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Introduction

Urn processes has been an active area of research in mathematics for a very long time. They are

a special kind of random processes with reinforcement. In general, these are systems with either

one single component which evolves according to some reinforcement rules or systems with multiple

components that update randomly in such a way that the evolution of each component depends on all

or some of the other components. In 2007, R. Pemantle published a survey titled ‘Random Processes

with Reinforcement’ (also the title of his doctoral thesis in 1998) in Probability Surveys [1]. There,

he notes that:

In 1988 I wrote a Ph.D. thesis entitled “Random Processes with Reinforcement”. The first section was a

survey of previous work: it was under ten pages. Twenty years later, the field has grown substantially. In

some sense it is still a collection of disjoint techniques. The few difficult open problems that have been

solved have not led to broad theoretical advances.

Since the publication of that survey more than ten years ago, the field of random processes with

reinforcement has grown further into different directions, however, the tools to study these problems

are more or less the same. In this thesis, we focus on one such direction, namely, the ‘interacting

urn models’. As noted above, such models consist of multiple components/urns that are reinforced

randomly at every time step such that the reinforcement of each urn depends on some of the other

(or all) urns in the system. In the last few years, a considerable attention has been given to the

study of such systems. Several models of interacting urns have been studied (see [2], [3] and [4]).

A classical urn process consists of an urn with balls of two colours where a ball is drawn from the

urn uniformly at random at each time-step and depending on the colour of ball drawn, more balls

of the same or opposite colour are added to the urn. Such an operation is performed repeatedly.

Typically, we are interested in understanding the asymptotic properties of the urn. That is, does the

fraction of balls of a particular colour converge to a (possibly random) limit and is that limit same

for all the urns as t→∞? What is the rate of convergence? What are the distributional properties

of the limit if it is random? Finally, how do the fluctuations of fraction of balls of each colour around

the limit behave? Early classical urn models have been extended to random reinforcement, infinite

colour models etc in the recent past (for instance, see [5] and [6]).

In this thesis, we study interacting urns with multiple drawings. Urns with multiple drawings

have been studied before in [7]. In these models, instead of drawing one ball at each time-step, a

finite number of balls, say s, are drawn from the urn. The urn is then reinforced depending on

1



the composition (in terms of colours) of balls drawn. The questions of interest are similar to those

discussed above. Interacting urn processes consist of a set of urns (we restrict our discussion to

finite number of urns) such that the reinforcement of each urn depends on the rest of the urns or

a non-trivial subset of all the other urns (for instance, see [8]). In this case, we are interested in

questions of synchronization. That is, do balls of each colour converge to the same limit across all

the urns? One may also impose spatial structures or conditions on such models. Recently, some

work has been focused on graph based interactions, where each vertex of the graph represents an

urn and each urn interacts only with its neighbours in the graph (see [3] and [9]).

The thesis is organized as follows. Chapter 1 is a general discussion on urn models, its extensions

and the known results in this area of research. In Chapter 2, we consider a two-colour model

(consisting of white and black balls) with N interacting urns. At each time step t and for each

individual urn, a biased coin is tossed with probability of head being p. Depending on the result of

the toss, we draw s balls from that same urn in case of a heads and from the super urn (an imaginary

urn formed by combining all the individual urns together) in case of a tails. Then, we reinforce the

urns with two different types of reinforcement schemes. Due to this duality in the type of scheme,

we call one of the models, the ‘Pólya-type model’ and the other, the ‘Friedman-type model’ . The

difference is that in case of the former, for every ball drawn out while sampling for an urn, we put

back C balls of the same colour back in that urn; while in case of the latter, we put back C balls

of the opposite colour back in that urn. Note that this model consists of two qualitative aspects: it

is an interacting urn model because of the possibility of balls being drawn from the super urn and

it is also a multiple drawing model. This makes this model a straightforward generalization of the

models studied in [7] (a single urn model with multiple drawings) and [8] (consisting of N interacting

urns but no multiple drawings). We prove synchronization results and the Central Limit Theorems

for both the models and calculate L2 convergence rates for the ‘Pólya-type model’ using ideas and

methods used in [8], [10] and [11].

For both kinds of models discussed above, synchronization of colours is observed to occur across

the urns (that is, the fraction of balls of a particular colour in each urn converges to the same

limit), but the results are consistent with classical urn models: in case of the ‘Pólya-type model’,

the common limit is random while in case of ‘Friedman-type model’, the fraction of balls of each

colour converges to 1/2 almost surely. This contrast motivates us to expand the two-colour model to

a general d-colour model, which we study in Chapter 3. We present a synchronization result in order

to prove that cross-reinforcement of colours (reinforcement of a colour by another colour which is a

feature of the two-colour ‘Friedman-type model’) leads to fraction of balls of those colours converging

to a common random variable almost surely even in a general d-colour setup while fraction of balls

of a colour which reinforces itself converges to a different random variable.

Finally, we consider graph based models in Chapter 4. We place urns containing balls of two

colours on the vertices of a fixed deterministic undirected graph with self loops. The reinforcement

in each urn now depends only on its neighbouring urns. Depending on the type of reinforcement

(Pólya or Friedman type), we again have two kinds of models. We prove synchronization results for

both the models. As expected, for Pólya-type model, the synchronization of colours occurs across

the connected components of the graph G ; whereas, in case of the Friedman-type reinforcement, the
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fraction of balls of each colour converges to a common fraction of 1/2 in all the urns, regardless of

the graph structure. In Chapter 5, we present some of the simulations we performed for our models.
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Chapter 1

Urn Models: An introduction

An Urn process is a Markov Random Process consisting of an imaginary exercise involving urns

containing balls of different colours. The system evolves at discrete times. At each time instant,

balls are added or removed from the urn depending on the kind of model and based upon the sample

of balls drawn. Typically, one is interested in the convergence points of the proportion of balls of

different colours in the urn. Urn models are used to model real world problems in many diverse

fields like genetics, ecology, physics, and economics. In particular, they can be used to model disease

spread and/or opinion dynamics. Urn processes have been extensively used to model clinical trials.

1.1 Classical Urn Models

One of the first urn models to be studied was the classical Pólya urn model introduced by George

Pólya in 1923. The model consisted of an urn which initially contains a finite number of balls of

different colours. At any given time instant t, a ball is drawn from the urn uniformly at random

and after noting down its colour, it is replaced along with another ball of the same colour. This

reinforcement is carried out at every time-step and is repeated ad-infinitum. For a two-colour Pólya-

Eggenberger urn model (a slight variant of the classical Pólya urn model with the difference that s

balls of the same colour are added for every ball drawn instead of one), a celebrated result states

that the fraction of balls of either colour converges to a random limit as t→∞ and the distribution

of the random limit is given by beta distribution, with parameters depending upon the initial state

(initial number of balls of either colour) of the system. More precisely:

Theorem 1.1.1 (Eggenberger and Pólya, 1923). Let W̃n be the number of white ball drawings in the

P’olya-Eggenberger urn after n draws. Then, as n→∞,

W̃n

n

a.s.−−→W

such that W ∼ β
(
W0

s ,
B0

s

)
, where β(·, ·) denotes Beta distribution.

Bernard Friedman generalized the Pólya urn model in 1949. In a two-colour Friedman’s urn

model, consisting of say white and black balls, at every time instant, a ball is drawn uniformly at

random and is replaced with α balls of the same colour and β balls of the other colour. It is known
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that the fraction of balls of both the colours converges to 1/2 provided that α and β are both strictly

positive. That is,

Theorem 1.1.2. Let W̃n be the number of white balls in a Friedman’s urn after n draws. Then, as

n→∞,

W̃n

n

a.s.−−→ 1

2
.

In [12], D. Freedman used method of moments to obtain the fluctuating limit theorem for two-

colour Friedman urns. He proved the following (Wn and Bn refer to the number of white and black

balls respectively in the urn after n draws ):

Theorem 1.1.3 (Theorem 3.1 in [1]). Let ρ := α− β/α+ β. Then

(a) If ρ > 1/2 then n−ρ(Wn −Bn) converges almost surely to a nontrivial random variable;

(b) If ρ = 1/2 then (nlogn)
−1/2

(Wn−Bn) converges in distribution to a normal with mean zero and

variance (α− β)
2
;

(c) If 0 6= ρ < 1/2 then n−1/2(Wn − Bn) converges in distribution to a normal with mean zero and

variance (α− β)
2
/1− 2ρ.

The classical urn models have been studied extensively (see [13] for other classical urn models

like Ehrenfest urns, Bagchi-Pal urns and OK-Corral process). The study of urn processes falls under

the umbrella of random processes with reinforcement. These also include reinforced random walks.

Some of the well-known methods to study random processes with reinforcement, that are also used

frequently in this thesis, are described briefly in the Appendix. In the next section we talk about two

types of generalizations of classical urn models, namely, urns with multiple drawings and interacting

urn models.

1.2 Urn Models with multiple drawings

Unlike the classical urn models discussed above, where only one ball is sampled at a particular time

instant, we now describe models with multiple drawings (ones that involve drawing of a fixed number

of finite balls). For example, authors in [7] look at a model called Generalized Friedman’s urn (a

single urn model with two kinds of balls: white and blue), from which samples of a given size,say

s (≥ 1 balls) are taken out of the urn at each time instant, and the colours of the balls are noted

down. The drawn sample is returned back to the urn, and a “Friendman-type” reinforcement occurs:

if there are 0 ≤ k ≤ s white balls in the sample, the urn is reinforced with Ck ∈ N blue balls and

C(s− k) white balls. Here, C is a fixed constant. The sampling of balls in such models can be done

in two ways:

(i) With replacement: a ball is drawn, its colour is noted and is replaced back in the urn, a second

ball is drawn, its colour noted, again replaced and so on until s balls have been drawn.

(ii) Without replacement: s balls are drawn together.

Clearly, the distribution of the number of balls drawn in both the cases differ: in the former, the

distribution is binomial, while in the latter, the distribution is hypergeometric. Note that no matter
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how many balls of any one colour are drawn in a particular sample, at any time instant a total of

Cs balls are added back to the urn. Such an urn where the total number of balls at any time instant

is deterministic and not random, is called a balanced urn. Note that all the urn models we will be

considering in this thesis will necessarily consist of balanced urns and the sampling will always be

one with replacement.

In [14] and [15], a similar multiple drawing model is considered with “Pólya type” reinforcement.

That is, once s balls are drawn such that k of them are white, the urn is reinforced with Ck ∈ N
white balls and C(s− k) blue balls.

We refer the readers to [7], [8] and [10] for results on these models. We combine the multiple

drawing models with interacting urns models and consequently obtain some of the results from these

papers as special cases of our results.

1.3 Interacting Urn Models

As noted before, an interacting urn model is one which consists of several urns which may influence

each other’s reinforcement. So, the reinforcement for a particular urn at any time instant depends

not only on the state of that urn at that instant, but also on that of the other urns. In [3], the

authors describe a two-colour interacting urn process as follows:

We define a general two-colour interacting urn model as follows: suppose that there are N urns

with configurations (W t
i , B

t
i ) for 1 ≤ i ≤ N and t ≥ 0, where W t

i and Bti denote the number of

white balls and black balls respectively, at time t, in the ith urn. The reinforcement scheme of each

urn depends on all urns or on a non-trivial subset of the given set of N urns. Let Zti :=
W t
i

W t
i+Bti

be the proportion of white balls in the ith urn and Iti be the number of white balls added to the ith

urn at time t. We write: W t+1
i = W t

i + It+1
i . Suppose the evolution of the ith urn depends on urns

{i1, . . . iki} ⊆ [N ] := {1, . . . , N}. We call this set the dependency set of the ith urn. If we think of

urns as nodes of a network, a natural choice for the dependency set of a vertex is the neighbourhood

of that vertex. Then the random process It = (It1, . . . , I
t
N ), that defines the reinforcement scheme,

evolves as follows:

P (It+1
i = αt+1

i |Ft) ∝ fi,αt+1
i

(
Zti1 , . . . , Z

t
iki

)
, (1.1)

where for all t > 0, αti ∈ Z+ and fi,αt+1
i

: Z+ × [0, 1]ki −→ [0, 1], for every i ∈ [N ].

Similarly, in [8], the authors consider a two-colour model with N urns where at every time

instant, a ball is sampled for each urn depending on the outcome of the toss of a biased coin (say

P (TAILS) = α). One ball is sampled from that same urn in case of a heads, and from the super

urn (an imaginary urn formed by combining all the urns together) in case of a tails. That is, the

probability of ith urn getting a white ball at time t is given by (1 − α)Zti + α 1
N

N∑
j=1

Ztj (Ztj denotes

the fraction of balls of the concerned colour in the jth urn at time t for 1 ≤ j ≤ N). Several special

cases of the above set-up of interacting urns with reinforcement of the form (1.1) have been studied

recently.

In this thesis, we combine the two types of generalizations described above in sections 1.2 and

1.3 to study interacting urn models with multiple drawings. We restrict ourselves to positive rein-

forcement, that is, at every time-step non-negative number of balls are added to the urns (in other
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words, balls are never thrown out of the urns). We also only consider the case of finitely many urns

and balls of finitely many colours. From the next chapter, we start with a detailed study of the

models that we have looked at in this thesis. The following definitions will be useful throughout:

Definition 1.3.1 (Reinforcement of a colour by another colour). For a model with drawing of s

balls, we say that a colour J is reinforced by a colour L( denoted by L→ J ) if given that 0 ≤ k ≤ s
balls of colour L are drawn, we put back Ck balls of colour J back in the concerned urn.

Definition 1.3.2 (Self reinforcement of colours). We say that a model exhibits self reinforcement of

colours, if all the colours reinforce themselves (and are not reinforced by any other colour).

For a two colour model, we define:

Definition 1.3.3 (Mutual reinforcement of colours). We say that a two colour model exhibits mutual

reinforcement of colours if the two colours reinforce each other (and none of them is reinforced by

itself).

Note that interchangeably, we call the Pólya-type model as self reinforcement model and the

Friedman-type model as mutual reinforcement model.
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Chapter 2

Interacting two-colour Urns with

Multiple Drawings

2.1 Pólya-type model (Self reinforcement of colours)

The model consists of N urns, initially containing non-zero number of balls of two colours: white

and black. The system evolution happens in discrete time. Initially (at time t = 0), the ith urn

contains ai white and bi black balls such that ai + bi = m for all 1 ≤ i ≤ N (m is a fixed positive

integer). An imaginary urn is formed by combining all the N urns. We call this the super urn. At

each time instant t, a biased coin is tossed (with probability of heads = p) for each urn. Depending

on the outcome of the toss , s number of balls are sampled from each urn (in case of a heads, that

is, with probability p) or from the super urn (in case of a tails, that is, with probability 1− p). If k

out of s balls sampled are white (0 ≤ k ≤ s), then Ck number of white and C(s–k) number of black

balls are added to the urn, where C is a fixed positive integer.

This reinforcement is done for each urn at every (discrete) time instant and is repeated over and

over. Note that at every time-step a total of Cs balls are added to each urn. So, while the number

of white balls added is random, the total number of balls added is deterministic (this is an example

of what is known in the literature as a balanced reinforcement scheme). At time t, the total number

of balls in each urn is m+ Cst.

We fix some notation that is used throughout the thesis.

• Wt(i): number of white balls in the ith urn at time t.

• Zt(i): fraction of white balls in the ith urn at time t.

• Z̄t : fraction of white balls in the super urn at time t.

• Yt+1(i): number of white balls added to the ith urn at time t (note that Yt(i)’ s are conditionally

independent).

• We define: α =
∑N
i=1 ai
mN and Zt = (Zt(1), Zt(2) . . . Zt(N))

• The σ-field Ft is defined as: Ft = σ(Z0(1), Z0(2) . . . Z0(N) . . . Zt(1), Zt(2) . . . Zt(N)). For

t ≥ 0, {Ft}t≥0 defines a filtration.
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Theorem 2.1.1 below has two parts: the first part gives an explicit formula for E[Zt(i)] for 1 ≤ i ≤ N
and the second part is a synchronisation result. It states the fact that the the fraction of white balls

in each urn converges to a common fraction.

Theorem 2.1.1. The following holds for 1 ≤ i ≤ N

(a) E[Zt(i)] =
(
ai
m − α

) (
m
Cs

+p+t−1

t )
(
m
Cs

+t

t )
+ α.

(b) limt→∞(Zt(i)− Z̄t) = 0 ∀ 1 ≤ i ≤ N a.s.

Proof For 0 ≤ k ≤ s, 1 ≤ i ≤ N

P (Yt+1(i) = Ck|Ft) = p

(
s

k

)
(Zt(i))

k(1− Zt(i))s−k + (1− p)
(
s

k

)
(Z̄t)

k(1− Z̄t)s−k

Since the total number of balls is deterministic, we have :

Z̄t =

∑N
i=1 Zt(i)

N

We now write the evolution of Zt(i) as a Stochastic Approximation Scheme. For 1 ≤ i ≤ N :

Zt+1(i) =
Wt(i) + Yt+1(i)

m+ Cs(t+ 1)

= Zt(i)−
CsZt(i)

m+ Cs(t+ 1)
+

Yt+1(i)

m+ Cs(t+ 1)

= Zt(i) +
1

m+ Cs(t+ 1)
(Yt+1(i)− E[Yt+1(i)|Ft] + h(Zt(i))) (2.1)

Here, h(Zt(i)) = E[Yt+1(i)|Ft]− CsZt(i). Now,

E[Yt+1(i)|Ft] =

s∑
k=0

Ck

[
p

(
s

k

)
(Zt(i))

k(1− Zt(i))s−k + (1− p)
(
s

k

)
(Z̄t)

k(1− Z̄t)s−k
]

=

s∑
k=0

Cpk

(
s

k

)
(Zt(i))

k(1− Zt(i))s−k +

s∑
k=0

C(1− p)k
(
s

k

)
(Z̄t)

k(1− Z̄t)s−k

= Cps(Zt(i))

s∑
k=1

(
s− 1

k − 1

)
(Zt(i))

k−1(1− Zt(i))s−1−(k−1)

+ C(1− p)s(Z̄t)
s∑

k=1

(
s− 1

k − 1

)
(Z̄t)

k−1(1− Z̄t)s−1−(k−1)

= CpsZt(i) + C(1− p)sZ̄t
= Cs

[
pZt(i) + (1− p)Z̄t

]
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Hence,

h(Zt(i)) = E[Yt+1(i)|Ft]− CsZt(i)

= CpsZt(i) + C(1− p)sZ̄t − CsZt(i)

= Cs(1− p)[Z̄t − Zt(i)]

Taking conditional expectation with respect to Ft on both sides of (2.1), we get:

E[Zt+1(i)|Ft] = Zt(i) +
h(Zt(i))

m+ Cs(t+ 1)

= Zt(i) +
Cs(1− p)[Z̄t − Zt(i)]

m+ Cs(t+ 1)
(2.2)

Now,

E[Z̄t+1|Ft] = E

[∑N
i=1 Zt+1(i)

N
|Ft

]

=
1

N

N∑
i=1

E[Zt+1(i)|Ft]

=
1

N

N∑
i=1

(
Zt(i) +

Cs(1− p)[Z̄t − Zt(i)]
m+ Cs(t+ 1)

)
= Z̄t

Hence, Z̄t is a Martingale w.r.t Ft. Taking expectation on both sides of (2.2), we get:

E[Zt+1(i)] = E[Zt(i)] +
Cs(1− p)[E[Z̄t]− E[Zt(i)]]

m+ Cs(t+ 1)

Since,Z̄t is a Martingale,we have :

E[Z̄t] = E[Z̄0] =

∑N
i=1 ai
mN

= α

Hence,

E[Zt+1(i)] = E[Zt(i)]

(
1− Cs(1− p)

m+ Cs(t+ 1)

)
+

Cs(1− p)α
m+ Cs(t+ 1)

= E[Zt(i)]ft + gt

Here, ft = 1 - Cs(1−p)
m+Cs(t+1) and gt = Cs(1−p)α

m+Cs(t+1) . The reader is directed to the appendix for a discussion

on how to solve the above kind of recurrence relations. Now,

m′∏
k=0

fk =

m′∏
k=0

(
1− Cs(1− p)

m+ Cs(k + 1)

)
=

m′∏
k=0

m
Cs + k + p
m
Cs + k + 1

=
( mCs + p+m′)!( mCs )!

( mCs +m′ + 1)!( mCs + p− 1)!
=

( m
Cs+p+m′

m′+1

)( m
Cs+1+m′

m′+1

)
11



Hence,

E[Zt(i)] = (

t−1∏
k=0

fk)

(
E[Z0(i)] +

t−1∑
m′=0

g′m∏m′

k=0 fk

)

=

( m
Cs+p+t−1

t

)( m
Cs+t
t

) [
ai
m

+

t−1∑
m′=0

Cs(1− p)α
(
∏m′

k=0 fk)(m+ Cs(m′ + 1))

]

=

( m
Cs+p+t−1

t

)( m
Cs+t
t

) [
ai
m

+

t−1∑
m′=0

Cs(1− p)α
( m
Cs+m′+1
m′+1

)
(m+ Cs(m′ + 1))

( m
Cs+p+m′

m′+1

)]

=

( m
Cs+p+t−1

t

)( m
Cs+t
t

) [
ai
m

+ (1− p)α
t−1∑
m′=0

( m
Cs+m′+1
m′+1

)
( mCs +m′ + 1)

( m
Cs+p+m′

m′+1

)]

Now, ( m
Cs+m′+1
m′+1

)
m
Cs +m′ + 1

=
( mCs +m′ + 1)!

( mCs )!(m′ + 1)!( mCs +m′ + 1)
=

( mCs +m′)!

( mCs )!(m′ + 1)!
=
Cs

m

( m
Cs +m′

m′ + 1

)
Hence,

E[Zt(i)] =

( m
Cs+p+t−1

t

)( m
Cs+t
t

)
m

[
ai + (1− p)αCs

t−1∑
m′=0

( m
Cs+m′

m′+1

)( m
Cs+p+m′

m′+1

)]
Using Lemma 5.2.1(see appendix), we calculate the following:

t−1∑
m′=0

( m
Cs+m′

m′+1

)( m
Cs+p+m′

m′+1

) =

t∑
k=1

( m
Cs+k−1

k

)( m
Cs+p−1+k

k

)
Let y = m

Cs + p− 1, s = t and x = m
Cs − 1 So,

t−1∑
m′=0

( m
Cs+m′

m′+1

)( m
Cs+p+m′

m′+1

) =
(t+ 1 + m

Cs + p− 1)
(
t+1+ m

Cs−1
t+1

)
( mCs −

m
Cs − p+ 1)

(
t+1+ m

Cs+p−1
t+1

) − m

Cs(1− p)

=
(t+ m

Cs + p)
(
t+ m

Cs
t+1

)
(1− p)

(
t+ m

Cs+p
t+1

) − m

Cs(1− p)

Hence,

E[Zt(i)] =

( m
Cs+p+t−1

t

)( m
Cs+t
t

)
m

[
ai + (1− p)αCs

(
(t+ m

Cs + p)
(
t+ m

Cs
t+1

)
(1− p)

(
t+ m

Cs+p
t+1

) − m

Cs(1− p)

)]

We can simplify this expression further to get:

E[Zt(i)] =
(ai
m
− α

) ( mCs+p+t−1
t

)( m
Cs+t
t

) + α

The above equation holds for all 1 ≤ i ≤ N . This completes the proof for the first part of the

theorem.

12



For the second part, we write the Stochastic Approximation Scheme for Zt in order to prove the

second part. Let Yt+1 = (Yt+1(1), Yt+1(2) . . . Yt+1(N)). We have:

Zt+1 = Zt −
CsZt

m+ Cs(t+ 1)
+

Yt+1

m+ Cs(t+ 1)

= Zt +
1

m+ Cs(t+ 1)
(Yt+1 − E[Yt+1|Ft] + h(Zt))

Here,

h(Zt) = (h(Zt(1), h(Zt(2) . . . h(Zt(N)) = Cs(1− p)(Z̄t − Zt(1), Z̄t − Zt(2) . . . Z̄t − Zt(N))

Since the zeroes of h(Zt) give the limit points of Zt, we are done (see appendix for details about the

stochastic approximation theorem and how it has been applied to our models all through the thesis).

�

As noted before, our model is a generalization of the model studied in [8]. The next theorem has

been proven using the same techniques as used there, with minor modifications. It is interesting that

the asymptotic estimates calculated below are the same as those calculated there, despite the added

complexity of multiple drawings which is missing in their model. Also, note that the probability of

heads in our case is p while the analogous variable used for the same probability by the authors in [8]

is (1− α) for α ∈ [0, 1].

Theorem 2.1.2. Assume that ai = a for all 1 ≤ i ≤ N . In the following statement, for two positive

sequences at and bt we write at ∼ bt if

0 < lim inf
t→∞

at
bt
≤ lim sup

t→∞

at
bt
< +∞

The following asymptotic equations hold:

V ar(Zt(i)− Z̄t) ∼


t−2(1−p) 1

2 < p < 1

t−1logt p = 1
2

t−1 0 ≤ p < 1
2

Proof Since ai = a for all 1 ≤ i ≤ N , we therefore have:

E[Zt(i)− Z̄t]) = 0 ∀ 1 ≤ i ≤ N

Let

xt = V ar(Zt(i)− Z̄t) = E[(Zt(i)− Z̄t)2]− (E[Zt(i)− Z̄t])2

= E[(Zt(i)− Z̄t)2]

Then,

xt+1 = V ar(Zt+1(i)− Z̄t+1) = E[V ar(Zt+1(i)− Z̄t+1|Ft)] + V ar(E[Zt+1(i)− Z̄t+1|Ft)])

13



Now,

Zt+1(i) = Zt(i)−
CsZt(i)

m+ Cs(t+ 1)
+

Yt+1(i)

m+ Cs(t+ 1)

Hence,

Z̄t+1 = Z̄t −
CsZ̄t

m+ Cs(t+ 1)
+

N∑
i=1

Yt+1(i)

N(m+ Cs(t+ 1))
(2.3)

Now,

V ar(Zt+1(i)− Z̄t+1|Ft) = E
[
(Zt+1(i)− Z̄t+1 − E[Zt+1(i)|Ft] + E[Z̄t+1|Ft])2|Ft

]
= E

[
Zt(i)−

CsZt(i)

m+ Cs(t+ 1)
+

Yt+1(i)

m+ Cs(t+ 1)

+
CsZ̄t

m+ Cs(t+ 1)
−

N∑
i=1

Yt+1(i)

N(m+ Cs(t+ 1))
− Zt(i)

+
CsZt(i)

m+ Cs(t+ 1)
− E[Yt+1(i)|Ft]
m+ Cs(t+ 1)

+ Z̄t −
CsZ̄t

m+ Cs(t+ 1)

+

N∑
i=1

E[Yt+1(i)|Ft]
N(m+ Cs(t+ 1))

)2|Ft

]

= E


Yt+1(i)− E[Yt+1(i)|Ft]

m+ Cs(t+ 1)
+

N∑
j=1

E[Yt+1(j)|Ft]− Yt+1(j)

N(m+ Cs(t+ 1))

2

|Ft


=

1

(m+ Cs(t+ 1))2
E

[((
1− 1

N

)
(Yt+1(i)− E[Yt+1(i)|Ft])

+
1

N

N∑
j=1
j 6=i

(E[Yt+1(j)|Ft]− Yt+1(j))


2

|Ft


=

1

(m+ Cs(t+ 1))2

{
E[(1− 1

N
)2(Yt+1(i)− E[Yt+1(i)|Ft])2|Ft]

+
1

N2
E[(

N∑
j=1
j 6=i

(E[Yt+1(j)|Ft]− Yt+1(j))2|Ft]

+ 2

(
1− 1

N

)(
1

N

)
(E[(Yt+1(i)− E[Yt+1(i)|Ft])

× (

N∑
j=1
j 6=i

(E[Yt+1(j)|Ft]− Yt+1(j)))|Ft]


For i 6= j, we have (since Yt+1(i) and Yt+1(j) are conditionally independent):

E[(Yt+1(i)− E[Yt+1(i)|Ft])(E[Yt+1(j)|Ft]− Yt+1(j))|Ft] = E[Yt+1(i)|Ft]E[Yt+1(j)|Ft]

−E[Yt+1(i)Yt+1(j)|Ft]

= 0

14



Hence,

V ar(Zt+1(i)− Z̄t+1|Ft) =
1

(m+ Cs(t+ 1))2

{(
1− 1

N

)2

V ar(Yt+1(i)|Ft)

+
1

N2
E


 N∑
j=1
j 6=i

(E[Yt+1(j)|Ft]− Yt+1(j)


2 ∣∣∣Ft




Due to conditional independence, we again have that :

V ar(Zt+1(i)− Z̄t+1|Ft) =
1

(m+ Cs(t+ 1))2

{(
1− 1

N

)2

V ar(Yt+1(i)|Ft)

+
1

N2

N∑
j=1
j 6=i

(
E[(E[Yt+1(j)|Ft]− Yt+1(j))2|Ft]

)
Now,

E[(Yt+1(i))2|Ft] =

s∑
k=0

C2k2

[
p

(
s

k

)
(Zt(i))

k(1− Zt(i))s−k + (1− p)
(
s

k

)
(Z̄t)

k(1− Z̄t)s−k
]

= C2p
[
s(s− 1)(Zt(i))

2 + sZt(i)
]

+ C2(1− p)
[
s(s− 1)(Z̄t)

2 + sZ̄t
]

Hence,

V ar(Yt+1(i)|Ft) = E[(Yt+1(i))2|Ft]− (E[Yt+1(i))|Ft])2

= C2p[s(s− 1)(Zt(i))
2 + sZt(i)] + C2(1− p)[s(s− 1)(Z̄t)

2 + sZ̄t]

− C2s2[p2(Zt(i))
2 + (1− p)2(Z̄t)

2 + 2p(1− p)Zt(i)Z̄t] (2.4)

Now,

E[V ar(Yt(i)] = E[V ar(Yt(j)] ∀ i 6= j

So,

E[V ar(Zt+1(i)− Z̄t+1|Ft)] =
1

(m+ Cs(t+ 1))2

{(
1− 1

N

)2

+
N − 1

N2

}
E[V ar(Yt+1(i)|Ft]

=
1

(m+ Cs(t+ 1))2

(
N − 1

N

)
E[V ar(Yt+1(i)|Ft]

Taking expectation on both sides of (2.4), we get:

E[V ar(Yt+1(i)|Ft)] = C2ps(s(1− p)− 1)E[(Zt(i))
2] + E[(Z̄t)

2]C2s(1− p)(−sp− 1) + C2sα
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Now,

E[Zt+1(i)− Z̄t+1|Ft] = E

[
Zt(i)−

CsZt(i)

m+ Cs(t+ 1)
+

Yt+1(i)

m+ Cs(t+ 1)

− Z̄t +
CsZ̄t

m+ Cs(t+ 1)
−

N∑
i=1

Yt+1(i)

N(m+ Cs(t+ 1))
|Ft

]

=

(
1− Cs(1− p)

m+ Cs(t+ 1)

)(
Zt(i)− Z̄t

)
Hence,

V ar(E[Zt+1(i)− Z̄t+1|Ft]) =

(
1− Cs(1− p)

m+ Cs(t+ 1)

)2

xt

Thus,

xt+1 =
1

(m+ Cs(t+ 1))2

(
N − 1

N

)
E[V ar(Yt+1(i)|Ft] +

(
1− Cs(1− p)

m+ Cs(t+ 1)

)2

xt

=
N − 1

N(m+ Cs(t+ 1))2

{
C2ps(s(1− p)− 1)E[(Zt(i))

2]

+ E[(Z̄t)
2]C2s(1− p)(−sp− 1) + C2sα

}
+

(
1− Cs(1− p)

m+ Cs(t+ 1)

)2

xt (2.5)

Now,

xt = V ar(Zt(i)− Z̄t) = E[(Zt(i)− Z̄t)2] = E[(Zt(i))
2] + E[(Z̄t)

2]− 2E[Zt(i)Z̄t]

= E[(Zt(i))
2] + E[(Z̄t)

2]− 2

∑N
i=1E[Zt(i)Z̄t]

N
= E[(Zt(i))

2] + E[(Z̄t)
2]− 2E[(Z̄t)

2]

= E[(Zt(i))
2]− E[(Z̄t)

2]

So, E[(Zt(i))
2] = E[(Z̄t)

2] + xt. Substituting this value of E[(Zt(i))
2] in (2.5) and simplifying, we

get the following:

xt+1 = xt

[(
1− Cs(1− p)

m+ Cs(t+ 1)

)2

+
(N − 1)C2ps[s(1− p)− 1]

N(m+ Cs(t+ 1)2

]
+

(N − 1)C2s(α− E[(Z̄t)
2])

N(m+ Cs(t+ 1))2

We show that the term α− E[(Z̄t)
2]is strictly positive. Since Z̄t is a Martingale, we have:

V ar(Z̄t+1) = V ar(E[Z̄t+1|Ft]) + E[V ar(Z̄t+1|Ft)]

= V ar(Z̄t) + E[V ar(Z̄t+1|Ft)] (2.6)

Now, recall (2.3):

Z̄t+1 = Z̄t −
CsZ̄t

m+ Cs(t+ 1)
+

N∑
i=1

Yt+1(i)

N(m+ Cs(t+ 1))

16



Hence,

V ar(Z̄t+1|Ft) = E

( N∑
i=1

Yt+1(i)

N(m+ Cs(t+ 1))
−

N∑
i=1

E[Yt+1(i)|Ft]
N(m+ Cs(t+ 1))

)2

|Ft


=

1

(m+ Cs(t+ 1))2N2

N∑
i=1

V ar(Yt+1(i)|Ft) (2.7)

Taking expectation on both sides, we get:

E[V ar(Z̄t+1|Ft)] =
1

(m+ Cs(t+ 1))2N2

N∑
i=1

E[V ar(Yt+1(i)|Ft)] (2.8)

Now,

V ar(Yt+1(i)|Ft) = E[(Yt+1(i))2|Ft]− (E[(Yt+1(i))2|Ft])2

= C2ps(s− 1)(Zt(i))
2 + C2psZt(i) + C2(1− p)s(s− 1)(Z̄t)

2 + C2(1− p)sZ̄t
− C2s2[p2(Zt(i))

2 + (1− p)2(Z̄t)
2 + 2p(1− p)Z̄tZt(i)]

= (Zt(i))
2[C2ps(s− 1)− C2s2p2] + (Z̄t)

2[C2(1− p)s(s− 1)− C2s2(1− p)2]

+ C2psZt(i) + C2(1− p)sZ̄t − 2C2s2p(1− p)Z̄tZt(i)

Taking expectation on both sides,we get:

E[V ar(Yt+1(i)Ft)] = E[(Zt(i))
2][C2ps(s− 1)− C2s2p2] + E[(Z̄t)

2][C2(1− p)s(s− 1)

− C2s2(1− p)2] + C2psE[Zt(i)] + C2(1− p)sα− 2C2s2p(1− p)E[Z̄tZt(i)]

Putting this value of E[V ar(Yt+1(i)Ft)] in (2.7), we get:

E[V ar(Z̄t+1|Ft)] =
1

(m+ Cs(t+ 1))2N2

{
E[

N∑
i=1

(Zt(i))
2]C2ps[s(1− p)− 1] +N(V ar(Z̄t) + α2)

× C2s(1− p)(sp− 1) + C2sNα− 2C2s2p(1− p)
N∑
i=1

E[Z̄tZt(i)]

}

Since ai = a ∀ 1 ≤ i ≤ N , hence:

N∑
i=1

E
[
Z̄tZt(i)

]
= E[Z̄t

N∑
i=1

Zt(i)] = NE[(Z̄t)
2] = N(V ar(Z̄t) + α2)
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Recalling equation (2.6) and putting these values there, we get :

V ar(Z̄t+1) = V ar(Z̄t) +
1

(m+ Cs(t+ 1))2N2

{
N∑
i=1

E[(Zt(i))
2][C2ps(s(1− p)− 1]

+ N(V ar(Z̄t) + α2)C2s(1− p)(sp− 1) + C2sNα− 2C2s2p(1− p)N(V ar(Z̄t) + α2)
}

= V ar(Z̄t) +
1

(m+ Cs(t+ 1))2N2

{
N∑
i=1

E[(Zt(i))
2][C2ps(s(1− p)− 1]

+ N(V ar(Z̄t) + α2)C2s(1− p)(−sp− 1) + C2sNα
}

= V ar(Z̄t) +
C2

(m+ Cs(t+ 1))2N2

{
N∑
i=1

E[(Zt(i))
2][ps(s(1− p)− 1]

+ N(V ar(Z̄t) + α2)s(1− p)(−sp− 1) + sNα
}

≤ V ar(Z̄t) +
C2

(m+ Cs(t+ 1))2N2

{
N∑
i=1

E[(Zt(i))
2]ps2(1− p) + sNα

}

Note that:

N2E[(Z̄t)
2] = E[(

N∑
i=1

(Zt(i))
2] ≥

N∑
i=1

E[(Zt(i))
2]

Hence,

V ar(Z̄t+1) ≤ V ar(Z̄t) +
C2

(m+ Cs(t+ 1))2N2
{N2E[(Z̄t)

2]ps2(1− p) + sNα}

This is same as:

V ar(Z̄t+1) ≤ V ar(Z̄t) +
C2

(m+ Cs(t+ 1))2N2
{N2(V ar(Z̄t) + α2)ps2(1− p) + sNα}

Rearranging the terms, we get:

V ar(Z̄t+1) ≤ V ar(Z̄t)
(

1 +
p(1− p)

( mCs + t+ 1)2

)
+

α2p(1− p)
( mCs + t+ 1)2

+
α

Ns( mCs + t+ 1)2

Since, E[Z̄t] = α, we have:

E[(Z̄t+1)2]− α2 ≤ (E[(Z̄t)
2]− α2)

(
1 +

p(1− p)
( mCs + t+ 1)2

)
+

α2p(1− p)
( mCs + t+ 1)2

+
α

Ns( mCs + t+ 1)2

Rearranging once again, we get:

E[(Z̄t+1)2]− E[(Z̄t)
2] ≤ E[(Z̄t)

2]
p(1− p)

( mCs + t+ 1)2
+

α

Ns( mCs + t+ 1)2

Since E[(Z̄t)
2] is bounded above by one, we have :

E[(Z̄t+1)2]− E[(Z̄t)
2] ≤ p(1− p)

( mCs + t+ 1)2
+

α

Ns( mCs + t+ 1)2

Since Z̄0 = α, we have :
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E[(Z̄t)
2]− α2 ≤

t∑
k=1

(
p(1− p) +

α

Ns

) 1(
m
Cs + k

)2
It follows that:

α− E[(Z̄t)
2] ≥ α− α2 −

t∑
k=1

(
p(1− p) +

α

Ns

) 1

( mCs + k)2
≥ α(1− α)

It doesn’t make sense to have a model in which the balls in the urns initially are either all white or

all black. So, we can assume that a 6= 0,m which gives:

α =
a

m
6= 0, 1

Therefore, we have that :

α− E[(Z̄t)
2] > 0

Recall:

xt+1 = ftxt + gt, (2.9)

where ft =
(

1− Cs(1−p)
m+Cs(t+1)

)2

+ (N−1)C2ps[s(1−p)−1]
N(m+Cs(t+1)2 = 1+ B

( mCs+t+1)
2− A

m
Cs+t+1 and gt = (N−1)(α−E[(Z̄t)

2])

Ns( mCs+t+1)
2 .

Here, A = 2(1− p) and B = (1− p)2 + (N−1)p(s(1−p)−1)
Ns . Now,

B ≤ (1− p)2 +
(N − 1)ps(1− p)

Ns
= (1− p)2 +

(N − 1)p(1− p)
N

Since,N−1
N ≤ 1,we have:

B ≤ (1− p)2 +
(N − 1)p(1− p)

N
≤ (1− p)2 + p(1− p) = 1− p ≤ 1

Now, 0 ≤ (N−1)p
N ≤ 1 and (N−1)p

Ns ≤ (N−1)p
N ≤ 1. So,

−(N − 1)p

Ns
≥ −1

Hence, B ≥ −(N−1)p
Ns ≥ −1. Thus, we have shown that:

−1 ≤ B ≤ 1

Now, (Z̄t)
2 is a bounded submartingale since E[(Z̄t)

2] ≤ α. So,

lim
t→∞

E[(Z̄t)
2] = E[(Z∞)2] = sup

t
E[(Z̄t)

2]

Hence,

0 <
(N − 1)(α− E[(Z̄∞)2])

Ns( mCs + t+ 1)2
≤ gt ≤

α

( mCs + t+ 1)2
(2.10)

We now show that 0 < ft < 1. Note that,
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f(0) = 1 +
(1− p)2

( mCs + 1)2
− 2(1− p)

m
Cs + 1

+
(N − 1)p[s(1− p)− 1]

sN( mCs + 1)2

Considering f(0) as a function of p and differentiating we get,

(f(o))′ =
2(p− 1)

( mCs + 1)2
+

2
m
Cs + 1

+
(N − 1)(s− 2ps− 1)

sN( mCs + 1)2
=

2Nm+ (s− 1)C(N − 1) + 2pCs

CsN( mCs + 1)2

Since s ≥ 1 and N ≥ 1, we have (s− 1)C(N − 1) ≥ 1. Hence, (f(o))′ ≥ 0. At p = 0, we have :

f(0) = 1 +
1

( mCs + 1)2
− 2

m
Cs + 1

=

(
1− 1

m
Cs + 1

)2

≥ 0

So, f(0) = 0 only if m = 0. But since m is a strictly positive integer, we have f(0)(p) > 0 ∀ p ∈ [0, 1].

Now,

ft
′ =

−2B

( mCs + t+ 1)3
+

A

( mCs + t+ 1)2
=

1

( mCs + t+ 1)3

[
A
( m
Cs

+ t+ 1
)
− 2B

]
=

2

( mCs + t+ 1)3

{
(1− p)

( m
Cs

+ t+
p

N

)
+

(N − 1)p

Ns

}
≥ 0

So, ft is increasing in t. Clearly,

lim
t→∞

ft = 1

Hence, 0 < ft < 1 ∀ t ∈ N . Now set:

θt :=
xt∏t−1
k=0 fk

By (2.9), we obtain θt+1 = θt + F (t), where F (t) := g(t)∏t
k=0 fk

. Since θ0 = x0 = 0, we get:

θt =

t−1∑
i=0

Fi

The above equation is same as:

xt =

(
t−1∏
k=0

f(k)

)
t−1∑
i=0

Fi (2.11)

Now, as t→∞:

t−1∏
k=0

f(k) = exp

[
t−1∑
k=0

log

(
1 +

B(
m
Cs + k + 1

)2 − A
m
Cs + k + 1

)]

= exp

[
−2(1− p)

t−1∑
k=0

1

k + m
Cs + 1

+O(1)

]
= exp

[
−2(1− p)log

(
t+

m

Cs

)
+O(1)

]
∼ t−2(1−p) (2.12)
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Since by (2.10), we have g(t) ∼ t−2, hence F (t) ∼ t2(1−p)−2. Therefore,

θt =

t−1∑
i=0

F (i) ∼


1 1

2 < p < 1

logt p = 1
2

t2(1−p)−1 0 ≤ p < 1
2

(2.13)

By (2.11), (2.12) and (2.13) the conclusion follows. �

We now present some CLT results for our model. Such results have been proven in [10]. For

the time being, we switch to the terminology that has been used in [10] in order to state our results

and to perform similar calculations as those that have been performed there. This will be more

convenient for the reader. Hence, we replace Z̄t with Zt and p with 1 − α. Also, we assume that

Yt(j)/Cs = It(j) and Dt(j) = Zt(j)− Zt for all 1 ≤ j ≤ N, t ≥ 0. Using the synchronization result

proved above, we have that :

lim
t→∞

Zt(i) = lim
t→∞

Zt = Z(say) a.s. ∀ 1 ≤ i ≤ N

We state the following results (note that we still retain the assumption that ai = a ∀ 1 ≤ i ≤ N):

Theorem 2.1.3.
√
t(Zt − Z)

stably−−−−→ N
(

0, Z−Z
2

Ns

)
The above sequence also converges in the sense of the almost sure conditional convergence with respect

to the filtration F .

Theorem 2.1.4. For 1/2 < α ≤ 1 and 1 ≤ j ≤ N , we have

√
t(Zt(j)− Zt)

stably−−−−→ N

(
0,

(Z − Z2

s )(1− 1
N )

s(2α− 1)

)

For α = 1/2 and 1 ≤ j ≤ N , we have

√
t√

ln(t)
(Zt(j)− Zt)

stably−−−−→ N

(
0,

(Z − Z2

s )(1− 1
N )

s

)

Theorem 2.1.5. For 1/2 < α ≤ 1 and 1 ≤ j ≤ N , we have

√
t(Zt(j)− Z)

stably−−−−→ N

(
0,

1

s

[
Z − Z2

N
+

(Z − Z2

s )(1− 1
N )

2α− 1

])

For α = 1/2 and 1 ≤ j ≤ N , we have

√
t√

ln(t)
(Zt(j)− Z)

stably−−−−→ N

(
0,

(Z − Z2

s )(1− 1
N )

s

)

We refer the readers to [10] for a discussion on stable convergence. Here, we would only like to

mention that the notion of stable convergence is stronger than that of convergence in distribution.

Therefore, the above results imply convergence in distribution to Gaussian random variables with
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zero mean and variance depending on s and N as stated above. Note that putting s = 1 reduces the

above results to Theorems 3.1, 3.3 and 3.4 of [10].

We can use a completely similar method to prove the above results as that used in [10] since the

P’olya-type urn model is a generalization of the model studied there. In fact, we will see that their

proofs follow identically for our model with some minor modifications. So, instead of writing out

whole proofs with all the tiny details, we sketch out some of the analogous calculations performed by

the authors of [10] for our model. A complete comprehension of how to prove the results will hence

only be possible if the reader is familiar with [10]. We now give a short sketch of the main ideas

involved in the proofs of the theorems stated above. Note that in our model, we have:

Zt+1(j)− Zt(j) =
Yt+1(j)− CsZt(j)
m+ Cs(t+ 1)

=
Yt+1(j)
Cs − Zt(j)
m
Cs + t+ 1

=
It+1(j)− Zt(j)

m
Cs + t+ 1

(2.14)

Hence,

Zt+1 − Zt =

∑N
i=1 It+1(i)

N − Zt
m
Cs + t+ 1

Now,

E[It+1(i)|Ft] =
E[Yt+1(j)|Ft]

Cs
=
Cs[pZt(j) + (1− p)Zt]

Cs
= pZt(j) + (1− p)Zt

Hence,

E

[∑N
i=1 It+1(j)

N
|Ft

]
=
NpZt +N(1− p)Zt

N
= Zt

Also,

E [Zt+1(j)− Zt(j)|Ft] =
Cs(1− p)[Zt − Zt(j)]

m+ Cs(t+ 1)
=

(1− p)[Zt − Zt(j)]
m
Cs + t+ 1

=
−αDt(j)
m
Cs + t+ 1

Comparing with [10], the reader will notice that the details of the proof for our model are almost

identical to those in [10] with some minor exceptions (for example, m gets replaced with m/Cs).
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Now,

N∑
i=1

V ar[Ik(i)|Fk−1] =

N∑
i=1

1

C2s2
[E[(Yk(i))2|Fk−1]− (E[Yk(i)|Fk−1])2]

=
1

C2s2

N∑
i=1

[C2ps(s− 1)(Zk(i))2 + C2psZk(i) + C2(1− p)s(s− 1)(Zk)2

+ C2(1− p)sZk − C2s2(pZk(j) + (1− p)Zk)2]

k→∞−−−−→
a.s.

1

s2

N∑
i=1

[s(s− 1)Z2 + sZ − s2Z2]

=
N(sZ − s2Z2)

s2

=
N(Z − Z2)

s

Hence,

k2

( mCs + k)2
E

(∑N
i=1 Ik(i)

N
− Zk−1

)2

|Fk−1

 =
k2

( mCs + k)2N2

N∑
i=1

V ar[Ik(i)|Fk−1]

k→∞−−−−→
a.s.

(Z − Z2)N

sN2
=
Z − Z2

sN

Therefore (for Theorem 2.1.3),

V =
Z − Z2

sN

For simplicity, let Dt = Dt(j). Then,

E[Dk+1|Fk] = E[Zk+1(j)− Zk+1|Fk]

= Zk(j) +
Cs(1− p)[Zk − Zk(j)]

m+ Cs(k + 1)
− Zk

= (Zk(j)− Zk)

(
1− Cs(1− p)

m+ Cs(k + 1)

)
= Dk

(
1− α

m
Cs + k + 1

)
Using (2.14), we have:

E[k2(Zk+1(j)− Zk(j))2|Fk] =
k2

( mCs + k + 1)2
E[(Ik+1(j)− Zk(j))2Fk]
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Now,

E[(Ik+1(j)− Zk(j))2Fk]

= E[(Ik+1(j))2Fk] + (Zk(j))2 − 2Zk(j)E[Ik+1(j)|Fk]

=
C2(1− p)sZk + C2ps(s− 1)(Zk(j))2 + C2psZk(j) + C2(1− p)s(s− 1)(Zk)2

C2s2

+ (Zk(j))2 − 2Zk(j)Cs[pZk(j) + (1− P )Zk]

Cs

k→∞−−−−→
a.s.

(1− p)sZ + ps(s− 1)Z2 + psZ + (1− p)s(s− 1)Z2

s2
+ Z2 − 2Z[pZ + (1− p)Z]

=
(1− p)sZ + s(s− 1)Z2 + psZ + s2Z2 − 2s2Z[pZ + (1− p)Z]

s2

=
Z − Z2

s

Hence,

lim
k→∞

E[k2(Zk+1(j)− Zk(j))2|Fk] =
Z − Z2

s

Note that:

E

[
(Ik+1(j)− Zk(j))

(∑N
i=1 Ik+1(i)

N
− Zk

)
|Fk

]

= E[
(Ik+1(j))2

N
+

N∑
i=1
i 6=j

Ik+1(i)Ik+1(j)

N
− ZkIk+1(j)

− Zk(j)

∑N
i=1 Ik(i)

N
+ ZkZk(j)|Fk] (2.15)

Now,

E[Ik+1(j)|Fk] = pZk(j) + (1− p)Zk
k→∞−−−−→
a.s.

Z

Also,

E[(Ik+1(j))2|Fk]

=
E[(Yk+1(j))2|Fk]

C2s2

=
C2ps(s− 1)(Zk(j)2 + C2psZk(j) + C2(1− p)s(s− 1)(Zk)2 + C2(1− p)sZk

C2s2

k→∞−−−−→
a.s.

ps(s− 1)Z2 + psZ + (1− p)s(s− 1)Z2 + (1− p)sZ
s2

=
(s− 1)Z2 + Z

s

Putting the convergent values calculated above in (2.15) after taking limit on both sides, we get:

lim
k→∞

E

[
(Ik+1(j)− Zk(j))

(∑N
i=1 Ik+1(i)

N
− Zk

)
|Fk

]
=

(s− 1)Z2 + Z

Ns
+

(N − 1)Z2

N
− Z2
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Now, we calculate (for Theorem 2.1.4):

V = lim
k→∞

E [Yk|Fk]

Here,

Yk = k2[(Zk+1(j)− Zk(j))2 + (Zk+1 − Zk)2 − 2(Zk+1(j)− Zk(j))(Zk+1 − Zk)]

= k2

(Ik+1(j)− Zk(j)
m
Cs + k + 1

)2

+

(∑N
i=1 Ik+1(i)

N − Zk
m
Cs + k + 1

)2

− 2
Ik+1(j)− Zk(j)

m
Cs + k + 1

∑N
i=1 Ik+1(i)

N − Zk
m
Cs + k + 1



From above calculations, we get that:

V =
Z − Z2

s
+
Z − Z2

sN
+−2

[
(s− 1)Z2 + Z

sN
+

(N − 1)Z2

N
− Z2

]
=

(Z − Z2

s )(1− 1
N )

s

2.2 Friedman-type model (Mutual reinforcement of colours)

All notations are the same as that of the previous model. The urn process is also the same except for

one modification: for every k white balls drawn for a particular urn, we put back C(s−k) white balls

back in that same urn (instead of Ck), that is, instead of self reinforcement, mutual reinforcement of

colours takes place. We now prove limit results for this model. The first part of the theorem below

states a synchronization result, while the second part is the fluctuation theorem.

Theorem 2.2.1. Let Zt = (Zt(1), Zt(2) . . . Zt(N)). The following holds:

(a) For all 1 ≤ i ≤ N ,

lim
t→∞

Zt(i) =
1

2
a.s.

(b)
√
t (Zt − θ) converges in distribution to N (0,Σ).

Here, θ = ( 1
2 ,

1
2 ,

1
2 , . . . ,

1
2 ) and Σ is the covariance matrix and is given by the following integral:

Σ =
1

4s

∫ ∞
0

(e(∇f(θ)+ Id
2 )u)

T
e(∇f(θ)+ Id

2 )udu

and ∇f(θ)is the Jacobian of f evaluated at θ, where:

f(Zt) =
E[Zt+1|Ft]

Cs
− Zt =



1− (1 + p)Zt(1)− (1− p)Z̄(t)

1− (1 + p)Zt(2)− (1− p)Z̄(t)

.

.

.

1− (1 + p)Zt(N)− (1− p)Z̄(t)


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We use the theory of stochastic approximation to prove the above theorem. A similar approach

to get such a result has been used in [11] where the authors use a weakened version of a result by

Zhang ( Theorem 5 in [11], reproduced in the appendix).

Proof The Stochastic Approximation Scheme remains similar to that of the previous model, except

that now we have that for 0 ≤ k ≤ s, 1 ≤ i ≤ N :

P (Yt+1(i) = Ck|Ft) = p

(
s

k

)
(Zt(i))

s−k(1− Zt(i))k + (1− p)
(
s

k

)
(Z̄t)

s−k(1− Z̄t)k

Hence,

E[Yt+1(i)|Ft] =

s∑
k=0

C(s− k)p(Zt(i))
k

(
s

k

)
(1− Zt(i))s−k

+

s∑
k=0

C(s− k)(1− p)(Z̄t)k
(
s

k

)
(1− Z̄t)s−k

= Csp− CpsZt(i) + Cs(1− p)− C(1− p)sZ̄t
= Cs[1− pZt(i)− (1− p)Z̄t]

Hence,

h(Zt(i)) = E[Yt+1(i)|Ft]− CsZt(i)

= Cs[1− pZt(i)− (1− p)Z̄t]− CsZt(i)

= Cs[1− (1 + p)Zt(i)− (1− p)Z̄t]

This gives:

h(Zt) = Cs


1− (1 + p)Zt(1)− (1− p)Z̄t
1− (1 + p)Zt(2)− (1− p)Z̄t

...

1− (1 + p)Zt(N)− (1− p)Z̄t


We calculate the zeroes of h(Zt):

1− (1 + p)Zt(i)− (1− p)Z̄t = 0 ∀ 1 ≤ i ≤ N

Rearranging the terms,

(1 + p)Zt(i) + (1− p)Z̄t = 1 ∀ 1 ≤ i ≤ N

Adding all the N equations, we get :

(1 + p)NZ̄t + (1− p)NZ̄t = N ∀ 1 ≤ i ≤ N

Hence,

Z̄t =
1

2

Putting the value of Z̄t back in the N equations, we get:
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Zt(i) =
1

2
∀ 1 ≤ i ≤ N

Since the zeroes of h(Zt) give the limit points of Zt, we are done proving the first part of the theorem.

Now,

h(Zt(i)) = Cs[1− (1 + p)Zt(i)− (1− p)Z̄t]

= Cs

[
1− (1 + p)Zt(i)−

(1− p)
∑N
i=1 Zt(i)

N

]

= Cs

1− (1 + p+
1− p
N

)Zt(i)−
(1− p)

∑N
j=1
j 6=i

Zt(j)

N


Hence,

h(Zt) = Cs


1− (1 + p+ 1−p

N )Zt(1)− 1−p
N Zt(2)− 1−p

N Zt(3) . . .− 1−p
N Zt(N)

1− 1−p
N Zt(1)− (1 + p+ 1−p

N )Zt(2)− 1−p
N Zt(3) . . .− 1−p

N Zt(N)
...

1− 1−p
N Zt(1)− 1−p

N Zt(2)− 1−p
N Zt(3) . . .− (1 + p+ 1−p

N )Zt(N)


We calculate the Jacobian to get:

−∇h =Cs


1 + p+ 1−p

N
1−p
N · · · 1−p

N
1−p
N 1 + p+ 1−p

N · · · 1−p
N

...
...

...
...

1−p
N

1−p
N · · · 1 + p+ 1−p

N


=CsA

Here, A denotes the matrix above. Let 1−p
N = α. Then,p = 1−Nα and

1 + p+
1− p
N

= 1 + 1−Nα+ α = 2− α(N − 1)

So,

A =


2− α(N − 1) α · · · α

α 2− α(N − 1) · · · α
...

...
...

...

α α · · · 2− α(N − 1)


Let x = det(A− λI). Then,

x = det


2− α(N − 1)− λ α · · · α

α 2− α(N − 1)− λ · · · α
...

...
...

...

α α · · · 2− α(N − 1)− λ


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= det



2− α(N − 1)− λ α · · · α

−(2− αN − λ) 2− α(N − 1)− λ · · · α

0 α · · ·
...

0 α · · ·
...

0 α · · ·
...

...
...

...
...

0 α · · · 2− α(N − 1)− λ


Simplifying further, we get:

x = (2− αN − λ)N−1



1 0 0 · · · 0 0

0 1 0 · · · 0 0

0 0 1 · · · 0 0
...

...
...

...
...

...

0 0 0 · · · 1 (N − 1)α

0 0 0 · · · −1 2− α(N − 1)− λ


Hence,

x = (2− αN − λ)N−1[2− α(N − 1)− λ+ (N − 1)α]

= (2− λ)(2− αN − λ)N−1

Putting x = 0, we get λ = 2, 2− αN . Now,

2− αN = 2− (1− p)N
N

= 1 + p

Hence, the eigenvalues of A are 2 and 1 + p. We use Theorem 5.1.3 (see appendix) with f(Zt) =

h(Zt)/Cs to conclude the proof. The eigen value of −∇f with the largest real part is 2 which is

greater than 1/2. For t ≥ 0, E(∆M̂t+1∆M̂t+1
T
|Ft) is an N ×N matrix whose non-diagonal entries

are all zero because the random variables {Yt+1(i)}1≤i≤N are pairwise independent ∀ t ≥ 0.

We calculate the diagonal entries of E(∆M̂t+1∆M̂t+1
T
|Ft) (label them E(∆M̂t+1∆M̂t+1

T
|Ft)(1), . . .

. . . ,E(∆M̂t+1∆M̂t+1
T
|Ft)(N) in the usual order). Then, for 1 ≤ i ≤ N :

E(∆M̂t+1∆M̂t+1
T
|Ft)(i) =

E[Yt+1(i)2|Ft]− (E[Yt+1(i)|Ft])2

C2s2

=
C2s2 + C2s[(s− 1)Zt(i)

2
+ Zt(i)]− 2C2s2Zt(i)− C2s2(1− Zt(i))2

C2s2

Using the first part of the theorem proven above, we have (for 1 ≤ i ≤ N):

lim
t→∞

E(∆M̂t+1∆M̂t+1
T
|Ft)(i) =

C2s2 + C2s
[
(s− 1)

(
1
2

)2
+ 1

2

]
− 2C2s2

(
1
2

)
− C2s2

(
1− 1

2

)2
C2s2

=
1

4s
a.s
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Hence,

Γ̂ =
1

4s
IN×N

The second part of the theorem hence immediately follows.

�

As noted before, the above model is an extension of the Generalized Friedman’s urn model studied

in [7] which doesn’t have the interaction aspect and has only a single urn. Note that theorem 2 of [7]

follows directly from the result above by putting N = 1 and p = 1. Indeed, with these substitutions,

we have:

−∇f = [2]

Using the above theorem, we calculate the covariance matrix (which is not a matrix anymore):

∑
=

1

4s

∫ ∞
0

e(−2+ 1
2 )ue(−2+ 1

2 )udu =
1

12s

Hence, the central limit theorem reduces to the following:

√
n

(
Wn

m+ Csn
− 1

2

)
d−−−−→

n→∞
N
(

0,
1

12s

)
Simplifying, we get :

√
n

(
Wn − 1

2 (m+ Csn)

m+ Csn

)
d−−−−→

n→∞
N
(

0,
1

12s

)
Separating the terms leads to:

Wn − 1
2Csn

m√
n

+ Cs
√
n
−

1
2m

m√
n

+ Cs
√
n

d−−−−→
n→∞

N
(

0,
1

12s

)
Taking limit and scaling by Cs gives:

Wn − 1
2Csn√
n

d−−−−→
n→∞

N
(

0,
C2s

12

)
The above equation is same as that in the statement of Theorem 2 in [7].

We now obtain expressions for expectation of Z̄t and Zt(i) for i ∈ {1, 2, . . . , N} respectively.

Theorem 2.2.2. (a)

E[Z̄t] =
α( mCs )( mCs − 1) + mt

Cs + t(t−1)
2

( mCs + t− 1)( mCs + t)

(b)

E[Zt(i)] =
(ai
m
− α

) ( mCs − 1)( mCs )

(t+ m
Cs − 1)(t+ m

Cs )
+
t2 + t( 2m

Cs − 1) + 2mα
Cs ( mCs − 1)

2(t+ m
Cs )(t+ m

Cs − 1)
for 1 ≤ i ≤ N.
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Proof Recall that:

Zt+1(i) = Zt(i) +
Yt+1(i)− CsZt(i)
m+ Cs(t+ 1)

Taking conditional expectation with respect to Ft on both sides, we get:

E[Zt+1(i)|Ft] = Zt(i) +
E[Yt+1(i)|Ft]− CsZt(i)

m+ Cs(t+ 1)

= Zt(i) +
Cs[1− pZt(i)− (1− p)Z̄t]− CsZt(i)

m+ Cs(t+ 1)
(2.16)

This gives:

E[Z̄t+1|Ft] = Z̄t +
Cs[1− pZ̄t − (1− p)Z̄t]− CsZ̄t

m+ Cs(t+ 1)

= Z̄t +
Cs(1− 2Z̄t)

m+ Cs(t+ 1)

Taking expectation on both sides, we get:

E[Z̄t+1] = E[Z̄t] +
Cs(1− 2E[Z̄t])

m+ Cs(t+ 1)

= E[Z̄t]

(
1− 2Cs

m+ Cs(t+ 1)

)
+

Cs

m+ Cs(t+ 1)

Hence,

E[Z̄t+1] = ftE[Z̄t] + gt

Here, ft = 1− 2Cs
m+Cs(t+1)and gt = Cs

m+Cs(t+1)

Now,

m′∏
k=0

fk =

m′∏
k=0

(
1− 2Cs

m+ Cs(k + 1)

)
=

m′∏
k=0

(
m+ Cs(k − 1)

m+ Cs(k + 1)

)

=

m′∏
k=0

( m
Cs + k − 1
m
Cs + k + 1

)
=

( mCs − 1)( mCs )

( mCs +m′)( mCs +m′ + 1)

So,

g′m∏m′

k=0 fk
=

Cs

m+ Cs(m′ + 1)

( mCs +m′)( mCs +m′ + 1)

( mCs − 1)( mCs )

=
m
Cs +m′

( mCs )( mCs − 1)
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Now,

t−1∑
m′=0

g′m∏m′

k=0 fk
=

1

( mCs )( mCs − 1)

t−1∑
m′=0

( m
Cs

+m′
)

=
1

( mCs )( mCs − 1)

[
t(t− 1)

2
+
mt

Cs

]
Hence,

E[Z̄t] =

(
t−1∏
k=0

fk

)(
E[Z̄0] +

t−1∑
m′=0

g′m∏m′

k=0 fk

)

=
( mCs − 1)( mCs )

( mCs + t+ 1)( mCs + t)

{
α+

1

( mCs − 1)( mCs )

(
t(t− 1)

2
+
mt

Cs

)}
=

α( mCs )( mCs − 1) + mt
Cs + t(t−1)

2

( mCs + t− 1)( mCs + t)

Taking expectation on both sides of (2.16), we get:

E[Zt+1(i)] = E[Zt(i)]

(
1− Cs(1 + p)

m+ Cs(t+ 1)

)
+

Cs

m+ Cs(t+ 1)
− Cs(1− p)E[Z̄t]

m+ Cs(t+ 1)

= ftE[Zt(i)] + gt

Here, ft = 1− Cs(1+p)
m+Cs(t+1) and gt = Cs

m+Cs(t+1) −
Cs(1−p)E[Z̄t]
m+Cs(t+1)

Now,

m′∏
k=0

fk =

m′∏
k=0

(
1− Cs(1 + p)

m+ Cs(k + 1)

)
=

m′∏
k=0

m
Cs + k − p
m
Cs + k + 1

=
( mCs − p+m′)!( mCs )!

( mCs − p− 1)!( mCs +m′ + 1)!
=

( m
Cs−p+m

′

m′+1

)( m
Cs+1+m′

m′+1

)
So,

g′m∏m′

k=0 fk
=

( m
Cs+1+m′

m′+1

)( m
Cs−p+m′
m′+1

) { Cs

m+ Cs(m′ + 1)
− Cs(1− p)E[Z̄ ′m]

m+ Cs(m′ + 1)

}

=
Cs

m

( m
Cs+m′

m′+1

)( m
Cs−p+m′
m′+1

) [1− (1− p)E[Z̄m′ ]]

Now,

E[Z̄m′ ]

( m
Cs+m′

m′+1

)( m
Cs−p+m′
m′+1

) =

( m
Cs+m′−2
m′+1

)( m
Cs−p+m′
m′+1

)
( mCs − 1)( mCs − 2)

α( mCs )( mCs − 1) + mm′

Cs + m′(m′−1)
2

( mCs +m′ − 1)( mCs +m′)

31



Hence,

g′m∏m′

k=0 fk
=

Cs

m

( m
Cs+m′

m′+1

)( m
Cs−p+m′
m′+1

) − (1− p)α
( mCs − 2)

( m
Cs+m′−2
m′+1

)( m
Cs−p+m′
m′+1

)
−

(1− p)m′
( m
Cs+m′−2
m′+1

)( m
Cs−p+m′
m′+1

)
( mCs − 1)( mCs − 2)

−
(1− p)Csm′(m′ − 1)

( m
Cs+m′−2
m′+1

)
2m
( m
Cs−p+m′
m′+1

)
( mCs − 1)( mCs − 2)

=
Cs

m

( m
Cs+m′

m′+1

)( m
Cs−p+m′
m′+1

) − (1− p)α
( mCs − 2)

( m
Cs+m′−2
m′+1

)( m
Cs−p+m′
m′+1

)
−

(1− p)( mCs − p+m′ − m
Cs + p)

( m
Cs+m′−2
m′+1

)( m
Cs−p+m′
m′+1

)
( mCs − 1)( mCs − 2)

(2.17)

−
(1− p)Cs( mCs − p+m′ − m

Cs + p)(m′ − 1)
( m
Cs+m′−2
m′+1

)
2m
( m
Cs−p+m′
m′+1

)
( mCs − 1)( mCs − 2)

=
Cs

m

( m
Cs+m′

m′+1

)( m
Cs−p+m′
m′+1

) − (1− p)α
( mCs − 2)

( m
Cs+m′−2
m′+1

)( m
Cs−p+m′
m′+1

)
−

(1− p)( mCs − p+m′)
( m
Cs+m′−2
m′+1

)( m
Cs−p+m′
m′+1

)
( mCs − 1)( mCs − 2)

+
(1− p)( mCs − p)

( m
Cs+m′−2
m′+1

)( m
Cs−p+m′
m′+1

)
( mCs − 1)( mCs − 2)

−
(1− p)Cs( mCs − p+m′)(m′ − 1)

( m
Cs+m′−2
m′+1

)
2m
( m
Cs−p+m′
m′+1

)
( mCs − 1)( mCs − 2)

+
(1− p)Cs( mCs − p)(m

′ − 1)
( m
Cs+m′−2
m′+1

)
2m
( m
Cs−p+m′
m′+1

)
( mCs − 1)( mCs − 2)

Now,

(m′ − 1)
( m
Cs+m′−2
m′+1

)( m
Cs−p+m′
m′+1

) =
( mCs − p+m′)

( m
Cs+m′−2
m′+1

)( m
Cs−p+m′
m′+1

) −
( mCs − p+ 1)

( m
Cs+m′−2
m′+1

)( m
Cs−p+m′
m′+1

)
=

( mCs − p− 1)
( m
Cs+m′−2
m′+1

)( m
Cs−p−1+m′

m′+1

) −
( mCs − p+ 1)

( m
Cs+m′−2
m′+1

)( m
Cs−p+m′
m′+1

)
Similarly,

(m′ − 1)
( m
Cs+m′−2
m′+1

)( m
Cs−p−1+m′

m′+1

) =
( mCs − p− 2)

( m
Cs+m′−2
m′+1

)( m
Cs−p−2+m′

m′+1

) −
( mCs − p)

( m
Cs+m′−2
m′+1

)( m
Cs−p−1+m′

m′+1

) (2.18)

Now,

( mCs − p+m′)(m′ − 1)
( m
Cs+m′−2
m′+1

)( m
Cs−p+m′
m′+1

) =
( mCs − p− 1)(m′ − 1)

( m
Cs+m′−2
m′+1

)( m
Cs−p+m′−1

m′+1

)
= (

m

Cs
− p− 1)

(
( mCs − p− 2)

( m
Cs+m′−2
m′+1

)( m
Cs−p−2+m′

m′+1

) −
( mCs − p)

( m
Cs+m′−2
m′+1

)( m
Cs−p−1+m′

m′+1

) )

(using (2.18))
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Putting the values of
( mCs−p+m

′)(m′−1)(
m
Cs

+m′−2

m′+1
)

(
m
Cs
−p+m′

m′+1
)

and
(m′−1)(

m
Cs

+m′−2

m′+1
)

(
m
Cs
−p+m′

m′+1
)

calculated above in the last

two terms of (2.17) and clubbing similar terms together, we get :

g′m∏m′

k=0 fk
=

Cs

m

( m
Cs+m′

m′+1

)( m
Cs−p+m′
m′+1

) +

( m
Cs+m′−2
m′+1

)( m
Cs−p+m′
m′+1

) {− (1− p)α
m
Cs − 2

+
(1− p)( mCs − p)

( mCs − 2)( mCs − 1)

−
(1− p)( mCs − p)Cs(1 + m

Cs − p)
2m( mCs − 2)( mCs − 1)

}
+

( m
Cs+m′−2
m′+1

)( m
Cs−p−1+m′

m′+1

) {− (1− p)( mCs − p− 1)

( mCs − 2)( mCs − 1)

+
(1− p)( mCs − p)Cs(

m
Cs − p− 1)

2m( mCs − 2)( mCs − 1)
+

(1− p)Cs( mCs − p− 1)( mCs − p)
2m( mCs − 2)( mCs − 1)

}
Now,

E[Zt(i)] =

(
t−1∏
k=0

fk

)(
E[Z0(i)] +

t−1∑
m′=0

g′m∏m′

k=0 fk

)

=

( m
Cs−p+t−1

t

)( m
Cs+t
t

) (
ai
m

+

t−1∑
m′=0

g′m∏m′

k=0 fk

)
(2.19)

Using Lemma 5.2.1, we calculate the following:

t−1∑
m′=0

( m
Cs+m′

m′+1

)( m
Cs−p+m′
m′+1

) =
(t+ m

Cs − p)
(
t+ m

Cs
t+1

)
(1 + p)

(
t+ m

Cs−p
t+1

) − m

Cs(1 + p)

t−1∑
m′=0

( m
Cs+m′−2
m′+1

)( m
Cs−p+m′
m′+1

) =
(t+ m

Cs − p)
(
t+ m

Cs−2
t+1

)
(p− 1)

(
t+ m

Cs−p
t+1

) −
m
Cs − 2

p− 1

t−1∑
m′=0

( m
Cs+m′−2
m′+1

)( m
Cs−p−1+m′

m′+1

) =
(t+ m

Cs − p− 1)
(
t+ m

Cs−2
t+1

)
p
(
t+ m

Cs−p−1
t+1

) −
m
Cs − 2

p

Using the values of these sums, we calculate
∑t−1
m′=0

g′m∏m′
k=0 fk

.

After putting the value of
∑t−1
m′=0

g′m∏m′
k=0 fk

in (2.19) and simplifying, we finally get :

E[Zt(i)] =
(ai
m
− α

) (t+ m
Cs−p−1
t

)(
t+ m

Cs
t

) +
t2 + t( 2m

Cs − 1) + 2mα
Cs ( mCs − 1)

2(t+ m
Cs )(t+ m

Cs − 1)

�

To obtain the result in [7], we substitute p = 1 in the equation above.
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E[Zt(i)] =
(ai
m
− α

) (t+ m
Cs−2
t

)(
t+ m

Cs
t

) +
t2 + t( 2m

Cs − 1) + 2mα
Cs ( mCs − 1)

2(t+ m
Cs )(t+ m

Cs − 1)

=
(ai
m
− α

) ( mCs − 1)( mCs )

(t+ m
Cs − 1)(t+ m

Cs )
+
t2 + t( 2m

Cs − 1) + 2mα
Cs ( mCs − 1)

2(t+ m
Cs )(t+ m

Cs − 1)

=
2mai − 2aiCs+ t2C2s2 + 2mtCs− tC2s2

2(m+ Cs(t− 1))(m+ Cst)

Switching to the notation used in [7], we make the following substitutions: ai = W0, m = T0, t = n

and Zt(i) = Wn, to obtain:

E[Wn]

T0 + Csn
=

2W0(T0 − Cs) + C2s2n(n− 1) + 2T0Csn

2(T0 + Cs(n− 1))(T0 + Csn)

That is,

E[Wn] =
2W0(T0 − Cs) + C2s2n(n− 1) + 2T0Csn

2(T0 + Cs(n− 1))

The above expression is the same as the first moment calculated by the authors in [7].
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Chapter 3

Interacting d-colour Urns with

Multiple Drawings

3.1 A general d- colour urn model

3.1.1 Model description

Consider N urns each with balls of d colours, where the colours are labelled as C1, C2, . . . , Cd. We

still retain the assumption that each urn has a fixed number of total balls in the beginning of the

process. We sample s balls after a coin toss like before, that is, for a particular urn, we draw from

that same urn if a heads shows up and draw from the super urn in case of a tails. However, since

there are more than two colours, there are multiple ways in which reinforcement can occur (unlike

the two colour case where the reinforcement could take place only in two ways). We assume that

each colour is reinforced by one and only one other colour and that the reinforcement scheme is fixed

for each urn in terms of which colour reinforces which. The reinforcement scheme is defined below.

We first introduce some definitions.

Definition 3.1.1 (Full mixing). A set of m ≥ 2 colours, denoted by {C1, C2, . . . , Cm}, is said to

undergo full mixing when for each i ∈ [m], Ci is reinforced by Cj for some j ∈ [m], j 6= i.

Here, [m] denotes the set {1, 2, . . . ,m}. Note that the assumption that each colour is reinforced

by one and only one other colour forces an order of the form Ci1 → Ci2 → . . . → Cim , where

{i1, i2, . . . , im} = {1, 2, . . . ,m} and the notation Cik → Cij means that the colour Cik reinforces the

colour Cij .

Definition 3.1.2 (Non-trivial mixing). For r, k1, k2, . . . , kr, l ∈ N ∪ {0} such that

2 ≤ ki ≤ d ∀ 1 ≤ i ≤ r and
r∑
i=1

ki+l = d, we call the reinforcement scheme a {k1, k2, . . . , kr, l}-mixing

if for every ki (1 ≤ i ≤ r), the set of colours {C∑i
j=1 kj−1+1, . . . , C

∑i
j=1 kj−1+ki

} (assume k0 = 0)

are mixed fully in the sense of definition 3.1.1 and the rest of the l colours reinforce themselves, that

is, if j ∈ {
r∑
i=1

ki + 1, . . . , d}, then Cj reinforces itself.
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Note that if l = d, we have a Pólya type reinforcement and each colour reinforces itself. For

each 1 ≤ i ≤ r, the set {C∑i
j=1 kj−1+1, . . . , C

∑i
j=1 kj−1+ki

}(where we assume that the set of colours

{C∑i
j=1 kj−1+1, . . . , C

∑i
j=1 kj−1+ki

} undergoes full mixing) is called a mixing set.

Thus, every partition of [d] defines a unique number of mixing sets and therefore a different

partition leads to a different reinforcement scheme for the urn system. Renumbering or renaming

the colours, if necessary, we can assume that the colours reinforce each other according to the scheme

given below (the following holds for all 1 ≤ i ≤ r while assuming that k0 = 0):

C∑i
j=1 kj−1+1 → C∑i

j=1 kj−1+2 . . . , C
∑i
j=1 kj−1+ki−1 → C∑i

j=1 kj−1+ki
→ C∑i

j=1 kj−1+1

We use the following notations: for 1 ≤ i ≤ N, 1 ≤ j ≤ d, let Zij(t) denote the fraction of balls

of the colour Cj in the ith urn at time t. For 1 ≤ j ≤ d, let Zj(t) denote the fraction of balls of

the jth colour in the super urn at time t. Then, Zj(t) =
N∑
i=1

Zij(t)/N for 1 ≤ j ≤ d. In order to

denote a vector A with Nd entries, we divide the entries of that vector into N blocks, so that the

vector can be thought of as being composed of the entries of N d-vectors placed sequentially next

to each other. More precisely, A = (A1, A2, A3 . . . AN ) is an Nd-dimensional vector, obtained by

sequentially placing the entries of the d-vectors, where each Ai is a d-dimensional vector.

3.1.2 Main Results and Proofs

We show that if the urn process is given an infinite amount of time, not only do the colours synchronise

across urns (that is, the fraction of balls of a particular colour becomes the same across all the urns),

but also that the fraction of balls of colours belonging to the same mixing set become equal almost

surely.

Theorem 3.1.3. For 1 ≤ i, j ≤ N, i 6= j,

lim
t→∞

(Zil(t)− Zjl(t)) = 0 a.s. ∀ 1 ≤ l ≤ d.

Theorem 3.1.4. Suppose 1 ≤ i, j ≤ d, i 6= j are such that Ci and Cj belong to the same mixing set.

Then,

lim
t→∞

(Zli(t)− Zlj(t)) = 0 a.s. ∀ 1 ≤ l ≤ N.

We prove both the theorems simultaneously using the method of Stochastic Approximation.

Proof Let Zt = (Z11(t), Z12(t) . . . Z1d(t), Z21(t) . . . Z2d(t) . . . ZN1(t), ZN2(t) . . . ZNd(t)).

Note the sequence in which we have numbered the elements of Zt: we first write the fraction of balls

of the d colours of the first urn, followed by the fraction of balls for the d colours of the second urn

and so on. This will be important while writing the Stochastic Approximation scheme for Zt.

For 1 ≤ j ≤ d , 1 ≤ i ≤ N , we define:

rij := number of balls drawn for the ith urn (jth colour type) at time t.

Let
∑r
i=1 ki = a.

Let Yt+1 denote the vector whose entries consist of the number of balls of different colours added to

each urn at time t (sequenced in a manner identical to Zt ).
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So, Yt+1 = C(B1, B2 . . . BN ), where for 1 ≤ i ≤ d, each Bi is a d-vector defined as follows:

Bi =
(
rik1 , ri1, ri2, . . . ri(k1−1), ri(k1+k2), ri(k1+1) . . . , ri(k1+k2−1), ri(k1+k2+k3), ri(k1+k2+1) . . . ri(k1+k2+k3−1)

. . . ri(k1+k2+k3...+kr−1), ri(a+1), ri(a+2) . . . rid
)

Now,

E[Yt+1|Ft] =
∑

∑d
j=1 rij=s ∀ 1≤i≤N

0≤rij≤s ∀ 1≤i≤N,1≤j≤d

C(B1, B2 . . . BN )

N∏
m′=1

(
s

rm′1, rm′2 . . . rm′d

)

×

{
p

d∏
q=1

(Zm′q(t))
rm′q + (1− p)

d∏
q=1

(Zq(t))
rm′q

}

E[Yt+1|Ft] is itself an Nd-vector (represented as a column matrix).

Let

E[Yt+1|Ft] = (E[Yt+1(1)|Ft], E[Yt+1(2)|Ft] . . . E[Yt+1(Nd)|Ft])T

Let us calculate E[Yt+1(1)|Ft]:

E[Yt+1(1)|Ft] =
∑

∑d
j=1 rij=s ∀ 1≤i≤N

0≤rij≤s ∀ 1≤i≤N,1≤j≤d

Cr1k1

N∏
m′=1

(
s

rm′1, rm′2 . . . rm′d

)

×

{
p

d∏
q=1

(Zm′q(t))
rm′q + (1− p)

d∏
q=1

(Zq(t))
rm′q )

}

=
∑

∑d
j=1 r1j=s

0≤r1j≤s ∀ 1≤j≤d

Cr1k1

(
s

r11, r12 . . . r1d

){
p

d∏
q=1

(Z1q(t))
r1q + (1− p)

d∏
q=1

(Zq(t))
r1q

}

×

 ∑
∑d
j=1 rij=s ∀ 2≤i≤N

0≤rij≤s ∀ 2≤i≤N,1≤j≤d

N∏
m′=2

(
s

rm′1, rm′2 . . . rm′d

){
p

d∏
q=1

(Zm′q(t))
rm′q

+ (1− p)
d∏
q=1

(Zq(t))
rm′q

})

Now,

∑
∑d
j=1 rij=s ∀ 2≤i≤N

0≤rij≤s ∀ 2≤i≤N,1≤j≤d

N∏
m′=2

(
s

rm′1, rm′2 . . . rm′d

){
p

d∏
q=1

(Zm′q(t))
rm′q + (1− p)

d∏
q=1

(Zq(t))
rm′q

}

=

N∏
m′=2

∑
∑d
j=1 rij=s ∀ 2≤i≤N

0≤rij≤s ∀ 2≤i≤N,1≤j≤d

(
s

rm′1, rm′2 . . . rm′d

){
p

d∏
q=1

(Zm′q(t))
rm′q + (1− p)

d∏
q=1

(Zq(t))
rm′q

}
= 1
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Hence,

E[Yt+1(1)|Ft]

=
∑

∑d
j=1 r1j=s

0≤r1j≤s ∀ 1≤j≤d

Cr1k1

(
s

r11, r12 . . . r1d

){
p

d∏
q=1

(Z1q(t))
r1q + (1− p)

d∏
q=1

(Zq(t))
r1q )

}

= C
∑

∑d
j=1 r1j=s

0≤r1j≤s ∀ 1≤j≤d,j 6=k1
1≤r1k1≤s

r1k1

(
s

r11, r12 . . . r1d

){
p

d∏
q=1

(Z1q(t))
r1q + (1− p)

d∏
q=1

(Zq(t))
r1q

}

= CspZ1k1(t)
∑

∑d
j=1 r1j=s

0≤r1j≤s ∀ 1≤j≤d,j 6=k1
1≤r1k1≤s

r1k1

(
s− 1

r11, r12 . . . r1k1 − 1 . . . r1d

) d∏
q=1
q 6=k1

(Z1q(t))
r1q ((Z1k1(t))

r1k1−1
)

+ Cs(1− p)Zk1(t)
∑

∑d
j=1 r1j=s

0≤r1j≤s ∀ 1≤j≤d,j 6=k1
1≤r1k1≤s

r1k1

(
s− 1

r11, r12 . . . r1k1 − 1 . . . r1d

) d∏
q=1
q 6=k1

(Zq(t))
r1q ((Zk1(t))

r1k1−1
)

Since r1k1 ≥ 1 and
∑d
j=1 r1j = s, we have that : r1j 6= s for 1 ≤ j ≤ d, j 6= k1.

Let r1k1 − 1 = f

Hence,

∑
∑d
j=1 r1j

0≤r1j≤s ∀ 1≤j≤d,j 6=k1
1≤r1k1≤s

(
s− 1

r11, r12 . . . r1k1 − 1 . . . r1d

) d∏
q=1
q 6=k1

(Z1q(t))
r1q ((Z1k1(t))r1k1−1)

=
∑

∑d
j=1
j 6=k1

r1j+f=s−1

0≤r1j≤s−1 ∀ 1≤j≤d,j 6=k1
0≤f≤s−1

(
s− 1

r11, r12 . . . f . . . r1d

)
(

d∏
q=1
q 6=k1

(Z1q(t))
r1q )((Z1k1(t))f )

= 1

Similarly,

∑
∑d
j=1 r1j=s

0≤r1j≤s ∀ 1≤j≤d,j 6=k1
1≤r1k1≤s

(
s− 1

r11, r12 . . . r1k1 − 1 . . . r1d

) d∏
q=1
q 6=k1

(Zq(t))
r1q ((Zk1(t))

r1k1−1
) = 1

Therefore, we have :

E[Yt+1(1)|Ft] = Cs(pZ1k1(t) + (1− p)Zk1(t))

We can calculate the other terms of E[Yt+1|Ft] in a similar manner.
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Now,

Zt+1 =
Zt(m+ Cst) + Yt+1

m+ Cs(t+ 1)
= Zt +

Yt+1 − CsZt
m+ Cs(t+ 1)

Hence,

h(Zt) = E[Yt+1|Ft]− CsZt

Let h(Zt) = Cs(E1, E2, E3.....Ed)
T

For 1 ≤ i ≤ d,we have that:

Ei =



pZik1(t) + (1− p)Zk1(t)− Zi1(t)

pZi1(t) + (1− p)Z1(t)− Zi2(t)
...

pZi(k1−1)(t) + (1− p)Z(k1−1)(t)− Zik1(t)

pZi(k1+k2)(t) + (1− p)Z(k1+k2)(t)− Zi(k1+1)(t)

pZi(k1+1)(t) + (1− p)Z(k1+1)(t)− Zi(k1+2)(t)
...

pZi(k1+k2−1)(t) + (1− p)Z(k1+k2−1)(t)−−Zi(k1+k2)(t)
...

pZi(k1+k2+...kr−1)(t) + (1− p)Z(k1+k2+...kr−1)(t)− Zi(k1+k2+...kr)(t)

pZi(a+1)(t) + (1− p)Z(a+1)(t)− Zi(a+1)(t)
...

pZid(t) + (1− p)Zd(t)− Zid(t)


We solve the set of linear equations obtained by setting h(Zt) = 0 in order to study the limit points

of Zt.

For 1≤ i ≤ d, we label the d terms of Ei as follows:

Let Ei = (Ei1, Ei2......Eid).

We put the Nd linear terms equal to zero in an appropriate sequence:

Putting Eij equal to zero for a+1 ≤ j ≤ d , 1 ≤ i ≤ N, we get:

Zij(t) = Zj(t) ∀ a+ 1 ≤ j ≤ d, 1 ≤ i ≤ N

Hence, we have:

Z1(a+1)(t) = Z2(a+1)(t) = Z3(a+1)(t) = . . . ZN(a+1)(t) = Z(a+1)(t)

Z1(a+2)(t) = Z2(a+2)(t) = Z3(a+2)(t) = . . . ZN(a+2)(t) = Z(a+2)(t)

...

Z1d(t) = Z2d(t) = Z3d(t) = . . . ZNd(t) = Zd(t)

Hence, we have shown the synchronisation (of the colours which reinforce themselves) across the

urns. Putting Ei1 equal to 0 for 1 ≤ i ≤ N and adding up all the N equations together, we get:
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p

N∑
i=1

Zik1(t) + (1− p)NZk1(t)−
N∑
i=1

Zi1(t) = 0

That is,

pNZk1(t) + (1− p)NZk1(t)−NZ1(t) = 0

This gives:

Zk1(t) = Z1(t)

Putting Ei2 equal to 0 for 1 ≤ i ≤ N and adding up all the N equations together, we similarly get:

Z1(t) = Z2(t)

Proceeding in the same way, we finally get:

Z1(t) = Z2(t) = Z3(t) = . . . = Zk1(t)

Z(k1+1)(t) = Z(k1+2)(t) = Z(k1+3)(t) = . . . = Z(k1+k2)(t)

...

Z(k1+k2+k3+.....kr−1+1)(t) = Z(k1+k2+k3+.....kr−1+2)(t) = . . . = Z(k1+k2+k3+.....kr−1+kr)(t)

We put E11 − E12, E12 − E13, E13 − E14 . . . E1(k1−1) − E1k1 equal to zero (and use the equalities

above) to get the following set of equations:

(p+ 1)Z11(t) = pZ1k1(t) + Z12(t) (A.1)

(p+ 1)Z12(t) = pZ11(t) + Z13(t) (A.2)

...

(p+ 1)Z1(k1−1)(t) = pZ1k1−2(t) + Z1k1(t) (A.(k1-1))

(p+ 1)Z1k1(t) = pZ1k1−1(t) + Z11(t) (A.k1)

We perform the following operations:

Subtract (A.1) from (A.2), (A.2) from (A.3). . . (A.(k1 − 1)) from (A.1) to get the following:

Z11(t)− Z13(t) = p(Z1k1(t)− Z12(t)) (B.1)

Z12(t)− Z14(t) = p(Z11(t)− Z13(t)) (B.2)

...

Z1(k1−1)(t)− Z11(t) = p(Z1(k1−2)(t)− Z1k1(t)) (B.(k1-1))

Z1k1(t)− Z12(t) = p(Z1(k1−1)(t)− Z11)(t)) (B.k1)

Now, put the value of Z11(t)− Z13(t) from (B.1) in (B.2) to get:
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Z12(t)− Z14(t) = p2(Z1k1(t)− Z12(t)) (C.1)

Put this value of Z12(t)− Z14(t) in (B.3) to get:

Z13(t)− Z15(t) = p3(Z1k1(t)− Z12(t)) (C.2)

Keep proceeding in a similar manner to get:

Z14(t)− Z16(t) = p4(Z1k1(t)− Z12(t)) (C.3)

...

Z1(k1−1)(t)− Z11(t) = pk1−1(Z1k1(t)− Z12(t)) (C.(k1-2))

Z1k1(t)− Z12(t) = pk1(Z1k1(t)− Z12(t)) (C.(k1-1))

Assuming p 6= 1, we have (using (C.(k1 − 1))) that :

Z1k1(t) = Z12(t)

Using equations (C.1), (C.2) . . . (C.(k1 − 1)) and the fact that Z1k1(t) = Z12(t), we get that:

Z11(t) = Z13(t) = Z15(t) = . . .

Z12(t) = Z14(t) = Z16(t) = . . .

Using (A.2) and the fact that Z11(t) = Z13(t), we get:

Z11(t) = Z12(t)

Therefore, we have shown that :

Z11(t) = Z12(t) = Z13(t) = . . . = Z1k1(t)

Hence, we have shown the synchronisation of colours of the first mixing set of the first urn.

We can use an identical procedure to show the synchronisation for other urns and for other mixing

sets, so that we finally have:
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Zi1(t) = Zi2(t) = Zi3(t) = . . . Zik1(t)

Zi(k1+1)(t) = Zi(k1+2)(t) = Zi(k1+3)(t) = ..... = Zi(k1+k2)(t)

...

Zi(k1+k2+...kr−1+1)(t) = Zi(k1+k2+kr−1+2)(t) = Zi(k1+k2+...kr−1+3)(t) = . . . = Zi(k1+k2+...kr−1+kr)(t)

The above equations hold for all 1 ≤ i ≤ N .

Hence, the proof for synchronisation across the mixing sets is complete.

Now, we show that the first colour synchronises across all the urns:

We put Ei1 equal to 0 (and use the fact that Zik1(t) = Zi1(t) ∀ 1 ≤ i ≤ N to get:

Zi1(t) = Zk1(t) ∀ 1 ≤ i ≤ N

We can similarly prove synchronisation across urns for all the colours which belong to the mixing

sets. We had already shown synchronisation for the colours not belonging to the mixing sets.

Since the zeroes of h(Zt) give us the limit points of Zt, we are done.

�

3.2 A model with random permutations

3.2.1 Model description

We use the same terminology as used in the above model. The entire process is the same except that

the reinforcement scheme is different.

At each time instance, we randomly choose a permutation of colours for the purpose of reinforce-

ment for all the urns. Then for each urn, we toss a coin. In case of a heads, we draw s balls from

that same urn and reinforce according to that chosen permutation. In case of a tails, we do the same

except that this time we draw s balls from the super urn.

For example, suppose there are three colours (say red, blue and black labelled as 1, 2 and 3

respectively). Let s = 4 and C = 2. Suppose the chosen permutation of colours is

(
1 2 3

2 3 1

)
. At

some time instance, let us say we drew 4 balls and they came out to be: red, black, blue and red (in

that particular order).

According to the permutation, the red colour reinforces the blue colour, the blue colour reinforces

the black colour and the black colour reinforces the red colour. Since there are 2 red balls drawn,

we put back 4 blue balls back in the urn (C = 2). Similarly, we put 2 red and 2 black balls back in

that urn.

3.2.2 Main result

We show that for this model, the fraction of balls of each colour converges to a common fraction

across every urn.
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Theorem 3.2.1. For 1 ≤ i ≤ N , 1 ≤ j ≤ d,

lim
t→∞

Zij(t) =
1

d
a.s.

Proof The Stochastic Approximation Scheme remains similar to that of the above model. Recall

that:

h(Zt) = E[Yt+1|Ft]− CsZt

Also, recall that Zt denotes the vector with entries consisting of fraction of balls of all the colours

in different urns at time t in the sequence defined above and Yt+1 denotes the number of balls of

different colours added to each urn at time t for different urns (in a sequence identical to that of Zt).

We will calculate E[Yt+1|Ft] for this model, and study the zeroes of h(Zt).

For 1 ≤ i ≤ d, let Fi = (ri1, ri2, . . . rid).

Like before,we use the following notation :

rij := number of balls drawn for the ith urn (jth colour type) at time t (1 ≤ i ≤ N , 1 ≤ j ≤ d).

So,

E[Yt+1|Ft] =
∑

∑d
j=1 rij=s ∀ 1≤i≤N

0≤rij≤s ∀ 1≤i≤N,1≤j≤d

C

d!
(F1, F2, . . . , FN )

∑
σ∈Sd

N∏
m′=1

(
s

rm′1, rm′2.....rm′d

){
p

d∏
q=1

(Zm′q(t))
rm′σ(q)

+ (1− p)
d∏
q=1

(Zq(t))
rm′σ(q)

}

We first calculate E[Yt+1(1)|Ft]. By
∑
rij

we denote the sum over {
∑d
j=1 rij = s ∀ 1 ≤ i ≤ N} such

that 0 ≤ rij ≤ s ∀ 1 ≤ i ≤ N , 1 ≤ j ≤ d.

E[Yt+1(1)|Ft] =
∑
rij

C

d!
r11

∑
σ∈Sd

N∏
m′=1

(
s

rm′1, rm′2, . . . , rm′d

){
p

d∏
q=1

(Zm′q(t))
rm′σ(q)

+ (1− p)
d∏
q=1

(Zq(t))
rm′σ(q)

}

=
∑
σ∈Sd

∑
rij

C

d!
r11

(
s

r11, r12, . . . , r1d

)[
p

d∏
q=1

(Z1q(t))
r1σ(q) + (1− p)

d∏
q=1

(Zq(t))
r1σ(q)

]

×

∑
rij

N∏
m′=2

(
s

rm′1, rm′2, . . . , rm′d

)[
p

d∏
q=1

(Zm′q(t))
rm′σ(q) + (1− p)

d∏
q=1

(Zq(t))
rm′σ(q)

]
=

∑
σ∈Sd

∑
∑d
j=1 r1j=s

1≤r11≤s,0≤r1j≤s ∀ 2≤j≤d

C

d!
r11

[
p

(
s

r11, r12, . . . , r1d

) d∏
q=1

(Z1q(t))
r1σ(q)

+ (1− p)
d∏
q=1

(Zq(t))
r1σ(q)

]
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Thus,

E[Yt+1(1)|Ft] =
Cs

d!

∑
σ∈Sd

∑
∑d
j=1 r1j=s

1≤r11≤s,0≤r1j≤s ∀ 2≤j≤d

[
p

(
s− 1

r11 − 1, r12, . . . , r1d

) d∏
q=1

(Z1q(t))
r1σ(q)

+ (1− p)
d∏
q=1

(Zq(t))
r1σ(q)

]

Now,

∑
∑d
j=1 r1j=s

1≤r11≤s,0≤r1j≤s ∀ 2≤j≤d

(
s− 1

r11 − 1, r12, . . . , r1d

) d∏
q=1

(Z1q(t))
r1σ(q)

= Z1(σ−1(1))(t)
∑

∑d
j=1 r1j=s

1≤r11≤s,0≤r1j≤s ∀ 2≤j≤d

(
s− 1

r11 − 1, r12, . . . , r1d

) d∏
q=1

q 6=σ−1(1)

(Z1q(t))
r1σ(q)

 (Z1(σ−1(1))(t))
(r11−1)

= Z1(σ−1(1))(t)

Similarly, for the super urn:

∑
∑d
j=1 r1j=s

1≤r11≤s,0≤r1j≤s ∀ 2≤j≤d

(
s− 1

r11 − 1, r12, . . . , r1d

) d∏
q=1

(Zq(t))
r1σ(q) = Zσ−1(1)(t)

Hence,

E[Yt+1(1)|Ft] =
Cs

d!

∑
σ∈Sd

(
pZ1(σ−1(1))(t) + (1− p)Zσ−1(1)(t)

)

Other terms of E[Yt+1|Ft] can similarly be computed to get:

E[Yt+1|Ft] =
Cs

d!

∑
σ∈Sd

(L1, L2, . . . , LN )

where, for 1 ≤ i ≤ N :

Li = (pZi(σ−1(1))(t)+(1−p)Zσ−1(1)(t), pZi(σ−1(2))(t)+(1−p)Zσ−1(2)(t) . . . pZi(σ−1(d))(t)+(1−p)Zσ−1(d))(t))

Since
∑d
k=1 Zik(t) = 1 ∀ 1 ≤ i ≤ N , we have that:

For 1 ≤ i ≤ N, 1 ≤ j ≤ d:

∑
σ∈Sd

Zi(σ−1(j))(t) = (d− 1)!
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Also, for 1 ≤ j ≤ d: ∑
σ∈Sd

Zσ−1(j)(t) =

N∑
i=1

Zi(σ−1(j))(t)

N
= (d− 1)!

Hence, E[Yt+1|Ft] = Cs
d (1, 1, . . . , 1). This gives:

h(Zt) = Cs

(
1

d
− Z11(t),

1

d
− Z12(t) . . .

1

d
− Z1d(t),

1

d
− Z21(t) . . . ,

1

d
− Z2d(t), . . . ,

1

d
− ZNd(t)

)
Since the zeroes of h(Zt) give the limit points of Zt, we are done. �
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Chapter 4

Graph based models

In each of the models we have studied until now, there has been one common feature: while sampling

the balls, we always drew them from the super urn in case of a tails, where super urn was formed by

merging all the urns together. Now, we study a more general model where reinforcement probability

of each urn depends only on a subset of the set of all urns.

Consider an undirected graph G = (V,E) such that |V | = N . We allow the graph to have

self-loops (in fact, in the model we study, we have a self loop at every vertex) but no multi-edges

between any two vertices. We place an urn with non-zero number of balls of either colour at each

vertex (we restrict our discussion to urns containing balls of only two colours). Let A denote the

adjacency matrix of the graph. In this model, the sampling scheme and hence the reinforcement

depends on the adjacency matrix: while sampling for an urn, we draw balls from all its immediate

neighbours (including from the urn itself since there is always a self loop for each urn) in case of

a tails, while we sample balls from only that urn in case of a heads. So, we can think that there

is a different super urn corresponding to each urn in this model. More precisely, each urn has an

associated super urn, formed by merging each of its neighbouring urns.

Given such a sampling scheme, we can again have two types of two-colour models depending on

the type of reinforcement: we call one the graph based Pólya model (self reinforcement of colours)

and the other as graph based Friedman model (mutual reinforcement of colours). For urns i and j

(1 ≤ i, j ≤ N), let i ∼ j represent the fact that i and j are neighbours, that is, (i, j) ∈ E. Note that:

Aij =

1 i ∼ j

0 i � j

We use the same notations as before with the addition that for 1 ≤ i ≤ N , we denote the fraction

of white balls in the super urn corresponding to the ith urn by Z̃t(i) and denote the degree of the

ith urn by di. That is,

Z̃t(i) =

∑
j∼i

Zt(j)

di
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4.1 Graph based Pólya model

Theorem 4.1.1. Let the graph G have k connected components labelled as C1, C2 . . . Ck. For 1 ≤
i ≤ k and for j, l ∈ Ci(j 6= l):

lim
t→∞

(Zt(j)− Zt(l)) = 0 a.s.

Proof We prove the theorem by writing the Stochastic Approximation Scheme which is similar to

that of the ordinary Pólya urn. Recall that Yt+1(i) denotes the number of white balls added to the

ith urn at time t for 1 ≤ i ≤ N . For 1 ≤ i ≤ N , 0 ≤ k ≤ s:

P (Yt+1(i) = Ck|Ft) = p

(
s

k

)
(Zt(i))

k(1− Zt(i))s−k + (1− p)
(
s

k

)
(Z̃t(i))

k(1− Z̃t(i))s−k

Just like the Pólya model, we therefore have:

h(Zt) = Cs(1− p)


Z̃t(1)− Zt(1)

Z̃t(2)− Zt(2)
...

Z̃t(N)− Zt(N)


Setting h(Zt) equal to 0, we get the following matrix equation:

(D−1A− I)Zt
T = 0 (4.1)

Here,

D =


d1

. . .

dN


Note that, since di ≥ 1 ∀ 1 ≤ i ≤ N , D−1 exists, is well defined and not a zero matrix. Hence, (4.1)

is equivalent to:

(D −A)Zt
T = 0 (4.2)

We first assume that di ≥ 2 ∀ 1 ≤ i ≤ N (that is each urn has at least one more immediate neighbour

except for itself).

Observe that D − A is the Laplacian matrix. Since the graph is undirected, the Laplacian is sym-

metric. The rank of a symmetric matrix is equal to the number of its non zero eigenvalues. Also, we

know that, a simple graph G has k connected components iff the algebraic multiplicity of 0 in the

Laplacian is k (Theorem 3.10 in [16]). Since the graph G is not simple (it has self loops), in order to

apply the above result, we need to make some adjustments:

Corresponding to A, we define another matrix A′ where :

A′ij =

Aij i 6= j

0 i = j
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The degrees of all the vertices in the graph corresponding to A′ have been reduced by one when

compared to the graph G. But the number of connected components is still the same (because of

the assumption above). Corresponding to A′, we define:

D′ =


d1 − 1

. . .

dN − 1


Hence, we have that:

D′ −A′ = D −A

So, (4.1) is equivalent to :

(D′ −A′)ZtT = 0

The graph corresponding to A′ is simple. We therefore have that the number of free variables in the

solution to (4.2) is equal to the number of connected components in the graph G. Let those free

variables be labelled as r1, r2 . . . rk. For 1 ≤ j ≤ k, let us set Zt(l) = rj ∀ l ∈ Cj . Hence, we have

that:

Z̃t(i) = Zt(i) ∀ 1 ≤ i ≤ N

Therefore, setting the fraction of white balls for urns in a common connected component equal to

one common free variable gives a solution of the equation h(Zt) = 0. Since, we cannot have any

other kind of solution, and since the zeroes of h(Zt) give the limit points of Zt, we have proven the

theorem subject to the above assumption.

Even if we relax the assumption above, it is easy to see why the theorem still holds. Assume that r

out of N urns are isolated (they have only themselves as their immediate neighbour). We can leave

these r urns out. Now, we have N −r urns and k−r connected components left. The above theorem

still holds for these k − r connected components because for them the assumption above still holds.

As for the remaining r runs, each of these forms a connected component, and the theorem holds

trivially for these connected components.

�

4.2 Graph based Friedman model

We use the same notations and assumptions as that in the Pólya graph based model except that we

change the reinforcement scheme to a mutual reinforcement one.

Theorem 4.2.1. For 1 ≤ j ≤ N :

lim
t→∞

Zt(j) =
1

2
a.s.

Proof For 1 ≤ i ≤ N , 0 ≤ k ≤ s:

P (Yt+1(i) = Ck|Ft) = p

(
s

k

)
(Zt(i))

s−k(1− Zt(i))k + (1− p)
(
s

k

)
(Z̃t(i))

s−k(1− Z̃t(i))k
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Writing the Stochastic Approximation Scheme like we did for the Friedman model, we get:

h(Zt) = Cs


1− (1 + p)Zt(1)− (1− p)Z̃t(1)

1− (1 + p)Zt(2)− (1− p)Z̃t(2)
...

1− (1 + p)Zt(N)− (1− p)Z̃t(N)


Setting h(Zt) equal to zero, we get:

1− (1 + p)Zt(1)

1− (1 + p)Zt(2)
...

1− (1 + p)Zt(N)

 = (1− p)D−1AZt
T

This is same as: 
1

1
...

1

 = [(1 + p)I + (1− p)D−1A]Zt
T (4.3)

Now, assume that the matrix (1 + p)I + (1− p)D−1A has zero as an eigenvalue. Then, there exists

a non zero vector v such that:

[1 + p)I + (1− p)D−1A]v = 0

Rearranging,we get:

D−1Av =
1 + p

p− 1
v

Hence, 1+p
p−1 is an eigenvalue of the matrix D−1A. Assuming that p 6= 0, we have :

∣∣∣1 + p

p− 1

∣∣∣ > 1

But D−1A is a stochastic matrix. Hence, the absolute value of its eigenvalues is less than or equal to

1. This leads to a contradiction. Therefore, the concerned matrix cannot have zero as an eigenvalue.

Hence, it is invertible. Therefore, (4.3) has a unique solution. It is easily verified that Zt = ( 1
2 ,

1
2 . . .

1
2 )

satisfies it. �

We have only obtained asymptotic limit results for the graph based models. We believe that by

using techniques from [7], we can also obtain fluctuation results as well as L2 rates of convergence

for this model.
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Chapter 5

Simulations

Computer simulations are a remarkable tool to verify and visualise results obtained using theoretical

tools and in order to predict and dismiss some possible results that can be potentially obtained. We

present some of the simulation results that we obtained for our models.

First, we verify whether the L2 rates obtained in Theorem 2.1.2 are correct. So, we simulate

a two-colour urn model with two urns such that Z0(1) = Z0(2) = 1/4, m = 4, C = 2 and s = 3.

We plot Var(Zt(1)− Z̄t) against time in Figure 5.1 for large values of t for three different values of

p(1/3, 1/2 and 2/3). In order to better compare the slopes of the graphs of Var(Zt(1)− Z̄t) against

time when p = 1/3 and when p = 1/2, we plot these two graphs separately in Figure 5.2. The results

obtained in the two figures are compatible with the predictions of Theorem 2.1.2.

It has been long known that the fraction of white balls in a classical Pólya- Eggenberger converges

to a random variable with distribution that of a Beta distributed random variable (Theorem 1.1.1).

It is a difficult and yet unsolved problem to find out what will be the distribution of the convergent

random variable in case of a model with multiple drawings because such models lack a property

called exchangeability (see [13]). In absence of theoretical tools necessary to know the distribution of

the convergent random variable in case of the ‘Pólya-type model’ we studied above, we take help of

simulations. We simulate a two-colour urn model with two urns such that Z0(1) = 1/4, Z0(2) = 1/2,

m = 4, C = 2 and s = 3. Since the colours synchronize across urns, we have that :

lim
t→∞

Zt(1) = lim
t→∞

Zt(2) = Z (say) a.s.

Since we are interested in knowing the distribution of the random variable Z, we run several

simulations of the urn process and draw a histogram (plotting the values of Z on x-axis and frequency

on y-axis). Then we fit the histogram with a beta distribution (Figure 5.3) and with a normal

distribution (Figure 5.4). We find that beta distribution seems to give an almost perfect fit for our

model compared to the normal distribution which gives a much poorer fit. However, the authors

in [14] claim that the distribution for such models is not a beta distribution.
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Figure 5.1: A plot of Var(Zt(1)− Z̄t) against time for values of p in all the three regimes.

Figure 5.2: A plot of Var(Zt(1)− Z̄t) against time for values of p in two of the three regimes.
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Figure 5.3: A plot of frequency against Z fitted with a beta distribution.

Figure 5.4: A plot of frequency against Z fitted with a normal distribution.

53



We also simulated a four-colour model with two urns such that Z11(0) = Z14(0) = 1/8, Z12(0) =

1/4, Z13(0) = 1/2,Z21(0) = Z22(0) = Z23(0) = Z24(0) = 1/4, m = 8, C = 2 and s = 3. In this

model, we allow the first two colours to reinforce each other while the rest of the two colours reinforce

each other. Since the colours synchronize across urns and across mixing sets, we have that :

lim
t→∞

Z11(t) = lim
t→∞

Z12(t) = lim
t→∞

Z21(t) = lim
t→∞

Z22(t) = Z1 (say) a.s.

Also,

lim
t→∞

Z13(t) = lim
t→∞

Z23(t) = Z2 (say) a.s.

We run several simulations of the urn process and again draw a histogram (plotting the values of

Z1 on x-axis, values of Z2 on y-axis and the frequency on z-axis). The resulting histogram is shown

in Figure 5.5 and a top view of it is shown in Figure 5.6.

Figure 5.5: A plot of frequency on z-axis against Z1 on x-axis and Z2 on y-axis.
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Figure 5.6: A descriptive colour diagram corresponding to the histogram in Figure 5.5.
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Appendix

In [1], the author discusses various methods used to study asymptotic properties of random processes

with reinforcement. We studied and used some of these methods in our analysis. In particular, we

studied [7] where method of moments is used, [10] where Martingale theory is used to obtain almost

sure convergence and stable convergence to a Gaussian limit in some cases and finally and [8] where

stochastic approximation is used to study urn processes. We briefly explain the methods and present

relevant results below.

5.1 Theory of Stochastic Approximation

A stochastic approximation scheme in Rd is given by :

xt+1 = xt + a(t+ 1)[h(xt) +Mt+1], t ≥ 0

with the following assumptions:

A1. The map h : Rd → Rd is Lipschitz: ‖h(x)− h(y)‖ ≤ L‖x− y‖ for some 0 < L <∞
A2. {a(t)} are called step sizes satisfying

∑
t a(t) =∞ and

∑
t (a(t))

2
<∞

A3. {Mt} is a Martingale difference sequence with respect to the increasing family of σ-fields:

Ft := σ(xm,Mm,m ≤ t) = σ(x0,M1 . . .Mt), n ≥ 0

That is,

E[Mt+1|Ft] = 0 a.s., t ≥ 0

Furthermore, {Mt} are square-integrable with E[‖Mt+1‖2|Ft] ≤ K(1 + ‖xt‖2) a.s t ≥ 0 for some

constant K > 0.

A4. supt‖xt‖ <∞ a.s.

Theorem 5.1.1. (Theorem A.1 in [17]) For a general stochastic Approximation scheme given by

xt+1 = xt + a(t+ 1)[h(xt) +Mt+1], t ≥ 0

with the above set of assumptions:

The set Θ∞ of limiting values of h as t→∞ is a.s. a compact connected set, stable by the flow of

ODEh ≡ ẋ = h(x)
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Furthermore if x∗ ∈ Θ∞ is a uniformly stable equilibrium on Θ∞ of ODEh, then

xt → x a.s. as t→∞

Note that whenever we use the theory of stochastic approximation in the thesis, we implicitly

make use of the following lemma (which we prove below):

Lemma 5.1.2. A linear function h : Rd → Rd is Lipschitz with respect to the Euclidean norm.

Proof Since h is linear, there exists a d× d matrix A such that

h(x) = Ax ∀ x ∈ Rd

For x, y ∈ Rd (x 6= y):

h(x)− h(y) = A(x− y)

Let x = (x1, x2 . . . xd) and y = (y1, y2 . . . yd) where xi, yi ∈ Rd for all

1 ≤ i ≤ d. Also, let Aij = aij for 1 ≤ i, j ≤ d.

Hence,

h(x)− h(y) =


a11 a12 · · · a1d

...
...

...
...

ad1 ad2 · · · add



x1 − y1

...

xd − yd


Using Cauchy Schwartz Inequality, we have that:

For 1 ≤ i ≤ d,  d∑
j=1

aij(xj − yj)

2

≤

 d∑
j=1

aij
2

 d∑
j=1

(xj − yj)2


Adding up all of these d inequalities, we get that:

d∑
i=1

 d∑
j=1

aij(xj − yj)

2

≤
d∑
i=1

 d∑
j=1

aij
2

 d∑
j=1

(xj − yj)2


Hence,

d∑
i=1

 d∑
j=1

aij(xj − yj)

2

≤ K2

 d∑
j=1

(xj − yj)2


where K =

√∑d
i,j=1 aij

2.

Taking square root on both sides of the above equation, we get that:

‖h(x)− h(y)‖ ≤ K‖x− y‖
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Since the above inequality holds for arbitrary x, y ∈ Rd(x 6= y), the linear function h is Lipschitz.

�

Whenever we apply the theory of stochastic approximation to our models, h(xt) is always linear.

Hence, the condition A1. is always satisfied, given the above lemma. Condition A.2 is satisfied

because we always have a(t) ∼ A/t for some A > 0. Also, in all our cases, we have Mt+1 =

xt+1 − E[xt+1|Ft]. Hence,

E[Mt+1|Ft] = 0 a.s., t ≥ 0

The rest of the conditions follow trivially since we always apply the theory to vectors which

consist of fraction of balls of different colours (each element of the vector is hence bounded by one).

5.1.1 The Central Limit Theorem

The following result has been taken from [11]( Theorem 5) and has been used while proving Theorem

2.2.1 above.

Theorem 5.1.3. Consider the sequence of random vectors (θn)n≥0 defined by the following recursion:

∀ n ≥ n0; θn+1 = θn + γn+1f(θn) + γn+1(∆M̂n+1 + ε̂n+1)

where f : Rd → Rd is a differentiable non-null function, θ0 is a deterministic vector, for all n ≥ n0,

∆M̂n is an Fn-increment martingale and ε̂n is an Fn-adapted remainder term.

Assume in addition that

ε̂n → 0, supn≥0E[‖∆M̂n+1‖
2
|Fn] <∞

Assume that θnsatisfies the above recursion with γn = 1
n and that there exists θ ∈ Rd a stable zero

of f such that θn converges to θ with positive probability. Also assume that, for some δ > 0 ,

supn≥0E(‖∆M̂n+1‖
2+δ
|Fn) <∞, and E(∆M̂n+1∆M̂n+1

t
|Fn)

n→∞−−−−→ Γ̂ almost surely,

where Γ̂ is a deterministic symmetric positive semi-definite matrix and for some η > 0

n
3
2E[‖ε̂n+1‖21‖θn−θ‖≤η|Fn]

n→∞−−−−→ 0.

Let Λ̂ be the eigenvalue of −∇f(θ) with the largest real part. If we assume that θn converges almost

surely to some deterministic limit θ, then:

• If Re(Λ̂) > 1
2 , then

√
n(θn − θ)

n→∞−−−−→ N
(

0,
∑̂)

in distribution, where

∑̂
=

∫ ∞
0

(e(∇f(θ)+ Id
2 )u)

t
Γ̂e(∇f(θ)+ Id

2 )udu

Assume additionally that f is twice differentiable, and that all Jordan blocks of ∇f(θ) associ-

ated to Λ̂ have size 1.

Then:

• If Re(Λ̂) = 1
2 then

√
n

logn (θn − θ)
n→∞−−−−→ N

(
0,
∑̂)

, in distribution, where
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∑̂
= lim
n→∞

∫ logn

0

(e(∇f(θ)+ Id
2 )u)

t
Γ̂e(∇f(θ)+ Id

2 )udu

• If Re(Λ̂) < 1
2 , then nRe(Λ̂)(θn − θ) converges almost surely to a finite random variable.

5.2 Auxiliary Results

The following lemma is a result directly taken from [18] and is used multiple times while calculating

first moments. We present it here without a proof although it follows trivially using the telescopic

technique of summation.

Lemma 5.2.1.

For x, y ∈ R and s ∈ N :

s∑
k=1

(
k+x
k

)(
k+y
k

) =
(s+ 1 + y)

(
s+1+x
s+1

)
(x+ 1− y)

(
s+1+y
s

)
+ 1
− x+ 1

x+ 1− y

Martingales

Definition 5.2.2 (Martingales). A stochastic process {Zn, n ≥ 1} is a martingale if

E[Zn] <∞ and E[Zn|Z1, . . . , Zn−1] = Zn ∀ n ≥ 2

Theorem 5.2.3 (Martingale Convergence Theorem). Let F = (Fn)n≥0 be a filtration with

F∞ = σ(∪n≥0Fn) Let {Xn}n≥0 be a submartingale adapted to F such that

sup{E[Xn
+] : n ≥ 0} <∞.

Then there exists an F∞- measurable random variable X∞ with E[X∞] < ∞ and Xn
n→∞−−−−→ X∞

almost surely.

Note that while the martingale convergence theorem helps us to show that a sequence admits an

almost sure limit, it does not say anything about the distribution of the limit. In urn models, it is

often useful (but also cumbersome) to compute moments of the converging sequence to determine the

distribution of the limiting variable X when we know that the sequence {Xn}n≥0 converges (almost

surely) to X. This method was used by D. Freedman in [12] to prove Theorem 1.1.3.

5.3 Solving first order non homogeneous recurrence relations

with variable coefficients

The concerned recurrence relation is of the form:

an+1 = fnan + gn
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The above equation is same as:

an+1∏n
k=0 fk

− fnan∏n
k=0 fk

=
gn∏n
k=0 fk

That is,

an+1∏n
k=0 fk

− an∏n−1
k=0 fk

=
gn∏n
k=0 fk

Let

An =
an∏n−1
k=0 fk

Then, we have:

An+1 −An =
gn∏n
k=0 fk

Now,

n−1∑
m=0

(Am+1 −Am) = An −A0 =

n−1∑
m=0

gm∏m
k=0 fk

Therefore:

an = (

n−1∏
k=0

fk)

(
A0 +

n−1∑
m=0

gm∏m
k=0 fk

)
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pp. 1169–1186, 12 2013.

63



[16] A. Marsden, “Eigenvalues of the laplacian and their relationship to the connectedness of a

graph,” University of Chicago, REU, 2013.

[17] S. Laruelle and G. Pagès, “Addendum and corrigendum to “Randomized urn models revisited

using stochastic approximation” [ MR3098437],” Ann. Appl. Probab., vol. 27, no. 2, pp. 1296–

1298, 2017.

[18] M. Kuba and H. M. Mahmoud, “Two-color balanced affine urn models with multiple drawings,”

Adv. in Appl. Math., vol. 90, pp. 1–26, 2017.

64


	List of Figures
	Introduction
	Urn Models: An introduction
	Classical Urn Models
	Urn Models with multiple drawings
	Interacting Urn Models

	Interacting two-colour Urns with Multiple Drawings
	Pólya-type model (Self reinforcement of colours)
	Friedman-type model (Mutual reinforcement of colours)

	Interacting d-colour Urns with Multiple Drawings
	A general d- colour urn model
	Model description
	Main Results and Proofs

	A model with random permutations
	Model description
	Main result


	Graph based models 
	Graph based Pólya model
	Graph based Friedman model

	Simulations
	Appendix
	Theory of Stochastic Approximation
	The Central Limit Theorem

	Auxiliary Results
	Solving first order non homogeneous recurrence relations with variable coefficients


