.

Figure 2.8: Structure of the active force Fα(t). The horizontal axis has time and the
vertical axis has the amplitude of the force A in black, overlaid with the myosin pulse
in red (not to scale). The force acts in a pulsatory manner and this pulse continues
for the duration of shrinkage. The pulse is on for ∆t1 and off for ∆t2

The key point is that when the pulse is on, the force generated by the Myosin
Motors acts on the junction to try and shrink it. We make the natural assumption
that the active force is affected only by the myosin dynamics.

3. Actual myosin dynamics are very noisy. However, we work in the deterministic
limit for mathematical tractability.

2.6 Where is the Ratchet?

Experimentally, we have no access to any dynamics of the rest length of the spring
which we assume to be time-dependent. Hence, we attempt to write a minimal model
for the same. In this, there are three paramters in equation 2.1 that can be tuned, B,
L0(t) and Fα(t). B is the elastic moduli of the spring junction and no experimental
time dependant variance in this has been observed. Fα(t) is the active force that is also
fixed by the cycle of Myosin pulses in the system. Hence we assume that the detailed
balance violations are going to happen only by changes in L0(t). In every time step
when L0(t) changes, the equilibrium rest length of the system changes too. As the
L0 value decreases, the system spring length will tend to a smaller and smaller value
at every time step. There is now an obstacle for the system to go to previous larger
values of L and hence it can work only in the unidirectional direction of shrinkage. A
shrinking L0 is acting as the ’pawl’ for our ratchet.

9



Chapter 3

Minimal Model for rest length L0

To write a minimal model for the rest length L0(t), We work under certain assumptions

1. The rest length shrinks for some timescale ∆T1 which is the time when the E-
Cadherin clusters are breaking apart. The velocity S1 can be directly related to
the rate of fragmentation of the trans E-Cadherin clusters.

2. Once the clusters have fragmented, the rest length can either remain static or
increase in length for a time period of ∆T2 when the monomers are aggregating
to form trans clusters. The velocity S2 can be directly related to the rate of
aggregation of the trans E-Cadherin clusters which oppose shrinkage.

Under these assumptions, we build the minimal model of L0(t) as such:

Figure 3.1: We construct the rest length L0(t) to shrink monotonically down to 0,
controlled by 2 knobs S1 and S2 that dictate the rate of the decrease and increase. Each of
the slopes is ‘active’ for the corresponding ∆T1 or ∆T2

10



For now, we can assume the shrinkage happens exactly when the myosin pulse is
switched on (∆T1 = ∆t1) and when the myosin pulse is switched of, the increase/no
change takes place (∆T2 = ∆t2). These assumptions can be relaxed later. This
construction can be also be parametrised using 2 other relevant parameters.

Figure 3.2: The monotonic decrease can also be parametrised by an offset Q and the total
time ∆T over which a Myosin cycle takes place (one cycle is counted as the pulse being on
and off, from the time it is switched on to when it is switched on again). The two knobs
are now Q and ∆T

The parameter Q or the offset in L0 over one entire turnover period ∆T is related to
the E-Cad density after turnover. If the offset is 0, which means the rest length has
come back to the same value after one cycle, E-Cad density is conserved. However
if we have non-zero Q, E-Cad densities are not conserved and eventually, the rest
length will shrink to zero. We define the ratio of ∆T2

∆T1
:= f . Given f, we can use one

parameter from 3.1 and 3.2 to get the full information or both the parameters from
either of the set.

With the construction of L0 and phenomenological choice of Fα, we should now be
able to solve completely for L(t). But we run into problems, the two biggest being

• The presence of two different timescales (can be 4 if the assumption is relaxed)
in the problem which makes solving it in the continuum limit mathematically
intractable.

• The presence of dimensional parameters.

To solve these problems, we discretise our equations and treat the L dynamics as a
Markov process. This is reasonable as after every full-time period of ∆T , the process
can be thought to have reset itself and begins, with different initial conditions. Hence
it depends on the previous move merely for getting a position where it is to start
from.

11



3.1 Solution of the equations

We discretise the equations first before we non-dimensionalise to fully capture the
multiple time scales present.

For the purpose of consistency, we index each L(t) by the index k after k moves have
been made. Hence, Lk and Lk0 are the respective lengths after k moves have been
made across both the time scales with Lint and Lint0 being the initial conditions at
t = 0.

1. k ∈ [0, 1, 2 ...)

2. At t = ∆t1, our index is at k = 1 and hence L1 and L1
0.

3. At t = ∆t1 + ∆t2, our index is k = 2 and hence L2 and L2
0.

Now based on this new index, we can discretise based on whether k is odd or even,
and accordingly the timescale will be ∆t1 or ∆t2 We first discretise our time with this
index. Some calculations and phenomenology yields

tk =


1
2
k∆t1 + 1

2
k∆t2 ; k is even

1
2
(k − 1)∆t2 + 1

2
(k + 1)∆t1 ; k is odd

which can be simplified to

tk =


1
2
k(1 + f)∆t1 ; k is even

1
2
(k − 1)f∆t1 + 1

2
(k + 1)∆t1 ; k is odd

3.1.1 Constructing Difference Equations for L0

We also construct L0 from S1 and S2 for mathematical ease as all other information
can be deduced from there. From the desired form of L0 in the graph, we can write

L2k+1
0 = L2k

0 − S1∆t1 (3.2)

L2k+2
0 = L2k+1

0 + S2f∆t1 (3.3)

The negative signs in the equation impose the constraint S1 > 0 and S2 > 0.
Substituting one into the other, we get

L2k+2
0 = fS2∆t1 − S1∆t1 + L2k

0 (3.4)

This is a second order recursive equation and hence should need two constants to
solve.
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These constants enter the solution as C1 + (C2)2k However, under the assumption of
k > 0 and k is an integer, the constants can be removed by specifying the initial
condition of L0

0 = Lint0 The solution of one recursion relation can again be substituted
into the other one to give us the final solution as

L2k
0 = Lint0 + k(−S1 + fS2)∆t1 (3.5)

L1+2k
0 = Lint0 − S1∆t1 + k(−S1 + fS2)∆t1 (3.6)

3.1.2 Discretising the L dynamics

We discretise the differential equation using the first-order Euler’s Method[3]. Depending
on whether k is odd or even, we get:

γ
L2k+1 − L2k

∆t1
= −B(L2k − L2k

0 )−A (3.7)

γ
L2k+2 − L2k+1

∆t2
= −B(L2k+1 − L2k+1

0 ) (3.8)

which are simplified to

γ(L2k+1 − L2k) = B∆t1(L2k − L2k
0 )−A∆t1 (3.9)

γ(L2k+2 − L2k+1) = fB∆t1(L2k − L2k
o ) (3.10)

3.1.3 Making the Equations Non-Dimensional

We define L̃ = L
L∗

and ∆̃t1 = ∆t1
t∗

where (·)∗ is some characteristic quantity. In 3.9
and 3.10, we multiply by some characteristic length and characteristic time scale to
get: Working on Eqn 3.9,

γL∗(L̃2k+1 − L̃2k) = −B∆t1L
∗(L̃2k − L̃0

2k
)−A∆t1 (3.11)

To try and extract the characteristic length scale, we rearrange as

(L̃2k+1 − L̃2k) =
−B∆t1

γ
(L̃2k − L̃0

2k
)− A∆t1

γL∗
(3.12)

We extract a time scale from the system as:

(L̃2k+1 − L̃2k) =
−Bt∗∆t1

γ
(L̃2k − L̃0

2k
)− A∆t1t

∗

γL∗
(3.13)
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This gives us the following values:

t∗ =
γ

B
(3.14)

L∗ =
At ∗∆t1

γ
(3.15)

L∗ =
A∆̃t1
γ

= λ∆̃t1 (3.16)

λ = A/B (3.17)

We note that we have another quantity λ which is what we choose to rescale our
lengths with it. We know,

L̃ =
L

L∗
=

L

λ∆̄t1
=

L̄

∆̄t1
(3.18)

.

From the last equality, we get (̄·) = (·)/λ and we define ∆̃t1 = ∆̄t1 := τ

Finally, substituting these quantities into Eqn 3.9 and doing the same analysis for
Eqn. 3.10, we get

L̄2k+1 = L̄2k − τ(L̄2k − L̄o
2k

+ 1) (3.19)

L̄2k+2 = L̄2k+1 − fτ(L̄2k − L̄o
2k

) (3.20)

We need to non-dimensionalise the dynamics of L0 too. We use the definition from
3.18 to get the following

L̄0
2k

= L̄0
int

+ k(−S̄1 + fS̄2)τ (3.21)

L̄0
2k+1

= L̄0
int − S̄1τ + k(−S̄1 + fS̄2)τ (3.22)

S∗i =
λ

t∗Si
(3.23)

This gives us the dynamic equations to describe our system (Where we drop the bar
for ease of notation).

Dynamic Equations for the system

L2k+1 = L2k − τ(L2k − L2k
0 + 1)

L2k+2 = L2k+1 − fτ(L2k − L2k
0 )

L2k
0 = L0

int + k(−S1 + fS2)τ

L2k+1
0 = L0

int − S1τ + k(−S1 + fS2)τ
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3.2 Initial Conditions

Since we have two length scales(L and L0) to begin with, it becomes important to
decide what the difference between them should be, if at all. As it turns out, for
this system, the only condition that makes logical sense is the initial conditions of
Lint0 = Lint . Experimentally, we know that the cell junction exists without fluctuations
before the junction shrinkage is initiated. The only situation in which this will happen
is if the initial condition, prior to initiation of shrinkage, is the equilibrium position.
The junction length L must be equal to the rest length L0 at the beginning and then
change following the dynamic equations.

3.3 Analysis of the Minimal Model for L0

We want to ask what are the conditions under which our system is a ratchet. We
also want to explore any features or subtleties that we may find and eventually, make
thermodynamic arguments for the same.

3.3.1 When is our system a ratchet?

Since any spring tries to minimise its energy by relaxing to the rest length L0, if we
want the spring length to ratchet to 0, the rest length must do so too. To calculate
conditions for this, one can by eye get condition given in boxes 1. Alternatively, it
can be derived as follows:

1. Let Kmax be the number of moves the by the L0 protocol such that LKmax
0 = 0

2. This can be at the even move or the odd move. Hence we solve for 2 equations
3.21 and 3.22 both.

3. We take the minimum value as we stop at the first moment when the rest
length is zero. Beyond this Kmax, the rest length will become negative which
will change the fundamental dynamics of the spring in an unphysical manner
and hence we can discard this regime.

4. We solve for the minimum of L0
2k = L0

int + k(−S1 + fS2)τ = 0 and
L0

2k+1 = L0
int − S1τ + k(−S1 + fS2)τ = 0 to give us

Kmax = Min(
Lint0

S1 − S2f
τ,
Lint0 − S1τ

S1 − S2f
)

Note: We have dropped the bar for convenience of notation. All quantities are
dimensionless. For this Kmax to be positive (negative number of moves are not
defined), we get 2 conditions.
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1. Condition 1: S1 > S2f

Figure 3.3: Testing L0 Dynamics for various parameters in Condition 1.
Top Left: S1 > S2f at S2 = 0. L0 shrinks to 0 in a finite number of steps and hence
is allowed. Top Right: S1 > S2f > 0. L0 shrinks to 0 in a finite number of steps and
hence is allowed. Bottom Left: S1 = S2f . At equality, L0 does not shrink to 0, instead
it oscillated between 2 values. Strict inequality must be obeyed to get a physically relevant
rest length. Bottom Right: S1 < S2f Rest length will never shrink to 0 and continue to
grow positively.

This gives us an upper bound on aggregation of trans E-Cadherin clusters. If
aggregation happens faster than this rate (dependant on fragmentation rate),
the ratchet does not shrink to zero.

2. Condition 2: S1 <
Lint
0

τ

Figure 3.4: Here, we get an upper Bound on S1. When this condition is violated, the rest
length shrinks to 0 in the very first step which is un-physical

If the rate of fragmentation is very high, the length will immediately shrink to
zero. The tissue may buckle or tear in this regime.
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3.4 Dynamics of L

Working within the conditions from the previous section, we want to see how our
minimal model affects the observable dynamics of the junctional length L. We fix
value of f = 3/5 from experiment[13] and vary S1, S2 to get various dynamics. We can
get multiple kinds of paths by tuning the knobs of S1 and S2.

Figure 3.5: Chosen values of S1 = 4 and S2 = 0. We see the junction length L in blue and
rest length L0 in red (on the vertical axis in a.u) shrinks to 0 monotonically as time goes
on (on the horizontal axis, non-dimensionalised by characteristic time t∗). Backlash error
is minimised and this can be categorised as a ‘Good Ratchet’. On the right, the state space
diagram of this path.

Figure 3.6: Chosen values of S1 = 4 and S2 = 0. We see the junction length L in blue
and rest length L0 in red (on the vertical axis in a.u) shrinks to 0 as time goes on (on
the horizontal axis, non-dimensionalised by characteristic time t∗). As we increased the S2

value from zero to a finite number, or the rate of aggregation of trans-clusters, the ratchet
still exists but there is some backlash error. This makes sense because as we increase the
aggregation of trans-clusters, we expect opposition to the shrinkage to grow too. On the
right, the state space diagram of this path. The backlash can be seen more clearly in the
state diagram.
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Figure 3.7: Chosen values of S1 = 2 and S2 = 1. We see the junction length L in blue
and rest length L0 in red (on the vertical axis in a.u) shrinks to 0 as time goes on (on the
horizontal axis, non-dimensionalised by characteristic time t∗). As we reduced the S2 value
or the rate of aggregation, as well as the S1 value or the rate of fragmentation, we observe
two things: the number of steps to shrink to zero falls and the backlash error increases. On
the right, the state space diagram of this path. The backlash can be seen more clearly in
the state diagram.

Figure 3.8: Chosen values of S1 = 0.01 and S2 = 3. As we decrease the rate of
fragmentation to smaller and smaller value, we can expect more opposition to shrinkage as
trans-clusters are not breaking apart. We see the junction length L in blue and rest length
L0 in red (on the vertical axis in a.u) does shrink to 0 as time goes on (on the horizontal
axis, non-dimensionalised by characteristic time t∗). However, there is a high amount of
backlash error and this can be classified as a ‘Bad Ratchet’. On the right, the state space
diagram of this path. The backlash can be seen more clearly in the state diagram.

We observe that both the fragmentation and aggregation rates of the trans-clusters
of E-Cad seem to affect the junctional length dynamics. There is also a different
quantity that can be used as a parameter. From Fig. 3.2, we know Q is the offset in
junctional length L in a cycle. This can be thought of as a more relevant parameter
as it can directly be connected to E-Cadherin densities, independent of the densities
of trans and cis clusters. A zero offset would imply no ’leakage’ of E-Cadherin density
in a given cycle and we shall see consequences of this in section 3.6. We can write

Q = (S1 − S2f)τ (3.24)

which allows us to still vary the 2 knobs of S1 and S2. The condition from 3.3 holds
here as the offset must be greater than 0.
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3.5 Phase Diagrams in the System

One measure to quantify the ’goodness of a ratchet’ is the amount of ”backlash” that
the ratchet undergoes. We can either quantify the entire accumulated backlash error
over the entire process or the average backlash error in 1 cycle ∆T . We try to find
phase diagrams in the S1, q space. We want to tune the offsetQ and the fragmentation
rate s1 as our knobs. To ensure consistency, we perform the following calculation:

1. From 3.24, we get

S2 = S2(S1,Q) =
S1 − Qτ
f

(3.25)

2. This gives us a lower bound on S1 to ensure that S2 > 0 as Smin1 = Q
τ

3. Now we can tune Q and S1 which will automatically tune S2 to fit into our
current paradigm.

4. To ensure that each S1 and Q are sampled equally and without bias, we define

N =number of points in the phase diagram. We also define δS =
Smax
1 −Smin

1

N

where sminS and Smax1 come from 3.25 and 3.3

We also fix τ = 0.5, f = 3/5 for the following set of graphs.

3.5.1 Phase Diagram in total accumulated error for the ratchet

Figure 3.9: By tuning the 2 parameters using the protocol above,we obtain this phase
diagram. The horizontal axis has the offset Q and the vertical axis has the non-
dimensionalised rate of fragmentation of trans-clusters S1. On the diagram itself, the total
accumulated backlash error is plotted in color as a heat map (with the legend showing
values). Extremely high values of backlash error has been marked in white to allow us to
visualise other features in the diagram.
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We can see three regimes in the phase diagram. The first regime, marked in red, has
values of S1 and Q that are not allowed within the physical limits. The system is not
a ratchet in this case. The second regime, marked in Royal Blue, is the regime where
all values give us a monotonic decrease in junction length L and we see no backlash
error. The third regime, marked in color (and white) exists as a ratchet but we see
varying amounts of backlash error. Some of these are good ratchets, some bad. The
white area denoting extremely high values of error also exists for Q = 0. We can see
the features of the white area by zooming in to that.

Figure 3.10: By tuning the 2 parameters using the protocol above,we obtain this
phase diagram. The horizontal axis has the offset Q and the vertical axis has the non-
dimensionalised rate of fragmentation of trans-clusters S1. On the diagram itself, the total
accumulated backlash error with values above 25 a.u. is plotted in color as a heat map (with
the legend showing values). The same vertical contours, following the same trend are seen,
with just a higher value or error.

From the phase diagrams, we observe that the error in the ratchet is very sensitive to
changed in the offset Q. For a fixed value of Q, changing the value of S1 keeps us in
the same countour with minimal change in error. However, by fixing S1 and changing
Q, we pass through multiple contours.
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3.5.2 Phase Diagram in the accumulated error averaged over
the each Myosin Pulse Cycle

An argument can be made that the quantity plotted above is not the best quantity.
The error for smaller values of S1 and Q can be much higher as each step size is
smaller and hence the ratchet will take many more steps to shrink to zero(resulting
in the accumulated error being much larger). To correct for this, we average over the
number of Myosin cycles to get the average error per cycle. We plot the same phase
diagram of backlash error averaged over the number of cycles.

Figure 3.11: By tuning the 2 parameters using the protocol above,we obtain this
phase diagram. The horizontal axis has the offset Q and the vertical axis has the non-
dimensionalised rate of fragmentation of trans-clusters S1. On the diagram itself, the total
accumulated backlash error, averaged over the number of Myosin Pulses, is plotted in color
as a heat map (with the legend showing values). We see three regimes again

We immediately notice that the features at the boundary get smoothed out over the
average. This indicates that these were small errors merely accumulated over a large
number of steps.
However, this parameter can also be deceptive. Overall, the cell may not care whether
the average error is low if the total error accumulated over the whole process may be
larger than cell junction can tolerate. More in depth understanding may be needed
to choose a better parameter.
Noticeably, we observe that at offset equals zero, there seems to be a very large value
of backlash error, no matter what the value of S1 is. We explore this case of zero
offset in a little more detail.

21



3.6 Zero Offset Case: E-Cadherin levels are conserved

When the offset Q is zero, it corresponds to fixed E-Cadherin levels. Essentially, after
each cycle of the myosin pulse switching on and off, the E-Cadherin levels reset back
to their prior values. This will directly affect that rest length L0(t) dynamics as there
will be no offset in the rest length either.

Figure 3.12: The dynamics of rest length L0 with fixed E-Cad levels. The horizontal
axis has time and the vertical axis has the rest length in a.u. Since the offset is zero, the
rest length always oscillates between two values (The initial value and the value it drops to
initially). This happens infinitely and it does not shrink to 0 in a finite number of steps.

We see if E-Cadherin levels are fixed, the rest length will never shrink to zero. Hence,
the L dynamics will also never shrink to zero and our system will not a ratchet at all.
This can also be observed by plotting all error values observed in the phase diagram.

(a) Plotting the error (on the vertical axis in a.u) with varying offset Q (on the horizontal axis). As
we approach Q = 0, the error tends to asymptotically approach ∞. At Q = 0, the system will never
ratchet to zero and oscillate between two values.
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As we asymptotically approach Q, the error asymptotically approaches ∞. This
supports the fact that the junctional length never goes to zero as this value of
accumulated backlash is possible only if the length keeps ‘zig-zagging’ (the L0 dynamics
do the same). This implies that we cannot have a reliable ratchet at Q = 0
or fixed E-Cadherin levels. There must be some ‘leakage’ of E-Cadherin,
some turnover for a reliable ratchet to exist. The density of E-Cadherin
must decrease after each subsequent pulse. This is seen as there is always
a ratchet, for large enough S1 values for every non-zero offset.

There must be E-Cadherin turnover with non-conserved E-Cadherin
density for a reliable ratchet

3.7 Leanings from the minimal model

The preceding model gives us important observations with regards to the offset in
E-Cadherin levels Q. This toy model, while making some useful predictions, suffers
from some major flaws too.

1. There is no experimental access to the rest length L0 of the system. Since the
model hinges on construction of the L0 dynamics, we can tune it in the model
to get various dynamics but not have any tests for veracity of our model.

2. Our tunable parameter is also something that is not tunable in the actual system,
The equilibrium rest length is a hypothetical property of the cell junction that
we cannot control.

3. This toy model was constructed to gain a basic intuition. As such, there is no
strong rational for a linear decay within a time interval.

4. In the model that we have constructed, the decrease in L0 which corresponds
to the decrease in E-Cadherin levels is same across all time intervals. One can
argue this would not be the case. In each time interval(∆T1 + ∆T2 from Figure
2.8), when the Myosin pulse kicks in, it is akin to a reset. The E-Cadherin
leakage starts from a lower level of E-Cad density from the previous cycle. We
can reasonably assume that there should be some time dependence to the offset.

However, this flawed model also makes some useful predictions. We can see that
the relevant quantity to consider is infact the reduction in E-Cadherin density or the
leakage. We have already proved that this must exist in the system to get a ratchet
from section 3.6. Even from the phase diagrams in section 3.5 , we can see that
the backlash error is sensitive to changed in Q more than the rate of fragmentation
or aggregation. This is also a parameter that can also be experimentally observed
(indirectly). Hence, we take this offset to be a relevant parameter, with some assumptions
and caveats.
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Chapter 4

New Model with Time Varying
Offset

We now want to better our model by choosing a time dependant, decaying function of
Q(t). We also want to choose this Q(t) as a quantity that acts after one Myosin pulse
in a time period τm to avoid microscoping details at smaller time scales that we cannot
observe. We can choose different forms for Q(t) under the following assumptions.

1. The Q(t) must never go down to zero as a non-zero offset is required for
ratcheting (Section 3.6)

2. Q(t) must not take negative values in the regime we are looking at. We don’t
necessarily need a strictly positive function over all it’s domain, merely till the
ratchet is achieved, if at all.

3. The function must be monotonically decreasing. This assumption stems from
the fact that at each time cycle of the L dynamics, the myosin pulse ”resets”
the system. Hence the leakage starts from a lower E-Cadherin density value
that before.

4.1 Setting up the system

Since we have no access to the inner dynamics of the rest length L0, we don’t construct
it explicitly. From Figure 3.2, we can see that after each cycle of the myosin pulse,
the rest length falls by our defined value Q. In terms of discrete dynamics, we can
define our new rest length dynamics as:

Lk0 = Lint0 −
k∑
i=1

Qk (4.1)

This discretisation will change for every form of Q we choose.
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Since we do not know the internal dynamics of the rest length in given time interval,
we redefine the form of the active force over a time period τm such that it takes the
given form.

Fα(t) = Afα(t) (4.2)

where

fα(t) =
20∑

n=1,3,5..

1

n
sin(

nπt

τm
) (4.3)

Figure 4.1: We redefine our active force Fα in our new paradigm. The time is marked on
the horizontal axis and the amplitude is marked on the vertical axis (in a.u.). It has only
one time scale as we care only about the offset Q over one time period τm. We have also
chosen a continuous form for it now.

This enters the spring equation normally as L0(t). Since we know longer have the
”odd” and ”even” move of the previous toy model, we do not need two separate
equations. Using the same discretisation and non-dimensionalisation protocol as in
Section 3.1.3, we get the following equation:

Lk = Lk−1 − τ(Lk−1 − Lk−1
0 + fk−1

α ) (4.4)

This is recursively solved to give us the following equation:

Lk = (1− τ)k−1(Lint(1− τ) +
k−1∑
j=0

τ

(1− τ)k
(f j − Lj0)) (4.5)

We can see that τ = 1 leads to a singularity and instability in the system and must
be worked around. We now explore the dynamics for different functional forms of Q.
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4.2 Exponential Decay in Q

For the first functional form, we choose

Q(t) = q0e
qs
t (4.6)

This reaches a minimum value of q0 at large values of t, ensuring that the offset is
always monotonically decreasing. The rate of decay is controlled by the parameter
qs. Using this form of the offset in Equation 4.1, we get the following form for L0

Figure 4.2: The time evolution (on the horizontal axis) of rest length with exponential
decay (on the vertical axis in a.u.). This asymptotically approaches the value of q0. For the
above figure, q0 = 1 and qs = 2 for illustrative purposes.

A careful interplay between the minimum value q0 and the rate of decay qs is needed
to ensure that the rest length does not crash to zero in a single step. Only values in
which the rest length reduces to less than or equal to zero in less than one step are
disallowed. Upper bounds for reasonable dynamics do exist but cannot be calculated
for one parameter independent of the other.
Using this form of L0, we plot the dynamics of the junction length in Figures 4.3-4.6
and 4.7-4.8. Straight away, we notice that as we increase qs or the rate of decrease of
the offset in Cadherin density Q, the shrinkage happens more rapidly. With increasing
qs, we also see the graph change shape qualitatively, from a straighter line to a more
convex shape. This change is mirrors even as we decrease the minimum value q0 that
the offset Q can take. This can be seen by comparing Figures 4.3 and 4.5 with higher
qs = 0.1 and changing q0 as well as Figures 4.4 and 4.5 with lower qs = 2.1 and
changing q0. This makes sense as changing qs changes the behaviour of rest length
dynamics. However, it appears that as we reduce the minimum value q0, the quality
of the ratchet decreases and backlash errors start to accumulate.

26



Figure 4.3: The horizontal axis shows time and the vertical axis shows length (in a.u.).
The rest length L0 is marked in blue and the junction length L is marked in red. For
q0 = 2.0 and qs = 0.1, we see a ratchet exists with some backlash error. (τ = 1.1)

Figure 4.4: The horizontal axis shows time and the vertical axis shows length (in a.u.).
The rest length L0 is marked in blue and the junction length L is marked in red. For
q0 = 2.0 and qs = 2.1, we see a ratchet exists with some backlash error. As we increase the
rate of decay qs, we see the number of steps in the process fall sharply. (τ = 1.1)

Figure 4.5: The horizontal axis shows time and the vertical axis shows length (in a.u.).
The rest length L0 is marked in blue and the junction length L is marked in red. For
q0 = 1.0 and qs = 0.1, we see a ratchet exists with some backlash error. As we increase the
rate of decay qs and the minimum value of the offset q0, the backlash errors seem to start
accumulating faster that a higher minimum offset value. (τ = 1.1)
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Figure 4.6: The horizontal axis shows time and the vertical axis shows length (in a.u.).
The rest length L0 is marked in blue and the junction length L is marked in red. For
q0 = 1.0 and qs = 2.1, we see a ratchet exists with backlash error. As we increase the rate
of decay qs for the same minimum value of the offset q0, the number of steps in the process
fall sharply. (τ = 1.1)

Figure 4.7: The horizontal axis shows time and the vertical axis shows length (in a.u.).
The rest length L0 is marked in blue and the junction length L is marked in red. If we
choose q0 = 0.1 (very low) and qs = 0.1, we see a sharp increase in the number of steps. A
bad ratchet exists with a large amount of backlash error. (τ = 1.1)

Figure 4.8: The horizontal axis shows time and the vertical axis shows length (in a.u.).
The rest length L0 is marked in blue and the junction length L is marked in red. If we
choose q0 = 0.1 (very low) and increase qs = 2.1, the number of steps in the process do fall.
We still observe a bad ratchet with a large amount of backlash error. (τ = 1.1)
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The previous paths were calculated at τ = 1.1 which is a value greater than the
singularity at τ = 1. We repeat the same analysis for a value of τ = 0.4 in Figure
4.9-4.10 at lesser than the singularity and qualitatively see the same shapes of the
curves, but with much smaller number of steps implying faster shrinkage. We also
notice that the rest length shrinks to zero faster than the junction length does in this
case.

Figure 4.9: The horizontal axis shows time and the vertical axis shows length (in a.u.).
The rest length L0 is marked in blue and the junction length L is marked in red. For
q0 = 1.0 and qs = 0.1, we see a good ratchet exists with very less backlash error. (τ = 0.4)

Figure 4.10: The horizontal axis shows time and the vertical axis shows length (in a.u.).
The rest length L0 is marked in blue and the junction length L is marked in red. For
q0 = 1.0 and qs = 2.1, we see a ratchet exists with minimal backlash error. The shape of
the curve seems slightly different due to the first initial drop (τ = 0.4)
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4.2.1 Phase Diagram of Accumulated Error for exponential
decay in E-Cad offset Q

To get a more comprehensive picture of which regime gives us a better ratchet, we
plot the phase diagram in total accumulated backlash error.

Figure 4.11: Phase Diagram for Accumulated Error in Q with exponential decay. We see
three regimes. The horizontal axis has the minimum value of offset Q and the vertical axis
has the rate of decay qs. On the diagram itself, the total accumulated backlash error in
color as a heat map (with the legend showing values). The regime marked in red is where
the rest length crashes to zero in the very first step and hence is disallowed, marked as not
a ratchet. We also observe a dark blue area of a good ratchet with no backlash errors. As
we go to smaller rates of decays and minimum offset values, we see the amount of backlash
error quickly tends to become very large.

We can observe that there is an optimum rate of decay for the offset. If this is too
slow or decays to a very low value, we get large backlash errors. If this decay is very
fast, the system does not exist as a ratchet at all.
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4.3 Power Law decay in Q

We can also have a power law decay in the offset in Cadherin density.

Q(t) = q0t
−qs (4.7)

The form for Q will decrease for all positive values of qs. The exponent has been called
qs only for consistency. At very large values of t or qs, the function does tend to 0,
corresponding to know change in the offset of Cadherin density but in a time discrete
system, we do not expect to reach such large values. Again, all parameters within a
reasonable domain can be explored with no disallowed values mathematically. The
reasonable domain excludes any values in which the rest length crashes to negative
values in the first move. The exponent can be tuned to get varying dynamics for rest
length L0 as given below.

(a) q0 = 1.0 and qs = 0.1 (b) q0 = 1.0 and qs = 1.5

Figure 4.12: Different Behaviors exhibited by L0 with power law decays in Cadherin
density levels can be observed as time evolves (horizontal axis). The rest length (marked on
the vertical axis in a.u) exhibits different behaviours and curves as we tune the exponents.
A steeper exponent as in b shows a flatter curve.

The q0 controls the amplitude of the decay and does not effect qualitatively the
behavior of the rest length dynamics. It increases or decreases the number of steps in
the shrinkage and the reasonable domain is controlled largely by the exponent.

While plotting, we see that we cannot push the qs value much above 1 as that quickly
pushes the change to zero and we do not obtain ratcheting. This reaffirms the fact
that the ratcheting cannot be too steep or fast. Naturally, as we increase the minimum
value q0, we can explore higher exponentials and steeper shrinkage. This is illustrated
in Figure 4.13, calculated at τ = 1.1.
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(a) q0 = 2.0 and qs = 0.1

(b) q0 = 2.0 and qs = 0.3

(c) q0 = 4.0 and qs = 0.1

(d) q0 = 4.0 and qs = 0.7

Figure 4.13: Different L in dynamics with power law decay in Cadherin Density. The
horizontal axis shows time and the vertical axis shows length (in a.u.). The rest length
L0 is marked in blue and the junction length L is marked in red. For a fixed value of q0,
changing the qs changes the shape of the descent. A higher qs exponent value leads to more
accumulated backlash errors. As we increase q0, it appears that the number of steps in the
process decrease as a whole. (τ = 1.1)
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4.3.1 Phase Diagram of Accumulated Error for power law
decay in E-Cad offset Q

Plotting the phase diagram, we notice the same three regimes, in markedly different
regions from the exponential decay. This is despite the dynamics of the shrinkage
”appearing” to be the same in both cases, at least qualitatively.

Figure 4.14: Phase Diagram for Accumulated Error in Q with power law decay. The
horizontal axis has the minimum value of offset Q and the vertical axis has the power law
exponent qs. On the diagram itself, the total accumulated backlash error in color as a heat
map (with the legend showing values). The regime marked in red is where the rest length
crashes to zero in the very first step or never ratchets down and hence is disallowed, marked
as not a ratchet. We also observe a dark blue area of a good ratchet with no backlash errors.
Lower exponents with higher minimum values seems to give us better ratchet.
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Chapter 5

Discussions and Future Directions

This work is an attempt to recast a microscopic model of cellular junction shrinkage
into a more macroscopic, experimentally accessible model following the language of
thermodynamics. We want to ask questions about reliability/robustness of a ratchet
in this system and understand different models with increasing complexity. For each
model, we set up the dynamics as discrete markov chains to create paths that the
junction will follow. We attempt to understand what are the physically relevant
parameters and how they affect the dynamics in the system and answer questions
about parameters to quantify the goodness of a ratchet.

5.1 Discussion of results

We began with a simple model by constructing dynamics of the rest length L0 to
gain some intuition into the system. We find that there must be offset in the
rest length L0 by some decrease in the E-Cadherin density in every Myosin
cycle for a ratchet to exist.. We also find that this model is not experimentally
verifiable and hence we must construct a model independent of the exact L0 dynamics.
We build a second discrete time model that leads to the understanding that the rate
of decay of rest length L0 is crucial for the existence of a ratchet. If the shrinkage
in L0 is very rapid, we get a bad ratchet with a lot of accumulated backlash
error. A slow rate of shrinkage seems to yield a better ratchet We also find
an exponential decay is a more robust ratchet than a power law decay. Some more
questions can be asked regarding the constructed paths.

1. How can we capture the noisy internal dynamics of the molecular players in a
more coarse grained model?

2. How can we understand factors like entropy production in the system to find
out bounds on shrinkage?

We look forward to answering these questions in the near future. We have also
explored in greater detail the current models we have and adding more complexity
with a E-Cad pulse time.
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5.2 Choosing a protocol for time decay in offset

From the two protocols for time decay in the offset Q(t), we would like to see if any
of these protocols is a better choice for a good ratchet. One possible way to do this
is by calculating work done for each path. A rough calculation for the same follows.

5.2.1 Choosing form of Q from work done calculations

We know the dynamic equations of the system. From this, the Hamiltonian of the
system is calculated

H(t) = (
τ

2
(L(t)− L0(t) + Fα(t))2) (5.1)

Since our Hamiltonian is time dependant, we consider the thermodynamic work done
on the system as[17]

Wt(T ) =

∫ T

0

dt
∂H
∂t

(5.2)

All the variables in the Hamiltonian equation are explicitly dependant only on time;
the partial derivative simplifies out and in the discrete time limit, we can write the
following (Setting any normalisation factors to 1 as we are only using it for comparison
purposes):

Wt =
T∑
i=0

Hi (5.3)

We calculate the work done for both the decay forms in the same regimes as the phase
diagrams.

(a) Work Done for a Exponential Decay in Q (b) Work done for a power law decay in Q

Figure 5.1: Work Done for each type of Decay in Q. The horizontal axis has the minimum
value of offset Q and the vertical axis has either a)the rate of decay in the exponential decay
or b) the exponent of the power law in power law decay. On the diagram itself, the total
accumulated backlash error in color as a heatmap (with the legend showing values)

For both the decay’s, we can see some features in the regions of low work-done.
This indicates that there are some paths that are more favorable than others, even in
regions of zero backlash. To compare, we take the average of the work done over all the
allowed paths considered. This value comes out to be 108.45 a.u for the exponential
decay 85.467 a.u for the power law decays. It appears that a general power law form
is a better ratchet.
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5.2.2 A thermodynamic argument for the same

Our process is a time discrete process. We can approximate the steps in the system
by assuming without too many caveats that the rest L0 shrinks AFTER the length
L has shrunk. This time delay can be taken to be infinitesimally small and there is
no reason to believe that the processes happen simultaneously. We approximate that
the process happens as follows:

Figure 5.2: Changes in L and L0 leading to microscopic reversibility

This lends microscopic reversibility to the shrinking process within a single interval
and we can use the Jarjynzky equality[7]. In his seminal paper, Jarjynzky derived
the inequality (which when combined with the convexity of the exponential function)
yields

∆F ≤ W̄ (5.4)

Here, the bar denotes indicates an average over all possible realizations that takes the
system from the an equilibrium state to the non-equilibrium state. This is analogous
to the work done, averaged over all paths, as calculated above. This provides us with
an upper bound on the free energy available to the system.

Because of the microscopic reversibility, we can also use the Crooks Fluctuation
Theorem[4] (with β normalised to 1)

P (A→ B)

P (B → A)
= e[β(WA→B−∆F ) (5.5)

We want to minimise the backward probability (P (B → A)) to minimise backlash
errors. The larger the argument in the exponential is, the smaller this probability
will be. Since we have the upper bound of the free energy, we can calculate the
lower bound on the argument and consequently, the upper bound on the backward
probability.

Mathematical Calculations

For each form of decay,
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1. We calculate upper bound of free energy W̄ for every move i→ i + 1 from the
ensemble average.

2. We choose the path with the least work done for each functional form of Q and
calculate the backward probability for each individual move i→ i+ 1

3. Since each move in L is independent of the previous, the total backward probability
is the sum of all individual backward probabilities.

Using this protocol, we can conclude that the general power law form is better than
the exponential decay.

5.3 Model with the timescale of the Myosin and

the E-Cadherin Pulse

We have so far looked at the force generator in the form of the Myosin pulse and
the active force Fα(t). However, the interplay between the force generators and the
force sensor E-Cadherin pulse can also be an interesting aspect to study. We know
that the active force is impacted by the Myosin pulse. We also know that the density
of E-Cadherin increases in pulses and opposes this shrinkage. We can assume that
the rest length L0 dynamics are controlled by the E-Cadherin pulse which pulses at a
time scale of τc. We assume that the difference between the myosin and E-Cadherin
time pulse is ∆τ = τm − τc. Assuming no interaction of any kind between the two
pulses, we can visualise what the time scales could look like.

Figure 5.3: Form of Myosin and E-Cadherin pulse. The horizontal axis has time and the
vertical axis has the amplitude of the pulses. The Myosin pulse (marked in blue) is on
for a time period of τm. The E-Cadherin pulse with a different amplitude (marked in red,
lower here for illustrative purposes) is on for a time period of τc. Since we know that the
E-Cadherin pulse will oppose the shrinkage, it is a reasonable assumption that it is switched
on when the Myosin pulse is switched off.

This affects the L0 dynamics in the following way.
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Figure 5.4: Form of L0 with the Myosin and E-Cadherin pulse. The time has been marked
on the horizontal axis. On the vertical axis, we have the amplitude of the pulse (to show the
pulses in an illustrative manner) and the time difference ∆τ has been marked. However, we
care about the overlay of the rest length L0, marked in Black. The red curve marks what
dynamics of L0 could be if the Myosin pulse had not reset the dynamics and the offset Q
has been marked in Orange.

When the myosin pulse (blue) is on, the rest length shrinks. When the Cadherin
pulse is switched on (Red), the shrinkage is opposed and the rest length starts to
increase again. However, it does not increase to the previous value of L0 as before the
Cadherin Cycle can be completed, the next Myosin pulse kicks in the cycle is reset.
If the rest length L0 had been allowed to ‘unshrink’ for the entirety of the Cadherin
time cycle τc, it would have reached the previous value (Shown in Red). This time
difference ∆τ is what leads to the offset Q in the dynamics. This ∆τ is akin to a
‘Phase Lag’ between the two pulses. This can be visualised in a different space much
better as:

Figure 5.5: L0−Fα Space. The actual trajectory of L0 is the curve ABC and that is when
the Myosin Pulse and active force Fα reset it. The curve CDA is the trahectory that would
be followed if the Myosin pulse had not reset till τc had completed its cycle.

This curve is paramterised by time. The segment ABC is the L0 that is actually
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followed in one myosin pulse time scale τm and the segment CDA is what would have
happened if the next myosin pulse hadn’t kicked in. The segment CDA happens over
the timescale τc. We must note some things:

1. The following analysis will hold only for one myosin cycle and must be repeated
separately for each myosin cycle.

2. The curve in Figure 5.5 is merely an illustrative example that has been created
by writing down a simple fragmentation-aggregation model for the Cadherin
Clusters. The actual shape of the curve is irrelevant to our analysis and will
remain unknown as we do not have access to that level of microscopic detail.

Within this context, we can define our offset in L0 to be the change in L0 as we vary
Fα over a time period τm (this would be represented by the segment CDA). For the
ith myosin pulse, we can define

Qi =

∫ iτm

(i−1)τm

L0(t)
∂Fα(t)

∂t
dt (5.6)

We can also write the line integral on the simply connected, closed curve ABCD and
using the Cauchy Integral Theorem:∫ iτm

(i−1)τm

L0(t)
∂Fα(t)

∂t
dt︸ ︷︷ ︸

ABC

+

∫ iτm+τc

iτm

L0(t)
∂Fα(t)

∂t
dt︸ ︷︷ ︸

CDA

= 0 (5.7)

(We are assuming there are no poles in the area under the curve, which seems
reasonable as the equations never blow up to infinity in the real world dynamics).
Hence, this equality holds. Using Equation 5.6, we get

Qi +

∫ iτm+τc

iτm

L0(t)
∂Fα(t)

∂t
dt︸ ︷︷ ︸

CDA

= 0 (5.8)

For ease of writing, without loss of generality, we can set i = 1 which is the first
move in the shrinkage of the junction. We can Taylor expand the second term of the
equation around iτc to give us a form for Qi as

Qi+

∫ τm+τc

τm

L0(τc)
∂Fα(t)

∂t

∣∣
τc
dt+

∫ τm+τc

τm

τc
2

[
L′0(τc)

∂Fα(t)

∂t

∣∣
τc

+L0(τc)
∂2Fα(t)

∂t2
∣∣
τc

]
dt+O(τ 2

c ) = 0

(5.9)
The first term in the second integral is a product of two derivatives. Since we have
seen that the rest length cannot shrink very rapidly, these rates of change values will
be very small and this term can be neglected. Solving the simple linear integrals, we
get a form for each Qi at a time scale of τm as a function of τc

Qi + τcL0(τc)
∂Fα(t)

∂t

∣∣
τc

+
τ 2
c

2
L0(τc)

∂2Fα(t)

∂t2
∣∣
τc

= 0 (5.10)

This can now be solved by either substituting a constant value for Qi like was assumed
in the first model, or with a time dependant quantity like in the second model.
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