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Abstract

Quantum computing (QC) and machine learning (ML) are two disciplines experiencing

tremendous growth these days. Machine learning works through picking up patterns

in huge amounts of data to build a model, which it uses upon unseen data to make

predictions. Various ML algorithms are nothing but different ways through which the

machine can find interesting patterns in data. Quantum computers promises a different

paradigm of computing - one where certain problems, such as prime factorisation, could

be solved faster than any classical computer. We propose a quantum analog of the

classical k-nearest neighbour (kNN) machine learning algorithm. Our algorithm uses

Fredkin gates and wavefunction collapse upon measurement to estimate the fidelity

simultaneously between the test state and all the train states, which is advantageous over

its classical counterpart in certain situations. The quantum kNN algorithm presented

here is capable of dealing with completely unknown test states encoded in quantum

systems. We discuss the cost and analysis of our algorithm and compare it with other

similar methods. As an example, we test this algorithm on the problem of classifying

n-qubit pure entangled states.
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Chapter 1

Introduction

Quantum theory, when it was first formulated in early 20th century, was no more than
an attempt at explaining nature at a microscopic level, which would lead to the expan-
sion of the collective human knowledge. Yet, as we learned quantum theory more and
more, we also saw ways to exploit it to benefit (and also to besiege) humankind. Tech-
nological marvels such as transistors, nuclear weapons, nuclear energy had quantum
theory as its theoretical underpinning. It was termed as the first quantum revolution.
Today, it is the era of the second quantum revolution, where we seek to manipulate in-
dividual atoms and photons to achieve complex tasks. One could argue that the second
quantum revolution was founded by Richard Feynman, when he said that to simulate
quantum systems, one must have quantum computers as regular computers, now termed
classical computers simply won’t do. This thesis stems from the author’s deep interest
in quantum information, computing, and algorithms. In this thesis, we present a quan-
tum machine learning algorithm - a machine learning algorithm that runs on a quantum
computer - named quantum k-nearest neighbours algorithm.

Quantum computing is a research avenue that shows great promise to revolutionise
the way we compute. The basic idea behind quantum computing is to use concepts from
quantum physics, such as entanglement and superposition, to solve problems better than
classical computers. This could be designing quantum algorithms for various tasks such
as prime factorization [Shor 99] and matrix inversion [Harrow 09], quantum simulation
of molecules (which can be intractable for classical computers) [O’Malley 16], quan-
tum cryptography - which looks at methods of breaking current cryptography protocols
using quantum computing and constructing cryptography protocols, classical and quan-
tum, that are quantum-proof [Pirandola 19]. Another field that comes under the broad
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CHAPTER 1. INTRODUCTION

umbrella of QC is quantum annealing, which looks at ways of solving optimisation
problems [Santoro 06].

Currently, in quantum computing, we’re at the stage where the technology is leaving
laboratories and entering the industry. Recently Google’s quantum computing team has
demonstrated quantum supremacy, a point in technology where a quantum computer
solves a particular task faster than any classical computer[Arute 19].

Machine learning, though has its theoretical underpinnings beginning from 1960s,
has really exploded into our daily lives in the past couple of decades thanks to the im-
mense advancement in hardware capabilities. Applications of ML are today ubiquitous,
from everyday Netflix suggestions to Google’s AlphaGo defeating the world’s best Go
player. Machine learning works through picking up patterns in huge amounts of data
to build a model, which it uses upon unseen data to make predictions. Various ML al-
gorithms such as neural networks, k-means classifier, support vector machines, random
forests among others are nothing but different ways through which the machine can find
interesting patterns in data.

Machine learning can be broadly divide into two categories. Supervised and unsu-
pervised machine learning. In supervised machine learning, one builds a model by first
feeding it with labelled data called training data.

For example, if one were to build a model to distinguish between physicists and
biologists based on their facial features, one would first feed the model, say, a 100
images of each class. Once this training phase is completed, we then test the accuracy
of the model by feeding it previously unseen pictures of physicists and biologists. If
the model can distinguish between physicists and biologists with an acceptable degree
of accuracy, then one might make the conclusion that there is some visible yet hidden
features on our faces that screams whether we’re physicists or biologists. Or it could be
something as simple as that perhaps in most of the pictures the biologists were in their
labs and the physicists were next to their whiteboards and the model simply decided
based on the background images and not on the faces.

This example is well suited to explain another aspect of machine learning - we
know it works, but for algorithms such as neural networks, we do not know why it
works. Thereby, choosing a model has multiple aspects - one cannot always go be-
hind accuracy. Simpler models maybe less accurate, but might be more explainable.
In unsupervised machine learning, the algorithm is just fed data with no labels. The
algorithm must decide what how many classes to create and the membership of each
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Figure 1.0.1: Machine learning can be roughly divided on the basis of the data it’s
working on and the approach it’s taking. Both the approach and the data can be classical
or quantum. Hence we can divide it into four different kinds.

class. Examples include k-means clustering among others.

Recent years have seen significant advancements in the fields of quantum computing
(QC) [Steane 98, O’brien 07, Li 01, Ladd 10, Häffner 08, Kok 07] and machine learn-
ing (ML) [LeCun 15, Le 13, Voulodimos 18, Simeone 18, Dey 16, Benuwa 16]. While
quantum computing enables us with a new paradigm for computing, machine learning,
armed with big data and powerful hardware, shows the depth of classical computing.
The union of these two fields recently has led to the birth of a new field — quantum
machine learning (QML) [Biamonte 17, Wittek 14, Schuld 14, Arunachalam 17].

QML aims to tackle the ever-growing big data by employing quantum computers in
hopes that its surreal properties, such as superposition and entanglement would lead to
methods that can process data much faster than classical computers. Not only is QML
capable of providing massive speedup over the classical counterparts, it can also handle
quantum data efficiently [Carrasquilla 17, Wang 17, Lu 17].

Quantum machine learning can be neatly summarised into a matrix (Fig:1.0.1). The
most ubiquitous approach is of course using classical ML on classical data. Recently,
we have seen classical ML being used on quantum data to solve problems in physics.
Using quantum ML on classical data would be among the most useful applications of
quantum machine learning when the technology comes of age. It is expected that the
quantum computers will be able to speed up machine learning algorithms hence will
be able to process data faster[Biamonte 17]. The last kind we can think of is quantum
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CHAPTER 1. INTRODUCTION

ML approach on quantum data. The quantum kNN algorithm presented here falls under
this kind and we also present the simulations of this kind - where we use our QKNN
algorithm to classify quantum pure states on the basis of its entanglement.

Several classical ML algorithms have been ported to quantum versions, such as
quantum principle component analysis [Lloyd 14], which allows one to extract the prin-
ciple components (the eigenvectors corresponding to the largest eigenvalues) of the
convariance matrix which is encoded as a density matrix through density matrix expo-
nentiation, quantum k means clustering [Lloyd 13, Biamonte 17], where the aim is to
cluster unlabelled data in to k clusters. Other ported algorithms include quantum sup-
port vector machines [Rebentrost 14], which offers a mapping to an exponentially large
feature space to compute the inner product as compared to classical method. It is also
conjectured that the method they provide is impossible to simulate classically. Each of
the ports presented here has its vices and virtues. In this article, we propose a quantum
version of the k-nearest neighbour (kNN) algorithm.

kNN algorithm is a simple supervised ML algorithm used extensively for pattern
recognition and classification [Cover 67, Samworth 12, Nigsch 06]. This algorithm rest
on the assumption that two states close to each other are more likely to belong to the
same class or pattern. In this algorithm, the computer is trained with a set of train
states whose class labels are known. The test state with the unknown label is compared
with the train states, and a k number of the nearest neighbours from the train states are
identified for the given test state. The label of the test state is determined upon majority
voting.

The most computationally expensive step in the kNN or classical kNN algorithm is
to determine the distance between the test state and all the train states, which makes the
kNN algorithm slow. Each state (train or test) is represented by a vector of complex
numbers. As the number of train states and the size of the state vectors increases, kNN
becomes more expensive. To classify vector of dimension N by comparing it to a set
of train vectors of cardinality M , we need to carry out MN multiplication operations.
Multiplications and the sorting in order to get the nearest neighbours gives classical
kNN algorithm a complexity of O(MN).

Several quantum machine learning algorithms have been proposed which exploit
the broad concept of nearest neighbours; for example, quantum nearest neighbour al-
gorithm [Wiebe 15] and quantum k-nearest neighbour algorithm using Hamming dis-
tance [Ruan 17]. Although these quantum versions of classical kNN algorithms have
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their merits, they also have severe limitations. For example, the method presented
in [Wiebe 15] requires two oracles and multiple calls from these oracles. This also im-
plicitly requires knowledge of the state to be classified, hence limited to only classical
data. Furthermore, this algorithm is restricted to a single neighbour for classification,
which limits its accuracy. The quantum ML algorithm presented in [Ruan 17] requires
complete knowledge of the test state which restricts its impact.

Here, we propose a novel quantum k-nearest neighbour (QKNN), a quantum analog
of classical kNN algorithm. In this algorithm, we exploit the superposition properties of
the quantum states and collapse of the wavefunction upon measurement to calculate the
distance between the test state and all the train states simultaneously. In particular, we
use the Swap test [Buhrman 01] to calculate the fidelity simultaneously between the test
state and all the train states which makes our algorithms much faster than its classical
counterpart. Another important advantage of QKNN is that it does not require any kind
of information about the test state. Therefore, it is eligible to handle quantum as well as
classical data. As an example, we test QKNN on the problem of classifying pure mul-
tipartite entangled states. We compare the results with the classical kNN algorithm and
find that both the algorithms yield the same accuracy; however, the classical algorithm
requires the knowledge of the test state, whereas QKNN does not.

QKNN is capable of estimating the distance and find the nearest neighbours for
any unknown quantum test state; therefore, it can handle quantum as well as classical
data. Unlike existing quantum nearest neighbour algorithms, our algorithm has the
capability of classifying unknown states, thereby would be of great use in situations
where it is costly to learn the states. These situations include cases involving quantum
data, where expensive processes such as quantum state tomography, whose complexity
grows exponentially with the number of quantum systems [Aaronson 07], are required
to gain complete knowledge about the states. This feature invariably makes QKNN
better than the existing quantum kNN algorithms. The advantage of QKNN can be
seen from the example of classification of multipartite pure entangled states where it
is capable of classifying the entangled states without any prior information about the
given state.

This thesis is structured as follows. First, we begin by laying out the necessary
background, which includes introduction to the Swap test, classical kNN algorithm, and
pure state entanglement classes. We then present our quantum kNN algorithm in chapter
3 and in chapter 4 we present entanglement classification using QKNN algorithm. We
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then conclude on chapter 5.
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Chapter 2

Background

In this chapter, we present the relevant background of the classical kNN algorithm. We
also present the entanglement classes, and the Swap test which is an integral part of our
QKNN algorithm.

2.1 Classical kNN algorithm

Classical k-nearest neighbour or kNN algorithm is a supervised classical machine learn-
ing algorithm to classify test states (say {un}) whose labels are to be determined, by
comparing their distance to the train states (say {vm}), whose labels are known to
us [Cover 67]. kNN has been applied successfully to a multitude of problems [Liao 02,
He 07, Mani 03, Imandoust 13, Bijalwan 14]. Being a simple algorithm, kNN also al-
lows us to reason about the structure of the data we are working with.

Both the test states and the trains states are r-dimensional real or complex vectors.
Any bona fide definition of a distance measure can be used for the purpose of kNN
algorithm. Most common distance measures include Euclidean distance d(u, v) and
cosine similarity (u, v) (which reduces to inner product for normalised states), which
are defined as:

d(u, v) =

( r∑
i

|ui − vi|2
)1/2

, (2.1)

(u, v) =

∑r
i u
∗
i vi√∑r

i u
2
i

√∑r
i v

2
i

. (2.2)
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Figure 2.0.1: Choosing a k = 3 neighbourhood. Here circle and square represents two
different classes and star represents the unknown state whose label is to be determined.
On choosing k = 3, we classify it as a ‘square’ point.

Here, u and v are r-dimensional complex vectors and ui, vi are their components, re-
spectively.

Another popular choice for the distance measure is fidelity F (u, v) which is the
square modulus of the cosine similarity, i.e., F (u, v) = |(u, v)|2. In quantum setup, the
states are represented in the Dirac notation by |u〉 and their duel space vectors by 〈u|.
Fidelity between two such states |u〉 and |v〉 is simply [Jozsa 94]:

F (u, v) = |〈u|v〉|2. (2.3)

Fidelity arises naturally as a criterion to determine neighbours in any quantum protocol.
For normalized states |u〉 and |v〉, one convenient measure of distance between them can
be

D(u, v) = 1− F (u, v). (2.4)

Therefore, higher the fidelity between the two states, closer they will be.
The rationale behind kNN is that data points that are close together, with respect to

some distance measure, must be similar. Formally, the kNN algorithm consists of the
following steps:

1. For each test state (whose label is to be determined), compute its distance to the
train states whose labels are known.

2. Choose the k number of neighbours which are nearest to the test point.

8
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3. Conduct a majority voting and assign the label of the majority to the test point.

Although the kNN algorithm is simple to understand and easy to implement, there
are several limitations and shortcomings of the algorithm. As the number of train data
points and the dimension of the state vectors grows, kNN can quickly turn intractable
for classical computers. Classification of an N dimensional test state by comparing
with M train states requires O(MN) multiplication operations. Finding the nearest
neighbours will require sorting of M number of distance which requires O(M logM)

operations. Furthermore, the choice of the number k is also highly debated. There is
no general way of choosing k and usually, hyperparameter tuning is done to choose the
best possible k. For a dicussion on how to learn the best value of k, see [Zhang 17].

2.2 Swap Test

Since computing distance between the test states and the train states is an integral part of
the kNN algorithm, we require a quantum subroutine, which can estimate the distance
between two quantum states. The swap test [Buhrman 01] is a quantum algorithm that
can be used to statistically estimate the fidelity of two pure states |ψ〉 and |φ〉, i.e.,
F = |〈ψ|φ〉|2.

In order to implement the swap test, we need three registers prepared in states |0〉,
|ψ〉 and |φ〉, respectively (see Fig. 2.2.1). The initial combined state of the three registers
is

|R〉 = |0〉 ⊗ |ψ〉 ⊗ |φ〉 . (2.5)

Next we apply a Hadamard operation H on the first register followed by a control
swap CS on the other two registers where the first register serves as the control system.
The action of the Hadamard operation H on |0, 1〉 = (|0〉 ± |1〉)/

√
2. Whereas the

action of CS reads

CS |0〉 |a〉 |b〉 = |0〉 |a〉 |b〉 ,

CS |1〉 |a〉 |b〉 = |1〉 |b〉 |a〉 .
(2.6)

9
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The total state of the system after these two operations reads

|R̄〉 =
1√
2

(|0〉 |ψ〉 |φ〉+ |1〉 |φ〉 |ψ〉). (2.7)

Applying another Hadamard operation H on the first qubit followed by a measure-
ment on the first qubit in the {|0〉 , |1〉} results in 0 and 1 with probabilities

P (0) =
1

2
+

1

2
|〈ψ|φ〉|2, (2.8)

P (1) =
1

2
− 1

2
|〈ψ|φ〉|2. (2.9)

The quantity P (0)− P (1) gives us the desired fidelity.

In this whole protocol to estimate the fidelity between two n-qubit states, the more
resource-intensive component is the controlled swap operation. A controlled swap op-
eration on n-qubit system can be realized using n number of Fredkin gates. A Fredkin
gate is a three-qubit gate where all three registers - the control and the two registers to
be swapped, are single qubits.

A Fredkin gate can be decomposed into two-qubit gates as shown in Fig. 2.2.2,
where V is the single-qubit gate [Smolin 96]:

V =
eiπ/4√

2

[
1 −i
−i 1

]
. (2.10)

We can achieve the control swap operation on n qubits with no more than n Fredkin
gates by using each of the Fredkin gate to swap corresponding qubits in the two registers
|a〉 and |b〉 with the first register being the control qubit for all the Fredkin gates. This
is done as shown below.

To show two n-qubit registers can be control-swapped using n Fredkin gates, it is
sufficient to show that two n-qubit registers can be swapped using n swap gates. The
action of swap gate S is defined as S|a〉|b〉 = |b〉|a〉 where |a〉 and |b〉 are single qubit
states.

Let |x〉 and |y〉 be n-qubit pure states which can be expanded in the standard basis

10
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as:

|x〉 =
2n−1∑
i=0

xi|i〉, (2.11)

|y〉 =
2n−1∑
i=0

yi|i〉. (2.12)

Each basis state |i〉 can be expressed in its binary decomposition as

|i〉 = |i1〉|i2〉 . . . |in〉 = |i1i2 . . . in〉, (2.13)

where each |ij〉 are single qubits and ij can take a value of 0 or 1.

Let Sk be a swap gate acting on the kth qubits of the two registers. The action of Sk
on the basis states |i〉 and |j〉 is

Sk|i〉|j〉 = Sk|i1i2 . . . ik . . . in〉|j1j2 . . . jk . . . jn〉

= |i1i2 . . . jk . . . in〉|j1j2 . . . ik . . . jn〉.
(2.14)

Hence, the action of S̄ = S1S2 . . . Sn is

S̄|i〉|j〉 = S̄|i1i2 . . . in〉|j1j2 . . . jn〉

= |j1j2 . . . jn〉|i1i2 . . . in〉

= |j〉|i〉.

(2.15)

For two general n-qubit states |x〉 and |y〉, we have

S̄|x〉|y〉 = S̄
2n−1∑
i,j=0

xiyj|i〉|j〉

=
2n−1∑
i,j=0

xiyjS̄|i〉|j〉 =
2n−1∑
i,j=0

xiyj|j〉|i〉

=
2n−1∑
i,j=0

yjxi|j〉|i〉 = |y〉|x〉.

(2.16)

So we may swap two quantum registers of equal size n swapping corresponding
qubits of the two registers using two qubit swap gates. Hence, we may control-swap

11
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|0〉 H • H

|ψ〉 ×

|φ〉 ×
Figure 2.2.1: Circuit diagram for Swap test. Here H is the Hadamard operation.

• • • •

× = • •

× • V V V † •

Figure 2.2.2: Decomposition of Fredkin gate in two-qubit operations. Apart from the
standard CNOT gate, we use the control V (CV ) gate where V is a π/4 rotation about
σx.

two quantum registers of equal size by control swapping corresponding qubits of the
two registers using Fredkin gates, with the same qubit as control qubit for all n Fredkin
gates.

Note that the swap test requires no knowledge of the states whose overlap is be-
ing measured. Hence, in principle, it is possible to compute the fidelity between two
unknown n qubit states with a total number of 2n+ 1 qubits.

2.3 Entanglement classes

In this section, we discuss the entanglement classes in pure n-partite quantum states.
For simplicity, we restrict ourselves to n-qubit systems only. We begin with n = 2

case. A pure two-qubit quantum state |Φ〉 is called separable or product state if and only
if it can be written as a tensor product of two pure states corresponding to individual
subsystems, i.e.,

|Φ〉 = |φ1〉 ⊗ |φ2〉 . (2.17)

If the state |Φ〉 is not of the form (2.17) then its an entangled states. In two-qubit or
bipartite systems a pure state is either separable or entangled. However, the same state-
ment is not true in multipartite systems. A pure n-qubit quantum state |Ψ〉 is separable

12
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A-B-C States

A-BC 

States

AC-B 

States

AB-C 

States

ABC 

States

Figure 2.3.1: Representative diagram of entanglement classes in three qubits. Sub-
spaces separated by a hyphen (’-’) are separable subspaces and those that are not are
entangled subspaces.

only if it can be written as the tensor product of n quantum states as

|Ψ〉 = |ψ1〉 ⊗ |ψ2〉 ⊗ · · · ⊗ |ψn〉 . (2.18)

Such states are also called n-separable states [Horodecki 09]. Another way to look at
these states is the following: a pure state |Ψ〉 is an n-separable state if it is separable
across all the possible bipartitions of the n qubits. If this condition is violated then the
state is no longer n-separable. Some states can be entangled in certain bipartitions and
separable in others. Some states are entangled in all the bipartitions. This motivates a
classification of n-partite quantum states on the bases of entanglement.

For two-qubit states, there are only two classes – separable and entangled states.
Three qubit states can be divided into three classes: (i) three-separable states, (ii) states
that are separable in two bipartitions and entangled in one and (iii) the states which are
entangled in all the three bipartitions. The class (ii) can further be divided into three
subclasses depending on which bipartition is entangled. If A, B, and C represent the
three-qubits, and if we represent two subsystems that are separable as A-B and two
subsystems that are entangled as AB, then the entanglement classes can be written as
{A-B-C, AB-C, A-BC, AC-B, ABC} (Fig: 2.3.1). Note that we do not distinguish
between W states and GHZ states defined in [Dür 00] and keep them in the same class
ABC.

13
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The same classification of the entanglement can be extended to n number of qubits.
The question that is relevant to us is the following: given an n-qubit arbitrary state, is
there a way to label it according to its entanglement class. In the chapter 4, we show that
classical kNN algorithm can classify these state with very high accuracy. Furthermore,
the same accuracy can be achieved by our QKNN algorithm without the knowledge
of the given quantum state, establishing the advantage of QKNN over classical kNN
algorithm.

14



Chapter 3

Quantum k-Nearest neighbours
Algorithm

In this chapter, we introduce our new QKNN machine learning algorithm. We analyze
the cost and benefits of the QKNN over classical kNN algorithm. As an example, in
the next chapter, we simulate this algorithm on classical computers for the problem of
classifying bipartite entangled states.

3.1 The algorithm

Let |ψ〉 be the n-qubit test state, whose label is to be determined. The set {|φi〉} contains
all the train states of the same dimension. Each of the train states is indexed, which we

Initialisation State Transformation Measurement

r1 H • H

r2 ×

r3

W
×

r4 H

Figure 3.1.1: Circuit for the quantum kNN algorithm. The three steps of the algorithm
are demarcated. W is the oracle as defined in equation 3.2.
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refer to as i which need not represent their label. Two or more states with different
indices i can have the same label.

Implementation of our algorithm requires four registers r1, r2, r3, and r4. The r1
register is a single-qubit system, r2 and r3 are n-qubit systems and r4 is an m-qubit
system where its dimension 2m = M is the cardinality of the set {|φi〉}. The QKNN
algorithm consists of three major steps:

1. Initialization: initialize the registers in the required state vectors |R〉.

2. State transformation: transforming the initial state to arrive at the state |R̄〉, which
is suitable for fidelity estimation.

3. Measurements: performing measurements to estimate the fidelity.

We present each step in detail below.

Initialisation

In this step of the algorithm, we prepare the four registers in a suitable state. For our
purpose, we prepare the r1 is the state |0〉, r2 is prepared in the test state, i.e., |ψ〉, r3
and r4 are prepared in the states |0〉⊗n and |0〉⊗m, respectively, where n = logN and
m = logM . Hence, the initial state of the total system is |R〉 = |0〉 |ψ〉 |0〉⊗n |0〉⊗m.
Although, for the sake of this algorithm we prepare the register r2 is the state |ψ〉 but in
real situations we are given an n-qubit system in an unknown state |ψ〉. The advantage
of our QKNN algorithm is that it does not require the knowledge of the state |ψ〉.

State transformation

In the second step of the algorithm, we apply a set of quantum operations that are
independent of the given test state. We first apply a Hadamard gate H to the first
register, r1 and H⊗m to the r4 register, after which the state |R〉 transforms to |R′〉 =

H ⊗ 1r2 ⊗ 1r3 ⊗H⊗m |R〉:

|R′〉 =
1√
2M

M∑
i=1

(|0〉+ |1〉) |ψ〉 |0〉⊗n |i〉 , (3.1)

where |i〉 is them-qubit basis state in the computational basis. Next we apply a quantum
oracleW of the form
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W|0〉|i〉 = |φi〉|i〉. (3.2)

on the registers r3 and r4, where |φi〉 is the train state indexed by i. Applying this
oracle to the coherent superposition in |R′〉, we obtain

|R′′〉 =
1√
M

M∑
i=1

|0〉 |ψ〉 |φi〉 |i〉 . (3.3)

We now implement a control swap CS (2.6) with r1 as the control qubit and r2 and
r3 as the target registers. The total state of the system reads

|R′′′〉 =
1√
2M

M∑
i=1

(|0〉 |ψ〉 |φi〉+ |1〉 |φi〉 |ψ〉) |i〉 . (3.4)

This is followed by another Hadamard operation on the r1 register. After all these we
get the final state |R̄〉 given by

|R̄〉 =
1

2
√
M

M∑
i=1

(
|0〉 [|ψ〉 |φi〉+ |φi〉 |ψ〉] + |1〉 [|ψ〉 |φi〉 − |φi〉 |ψ〉]

)
|i〉 . (3.5)

Measurements

We now measure the registers r1 and r4. Let X ∈ {0, 1} be the random variable that
indicates the state of the r1 after measurement and Y be the random variable that de-
notes the resultant index after the measurement of r4 register, which takes values from
{0, ..., 2m − 1}.

After measurement, the joint probability distribution p(Y = i,X = a) (where
a ∈ {0, 1}) is as follows:

pa(i) ≡ P(Y = i,X = a) =
1 + (−1)aFi

2M
. (3.6)
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We may sum over this distribution to verify that we are still handling probabilities

M∑
i=0

∑
a∈{0,1}

P(Y = i,X = a) =
M−1∑
i=0

1 + Fi
2M

+
1− Fi
2M

= 1. (3.7)

Indeed, the probabilities do add up to unity. We now construct the quantity q(i)
which we call the contrast as the difference between the probabilities p0(i) and p1(i)
for the i-th outcome, i.e.,

q(i) = p0(i)− p1(i)

=
1 + Fi
2M

− 1− Fi
2M

=
Fi
M
.

(3.8)

The quantity q(i) is simply the desired fidelity scaled by a factor of 1/M and is
the quantity of interest in QKNN algorithm. However, this can not be estimated by
performing measurement only once. We need to initialize the system in the state |R〉
and transform it into the state |R̄〉 and perform the measurement for a sufficiently large
number of times. In each run of the algorithm, we acquire a click in the register r1 and
a click in the register r4.

Let {ca,i} be the number of times (a, i) occur in a T -trial (T number of trials). {ca,i}
follows a multinomial distribution (p(Y = a,X = 1), T ). That is, the experiment has T
number of trials with each trial having 2M possible outcomes with probabilities pa(i)
with a ∈ 0, 1 and i ∈ 0, ...,M − 1.

We define our estimates p̂0(i) and p̂1(i) for p0(i) and p1(i) as follows

p̂0(i) =
c0,i
T

(3.9)

p̂1(i) =
c1,i
T
. (3.10)

Our estimate for the contrast q(i) is simply

q̂(i) = p̂0(i)− p̂1(i) (3.11)

As we know larger values of fidelity yields larger estimate of contrast q̂(i); hence,
running the QKNN algorithm a sufficient number of times, we can find the k states
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which are closest to |ψ〉, i.e., the k number of indices having highest q(i). We assign
|ψ〉 a label after conducting the majority voting. In the next section, we discuss the costs
and benefits of the algorithm, including how the standard error scales with the number
of maeasurement shots (trials).

3.2 Cost and benefits

The QKNN algorithm offers two main advantages over its classical counterpart. Firstly,
it offers the capability to classify unknown states. This is advantageous when we deal
with quantum data as we get to bypass the expensive process of quantum state tomog-
raphy. Any classical kNN method will require the complete description of the quantum
state.

The second advantage is obtained through the inherent natures of quantum physics.
In classical kNN methods, one requires to compute the distance of the test state with
every train state, even far off states, to obtain the k nearest neighbours. In our QKNN
algorithm, through quantum parallelism and the probabilistic nature of quantum mea-
surement, only those train states which have high Fidelity with the train states will have
high probability of getting detected upon measurement. Therefore, in a limited number
of trails only the states which are closer to the train state will appear in the measure-
ment hence fewer resources are spent on them. Furthermore, the measurement results
yield the neighbours of the test states with high probability, no sorting is required to
determine the neighbours of the test state.

Moreover, in classical kNN, for classifying an N dimensional vector by comparing
it withM train states, one requires to haveO(MN) multiplication operations. This also
requires O(MN) space complexity. In our kNN, we require logN number of Fredkin
gates to compute the circuit. Since each Fredkin gate can be realized using seven two-
qubit gates as shown in Fig 2.2.2, we require a total of 7 logN two-qubit gates and
only two Hadamard gates, which gives QKNN a gate complexity ofO(logN). We also
require 2 log(N)+log(M) + 1 qubits, making the space complexity O(log(MN)).

Let us now look at how the standard error scales with number of trials (measurement
shots). Recall that the standard error of q̂(i) is simply the square root of the variance of
q̂(i).
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Var(q̂(i)) = Var(p̂0(i)− p̂1(i))

= Var(p̂0(i)) + Var(p̂1(i))− 2 Cov(p̂0(i), p̂1(i)).
(3.12)

Using the identity Var(Xi) = Tpi(1−pi) for a multinomial distribution (where piP(X =

i) is the probability that a random variable X takes the value i), the variance terms are:

Var(p̂0(i)) =
1

T 2
Var(c0,i) =

1

T 2
T

1 + Fi
2M

(
1− 1 + Fi

2M

)
, (3.13)

Var(p̂1(i)) =
1

T 2
Var(c1,i) =

1

T 2
T

1− Fi
2M

(
1− 1− Fi

2M

)
, (3.14)

and the covariance term is:

Cov(p̂0(i), p̂1(i)) =
1

T 2
Cov(c0,i, c1,i) =

1

T 2
(−T )

(
1 + Fi
2M

)(
1− Fi
2M

)
=
F 2
i − 1

4TM2
,

(3.15)

where we’ve used the identities

Cov(aX, bY ) = ab Cov(X, Y ),

Cov(Xi, Xj) = Tpipj.
(3.16)

where T is the number of trials and pi, pj are the probabilities P (X = i), P (X = j)

respectively.

Substituting it all in 3.12, we obtain the variance to be

Var(q̂(i)) =
1

M2T
(M − F 2

i ), (3.17)

taking the square root, we obtain the standard error σ to be

σ(q̂(i)) =
1

M
√
T

√
M − F 2

i . (3.18)

This tells us that to approximate the distribution to a standard error of σ, we require
T ∼ 1/σ2 order of measurements. Since Fi < 1 << M , we can safely ignore that term
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to bring the standard error to the form

σ = σ(q̂(i)) =
1√
MT

. (3.19)

We drop the state dependence from σ since we’ve ignored the fidelity Fi dependence.
We may rearrange the equation to get a relation between number of required measure-
ments T and number of train states M .

T =
1

Mσ2
(3.20)

To put in some concrete numbers, lets say our tolerance of error in the estimate of Fi
is 10%. Then an upperbound for 10% error tolerance in Fi/M is 0.1/M . Substituting
this in the above equation, we obtain that we need T = 1

M(0.01/M2)
= 100 M order of

measurements.
In the next subsection, we apply the QKNN algorithm on the entanglement classi-

fication problem and compare the results with the ones we achieve with classical kNN
algorithm.
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Entanglement classification using
classical and quantum kNN

We conduct entanglement classification in two ways - first by using classical kNN with
the distance function D(ψ, φ) = 1 − F (ψ, φ) defined in equation 2.4, and second by
complete simulation of the quantum algorithm. We denote the first method by label
‘classical’ and second method by the label ‘quantum’ under the algorithm type in tables
4.1 and 4.2. In all classifications, we use k = 3 nearest neighbours for classification
purposes.

4.1 Entanglement classification using classical kNN

We first classify two and three-qubit quantum states based on their entanglement using
classical kNN. Here, we consider three cases: a) separable vs. entangled states (in two
qubits), b) separable vs. maximally entangled states (in two qubits), and c) three qubit
classification. In (c), we have five classes. In all three cases, we have 105 train states in
each class generated randomly. Classical kNN allows us to show how the principle of
kNN can be used to solve the problem. The results are tabulated in table 4.1.

From table 4.1, we can see that the classical kNN works perfectly for entanglement
classification in two-qubit case. In the case of three-qubit case the accuracy we achieve
is little over 82%. This accuracy can be increased by increasing the number of k and by
increasing the size of the set of train states.
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No. of
Qubits

No. of
classes

Entanglement
classes

Accu-
racy

Class
size

Algorithm
type

2 2
Separable,
Entangled

100% 105 Classical

2 2
Separable,
Maximally
entangled

100% 105 Classical

3 5
1-2-3, 12-3,
1-23, 13-2,
123

82.2% 105 Classical

Table 4.1: Entanglement classification using classical kNN classifier. Cardinality of
the set of train states is simply M = (No. of classes)×(Class size).

4.2 Entanglement classification using QKNN

Next we simulate the QKNN algorithm and classify two-qubit states in two scenarios.
First, when the classification is between separable states and maximally entangled states
and next when the two classes are separable states and general entangled states. In the
simulation of QKNN algorithm, we have n = 2 number of qubits and the cardinality
M of the set of train states to be 32 (16 train states in each of the two classes) and hence
m = logM = 5. So we simulate a quantum circuit of 1 + 2 + 2 + 5 = 9 qubits.
Each simulation have been performed for 104 measurements and each result (accuracy)
has been averaged over ten different simulations with test and train states generated
randomly. To compare like with like, we also run classical kNN on the same dataset
(which is of the same cardinality) and display results in table 4.2. We see that QKNN
achieves accuracy quite close to classical kNN.

It is clear from table 4.2 that the QKNN and classical kNN algorithm performs al-
most equally well (given the limitations). At first, it seems like we need large resources
to perform simple classification in QKNN as compare to classical kNN. In the case
presented we need 9-qubit register with 14 two-qubit operations, thousands of times in
order to perform two-qubit entanglement classification, which can be done rather eas-
ily using classical computers. However, the resource requirement in QKNN increases
linearly with the number of qubit as opposed to the classical kNN algorithm where the
operations grow exponentially. Furthermore, we require no knowledge of the test state
prior to performing the algorithm, however, we will need an arbitrary copies of the test
state for arbitrarily high accuracy of classification.
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No. of
Qubits

No. of
classes

Entanglement
classes

Accu-
racy

Class
size

Algorithm
type

2 2
Separable,
Maximally
entangled

96.67% 16 Classical

2 2
Separable,
Maximally
entangled

95.67% 16
Quantum
104 shots

2 2
Separable,
Entangled

80.1% 16 Classical

2 2
Separable,
Entangled

80.67% 16
Quantum
104 shots

Table 4.2: Entanglement classification using quantum kNN classifier compared with
classical kNN classifier. Here, shots indicate the number of measurement shots per-
formed over each quantum circuit simulation. Cardinality of the set of train states is
simply M = (No. of classes)×(Class size).

Figure 4.2.1: q̂(i) vs i for a separable test state |ψ〉. Of the 32 test states, the first 16 are
separable and the rest are maximally entangled. The negative values for certain states
is due to error in estimation.
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Conclusion

To conclude, we have presented a novel QKNN algorithm, which is a quantum ana-
log of classical kNN algorithm. Our algorithm uses the Swap test and wavefunction
collapse along with a single oracle to achieve high speedup as compare to its classical
counterpart. The number of gates required to implement QKNN is linear in the n where
N = 2n is the dimension of the test state vector. In terms of the number of additional
qubit, QKNN requires 2n + m + 1 number of qubits where 2m = M is the cardinality
of the set of train states.

One of the most important advantages of QKNN is that it is capable to handle un-
known quantum test states. This feature is entirely missing in classical kNN where one
needs to have complete knowledge of the test state. Furthermore, unlike classical kNN,
QKNN does not need to calculate the distance between the test state and all the train
states. Since the quantum measurements result in stochastic outcomes, only the most
likely outcomes will be observed upon measurements yielding the closest neighbours.
As an example, we simulate QKNN on classical computer for the problem of classi-
fying multipartite entangled states. We show that QKNN yields as high accuracy in
classifying the states as classical kNN algorithm with the additional advantage of not
requiring the information about the test state. The application of QKNN is endless, and
it is straight forward to implement on any platform.

There are a number of ways to extend the results from our work. An important
question is the comparison with the swap test. Here we must look at how better is our
QKNN algorithm at classification as compared to classification done through first Swap
test-ing all the train states with the test state to estimate the Fidelity, and then rank ac-
cordingly. There is a qubit overhead with our algorithm (an overhead of m = log(M)
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but does it endow us with any advantage? Finally, another avenue to go about is whether
we can construct a operation such that its (repeated) application can amplify the ampli-
tude of the nearer states while reducing the amplitude of the far away states. If such an
operation can be found, then it shows a certain advantage over individual swap test.
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