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Abstract

Malaria is an endemic infectious disease in India and continues to be a significant

public health concern. Mathematical and statistical methods have been used to

study the complex behaviour of infectious diseases, through different modelling

and data analysis techniques. This thesis embodies work in both the aspects and

presents results in epidemiological compartment modeling, and analysis of a his-

torical data set of Plasmodium falciparum induced malaria in India. Usually in

epidemiological compartment models, the population in each compartment is con-

sidered to be homogeneous in many biological and environmental factors. I have

focused on an existing mathematical model to explore and investigate the behav-

ior of hypothetical immunological responses, owing to heterogeneity in immunity

in host population, and studied temporal equilibrium properties and disease preva-

lence patterns. I have analysed the emergence and establishment of P. falciparum

as the dominant malarial parasite in India, through visualization and descriptive

statistical analysis such as, spatial time series, temporal correlation heat maps,

and principal component analysis, of a historical data-set (1965-1995). The re-

sults clearly demonstrate the spatio-temporal patterns of its evolution and, the

hot-spots of falciparum malaria prevalent states. These approaches can be used

for the analysis of any other infectious disease data.



Chapter 1

Introduction

1.1 The Empress of All Maladies: Malaria and its

Types

M alaria is an age-old infectious disease caused by the protozoan para-

sites of genus Plasmodium that is transmitted by the bite of infected

female Anopheles vectors to humans. The infection continues to plague the poor-

est regions of the world including Sub-Saharan Africa and southeast Asia. In the

twentieth century , it was estimated that malaria alone was responsible for 150

million to 300 million deaths worldwide, which accounted for 2-5 percent of all

deaths [13].

In the past few decades, malaria has been geographically restricted to tropical and

subtropical regions, thriving in conditions that are suitable for the propagation

and development of the parasite. The current distribution of the parasite is gov-

1



erned by factors that transcend beyond the basic biology of the diseases, malaria

is now known to be affected by climatic changes, migration and heterogeneity

in immune responses due to disparity in socio-economic factors. Four different

types of malaria parasites predominantly affect humans- P. falciparum, P. vivax,

P. malariae and P. ovale [17].

Plasmodium falciparum is associated with high mortality, as falciparum -infected

erythrocytes, particularly those with mature trophozoites, adhere to the vascu-

lar endothelium of venular blood vessel walls and do not freely circulate in the

blood [79]. When this sequestration of infected erythrocytes occurs in the vessels

of the brain it is believed to be a factor in causing cerebral malaria, which is often

associated with fatality [27].

1.1.1 Georaphical Distribution of the Parasite Species

Figure 1.1: Endemicity of P. vivax in 2017 [9]
P. vivax is historically thought to be endemic in the south-eastern regions (Fig-

ure 1.1); with India alone contributing to more than 47% diagnosed P. vivax infec-

tions [83]. Evolutionarily, P. falciparum and P. vivax evolved from parasites in-



fecting wild-living African apes until the spread of the protective Duffy-negative

mutation eliminated P. vivax from human populations. Despite the declines in

Figure 1.2: Endemicity of P. falciparum in 2017 [82]

burden, approximately 90% of people within sub-Saharan Africa continue to re-

side in endemic areas (Figure 1.2) and this region accounted for 93% of the total

malaria cases in 2018 [83]).

1.1.2 The Dual Host-parasite Life Cycle: Weapon of Mass De-

struction

One of the major hurdles in combating malaria parasite is the current gap in un-

derstanding the host–parasite interactions within the human host. The ability of

the parasite to evade the human immune system has ensured its successful es-

tablishment and propagation for centuries. It has now become evident that the

parasite infection of the human liver, erythrocytes and the mosquito mid-gut are

all crucial to the survival of the parasite within the host and are backed by inten-

sive molecular interactions between the host and the parasite [2]. A schematic

diagram depicting the various stages of the life cycle of the malaria parasite is



given in Figure 1.3.

Figure 1.3: Schematic of dual host transmission cycle of malaria parasite [17].

1.2 Epidemiological Compartmental Modelling

Mathematical modelling is an important part of investigating and understanding

infectious diseases spread and underlying epidemiology. Mathematical models

enhance our understanding of realistic determinants of disease spread, its dynam-

ics in susceptible populations, and to uncover its dynamics to address disease-

control policies and test scientific hypotheses restrained by laboratory and field

methods due to ethical constraints. Compartmental infectious disease methods

are an amalgamation of our scientific understanding of the disease biology, and its

links to transmission which might be unclear and complex through experimental



methods. It gives a critical understanding of the impact of the infectious disease

on the population, its realistic public health burden and aids policy makers to cri-

tique measures taken to reduce transmission and burden in affected regions.

The processes that govern infectious diseases transcend multiple scales- the epi-

demiology of an infectious disease is linked to intra-cellular dynamics of the host,

the interaction of the hosts immune system with the infectious agent and the or-

ganismal level impacts of disease spread – the susceptibility of a population, the

environment and socio-economical structure of a geographical region which af-

fects the transmission strength and preparedness against an infectious disease out-

break. In recent times, it makes even more sense to investigate realistic infectious

disease models- to predict and control outbreaks to minimize disease burden due

to epidemics. For this purpose, mathematical models of infectious diseases focus

on both – within host dynamics that has revelations significant to our understand-

ing of biology of the disease, and between-host models that have profound im-

pacts on our understanding of epidemiology of infectious diseases at population

level [32, 11, 71].

Ideally, the host population in which the infection spreads, is divided into several

compartments, with an underlying assumption that each individual in the is a rep-

resentative of the respective compartment and has identical characteristics [32].

The compartmental models often follow standard notations for compartments. For

example, an SEIR model will have: S indicates the proportion of Susceptible indi-

viduals in a population, who have either not contracted the infection, or have be-

come susceptible again after recovery. E compartment stands for the individuals

that have been Exposed to the infectious agent, which has not manifested into an



Figure 1.4: Schematic for SEIR Compartmental Model

infection. The individuals in an Infected compartment, I represent the proportion

of human class which have become infected by the parasite. Such individuals may

manifest clinical symptoms or remain asymptomatic. Finally, a Recovered class,

R represents the individuals that have recovered from the infection- naturally or

due to treatment. Individuals in the R compartment may go back to the S class if

they do not develop immunity on recovery. Many variations of this formalism is

known depending on the disease types: Schematically, one such compartmental

model is represented in Figure 1.4. Below each compartment, biological and de-

mographic factors (e.g. births/deaths, migration etc.) affecting the proportion of

the class have also been depicted.

1.3 Compartmental Modelling of Malaria

A compartmental model for malaria was first proposed by Ronald Ross. As dis-

cussed in section 1, there are two hosts required - human and mosquito - for

the malaria parasite life cycle to continue. The Ross model followed an sim-

ple SI structure as shown in Figure 1.5. Here both Susceptible humans (Sh) and



mosquitoes (Sm) get infected through mosquito-bites as shown by the red dot-

ted lines in the figure. After infection, humans Ih recover and go back to the

S compartment making it an SIS compartment model, whereas it is a SI model

for mosquito since the infected mosquito Im eventually dies. Ross, through his

Figure 1.5: Schematic of the Ross model compartments and the interactions for
disease evolution [56]. The red lettered compartment indicates the new compart-
ment introduced in that model.

model, proved that reduction of mosquito proportion, beyond a certain “thresh-

old” was potent enough to control disease spread. It was almost four decades

later that George Macdonald [54, 53], re-emphasized on the importance of math-

ematical epidemiology, through twenty years of field research. Macdonald im-

provised Ross’s model by characteristically incorporating the weakest link in the

disease transmission cycle- the latency period of the exposed female mosquito

and its reduced survival chance owing to infection and introduced the effect of



super-infection and re-infection in the host population [75, 10]. This drove the

World Health Organization (WHO) to co-ordinate a large-scale elimination pro-

gram which selectively focused on using the insecticide dichlorodiphenyltrichloro-

ethane (DDT) that dramatically controlled the vector population to aid the elim-

ination of malaria transmission among susceptible populations throughout the

world [62]. Since the first model published by Ross, epidemiologists have modi-

Figure 1.6: Evolution of Epidemiological Models of Malaria [56].The red lettered
compartment indicates the new compartment introduced in that model.

fied the structure of the mathematical compartmental models for over a century to

incorporate parameters that have been discovered to be associated with the infec-

tious disease ( Figure 1.6), but the battle against the parasite is yet to be won.



1.4 Malaria and its Control in India

Several states in India inhabited by ethnic tribes are entrenched with malaria; ow-

ing to heterogeneity in healthcare access; failed intervention strategies, and un-

derestimation of disease prevalence. The two major human malaria species in

India are Plasmodium vivax and Plasmodium falciparum ; India contributes to

approximately half of all vivax malaria cases worldwide. Entrenched with higher

infectious-diseases burden, it is these regions that are at a higher risk due to inad-

equate facilities and growing resistance against P. falciparum, that has established

itself as the dominant malarial parasite in India over the past few decades (Fig-

ure 1.7).

Figure 1.7: Relative contribution of P. falciparum to clinical malaria in India be-
tween 1961-95 [33].

India also contributes to about 75% of malaria cases in southeast Asia [83]. In

addition to the biological and ecological variation in the infectious disease en-

demicity [1], disparity in socio-economic conditions- areas with high population



density and poor living conditions, unavailability of protection against infectious

bites, absence of public health-care centers and low testing rates act as breed-

ing grounds for infectious diseases. Upon diagnosis, poor prognosis or mortality

owing to low nutritional status contributes to the enhanced malaria burden in the

country. All these factors also underlie a wide variation and reduction in the im-

munity status of individuals in different populations in India - making it a serious

impediment to improving public health against any infectious disease in India.

1.4.1 History of Malaria in India and Current Epidemiological

Situation

India has had a long and chequered history of malaria, characterized by small

to large scale epidemics over centuries. Historically, the highest incidence of

malaria in India occurred in the 1950s, with an estimated 75 million cases and 0.8

million deaths per year [18]. The launch of the National Malaria Control Program

(NMCP) in 1953 resulted in a significant decline in the number of reported cases

to less than 50,000 and no reported mortality, by 1961. This was achieved by

widespread DDT spraying as the primary strategy following the WHO guidelines

as described in section 1.3, However malaria resurged to 6.45 million cases in

1976 due to failure in transmission control methods [49] making it the biggest

epidemic in the 20th century.



1.5 Strategies for Malaria Control in India

Interventions against malaria effectively began in India post-independence. In

1953, the Government of India had launched the National Malaria Control Pro-

gramme (NMCP) with an aggressive focus on indoor residual spraying of DDT.

Within half-a-decade, the intervention strategies helped to substantially reduce

the annual incidence of malaria. The National Malaria Eradication Programme

(NMEP) was launched in 1958, to achieve further control against the infectious

disease, which initially prove to be successful, but post 1967, the failure of con-

trol methods, combined with the mosquito’s resistance to insecticides and the

parasite’s growing resistance to antimalarial drugs, India witnessed a growing

epidemic from mid-1970s to mid-1980s, with most recorded impact in the late

1970s [64]. Post epidemic, the falciparum malaria cases have continued to rise.

Currently, India’s first-line treatments for P. falciparum are artemether-lumefantrine

and artesunate-amodiaquine, with some north eastern regions presenting a failure

rate of more than 10 percent [70, 42], pushing the need for improvisation in con-

trol and treatment policies.

1.6 Thesis outline

The work presented in this thesis involves two different theoretical approaches to

study development and spread of malaria in a population - mathematical modeling

and prevalence data analysis. Mathematical models are framed based on the bi-

ological facts of the infection process during host-pathogen interactions. Disease

prevalence data analysis use descriptive methods and statistical techniques to find



patterns based on which future predictions can be made. The results are presented

in the following five chapters:

1. Chapter-1 gives an overview of Malaria in India and the modelling methods

applied to Malaria.

2. Chapter-2 elucidates the model and important parameters of a compartmen-

tal model of malaria. The mathematical and statistical methods that are used

to study the epidemiological dataset of malaria prevalence in India are also

included in this chapter.

3. Chapter 3 describes all the immunity related parameters and functional

forms incorporated in the compartmental model in separate subsections.

The detailed description about the model and its numerical and analytical

analyses are also discussed in detail.

4. Chapter-4 reports the detailed analysis of a historical epidemiological data-

set (1965-1995) of malaria prevalence in India. Both visual descriptions and

statistical analysis of the dataset are presented in separate sections.

5. Chapter-5 highlights the major findings of the complete study and discusses

future work in each area of study.



Chapter 2

Model and Methods

2.1 A Compartmental Model for Malaria

A detailed epidemiological model for malaria was developed considering SEIS

compartments for the human host and SEI for the mosquito population as shown

in Figure 2.1 [57]. The compartments on the upper left of Figure 2.1 represent

the four epidemiological classes for humans, and the compartments on the right

represent the epidemiological classes for mosquito populations. The transmission

of the parasite from mosquito to human is represented using a red dotted line and

the transmission from human to mosquitoes is depicted using a black dotted line.

The arrows are indicative of transition from one epidemiological class to the other

(described in the model).

The assumption of the model is a human population with a continuous age struc-

ture, in which individuals can be Susceptible (Sh(a, t)), Exposed(Eh(a, t)), In-

fected with symptomatic (severe and clinical disease) (IhS(a, t)), or with asymp-
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Figure 2.1: Schematic diagram for the Compartmental model of Malaria with
parameters.

tomatic disease (IhA(a, t)). A parallel mosquito population can either be Suscep-

tible (Sm(t)), Exposed (Em(t)) or Infected (Im(t)). However, explicit age depen-

dence has been excluded to analyse the model better and parameters with age-

dependence are discretely independently calculated.

The model thus then transforms into a system of seven-coupled ordinary time de-

pendent differential equations; which can be solved with or without incorporating

delay (tau = 0.019 yr) i.e. the latent period in the mosquito population. Basic

assumptions of the model include the following:

The mosquito and human populations are both normalized to one, under the as-



sumption that the total population overall remains constant. At any given instant:

Sh +Eh + IhS + IhA = 1 (2.1.1)

Sm +Em + Im = 1 (2.1.2)

The force of infection, σ is the rate at which the susceptible class of human popu-

lation moves to the exposed human compartment, and depends on the number of

infectious bites; and is age-dependent, and peaks in childhood [12]. Given that m

is density of mosquitoes, α , the biting rate, and b is the probability of inoculation

upon being bitten by an infectious mosquito; the force of infection can be defined

as:

σm(a) = mαb(1− e−
a

a0 ) (2.1.3)

Where a is the age of the human host; and a0 is the age at which half of the total

exposure is achieved.

Susceptible individuals, upon being inoculated remain in the exposed class for a

mean duration of 1-2 weeks 1/γ , while they are still infectious. It is the immu-

nity of the individual human host that determines whether the exposed individual

will manifest symptomatic clinical infection (proportion equivalent to η) or move

to asymptomatic class. Asymptomatic individuals still run the risk of getting re-

infected at rate equal to ηγ .

Asymptomatic individuals can become susceptible again, via clearance of para-

sites at a rate ρ . β , defined as the probability of recovery from clinical infection;

and a fraction f of the clinically infected individuals get recovered post treatment

at a rate ρt and the rest recover under the effects of immunity at a rate ρs.



Hence, the rate at which symptomatic individuals move to the susceptible com-

partment can be formulated as a cumulative effect of ρs and ρt , given as:

RS = f ρt +(1− f )ρs (2.1.4)

Mosquitoes that are susceptible become infected upon biting individuals that are

symptomatic and asymptomatic, thus propagating the dual host-vector cycle of

the malarial parasite. This facilitation is incorporated in the model through prob-

abilities CIS and CIA, that denote the chance of infection upon biting an infected

human individual. Overall, mosquitoes get infected at a rate given as:

λm = α(CISIhS +CIAIhA) (2.1.5)

The model also incorporates the reduced survivability of the mosquito upon in-

fection; an infected mosquito only passes the disease to human population if it

survives a period of latency, here considered to be as approximately seven days.

This reduced probability is considered using the function ψ = e−τµm . The com-

parative lifespan of the mosquito with respect to human population is negligible,

hence the model assumes no disease induced mortality.

The model equations for human compartments are:

dSh

dt
= µh +βRSIhS +ρIhA−σ ImSh−uhSh (2.1.6)

dEh

dt
= σ ImSh−ηγEh− (1−n)γEh−µhEh (2.1.7)



dIhS

dt
= ηγEh +ησ ImIhA−βRsIhS− (1−β )RSIhS−µhIhS (2.1.8)

dIhA

dt
= (1−η)γEh +(1−β )RsIhS−ησ ImIhA−ρ IhA−µhIhA (2.1.9)

For mosquitoes:
dSm

dt
= µm−λmSm−µmSm (2.1.10)

dEm

dt
= λmSm−ψλm(t− τ)Sm(t− τ)−µmEm (2.1.11)

dIm

dt
= ψλm(t− τ)Sm−µmIm (2.1.12)

These equations are studied in detail in Chapter 3 along with a comprehensive

study of the host immunity functions.

2.2 METHODS

2.2.1 Numerical Methods

The Numerical integrations of the differential equations in were carried and plot-

ted using the ode45 and dde23 solvers in MATLAB R2106b [58].

2.3 Malaria Data of P. falciparum in India: Origin

& Acquisition

The data for this thesis project to investigate falciparum malaria prevalence was

acquired through three volumes published by the Ministry of Health and Fam-

ily Welfare, Govt. of India between 1986-1996. The volumes titled “National



Malaria Eradication Programme (Two Volumes- 1986)” and “Epidemiology and

Control of Malaria in India (1996)” contain key information regarding the infec-

tious disease and its determinants (Figure 2.2). The epidemiological parameters

from the dataset are described in Table 2.1. The volumes with data were scanned

and the historical dataset was extracted using OCR. This was done using an online

OCR software that recognizes the entire character and matches it to the matrix of

characters stored in the software [81].

Figure 2.2: Schematic for dataset acquisition and analysis.

Parameter Description Formula, if applicable

Pf%;
P. falci-
parum
percentage

The percentage contri-
bution of P. falciparum
to total malaria positive
cases

Total no. o f positive f alciparum cases
Total no. o f positive cases

∗100

Sf R; Slide
falciparum
positivity
rate

An estimate of the
monthly/yearly
falciparum load in the
population

Total no. o f positive f alciparum cases
Total no. o f blood smears examined

∗100

AFI;
Annual
falciparum
parasite
incidence

Parameter for estimat-
ing malaria endemicity
in an area and impact of
control interventions

Total no. o f positive f alciparum cases
Total populatio under surveillance

∗100

Table 2.1: Summary of the epidemiological dataset parameters.



2.4 Statistical Methods for Data Analysis

2.4.1 Spatial Time Series

Time series analysis is used to identify the fluctuation in time-dependent data and

helps in the evaluation of present situation and helps in pattern recognition and fu-

ture predictions. The analysis of a historical dataset of falciparum malaria preva-

lence in India theoretically enables us to probe further into the parameters that

might have aided in its manifestation as the dominant malarial parasite in India.

The spatio-temporal time series for all Indian States with respect to falciparum

prevalence has been evaluated using the software QGIS (Version 3.10.6) [78].

2.4.2 Principle Component Analysis

Principal Component analysis helps in extracting features to reveal the internal

structure of the data in a way that best explains its variance. If a multivariate

dataset is visualized as a set of coordinates in a high-dimensional data space, PCA

helps in obtaining a lower-dimensional picture of the dataset to understand its

composition [46]. In the case of the historical dataset of malaria prevalence, we

extract features from the geographic and temporal data to cluster geographic re-

gions and years based on the groupings obtained as the output. The Principal

components are a series of linear least square fits to a sample, each orthogonal to

all the previous.



Mathematically, Given a sample of n observations on a vector of p variables

X = (x1,x2,x3, . . . ,xp)

where X is the matrix with column-wise zero-empirical mean, where the n rows

represent a different repetition of the experiment, and each of the p columns gives

a particular kind of feature.

The first principal component of the sample is defined by the linear transforma-

tion:

z1 = aT
1 X =

p

∑
i=1

ai1xi (2.4.1)

where the vector a1 = (a11,a21,a31, . . . ,ap1) is chosen such that,

var[z1] is maximised

Similarly, the kth Principal component of the sample by the linear transformation

is given as:

zk = aT
k X , k = 1, . . . , p

where the vector ak = (a1k,a2k,a31, ...,apk) is chosen such that the

var[zk] is maximised

subject to cov[zk,zl] = 0 f or k > l ≥ 1 and aT
k ak = 1

Note: All Statistical Analyses for the historical dataset of malaria were performed

using the Python’s packages for data science [80].



Chapter 3

Analysis of a Compartmental Model

of Malaria

Severe malaria can manifest into coma and subsequent death if not treated and is

almost exclusively caused by P. falciparum infections. To combat the complicated

effects of repeated infections, hosts can mount a level of protective immunity

which shields them against subsequent infections facilitated by a wide range of

molecular mechanisms. A few of the presumed mechanisms of adaptive immunity

to malaria can be given as [77]:

• Antibody mediated blocked invasion of sporozoites into liver cells.

• Interferon-γ (IFN-γ) and CD8+ T cells mediated inhibition parasite devel-

opment in hepatocytes.

• IFN-γ and CD4+ T cells dependent activation of macrophages to phagocy-

tose intra-erythrocytic parasites and free merozoites. Antibodies mediated
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complement-dependent lysis of extracellular gametes, and preventon of fer-

tilization of gametes and the development of zygotes.

Different types of immune responses act together to enhance protection against

the malaria parasite in endemic regions. In the compartmental model discussed in

this chapter, immunity has been classified as:

1. Maternal immunity: immunity passed on at birth to infants (Section 3.5).

2. Anti-disease or clinical immunity: acquired immunity against clinical symp-

toms of malaria (Section 3.6).

3. Anti-parasite immunity: acquired immunity against the parasite to eliminate

parasite load in the human-host in endemic regions (Section 3.7).

In this chapter, first an in-depth mathematical and numerical analysis of the de-

tailed epidemiological model [57] for malaria ( see section 2.1 in Chapter 2) is

reported, and then some new analysis done on the host immunity related func-

tions with an aim to study how variation in host immunity may affect the steady

state levels of infection.

3.1 Steady-State Solutions of the Compartmental Model

For constant age, it is seen that if Sh > 0, then dSh/dt ≥ 0 for IhS ≥ 0, IhA ≥

0, Im ≥ 0. Therefore, we are able to analyze two positive fixed points for the

model- disease free and endemic equilibrium point.



3.1.1 Disease-free Equilibrium

Disease-free equilibrium points for the compartmental model are steady-state so-

lutions where there is no disease present in both the host and vector populations.

For the given system, the disease-free equilibrium is exactly one unique point

which is given as:

E∗0 = (S∗h,E
∗
h , I
∗
hS, I

∗
hA;S∗m,E

∗
m, I
∗
m) = (1,0,0,0;1,0,0). (3.1.1)

3.1.2 Endemic Equilibrium

Endemic equilibrium points are the steady-state solutions of the model for which

the disease persists (all state variables are non-zero). From the model, the steady-

state solutions can be calculated in terms of S∗m [57].

S∗h =
[

(γ +µh)µm(µh K1 + RSK2)

σψαγ{ηC1SK3 +(1−η)C1AK4}S∗m

]
(3.1.2)

E∗h =

[
µm(µhK1 + RS K2)(1−S∗m)

αγ{ηC1SK3 +(1−η)C1AK4}S∗m

]
(3.1.3)

I∗hS =

[
ηK3µm (1−S∗m)

α{ηC1SK3 +(1−η)C1AK4}S∗m

]
(3.1.4)

I∗hA =

[
(1−η)K4µm (1−S∗m)

α{ηC1SK3 +(1−η)C1AK4}S∗m

]
(3.1.5)

E∗m = (1−ψ)(1−S∗m) (3.1.6)

I∗m = ψ (1−S∗m) (3.1.7)

Where, K1 = σηψ (1−S∗m)+ρ +µ



h, K2 = ση2ψ (1−S∗m)+ρ +µh

K3 = σψ (1−S∗m)+ρ +µ

h K4 = (1+η)(RS +µh)

S∗m can be computed by solving the equation:

AS∗
2

m +BS∗m +C = 0 (3.1.8)

Where:

A =−σ2ηψ2µh{αγCIS +(γ +ηRS +µh)µm}

B=σψµh[αγηCIS(σψ+ρ+µh)+αγ(1−η)CIA{(1+η)RS+µh}]+σψµhµm[ρ(γη+

RS +µh)+(γ +µh){2σηψ +(1+η)µh}+RS
{

γ +2ση2ψ +
(
1+η2)µh

}
]

C =−µhµm[(σψ+µh)
{
(γ +µh)(σηψ +µh)+RS

(
γ +ση2ψ +µh

)}
+ρ{γσηψ+

(γ +σψ +µh)(RS +µh)}]

3.2 Basic Reproduction Number

The basic reproduction number, R0, is defined as the expected number of sec-

ondary cases produced by a single infected individual in a susceptible population

over the course of the infectious period. The R0 is a theoretical value that is gener-

ally calculated from a mathematical model of the respective epidemic. Often used

to access the severity of an infectious disease epidemic, it is extremely crucial for



determining the strength of interventions necessary to contain the infection [24].

If R0 < 1, the epidemic is considered to have been eliminated from the population.

For R0 > 1, the outbreak is classified to have transformed into an epidemic; which

happens to be a case with seasonal malaria in endemic regions where small-to-

large scale epidemics occur consistently. For this particular model, the reproduc-

tion number is calculated using the mathematical theory of epidemics [25].

Let us assume that there are n compartments of which m are infected. We define

the vector x̄ = xi, i = 1, . . . , n, where xi denotes the number or proportion of

individuals in the ith compartment.

Let Fi(x̄) be the rate of appearance of new infections in compartment i and let

where V+
i is the rate of transfer of individuals into compartment i by all other

means and Vi is the rate of transfer of individuals out of the ith compartment. The

difference Fi(x̄)Vi(x̄), gives the rate of change of xi.

Assuming that the criterion for Fi and Vi as described by [28] is met, the matrix

operator matrix operator FV−1 can be calculated using the partial derivatives of

Fi and Vi, where i, j = 1, . . . ,m and x0 is the disease-free equilibrium, where

Fi =

[
dFi

dx j

]
& Vi =

[
dVi

dx j

]
(3.2.1)

R0 = r
(
FV−1) (3.2.2)

R0 =
α2γmb

(
1− e−

a
a0

)
ψ
[
ηCIS(ρ +µh)+CIA

{
1−η2}RS +(1−η)µh

]
(γ +µh)(ρ +µh)(RS +µh)µm

(3.2.3)



On rearranging the terms,

R0 =
αγσψ[ηCIS(ρ +µh)+CIA

{(
1−η2}RS +(1−η)µh

]
(γ +µh)(ρ +µh)(RS +µh)µm

(3.2.4)

Depending on the age specific parameters; as discussed above the sensitivity of

R0 can be calculated numerically and compared at different ages with respect to

N-fold change in mosquito related parameters [8]. From the above results, it is

Parameter values Basic Reproduction Number (R0)

mosquito density, m τ (in days) µm (1/day) age = 3 years age = 20 years age = 40 years

0.5 5 0.05 4.97 5.79 5.02

0.5 5 0.5 0.05 0.06 0.05

0.5 15 0.05 3.02 3.52 3.05

0.5 15 0.5 0.000029 0.00004 0.0003

10 5 0.05 99.50 115.88 100.42

10 5 0.5 1.05 1.22 1.05

10 15 0.05 60.43 70.41 61.62

10 15 0.5 0.0072 0.0084 0.0072

Table 3.1: Variation in R0 due to vector related parameters ( m, Im, τ , µm) and age
of the human host.

imperative to consider that mosquito mortality rate is a critical factor while in-

vestigating realistic disease transmission between the host-vector. From the cal-

culations of R0 it is evident that even when the mosquito density is decreased

significantly, it is the mosquito mortality that produces the most pronounced ef-

fects in disease propagation.

Another interesting feature that the calculation highlights is the high reproduction

number at the age 20 years, in comparison to younger and older ages of the hu-



man host. It is indeed the outcome of acquired immunity due to exposure that

enables people in higher age groups to sustain the infection better, hence decreas-

ing the overall reproduction number in older age group. It might appear intuitive

or trivial even, but mosquito mortality is the driver of prevalence pattern of the

clinical infection in humans. Hence, strengthening intervention strategies that fo-

cus on mosquito density reduction through accelerated mortality are imperative in

malarial transmission control [57, 8].

3.3 Numerical Solutions of the Compartment Model

At a constant age, the compartmental model for host-vector transmission is a sys-

tem of seven ordinary differential equation for which the time series can be nu-

merically derived. All parameters and their numerical values used for simulations

are given in Table 3.2. The numerical results for the model in subsequent sec-

tions have been obtained assuming no extrinsic delay in the latent period for the

mosquito population. Sh; Eh; IhS and IhA are Susceptible, Exposed, Symptomatic

and Asymptomatic proportions of the host population.
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(a) Time series at age = 2 years
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(b) Time series for human population compart-
ments at age= 20 years

Figure 3.1: Time evolution of human compartments at age = 2 and 20 years

From the numerical simulation results, it can be seen that the human host com-

partments reach their equillibrium levels few months post onset of the infection.

Figure 3.1 represents the time series for age = 2 & 20 years, where at age = 2

years, the equilibrium of asymptomatic infection is a negligible proportion of the

human population, because of poorly developed immunity against the infectious

disease (Figure 3.1a). Symptomatic prevalence peaks at age = 3 years; hence at

2 years of age, the symptomatic class is the largest contributor to the population.

At age = 20 years; the human population acquires immunity against the parasite,

hence there is a drop in the proportion of the symptomatic class. With the devel-

opment of anti-parasite immunity, a significant proportion of the human class has

a tendency to tolerate a higher parasite load, while remaining asymptomatic as

shown in the time-series for the human compartments.



Parameter Description Value Units References

σm(1 −
e−a/a0)

Force of infection which is age-
dependent

– ibppy assumes exposure is a monotonic
increasing function of body size

a0 Age at which half the total in-
crease in exposure occurs

3 Yr setting dependent; typical range
between 3-5 years [34]

b Probability of successful inocula-
tion upon an infectious bite by an
infected mosquito

0.2 Realistic values are setting and
potency dependent, maximal
value is ∼0.5

ρt Rate of recovery from clinical
malaria upon chemotherapy

1/21 day−1 varies with line of the chosen
drug; [27]

ρs Mean rate of natural recovery
from clinical malaria;

1/180 day baseline value1; [34]

ρ0 Mean rate of recovery from
asymptomatic to sub-patent

1/180 day−1 baseline value1; immunity func-
tion

φ Probability of becoming a symp-
tomatic case upon infection (sus-
ceptibility)

0.5 baseline value; immunity func-
tion described

1/γ Mean incubation period in hu-
mans

7 days (Estimated in [57]); Range 7-14
days

CIS,CIA Probability of mosquito infection
upon biting a human in state Ihs,
Iha respectively

0.35,
0.03

– [3]

τ Latent period in mosquito 21 day varies with drug taken

f Proportion of symptomatic cases
treated effectively

0.5 – setting dependent; assumed to be
0.5

µh Human natural mortality rate (as-
sumed to be constant with age)

0.0125 yr−1 Setting dependent; [57]

amax Maximum age in the human com-
munity

60 Yr Age distribution dependent; [57]

α Biting rate by a female mosquito 0.67 day−1 [39]

Table 3.2: Summary table for the compartmental model parameters and their nu-
merical values



3.3.1 Age Prevalence Patterns

For fixed parameters provided in the summary table 3.2; the age prevalence of

the symptomatic individuals can be computed numerically as the equilibrium of

the symptomatic compartment at each age. In settings with high endemicity;
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Figure 3.2: Age prevalence pattern of (a) symptomatic human class and (b)
asymptoatic human class at EIR=100 (Table 3.2).

acquisition of clinical immunity with age and exposure contributes to significant

reduction in incidence over subsequent years, and adults develop lower number of

symptomatic episodes per year eventually. Similarly, due to immunity develop-

ment in adults, the overall prevalence of asymptomatic individuals peaks in youth;

due to partial development of acquired immunity to parasitemia and then gradu-

ally declines with age. Since asymptomatic individuals are still capable of being

infectious, the disease remains endemic in the population (Figure 3.2b).



3.3.2 Prevalence Pattern Dependence on Exposure

(a) Symptomatic proportion at EIR =50, 75, 100
ibppy

0 10 20 30 40 50 60

Age

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

P
ro

p
o

rt
io

n
 o

f 
a
s
y

m
p

to
m

a
ti

c
 h

u
m

a
n

 c
la

s
s

EIR =50

EIR=75

EIR=100

(b) Asymptomatic proportion at EIR =50, 75, 100
ibppy

Figure 3.3: Age related disease prevalence dependence on exposure

Prevalence of symptomatic individuals from the numerical studies is highest at

certain age, and continues to decline after a certain threshold. However, the pat-

terns of reduction are heavily dependent on the transmission intensity. At higher

transmission intensities, repeated exposure to the parasite propagates the develop-

ment of stronger immunological responses, hence at higher transmission rates, the

curve for disease prevalence falls more steeply with age as compared to settings

with lower and intermediate transmission intensities (Figure 3.3a).

Asymptomatic individual proportion in the model is sensitive to the parameters

that govern host-vector interactions. Numerically, the disease peaks between the

ages 10-20 (years) of the host, but the maxima at higher inoculation rates is high-

which is expected. However, eventually the asymptomatic prevalence equilibria



become significantly lower at older ages as the inoculation rate is increased as

seen in Figure 3.3b.

This is possibly due to the dependence of anti-parasite immunity on entomological

interaction rate, i.e. as individuals are exposed to a higher parasite load through

transmission, the immune system development becomes rapid to prevent disease

transmission in the population. Intermediate level of inoculation yields a rather

conflicting output of the asymptomatic class prevalence. The final equilibrium

level of asymptomatic individuals exposed to intermediate EIR is higher as com-

pared to low and high transmission settings [67].

Plausibly, the prevalence pattern could be such because although population in

intermediate settings develop immunity; it is not long lasting enough to shield

for extended periods as compared to populations with high-transmission settings

and people in low transmission settings do not experience as pronounced levels

of infection to experience prevalence levels as pronounced in areas with higher

endemicity.

3.3.3 Disease Prevalence Variation due to intrinsic host param-

eters

As expected, the asymptomatic class in the human population increases if the

parasite immunity duration is shortened; the prevalence curve for asymptomatic

individuals decline steeply when the parasite immunity last longer and reaches a

lower population-level equilibrium. Similarly, if the clinical immunity duration

is shortened due to extrinsic or intrinsic factors including exposure, nutrition or

health status, the symptomatic prevalence equilibrium levels are much higher.
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Figure 3.4: Variation in age Prevalence patterns of infected human class due to
host immunity

In the subsequent sections; the effects of different types of immunity have been

visualised by incorporating mathematical functions and are discussed in detail

using the parameters described in Table 3.3

3.4 Modelling of Immunity to Malaria

The last few decades have indeed witnessed a substantial decline in malaria trans-

mission in Sub-Saharan Africa and South-east Asia, but due to gaps in our un-

derstanding of anti-malarial immunity, endemic regions still possess a significant

challenge towards control and eradication [15]. In most regions with high trans-

mission rates, small-to-large scale epidemics continue to pose a significant disease

burden on native populations and it is not only the biology of the infectious dis-

ease, but also the socio-economic heterogeneity of the disease that contributes to



malaria burden in under-developed and developing endemic regions.

The interaction between the human immune system and the parasite is complex,

and poorly studied even in present times. The experimental obstacles to the un-

derstanding these interactions are pronounced, because field results are often vari-

able and unreproducible in laboratories- owing to the heterogeneity in the host, as

well ethical constraints of epidemiological research. One of the early models of

mathematical modelling of immunity to malaria, proposed by [7] incorporated the

maintenance of acquired immunity in response to repeated exposure as the rate of

reversion, γ , which is defined as the average duration for which immunity lasts,

assuming that immunity can last up to a period τ years if repeated exposure does

not occur, in a completely susceptible population experiencing a rate of h infec-

tions per year. Mathematically, the rate of reversion is a monotonically-decreasing

function defined as:

Figure 3.5: Rate of loss of immunity, γ [6].



γ(h) =
he−hτ

1− e−hτ
(3.4.1)

The rate of loss of immunity, as proposed by Aron, decays faster as exposure is

loss, and the acquisition of immunity and its maintenance are outcomes of con-

tinuous exposure. More advanced models, such as the compartmental model with

heterogeneity in host and vector parameters [57] incorporate the age, exposure,

host-vector interactions in the modelling of immunity functions.

The model described in Figure 2.1 incorporates maternal, clinical and anti-parasite

immunity by formulating the results of the immunity variables as parameters that

affect susceptibility and recovery from clinical and asymptomatic disease in en-

demic regions. Details of all immunity related parameters used in the model are

given in Table 3.3.

3.5 Maternal Immunity Against Malaria

Analytically; the maternal immunity is simply a decaying function of the immu-

nity attained at birth from the mother and decays with age as:

dCm

da
=−Cm

dm
, (3.5.1)

Where a is the age of the human host; and Cm0 is the initial maternal immunity

passed on at birth [45]. The immunity declines with a half-life of dm, estimated to

be about three months in endemic settings [60].



Parameter Description (Immunity Func-
tions)

Value Unit Range; if applicable

dm Half-life of maternal immunity
protection

0.25 Yr 0.1-0.5; the results are not sensi-
tive within this range

pm Proportion of level of maternal
immunity conferred

0.5 Assumed parameter

ρ0 Baseline rate of recovery 1/180 day−1

dS Half-life of anti-disease immu-
nity

5 Yr

dl Delay phase in the development
of anti-parasite immunity

10 Yr Function of the age-dependent
host-immune system; indepen-
dent of exposure

dA Half-life of anti -parasite immu-
nity

20 Yr Estimated [34]

dU Baseline average duration of sub-
patent infections

180 Yr

wA Maximal realistic amplification
of the recovery rate

30 –

HS Half-saturation level of anti-
disease immunity

40 – Variable; dependent on exposure
and immunity related parameters

HA Half-saturation level of anti-
parasite immunity

800 – Variable; dependent on exposure
and immunity related parameters

kS Determines the steepness of im-
munity function for anti-disease
immunity

2 –

kA Determines the steepness of im-
munity function for parasite im-
munity

2 –

Table 3.3: Summary of immunity-related parameters and their numerical values
for simulations

Upon solving, the functional form of the maternal immunity can be expressed as:

Cm(a) =Cm(0)e−a/dm (3.5.2)

The maternal immunity duration in infants is dependent on the average entomo-

logical inoculation rate they are subjected to; i.e. infants that are subjected to

higher levels of transmission have higher relative residual immunity that they de-

rive maternally which is possibly an evolutionary immunological response. From

the numerical simulation results,it is seen immunity might last up to 24 months
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Figure 3.6: Maternal immunity dependence on intrinsic parameters.

(2 years) in infants in whom the half-life of the maternal immunity is greater

(Figure 3.6a). Realistically, this could be crucial for preventing first infections in

infants in areas of high endemicity [21, 20].

However; it is not the mere presence, but the value of initial maternal immunity

that dictates the interaction between the derived passive immunity and malaria

exposure (Figure 3.6b). Children from areas of high transmission might inherit

higher levels of maternal antibodies, and this might lead to significant protection

early in life. Once this passive immunity is exhausted, immunity against the clin-

ical malaria infection remains a function of exposure and individual host immune

system, incorporated by the anti-disease immunity [67].

The clinical immunity against the infection stems from a cumulative effect of

proportion of immunity that is passed on to an individual at birth in endemic set-

tings, and then develops due to exposure once the maternal immunity is weaned.



Upon analysing the maternal immunity minimas at different mosquito densities,

Mosquito Density, m Immunity Minima value Time taken to attain minima (in yrs)

3 0.0011 0.9610

6 0.0018 0.7880

9 0.0025 0.6850

Table 3.4: Maternal immunity minima dependence on mosquito densities
(m=3,6,9)

it is seen that the minima are extrinsically dependent on mosquito density of the

settings. At higher mosquito density, the residual maternal immunity is higher

than at low and intermediate densities, and the minima occurs rather earlier and is

hence forth taken over by the clinical immunity, which is greater than the passive

maternal immunity (Table 3.4).

3.6 Clinical Immunity

As the maternal immunity weans off, children in endemic settings begin develop-

ing immunity against the symptoms of clinical malaria [26] boosted by immuno-

logical responses to exposure.Mathematically, assuming that time dependent in-

terventions are absent; the age dependence of clinical immunity can be expressed

by solving exposure and age dependent differential equations given as:

dC f

da
= σ Im−

C f

ds
(3.6.1)

Where σ Im is the force of infection acting upon an individual and ds is the half-life

with which clinical immunity is lost in absence of exposure to parasite.

Analytically, the final expression for clinical immunity at any given age can be



expressed as:

C f (a) =
σ(amax)ds(1+a0e−a/a0−dse−a/a0)

(ds−a0)+Cm(0)e−a/dm
(3.6.2)

The clinical immunity is a saturating function with respect to age; and the initial

maternal immunity is hypothesized to be half of the immunity attained at the age

of saturation (setting dependent, [27].

3.6.1 Residual Maternal Immunity
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Figure 3.7: Dependence of maternally derived clinical immunity on transmission
intensity.
During the first few months of an infant’s life, immunity against the malaria in-

fection is a consequence of maternal anti-bodies against the disease acquired at

the time of birth. Depending on the transmission rates, infants might acquire anti-



disease immunity due to exposure disproportionately- i.e. in areas with higher

endemicity, infants might have higher residual immunity due to additional effects

of immunity boosted by consistent exposure to the parasite (Figure 3.7).

3.6.2 Clinical Immunity Dependence on Exposure

The maxima of clinical immunity are calculated as σ(amax)ds where σ(amax) is

the force of infection acting on the highest individuals in the population. For

numerical results, the force of infection is expressed in the form of fixed Entomo-

logical Inoculation Rate, EIR:

σ(a) = EIRb(1− e−a/a0) (3.6.3)
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Figure 3.8: Variation in clinical immunity to due to heterogeneity in exposure

Since EIR is a function of mosquito dependent parameters; exploring the clinical



immunity development with respect to age reveals that in high transmission areas,

the clinical immunity is always higher at any given age. The development curve

of the immunity at the highest EIR is also the steepest, i.e. clinical immunity de-

velops fast enough to shield against consistent exposure.

To singularly explore the effects of mosquito related parameters on final matura-

tion levels of clinical immunity, simulations to compare different parameter com-

binations reveal to us that even though the effect of singular parameters appears to

linearly change the equilibrium level of immunity, the cumulative effect is a non-

linear curve that depends on exposure parameters. On assigning theoretical values

(a) Total Clinical Immunity vs m & b (b) Total Clinical Immunity vs Im & b

Figure 3.9: Clinical Immunity dependence on cumulative effect of vector related
parameters - m, Im and b. All other parameter values taken from Table 3.2.

to the probability of successful inoculation one observes that it is not the mosquito

density alone, but the probability of inoculation and infected mosquito proportion

that drive the acquisition of immunity. Bites by mosquitoes unviable of transmit-

ting the disease would not drive immune responses against the infection; exposure



to the parasite is what develops the immunity against clinical symptoms [48].

3.6.3 Susceptibility to Malaria

The clinical immunity is incorporated through the susceptibility function; which

defines the probability of being susceptible to clinical symptomatic disease. The

dependence of Susceptibility function [34] on clinical immunity can be given as

follows:

η =
1

1+(C(a,t)
Cm0

)kS
(3.6.4)

The susceptibility to malaria as a function of age under the effects of parasite ex-
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Figure 3.10: Variation in Susceptibility based on (a) extrinsic (Age at different
transmission intensities) and (b) intrinsic parameters (relative immunity level at
different amplification rates).

posure is a decreasing saturating function as seen in Figure 3.10a, and stabilizes in



older aged individuals, which is why children are worst affected by manifestation

of the clinical disease and mortality due to severe infection.

Susceptibility can also be expressed as a function of relative immunity level with

respect to the immunity possessed at birth (Figure 3.10b; and can be analyzed

for different degrees of the steepness function. The highest assumed value for

steepness leads to rapid fall in susceptibility theoretically; but is not the realistic

depiction of susceptibility behavior in populations. For this model; steepness de-

gree of both the susceptibility function and recovery rates has been fixed to two,

which is most realistically replicable in human susceptible populations.

3.7 Anti-Parasite Immunity

Parasite immunity is associated with the recovery from asymptomatic infection;

and with a latent immunity level accumulating through age dependent exposure

and no surviving innate immunity. The anti-parasite immunity is the acquired

immunity of the host; that is responsible for clearance of parasite and matures

later in life due to maturation of the host immune system with age, and due to re-

peated exposure to the parasite. The immunity accumulates through a delay phase

LA (age-dependent maturity) function and the force of infection; and then decays

when exposure is lost [76].

Cytokines induced during natural response malaria infections during clinical parox-

ysms in human Plasmodium vivax infections, mediate killing of intra-erythrocytic

blood stage malaria parasites [59]. Mathematically, age-dependent anti-parasite



immunity [57] is modelled by the equations:

dLA

da
= σ Im−

LA

dl
(3.7.1)

dP
da

=
LA

dl
− P

dA
(3.7.2)

Since the anti-parasite immunity function models acquired immunity, at the time

of birth, LA(0) = P(0) = 0.

Figure 3.11: Dependence of maternally derived clinical immunity on transmission
intensity.

Parasite immunity depends majorly on the host’s age and immune system develop-

ment; but in endemic settings, high transmission rates promote the rapid develop-

ment of immunity to clear parasites from the host and increase tolerance for high

parasitic loads to prevent clinical symptoms. In the first years of an individual’s



life this shielding effect is generally poor; but with the age associated development

of immune system and exposure, most adults develop acquired immunity against

malaria, which is dictated by the individual immune system capabilities, not so

much by exposure. This acquired immunity is also known to have a genetic basis

in endemic areas [36, 40].

3.7.1 Comparison of Clinical and Parasite Immunity Develop-

ment
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Figure 3.12: Comparison of Clinical and Parasite Immunity in different transmis-
sion settings.

The behavior of anti-disease immunity and anti-parasite immunity is not dictated

only by exposure, the curves for both types of immunity show explicit depen-

dence on age. However, the immunity equilibrium value is a function of the force

of infection acting on the human population. In areas of high endemicity, both



clinical immunity and parsite immunity are stronger, to reduce clinical symptoms,

and clear parasite reservoirs (Figure 3.12).

As already known, the clinical immunity in the first few years of life shields

against the infection and the parasite immunity develops slower during childhood.

But once established through the age-related delay, the parasite immunity is what

dominates the acquired immunity against malaria which leads to stronger immune

responses and lower rates of detected parasitaemia upon reinfection, and this re-

sults in lower parasite densities in the adult human population [29, 30].

3.7.2 Recovery Rate Estimates
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Figure 3.13: Dependence of recovery rates on (a) intrinsic and (b) extrinsic pa-
rameters.

The anti-parasite immunity function has been used to model the recovery rates

against the disease and clearance of parasites. The mathematical expression of the

recovery rate, is formulated as:



ρ = ρ0

[
1+(wA−1)

Pa/HA
kA

1+Pa/HA
kA

]
(3.7.3)

where ρ0 is the baseline recovery rate, without treatment and wA is the maximum

amplification of the baseline rate.

The recovery rate estimate is most-realistic with respect to the discussed com-

partmental model when and kA = 2, which is visualized through the numerical

solutions of the recovery rate function given in Figure 3.13. The recovery rate

depends on the age and host-vector interaction both; hence for higher levels of

independent EIR, the recovery rate curve grows rapidly as compared to lower

transmission rates.

Hence, adults in endemic settings become well adapted to clear non-complicated

infections without treatment. In the results give in this section, the ka parame-

ter has been used to model the steepness of the recovery function and is setting

dependent and individual-host dependent.

3.7.3 Sub-patent Infections

The asymptomatic class in human population also includes a portion of individ-

uals that are immune-protected and this state is achieved not directly due to age;

but due to continued re-exposure. A host reaching such a state would have to go

through an extended period of exposure; this is incorporated through the “super-

infection” recovery form or the recovery without any treatment.
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Figure 3.14: Sub-patent infection recovery rate vs age

Mathematically,

rU(σ(α)) =
(σ(α)

eσ(α)dU −1
(3.7.4)

where σ(α) is the exposure at age a; which increases with body size and the mean

rate of clearance of sub-patent infections is dU . This class of humans has not been

incorporated in the model, but its existence in known [34].

It has now been proven that the acquisition of immunity that is partially protective

is a domineering feature of the malarial epidemiology in endemic regions [48].

In highly endemic settings, interventions that can reduce but do not eliminate the

transmission of the parasite can have drastic consequences (malaria epidemic in

India (1976-77)). Short-term decline in malaria incidence due to intervention is

not successful, due to loss of acquired anti-malarial immunity due to lowered ex-



posure to parasites [15, 34, 6]. Anti-parasite and clinical immunity develop in

parallel, reducing the probability of developing clinical malaria upon each infec-

tion due to Plasmodium [73].

Since immunity depends on a range of parameters, association of anti-malarial

immunity with protection from malaria can be contradictory if the studies fail to

take into account differences in the transmission rates geographically. This con-

flict arises because high malaria exposure is possibly a driver of high anti-malarial

immunological response [41], which might lead to an apparent positive associa-

tion between the immune response and rate of infection.



Chapter 4

Analyses of Plasmodium falciparum

Malaria Prevalence in India

(1961-95)

Figure 4.1: SfR in India between 1961-95.

Even though the majority of malaria cases in India are caused by the parasite

Plasmodium vivax, the past few decades have seen an exponential rise in the con-

50



tribution of the parasite Plasmodium falcliparum as the causative agent of malaria

in India (shown in Figure 4.1), which is also more lethal. The highest recorded

cases of falciparum malaria have been reported in the state of Orissa, and ap-

proximately 46 million inhabitants are at the risk of this infection. The interplay

of various factors like favourable climate, geo types, large forest coverage, diffi-

culty in accessing remote and hilly villages and prevalence of efficient Anopheles

mosquito vectors, along with wide-spread low economic status, have resulted in

persistent malaria transmission in different parts of the state [66].

During 1961-95, the mean Sf R in India rose from approximately zero to 1.14,

peaking at 1.5 during the epidemic in mid 1970s. Since then, the falciparum

malaria has only gone up and accounts for approximately 60% of all malaria cases

in India [83].

In this chapter, different descriptive statistical methods have been applied to a his-

torical dataset of India between 1961-95 to highligt the spatio-temporal properties

of falciparum emergence in the country.

4.1 Time Series of SfR in States between 1961-95

The scatter plot depicting the Sf R time-series in states and at the all India level

reinforces the features we have derived with other statistical methods in subse-

quent sections- owing to geographical, ecological and socio-economic diversity,

Sf R across the nation are not homogenously distributed. However, the continuous

structure of the time series data, is in synchrony with the overall malaria preva-

lence in India; i.e. the low prevalence 1960s due to extreme transmission control

strategies, the building up of an epidemic in mid 1970s which only declined grad-



Figure 4.2: Sf R cases in India between 1961-95

ually by mid 1980s- only to propagate the emergence of P. falciparum induced

malaria in the country.

The frequency of outliers in the Figure 4.2 is significant enough for us to conclude

that the all India Sf R is undermined by the nullifiers- the states experiencing close

to no contribution of falciparum parasite to malaria prevalence. Such states could

be shielded ecologically or could have different testing and control strategies to

contain the infectious disease.

4.2 Spatial-Temporal Analysis of SfR in India

Analyses of spatial data in India is complex- and data collection techniques and

methodologies vary across different regions. Changes in administrative bound-



aries across timelines make it difficult to analyse spatial data accurately. During

1961-95, 10 new states were formed and the administrative and political plans for

these states were revised seven times [50]. To incorporate this variability, the state

boundaries for all regions in India have been adjusted accordingly in Table 4.1.

No. of
States in
India

No. of
Union
Territo-
ries

Year State Added Former Status U.T.
Added

Former Status

15 10 1961

16 9 1963 Nagaland Union Territory

17 10 1966 Haryana Part of Punjab Chandigarh Part of Punjab

18 9 1971 Himachal
Pradesh

Union Territory

21 11 1972 Meghalaya Part of Assam

21 11 1972 Manipur,
Tripura

Union Territories Mizoram,
Arunachal

Part of Assam

22 11 1975 Sikkim Independent
Dynasty

25 9 1987 Mizoram,
Arunachal,
Goa

Union Territories

Table 4.1: State administrative changes between 1961-95 in India

4.2.1 Spatial time series of SfR data in India

In this sub-section, the spatial time series of Sf R prevalence has been depicted

using maps of India between 1961-95 by incorporating changes made in state

boundaries over the time period (Table 4.1). Please note that the colour intensity

scale is different for some plots to highlight the high-low among the states.



Figure 4.3: Sf R in India between 1961-66.



Figure 4.4: Sf R in India between 1967-72.

On analysing Sf R prevalence of all states spatially, the hot-spots that emerge

through the time series are mostly restricted to north-eastern states of India be-

tween 1961-72 (Figure 4.3 and Figure 4.4). P. falciparum parasite is believed to

have propagated in the country through the north-eastern states. The borders to

south east Asian countries which are high in P.f could be responsible for Sf R in



these states. Gujarat and Orissa also show elevated levels in some years, however,

the overall Sf R prevalence is abysmally low during this period.

Figure 4.5: Sf R in India between 1973-78.



Figure 4.6: Sf R in India between 1977-83.

Post 1970, an interesting pattern in the spatial prevalence seems to emerge in ar-

eas that are not even similar geographically or environmentally- i.e. the regions

of existing hot-spots-Orissa and north-eastern states are joined by regions of cen-

tral and western parts of the country, appearing as if a linear slice cutting through

the country. These regions including the states of Gujarat, Madhya Pradesh, Ra-



jasthan and Maharashtra, show oscillating behaviour between 1970-1985- in some

years, the prevalence goes up and then comes down.

Figure 4.7: Sf R in India between 1984-89.



Figure 4.8: Sf R in India between 1989-95.

Post 1985, the Sf R hubs that have been established so far- the north-eastern

regions with the states of Arunachal Pradesh, Assam and Tripura, along with

Orissa- are established as focal-points, with Gujarat, Bihar, Rajasthan and Mad-

hya Pradesh occasionally significantly contributing to the prevalence.



4.3 Classification of Indian states based on falciparum

prevalence between 1961-95

Figure 4.9: Classification of falciparum malaria affected states between 1961-95
using PCA. The first two components are plotted.

PCA analysis (see section 2.4.2 in Chapter 2 ) shown in Figure 4.9 reveals how the

states are clustered based on Sf R malaria for all years and all states. The variance

plot in Figure 4.10 shows that two components can explain about 80% of the vari-

ance in the data for the clustering of states presented by the independent variables

in 35 dimensions. Hence, we are able to effectively visualize the states of low,

high and intermediate prevalence with their distinctive characteristics in the PC1-

PC2 plot in Figure 4.9. The consistent high prevalence states from our time series



Figure 4.10: Variance plot of state-wise PCA analysis

- Meghalaya and Tripura and Orissa - are distinctively apart from the consistently

low prevalence states through out the time-series. States with lower overall Sf R

cluster together. The states that show variable intermediate-high prevalence are

also distinguished from the rest - as is the case with Rajasthan, Madhya Pradesh,

Arunachal Pradesh, Nagaland and Assam. Orissa- the established hub is furthest

apart from all clusters.

4.4 Temporal Classification of SfR in India

To identify the underlying temporal pattern of all states in various years, prin-

cipal component analysis is done on all states contribution in each year for 35

years (Figure 4.11). The PC1-PC2 plot shows the years towards the beginning

of the time series cluster together- years with extremely low falciparum malaria.



In similar fashion, the years that witnessed the highest impact of the epidemic –

1975-76, are positioned together. Interestingly, the manifestation of P. falciparum

Figure 4.11: Year-wise clustering based on PC1-PC2 state Sf R in India

as the dominant malaria parasite is reinforced, as the last years contributing to the

time series are at shortest distance from the years that experienced the epidemic

in full force- depicting that the infection load due to P. falciparum is sustained.

The variance plot in Figure 4.12 for the PCA reveals that the two components

only represent 56% of the variance in the independent variables. Hence, the year-

wise clusters are not as distinct as state-wise clusters. This could probably have

stemmed from the huge variation in prevalence among states in the early years

and variability in data collection procedures across the years and states.



Figure 4.12: Variance plot of yearwise PCA analysis

4.5 Temporal Correlation Heatmaps

Figure 4.13 shows the temporal correlation of SfR time series between pairs of

states in India during 1961-95. The 35 year period is divided in three stages - pre-

epidemic (1961-74), during epidemic (1975-1985), and post epidemic (1986-95).

The pairwise correlation coefficients are plotted to to identify the geographical

areas that behave similarly across the time.

Before the epidemic, most states seem correlated, since the overall prevalence is

low throughout the country, except for a few – the outliers that begin to surface

early on, most of them being states in the north-eastern region of the country. It

shows that when the epidemic is building up, correlations between states are high

(1961-74). During the epidemic years and its dying down, the correlation between

the states disintegrates as the states use differential control measures to stop the



(a) pre-epidemic (1961-974) (b) during epidemic (1975-85) (c) post-epidemic (1986-95)

Figure 4.13: Sf R temporal correlation heatmaps for states in India between 1961-
95

epidemic and progress differently throughout the epidemic owing to geographic,

ecological, en- vironmental and demographic factors.

This trend continues post epidemic also, most states follow completely different

trajectories and do not seem correlated, partly because of disproportion in inci-

dence, even if there is an overall increase in Sf R throughout the country.

4.6 Relative contribution of states to falciparum malaria

in India between 1961-95.

The relative contribution of each state of falciparum malaria in India can be visu-

alised by descriptive pie charts, to identify the trends with respect to the disease

prevalence. From the pie-chart distributions given below, it is evident that only

a few states concentrated in the north eastern parts of the country initially con-

tribute to falciparum malaria in India. Even within the states that contribute, Sf R



prevalence is extremely low. As the epidemic builds up, the contribution of other

states, along with the initial hot-spots also go up, even though the quantitative

contribution is lower than the established hot-spots. Towards 1995, more states

contribute in smaller proportions to the overall falciparum malarial prevalence, as

the parasite gradually manifests itself as the dominant malarial parasite in India.

Figure 4.14: Relative contribution of high-prevalence states to Sf R between 1961-
64.



Figure 4.15: Relative contribution of high-prevalence states to Sf R between 1965-
68.

Figure 4.16: Relative contribution of high-prevalence states to Sf R between 1969-
72.



Figure 4.17: Relative contribution of high-prevalence states to Sf R between 1973-
76.

Figure 4.18: Relative contribution of high-prevalence states to Sf R between 1977-
80.



Figure 4.19: Relative contribution of high-prevalence states to Sf R between 1981-
84.

Figure 4.20: Relative contribution of high-prevalence states to Sf R between 1985-
88.



Figure 4.21: Relative contribution of high-prevalence states to Sf R between 1989-
92.

Figure 4.22: Relative contribution of high-prevalence states to Sf R between 1992-
95.



4.7 SfR distributions (1961-95) in states

It is clear from the Sf R time series of all states that they have had different intensi-

ties of cases - some consistently high or low, and some having both high and low.

The shape of the case distribution over 35 years can give important information

on the severity of Sf R malaria in them. Based on the shape of their distributions,

states are classified in regions with low, intermediate and high falciparum preva-

lence. All plots have the same X-axis scale and bin size for easier comparison.

4.7.1 States with consistently low prevalence

Figure 4.23: States with consistently low prevalence of Sf R.



Certain states in India show consistently low prevalence of Sf R between 1961-

95 (Figure 4.23). It is however important to distinguish between states that have

overall low malaria prevalence and specifically low Sf R prevalence for accurate

classification.

The states with intermediate but variable prevalence of Sf R, and those with high

and variable prevalence of Sf R are shown in Figure 4.24 & 4.25.:

Figure 4.24: States with intermediate but variable prevalence of Sf R.

Figure 4.25: States with high and variable prevalence of Sf R.

The hotspot states with high prevalence of Sf R - Orissa, Tripura, and



Meghalaya - have an interesting characteristic. In majority of the years they show

very high prevalence. Orissa has a unique bimodal distribution, and Nagaland and

Arunachal Pradesh having long tails. More analysis with environmental, social

and demographic variables needs to be done to understad these differences.

All the analyses shown above, through descriptive and statistical methods, clearly

uncover some important information from the mass of tables for 35 years. Clearly

more studies need to be done to understand the environmental, socio-economic

variables that lead to state-wise differences in Sf R prevalence and its future tra-

jectory.



Chapter 5

Discussions and Future Directions

The work presented in this thesis is an attempt to theoretically study the myr-

iad faces of evolution, spread and differential prevalence of the infectious disease

malaria. Towards this two approaches - a mathematical modeling and a data cura-

tion and analysis - are employed. Both are commonly used methods in epidemiol-

ogy research. For the first, we have used an existing realistic model of Malaria [57]

in which, among other factors, the host immunity functions are included. I have

done a thorough analysis of the dependence of these functions to several biolog-

ically realistic factors, such as age, immunity, mosquito density, mosquito biting

rate etc. These are very important in epidemiology, as they influence the disease

spread in a population with different age structure differently - a clear case being

the recent COVID-19 pandemic in the world. Though the detailed mathematical

analysis and simulations on the whole model and the immunity functions are for

general cases, they can be applied and used for specific countries or regions after

incorporating the region-specific data.

Plasmodium falciparum has gradually become the dominant malaria parasite in
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India, which poses a significant challenge in endemic areas. High transmission

rates entrenched with poor socio-economic conditions leading to low immunity

and comorbidity induce significantly higher mortality rates due to falciparum in-

fection that is the leading cause of cerebral malaria throughout the world. Dif-

ferential equation based mathematical models for infectious disease have worked

independently well in incorporating the biological factors at population levels;

and can replicate, as well as predict, temporal dynamics of the disease spread

for shorter duration. However compartmental differential equation models inves-

tigate system behavior of high-dimensional host-vector-pathogen interactions by

studying simpler models that approximates the original by averaging over degrees

of freedom. Heterogeneity, which is key driver of immunity and transmission

dynamics, can often not be visualized in such systems. Similarly, spatial effects

of the disease dynamics cannot be relayed through differential equation models.

Agent-Based Models are extremely useful for decoding complex collective be-

havior using a ground-up approach. The realistic spatial dynamics of the system

owing to heterogenous agents can be replicated in ABMs, which is often lost in

mean-field models [63, 28, 47].

The intricacy of malaria transmission dynamics differs in space and time; hence it

is necessary to isolate local and focal phenomenon for targeted policies to control

and eradicate the infectious disease. Towards this analysis of malaria prevalence

data in particular regions is very useful. We collected and curated a historical

dataset of Sf R prevalence in India between 1961-1995. Unfortunately this data

set is highly coarse-grained - both spatially (states) and temporally (one data point

for one year). This does not allow it to be useful for any mathematical modelling.

In this work, the aim has been to extract as much information possible from the



mass of numbers using visualization and basic statistical methods. Each method-

ology used for classification of hot-spots for falciparum malaria reveals a unique

aspect of the epidemiology of the parasite evolution in the country. Through the

time series, spatial plots and pie-charts, we get an understanding of how falci-

parum malaria was introduced in the country- through the north-eastern states,

and how the prevalence has gone up, and the contribution of individual states to

the falciparumm disease burden. But it is through the distributions, classification

methods and correlation techniques that we are able to trace the similarities, or

the lack thereof within various regions of the country with respect to the parasite’s

endemicity. Initially, as the prevalence in the country is extremely low, it seems

that the entire burden is borne by the states that first exhibit the falciparum malaria

incidence. Over time, due to various biologically or demographically relevant fac-

tors, other states also emerge as areas of high prevalence, which is highlighted by

spatial analysis of the data.

The challenges posed by malaria remain manifold- reduction of transmission rates

by controlling vector population has been known to evoke evolutionary responses-

DDT resistance, high biting rates and changed biting time, antigenic variation due

to var gene recombination, gene introgression- to name a few. It has now become

imperative to enhance our understanding of immune system interactions with the

parasite to achieve the goal of worldwide elimination. Heterogeneity in immunity

against the infectious disease- owing to a cumulative exposure to the parasite, the

biology of the host, demography and socio-economic factors highlights funda-

mental gaps in our understanding of malarial epidemiology. Availability of high

quality and high-resolution spatio-temporal epidemiological data is also an im-

portant corner stone in developing useful mathematical and statistical predictive



models for any disease. Hence, understanding the history of the emergence of

the relatively newer parasite species not only helps in connecting the dots to the

past, but its deeper understanding is panacea for eliminating the infectious disease.



Appendix A

Selected MATLAB Codes

%full model malaria

syms I f Ha wa m alpha h rho q mu_h Is0 b a0 amax dl dp dm ds Hs EIR

a Pa lambda Is beta rho rhos R_s mu_m L_m psi C_Is C_Ia tau

index = 0;

for a = 0:0.05:60

index = index+1;

f=0.5; Ha = 500; wa = 30; h = 24.333; m =3; alpha = 0.67*365; rho0 =

(1/180*365); mu_h = 0.0125; q = 3;

b = 0.2; a0 = 3; dl = 10; dp = 20; dm = 0.25; amax =80; ds = 5; Hs

=40; EIR =104; Is0 =52; mu_m = 0.1*365; tau = 0.018; C_Is = 0.35;

C_Ia = 0.03;

Pa = exp(-a/dl)*((EIR*b*dl*dp*exp(a/dl) - (EIR*a0*b*dl*dp*exp(a/dl -

a/a0))/(a0 - dl))/(dl - dp) - (EIR*b*dl*dp)/(dl - dp) + (EIR*a0*

b*dl*dp)/(a0*dl - a0*dp + dl*dp - dl^2)) - exp(-a/dp)*((EIR*b*dp

^2*exp(a/dp) - (EIR*a0*b*dp^2*exp(a/dp - a/a0))/(a0 - dp))/(dl -

dp) - (EIR*b*dp^2 - (EIR*a0*b*dp^2)/(a0 - dp))/(dl - dp) + (EIR*b

*dl*dp - (EIR*a0*b*dl*dp)/(a0 - dl))/(dl - dp) - (EIR*b*dl*dp)/(

dl - dp) + (EIR*a0*b*dl*dp)/(a0*dl - a0*dp + dl*dp - dl^2));

lambda = EIR*b*(1 - exp(-amax/a0));
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psi = exp(-tau*mu_m);

Is = lambda*ds*( 1 + (a0*exp(-a/a0) - ds*exp(-a/ds))/(ds-a0)) + Is0*

exp(-a/dm);

beta = 1/(1 + ((Is/Is0)^2));

rho = q + (rho0*(1 + ((wa -1)*(Pa/Ha)^2/(1 + (Pa/Ha)^2))));

rhos = 17.38;

R_s= f*rhos + (1-f)*rho;

ode = @(T,I)[-m*alpha*I(7)*(1-exp((-1*a)/a0))*b*I(1) + beta*R_s*I(3)

+ rho*(I(4)) + mu_h - mu_h*I(1); m*alpha*I(7)*b*(1-exp((-1*a)/a0

))*I(1) - h*(I(2)) - mu_h*(I(2));

beta*h*I(2) + beta*m*alpha*I(7)*(1-exp((-1*a)/a0))*b*I(4) - R_s*I

(3) - mu_h*I(3);

(1 -beta)*h* I(2) + (1 - beta)*R_s*I(3) - beta*m*alpha*I(7)*(1-

exp((-1*a)/a0))*b*I(4) - (rho)*I(4) - mu_h*I(4);

mu_m - alpha*(C_Is*I(3) + C_Ia*I(4))*I(5)- mu_m*I(5); alpha*(

C_Is*I(3) + C_Ia*I(4))*I(5) - psi*alpha*(C_Is*I(3) + C_Ia*I

(4))*I(5)-mu_m*I(6); psi*alpha*(C_Is*I(3) + C_Ia*I(4))*I(5)-

mu_m*I(7)];

tspan = 0:0.0005:1;

options = odeset(’RelTol’,1e-8,’AbsTol’,1e-10);

I0 = [0.99998; 0; 0.00002; 0; 0.999; 0.0; 0.001];

[T,I] = ode45(ode, tspan, I0, options);

% figure(1)

time = linspace(0,12,2001);

%plot(x, I(:,5),x, I(:,6), x, I(:,7));

%grid

y(index) = I(end,4);

age = linspace(0,60,1201);

% y

end



% p = plot(time, I(:,1),’--’, time, I(:,2), ’-’,time, I(:,3), ’:’,

time, I(:,4), ’-.’ )

p = plot(age, y, ’--’)

p(1).LineWidth = 2.5;

% p(2).LineWidth = 2.5;

% p(3).LineWidth = 2.5;

% p(4).LineWidth = 2.5;

% legend(’parasite immunity half-life = 15 yrs’)

xlabel({’Age’})

ylabel({’Proportion of symptomatic human class’} )

ylim([0 1])

hold on

% %title(’Recovery from sub-patent infections’)

syms I f Ha wa m alpha h rho q mu_h Is0 b a0 amax dl dp dm ds Hs EIR

a Pa lambda Is beta rho rhos R_s mu_m L_m psi C_Is C_Ia tau

index = 0;

for a = 0:0.05:60

index = index+1;

f=0.5; Ha = 500; wa = 30; h = 24.333; m =3; alpha = 0.67*365; rho0 =

(1/180*365); mu_h = 0.0125; q = 3;

b = 0.2; a0 = 3; dl = 10; dp = 20; dm = 0.25; amax =80; ds = 10; Hs

=40; EIR =100; Is0 =52; mu_m = 0.1*365; tau = 0.018; C_Is = 0.35;

C_Ia = 0.03;

Pa = exp(-a/dl)*((EIR*b*dl*dp*exp(a/dl) - (EIR*a0*b*dl*dp*exp(a/dl -

a/a0))/(a0 - dl))/(dl - dp) - (EIR*b*dl*dp)/(dl - dp) + (EIR*a0*

b*dl*dp)/(a0*dl - a0*dp + dl*dp - dl^2)) - exp(-a/dp)*((EIR*b*dp

^2*exp(a/dp) - (EIR*a0*b*dp^2*exp(a/dp - a/a0))/(a0 - dp))/(dl -

dp) - (EIR*b*dp^2 - (EIR*a0*b*dp^2)/(a0 - dp))/(dl - dp) + (EIR*b

*dl*dp - (EIR*a0*b*dl*dp)/(a0 - dl))/(dl - dp) - (EIR*b*dl*dp)/(

dl - dp) + (EIR*a0*b*dl*dp)/(a0*dl - a0*dp + dl*dp - dl^2));

lambda = EIR*b*(1 - exp(-amax/a0));

psi = exp(-tau*mu_m);

Is = lambda*ds*( 1 + (a0*exp(-a/a0) - ds*exp(-a/ds))/(ds-a0)) + Is0*

exp(-a/dm);

beta = 1/(1 + ((Is/Is0)^2));



rho = q + (rho0*(1 + ((wa -1)*(Pa/Ha)^2/(1 + (Pa/Ha)^2))));

rhos = 17.38;

R_s= f*rhos + (1-f)*rho;

ode = @(T,I)[-m*alpha*I(7)*(1-exp((-1*a)/a0))*b*I(1) + beta*R_s*I(3)

+ rho*(I(4)) + mu_h - mu_h*I(1); m*alpha*I(7)*b*(1-exp((-1*a)/a0

))*I(1) - h*(I(2)) - mu_h*(I(2));

beta*h*I(2) + beta*m*alpha*I(7)*(1-exp((-1*a)/a0))*b*I(4) - R_s*I

(3) - mu_h*I(3);

(1 -beta)*h* I(2) + (1 - beta)*R_s*I(3) - beta*m*alpha*I(7)*(1-

exp((-1*a)/a0))*b*I(4) - (rho)*I(4) - mu_h*I(4);

mu_m - alpha*(C_Is*I(3) + C_Ia*I(4))*I(5)- mu_m*I(5); alpha*(

C_Is*I(3) + C_Ia*I(4))*I(5) - psi*alpha*(C_Is*I(3) + C_Ia*I

(4))*I(5)-mu_m*I(6); psi*alpha*(C_Is*I(3) + C_Ia*I(4))*I(5)-

mu_m*I(7)];

tspan = 0:0.0005:1;

options = odeset(’RelTol’,1e-8,’AbsTol’,1e-10);

I0 = [0.99998; 0; 0.00002; 0; 0.999; 0.0; 0.001];

[T,I] = ode45(ode, tspan, I0, options);

% figure(1)

time = linspace(0,12,2001);

%plot(x, I(:,5),x, I(:,6), x, I(:,7));

%grid

y1(index) = I(end,4);

age = linspace(0,60,1201);

% y

end

% p = plot(time, I(:,1),’--’, time, I(:,2), ’-’,time, I(:,3), ’:’,

time, I(:,4), ’-.’ )

p = plot(age, y1, ’--’)

p(1).LineWidth = 2.5;

% p(2).LineWidth = 2.5;



% p(3).LineWidth = 2.5;

% p(4).LineWidth = 2.5;

legend(’EIR = 50’, ’EIR =100’)

xlabel({’Age’})

ylabel({’Proportion of symptomatic human class’} )

ylim([0 1])

% %title(’Recovery from sub-patent infections’)

% Symptomatic Prevalence

syms I f Ha wa m alpha h rho q mu_h Is0 b a0 amax dl dp dm ds Hs EIR

a Pa lambda Is beta rho rhos R_s mu_m L_m psi C_Is C_Ia tau

index = 0;

for a = 0:0.05:80

index = index+1;

f=0.5; Ha = 500; wa = 30; h = 24.333; m =3; alpha = 0.67*365; rho0 =

(1/180*365); mu_h = 0.0125; q = 3;

b = 0.2; a0 = 3; dl = 10; dp = 20; dm = 0.25; amax =80; ds = 5; Hs

=40; EIR =25; Is0 =52; mu_m = 0.1*365; tau = 0.018; C_Is = 0.35;

C_Ia = 0.03;

Pa = exp(-a/dl)*((EIR*b*dl*dp*exp(a/dl) - (EIR*a0*b*dl*dp*exp(a/dl -

a/a0))/(a0 - dl))/(dl - dp) - (EIR*b*dl*dp)/(dl - dp) + (EIR*a0*

b*dl*dp)/(a0*dl - a0*dp + dl*dp - dl^2)) - exp(-a/dp)*((EIR*b*dp

^2*exp(a/dp) - (EIR*a0*b*dp^2*exp(a/dp - a/a0))/(a0 - dp))/(dl -

dp) - (EIR*b*dp^2 - (EIR*a0*b*dp^2)/(a0 - dp))/(dl - dp) + (EIR*b

*dl*dp - (EIR*a0*b*dl*dp)/(a0 - dl))/(dl - dp) - (EIR*b*dl*dp)/(

dl - dp) + (EIR*a0*b*dl*dp)/(a0*dl - a0*dp + dl*dp - dl^2));

lambda = EIR*b*(1 - exp(-amax/a0));

psi = exp(-tau*mu_m);

Is = lambda*ds*( 1 + (a0*exp(-a/a0) - ds*exp(-a/ds))/(ds-a0)) + Is0*

exp(-a/dm);

beta = 1/(1 + ((Is/Is0)^2));

rho = q + (rho0*(1 + ((wa -1)*(Pa/Ha)^2/(1 + (Pa/Ha)^2))));

rhos = 17.38;

R_s= f*rhos + (1-f)*rho;



ode = @(T,I)[-m*alpha*I(7)*(1-exp((-1*a)/a0))*b*I(1) + beta*R_s*I(3)

+ rho*(I(4)) + mu_h - mu_h*I(1); m*alpha*I(7)*b*(1-exp((-1*a)/a0

))*I(1) - h*(I(2)) - mu_h*(I(2));

beta*h*I(2) + beta*m*alpha*I(7)*(1-exp((-1*a)/a0))*b*I(4) - R_s*I

(3) - mu_h*I(3);

(1 -beta)*h* I(2) + (1 - beta)*R_s*I(3) - beta*m*alpha*I(7)*(1-

exp((-1*a)/a0))*b*I(4) - (rho)*I(4) - mu_h*I(4);

mu_m - alpha*(C_Is*I(3) + C_Ia*I(4))*I(5)- mu_m*I(5); alpha*(

C_Is*I(3) + C_Ia*I(4))*I(5) - psi*alpha*(C_Is*I(3) + C_Ia*I

(4))*I(5)-mu_m*I(6); psi*alpha*(C_Is*I(3) + C_Ia*I(4))*I(5)-

mu_m*I(7)];

tspan = 0:0.0005:1;

options = odeset(’RelTol’,1e-8,’AbsTol’,1e-10);

I0 = [0.99998; 0; 0.00002; 0; 0.999; 0.0; 0.001];

[T,I] = ode45(ode, tspan, I0, options);

% figure(1)

time = linspace(0,12,2001);

%plot(x, I(:,5),x, I(:,6), x, I(:,7));

%grid

y(index) = I(end,3);

age = linspace(0,60,2001);

% y

end

% p = plot(time, I(:,1),’--’, time, I(:,2), ’-’,time, I(:,3), ’:’,

time, I(:,4), ’-.’ )

p = plot(age, y, ’--’)

p(1).LineWidth = 2.5;

% p(2).LineWidth = 2.5;

% p(3).LineWidth = 2.5;

% p(4).LineWidth = 2.5;

% legend(’parasite immunity half-life = 15 yrs’)



xlabel({’Age’})

ylabel({’Proportion of symptomatic human class’} )

ylim([0 1])

hold on

for a = 0:0.05:80

index = index+1;

f=0.5; Ha = 500; wa = 30; h = 24.333; m =3; alpha = 0.67*365; rho0 =

(1/180*365); mu_h = 0.0125; q = 3;

b = 0.2; a0 = 3; dl = 10; dp = 20; dm = 0.25; amax =80; ds = 5; Hs

=40; EIR =50; Is0 =52; mu_m = 0.1*365; tau = 0.018; C_Is = 0.35;

C_Ia = 0.03;

Pa = exp(-a/dl)*((EIR*b*dl*dp*exp(a/dl) - (EIR*a0*b*dl*dp*exp(a/dl -

a/a0))/(a0 - dl))/(dl - dp) - (EIR*b*dl*dp)/(dl - dp) + (EIR*a0*

b*dl*dp)/(a0*dl - a0*dp + dl*dp - dl^2)) - exp(-a/dp)*((EIR*b*dp

^2*exp(a/dp) - (EIR*a0*b*dp^2*exp(a/dp - a/a0))/(a0 - dp))/(dl -

dp) - (EIR*b*dp^2 - (EIR*a0*b*dp^2)/(a0 - dp))/(dl - dp) + (EIR*b

*dl*dp - (EIR*a0*b*dl*dp)/(a0 - dl))/(dl - dp) - (EIR*b*dl*dp)/(

dl - dp) + (EIR*a0*b*dl*dp)/(a0*dl - a0*dp + dl*dp - dl^2));

lambda = EIR*b*(1 - exp(-amax/a0));

psi = exp(-tau*mu_m);

Is = lambda*ds*( 1 + (a0*exp(-a/a0) - ds*exp(-a/ds))/(ds-a0)) + Is0*

exp(-a/dm);

beta = 1/(1 + ((Is/Is0)^2));

rho = q + (rho0*(1 + ((wa -1)*(Pa/Ha)^2/(1 + (Pa/Ha)^2))));

rhos = 17.38;

R_s= f*rhos + (1-f)*rho;

ode = @(T,I)[-m*alpha*I(7)*(1-exp((-1*a)/a0))*b*I(1) + beta*R_s*I(3)

+ rho*(I(4)) + mu_h - mu_h*I(1); m*alpha*I(7)*b*(1-exp((-1*a)/a0

))*I(1) - h*(I(2)) - mu_h*(I(2));

beta*h*I(2) + beta*m*alpha*I(7)*(1-exp((-1*a)/a0))*b*I(4) - R_s*I

(3) - mu_h*I(3);

(1 -beta)*h* I(2) + (1 - beta)*R_s*I(3) - beta*m*alpha*I(7)*(1-

exp((-1*a)/a0))*b*I(4) - (rho)*I(4) - mu_h*I(4);

mu_m - alpha*(C_Is*I(3) + C_Ia*I(4))*I(5)- mu_m*I(5); alpha*(

C_Is*I(3) + C_Ia*I(4))*I(5) - psi*alpha*(C_Is*I(3) + C_Ia*I



(4))*I(5)-mu_m*I(6); psi*alpha*(C_Is*I(3) + C_Ia*I(4))*I(5)-

mu_m*I(7)];

tspan = 0:0.0005:1;

options = odeset(’RelTol’,1e-8,’AbsTol’,1e-10);

I0 = [0.99998; 0; 0.00002; 0; 0.999; 0.0; 0.001];

[T,I] = ode45(ode, tspan, I0, options);

% figure(1)

time = linspace(0,12,2001);

%plot(x, I(:,5),x, I(:,6), x, I(:,7));

%grid

y(index) = I(end,3);

age = linspace(0,60,1601);

% y

end

% p = plot(time, I(:,1),’--’, time, I(:,2), ’-’,time, I(:,3), ’:’,

time, I(:,4), ’-.’ )

p = plot(age, y, ’--’)

p(1).LineWidth = 2.5;

% %title(’Recovery from sub-patent infections’)

hold on

syms I f Ha wa m alpha h rho q mu_h Is0 b a0 amax dl dp dm ds Hs EIR

a Pa lambda Is beta rho rhos R_s mu_m L_m psi C_Is C_Ia tau

index = 0;

for a = 0:0.05:80

index = index+1;

f=0.5; Ha = 500; wa = 30; h = 24.333; m =3; alpha = 0.67*365; rho0 =

(1/180*365); mu_h = 0.0125; q = 3;

b = 0.2; a0 = 3; dl = 10; dp = 20; dm = 0.25; amax =80; ds = 10; Hs

=40; EIR =104; Is0 =52; mu_m = 0.1*365; tau = 0.018; C_Is = 0.35;

C_Ia = 0.03;



Pa = exp(-a/dl)*((EIR*b*dl*dp*exp(a/dl) - (EIR*a0*b*dl*dp*exp(a/dl -

a/a0))/(a0 - dl))/(dl - dp) - (EIR*b*dl*dp)/(dl - dp) + (EIR*a0*

b*dl*dp)/(a0*dl - a0*dp + dl*dp - dl^2)) - exp(-a/dp)*((EIR*b*dp

^2*exp(a/dp) - (EIR*a0*b*dp^2*exp(a/dp - a/a0))/(a0 - dp))/(dl -

dp) - (EIR*b*dp^2 - (EIR*a0*b*dp^2)/(a0 - dp))/(dl - dp) + (EIR*b

*dl*dp - (EIR*a0*b*dl*dp)/(a0 - dl))/(dl - dp) - (EIR*b*dl*dp)/(

dl - dp) + (EIR*a0*b*dl*dp)/(a0*dl - a0*dp + dl*dp - dl^2));

lambda = EIR*b*(1 - exp(-amax/a0));

psi = exp(-tau*mu_m);

Is = lambda*ds*( 1 + (a0*exp(-a/a0) - ds*exp(-a/ds))/(ds-a0)) + Is0*

exp(-a/dm);

beta = 1/(1 + ((Is/Is0)^2));

rho = q + (rho0*(1 + ((wa -1)*(Pa/Ha)^2/(1 + (Pa/Ha)^2))));

rhos = 17.38;

R_s= f*rhos + (1-f)*rho;

ode = @(T,I)[-m*alpha*I(7)*(1-exp((-1*a)/a0))*b*I(1) + beta*R_s*I(3)

+ rho*(I(4)) + mu_h - mu_h*I(1); m*alpha*I(7)*b*(1-exp((-1*a)/a0

))*I(1) - h*(I(2)) - mu_h*(I(2));

beta*h*I(2) + beta*m*alpha*I(7)*(1-exp((-1*a)/a0))*b*I(4) - R_s*I

(3) - mu_h*I(3);

(1 -beta)*h* I(2) + (1 - beta)*R_s*I(3) - beta*m*alpha*I(7)*(1-

exp((-1*a)/a0))*b*I(4) - (rho)*I(4) - mu_h*I(4);

mu_m - alpha*(C_Is*I(3) + C_Ia*I(4))*I(5)- mu_m*I(5); alpha*(

C_Is*I(3) + C_Ia*I(4))*I(5) - psi*alpha*(C_Is*I(3) + C_Ia*I

(4))*I(5)-mu_m*I(6); psi*alpha*(C_Is*I(3) + C_Ia*I(4))*I(5)-

mu_m*I(7)];

tspan = 0:0.0005:1;

options = odeset(’RelTol’,1e-8,’AbsTol’,1e-10);

I0 = [0.99998; 0; 0.00002; 0; 0.999; 0.0; 0.001];

[T,I] = ode45(ode, tspan, I0, options);

% figure(1)

time = linspace(0,12,2001);

%plot(x, I(:,5),x, I(:,6), x, I(:,7));



%grid

y(index) = I(end,3);

age = linspace(0,60,1601);

% y

end

% p = plot(time, I(:,1),’--’, time, I(:,2), ’-’,time, I(:,3), ’:’,

time, I(:,4), ’-.’ )

p = plot(age, y2, ’--’)

p(1).LineWidth = 2.5;

% p(2).LineWidth = 2.5;

% p(3).LineWidth = 2.5;

% p(4).LineWidth = 2.5;

legend(’EIR=25’,’EIR = 50’, ’EIR =100’)

xlabel({’Age’})

ylabel({’Proportion of symptomatic human class’} )

ylim([0 1])

% %title(’Recovery from sub-patent infections’)

%Clinical Immunity prevalence

syms I f Ha wa m alpha h rho q mu_h Is0 b a0 amax dl dp dm ds Hs EIR

a Pa lambda Is beta rho rhos R_s mu_m L_m psi C_Is C_Ia tau

index = 0;

for a = 0:0.05:80

index = index+1;

f=0.5; Ha = 500; wa = 30; h = 24.333; m =3; alpha = 0.67*365; rho0 =

(1/180*365); mu_h = 0.0125; q = 3;

b = 0.2; a0 = 3; dl = 10; dp = 20; dm = 0.25; amax =80; ds = 5; Hs

=40; EIR =50; Is0 =52; mu_m = 0.1*365; tau = 0.018; C_Is = 0.35;

C_Ia = 0.03;

Pa = exp(-a/dl)*((EIR*b*dl*dp*exp(a/dl) - (EIR*a0*b*dl*dp*exp(a/dl -

a/a0))/(a0 - dl))/(dl - dp) - (EIR*b*dl*dp)/(dl - dp) + (EIR*a0*

b*dl*dp)/(a0*dl - a0*dp + dl*dp - dl^2)) - exp(-a/dp)*((EIR*b*dp

^2*exp(a/dp) - (EIR*a0*b*dp^2*exp(a/dp - a/a0))/(a0 - dp))/(dl -



dp) - (EIR*b*dp^2 - (EIR*a0*b*dp^2)/(a0 - dp))/(dl - dp) + (EIR*b

*dl*dp - (EIR*a0*b*dl*dp)/(a0 - dl))/(dl - dp) - (EIR*b*dl*dp)/(

dl - dp) + (EIR*a0*b*dl*dp)/(a0*dl - a0*dp + dl*dp - dl^2));

lambda = EIR*b*(1 - exp(-amax/a0));

psi = exp(-tau*mu_m);

Is = lambda*ds*( 1 + (a0*exp(-a/a0) - ds*exp(-a/ds))/(ds-a0)) + Is0*

exp(-a/dm);

beta = 1/(1 + ((Is/Is0)^2));

rho = q + (rho0*(1 + ((wa -1)*(Pa/Ha)^2/(1 + (Pa/Ha)^2))));

rhos = 17.38;

R_s= f*rhos + (1-f)*rho;

ode = @(T,I)[-m*alpha*I(7)*(1-exp((-1*a)/a0))*b*I(1) + beta*R_s*I(3)

+ rho*(I(4)) + mu_h - mu_h*I(1); m*alpha*I(7)*b*(1-exp((-1*a)/a0

))*I(1) - h*(I(2)) - mu_h*(I(2));

beta*h*I(2) + beta*m*alpha*I(7)*(1-exp((-1*a)/a0))*b*I(4) - R_s*I

(3) - mu_h*I(3);

(1 -beta)*h* I(2) + (1 - beta)*R_s*I(3) - beta*m*alpha*I(7)*(1-

exp((-1*a)/a0))*b*I(4) - (rho)*I(4) - mu_h*I(4);

mu_m - alpha*(C_Is*I(3) + C_Ia*I(4))*I(5)- mu_m*I(5); alpha*(

C_Is*I(3) + C_Ia*I(4))*I(5) - psi*alpha*(C_Is*I(3) + C_Ia*I

(4))*I(5)-mu_m*I(6); psi*alpha*(C_Is*I(3) + C_Ia*I(4))*I(5)-

mu_m*I(7)];

tspan = 0:0.0005:1;

options = odeset(’RelTol’,1e-8,’AbsTol’,1e-10);

I0 = [0.99998; 0; 0.00002; 0; 0.999; 0.0; 0.001];

[T,I] = ode45(ode, tspan, I0, options);

% figure(1)

time = linspace(0,12,2001);

%plot(x, I(:,5),x, I(:,6), x, I(:,7));

%grid

y(index) = I(end,4);

age = linspace(0,80,1601);



% y

end

hold on

p = plot(age, y, ’--’)

p(1).LineWidth = 2.5;

syms I f Ha wa m alpha h rho q mu_h Is0 b a0 amax dl dp dm ds Hs EIR

a Pa lambda Is beta rho rhos R_s mu_m L_m psi C_Is C_Ia tau

index = 0;

for a = 0:0.05:80

index = index+1;

f=0.5; Ha = 500; wa = 30; h = 24.333; m =3; alpha = 0.67*365; rho0 =

(1/180*365); mu_h = 0.0125; q = 3;

b = 0.2; a0 = 3; dl = 10; dp = 20; dm = 0.25; amax =80; ds = 5; Hs

=40; EIR =75; Is0 =52; mu_m = 0.1*365; tau = 0.018; C_Is = 0.35;

C_Ia = 0.03;

Pa = exp(-a/dl)*((EIR*b*dl*dp*exp(a/dl) - (EIR*a0*b*dl*dp*exp(a/dl -

a/a0))/(a0 - dl))/(dl - dp) - (EIR*b*dl*dp)/(dl - dp) + (EIR*a0*

b*dl*dp)/(a0*dl - a0*dp + dl*dp - dl^2)) - exp(-a/dp)*((EIR*b*dp

^2*exp(a/dp) - (EIR*a0*b*dp^2*exp(a/dp - a/a0))/(a0 - dp))/(dl -

dp) - (EIR*b*dp^2 - (EIR*a0*b*dp^2)/(a0 - dp))/(dl - dp) + (EIR*b

*dl*dp - (EIR*a0*b*dl*dp)/(a0 - dl))/(dl - dp) - (EIR*b*dl*dp)/(

dl - dp) + (EIR*a0*b*dl*dp)/(a0*dl - a0*dp + dl*dp - dl^2));

lambda = EIR*b*(1 - exp(-amax/a0));

psi = exp(-tau*mu_m);

Is = lambda*ds*( 1 + (a0*exp(-a/a0) - ds*exp(-a/ds))/(ds-a0)) + Is0*

exp(-a/dm);

beta = 1/(1 + ((Is/Is0)^2));

rho = q + (rho0*(1 + ((wa -1)*(Pa/Ha)^2/(1 + (Pa/Ha)^2))));

rhos = 17.38;

R_s= f*rhos + (1-f)*rho;

ode = @(T,I)[-m*alpha*I(7)*(1-exp((-1*a)/a0))*b*I(1) + beta*R_s*I(3)

+ rho*(I(4)) + mu_h - mu_h*I(1); m*alpha*I(7)*b*(1-exp((-1*a)/a0

))*I(1) - h*(I(2)) - mu_h*(I(2));



beta*h*I(2) + beta*m*alpha*I(7)*(1-exp((-1*a)/a0))*b*I(4) - R_s*I

(3) - mu_h*I(3);

(1 -beta)*h* I(2) + (1 - beta)*R_s*I(3) - beta*m*alpha*I(7)*(1-

exp((-1*a)/a0))*b*I(4) - (rho)*I(4) - mu_h*I(4);

mu_m - alpha*(C_Is*I(3) + C_Ia*I(4))*I(5)- mu_m*I(5); alpha*(

C_Is*I(3) + C_Ia*I(4))*I(5) - psi*alpha*(C_Is*I(3) + C_Ia*I

(4))*I(5)-mu_m*I(6); psi*alpha*(C_Is*I(3) + C_Ia*I(4))*I(5)-

mu_m*I(7)];

tspan = 0:0.0005:1;

options = odeset(’RelTol’,1e-8,’AbsTol’,1e-10);

I0 = [0.99998; 0; 0.00002; 0; 0.999; 0.0; 0.001];

[T,I] = ode45(ode, tspan, I0, options);

% figure(1)

time = linspace(0,12,2001);

%plot(x, I(:,5),x, I(:,6), x, I(:,7));

%grid

y2(index) = I(end,4);

age = linspace(0,80,1601);

% y

end

% p = plot(time, I(:,1),’--’, time, I(:,2), ’-’,time, I(:,3), ’:’,

time, I(:,4), ’-.’ )

p = plot(age, y2, ’--’)

p(1).LineWidth = 2.5;

% p(2).LineWidth = 2.5;

% p(3).LineWidth = 2.5;

% p(4).LineWidth = 2.5;

% legend(’parasite immunity half-life = 15 yrs’)

xlabel({’Age’})

ylabel({’Proportion of symptomatic human class’} )

ylim([0 1])



% % %title(’Recovery from sub-patent infections’)

hold on

syms I f Ha wa m alpha h rho q mu_h Is0 b a0 amax dl dp dm ds Hs EIR

a Pa lambda Is beta rho rhos R_s mu_m L_m psi C_Is C_Ia tau

index = 0;

for a = 0:0.05:80

index = index+1;

f=0.5; Ha = 500; wa = 30; h = 24.333; m =3; alpha = 0.67*365; rho0 =

(1/180*365); mu_h = 0.0125; q = 3;

b = 0.2; a0 = 3; dl = 10; dp = 20; dm = 0.25; amax =80; ds = 5; Hs

=40; EIR =110; Is0 =52; mu_m = 0.1*365; tau = 0.018; C_Is = 0.35;

C_Ia = 0.03;

Pa = exp(-a/dl)*((EIR*b*dl*dp*exp(a/dl) - (EIR*a0*b*dl*dp*exp(a/dl -

a/a0))/(a0 - dl))/(dl - dp) - (EIR*b*dl*dp)/(dl - dp) + (EIR*a0*

b*dl*dp)/(a0*dl - a0*dp + dl*dp - dl^2)) - exp(-a/dp)*((EIR*b*dp

^2*exp(a/dp) - (EIR*a0*b*dp^2*exp(a/dp - a/a0))/(a0 - dp))/(dl -

dp) - (EIR*b*dp^2 - (EIR*a0*b*dp^2)/(a0 - dp))/(dl - dp) + (EIR*b

*dl*dp - (EIR*a0*b*dl*dp)/(a0 - dl))/(dl - dp) - (EIR*b*dl*dp)/(

dl - dp) + (EIR*a0*b*dl*dp)/(a0*dl - a0*dp + dl*dp - dl^2));

lambda = EIR*b*(1 - exp(-amax/a0));

psi = exp(-tau*mu_m);

Is = lambda*ds*( 1 + (a0*exp(-a/a0) - ds*exp(-a/ds))/(ds-a0)) + Is0*

exp(-a/dm);

beta = 1/(1 + ((Is/Is0)^2));

rho = q + (rho0*(1 + ((wa -1)*(Pa/Ha)^2/(1 + (Pa/Ha)^2))));

rhos = 17.38;

R_s= f*rhos + (1-f)*rho;

ode = @(T,I)[-m*alpha*I(7)*(1-exp((-1*a)/a0))*b*I(1) + beta*R_s*I(3)

+ rho*(I(4)) + mu_h - mu_h*I(1); m*alpha*I(7)*b*(1-exp((-1*a)/a0

))*I(1) - h*(I(2)) - mu_h*(I(2));

beta*h*I(2) + beta*m*alpha*I(7)*(1-exp((-1*a)/a0))*b*I(4) - R_s*I

(3) - mu_h*I(3);

(1 -beta)*h* I(2) + (1 - beta)*R_s*I(3) - beta*m*alpha*I(7)*(1-

exp((-1*a)/a0))*b*I(4) - (rho)*I(4) - mu_h*I(4);



mu_m - alpha*(C_Is*I(3) + C_Ia*I(4))*I(5)- mu_m*I(5); alpha*(

C_Is*I(3) + C_Ia*I(4))*I(5) - psi*alpha*(C_Is*I(3) + C_Ia*I

(4))*I(5)-mu_m*I(6); psi*alpha*(C_Is*I(3) + C_Ia*I(4))*I(5)-

mu_m*I(7)];

tspan = 0:0.0005:1;

options = odeset(’RelTol’,1e-8,’AbsTol’,1e-10);

I0 = [0.99998; 0; 0.00002; 0; 0.999; 0.0; 0.001];

[T,I] = ode45(ode, tspan, I0, options);

% figure(1)

time = linspace(0,12,2001);

%plot(x, I(:,5),x, I(:,6), x, I(:,7));

%grid

y3(index) = I(end,4);

age = linspace(0,80,1601);

% y

end

% p = plot(time, I(:,1),’--’, time, I(:,2), ’-’,time, I(:,3), ’:’,

time, I(:,4), ’-.’ )

p = plot(age, y3, ’--’)

p(1).LineWidth = 2.5;

% p(2).LineWidth = 2.5;

% p(3).LineWidth = 2.5;

% p(4).LineWidth = 2.5;

legend(’EIR =50’,’EIR=75’,’EIR=100’, ’fontweight’, ’bold’)

xlabel({’Age’}, ’fontweight’, ’bold’)

ylabel({’Proportion of asymptomatic human class’},’fontweight’, ’

bold’ )

ylim([0 1])

%comparisons of parasite immunity prevalence



clearvars; clc; close all;

b = 0.2; Im = 0.146; a0 =3; dp = 20; dl = 10; wa = 30; Ha = 500;

rho0 = 1/180;

ds =5; dm = 0.25; a0 =3; Is0 = 52; EIR = 50;

amax =60; index = 0;

for a = 0:0.5:80

index = index+1;

Is(index) = EIR*b*(1 - exp(-amax/a0))*ds*( 1 + (a0*exp(-a/a0) - ds*

exp(-a/ds))/(ds-a0)) + Is0*exp(-a/dm);

Pa(index) = exp(-a/dl)*((EIR*b*dl*dp*exp(a/dl) - (EIR*a0*b*dl*dp*exp

(a/dl - a/a0))/(a0 - dl))/(dl - dp) - (EIR*b*dl*dp)/(dl - dp) + (

EIR*a0*b*dl*dp)/(a0*dl - a0*dp + dl*dp - dl^2)) - exp(-a/dp)*((

EIR*b*dp^2*exp(a/dp) - (EIR*a0*b*dp^2*exp(a/dp - a/a0))/(a0 - dp)

)/(dl - dp) - (EIR*b*dp^2 - (EIR*a0*b*dp^2)/(a0 - dp))/(dl - dp)

+ (EIR*b*dl*dp - (EIR*a0*b*dl*dp)/(a0 - dl))/(dl - dp) - (EIR*b*

dl*dp)/(dl - dp) + (EIR*a0*b*dl*dp)/(a0*dl - a0*dp + dl*dp - dl

^2));

age = linspace(0,80,161);

end

p = plot(age, Is, age,Pa, ’-’)

p(1).LineWidth = 2.5;

p(2).LineWidth = 2.5;

legend(’clinical immunity’, ’parasite immunity’)

xlabel({’Age’, ’in years’}, ’fontweight’, ’bold’)

ylabel(’immunity equilibria’,’fontweight’, ’bold’ )

%Force of infection

syms Im alpha b m a a0 lambda

Im = 0.146; alpha = 0.67; b = 0.2; a0 =3; m =3 ;

index=0;



for a = 0:0.5:60

index=index+1;

m = [0,0.1,0.5,1,1.5,3,6,12,15];

for i =1:numel(m)

lambda(index,i) = m(i)*alpha*Im*b*(1-exp((-a)/(a0)));

y = lambda;

age = linspace(0,60,121);

end

end

plot(age, y)

p = plot(age, y, ’-’);

p(1).LineWidth = 2.5;

legend(’mosquito to human ratio = 0.00’, ’mosquito to human ratio =

0.1’, ’mosquito to human ratio = 0.5’, ’mosquito to human ratio =

1’, ’mosquito to human ratio = 1.5’, ’mosquito to human ratio =

3’, ’mosquito to human ratio = 6’, ’mosquito to human ratio = 12’

, ’mosquito to human ratio = 15’)

xlabel({’Age’})

ylabel({’Force of infection’,’1/yr’} )

% %title(’Recovery from sub-patent infections’)

%parameter dependence clinical immunity

b=0.2; A= 0.67*365; a= 20; m = 3; a0=3; I = 0.0106; d = 0.25; l = 5;

ys = zeros(6,6);

count_a = 1;

for A = 0:0.2*365:1*365

count_m = 1;

for I = 0:0.2:01

ode = @(T,Y)[-Y(1)/d;

m*A*b*(1-exp((-1*a)/a0))*I - Y(2)/l;

-Y(1)/d + m*A*b*(1-exp((-1*a)/a0))*I - Y(2)/l];

tspan = linspace(0, 60, 600);

Y0 = [0.01;0;0.01;];

[T,Y] = ode45(ode ,tspan, Y0);



ys(count_m,count_a) = Y(end);

count_m = count_m +1;

end

count_a = count_a +1;

end

%for i = 1:7

%hold on

%plot (0:0.2:1,ys(i,:))

%xlabel(’Probability of Incoulation’)

%ylabel(’ Final Clinical Immunity’);

%legend ( ’m = 0’, ’m = 2’, ’m = 4’, ’m =6’, ’m = 8’, ’m = 10’)

%end

hold on

b=0.2; A= 0.67*365; a= 2; m = 3; a0=3; I = 0.0106; d = 0.25; l = 5;

yb = zeros(6,6);

count_b = 1;

for b = 0:0.2:1

count_m1 = 1;

for I = 0:0.2:1

ode = @(T,Y)[-Y(1)/d;

m*A*b*(1-exp((-1*a)/a0))*I - Y(2)/l;

-Y(1)/d + m*A*b*(1-exp((-1*a)/a0))*I - Y(2)/l];

tspan = linspace(0, 60, 600);

Y0 = [52;0;52;];

[T,Y] = ode45(ode ,tspan, Y0);

yb(count_m1,count_b) = Y(end);

count_m1 = count_m1 +1;

end

count_b = count_b +1;

end



S1 = surf ( [0:0.2:1], [0:0.2:01], yb)

S1.FaceColor = ’interp’;

S1.EdgeColor = ’none’;

colormap ’cool’

xlabel(’biting rate’)

ylabel(’Infected mosquito proportion’)

zlabel(’Clinical Immunity’)

hold on

S2 = surf ( [0:0.2:1], [0:0.2:01], ys)

rotate3d on

S2.FaceColor = ’interp’;

S2.EdgeColor = ’none’;

xlabel(’Probability of incolution’)

ylabel(’Infected mosquito proportion’)

zlabel(’Clinical Immunity’)

%aron model

h = 0.5:0.1:4.5;

tau = 2:1:4

for i = 1:numel(h)

for j = 1:numel(tau)

gamma(i,j) = (h(i)*(exp(-h(i)*tau(j))))/(1-(exp(-h(i)*tau(j))

));

end

end

gamma

plot(h, gamma,’linewidth’,2.5)

legend(’tau = 2yr’,’tau = 3yr’, ’tau=4 yr’)

xlabel({’Rate of Infection’,’(1/yr)’})

ylabel({’Loss of Immunity’})

title(’Rate loss of immunity’)

clc; clearvars; close all



%Mathematical modelling of immunity to malaria- Aron

syms S h gamma R r q I tau

r = 0.8; q = 0.2; tau = 5;

for h = [0.05, 0.5, 5]

gamma = (h*(exp(-h*tau)))/(1-(exp(-h*tau)));

ode = @(a,I)[-I(1)*h + r*I(2) + gamma*I(3); h*I(1) - r*I(2) - q*I

(2);

q*I(2) - gamma*I(3)];

tspan = linspace(0, 40, 10000);

I0 = [1;0;0;];

[a,I] = ode45(ode ,tspan, I0 );

hold on

plot(a, I(:,2), ’linewidth’,2.5 ) %percentage infected vs age

plot

legend(’h = 0.05’,’h = 0.5’, ’h = 5 ’)

xlabel({’Age’,’(yr.)’})

ylabel({’Percentage Infected Population’})

title(’Prevalence of Infected Population Aron Model’)
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