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Notations

∅ Empty set

1A Indicator or characteristic function of a set A

F σ-algebra

B Borel σ-algebra

C(X) Set of continuous functions from a space X to R
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Introduction

The ergodic theory deals with the study of dynamical systems and their statistical properties. The
inception of this branch of mathematics is from the problems that rose from the early developmental
stages of statistical mechanics.

We would begin introducing some elementary notions of ergodicity illustrated with simple examples.
Chapter 1 will lay foundations to understand Birkhoff’s ergodic theorem in Chapter 2. After proving the
theorem, Chapter 2 will prove the Von Neumann’s version of ergodic theorem which is also called the
Mean Ergodic Theorem. Chapter 3 will define how dynamical systems can to be isomorphic to each other.

Chapter 4 will introduce the notions of mixing in dynamical systems. After discussing several forms
of mixing, I will show how they relate to ergodicity.

Chapter 5 will define entropy. This chapter can be seen as three sections. The first section will
discuss the measure-theoretic entropy. The next section will explore the topological entropy. The final
section will give a relation between the measure-theoretic and topological entropies. This relation is also
known as the variation principle.

Remark on References:
The measure theory discussed in Chapter 0 are based on Walter Rudin’s Real and Complex Analysis.
Ergodic transformations in Chapter 0, Chapter 1 till Chapter 4 are based on C E Silva’s Invitation to
Ergodic Theory. The final Chapter that discusses entropy is based on Peter Walters’ Introduction to
Ergodic Theory.
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Chapter 0

A Brief Review of Measure Theory

0.1 Preliminaries

In this chapter, we will give a review of some measure theory concepts from Walter Rudin’s book, Real
and Complex Analysis.

Definition 1.1.1 A σ-algebra in a set X is a collection of subsets of X, denoted F , satisfying the
following properties:

1. X ∈ F

2. For A ⊆ X, A ∈ F implies Ac ∈ F

3. If An ∈ F for n = 1,2,3,... and set A = ∪∞n=1 then An ∈ F .

Definition 1.1.2: Suppose F is a σ-algebra in X. Then (X,F) is called a measurable space and we
call the elements of F as measurable sets in X.

Definition 0.1.3: Let (X,F) be a measurable space. Then the function µ : F → R≥0 is called a
measure on (X,F) if µ satisfies the following,

1. For all A ∈ F , µ(A) ≤ 0.

2. µ(∅) = 0.

3. For countable collections of pairwise-disjoint sets {An}∞n=0 ∈ F ,

µ(

∞⋃
n=0

An) =

∞∑
n=0

µ(An)

With µ as a measure over a measurable space (X,F), we can call (X,F , µ) a measure space. A measure
space is called a probability space if µ(X) = 1. (X,F , µ) is a finite measure space if the measure µ
takes only finite values.
Let A = (a, b) or, [a, b] ∈ R. Let l(A) = b-a. Then the Lebesgue outer measure, µ∗(A) is defined as

µ∗(A) =

{ ∞∑
n=0

l(In) : A ⊆
∞⋃
n=0

In where for eachn ∈ Z, In is a open interval

}
A set A ∈ F is called a null-set if its Lebesgue outer measure is zero.

Definition 0.1.4: A measure space (X,F , µ) is said to have σ-finite-measure space if (X,F , µ) is a
finite measure space and X is a countable union of measurable sets An with finite measure, i.e.,

X =

∞⋃
n=0

An

Definition 0.1.5: A semi-ring is a collection A of subsets on a non-empty set X such that

2



1. A is non-empty

2. If U, V ∈ A then, U ∩ V ∈ A

3. If U, V ∈ A then, U \ V =
n⊔
j=1

Ij , where Ij ∈ A are disjoint.

Definition 0.1.6: We say that a property on X holds almost everywhere if it holds except on a set
of measure zero.

Definition 0.1.7: A semi-ring A of measurable sets of X with finite measure is said to be a sufficient
semi-ring for the measure space (X,F , µ) if for every U ⊂ F ,

µ(U) = inf

{ ∞∑
j=1

µ(Ij) : U ⊂ ∪∞j=1Ij and Ij ∈ A for j ≥ 1

}
We can see that the dyadic intervals in [0, 1] forms a sufficient semi-ring of [0, 1].

Lemma 0.1.8: Let A be a sufficient semi-ring for a non-atomic measure space (X,F , µ). If U ∈ F
with finite measure, then for any δ > 0, there exists a set I ε A such that I is (1− δ)-full of U .

Proof. First we try to show the existence of set H∗ := tNj=1Ij , where for each j ∈ N, Ij ∈ A and are
pair-wise disjoint, such that µ(U4H∗) < ε, for any arbitrary ε > 0.

Choose Ij ε A such that Hε := ∪∞j=1Ij ⊃ U and µ(Hε) < µ(U) + ε
2 . Then µ(Hε \ U) < ε

2 . There

exists an n > 1 such that 0 ≤ µ(Hε)− µ(∪Nj=1Ij) <
ε
2 . Call this union of N sets as H∗ := ∪Nj=1Ij . Then,

µ(H∗4U) = µ(H∗ \ U) + µ(U \H∗)
≤ µ(Hε \ U) + µ(Hε \H∗)

≤ ε

2
+
ε

2
= ε.

But Ij ’s are disjoint. So this proves the existence of such an H∗.

Now choose ε > 0 such that,

µ(H∗4U) < ε µ(U)

then, ε µ(U) > µ(U)− µ(U ∩H∗)

µ(U ∩H∗) > (1− ε) µ(U) (1)

also,

µ(U)− ε µ(U) < µ(H∗) < µ(U) + ε µ(U)

< (1 + ε) µ(U)

Assume for all j ∈ {1, 2, ..., N}, µ(U ∩ Ij) ≤ (1− δ) µ(Ij). Then,

µ(U ∩H∗ < (1− δ) µ(H∗)

Therefore,
µ(U ∩H∗ < (1− δ) (1 + ε) µ(U)

But if ε is chosen such that ε = δ
2−δ then,

(1− δ) (1 + ε) = (1− δ) (1− δ

2− δ
)

= (1− δ) 2

2− δ

= 1− δ

2− δ
= 1− ε.

3



=⇒ µ(U ∩H∗) < (1− ε)µ(U)

But from eqn.(1), this is a contradiction. So there must exist some j ∈ {1, 2, ..., N} such that µ(U∩Ij) >
(1− δ) µ(Ij).

Definition 0.1.9: A function f : X → Y , where X is a measurable space and Y a topological space, is
said to be measurable if f−1(V ) is a measurable set in X for every open set V in Y .

From definitions above we can observe the following:

1. ∅ ∈ F , as X ∈ F implies ∅ = Xc ∈ F .

2. For any finite collection in F , say Ai for 1 ≤ i ≤ n , we have
⋃n
i=1Ai ∈ F .

3. F is also closed under countable (or finite) intersection of measurable sets.

4. For A, B ∈ F , A−B and B −A ∈ F

Example 0.1.10: Consider a monotonic function f : [a, b]→ R where a, b ∈ R. Then f is differentiable
almost everywhere.

Theorem0.1.11: (Fatou’s Lemma) Suppose (X,F) be a measurable space. Let {fn : X → R≥0} be
a collection of measurable non-negative functions, then∫

lim inf
n→∞

fndµ ≤ lim inf
n→∞

∫
fndµ

Theorem 0.1.12: (Lebesgue’s Monotone Convergence Theorem) Let {fn} be a sequence of
functions such that fn(x) is monotone increasing for each x. Let f = limn→∞ fn. Then,∫

f dx = lim
n→∞

∫
fn dx

Theorem 0.1.13: (Lebesgue’s Dominated Convergence Theorem) Let fn : X → R be a sequence
of measurable functions over a measurable space (X,F) such that |fn| ≤ g for all n = 1,2,3...,where g is
integrable and let limn→∞ fn = f a.e. Then,

– f is integrable

– limn→∞
∫
fn dx =

∫
f dx

Definition 0.1.14: Let µ1 and µ2 be two probability measures on a measurable space (X,F). We
say that µ1 is absolutely continuous with respect to µ2 (denoted µ1 << µ2) if for A ∈ F , µ1(A) = 0
whenever µ2(A) = 0.

Theorem 0.1.15: (Radon-Nikodym Theorem) Let µ1 and µ2 be two probability measures on a
measurable space (X,F). Then µ1 << µ2 if and only if there exists f ∈ L2(µ2) with f ≥ 0 and∫
f dµ = 1 such that µ1(A) =

∫
A
f dµ2, ∀A ∈ F . And any other function with these properties must be

equal to f, a.e..

This function f is called the Radon-Nikodym derivative. It is denoted by dµ1

dµ2
.

0.2 Transformations

Definition 0.2.1: A function which has the same range and domain is called a transformation.
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Definition 0.2.2: For any set X, if T : X → X is a transformation on X, the nth iterate of x ∈ X
with respect to the transformation T is denoted as Tn(x), where

T 0(x) = x

Tn+1(x) = T ◦ Tn for n ≥ 0

We can see that if T is bijective on X, then T is an invertible transformation.

Example 0.2.3: Let X = [0, 1). A rotational transformation of X can be constructed using modulus 1.
For any α ∈ R, rotation by α can be defined as

Rα : [0, 1)→ [0, 1)

x → x+ α mod 1

Note: One can see that Rα is invertible and R−1
α is R−α.

Definition 0.2.4: Let (X,F) be a measurable space and T : X → X is a transformation such that for
all A ∈ F , T−1(A) ∈ F . Then T is called a measurable transformation.

Definition 0.2.5: Let (X,F, µ) be a measure space. A transformation T is measure-preserving if
µ(T−1(A)) = µ(A), for all sets A ∈ F . The measure µ will be an invariant measure for T .

Lemma 0.2.6: Let T be a measure-preserving transformation on a measure space (X,F , µ). Let
A, B, I, & J be measurable sets in X such that A ⊂ I and B ⊂ J . Then for all integers n > 0,

µ(T−n(A) ∩B) ≥ µ(T−n(I) ∩ J)− µ(I \A)− µ(J \B).

Proof. The proof becomes simpler if we look at the following diagram.

I J

T−n(A) B

Here,
(T−n(I) ∩ J) ⊂ (T−n(A) ∩B) ∪ (T−n(I) \ T−n(A)) ∪ (J \B)

With T being measure-preserving, we get,

µ(T−n(I) ∩ J) ≤ µ(T−n(A) ∩B) + µ(I \A) + µ(J \B)

On re-arranging the order,

µ(T−n(A) ∩B) ≥ µ(T−n(I) ∩ J)− µ(I \A)− µ(J \B).

5



Example 0.2.7: Define a transformation on [0,1) as follows,

T : [0, 1)→ [0, 1)

x→ 2x mod 1 =

{
2x, if 0 ≤ x ≤ 1

2

2x− 1, if 1
2 ≤ x ≤ 1

Such a map is called a Doubling Map. To show this map T is measure-preserving on the measure
space ([0, 1),F , λ), where λ is the Lebesgue measure, define,

S1 : [0, 1)→ [0,
1

2
)

S1(y) =
y

2

S2 : [0, 1)→ [
1

2
, 1)

S2(y) =
y

2
+

1

2

For any Measurable set A in [0, 1), A
2 and A

2 + 1
2 are measurable. Also, λ(A2 ) = 1

2λ(A) = 1
2λ(A + 1

2 ) =

λ(A2 + 1
2 ). Then with T−1(A) = S1(A) t S2(A),

λ(T−1) = λ(S1(A)) + λ(S2(A))

= λ(
A

2
) + λ(

A

2
+

1

2
)

= 2λ(
A

2
)

= λ(A)

Recall Example 1.2.3, on how a rotational transformation was defined. In order to prove Kronecker’s
Theorem for Irrational Rotations (also known as the Kronecker’s Approximation Theorem), we would
define a metric d on [0,1) as,

d(x, y) = min{|x− y|, 1− |x− y|} , for x, y ε [0, 1)

Note that for a rotational transformation Rα, d(Rα(x), Rα(y)) = d(x, y) for any x, y ∈ [0, 1).

Theorem 0.2.8 (Kronecker’s Theorem) For any x ∈ [0, 1) and a rotational transformation Rα with
α being irrational , the sequence {Rnα(x)}n≥0 in [0, 1) is dense.

Proof. First we will show for any m,n ∈ N,if Rmα (x) = Rnα(x) then m = n. For this, if Rmα (x) = Rnα(x)
then,

x+m mod 1 = x+ n mod 1

which implies,

0 ≡ (m− n)α mod 1

We get (m− n)α ∈ Z. But α is irrational, so the only possibility is to have n = m. Therefore, for each
n, the values of Rnα(x) are unique.
As the sequence {Rnα(x)} fall in the interval [0, 1) , and [0, 1) being bounded, we can invoke the Bolzano-
Weierstrass Theorem here. The theorem says that there exists a converging subsequence in {Rnα(x)}.
Then for an arbitrary ε > 0, there exists p, q ε N such that Rpα(x) and Rqα(x) belong to this converging
subsequence and d(Rpα(x), Rqα(x)) < ε. But Rpα(x) = x+ pα mod 1 so,

|x+ pα− (x+ qα) mod 1| < ε

|x+ (p− q)α− x mod 1| < ε

d(Rp−qα (x), x) < ε

Set δ = d(Rp−qα (x), x). Consider the sequence {Rn(p−q)
α (x)}. Here taking any consecutive terms, say

R
(n+1)(p−q)
α (x) and R

n(p−q)
α (x), they differ by δ. Thus the sequence {Rn(p−q)

α (x)} subdivides [0, 1) into
intervals of the length less than ε. This shows {Rnα(x)}n≥0 is dense in [0, 1).
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Lemma 0.2.9: A measurable transformation T is measure preserving if and only if for all integrable
non-negative function f : X → [0,∞), ∫

f ◦ Tdµ =

∫
fdµ

Proof. Let T be a measurable transformation. Suppose for all non-negative integrable function f satisfy,∫
f ◦ Tdµ =

∫
fdµ. Let f = 1A. f is clearly a non-negative integrable function. Then any measurable

set A of finite measure, f ◦ T = 1T−1(A).
Note that

∫
f ◦ Tdµ = µ(T−1(A)) and

∫
A
fdµ = µ(A). But we have

∫
f ◦ Tdµ =

∫
fdµ. Therefore,

µ(T−1(A)) = µ(A)

If A has infinite measure, let An be point-wise disjoint and µ(An) <∞ for each n such that, A = t∞n=1An.
Then,

µ(T−1(A)) = µ(T−1(t∞n=1An))

=

∞∑
n=1

µ(T−1(An))

=

∞∑
n=1

µ(An)

= µ(t∞n=1An)

= µ(A)

Thus we can say T is a measure preserving transformation.
To show the other way, suppose T is measure preserving. Then f = 1A gives

∫
f ◦Tdµ =

∫
fdµ. Let

f be any non-integrable function. Then there exists a sequence of simple functions {Si}∞i=1 such that
S1 ≤ S2 ≤ S3 ≤ ... ≤ f and limn→∞ Sn = f , for all x ∈ X. Recall that a simple function S taking distinct
values a1, a2, a3, ...an ∈ R, is of the form, S(x) =

∑N
j=1 ai1Ej (x), where Ej = {x ∈ X : S(x) = aj} and

tNj=1Ej = X.Thus each Sn’s are integrable and are finite sums of indicator functions. So for each n ≤ 1,∫
Sn ◦ Tdµ =

∫
Sndµ

Applying the monotone convergence theorem here, limn→∞ Sn(x) = f(x) gives,∫
f ◦ Tdµ =

∫
lim
n→∞

Sn ◦ Tdµ

= lim
n→∞

∫
Sn ◦ Tdµ

= lim
n→∞

∫
Sndµ

=

∫
lim
n→∞

Sndµ

=

∫
fdµ

7



Chapter 1

Introduction to Ergodic Theory

1.1 Recurrence

Definition 1.1.1: Let T be a transformation on a measure space (X,F , µ). If for every measurable set
A ⊆ X with µ(A) > 0, there is a null set N in A (i.e., µ(N) = 0) such that for all x ∈ A/N , and some
integer n (depending on x) with Tn(x) ∈ A, then T is said to be recurrent.

Definition 1.1.2: A transformation T on X is said to be conservative if for every measurable set A
with positive measure, there exists an integer n such that µ(A ∩ T−n(A)) > 0.

Lemma 1.1.3: A transformation T on a measure space (X,F , µ) is conservative if and only if T is
recurrent.

Proof. Assume T is conservative and let A be a measurable set in X with positive measure. Define a set
S = A \ ∪∞n=1T

−n(A). If this set S has positive measure, T being conservative will imply there is some
in integer n such that µ(S ∩ T−n(S)) > 0. This means there is some x ∈ S such that Tn(x) ∈ S.But the
way we defined S will discard all such x. Hence we get a contradiction to the assumption that µ(S) > 0.
Therefore S = A \ ∪∞n=1T

−n(A) = 0
This result shows that the set of all points in A which after some iterations fails to be in A is a set of
measure zero. So from definition 1.3.1, it can be seen that T is recurrent. In fact we can observe that,
T is recurrent if and only if for all measurable sets A of positive measure, µ(A \ ∪∞n=1T

−n(A)) = 0.
This will make the converse easier to prove. Suppose T is recurrent and A be a measurable set of positive
measure. Then,

µ(A \ (∪∞n=1T
−n(A) ∩A)) = µ(A \ ∪∞n=1T

−n(A))

= 0

But µ(A) > 0, so there is some integer n with µ(T−n(A) ∩A) > 0. Therefore T is conservative.

Before heading towards the Birkhoff Ergodic Theorem which would be stated in the next chapter, we
need to prove the Poincaré’s Recurrence Theorem. The Ergodic Theorem can be seen as an improvement
on Poincaré’s theorem. This theorem, proposed in 1890 by Henri Poincaré and later proved in 1919 by
Constantin Carathéodory , had a prominent role in the development of statistical mechanics.

Theorem 1.1.4: (Poincaré’s Recurrence Theorem) Let T be a measure-preserving transformation
on a finite measure space (X,F , µ) then T is recurrent.

Proof. From Lemma 1.1.3, it is sufficient to show that T is conservative. Suppose T is not conservative.
Then, for any measurable set A of positive measure, µ(A ∩ T−n(A)) = 0, ∀ n > 0. Choose two integers
i and j such that i 6= j. Let j = m + i for some integer m > 0. Then using the fact that T is
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measure-preserving,

µ(T−j(A) ∩ T−i(A)) = µ(T−(m+i)(A) ∩ T−i(A))

= µ(T−i(T−m(A) ∩A))

= µ(T−m(A) ∩A)

= 0

We Observe that {T−n(A)}n≥0 are almost pairwise disjoint. So,

µ(∪∞n=0T
−n(A)) =

∞∑
n=0

µ(T−n(A))

=

∞∑
n=o

µ(A)

=∞

But (X,F , µ) is a finite measure space and thus we get a contradiction. Hence T is conservative and
from Lemma 1.3.3, T is also recurrent

Definition 1.1.5: Let T be a transformation on a measure space X.

• A subset A ⊆ Xis said to be positively T -invariant if x ∈ A =⇒ T (x) ∈ A

• A subset A ⊆ X is strictly T -invariant if T−1(A) = A or in other words, x ∈ A ⇐⇒ T (x) ∈ A.

Observe that if a subsetA ⊆ X is positively invariant thenA ⊆ T−1(A). Also if we restrict T to a subset
A and still be able to define a transformation then A is positively invariant.

Example 1.1.6: Let X = [0,∞) and T : X → X such that T (x) = x + 1. Clearly T is a measure-
preserving transformation. Let A = [1,∞). A ⊆ X and A is positively T -invariant. But A is not strictly
T -invariant.

Definition 1.1.7: a set Y is said to be Strictly invariant mod µ if Y = µ(T−1(Y )) mod µ, where
we say A = B mod µ if µ(A4B) = 0, with A and B being measurable sets.

1.2 Ergodic Transformations

Definition 1.2.1: A measure-preserving transformation T on a measure space (X,F , µ) is said to be
ergodic if for every strictly T -invariant set A ⊆ X , either µ(A) = 0, or µ(Ac) = 0.

Lemma 1.2.2: Let T be a measure-preserving transformation on (X,F , µ) which is a σ-measure space,
Then the following are equivalent:

1. T is ergodic and recurrent.

2. µ(X \ ∪∞i=1T
−i(A)) = 0, for every A ⊆ X of positive measure.

3. For every measurable set A of positive measure and for a.e. x ∈ X ∃ an integer n ≥ 0 such that
Tn(x) ∈ A.

4. If A and B are sets of positive measure then ∃ an integer n ≥ 0 such that T−1(A) ∩B 6= ∅.

5. If A and B are of positive measure then ∃ an integer n ≥ 0 such that µ(T−n(A) ∩B) > 0.

Proof. First we will prove (5) =⇒ (1). Let A ⊂ X be a strictly invariant set of positive measure, which
means T−1(A) = A for all integers n > 0. Consider the complement of A, i.e., Ac. If Ac has positive
measure, then (5) says that ∃ an integer n > 0 such that,

µ(T−1(A) ∩Ac) > 0

9



implies,

µ(A ∩Ac) > 0

But this is absurd. So µ(Ac) = 0 as long as A has positive measure. This shows that T is ergodic.

To show recurrence, take the set B as A and (5) gives the existence of an integer n > 0 such that
µ(T−1(A) ∩A) > 0 which in fact the definition of a recurrent transformation.

For (1) =⇒ (2), let A be a measurable set of positive measure. Let S = ∪∞n=1(A). Note that
T (S) = ∪∞n=1T

−(n+1)(A) = ∪∞n=2T
−n(A). So T−1(S) ⊂ S. With T being recurrent, µ(S \ T−1(S) = 0.

This shows, S = T−1(S) mod µ (i.e., S is strictly invariant mod µ). But S has positive measure. Thus,

µ(Sc) = 0

implies,

X = S mod µ

For (2) =⇒ (3), let x ∈ A. Then,

µ(X \ ∪∞n=1T
−n(A)) = 0 ⇐⇒ x ∈ T−n(A) for some n > 0

⇐⇒ T−n(x) ∈ A.

For (2) =⇒ (4), with µ(X \ ∪∞n=1T
−n(A)) = 0, ∪∞n=1T

−n(A) = X mod µ. If A0 ⊂ X with positive
measure, then there should exist some integer n > 0 such that µ(T−n(A) ∩ A0) > 0. This would imply
T−n(A) ∩A 6= ∅.

For (4) =⇒ (5), we will prove the contrapositive of the same. Let A and B be two measurable sets
with positive measure in X. Suppose for all integers n > 0, T−n(A) ∩ B = ∅. This tells that there is
no such x ∈ B such that after some nth iteration T−n(x) ∈ A. Therefore, µ(T−n(A) ∩ B) = 0 for all
n > 0.

With the help of above lemmas, we could now show that irrational rotations are ergodic. Given a
measurable set, A and I (which could be an interval or a dyadic interval, but in general sense I should
be from a semi-ring), we say I is (1− δ)-full of A, where 0 < δ < 1, if λ(A ∩ I) > (1− δ)λ(I).

Theorem 1.2.3: Irrational rotations are ergodic.

Proof. Let Rα be the rotational transformation by an irrational number α on X = [0, 1). Let λ denote
the Lebesgue measure. Let U0 and V0 be any sets of positive measure. Then invoking Lemma 0.1.7,
there exists dyadic intervals I and J such that 3

4 -full of U0 and J 3
4 -full of V0, i.e.,

λ(U0 ∩ I) ≥ 3

4
λ(I)

and, λ(V0 ∩ J) ≥ 3

4
λ(J)

If either I or J is bigger compared to the other (say J is found to be here), then take one of its half
which is 3

4 -full of V0. Compare this new set to I and if they do not have the same measure then repeat
this halving process till the measures are of the same. Rename the set that matches the measure of I as
J .

Let U = U0 ∩ I and V = V0 ∩ J . Suppose I = [a, b) and J = [c, d) such that a ≤ d. Note that both I
and J are contained in [0, 1).

Looking at the orbit of b, i.e.,
{
Rnα(b)

}∞
n≥0

, we know it is dense in [0, 1). So there exist an n ≥ 0 such

that ,

d− d− c
4

< Rn(b) < d
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Therefore,

λ(Rn(J ∩ J) >
3

4
λ(J).

And from Lemma 0.2.6,

λ(Rn(U) ∩ V ) ≥ λ(Rn(I) ∩ J)− λ(I \ U)− λ(J \ V )

≥ 3

4
λ(J)− 1

4
λ(I)− 1

4
λ(I)

≥ 1

4
λ(J) > 0, using the fact that λ(I) = λ(J)

≥ 1

4
(J) > 0.

Therefore, Rα is ergodic.

Definition 1.2.4: For any measure-preserving transformation T , if for all integers n ≥ 0, T−n is ergodic
then T is a totally ergodic transformation.

Proposition 1.2.5: Let T be an invertible measure-preserving transformation on a non-atomic σ-finite
measure space (X,F , µ). If T is ergodic then T is recurrent.

Proof. Suppose T is not recurrent. Then there exists a set U of positive measure such that

µ(T−n(U) ∩ U) = 0 ∀ n > 0.

=⇒ µ(∪∞n=−∞,n6=0(T−n(U) ∩ U) = 0.

Define,

W : = U \ ∪∞n=−∞,n6=0(T−n(U) ∩ U)

=⇒ µ(W ) = µ(U) > 0.

As a consequence of how we defined W, ∀ m 6= n, Tm(W ) ∩ Tn(W ) = ∅. As X is non-atomic, we can
always find a subset B ⊂W such that 0 < µ(B) < µ(W ). Define B∗ := ∪∞n=−∞T

−n(B). Note that B is
T -invariant but also have µ(B∗) > 0 and µ((B∗)c) > 0. This contradicts T being ergodic. Therefore T
is recurrent.

1.3 Eigen Values and Eigen Functions

Definition 1.3.1: Let T : X → X be a measure-preserving transformation for a probability space
(X,F , µ). An eigen value of T is the number λ ∈ C if there is a non-zero almost everywhere function
f ∈ L2(X,µC) such that

f(T (x)) = λf(x), a.e.

Such a function f is called an eigen function or eigen vector corresponding to λ.

Lemma 1.3.2: The eigen values lie in the unit circle of C, in other words,|λ| = 1.

Proof. Let λ be an eigen value. Then λ must satisfy f(T (x)) = λf(x)f, a.e., and the eigen function
f ∈ L2(X,µ,C). Using the fact that T is measure-preserving,∫

|f ◦ T |2 dµ =

∫
|λ|2|f |2 dµ∫

|f |2 ◦ T dµ = |λ|2
∫
|f |2dµ∫

|f |2 dµ = |λ|2
∫
|f |2 dµ
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With
∫
|f |2 dµ 6= 0,

=⇒ |λ|2 = 1

Lemma 1.3.3: Let T : X → X be a measure-preserving transformation for a space (X,F , µ). T is
ergodic if and only if for all measurable functions f : X → R, if f is T -invariant (i.e., f(x) = f(T (x)),
a.e.) then f is constant a.e.

Proof. Suppose T is ergodic but the T -invariant function f is not constant a.e. As f is not constant
there is some number α such that the sets {x : f(x) < α} and {x : f(x) > α} have positive measures.
But T -invariance gives,

T−1({x : f(x) < α}) = {x : f(x) < α}

and

T−1({x : f(x) > α}) = {x : f(x) > α}

Also note that these two sets are disjoint. But this leads to a contradiction as T being ergodic, both
T -invariant sets cannot have positive measures. There f must be constant a.e.

For the converse, for any T -invariant set A ∈ F , the characteristic function 1A is T -invariant as,

1A(T (x)) = 1T−1(A)(x) = 1A(x)

Recall that 1A ∈ Lp(X,µ). So 1A is constant. This implies either,

µ(A) = 0 or µ(Ac) = 0

So T is ergodic.

Theorem 1.3.4: Let T : X → X be a measure-preserving transformation for a probability space
(X,F , µ). If T is ergodic and f is an eigen function, then |f | is a constant a.e.

Proof. Let λ be the eigen value such that f is its eigen function. Then,

f(T (x)) = λf(x), a.e.

From Lemma 1.3.2, |λ| = 1. So,

|f | ◦ T = |f ◦ T | = |λ f |
= |λ| |f |
= |f |

So from Lemma 1.3.3, |f | must be a constant a.e.
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Chapter 2

The Ergodic Theorem

In statistical mechanics, upon its inception, an important question for scientists were to find a relation
between the space-average and time-average of a dynamical system. The solution to this question was the
Ergodic Theorem, proved in 1931 by G D Birkhoff. Around the same time, J Von Neumann also proved
the theorem which is known as the mean ergodic theorem. We will prove it after showing Birkhoff’s
theorem.

In its simplest form, for an ergodic measure-preserving transformation, T on a probability space
(X,F , µ),

lim
n→∞

1

N

N−1∑
n=1

1A(Tn(x)) = µ(A)

for all measurable sets A in X and for each x ∈ X outside a measure zero set in X.
The time-average of x of a dynamical system (X,F , µ, T ) is the average number of times the images of x
under T falls in A. The space-average is obviously the measure of A. And here, the Birkhoff’s theorem
says that both are the same.

2.1 Birkhoff’s Ergodic Theorem

Theorem 2.1.1: (Birkhoff’s Ergodic Theorem) Let T be a measure-preserving transformation on
a probability space (X,F , µ). If f : X → R is an integrable function then,

1. f̃(x) := limn→∞
1
n

∑n−1
i=0 f(T i(x)) exists for all x ∈ X \N where N is some null set depending on

f .

2. f̃(T (x)) = f̃(x), a.e.

3. For any T -invariant measurable set A, ∫
A

fdµ =

∫
A

f̃dµ

and if T is ergodic then,

lim
n→∞

1

n

n−1∑
i=0

f(T i(x)) =

∫
fdµ , a.e.

The proof of the theorem is long and involved. Proving the existence of the limit is the hardest out
of the 3 above statements. So we will prove it at the end of this section. For now let us assume that the
limit,f̃(x) = limn→∞

1
n

∑n−1
i=0 f(T i(x)) exists for all x ∈ X \N .
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For the proof, we will define the following notations,

fn(x) :=

n−1∑
i=0

f(T i(x)) ; n ≥ 1

f∗(x) := lim inf
n→∞

1

n

n−1∑
i=0

f(T i(x))

f∗(x) := lim sup
n→∞

1

n

n−1∑
i=0

f(T i(x))

Lemma 2.1.2: f∗(x) and f∗(x) are T -invariant.

Proof. Observe that

fn(T (x) =

n−1∑
i=0

f(T i(T (x)))

=

n−1∑
i=0

f(T i+1(x))

= fn+1(x)− f(x)

So with,
1

n
fn(T (x)) =

n+ 1

n
.

1

n+ 1
fn+1(x)− 1

n
f(x) (2.1)

taking lim inf on both sides ,

lim inf
n→∞

1

n
fn(T (x)) = lim inf

n→∞

n+ 1

n
. lim inf
n→∞

1

n+ 1
fn+1(x)− f(x). lim inf

n→∞

1

n

= 1 . lim inf
n→∞

1

n+ 1
fn+1(x)− f(x) . 0

= lim inf
n→∞

1

n+ 1
fn+1(x)

= lim inf
n→∞

1

n
fn(x)

which means f∗(T (x)) = f∗(x). Similarly if we take lim sup on the both sides of eqn. 2.1, f∗(T (x)) =
f∗(x).

Thus this lemma becomes the proof to the second claim of the theorem 2.1.1, which says about the
T -invariant of f̃ (Note that we have assumed that f̃(x) exists).
Now we wish to prove the claims of the Theorem 2.1.1 where the transformation T is assumed to be
ergodic. For this the following two lemmas are needed.

Lemma 2.1.3: Let g : X → R be a measurable function and p ∈ Z with p ≥ 1. Suppose there is a
measurable function, τ : X → {1, 2, 3, ..., p} such that,

gτ(x) =

τ(x)−1∑
i=1

g(T−i(x)) ≤ 0

then for all n > p,

gn(x) ≤
n−1∑
i=n−p

|g(T i(x))|

Proof. Looking at the orbit of x from x to τ(x)−1, their sum of the images under g, i.e.,
∑τ(x)−1
i=o g(T i(x)) ≤

0. Hence, gn(x) ≤
∑n−1
i=τ(x) g(T i(x)). Also with, y = T τ(x)(x) to T τ(y)−1(y), we have

∑τ(y)−1
i=τ(x) g(T i(x)) ≤

0, as a consequence of the assumption. Similarly we can find finite sets of consecutive terms such that
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those finite sums are less than or equal to zero. Then after removing such sums from gn(x), the number
of terms remaining is at most p (as τ(x) is bounded by p). Thus the function gn(x) is bounded by the
absolute value of the finite sums of the last remaining terms. We get,

gn(x) ≤
n−1∑
i=τ(x)

|g(T i(x))|

Lemma 2.1.4: Let p ≥ 1 be an integer and f : X → R be a measurable function.

1. Let Ep := {x ∈ X|fn(x) ≥ 0 , for all n,1 ≤ n ≤ p}. Then for all integers n ≥ p and for a.e., x ∈ X,

fn(x) ≤
n−1∑
i=0

f(T i(x)) . 1Ep(T i(x)) +

n−1∑
i=n−p

|f(T i(x))|

2. For each real number r define,

Erp = {x ∈ X :
1

n

n−1∑
i=o

f(T i(x)) ≥ r for all1 ≤ n ≤ p}

then, ∫
fdµ ≤

∫
Enp

fdµ+ r(1− µ(Erp))

Proof. For the first part of the lemma, we wish to invoke the previous lemma over to the function,
g(x) = f(x) − f(x) . 1Ep(x). For this we need to construct a function τ(x) that would satisfy the
hypothesis of Lemma 2.1.3 for g. Let,

τ(x) :=

{
1 , if x ∈ Ep
min{1 ≤ k ≤ p : fk(x) < 0} , if x /∈ Ep

Suppose x ∈ Ep, then τ(x) = 1 and gτ(x) = g(x). And note that f(x) . 1Ep(x) = f(x). We get gτ (x) = 0.
Suppose x /∈ Ep, then fτ (x) < 0. Note that if for an i ∈ N, T i(x) /∈ Ep, the term f(T i(x)) . 1Ep(T i(x)) =

0. And if T i(x) ∈ Ep then f(T i(x)) = f1(T i(x)) ≥ 0. Hence fτ(x)(x) ≤
∑τ(x)−1
i=0 f(T i(x)) . 1Ep(T i(x)),

a.e. With τ(x) satisfying the hypothesis of Lemma 2.1.3, we can apply the result of the same here, which

gives, gn(x) ≤
∑n−1
i=o |g(T i(x))|. From how g was defined,

fn(x)−
n−1∑
i=0

f(T i(x)) . 1Ep(T i(x)) ≤
n−1∑
i=n−p

|f(T i(x))− f(T i(x)) . 1Ep(T i(x))|

But,
n−1∑
i=0

|f(T i(x))− f(T i(x)) . 1Ep(T i(x))| ≤
n−1∑
i=n−p

|f(T i(x))|

Therefore,

fn(x) ≤
n−1∑
i=0

f(T i(x)) . 1Ep(T i(x) +

n−1∑
i=n−p

|f(T i(x)|

This thus proves the first part of the lemma. For the other part, we defined, Erp := {x : (f − r)n(x) ≥
0 , for all1 ≤ n ≤ p}. Applying the first part of the lemma to f − r,

(f − r)n(x) ≤
n−1∑
i=1

(f − r)(T i(x)) . 1Erp (T i(x)) +

n−1∑
i=n−p

|(f − r)(T i(x))|
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T is measure-preserving, so integrating on both sides of the above inequality will give,∫
(f − r)n(x)dµ ≤

∫ [ n−1∑
i=0

(f − r)(T i(x)) . 1Erp (T i(x)) +

n−1∑
i=n−p

|(f − r)(T i(x))|
]

∫ n−1∑
i=0

f(T i(x))− nr ≤
∫
Erp

[ n−1∑
i=0

f(T i(x))− nr
]
dµ+

∫ n−1∑
i=n−p

|(f − r(T
i(x))|dµ

n

∫
(f − r)dµ ≤ n

∫
Erp

(f − r)dµ+

n−1∑
i=n−p

∫
|f − r|dµ

taking m →∞

,∫
(f − r)dµ ≤

∫
Erp

(f − r)dµ+ lim
n→∞

1

n

n−1∑
i=n−p

∫
|f − r|dµ

We get,

∫
(f − r)dµ ≤

∫
Erp

(f − r)dµ

On rearrangement,

∫
fdµ ≤

∫
Ep

fdµ+ (1− µ(Erp))r.

With these lemmas, we can now proceed to prove the Birkhoff’s theorem given that the transforma-
tion T is ergodic.

Proof. (of Theorem 2.1.1, given that T is ergodic) We begin with proving the following claim,∫
fdµ ≤ f∗(x) , a.e. (2.2)

Let A := {x : f∗(x) <
∫
fdµ}. It is enough to show that µ(A) = 0 to prove the claim. Suppose µ(A) > 0,

then we can write,

A =
⋃
r∈Q
{x : f∗(x) < r <

∫
fdµ}

Let Cr = {x : f∗(x) < r <
∫
fdµ}. As µ(A) > 0, ∃ r ∈ Q such that µ(Cr) > 0. Note that Cr is

T -Invariant because f∗ is T -invariant. Hence with T being ergodic here, µ(Cr) = 1. Recall that we have

defined, Erp = {x : 1
n

∑n−1
i=0 f(T i(x) ≥ r , for all 1 ≤ n ≤ p}.

µ(Cr) = 1 =⇒ µ(∩∞p=1E
r
p) = 0

So,
lim
p→∞

µ(Erp) = 0

But, ∫
fdµ ≤

∫
Erp

fdµ+ r(1− µ(Erp)) =⇒
∫
fdµ ≤ r.
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This contradicts the choice of r. Therefore µ(A) = 0.
With eqn.2.2 proved, applying the same on the function ′ − f ′,∫

−fdµ ≤ lim inf
n→∞

1

n

n−1∑
i=o

−f(T i(x)) , a.e.

or,

lim sup
n→∞

1

n

n−1∑
i=0

f(T i(x)) ≤
∫
fdµ , a.e. (2.3)

Thus from equations 2.2 and 2.3,

=⇒
∫
fdµ = lim

n→∞

1

n

n−1∑
i=0

f(T i(x)) , a.e.

Theorem 2.1.5: Let T be a finite measure-preserving transformation on a probability space (X,F , µ).
T is ergodic if and only if for all measurable sets A,B,

lim
n→∞

1

n

n−1∑
i=0

µ(T−i(A) ∪B) = µ(A)µ(B) (2.4)

Proof. Suppose the transformation T is ergodic, and let A and B be two measurable sets in X. We know
that 1A is integrable. By applying the Birkhoff’s Ergodic theorem here,

lim
n→∞

1

n

n−1∑
i=o

1A(T i(x)) = µ(A) ,a.e.

Then,

lim
n→∞

n−1∑
i=0

1A(T i(x)) . 1B(x) = µ(A) . 1B , a.e.

But,

| 1
n

n−1∑
i=0

1A(T i(x)) . 1B(x)| ≤ 1 , a.e.

So we can invoke the dominated convergence theorem, which would give,

lim
n→∞

∫
1

n

n−1∑
i=0

1A(T i(x)) . 1B(x)dµ =

∫
lim
n→∞

1

n

n−1∑
i=0

1A(T i(x)) . 1B(x)dµ(x)

=

∫
µ(A) . 1B(x)dµ

= µ(A)µ(B)

But note that, ∫
1

n

n−1∑
i=0

(T i(x)) . 1B(x)dµ =
1

n

n−1∑
i=0

∫
1T−i(A)∩B(x)dµ

=
1

n

n−1∑
i=0

µ(T−i(A) ∩B)

∴ lim
n→∞

1

n

n−1∑
i=0

µ(T−i(A) ∩B) = µ(A)µ(B)
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For the converse, consider an T -invariant set, A. Then clearly 1
n

∑n−1
i=0 µ(T−i(A) ∪ A) = µ(A). On

replacing B with this set, A into the eqn.2.4,

lim
n→∞

1

n

n−1∑
i=0

µ(T−i(A) ∪A) = µ(A)µ(A)

=⇒ µ(A) = µ(A)µ(A)

=⇒ µ(A) = 1 or 0

Therefore, T is ergodic.

To prove the Birkhoff’s theorem for measure-preserving transformations, we would need the Maximal
Ergodic Theorem. The following lemma will help us in proving this theorem.

Lemma 2.1.6: Let f be a measurable function and let p ≥ 1 be an integer. Define,

Gp = {x ∈ X : fm(x) > 0 , for some m, 1 ≤ m ≤ p}

Then for all integers n ≥ p and for a.e, x ∈ X,

(f+)n(x) ≤
n−1∑
i=0

f(T i(x)) . 1Gp(T i(x)) +

n−1∑
i=n−p

|f(T i(x))|

Proof. Recall that f+(x) := max{0, f(x)}. The strategy to prove this lemma is by using the previous
Lemma 2.1.3 over to the function, g(x) = f+(x)− f(x) . 1Gp(x) and define the τ function as,

τ(x) =

{
1 , if x /∈ Gp
min{1 ≤ k ≤ p : fk > 0} , if x ∈ Gp

But the hypothesis in Lemma 2.1.3 is needed to shown with the g and τ functions we defined, which is
same as showing f+

τ(x)(x) ≤
∑τ−1
i=0 f(T i(x)) . 1Gp(T i(x)), a.e. For this, we consider two cases.

Case 1, x /∈ Gp: Then,

τ(x) = 1

f+
τ = f+

and, fn ≤ 0, ∀n ≤ p

Therefore, f+
n ≤ 0, by the definition of Gp.

Case 2, x ∈ Gp: Then, ∃ 1 ≤ m ≤ p such that, τ(x) = m. So f+
m(x) > 0. It can be observed that

with f+
τ(x) = f+

m(x) =
∑m−1
i=0 f+(T i(x)) then f+

m−1(T (x)) =
∑m−2
i=0 f(T i+1(x)) > 0.

=⇒ T (x) ∈ Gp

Similarly, T i(x) ∈ Gp, ∀ i ≤ m−1. Therefore, f+
m(x) =

∑m−1
i=0 f+(T i(x)) =

∑m−1
i=0 f(T i(x)) . 1Gp(T i(x)).

Now we can invoke Lemma 2.1.5 and we are done.

Lemma 2.1.7 (Maximal Ergodic Theorem): Let f : X → R be an integrable function and define,

G(f) = {x ∈ X : fn(x) > 0 , for some n > 0}

Then, ∫
G(f)

f ≥ 0
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Proof. Let p ≥ 1 be an integer and define,

Gp = {x ∈ X : fn(x) > 0 , for some n, 1 ≤ n ≤ p}

On integrating following the inequality,

f+
n (x) ≤

n−1∑
i=0

f(T i(x)) . 1Gp(T i(x)) +

n−1∑
i=n−p

|f(T i(x))|

and using the fact that T is measure-preserving shows that,

n

∫
f+dµ ≤ n

∫
Gp

fdµ+

n−1∑
i=n−p

∫
|f |dµ

On dividing by n and taking n→∞, ∫
f+dµ ≤

∫
Gp

fdµ

or,

∫
Gp

fdµ ≥ 0 , for each p ≥ 1

It is clear from the definition of G(f) that,

G(f) =
⋃
p>0

Gp

Then applying the dominated convergence theorem,
∫
G
fdµ <∞ and

∫
G
fdµ ≥

∫
Gm

fdµ, for some m > 0.

Therefore,
∫
G
fdµ ≥ 0.

Proof of the existence of f̃ in Birkhoff’s theorem (2.1.1):
Choose r and s ∈ R. Define,

A(r, s) := {x ∈ X : f(∗(x) < r < s < f∗(x)}

If we can show that the measure of this set, i.e., µ(A(r, s)) = 0, for all r, s then f∗ = f∗, a.e. This would
mean the limit exists. It is already been shown that f∗ and f∗ are T -invariant, so in the similar way,
the sets A(r, s) are too T -invariant. Now if we restrict the transformation T to a set A(r, s), looking at
those x ∈ A(r, s) that fall in G(f − s) = {x ∈ A(r, s) : fm(x) > 0 , for some m > 0} are essentially all
the elements in A(r, s). This means we can apply the Maximal Ergodic theorem here over A(r, s), i.e.∫

A(r,s)

(f − s) dµ ≥ 0

This implies ∫
A(r,s)

fdµ ≥ sµ(A(r, s)) (2.5)

Applying the same theorem with G(r − f),

rµ(A(r, s)) ≥
∫
A(r,s)

fdµ (2.6)

From eqn. 2.5 and 2.6

r > s
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But this contradicts r < s. Hence, µ(A(r, s)) = 0.

∴ f∗ = f∗ , a.e.

Now that we have shown the existence of the limit, we can then proceed to prove the third statement
of the theorem for a measure-preserving transformation T . For any function f , we can decompose it
as f = f+ − f−. So for the further part of the proof it is enough to prove for functions f which are
non-negative.
Let f be a non-negative bounded function, a.e. Let A be a T -invariant set. Then with dominated
convergence theorem, ∫

A

f̃dµ =

∫
A

lim
n→∞

n−1∑
i=0

f(T i(x))dµ

= lim
n→∞

n−1∑
i=0

∫
A

f(T i(x))dµ

= lim
n→∞

n−1∑
i=0

∫
A

fdµ

=

∫
A

fdµ

Suppose f is now not a bounded function. Note that for any non-negative f ∈ L1, using Fatou’s lemma,

||f̃ ||1 =

∫
| lim
n→∞

1

n
fn(x)|dµ

≤ lim inf

∫
| 1
n
fn|dµ

=

∫
|f |dµ = ||f ||1

Recall that for any integrable function f , p ≥ 1, and for any ε > 0, there exists a bounded function g
such that ||f − g||p < ε. Let f be approximated by such a bounded function g. Then,

|
∫
A

fdµ−
∫
A

f̃dµ| ≤ |
∫
A

fdµ−
∫
A

gdµ|+ |
∫
A

gdµ−
∫
A

f̃dµ|

≤
∫
A

|f − g|dµ+ |
∫
A

gdµ−
∫
A

g̃dµ+

∫
A

g̃dµ−
∫
A

f̃dµ|

≤
∫
A

|f − g|dµ+ |
∫
A

gdµ−
∫
A

g̃dµ|+ |
∫
A

g̃dµ−
∫
A

f̃dµ|

∵ g is bounded,

≤ ||f − g||1 + 0 + ||f − g||1
≤ ε+ 0 + ε

= 2ε

Hence for any T -invariant measurable set A,∫
A

fdµ =

∫
A

f̃dµ

This concludes the proof. �

2.2 Mean Ergodic Theorem

Let us recall the following lemma from functional analysis,
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Lemma 2.2.1: Let S be a closed linear subspace of L2. Then for each element f in L2 there exists a
unique element f0 in S that is closest to f , that is ,

inf {||f − g||2 : g ∈ L2} = ||f − f0||2
And if P : L2 → S is defined by P (f) = f0, then P is a transformation called the projection on S and
every element f of L2 can be written uniquely as,

f = P (f) + h,

where h is called the orthogonal complement of S.

Theorem 2.2.2: (Mean Ergodic Theorem) Suppose T is a measure-preserving transformation on
a probability space (X,F ,m). Let I = {g ∈ L2 : g ◦ T = g, a.e.} be the subspace of the T -invariant

functions and let P be the projection from L2 to I. Then for any f ∈ L2, the sequence, 1
n

∑n−1
i=o f ◦ T i

converges in L2 to P (f).

Proof. We would desire to decompose the L2 space into two closed spaces of which one is the subspace
I as defined in the theorem. It can be observed that for any f ∈ I, f ◦ Tn = f , a.e., so,

1

n

n−1∑
i=o

f ◦ T i = f = P (f)

Let B = {f : f = g ◦ T − g, g ∈ L2}. Observe that for f = g ◦ T − g,

n−1∑
i=o

f ◦ T i =

n−1∑
i=o

g ◦ T i+1 − g ◦ T i

= g ◦ Tn − g

With this, now it can be shown that the sequence, 1
n

∑n−1
i=o f ◦ T i converges to zero for any function

f ∈ B. For this, suppose {fi} be a sequence of functions in B converging to a function f ∈ L2. Then,

|| 1
n

n−1∑
i=o

f ◦ T i||2 = || 1
n

n−1∑
i=o

(f − fj + fj) ◦ T i||2

≤ 1

n

n−1∑
i=o

||(f − fj) ◦ T i||2 +
1

n

n−1∑
i=o

||fj ◦ T i||2

=
1

n

n−1∑
i=o

||(f − fj)||2 +
1

n

n−1∑
i=o

||fj ◦ T i||2

= 0 +
1

n

n−1∑
i=o

(

∫
|fj ◦ T i|2)

1
2

=
1

n

n−1∑
i=o

(

∫
|gj ◦ T i+1 − gT i|2)

1
2

=
1

n

n−1∑
i=o

(

∫
(g − g)2)

1
2

=
1

n

n−1∑
i=o

(0)
1
2 = 0

Now to show the orthogonal complement of B is I, take f ∈ I and h ∈ B. Then it can be seen that
h = g ◦ T − g for g ∈ L2. And the inner product of h and g is,

(f, h) = (f, g ◦ T − g) = (f, g ◦ T )− (f, g)

= (f ◦ T, g ◦ T )− (f, g)

= (f, g)− (f, g)

= 0
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Let h ∈ B. Let hk be a sequence in B converging to h in norm, i.e., limn→∞(h, hk) = 0. Also note that
∀k > 0, (f, hk) = 0. Therefore with (f, h) = 0, for all h ∈ B, I is orthogonal to B.

Let f ∈ B⊥. Then for every g ∈ L2,
(f, g ◦ T − g) = 0

So,

(f, g) = (f, g ◦ T )

=

∫
f . g ◦ Tdµ

=

∫
f ◦ T−1 . ḡdµ

= (f ◦ T−1, g)

As (f − f ◦ T−1, g) = 0 for all g ∈ L2,

f = f ◦ T−1, a.e., or f ◦ T = f , a.e.

=⇒ I = B
⊥

Let P being the projection map onto the subspace I, using the above Lemma 2.2.1, every element f ∈ L2

can be uniquely written as f = P (f) + h, where h ∈ I⊥ = B. The existence of the limit of the sequence
formed by f is ensured by the Ergodic Theorem and thus it converges in L2 to P (f).

Lemma 2.2.3 (Scheffé’s Lemma): Let fn and f be non-negative functions in L1, where n ≥ 1, such
that fn → f a.e. Then fn converges to f in L1 if and only if

∫
fndµ converges to

∫
fdµ.

Proof. If fn converges to f in L1, it means ||fn − f ||1 → 0. This clearly implies that
∫
fndµ converges

to
∫
fdµ. For the converse, With fn and f being non-negative, (fn − f−)− ≤ f . Then applying the

dominated convergence theorem here,

lim
n→∞

∫
(fn − f)−dµ =

∫
lim
n→∞

(fn − f)−dµ

= 0, as fn → f , a.e

Let An = {x ∈ X : fn(x) ≥ f(x)}. Then,∫
(fn − f+)dµ =

∫
An

(fn − f)dµ

=

∫
X

(fn − f)dµ−
∫
Acn

(fn − f)dµ

On Acn,

(fn − f)− = −min{fn − f, 0}
= −(fn − f)

So,

lim
n→∞

∣∣ ∫
Acn

fn − fdµ
∣∣ ≤ lim

n→∞

∫
X

(fn − f)−dµ
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This implies, ∫
(fn − f) dµ =

∫
X

(fn − f)dµ+ 0

= 0

Therefore, ∫
|fn − f |dµ =

∫
(fn − f)+ + (fn + f)−dµ

= 0

This shows that, fn converges to f in L1.

The following theorem is also known as the Mean Ergodic Theorem in L2.

Theorem 2.2.4: Suppose T is a measure-preserving transformation on a probability space (X,F , µ).

Then for any f ∈ L1, the sequence, fn(x) = 1
n

∑n−1
i=0 f ◦ T i converges in L1 norm to a function f̃ ∈ L1.

Proof. Consider a non-negative function f ∈ L1. Then from the way fn is defined, 1
nfn(x) are non-

negative. Clearly 1
nfn converges to f̃ = limn→∞

1
n

∑n−1
i=0 f ◦ T i(x) as n→∞, due to Birkhoff’s ergodic

theorem. Also, ∫
1

n
fndµ =

1

n

n−1∑
i=0

∫
f ◦ T i(x)dµ

=
1

n
. n

∫
fdµ

=

∫
fdµ

Hence from Scheffé’s lemma, 1
nfn converges to f̃ in L1.

2.3 Examples

We can now see two examples where Birkhoff’s theorem is applied. The first one is with the irrational
rotation map.

Theorem 2.3.1 Let α be an irrational number and R = Rα be an irrational rotation map as defined in
Example 1.2.3. Then for every interval I ⊂ [0, 1),

lim
n→∞

1

n

n−1∑
i=0

1I(R
i(x)) = λ(I) for all x ∈ [0, 1)

Proof. We have shown that with α being irrational, R is ergodic. Hence by the ergodic theorem, for any
interval I, there is a null set N(I) so that for all x ∈ [0, 1) \N(I),

lim
n→∞

1

n

n−1∑
i=0

1I(R
i(x)) = λ(I) (2.7)

With the collection of dyadic intervals being a countable collection of sets, let N be the union of all null
sets. Then there exists a point x ∈ [0, 1) so that eqn.2.7 holds for all such dyadic intervals.
Let I be an arbitrary interval. For any ε > 0, there exists dyadic intervals, K,J such that,

J ⊂ I ⊂ K and λ(K \ J) < ε
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From the nature of the intervals,

1

n

n−1∑
i=0

1J(Ri(x)) ≤ 1

n

n−1∑
i=0

1I(R
i(x)) ≤ 1

n

n−1∑
i=0

1K(Ri(x))

Then,

λ(J) = lim
n→∞

1

n

n−1∑
i=0

1J(Ri(x))

≤ lim
n→∞

inf
1

n

n−1∑
i=0

1I(R
i(x))

≤ lim
n→∞

1

n

n−1∑
i=0

1K(Ri(x))

= λ(J) + ε

Similarly,

λ(J) ≤ lim
n→∞

sup
1

n

n−1∑
i=0

1I(R
i(x))

≤ λ(J) + ε

Hence for x,

lim
n→∞

1

n

n−1∑
i=0

1I(R
i(x)) = λ(I)

To show this holds true for any x ∈ [0, 1), observe that with any interval I, we can always find an interval
I ′ of same measure such that Ri(0) ∈ I if and only if Ri(x) ∈ I ′.

The second example is about normal numbers and Borel’s theorem on normal numbers. We know
for any x ∈ [0, 1), the corresponding binary expansion is of the form,

x =

∞∑
i=0

ai
2i

where ai ∈ {0, 1} are the digits of the binary expansion of x. Note that this expansion is unique for
almost everywhere x ∈ X.

Definition 2.3.2: A number x ∈ [0, 1) is said to be normal in base 2 if the frequency of occurrence of
the digit 0 and the frequency of occurrence of the digit 1 in the binary expansion equals 1

2 each.

Theorem 2.3.3(Borel’s Theorem on Normal Numbers): Almost everywhere x ∈ [0, 1) is normal
in base 2.

Proof. Recall the doubling map, T (x) = 2x mod 1 from Example 1.2.6. We have shown that T is
measure-preserving (with the probability measure) and ergodic. Note that for x =

∑∞
i=0

ai
2i ,

T k(x) =

∞∑
i=0

2k
ai
2i

mod 1

=

∞∑
i=0

ak+i

2i
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Also see that,

a1 = 0 if and only if x ∈ [0,
1

2
) , and

a1 = 1 if and only if x ∈ [
1

2
, 1)

=⇒ ak + 1 =

{
0 , if and only if T k(x) ∈ [0, 1

2 )

1 , if and only if T k(x) ∈ [ 1
2 , 1)

So,

1

n
Cardinality

{
0 ≤ k ≤ n : ak = 0

}
=

1

n
Cardinality

{
1 ≤ k ≤ n : ak+1 = 0

}
=

1

n
Cardinality

{
1 ≤ k ≤ n : T k(x) ∈ [0,

1

2
)

}
as n→∞,

= lim
n→∞

1

n

n−1∑
k=o

1[0, 12 )(T
k(x))

= λ([0,
1

2
))

=
1

2

Similarly for ak = 1 case, λ([ 1
2 , 1) = 1

2 .

The same theorem can be shown for any base k ∈ N and here the frequency any r ∈ {1, 2, ..., k} is 1
k .
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Chapter 3

Factors & Isomorphisms of
Dynamical Systems

Formally a dynamical system consists of a measure space (X,F , µ) and a measure preserving transfor-
mation T on it, denoted as (X,F , µ, T ). One can try to say that two dynamical systems (X,F , µ, T ) and
(X ′,F ′, µ′, T ′) are isomorphic if they possess the same dynamical properties, such as if one is ergodic,
then the other system isomorphic to this must be ergodic too. With this agenda, we can formally define
isomorphism between dynamical systems. But before going into that, first we will define isomorphism
between two measure spaces.

3.1 Factors & Isomorphisms

Definition 3.1.1: Consider two measure spaces, (X,F , µ) and (X ′,F ′, µ′). They are said to be isomor-
phic if there exists measurable sets X0 ⊂ X and X ′0 ⊂ X ′ of full measure ( which means µ(X \X0) = 0
and µ(X ′ \X ′0) = 0) and a map, φ : X0 → X ′0 that is one-one and onto such that,

1. A ∈ F ′(X0)′ if and only if φ−1(A) ∈ F(X0)

2. µ(φ−1(A)) = µ′(A)∀A ∈ S′(X0)

This isomorphism amongst measure spaces is also called measure-theoretically isomorphic or isomorphic
mod 0.

Example 3.1.2: Let (X,F) be a measurable space, where X = [−1, 1] and F be the Lebesgue σ-
algebra.Define a measure µ on F by µ(A) = 1

2λ(A), where λ is the Lebesgue measure. It can be shown
that the measure spaces, (X,F , µ) and (X,F , λ) are isomorphic. For this, define,

φ : [0, 1]→ X

φ(x) = 2x− 1

Clearly φ is one-one and onto. and φ−1(y) = y+1
2 . Also φ and φ−1 are measurable. Since φ is a

composition of translation and dilation, it is measure-preserving, i.e.,

λ(φ−1(A)) = λ(
A+ 1

2
)

=
1

2
λ(A)

= µ(A) , for all A ∈ F

Definition 3.1.3: Consider two finite measure-preserving dynamical systems, (X,F , µ, T ) and (X ′,F ′, µ′, T ′).
They are said to be isomorphic if there exists measurable sets X0 ⊂ X and X ′0 ⊂ X ′ of full measure
and a map, φ : X0 → X ′0 that is one-one and onto such that ∀A ∈ F ′(X ′0),
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1. φ−1(A) ∈ F(X0)

2. µ(φ−1(A)) = µ′(A)

3. φ(T (x)) = T ′(φ(x)), ∀x ∈ X0

The third property is also called the equivariance. It is illustrated as,

X0 X0

X ′0 X ′0

T

φ φ

T ′

If a property is found to be invariant under isomorphism, then such a property is called a dynamical
property.

Definition 3.1.3: Consider two finite measure-preserving dynamical systems, (X,F , µ, T ) and (X ′,F ′, µ′, T ′).
(X ′,F ′, µ′, T ′) is said to be a factor of (X,F , µ, T ) if there exists measurable sets X0 ⊂ X and X ′0 ⊂ X ′
of full measure with,

T (X0) ⊂ X0, T
′(X ′0) ⊂ X ′0

and a map, φ : X0 → X ′0 that is just onto such that ∀A ∈ F ′(X ′0),

1. φ−1(A) ∈ F(X0)

2. µ(φ−1(A)) = µ′(A)

Theorem 3.1.4: Let S be a factor of T . Then if T is ergodic then S is ergodic.

Proof. Consider two transformations, T and S on measure spaces, (X,F , µ) and (Y,F , ν). Let φ : X → Y
be the factor map. Choose a strictly S-invariant set A ∈ Y . See that

T−1(φ−1(A)) = φ−1(S−1(A))

= φ−1(A)

So φ−1(A) is strictly T -invariant. That means µ(φ−1(A)) = 0, or, µ((φ−1(A))c) = 0, as T is ergodic.
But,

µ(φ−1(A)) = ν(A)

So,

ν(A) = 0 or, ν(Ac) = 0

3.2 Induced Transformations

Definition 3.2.1: Let (X,F , µ) be a σ-finite measure space and let T be a recurrent measure-preserving
transformation. Then for every measurable set A of positive measure, there is a null set N ⊂ A such
that for all x ∈ A \ N , there is an integer n = n(x) > 0 with Tn(x) ∈ A. We call the smallest such n,
the first return to A, defined by

nA(x) = min{n > 0 : Tn(x) ∈ A}

For all A of positive measure, nA(x) is defined, a.e., since T is recurrent. So we can define the induced
transformation TA as,

TA(x) = TnA(x)(x) for a.e. x ∈ A.

Preposition 3.2.2: Let (X,F , µ) be a finite measure space with an invertible measure-preserving trans-
formation T . If T is recurrent and A ∈ X be a set of positive measure, then the induced transformation
TA is measure-preserving on A.
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Proof. Define the set
Ai = {x ∈ A : nA(x) = i, i ≥ 1}

These sets are clearly disjoint and thus,

A =

∞⊔
i=1

Ai mod µ

Take a measurable set, B ∈ A. Then,

µ(TA(B)) = µ(TA(

∞⊔
i=1

B ∩Ai))

= µ(

∞⊔
i=1

TA(B ∩Ai))

=

∞∑
i=1

µ(T i(B ∩Ai))

=

∞∑
i=1

µ(B ∩Ai)

= µ(

∞⊔
i=1

B ∩Ai)

= µ(B)

Therefore, TA is measure-preserving on A.

Theorem 3.2.3: Suppose T is an invertible, recurrent, finite measure-preserving transformation over
a measure space (X,F , µ). Then for a measurable set A ⊂ X, the induced transformation TA on A is
ergodic if T is ergodic.

Proof. Consider two sets of positive measures in A, E and F . With T being ergodic and recurrent,

µ(Tn(E) ∩ F ) > 0 for some integer n > 0.

This means there is a point x ∈ E such that for some n ∈ Z+, Tn(x) ∈ F . Let

n1 = nA(x)

n2 = nA(Tn1(x))

n3 = nA(Tn2(x))

...

nk = nA(Tnk−1(x))

where nk is the first integer such that Tnk(x) ∈ F . Recall that TA(x) := TnA(x)(x). Then with
TnA(x) = Tnk(x),

=⇒ T kA(E) ∩ F 6= φ

=⇒ TA is ergodic.
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Chapter 4

Mixing

Just like mixing sugar into some water, or any two solutions in a container, the notion of mixing can be
applied as an abstract concept over transformations. We would define this term to those under a certain
transformation, the elements of the set will eventually be homogeneously distributed.

4.1 Defining Mixing

Definition 4.1.1: Let (X,F , µ) be a probability space with a measure-preserving transformation, T .
We say that T is mixing if for all measurable sets A,B ∈ X,

lim
n→∞

µ(T−n(A) ∩B) = µ(A)µ(B). (4.1)

We know µ(X) = 1. So re-writing eqn.4.1

lim
n→∞

µ(T−n(A) ∩B)

µ(B)
=
µ(A)

µ(X)

This gives a clearer understanding to the definition of mixing. It says that after some ′n′ transformations
under T , the proportion of elements from B falling in A, is exactly the same as the proportion of A in
the entire set, X.

For the remaining part, some notion of convergence, especially the Cesaro convergence, is needed to
be recalled.Let ai(A,B) = µ(T−i(A) ∩B). Then the definition for mixing turns out to be,

lim
n→∞

ai(A,B) = µ(A)µ(B)

Recall that for a bounded sequence, {ai}i>0 , convergence of the same to a number can be shown by,

1. Convergence of sequences:
lim
i→∞

ai − a = 0

2. Strong Cesaro convergence of sequences:

lim
n→∞

1

n

n−1∑
i=0

|ai − a| = 0

3. Cesaro convergence of sequences:

lim
n→∞

1

n

n−1∑
i=0

(ai − a) = 0

Note that for a set of non-negative sequences, Cesaro and Strong Cesaro convergence are equivalent.

Lemma 4.1.2 Consider a bounded sequence {ai}i>0. Then,
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1. Convergence of {ai}i>0 implies strong Cesaro convergence of {ai}i>0.

2. Strong Cesaro convergence of {ai}i>0 implies Cesaro convergence of {ai}i>0.

Proof. For (1), choose an arbitrary ε > 0. Then with the sequence being convergent in the usual sense,
∃ K1 > 0 such that, for every i > K1,

|ai − a| <
ε

2

With the sequence {ai}i>0 being bounded, ∃ K2 > 0 such that, for every n > K2,

1

n

K1−1∑
i=o

|ai − a| <
ε

2

Set K = max{K1,K2}. With n > K,

1

n

n−1∑
i=o

|ai − a| =
1

n

K1−1∑
i=o

|ai − a|+
1

n

K−1∑
i=K1

|ai − a|

<
ε

2
+ (

n−K1

n
)
ε

2

<
ε

2
+
ε

2
= ε

To prove (2), we just need to apply the triangle inequality property,

n−1∑
i=0

(ai − a) ≤
n−1∑
i=0

|ai − a|

So,

lim
n→∞

1

n

n−1∑
i=0

(ai − a) ≤ lim
n→∞

1

n

n−1∑
i=0

|ai − a|

= 0

Definition 4.1.3: A set D of non-negative integer is said to be of zero density if,

lim
n→∞

1

n

n−1∑
i=o

1D(i) = 0

And the set D is said to have a positive density, if lim sup 1
n

∑n−1
i=0 1D(i) > 0. For a sequence of non-

negative sequences {ai}i≥0 is said to have zero density if the set {ai : i ≥ 0} has zero density. The
following are some examples of sets with zero density.

1. Any finite set

2. {ai = 2i}i≥0

3. {i ∈ N : i is prime}; this is a consequence of the Prime Number theorem which states that for a
large number N , the probability that a random integer not greater than N is prime, is close to

1
log(N) .

Definition 4.1.4: For a set B of non-negative numbers if its complement Bc has zero density then B is
said to be of density one.

Definition 4.1.5: A sequence {ai} of real numbers converges in density to a point if there exists a zero
density set D ∈ N such that for all ε > 0, there is an integer N and for every i > N, i ∈ D,

|ai − a| < ε
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It can be denoted as,
lim

i→∞, i/∈D
ai = a

Proposition 4.1.6: For a bounded sequence of non-negative real numbers, {bi}i≥0, it converges to 0 if
and only if it converges in density to 0.

Proof. Suppose that the bounded sequence {bi}i≥0 converges in density to 0, outside a zero density set
D. Let the sequence be bounded by M . That means,

lim
i→∞,i/∈D

bi = 0

Then,

lim
n→∞

1

n

n−1∑
i=0

bi = lim
n→∞

1

n

n−1∑
i=0,i∈D

bi + lim
n→∞

1

n

n−1∑
i=0,i/∈D

bi

≤ lim
n→∞

1

n

n−1∑
i=0,i∈D

M + lim
n→∞

1

n

n−1∑
i=0,i/∈D

bi

≤M lim
n→∞

1

n

n−1∑
i=0,i∈D

1D(i) + lim
n→∞

1

n

n−1∑
i=0,i/∈D

bi

= 0,

Since D is a set with zero density and {bi}i≥0 converges in density.

For the converse, let {bi}i≥0 converges to 0 in D, i.e.,

1

n

n−1∑
i=0

bi = 0

Suppose if there is some ε > 0 such that Dε := {i ∈ N : |bi| > ε} has a positive density,say ω. Then the
Cesaro limit,

lim
n→∞

1

n

n−1∑
i=0

bi = lim sup
1

n

n−1∑
i=0

bi

> ω ε

> 0

This contradicts to the Cesaro convergence of {bi}i≥0 to zero. So all such set Dε for an arbitrary ε must
have zero density. And clearly the sequence converges outside such a set, which can be written as,

lim
i→∞,i/∈Dε

bi = 0

Thus the sequence,{bi}i≥0, converges in density.

4.2 Weak Mixing

Definition 4.2.1: A measure-preserving transformation T on a probability space is weakly mixing if,

lim
n→∞

1

n

n−1∑
i=0

|µ(T i(A) ∩B)− µ(A)µ(B)| = 0

Looking at the definition of strong Cesaro convergence, weak-mixing can be seen as the sequence
{αi(A,B) := µ(T i(A) ∩B)}i≥0 converging to µ(A)µ(B) in strong Cesaro convergence.

Lemma 4.2.2: With a measure-preserving transformation T over a probability space, if,
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1. T is weakly mixing then T is ergodic.

2. T is mixing then T is weakly mixing.

Proof. For (1), consider the sequence, {αi(A,B) := µ(T i(A)∩B)}i≥0. Suppose A be T -invariant. Then
looking at the sequence, {αi(A,Ac) = µ(T i(A) ∩Ac)}i≥0,

µ(T i(A)) = µ(A), for all i ≥ 0

Therefore,

µ(T i(A) ∩Ac) = µ(A ∩Ac)
= 0

In short, αi(A,A
c) = 0,∀i ≥ 0. With T being weakly mixing,

lim
n→∞

1

n

n−1∑
i=0

|µ(T i(A) ∩Ac)− µ(A) µ(Ac)| = 0

Then,

µ(A) µ(Ac) = 0

This implies,

µ(A) = 0 or, µ(Ac) = 0

Thus T is ergodic.
For (2), T being mixing tells that the sequence {αi(A,B)} converges to µ(A)µ(B). And from Lemma

4.1.2, we have shown that convergence implies strong Cesaro convergence. This proves that T is weakly
mixing.

Proposition 4.2.3: For a measure-preserving transformation T on a probability space the following are
equivalent;

1. T is weakly mixing

2. For every measurable sets A,B, there is a set D = D(A,B) with zero density such that,

lim
i→∞,i/∈D

µ(T i(A) ∩B) = µ(A)µ(B)

3. limn→∞
1
n

∑n−1
i=o (µ(T i(A) ∩B)− µ(A)µ(B))2 = 0, for all measurable sets A,B.

Proof. To show (1) ⇐⇒ (2), take a sequence {αi(A,B) := µ(T i(A) ∩ B) − µ(A)µ(B)}. Then apply
Proposition 4.1.6.
To show (2) ⇐⇒ (3), from (2),

lim
i→∞,i/∈D

µ(T i(A) ∩B)− µ(A)µ(B) = 0

Then,

lim
i→∞,i/∈D

(µ(T i(A) ∩B)− µ(A)µ(B))2 = 0

Applying Proposition 4.1.6 here,

lim
n→∞

1

n

n−1∑
i=o

(µ(T i(A) ∩B)− µ(A)µ(B))2 = 0

The converse is just taking the above steps in the reverse order as the Proposition 4.1.6 holds both
ways.
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Definition 4.2.4: If for all measurable sets A,B of a measure space (X,F , µ) with a measure-preserving
transformation T there is an integer n > 0 such that

µ(T−n(A) ∩A) > 0 and µ(T−n(A) ∩B) > 0,

then T is said to be doubly ergodic.

Proposition 4.2.5: For a probability space (X,F , µ), let T be a measure-preserving transformation
over it. If T is weakly mixing then T is doubly ergodic.

Proof. Consider two measurable sets of positive measure, say, A,B ∈ F . Let T be weakly mixing. Then
we can find sets D1(A,B) and D2(A,A), of zero density such that,

lim
i→∞,i/∈D1

µ(T−i(A) ∩B) = µ(A)µ(B)

and

lim
i→∞,i/∈D2

µ(T−i(A) ∩A) = µ(A)µ(A)

Then we can find an i such that,

µ(T−i(A) ∩A) > 0

and

µ(T−i(A) ∩B) > 0,

Thus T is doubly ergodic.

Example 4.2.6: Now we can looking to how rotation transformations are not weakly mixing. To show
this, first recall how we defined R in Example 1.2.3. Take two intervals, say, I = [0, 1

4 ) and J = [ 3
4 , 1).

The observe that for any x ∈ I and y ∈ J , |T i(x) − T j(y)| remains constant for every pair (x, y) we
choose. This implies that there is no integer n, such that

µ(T−n(I) ∩ I) > 0 and µ(T−n(I) ∩ J) > 0

So R is not doubly ergodic. Therefore from Proposition 4.2.5, R is not weakly mixing.

4.3 Approximations to determine Dynamical Properties

Recall how semi-rings and sufficient semi-rings are defined earlier in Chapter 0. With this we would
show that it is enough to verify with all the elements of a sufficient semi-ring to determine dynamical
properties such as ergodicity, mixing and weak-mixing. To show this, we would first need to prove some
lemmas which would act as tools to prove the approximation of sufficient semi-rings.

Lemma 4.3.1: Let A,B,E, and F be measurable sets of a probability space (X,F , µ). Let T be a
measure-preserving transformation on the same space. Then for any n ∈ Z,

µ

(
(T−n(A) ∩B)∆(T−n(E) ∩ F )

)
≤ µ(A∆E) + µ(B∆F )

Proof. The triangle inequality property gives,

µ

(
(T−n(A)∩B)∆(T−n(E)∩F )

)
≤ µ

(
(T−n(A)∩B)∆(T−n(A)∩F )

)
+µ

(
(T−n(A)∩F )∆(T−n(E)∩F )

)
Using (A ∩ E)∆(B ∩ E) = E ∩ (A∆B),

µ

(
(T−n(A)∩) B)∆(T−n(E) ∩ F )

)
≤ µ

(
(T−n(A) ∩ (B∆F )

)
+ µ

(
F ∩ T−n(A∆E)

)
≤ µ(B∆F ) + µ(T−n(A ∩ E))

= µ(B∆F ) + µ(A ∩ E)
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Lemma 4.3.2: For a measure-preserving transformation T over a probability space, (X,F , µ), suppose
that for an arbitrary ε > 0 and A,B ∈ F , there exists E,F ∈ F such that, µ(A∆E) < ε

5 and µ(B∆F ) <
ε
5 . If for n > 0, ∣∣µ(T−n(E) ∩ F )− µ(E)µ(F )

∣∣ < ε

5

then, ∣∣µ(T−n(A) ∩B)− µ(A)µ(B)
∣∣ < ε.

Proof. From Lemma 4.3.1,

µ(T−n(A) ∩B)∆µ(T−n(E) ∩ F ) ≤ µ(A∆E) + µ(B∆F ) <
2ε

5

Then,∣∣µ(T−n(A) ∩B)− µ(A)µ(B)
∣∣ ≤ ∣∣µ(T−n(A) ∩B)− µ(T−n(E) ∩ F )

∣∣+
∣∣µ(T−n(E) ∩ F )− µ(E)µ(F )

∣∣
+
∣∣µ(E)µ(F )− µ(A)µ(F )

∣∣+
∣∣µ(A)µ(F )− µ(A)µ(B)

∣∣
≤ 2ε

5
+
ε

5
+
ε

5
µ(F ) +

ε

5
µ(A)

≤ ε

Lemma 4.3.3: For a measure-preserving transformation T on a probability space, (X,F , µ), suppose
that for an arbitrary ε > 0 and A,B ∈ F , there exists E,F ∈ F such that, µ(A∆E) < ε

5 & µ(B∆F ) < ε
5 .

If for n > 0,

1. ∣∣ 1
n

n−1∑
i=0

µ(T−i(E) ∩ F )− µ(E)µ(F )
∣∣ < ε

5

then,

∣∣ 1
n

n−1∑
i=0

µ(T−i(A) ∩B)− µ(A)µ(B)
∣∣ < ε

2.

1

n

n−1∑
i=0

∣∣µ(T−i(E) ∩ F )− µ(E)µ(F )
∣∣ < ε

5

then,

1

n

n−1∑
i=0

∣∣µ(T−i(A) ∩B)− µ(A)µ(B)
∣∣ < ε

Proof. To show this we just need to invoke Lemma 4.3.1 and proceed with the same steps followed in
the proof of Lemma 4.3.2.

Theorem 4.3.4: For a measure-preserving transformation T over a probability space, (X,F , µ), with a
sufficient semi-ring, C,

1. For every I, J ∈ C,

lim
n→∞

1

n

n−1∑
i=0

µ(T−i(I) ∩ J) = µ(I)µ(J),

then, T is ergodic.
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2. For every I, J ∈ C,

lim
n→∞

1

n

n−1∑
i=0

∣∣µ(T−i(I) ∩ J)− µ(I)µ(J)
∣∣ = 0,

then, T is weakly-mixing.

3. For every I, J ∈ C,
lim
n→∞

µ(T−n(I) ∩ J) = µ(I)µ(J),

then, T is mixing.

Proof. All the statements are proved with the same procedure. Hence it’s enough to show for one
statement. For the ease of writing the proof, let us choose to prove (3) here.
Take two sets of positive measure, A,B ∈ F . For any arbitrary ε > 0, we know that we can find sets
E =

⊔p
j=0 Ij and, F =

⊔q
k=0 Jk where each Ij , Jk ∈ C, j = 1, 2, ..., p and k = 1, 2, ..., q, such that,

µ(A∆E) < ε and, µ(B∆F ) < ε

See that for every Jk ∈ {1, 2, ...q},

lim
n→∞

µ(T−n(E) ∩ Jk) = lim
n→∞

µ(T−n(

p⊔
j=1

Ij) ∩ Jk)

= lim
n→∞

p∑
j=1

µ(T−n(Ij) ∩ Jk)

=

p∑
j=1

lim
n→∞

µ(T−n(Ij) ∩ Jk)

From the hypothesis of the statement (3),

=

p∑
j=1

µ(Ij ∩ Jk)

= µ((

p⊔
j=1

Ij) µ(Jk)

= µ(E) µ(Jk)

Using this,

lim
n→∞

µ(T−n(E) ∩ F ) = lim
n→∞

µ(T−n(E) ∩ (

q⊔
k=1

Jk))

= lim
n→∞

q∑
k=1

µ(T−n(E) ∩ Jk)

=

q∑
k=1

lim
n→∞

µ(T−n(E) ∩ Jk)

From what we saw above,

=

p∑
j=1

µ(E) µ(Jk)

= µ(E) µ(

q⊔
k=1

Jk)

= µ(E) µ(F )
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Hence there exists a number N > 0 such that for all n > N and an arbitrary ε > 0∣∣µ(T−n(E) ∩ F )− µ(E)µ(F )
∣∣ < ε

5

then from Lemma 4.3.2 ∣∣µ(T−n(A) ∩B)− µ(A)µ(B)
∣∣ < ε

Since this holds for any two measurable sets with positive measure, T has to be mixing.

4.4 Mixing Sequences

Over a probability space (X,F , µ), let T be a measure-preserving transformation. An infinite sequence, ak
can be defined outside a zero density setD for measurable setsA and B such that limn→∞,n/∈D µ(T−n(A)∩
B) = µ(A)µ(B). For this let C be a countable sufficient semi-ring over a probability space (X,F , µ). Let
Bi, Bj ∈ C, then there exists a zero density setD(Bi, Bj) such that limn→∞,n/∈D(Bi,Bj) µ(T−n(Bi)∩Bj) =
µ(Bi)µ(Bj). This says that for any pair of i, j we choose, there is always an infinite sequence nα(i, j)
such that

lim
α→∞

µ(T−nα(i,j)(Bi) ∩Bj) = µ(Bi) µ(Bj) (4.2)

With C being countable invoking Cantor’s diagonalization argument will deliver a sequence {nα} such
that for all i, j ∈ Z

lim
α→∞

µ(T−nα(Bi) ∩Bj) = µ(Bi) µ(Bj)

Now the following lemma will show that we can find infinite sequences like above for all measurable sets
of F , which is just an application of the approximation lemmas we have proved over to eqn.4.2.

Lemma 4.4.1: Suppose there exist a countable sufficient semi-ring C and an infinite sequence {nα} for
a probability space (X,F , µ) such that for all I, J ∈ C

lim
α→∞

µ(T−nα(I) ∩ J) = µ(I) µ(J)

Then for all measurable sets A,B ∈ F ,

lim
α→∞

µ(T−nα(A) ∩B) = µ(A) µ(B). (4.3)

Any such sequences {nα} that holds eqn.4.3 is called a mixing sequence.

4.5 Relations Associated with Weak-Mixing

Proposition 4.5.1: Over a probability space (X,F , µ), let T be a measure-preserving transformation.
Then the following are equivalent;

1. T is weakly-mixing

2. T × T is weakly-mixing

3. T × T is ergodic

Proof. For (1) =⇒ (2) , consider two probability measure spaces (X,F(X), µ1) and (Y,F(Y ), µ2). We
will now show that the collection F(X)×F(Y ) is a semi-ring on X × Y .

Clearly X×Y ∈ F(X)×F(Y ). For A1×B1 and A2×B2 ∈ F(X)×F(Y ) , let A3 = A1∩A2 and B3 =
B1 ∩B2. Then (A1 ×B1) ∩ (A2 ×B2) = A3 ×B3 ∈ F(X)×F(Y ) .

Suppose (a, b) ∈ (A1 ×B1) \ (A2 ×B2). If a ∈ A1 \A2 then either b ∈ B1 \B2 or b ∈ B1 ∩B2. And
if a ∈ A1 ∩A2 then b ∈ B1 \B2. This shows that

(A1 ×B1) ∩ (A2 ×B2) = (A1 \A2)× (B1 \B2)
⋃

(A1 \A2)× (B1 ∩B2)
⋃

(A1 ∩A2)× (B1 \B2)
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which is a finite union of elements from F(X)×F(Y ). Therefore F(X)×F(Y ) forms a semi-ring.

Take measurable sets A,B,C,D in X. Then there are zero-density sets D1 = D(A,B) and D2 =
D(C,D) with every n /∈ D1 ∪D2 that gives

lim
n→∞

µ(T−n(A) ∩B) = µ(A)µ(B)

lim
n→∞

µ(T−n(C) ∩D) = µ(C)µ(D).

Let µ2 = µ× µ denote the product measure on X ×X. Then with µ2 and every n /∈ D1 ∪D2

lim
n→∞

µ2

(
(T × T )−n(A× C) ∩ (B ×D)

)
= µ2(A× C)µ2(B ×D). (4.4)

With all the measurable sets A,B,C,D ∈ F(X)×F(X) and F(X)×F(X) being a semi-ring for X×X,
we can invoke Theorem 4.3.4 here. Then T × T is weakly mixing.

Applying Lemma 4.2.2 will give (2) =⇒ (3).

To show (3) =⇒ (1), let A×B be T × T -invariant. Then with T × T being ergodic,

µ(A×B) = 0 or µ(Ac ×Bc) = 0

This implies,

µ(A) µ(B) = 0 or µ(Ac) µ(Bc) = 0.

Hence T is ergodic. Using this fact

lim
n→∞

1

n

n−1∑
i=0

µ(T−i(A) ∩B) = µ(A)µ(B),

for sets A×A and B ×B,

lim
n→∞

1

n

n−1∑
i=0

µ2

(
(T × T )−i(A×A) ∩ (B ×B)

)
= µ2(A×A) µ2(B ×B)

This gives,

lim
n→∞

1

n

n−1∑
i=0

[
µ(T−i(A) ∩B)

]2

= µ2(A) µ2(B)

Therefore,

lim
n→∞

1

n

n−1∑
i=0

[
µ(T−i(A) ∩B)− µ(A) µ(B)

]2

= 0

Then using Proposition 4.2.3, T is weakly mixing.

Definition 4.5.2: A measure-preserving transformation T is said to have a continuous spectrum if λ = 1
is its only eigen value and it is simple i.e., the set E(λ) := {f ∈ L2 : f ◦ T = λ f a.e.} is of dimension
one.

Theorem 4.5.3: Over a probability space (X,F , µ), let T be a measure-preserving transformation.
Then the following are equivalent;

1. T is weakly-mixing
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2. T is doubly ergodic

3. T has continuous spectrum

4. T × S is ergodic for any ergodic transformation S on a finite measure space.

Proof. For (1) =⇒ (2), it can be shown using Proposition 4.2.5.

For (2) =⇒ (3), with T being doubly ergodic T is ergodic. Suppose we have multiple eigen values
with each of them lies on the unit circle, i.e., |λ| = 1. Then λ can be written as, λ = e2πiα where
α ∈ [0, 1). Suppose that the eigen function is of the form f(x) = e2πig(x) where g(x) is a measurable
function from X to [0, 1). Let R be a transformation on [0, 1) defined as, R(z) = z + α. Then it can be
seen that g ◦ T = R ◦ g, i.e.,

X X

[0,1) [0,1)

T

g g

R

Over the space [0, 1), we can define a measure for any U ∈ [0, 1)

ν(U) = µ(g−1(U))

Clearly ν([0, 1)) = µ(X). This would make the function g a factor map from T to R. Using Theorem
3.1.4, the map R is ergodic. But from the definition of R, it is merely a rotation map. Here α can be
either rational or irrational. If α is rational, then ν is atomic and is concentrated in finite number of
atoms. This would mean R is not doubly ergodic. And if α is assumed to be irrational, the proof of
Lemma 4.2.6 gives that R is not doubly ergodic. This shows that (2) =⇒ (3).

For (3) =⇒ (4), suppose T × S is not ergodic. Then there would exist a function h which is
T × S-invariant and non-constant. Let UT : L2(µ) → L2(µ) and US : L2(µ) → L2(µ) be the unitary
operators given by UT f = f ◦T and USf = f ◦S. Then decomposing the function h gives the form f ⊗ g
where f and g are eigen functions of UT and US respectively. These functions f and g must have eigen
vales λ and λ′ respectively satisfying λλ′ = 1. But eigen values in T and S are closed under complex
conjugation. This would give UT and US to have a common eigen value other than 1, implying T does
not have continuous spectrum (neither do S).

To show (4) =⇒ (1), since (4) holds for any ergodic measure-preserving transformation S, take
S = T and then apply, Proposition 4.5.1.

4.6 Rigidity & Mild Mixing

Definition 4.6.1: A measure-preserving transformation T is called rigid if for every measurable set A
and any arbitrary ε > 0 there exists an integer n > 0 such that µ(T−n(A)∆A) < ε.

Clearly from the definition it can be seen that the identity map is a rigid transformation.

Theorem 4.6.2: Rotational transformations are rigid.

Proof. Consider a rotation transformation R = Rα on [0, 1) where α ∈ R.
If α ∈ Q then there exists p such that Rp(A) = A for all sets A. This makes R a rigid transformation.
So take α ∈ R\Q. Assume the set A is an interval over [0, 1), say A = (a, b) where a, b ∈ [0, 1) and a < b.
Choose an arbitrary ε1 > 0. With α being irrational, {Rk(a)}k≥0 and {Rk(b)}k≥0 are dense in [0, 1).This
would mean there is some integer n satisfying

a < Rn(a) < a+
ε1
2

and,

b < Rn(b) < b+
ε1
2
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this gives,
µ(Rn((a, b))∆(a, b)) < ε1.

Now take the set A to be an arbitrary set of positive measure. Choose an arbitrary ε > 0. We know that
any set of positive measure there exists a set G∗ which is a finite union of disjoint intervals and satisfies,
µ(G∗∆A) < ε

3 . Suppose this set is formed by the union of l disjoint intervals,i.e.,

G∗ =

l⊔
j=1

Ij

If we set ε1 = ε
3 , and look at one of those disjoint intervals, say, I1 then there exists an integer k such

that

µ(Rj(I1)∆I1) < ε1 =
ε

3

this would imply for all j = 1, 2, ..., l

µ(Rj(Ij)∆Ij) < ε1 =
ε

3

Then by triangle inequality,

µ(Rj(A)∆A) < µ(Rj(A)∆Rj(G∗)) + µ(Rj(G∗)∆G∗) + µ(Rj(G∗)∆G∗)

≤ ε

3
+ l

ε

3l
+
ε

3
= ε.

Definition 4.6.3: A measure-preserving transformation T is said to be partially rigid if there exist a
constant α > 0 and an increasing sequence rn such that for all sets A of finite measure,

lim
n→∞

inf µ(T−rn(A) ∩A) ≥ α µ(A)

We would denote this constant α as the rigidity constant.

Lemma 4.6.4: Suppose (X,F , µ) be an atomic probability space with a transformation T . If T is
partially rigid then T is not mixing.

Proof. With a rigidity constant of α, there is some increasing sequence {ni} that makes T partially-rigid.
Take a measurable set A such that 0 < µ(A) < α

2 . If T is assumed to be mixing then

lim
ni→∞

µ(T−ni(A) ∩A) = µ2(A).

But µ2(A) < α
2 µ(A) and for infinitely many i > 0

µ(T−ni(A) ∩A) > αµ(A) ≥ 2 µ2(A).

From this contradiction, we can say T is not mixing.

Definition 6.4.5: Over a probability space (X,F , µ) a measure-preserving transformation T is said to
be mildly mixing if

lim inf
n→∞

µ(A∆T−n(A)) > 0

for all sets A with 0 < µ(A) < 1.

Theorem 4.6.6: Over a probability space (X,F , µ) a measure-preserving transformation T is mildly
mixing if and only if

lim inf
n→∞

µ(Ac ∩ T−n(A)) > 0

for all sets A with 0 < µ(A) < 1.
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Proof. With T being mildly mixing, suppose there is an increasing sequence {ni} such that

0 = lim
n→∞

µ(Ac ∩ T−ni(A)) (4.5)

With T being measure-preserving

µ(A) = µ(T−ni(A))

= µ(Ac ∩ T−ni(A)) + µ(A ∩ T−ni(A))

= lim
i→∞

µ(A ∩ T−ni(A)) (4.6)

Also

µ(A) = µ

(
A ∩ T−ni(A)

)
+ µ

(
A ∩ (T−ni(A))c

)
(4.7)

Then from eqn.4.6 and eqn.4.7

0 = lim
i→∞

µ

(
A ∩ (T−ni(A))c

)
(4.8)

Then from eqn.4.5 and eqn.4.8

lim
i→∞

µ

(
A∆T−ni(A)

)
= lim
i→∞

µ

(
Ac ∩ T−ni(A)

)
+ lim
i→∞

µ

(
A ∩ (T−ni(A))c

)
= 0

Thus we get a contradiction.

For the converse we know(
Ac ∩ T−n(A)

)⋃(
A ∩ T−n(A))c

)
= A∆T−n(A)

So if

µ(Ac ∩ T−n(A)) > 0

then

lim inf
n→∞

µ(A∆T−n(A)) > 0

Hence T is mildly-mixing.

4.7 Examples

Now we can look into two examples where one has the dynamical property of mixing and the other do
not.

4.7.1 Doubling Map

Theorem 4.7.1: Let the space be X = [0, 1] and the transformation T (x) = 2x mod 1. Then T is
mixing on (X,F , µ).

Proof. Recall that a doubling map is defined as

T : [0, 1]→ [0, 1]

x 7→ 2x mod 1
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Any interval, [a, b] ∈ [0, 1]

T−1

(
[a, b]

)
=

[
a

2
,
b

2

]⋃[
a

2
+

1

2
,
b

2
+

1

2

]
If we can show that for all measurable sets A,B,

lim
n→∞

µ(T−n(A) ∩B) = µ(A)µ(B) (4.9)

then T is mixing. But it is enough show that for all dyadic intervals eqn.4.9 is satisfied. Then Theorem
4.3.4 will give eqn.4.9. So assume the sets A,B are of the form

A =

[
k

2i
,
k + 1

2i

]
and B =

[
l

2j
,
l + 1

2j

]
Then applying T over A

T−1(A) =

[
k

2i+1
,
k + 1

2i+1

]⋃[ k
2i + 1

2
,
k+1
2i + 1

2

]
=

[
k

2i+1
,
k + 1

2i+1

]⋃[
k

2i+1
+

1

2
,
k + 1

2i+1
+

1

2

]
So the pre-image of A by T , i.e., T−1(A) gives two intervals of length 1

2i+1 and are spaced by 1
2 among

themselves. Then by induction one could see that T−n(A) would give 2n intervals of length 1
2i+n and

spaced by 1
2n .

Clearly with n > j, T−n(A) will intersect B. T−n(A) ∩B will contain all the intervals of T−n(A) in
B. Then the number of such intervals in B is given by

Length of B

Spacing
=
µ(B)

1
2n

=
1
2j

1
2n

=
1

2j−n
= 2n−j

With each intervals of T−n(A) having a length of 1
2i+n ,

µ(T−n(A) ∩B) =
1

2i+n
. 2n−j

=
1

2i
.

1

2j

= µ(A) µ(B).

4.7.2 Chacón’s Transformation

This transformation is defined on a system developed by R. V. Chacón. The purpose of the construc-
tion was to show an example where a measure-preserving transformation is not mixing but weakly mixing.

But before defining what a Chacón transformation is, explaining the construction of a dyadic odome-
ter will simplify the process of understanding the construction of a Chacón’s transformation.

Construction of a dyadic odometer: The construction comprises of cutting and stacking of intervals
inductively from [0, 1).

The first step would be building the the column C0, which would just be the whole space [0, 1). We
say that this column has a height h0 = 1. The associated transformation TC0

would be identity.
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0 11
2

Figure 4.1: First column, C0.

Construction of the second column C1 is by cutting the space into two intervals, [0, 1
2 ) & [ 1

2 , 1)
then stacking the latter over the former. So the column C1 has two levels and hence have a height
h1 = 2. Here the transformation TC1 is defined from [0, 1

2 ) → [ 1
2 , 1). Note that T is not defined for [ 1

2 , 1).

0 11
2

0 1
2

1
2 1

C1

TC1

Figure 4.2: Constructing C1 from C0.

For the construction of the column C2 we would cut C1 into two columns. We then get two columns
which comprises of two levels. So C2 has four levels and height h2 = 4. The transformation TC2

takes
[0, 1

4 )→ [ 1
2 ,

3
4 )→ [ 1

4 ,
1
2 )→ [ 3

4 , 1). Note that TC2
is not defined for [ 3

4 , 1).

0

1
2

1
2

1

0 1
4

1
2

1
4

3
4

3
4

1
2

1

TC2

TC2

TC2

C2

Figure 4.3: Constructing C2 from C1.

Now it is possible to construct a general column Cn. Take Cn−1 and cut the same into two equal
columns with each of them having n− 1 levels. Stack the second column over the first and construct a
transformation TCn which would take a point from a level l to a level l + 1 that is right above it. From
induction we can see the column Cn has 2n levels thus height, hn = 2n. Here too TCn is not defined for
the (2n)th level.

Definition 4.7.2: Let T be a transformation on [0, 1) defined as

T (x) = lim
n→∞

TCn(x)

Then T is called the Dyadic odometer.

Note that T−1(0) is not defined. So if we choose X0 = X \
⋃∞
n=0{Tn(0)}, then X0 has full-measure

and T : X0 → X0 is bijective.

Theorem 4.7.3: The dyadic odometer is measure-preserving and ergodic.

Proof. The dyadic intervals form a semi-ring here. T−1(I) is measurable for any I in the semi-ring. Also
for all such I, µ(I) = µ(T−1(I). This is sufficient to show that T is measure preserving.

To show T is ergodic, take A0 and B0 from [0, 1) and have positive measures. There exists dyadic
intervals I and J which are 1

2 -full of A0 and B0 respectively. We can always choose I and J to have the
same measure. With these two having the same measure, it is possible for both to exist as two levels of
some column Cn. This means there exists an integer n such that

Tn(I) = J
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Let A = A0 ∩ I and B = B0 ∩ J . Then using Lemma 0.2.6,

µ(Tn(A0) ∩B0) ≥ µ(Tn(A) ∩B)

≥ µ(Tn(I) ∩ J)− µ(I \ J)− µ(J \B)

> µ(J)− 1

2
µ(I)− 1

2
µ(J)

= 0

Thus T is ergodic.

Now we can define a Chacón’s transformation. It too comprises of cutting and stacking of inter-
vals inductively from the space [0, 1).

For the first column C0 we take the interval [0, 2
3 ). Here the height h0 = 1.

0 2
9

4
9

2
3

Figure 4.4: First column, C0.

For the next column C1 instead of splitting the whole space into two equal parts, we split C0 into 3
equal part/columns and a ‘spacer’ which is an interval extended from the end point of the last level of
the column to the point on which the spacer has the length same as all the levels in the column. In this
case, after splitting C0 into three parts, the new levels have a length of 2

9 . Thus the spacer associated
with C1 would be the interval, [2

3 ,
8
9 ). To stack them, the second column would stack over the first but

before stacking the third column the spacer is placed between the last level of the second column and
the first level of the third column. So the height of C1, which is the number of levels after stacking,
h1 = 3 + 1.

0

2
3

8
9

2
9

4
9

2
3

0

2
9

2
3

4
9

2
9

4
9

8
9

4
9

C1

TC1

TC1

TC1

Figure 4.5: Construction of C1 from C0.

Therefore, inductively we could calculate the height of a general column Cn, which is given as

hn = 3 hn−1 + 1.

And in Cn, each level will have a length of ( 1
3 )n. Note that any level I in Cn will have three sub-intervals

in Cn+1.

Each column Cn has an associated transformation TCn which takes values from a level to adjacent
upper level. Note that for each TCn , the image of the uppermost level is not defined. We would define,

T (x) = lim
n→∞

TCn(x)
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as the Chacón’s transformation. The measure of all spacers added is,

2

9
+

1

3
.

2

9
+

(
1

3

)2

.
2

9
+ .... =

2

9

(
1

1− 1
3

)
=

1

3

Thus T

(
[0, 1)

)
= 1.

Lemma 4.7.4: Suppose n > 0 and I, J be levels in a column Cn. Then for k ≥ n,

µ(Thk(I) ∩ I) ≥ 1

3
µ(I).

Proof. Let k = n. For any level I in Cn, there are three sub-intervals of I. Denote these intervals as,
I[0], I[1], & I[2]. Then looking at how Cn is constructed, it can be seen that,

Thn(I[0]) = k[1]

Thn(I[1]) = T−1(I[2])

This tells that Thn(I) intersects both I and T−1(I) in measure at least 1
3 times the measure of I, i.e.,

µ(Thn(I) ∩ I) ≥ 1

3
µ(I)

µ(Thn(I) ∩ T−1(I)) ≥ 1

3
µ(I)

Now suppose k = n+ l, for some l > 0. Then for a level I in Cn will have 3l sub-intervals of I in Cn+l.
If I ′i be one such sub-interval which lies in one of the levels of Cn+l. Then applying the same strategy
used in the ‘k = n’ case here,

µ(Thk(I ′i) ∩ I ′i) ≥
1

3
µ(I ′i)

Combining the above result with the Chacón’s Transformation T being measure-preserving gives,

µ(Thk(I) ∩ I) ≥ 1

3

(
µ(I ′1) + µ(I ′2) + ...+ µ(I ′3l)

)
≥ 1

3
µ(I)

Theorem 4.7.5: Chacón’s transformation is not mixing.

Proof. Choose n > 0. Suppose I is a level on some column Cn. It is obvious that

µ(I) <
1

3

Then for all k ≥ n

µ(Thk(I) ∩ I) ≥ 1

3
µ(I)

> µ(I) µ(I)

Therefore T is not mixing.

It can be shown that a Chacón’s transformation is doubly ergodic. If this is so then the transformation
is weakly mixing.
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Chapter 5

Entropy

Entropy as we know from Information Theory and Statistical Mechanics, it measures the uncertainty
associated with a system. From the notions of entropy in thermodynamics which was used to find the
energy loss of a heat-engine, an electrical engineer Claude Shannon in 1948, developed the probabilistic
notions of entropy. In the mid 1950’s, Shannon’s theory was adapted to the theory of dynamical system
by Andrei Kolmogorov. It was found that entropy is useful in determining two dynamic systems iso-
morphic or not. Kolmogorov’s entropy was called the metric entropy, which is an invariant of measure
theoretical dynamical systems. In 1961, an invariant for topological systems, called the topological en-
tropy was developed by Roy Adler.

This chapter can be seen as three sections. First we would see Kolmogorov’s metric entropy, then
Adler’s topological entropy and finally, we would try to bridge both these notions.

To begin with Kolmogrov’s entropy, some definitions are required to be made. And to define an
entropy for a transformation, it would take a three step process which will be stated after the defining
some basic terminologies.

5.1 Preliminaries

Definition 5.1.1: A partition of (X,F , µ) is a collection {An} ⊂ such that ∀i 6= j, Ai ∩ Aj 6= ∅ and⋃
Ai = X.

A partition is said to be finite if the collection of disjoint elements from the partition are finite in
number.

Notations 5.1.2:

1. Suppose there is a finite partition of (X,F , µ), say ξ, then the collection of elements in F which
are formed by union of elements in ξ is a sub-σ-algebra of F . We would denote this collection of
elements as A(ξ). Often A(ξ) is called the sub-σ-algebra generated by the partition ξ.

2. A converse of the above can also be shown. Take C be a finite sub-σ-algebra of F . Then the
non-empty sets of the form, A1 ∩A2 ∩ ... ∩Am, where Ai = Ci or Ai = X \ Ci, with Ci ∈ C forms
a partition of (X,F , µ). The smallest such partition will be denoted as ξ(C).

3. From above two points, it can be seen that

A(ξ(C)) = C

And with η being a finite partition

ξ(A(η)) = η
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Definition 5.1.3: Let ξ and η be two finite partitions of (X,F , µ). η is said to be a refinement of ξ if
every element of ξ is a union of elements from η. This will be denoted by ξ ≤ η.

Note that, with partitions ξ and η,

A(ξ) ⊂ A(η) ⇐⇒ ξ ≤ η.

Definition 5.1.4: Consider two partitions, ξ = {A1, A2, ..., Am} and η = {B1, B2, .., Bn} for the space,
(X.F , µ). Then the join of the partition is defined as,

ξ ∨ η := {Ai ∩Bj : 1 ≤ i ≤ m, 1 ≤ j ≤ n}.

It can be observed that if A and C are two sub-σ-algebra of F , then

ξ(A ∨ C) = ξ(A) ∨ ξ(C)

and

A(ξ ∨ η) = A(ξ) ∨ A(η).

If T is a measure-preserving transformation and ξ = {A1, A2, ..., Am} is a partition, then

T−n(ξ) = {T−n(A1), T−n(A2), ..., T−n(Am)}.

This shows that even if a transformation is applied, the above mentioned properties would still hold.

Definition 5.1.5: For sub-σ-algebras C and D of F , we write C⊆̇D if for every C ∈ C ∃ D ∈ D with
µ(D∆C) = 0. We write C=̇D if C⊆̇D and D⊆̇C.

We say for two partitions ξ and η, ξ=̇η if A(ξ)=̇A(η).

With these definitions and notations, we can proceed to define Kolmogorov’s metric Entropy. For
that, there would be three stage process as mentioned before. Those steps are,

1. Define entropy for a finite sub-σ-algebra

2. Define entropy for a measure-preserving transformation T relative to a sub-σ-algebra.

3. And finally, define entropy of the transformation, T .

5.2 Entropy of a partition

Suppose a finite partition, ξ = {A1, A2, ..., Ak} of the probability space (X,F , µ). If we see the partition
as listing the possible outcomes (or events) of some experiment, then the probability associated with Ai
is µ(Ai).

We desire to have a function H(ξ) which would measure the uncertainty associated with performing
the experiment. We wish to make H(ξ) depend only on {µ(A1), µ(A2), ..., µ(Ak)}. Then H(ξ) can be

denoted as H

(
(µ(A1), µ(A2), ..., µ(Ak)

)
.

Given two partitions, ξ = {A1, A2, ..., Am} and η = {B1, B2, .., Bn}, the function H must be able to
calculate the uncertainty over the outcome of ξ if the outcome of η is given. To obtain an expression of
this, first assume that an event Bj of η has occurred then the uncertainty about the outcome of ξ given
Bj is

H(ξ) = H

(
µ(A1 ∩Bj)
µ(Bj)

,
µ(A2 ∩Bj)
µ(Bj)

, ...,
µ(Am ∩Bj)

µ(Bj)

)
Then if η has been told to have occurred,

H(ξ|η) =

n∑
j=1

µ(Bj) H

(
µ(A1 ∩Bj)
µ(Bj)

,
µ(A2 ∩Bj)
µ(Bj)

, ...,
µ(Am ∩Bj)

µ(Bj)

)
.
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These are some of the properties we wish to see in entropy of a partition. But there are some more
desirable properties. The following theorem states all the desirable properties and finally gives the form
of the function H that satisfies all of them.

Theorem 5.2.1: Let ∆K := {(p1, p2, ..., pk) ∈ Rk : pi ≥ 0,
∑k
i=0 pi = 1}. Suppose a function

H :
⋃∞
k=1 ∆k → R has the following properties;

1. H(p1, p2, ..., pk) ≥ 0. Equality holds if and only if pi = 1 for some i.

2. H|∆k
is continuous, for each k ≥ 1.

3. H|∆k
is symmetric, for each k ≥ 1.

4. H|∆k
has its maxima at ( 1

k ,
1
k , ...,

1
k ), for each k ≥ 1.

5. H(ξ ∨ η) = H(ξ) +H(η|ξ).

6. H

(
(p1, p2, ..., pk, 0)

)
= H

(
(p1, p2, ..., pk)

)
Then there exists a number λ > 0 such that,

H

(
(p1, p2, ..., pk)

)
= −λ

k∑
i=1

pi log pi.

Before proving this, let us see the new properties added to the function H and some more remarks.

Property 1 says that H has a value zero (that is when no information gain is observed) occurs when
there is only one possible outcome.

Property 4 shows that the maximum uncertainty is obtained when all the events have equal proba-
bility to occur.

Property 5 says the the information gained from performing ξ and η is the same as the sum of the
information gained by performing ξ and the performing η given that ξ has been performed.

Definition 5.2.2: Let A be a finite sub-algebra of F with the partition generated by the same is given
by ξ(A) = {A1, A2, ..., Ak}. Then the entropy of A is given as

H(A) = H
(
ξ(A)

)
= −

k∑
i=1

µ(Ai) logµ(Ai).

With this definition and applying the properties of H over a sub-algebra A, the following can be observed,

• If A = {X,φ},then H(A) = 0.

• If ξ(A) = {A1, A2, .., Am} such that for all Ai, µ(Ai) = 1
m then

H(A) = −
m∑
i=1

1

m
log

1

m

= logm

• H(A) ≥ 0.

• H(A) = H(C) if A=̇C.

• For a measure preserving transformation T : X → X,

H(T−1A) = H(A).
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Proof of Theorem 5.2.1:
Define,

L(n) = H(
1

n
,

1

n
, ...,

1

n
)

We have to show L(n) = λ log n where λ is some constant. From the properties (4) and (6) stated in the
theorem,

L(n) = H(
1

n
,

1

n
, ...,

1

n
, 0) ≤ H(

1

n+ 1
,

1

n+ 1
, ...,

1

n+ 1
) = L(n+ 1)

Hence it can be seen that L(n) is an increasing function of n.
Choose positive integers m and r, Let ξ1, ξ2, ..., ξm be mutually independent finite partitions with each
of them having r equally likely events. Then

H(ξk) = H(
1

r
,

1

r
, ...,

1

r
) , where 1 ≤ k ≤ m

= L(r)

from property (5)

H(ξ1, ξ2, ..., ξm) =

m∑
k=1

H(ξk)

= m . L(r) (5.1)

But the join of these partitions will give rise to rm equally likely events. So,

H(ξ1, ξ2, ..., ξm) = L(rm) (5.2)

From the eqn. 5.1 and 5.2

L(rm) = m L(r)

Similarly for an arbitrary s and n

L(sn) = n L(s)

Arbitrarily choose r, s and n. And then choose a number m which satisfies

rm ≤ sn ≤ rm+1

Then

m log r ≤ n log s ≤ (m+ 1) log r

This gives

m

n
=

log s

log r
=
m

n
+

1

n

So we can write ∣∣∣∣ log s

log r
− m

n

∣∣∣∣ ≤ 1

n

In a similar way

L(rm) ≤ L(sn) ≤ L(rm+1) or,

m L(r) ≤ n L(s) ≤ (m+ 1) L(r)
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This implies ∣∣∣∣L(s)

L(r)
− m

n

∣∣∣∣ ≤ 1

n

But we choose arbitrary r, s and n. So

L(s)

L(r)
=

log s

log r

Which means

L(n) = λ log n.

Now we can look into the general case where the outcome of events are not equally likely to occur.
For this let ξ = {A1, A2, ..., Am} be a partition such that for all Ai ∈ ξ, µ(Ai) = pi, where each pi ∈ Q
with 0 ≤ pi ≤ 1. Then let

pi =
gi
g

where g =

m∑
i=1

gi and each gi ∈ Q

Let η be another partition which is dependent on ξ and contains g events. So let η = {B1, B2, ..., Bg}.
Divide η into g groups containing g1, g2, ...., gm events respectively. By grouping the events of η, if an
event of ξ, say, Ai is occurred then all the gi events of the ith group will occur with all of them having
the same probability of 1

gi
and those events not in this group will have a probability of zero. In short,

we grouped η in a way that if an event Ai of ξ occurs, then η reduces to a partition of gi equally likely
events. Thus we get,

H(η|Ai) = H(
1

gi
,

1

gi
, ...,

1

gi
)

= L(gi)

= λ log gk

So if ξ = {A1, A2, ..., Am} is performed

H(η|ξ) =

m∑
i=0

piH(η|Ai)

=

m∑
i=0

pi λ log gi

With pi
gi

= g and
∑m
i=0 pi = 1

= λ

m∑
i=0

pi log pi + λ log g.

Looking at ξ ∨ η, the event AiBj occurs only when Bj belongs to the ith group. This gives the total
number of events in ξ ∨ η which is

∑m
i=1 gi = g events.The probability of those events is

pi .
1

gi
=

1

g

Hence,

H(ξ ∨ η) = L(g) = λ log g
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But,

H(ξ ∨ η) = H(ξ) +H(η|ξ)

λ log g = H(ξ) + λ

m∑
i=0

pi log pi + λ log g

or,

H(ξ) = −λ
m∑
i=0

pi log pi.

With H being continuous, H(ξ) holds for all real values pi ∈ [0, 1]. This concludes the proof. �

The following theorem is a simplified form of Jensen’s Inequality theorem.

Corollary 5.2.3: For a partition ξ = {A1, A2, ..., Am}, H(ξ) ≤ logm. And H(ξ) = logm only when
µ(Ai) = 1

m for all i.

Theorem 5.2.4 Consider a function,

φ : [0,∞)→ R

φ(x) =

{
0, if x = 0

x log x, if x 6= 0

is strictly convex i.e., φ(αx+ βy) ≤ αφ(x) + βφ(y) for x, y ∈ [0,∞);α, β ≥ 0 and α+ β = 1. Equality is
obtained only when x = y or α = 0 or β = 0.

0
1

1
e

Figure 5.1: Graph of φ(x)

Via induction, if x ∈ [0,∞), α ≥ 0 and
∑k
i=1 αi = 1,

φ(

k∑
i=1

αixi) ≤
k∑
i=1

αiφ(x) (5.3)

Proof. On differentiating φ(x),

φ′(x) = 1 + log x

φ′′(x) =
1

x
, on [0,∞)

Now fix α and β. Applying the Mean Value Theorem

φ(y)− φ(αx+ βy) = φ′(z)

(
(1− β) y − α x

)
= φ′(z) α (y − z)
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and

φ(αx+ βy)− φ(x) = φ′(w)β(y − x)

But φ′(x) is a non-decreasing function. So

β

(
φ(y)− φ(αx− βy)

)
= φ′(z)αβ(y − x)

≥ φ′(w)αβ(y − x)

= α

(
φ(αx+ βy)− φx

)
This implies

αφ(x) + βφ(y) ≥ φ(αx+ βy)

Eqn.5.3 can be obtained using the same steps as done above with the induction method.

5.3 Conditional Entropy

Definition 5.3.1: Given two sub-algebra A and C of F , the entropy of A given C is

H(A|C) = H

(
ξ(A)|ξ(C)

)
= −

p∑
j=1

µ(Cj)

k∑
i=1

µ(Ai ∩ Cj)
µ(Cj)

log
µ(Ai ∩ Cj)
µ(Cj)

= −
∑
i,j

µ(Ai ∩ Cj) log
µ(Ai ∩ Cj)
µ(Cj)

.

Notes:

• H(A|C) ≥ 0.

• H(A|C) = H(D|C) if A=̇D.

• H(A|C) = H(A|D) if C=̇D.

Theorem 5.3.2: For a probability space (X,F , µ), if A, C, and D are finite sub-algebra of F then

1. H(A ∨ C |D) = H(A|D) +H(C| A ∨ D)

2. H(A ∨ C) = H(A) +H(C|A)

3. H(A|D) ≤ H(C|D), if A⊆̇C.

4. H(A) ≤ H(C), if A⊆̇C.

5. H(A|C) ≥ H(A|D) if C⊆̇D.

6. H(A) ≥ H(A|D)

7. H(A ∨ C |D) ≤ H(A|D) +H(C|D).

8. H(A ∨ C) ≤ H(A) +H(C).

9. For a measure-preserving transformation T , H(T−1A |T−1C) = H(A|C)

10. H(T−1A) = H(A).
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Proof. For (1),

H(A ∨ C |D) = −
∑
i,j,k

(Ai ∩ Cj ∩Dk) log
µ(Ai ∩ Cj ∩Dk)

µ(Dk)

But,

µ(Ai ∩ Cj ∩Dk)

µ(Dk)
=
µ(Ai ∩ Cj ∩Dk)

µ(Ai ∩Dk)
.
µ(Ai∩k)

µ(Dk)

Hence by splitting the log terms

H(A ∨ C |D) = −
∑
i,j,k

(Ai ∩ Cj ∩Dk)

(
log

µ(Ai ∩ Cj ∩Dk)

µ(Ai ∩Dk)
+ log

µ(Ai ∩Dk)

µ(Dk)

)
= H(C |A ∨ D) +H(A|D)

For (2), plug in N = {∅, X} into (1), i.e.,

H(A ∨ C |N ) = H(A|N ) +H(C| A ∨ N )

= H(A) +H(C|A)

For (3), from (1)

H(C|D = H(A ∨ C |D)

= H(A|D) +H(C| A ∨ D)

≥ H(A|D).

For (4), Plug in D = {∅, X} in (3). So, H(C) ≥ H(A).

For (5), fix i, j and let,

αk =
µ(Dk ∩ Cj)
µ(Cj)

and Xk =
µ(Ai ∩Dk)

µ(Dk)

Then from Theorem 5.2.4

φ

(∑
k

µ(Dk ∩ Cj) µ(Ai ∩Dk)

µ(Cj) µ(Dk)

)
≥
∑
k

µ(Dk ∩ Cj)
µ(Cj)

φ

(
µ(Ai ∩Dk)

µ(Dk)

)

But with C⊆̇D, the left hand side of the above equation becomes

φ

(
µ(Ai ∩ Cj)
µ(Cj)

)
=
µ(Ai ∩ Cj)
µ(Cj)

log
µ(Ai ∩ Cj)
µ(Cj)

Multiplying both sides with µ(Cj) and then summing over i and j gives∑
i,j

µ(Ai ∩ Cj) log
µ(Ai ∩ Cj)
µ(Cj)

≤
∑
i,j,k

µ(Dk ∩ Cj)
µ(Ai ∩Dk)

µ(Dk)
log

µ(Ai ∩Dk)

µ(Dk)

=
∑
i,j,k

µ(Dk)
µ(Ai ∩Dk)

µ(Dk)
log

µ(Ai ∩Dk)

µ(Dk)

or

−H(A|C) ≤ −H(A|D)

This implies

H(A|D) ≤ H(A|C).
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For (6), Plug in C = {∅, X} into (5). This would give the result H(A|D) ≤ H(A).

For (7), Use (1) in (5), i.e.,

From (1)

H(A ∨ C |D) = H(A|D) +H(C| A ∨ D)

and from (5), with A⊆̇A ∨ D

H(C|D) ≥ H(C| A ∨ D)

So

H(A ∨ C |D) ≤ H(A|D) +H(C|D).

For (8), using D = {∅, X} into (7) will give the required result.

For (9) and (10), it is obvious from their definitions.

Theorem 5.3.3: Let A and C be two sub-algebras of F . Then,

1. H(A|C) = 0 (or H(A ∨ C) = H(C)) if and only if A⊆̇C.

2. H(A|C) = H(A), (or H(A ∨ C) = H(A) + H(C) ) if and only if A and C are independent i.e.,
µ(A ∩ C) = µ(A) µ(C) for all A ∈ A and C ∈ C.

Proof. Let ξ(A) = {A1, A2, ..., Ak} and ξ(C) = {C1, C2, ..., Cp}. Without loss of generality, assume each
of these events to have a non-zero measure.

For proving (1), suppose H(A|C) = 0, then,

−
k∑
i=1

p∑
j=1

µ(Aj ∩ Cj) log
µ(Ai ∩ Cj)
µ(Cj)

= 0

With each term,

−µ(Ai ∩ Cj) log
µ(Ai ∩ Cj)
µ(Cj)

= 0

implies,

µ(Ai ∩ Cj) log
µ(Ai ∩ Cj)
µ(Cj)

= 0

So for all i, j, either,
µ(Ai ∩ Cj) = 0 or µ(Ai ∩ Cj) = µ(Cj)

Therefore, A⊆̇C. For the converse of (1), Using A⊆̇C, for each i and each j, either,

µ(Ai ∩ Cj) = 0 or µ(Ai ∩ Cj) = µ(Cj)

Then, H(A|C) = 0.
For proving (2), suppose H(A|C) = H(A) then,

−
k∑
i=1

p∑
j=1

µ(Aj ∩ Cj) log
µ(Ai ∩ Cj)
µ(Cj)

= −
k∑
j=1

µ(Ai) logµ(Ai) (5.4)
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Fixing i and applying Theorem 5.3.4 with,

αj = µ(Cj)

xj =
µ(Ai ∩ Cj)
µ(Cj)

gives,

φ(
∑

αixi) ≤
∑

αiφ(xi)

which is same as,

φ

( p∑
j=1

µ(Cj)
µ(Ai ∩ Cj)
µ(Cj)

)
≤

p∑
j=1

µ(Cj)φ

(
µ(Ai ∩ Cj)
µ(Cj)

)

φ(µ(Ai)) ≤
p∑
j=1

µ(Cj)
µ(Ai ∩ Cj)
µ(Cj)

log
µ(Ai ∩ Cj)
µ(Cj)

This implies,

µ(Ai) logµ(Ai) ≤
p∑
j−1

µ(Ai ∩ Cj) log
µ(Ai ∩ Cj)
µ(Cj)

Multiplying −1 to both sides,

− ≤
p∑
j−1

µ(Ai ∩ Cj) log
µ(Ai ∩ Cj)
µ(Cj)

≤ −µ(Ai) logµ(Ai) (5.5)

Eqn.5.5 has an equality only when
µ(Ai∩Cj)
µ(Cj)

is a constant for all i, j. But as we have fixed i, the equality

will hold here due to eqn.5.4.

Let ai =
µ(Ai∩Cj)
µ(Cj)

. Then summing µ(Ai ∩ Cj) = aiµ(Cj) over j, we get,

ai = µ(Ai) =⇒ µ(Ai ∩ Cj) = µ(Ai) µ(Cj)

This holds for all i, j. Therefore A and C are independent.

For the converse, with A and C being independent gives,

H(A|C) = H(A)

So,

H(A ∨ C) = H(C) +H(A|C)
= H(C) +H(A)

Theorem 5.3.4:Let ∇ the space of all finite sub-algebras of F where two such sub-algebras A and C
are identified if A=̇C. Then,

d(A, C) = H(A|C) +H(C|A)

is a metric on ∇.

Proof. Clearly, d(A, C) ≥ 0.And when A=̇C, (H(A|C) = 0 and H(C|A) = 0.

∴ d(A, C) = 0
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To show the triangle inequality property,

H(A|D) ≤ H(A ∨ C |D)

= H(C|D) +H(A| C ∨ D)

≤ H(C|D) +H(A|C)

Similarly,

H(D|A) ≤ H(C|A) +H(D|C)

So,

d(A|D) = H(A|D) +H(D|A)

≤ H(C|A) +H(A|C) +H(D|C) +H(C|D)

≤ d(A, C) + d(C,D)

Therefore d is a metric on ∇.

With a finite sub-σ-algebra A of F and let F be an arbitrary sub-σ-algebra of F , we can define the
conditional entropy H(A|F ). But for this we would require the conditional expectation map which is
defined as follows.

E(·|F ) : L1(X,F , µ)→ L1(X,F , µ)

For a finite sub-σ-algebra C of F with ξ(C) = {C1, C − 2, ..., Cp}, the conditional expectation map is,

E(f |C)(x) =

p∑
j=1

χCj (x) .
1

µ(Cj)

∫
Cj

fdµ

If A is a finite sub-σ-algebra with ξ(A) = {A1, A2, ..., Am},

E(χAi |Cj)(x) = χCj (x) .
1

µ(Cj)

∫
Cj

χAidµ

=
µ(Ai ∩ Cj)
µ(Cj)

Then for,

H(A|C) = −
∑
i,j

µ(Ai ∩ Cj) log
µ(Ai ∩ Cj)
µ(Cj)

= −
m∑
i=1

p∑
j=1

µ(Cj)E(χAi |Cj) logE(χAi |Cj)

= −
m∑
i=0

∫
E(χAi |C) logE(χAi |C)dµ

= −
∫ m∑

i=0

E(χAi |C) logE(χAi |C)dµ

This helps us define the conditional entropy of a sub-σ-algebra given an arbitrary sub-σ-algebra.

Definition 5.3.5: For a probability space (X,F , µ), if A is a finite sub-σ-algebra of F with ξ(A) =
{A1, A2, ..., Am} and F is an arbitrary sub-σ-algebra of F , Then the entropy of A given F is,

H(A|F ) = −
∫ m∑

i=0

E(χAi |F ) logE(χAi |F )dµ

The existence of E(χAi |F ) is proved by seeing that, for B ∈ F , µAi : B →
∫
B
χAi dµ is a finite

measure on(X,F) which is absolutely continuous with respect to µ. So if there is an inclusion map
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g : F → F , then µAi |F is the restriction of µAi to F . Similarly µ|F is the restriction of µ to F . Clearly
µAi |F << µ|F . Then by invoking the Radon-Nikodym theorem, E(χAi |F ) is the Radon-Nikodym
derivative i.e.,

E(χAi |F ) =
µAi |F
µ|F

For further studies of the expectation map, the reader can refer to Billingsley’s book, Probability and
Measure[10]. Note that, E(·|F ) is a positive linear operator and

∑m
i=0 χAi = 1. It can be shown that

H(A|F ) is finite. For this, we have,

0 ≤ E(χAi |F )(x) ≤ 1, a.e.

Therefore,

m∑
i=0

E(χAi |F ) logE(χAi |F )dµ ≤ k max
t∈[0,1]

(−t log t) ≤ k

e

Hence H(A|F ) is finite.

For a family of sub-σ-algebra of {Fn}∞n=1, let
∨∞
n=1 F denote the smallest sub-σ-algebra containing

all the Fn.

Lemma 5.3.6: Over a probability space (X,F , µ), let {Fn}∞n=1 be an increasing sequence of sub-σ-
algebra of F . Let

∨∞
n=1 F be denoted as F . Then for each f ∈ L2(X,F , µ),

||E(f |Fn)− E(f |F )||2 → 0

Proof. It can be seen that E(f |Fn) is an orthogonal projection of L2(X,F , µ) onto L2(X,Fn, µ). Sup-
pose B ∈ F . Choose Bn ∈ Fn such that µ(Bn∆B) → 0 as n → ∞.The member of L2(X,F , µ) closest
to χB is E(χB |Fn). So,

||E(χB |Fn)− χB ||22 ≤ ||χBn − χB ||22
= µ(Bn∆B)→ 0

Recall that in L2(X,F , µ) , finite linear combinations of characteristic functions are dense. So for all
f ∈ L2(X,F , µ),

||E(f |Fn)− f ||2 → 0

Also,
E(E(f |Fn)|Fn) = E(f |Fn)

Hence for all f ∈ L2(X,F , µ),
||E(f |Fn)− E(f |F )||2 → 0

The same result holds for a decreasing sequence {Fn}∞n=1, of sub-σ-algebra with ∩∞n=1Fn = F .

Theorem 5.3.7: Over a probability space (X,F , µ), if A is a finite sub-σ-algebra of F and {Fn}∞n=1,
is an increasing sequence of sub-σ-algebra of F . Then,

H(A|Fn)→ H(A|F )

Proof. Let ξ(A) = {A1, A2, ..., Am}. From Lemma 5.3.6, for each i,

||E(χAi |Fn)− E(χAi |F )||2 → 0

Which means E(χAi |Fn) converges in measure to E(χAi |F ). Thus, −
∑m
i=1E(χAi |Fn) logE(χAi |Fn)

converges in measure to −
∑m
i=1E(χAi |F ) logE(χAi |F ).

Also all the functions are bounded by m
e . That will give the convergence in L1(µ).

∴ H(A|Fn)→ H(A|F )
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The same theorem will hold for a decreasing sequence {Fn}∞n=1, of sub-σ-algebra with F = ∩∞n=1Fn.

Theorem 5.3.8: Over a probability space (X,F , µ), let A,F be two sub-σ-algebra of F with A being
finite. Then,

1. H(A|F ) = 0, if and only if A⊆̇F .

2. H(A|F ) = H(A) if and only if A and F are independent.

Proof. Take ξ(A) = {A1, A2, ..., Am}.
To prove (1), if A⊆̇F and knowing that E(χAi |F ) takes values either 0 or 1,

H(A|F ) = 0

For the converse,

0 = H(A|F ) = −
∫ m∑

i=0

E(χAi |F ) logE(χAi |F )dµ

But for each i,
−E(χAi |F ) logE(χAi |F ) ≥ 0

Therefore,

E(χAi |F ) logE(χAi |F ) = 0

Then for all i,

E(χAi |F ) = 0 or E(χAi |F ) = 1

=⇒ A⊆̇F

To prove (2), suppose B ∈ F , and D be a finite sub-σ-algebra consisting of the sets {φ,B,X \ B,X}.
Clearly D⊆̇F . And,

H(A) ≥ H(A|D) ≥ H(A|F ) = H(A)

Hence,
H(A|D) = H(A)

So from theorem 5.3.3, A and D are independent and for all A ∈ A, µ(A ∩ B) = µ(A) µ(B). Since this
would hold for all B ∈ F , A and F are independent.
For the converse, suppose A and F are independent. Then for each Ai ∈ A,

E(χAi |F ) = µ(Ai)

=⇒ H(A|F ) = H(A)

With this we can proceed to the next stage; defining entropy for a measure-preserving transformation
with respect to a finite sub-σ-algebra .

5.4 Entropy of a Measure-Preserving Transformation

With a measure-preserving transformation T , the elements of the partition,

ξ(

n−1∨
i=o

T−1A) =

n−1∨
i=0

T−iξ(A)

are of the form,
n−1⋂
i=0

T−iAji
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. Definition 5.4.1: Let T be a measure-preserving transformation of the probability space (X,F , µ).
If A is a finite sub-σ-algebra of F , then

h(T, ξ(A)) = h(T,A) = lim
n→∞

1

n
H(

n−1∨
i=o

T−1A) (5.6)

is called the entropy of T with respect to a finite sub-σ-algebra A.

The existence of the limit will be shown later. With the first two stages defined, we can now head
into defining the entropy of T .

Definition 5.4.2: Let T be a measure-preserving transformation over a probability space (X,F , µ).
The entropy of T is,

h(T ) = suph(T,A)

where the supremum is taken over all finite sub-σ-algebra A of F .

Equivalently, h(T ) = suph(T, ξ) where supremum is taken over all finite partitions of (X,F , µ).
The following properties can be observed for h(T ).

• h(T ) ≥ 0

• h(idX) = 0; where idX is the identity map. This shows that if h(T ) = 0 then h(T,A) = 0 for every

finite sub-σ-algebra A. That means
∨n−1
i=o T

−1A) does not change as n→∞.

To show the existence of the limit in eqn.5.6 we require to prove the following lemma.

Lemma 5.4.3: Let {an}n≥1 be a sequence of real numbers such an+p ≤ an + ap for every n, p. Then
limn→∞

an
n exists and equals infn

an
n .

Proof. Fix p > 0. Suppose for each n > 0, write n = k p+ i where 0 ≤ i ≤ p. Then,

an
n

=
akp+i
kp+ i

≤ ai
kp+ i

+
akp
kp+ i

≤ ai
kp

+
akp
kp

≤ ai
kp

+ k
ap
kp

=
ai
kp

+
ap
p

Then,

lim sup
an
n
≤ ai
kp

+ k
ap
p

or,

lim sup
an
n
≤ ap

p

So,

lim sup
an

n
≤ ap

p

∴ lim sup
an
n
≤ inf

p

ap
p

But,

inf
p

ap
p
≤ lim inf

n

an
n
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Hence we get,

lim sup
an
n
≤ inf

n

an
n
< lim inf

an
n

Therefore the limit exists.

Theorem 5.4.4: For a measure-preserving transformation T and a finite sub-σ-algebra A of F ,
limn→∞

1
nH(

∨n−1
i=o T

−1A) exists.

Proof. Set an = H(
∨n−1
i=o T

−1A) ≤ 0. Then,

an+p = H(

n+p−1∨
i=o

T−1A) ≤ H(

n−1∨
i=o

T−1A) +H(

n+p−1∨
i=n

T−1

≤ an +H(

p−1∨
i=o

T−1A)

≤ an + ap

Then by the above Lemma 5.4.3, the limit must exist.

Theorem 5.4.5: Entropy is an isomorphism invariant.

Proof. Consider two measure-preserving transformations, T1 : X1 → X1 and T2 : X2 → X2. Let Ã
denote the equivalent class of sets under the relation A ∼ B if µ(A∆B) = 0.

Let φ : (F̃2, µ̃2)→ (F̃1, µ̃1) be an isomorphism of measure algebras such that,

φ ◦ T̃2
−1

= T̃1
−1 ◦ φ

Suppose A is finite where A⊆̇F2. Let the partition generated by the same be, ξ(A) = {A1, A2, ..., Ar}.
Choose Bi ∈ F1 such that F̃i = φ(Ãi) and η = {B1, B2, ..., Br} forms a partition of (X1,F1, µ1). Set

A1 = A(η) so that
⋂n−1
i=0 T

−1
1 Bqi (where qi ∈ {1, 2, ..., r}) has the same measure as

⋂n−1
i=0 T

−1
2 Aqi because,

φ

( n−1⋂
i=0

(T−i2 Aqi)
∼
)

= φ(

n−1⋂
i=0

T̃2
−i
Ãqi)

=

n−1⋂
i=0

T̃1
−i
φ(Ãqi)

=

n−1⋂
i=0

T̃1
−i
B̃qi

=

n−1⋂
i=0

(T−i1 Bqi)
∼

∴ H(

n−1∨
i=o

T−i1 A1) = H(

n−1∨
i=o

T−i2 A2)

Since this holds with every n,

H(T1,A1) = H(T2,A2)

=⇒ h(T1) ≥ h(T2)

And by symmetry we get,

h(T1) = h(T2)
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This says that if T2 is a factor of T1 then h(T2) ≤ h(T1).
One can observe some properties associated with h(T,A) and h(T ). The following set of theorems will
talk about those.

Theorem 5.4.6: Let T be a measure-preserving transformation over a probability space (X,F , µ). Let
A and C be two finite sub-algebras of F . Then

1. h(T,A) ≤ H(A)

2. h(T,A ∨ C) ≤ h(T,A) + h(T, C)

3. h(T,A) ≤ h(T, C) if A⊆̇C.

4. h(T,A) ≤ h(T, C) +H(A|C).

5. h(T, T−1A) = h(T,A)

6. For k ≥ 1, h(T,A) = h(T,
∨k−1
i=0 T

−iA).

7. If T is invertible and k ≥ 1 then,

h(T,A) = h(T,

k∨
i=−k

T−iA)

Proof. For (1), using the property, H(A ∨ C) ≤ H(A) +H(C),

1

n
H(

n−1∨
i=o

T−iA) ≤ 1

n

n−1∑
i=0

H(T−iA)

Using the property, H(T−1A) = H(A),

=
1

n

n−1∑
i=0

H(A)

= H(A)

For (2),

H

(
T−1(A ∨ C)

)
= H(

n−1∨
i=o

T−iA ∨
n−1∨
i=o

T−iC)

≤ H(

n−1∨
i=o

T−iA) +H(

n−1∨
i=o

T−iC)

≤ h(T,A) + h(T, C)

For (3), With A⊆̇C,

n−1∨
i=o

T−iA⊆̇
n−1∨
i=o

T−iC

Then using the property H(A) ≤ H(C), if A⊆̇C,

h(T,A) ≤ h(T, C)

For (4),

H(

n−1∨
i=o

T−iA) ≤ H(

n−1∨
i=o

T−iA ∨
n−1∨
i=o

T−iC)
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With the property H(A ∨ C) = H(A) +H(C|A),

= H(

n−1∨
i=o

T−iC) +H(

n−1∨
i=o

T−iA)|
n−1∨
i=o

T−iC)

But from the property H(A ∨ C |D) ≤ H(A|D) +H(C|D),

H(

n−1∨
i=o

T−iA|
n−1∨
i=o

T−iC) ≤
n−1∑
i=0

H(T−iA|
n−1∨
i=o

T−iC)

≤
n−1∑
i=0

H(T−iA| T−iC)

And from the property H(A|C) ≥ H(A|D) if C⊆̇D,

= n H(A|C)

Thus,

H(

n−1∨
i=o

T−iA) ≤ H(

n−1∨
i=o

T−iC) + n H(A|C)

Taking n→∞,

h(T,A) ≤ h(T, C) +H(A|C)

For (5),

H(

n∨
i=1

T−iA) = H(

n−1∨
i=o

T−iA)

So,

h(T, T−1A) = h(T,A)

For (6),

h(T,

k−1∨
i=0

T−iA) = lim
n→∞

1

n
H(

n∨
j=0

T−j(

k−1∨
i=0

T−iA))

= lim
n→∞

1

n
H(

k−1+n−1∨
i=0

T−iA)

= lim
n→∞

k + n− 2

k + n− 2
.

1

n
H(

k+n−2∨
i=0

T−iA)

= lim
n→∞

1

k + n− 2
H(

k+n−2∨
i=0

T−iA)

= h(T,A)

For (7), from (5),

h(T, T−1A) = h(T,A)

then,

h(T,

k∨
i=−k

T−iA) = h(T,

2k∨
i=0

T−iA)
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from (6),

= h(T,A)

Theorem 5.4.7: Let A, C be finite sub-algebra of F . Then |h(T,A)− h(T, C)| ≤ d(A, C). Thus h(T, ·)
is a continuous function on the metric space (∇, d).

Proof. From Theorem 5.4.6, (4) says that h(T,A) ≤ h(T, C) +H(A|C). So,

|h(T,A)− h(T, C)| ≤ max

(
H(A|C), H(C|A)

)
≤ H(A|C) +H(C|A)

= d(A, C)

Theorem 5.4.8: Let T be a measure preserving transformation over a probability space (X,F , µ).

1. For k > 0,
h(T k) = k h(T )

2. With T being invertible, then for all k ∈ Z,

h(T k) = |k| h(T )

Proof. Looking at,

h(T k,

k−1∨
i=0

T−iA) = lim
n→∞

1

n
H(

k−1∨
j=0

T−kj(

n−1∨
i=0

T−iA))

= lim
n→∞

1

n
H(

nk−1∨
i=0

T−iA)

= lim
n→∞

k .
1

kn
H(

nk−1∨
i=0

T−iA)

= k h(T,A)

So,

k h(T,A) = k sup
A
h(T,A)

= sup
A
h(T k,

k−1∨
i=0

T−iA)

≤ sup
C
h(T k, C)

= h(T k)

And from Theorem 5.4.6 (3),

h(T k,A) ≤ h(T k,

k−1∨
i=0

T−iA)

= k h(T,A)

∴ h(T k) = kh(T )
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For (2), it is sufficient enough to show that h(T−1) = h(T ). Using the property that H(T−1A) = H(A),

H(

n−1∨
i=o

T−iA) = H(T−(n−1)
n−1∨
i=o

T−iA)

Then for all finite A,

h(T−1,A) = h(T,A)

So if k ∈ Z− then,
h(T k) = h(T |k|) = |k| h(T )

The following results will show when h(T,A) goes to zero.

Theorem 5.4.9: For a measure-preserving transformation T over a probability space (X,F , µ)and a
finite sub-σ-algebra A of F ,

h(T,A) = lim
n→∞

H(A|
n∨
i=0

T−iA)

= H(A|
∞∨
i=0

T−iA)

Proof. Note that the term with the limit on the right hand side is not increasing, hence the limit will
exist due to Theorem 5.3.2 (5). We will first show via induction that,

H(

n−1∨
i=o

T−iA) = H(A) +

n−1∑
j=1

H(A|
j∨
i=1

T−iA)

Clearly when n = 1 it holds true. Suppose this is true for n = p. Then for n = p+ 1,

H(

p∨
i=o

T−iA) = H(

p∨
i=1

T−iA ∨A)

from Theorem 5.3.2 (2),

= H(

p∨
i=1

T−iA) +H(A|
p∨
i=1

T−iA)

from Theorem 5.3.2 (10),

= H(

p−1∨
i=0

T−iA) +H(A|
p∨
i=1

T−iA)

using the induction hypothesis,

= H(A) +

p∑
j=1

H(A|
j∨
i=1

T−iA)

So by induction,

H(

n−1∨
i=o

T−iA) = H(A) +

n−1∑
j=1

H(A|
j∨
i=1

T−iA)

Now take n→∞ after multiplying 1
n to both sides, would give,

h(T,A) = lim
n→∞

1

n

n−1∑
j=1

H(A|
j∨
i=1

T−iA)

As for a real number, Cesaro limit of convergent sequence is equivalent to the usual limit, the proof is
completed.
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Corollary 5.4.9 (i): For a measure-preserving transformation T over a probability space (X,F , µ)and
a finite sub-σ-algebra A of F ,

h(T,A) = 0 ⇐⇒ A⊆̇
∞∨
i=1

T−iA

Proof. Suppose h(T,A) = 0. Then from Theorem 5.4.9,

0 = h(T,A)

= lim
n→∞

H(A|
n∨
i=1

T−iA)

= H(A|
∞∨
i=1

T−iA)

From Theorem 5.3.8,
H(A|C) = 0 =⇒ A⊆̇C

For the converse, with A⊆̇
∨∞
i=0 T

−iA, using Theorem 5.4.9,

h(T,A) = H(A|
∞∨
i=0

T−iA)

By Theorem 5.3.8,

= 0

Corollary 5.4.9 (ii): For a measure-preserving transformation T over a probability space (X,F , µ),
h(T ) = 0 if and only if for every finite sub-algebra A of F , A⊆̇

∨∞
i=0 T

−iA.

Corollary 5.4.9 (iii): For a measure-preserving transformation T over a probability space (X,F , µ),h(T ) =
0 then T−1F=̇F .

Proof. Let F ∈ F . Define a finite algebra as

A := {φ, F,X \ F,X}

Then by Corollary 5.4.9(i),

h(T ) = 0 =⇒ A⊆̇
∞∨
i=1

T−iA

But,

∞∨
i=1

T−iA⊆̇T−1F

So,

A⊆̇T−1F

As F was chosen arbitrarily to construct A,

F⊆̇T−1F
=⇒ F=̇T−1F
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Corollary 5.4.9 (iv): For a measure-preserving transformation T over a probability space (X,F , µ),
let h(T ) = 0. Then for a finite sub-σ-algebra A of F with T−1A⊆̇A, implies T−1A=̇A.

Proof. Since it is given that T−1A⊆̇A, we can restrict the measure-preserving transformation T to A,
as T |(X,A,µ). It can be seen that over this restriction the entropy is also zero for T . Then applying
Corollary 5.4.9(iii),

T−1A=̇A

5.5 Methods for Calculating the Entropy of a Transformation

The way we defined entropy requires to calculate the entropy associated with every finite sub-σ-algebra.
In the practical sense this is impossible to calculate. So there has to be some way to ease the process
of calculating the entropy of T . Ideally we wish to calculate to the entropy of T with just one finite
sub-σ-algebra A. Hence this section will explore possibility of the existence of such a finite sub-σ-algebra
A.

Lemma 5.5.1: Suppose r ≥ 1 be an integer. For any arbitrary ε > 0, there exists δ > 0 such that for
any two partitions, ξ = {A1, A2, ..., Ar} and η = {B1, B2, ..., Br} of (X,F , µ)with

∑r
i=0 µ(Ai∆Bi) < δ,

we have
H(ξ|η) +H(η|ξ) < ε

Proof. Let ε > 0 be some arbitrary number. Choose δ such that,

0 < δ <
1

4
and − r(r − 1) . δ log δ − (1− δ) log(1− δ) < ε

2

Construct a partition Ω such that it consists of the sets Ai ∩Bj (where i 6= j )and ∪ri=1(Ai ∩Ci). Then
clearly we can see,

ξ ∨ η = ξ ∨ Ω = η ∨ Ω

Since for i 6= j, Ai ∩ Cj ⊂ ∪rn=1(An∆Bn) and
∑r
i=1 µ(Ai∆Bi) < δ from the hypothesis,

µ(Ai ∩ Cj) < δ

With
∑r
i=1 µ(Ai∆Bi) < δ ,

µ(∪ri=1(Ai∆Bi)) < δ

or,

1− µ(∪ri=1(Ai ∩Bi)) < δ

or,

µ(∪ri=1(Ai ∩Bi)) > 1− δ

From the way Ω was constructed,

H(Ω) = −
∑
i,j,i 6=j

µ(Ai ∩Bj) logµ(Ai ∩Bj)− µ(∪ri=1(Ai ∩Bi)) logµ(∪ri=1(Ai ∩Bi))

But with µ(Ai ∩ Cj) < δ for i 6= j,

−
∑
i,j,i 6=j

µ(Ai ∩Bj) logµ(Ai ∩Bj) < −r(r − 1) . δ log δ (5.7)

Eqn.5.7 holds because δ < 1
4 and the function −x log x is increasing for x ∈ [0, 1

e ]. And with µ(∪ri=1(Ai∩
Bi)) > 1− δ,

−µ(∪ri=1(Ai ∩Bi)) logµ(∪ri=1(Ai ∩Bi)) < −(1− δ) log(1− δ) (5.8)
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Eqn.5.8 holds because 1− δ > 3
4 and the function −x log x is increasing for x ∈ [ 1

e ,∞].
Therefore from equations 5.7 and 5.8,

H(Ω) < −r(r − 1) . δ log δ − (1− δ) log(1− δ) < ε

2

Hence,

H(ξ) +H(η|ξ) = H(ξ ∨ η)

= H(ξ ∨ Ω)

≤ H(ξ) +H(Ω)

≤ H(ξ) +
ε

2

=⇒ H(η|ξ) < ε

2
(5.9)

Similarly,

H(η) +H(ξ|η) = H(η ∨ ξ)
= H(η ∨ Ω)

≤ H(η) +H(Ω)

≤ H(η) +
ε

2

=⇒ H(ξ|η) <
ε

2
(5.10)

So from eqn. 5.9 and 5.10,

=⇒ H(ξ|η) +H(η|ξ) < ε

Theorem 5.5.2: On a probability space (X,F , µ), let F0 be an algebra such that the σ-algebra generated
by F0, B(F0)=̇F . Let C be a finite sub-algebra of F . Then for any arbitrary ε > 0, there exists a finite
sub-algebra D⊆̇F0 such that H(C|D) +H(D|C) < ε.

Proof. Let C = {C1, C2, ..., Cr}. Fix a number ω and choose λ such that ,

λ (r − 1)[1 + r(r − 1)] < ω

Choose Fi ∈ F0 for each i, such that µ(Ci∆Fi) < λ. For i 6= j,

Fi ∩ Fj ⊂ (Ci∆Fi) ∪ (Cj∆Fj)

so,

µ(Fi ∩ Fj) < 2 λ

Then if we set R =
⋃
i 6=j(Fi ∩ Fj), then R < r (r − 1) λ. So assign for 1 ≤ i < r, Di = Fi \ R and

Dr = X \∪r−1
i=1Di. Clearly D = {D1, D2, ..., Dr} forms a partition over X. Note that for each i, Di ∈ F0.

For i < r,

Ci∆Di ⊂ R ∪ (Ci∆Fi)

=⇒ µ(Ci∆Di) < λ [1 + r(r − 1)] < ω

For i = r,

Cr∆Dr ⊂
r−1⋃
i=1

(Ci∆Di)

=⇒ µ(Cr∆Dr) < λ (r − 1)[1 + r(r − 1)] < ω

Hence for each ω we can find a partition D such that for every 0 < i ≤ r, µ(Ci∆Di) < ω. Then the
proof is complete by invoking Lemma 5.5.1.
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Corollary 5.5.2: Suppose there is an increasing sequence {An} of finite sub-algebras of F . Let C be a
finite sub-algebra of F with C⊆̇

∨
nA. Then H(C \ An)→ 0 as n→∞.

Proof. Let F0 = ∪∞i=1Ai. Clearly F0 is an algebra. Since C⊆̇
∨
nA, C⊆̇B(F0). From Theorem 5.5.2, for

any ε > 0 there is a finite sub-algebra Dε of F0 such that H(C \ Dε) < ε. But Dε being finite there is
some α such that Dε⊆̇Aα. Then if we choose any i > α, Dε⊆̇Ai. Hence using the fact that {An} is an
increasing sequence,

H(C \ Ai) ≤ H(C \ Aα)

≤ H(C \ Dε)
≤ ε

Then as n→∞,

H(C \ An) < ε

The following theorem gives to the solution of finding a finite sub-algebra such that the entropy of
the transformation is same as the entropy of the same associated with this sub-algebra.

Theorem 5.5.3: (Kolmogorov-Sinai Theorem) For a measure-preserving transformation T over a
probability space (X,F , µ) and a finite sub-σ-algebra A of F , suppose

∨∞
n=−∞ TnA=̇F . Then,

h(T ) = h(T,A)

Proof. Let C be some finite sub-algebra of F . If the entropy associated with A is a supremum over the
values of entropy with respect to a sub-algebra, then the proof is done.
Using the property h(T,A) ≤ h(T, C) +H(A|C) and n ≥ 1,

h(T, C) ≤ h(T,

n∨
i=−n

T iA) +H(C|
n∨

i=−n
T iA)

= h(T,A) +H(C|
n∨

i=−n
T iA)

Set An :=
∨n
i=−n T

iA. Note that
∨n
i=−n T

iA=̇F . So clearly, C⊆̇
∨n
i=−n T

iA.Thus from Corollary 5.5.2,
H(C \ An)→ 0 as n→∞. So for any finite sub-algebra C, h(T, C) ≤ h(T,A).

∴ h(T ) = h(T,A)

The same result holds when a measure-preserving transformation T is not invertible.

Corollary 5.5.3: For an invertible measure-preserving transformation T over a probability space
(X,F , µ) and

∨∞
n=0 T

nA=̇F for some finite sub-algebra A, then h(T ) = 0.

Proof. From Theorem 5.5.3,

h(T ) = h(T,A)

= lim
n→∞

H(A|
n∨
i=0

T−iA)

But
∨n
i=0 T

−iA=̇T−1F=̇F . Set An :=
∨n
i=1 T

−iA , then A1⊆̇A2⊆̇..... and
∨∞
n=1An=̇F . Then by

Corollary 5.5.2, H(A|An)→ 0 . Thus,
h(T ) = 0
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Definition 5.5.4: A countable partition ξ of X is called a generator for an invertible measure-
preserving transformation T if

∞∨
n=−∞

TnA(ξ)=̇F

It can be shown that over a Lebesgue space, an ergodic invertible measure-preserving transformation
will have a generator.

Theorem 5.5.5: Consider a probability space (X,F , µ). Let F0 be a sub-algebra of F with B(F0)=̇F .
Then for each measure-preserving transformation,

h(T ) = suph(T,A)

where supremum is taken over all the finite sub-algebras of A ∈ F0.

Proof. Suppose C be some finite sub-algebra of F . Then for any ε > 0 there exists a finite sub-algebra
Dε ∈ F0 such that H(C|D) +H(D|C) < ε.

Thus,

h(T, C) ≤ h(T,Dε) +H(C|Dε)
≤ h(T,Dε) + ε

∴ h(T, C) ≤ sup{h(T,D) : D⊆̇F0,D is finite}

The other way of the inequality can also be shown as,

h(T,Dε) ≤ h(T, C) +H(Dε|C)
≤ h(T, C) + ε

Theorem 5.5.6: Consider two probability spaces, (X1,F1, µ1) and (X2,F2, µ2) let T1 : X1 → X1 and
T2 : X2 → X2 be their respective measure-preserving transformations. Then,

h(T1 × T2) = h(T1) + h(T2)

Proof. Let A1⊆̇F1 and A2⊆̇F2 be finite. Then A1×A2 is also finite. The partition generated by A1×A2

is given as,
ξ(A1 ×A2) = {A1 ×A2 : A1 ∈ ξ(A1) and A2 ∈ ξ(A2)}

Hence the entropy of T1 × T2 is given by,

h(T1 × T2) = sup{h(T1 × T2,A1 ×A2)}

And so,

h(

n−1∨
i=0

(T1 × T2)−i(A1 ×A2)) = H(

n−1∨
i=0

T−i1 A1 ×
n−1∨
i=0

T−i2 A2)

With {Ck} ∈ ξ(
∨n−1
i=0 T

−i
1 A1) and {Dj} ∈ ξ(

∨n−1
i=0 T

−i
2 A2),

= −
∑
k,j

(µ1 × µ2)(Ck ×Dj) log[(µ1 × µ2)(Ck ×Dj)]

= −
∑
k

∑
j

µ1(Ck) µ2(Dj) log[µ1(Ck) µ2(Dj)]

= −
∑
k

µ1(Ck) logµ1(Ck)−
∑
j

µ2(Dj) logµ2(Dj)
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Thus,

H(T1 × T2,A1 ×A2) = H(T1,A1) +H(T2,A2)

=⇒ h(T1 × T2) = h(T1) + h(T2)

5.6 Examples

1. For the identity map I over the space (X,F , µ), for every sub-algebra A,

h(I,A) = lim
n→∞

1

n
H(A) = 0

Hence the entropy of an identity map is zero. Also for a transformation T with a period p 6= 0, i.e.,
T p = I, the entropy is zero. This is because from the Theorem 5.4.8,

0 = h(T p) = |p|h(T )

2. Theorem 5.6.1: Any rotation T (z) = az on a unit circle, has zero entropy.

Proof. To show this we will consider two cases. First suppose that the set {an : n ∈ Z} is not dense.
This means that a is root of unity. So there is some p 6= 0 such that ap = 1. This is same as writing,

T p(z) = z

=⇒ h(T ) = 0

The other case is where the set {an : n ∈ Z} is dense in the unit circle.

Construct a partition on the circle as ξ = {A1, A2}, where A1 is the upper half circle and A2 is lower
half circle, as given in the figure. Then the transformations T−n(ξ) for some n ≥ 0, take the form of
semi circles having values from −an to an.

Note that
∨∞
n=0 T

−nA(ξ)contains all arcs possible on the unit circle. This means,

F=̇

∞∨
n=0

T−nA(ξ)

But A(ξ) is a finite sub-algebra and by Corollary 5.5.3,

h(T ) = 0

3. Consider an n-torus, X = Kn with the transformation,

T (z1, z2, ..., zn) = (a1z1, a2z2, ..., anzn)

Here, T = T1 × T2 × ...× Tn and for all i, Ti(z) = aiz. But from the above example, h(Ti) = 0 for every
i. Therefore, from Theorem5.5.6,

h(T ) =

n∑
i=0

h(Ti) = 0

4. Entropy of a doubling map is non-zero. Let T be such a map, i.e.,

T : [0, 1)→ [0, 1)

T (x) = 2x mod 1

Let α = {[0, 1
2 ), [ 1

2 , 1)}. Then,

α ∨ T−1(α) = {[0, 1

4
), [

1

4
,

1

2
), [

1

2
,

3

4
), [

3

4
, 1)}
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More generally, α ∨ T−1(α) ∨ T−1(α) ∨ ... ∨ T−(n−1)(α) forms a partition of [0, 1) into 2n intervals of
equal length 1

2n . Thus,

H(

n−1∨
i=0

T−i(α)) = −
2n−1∑
i=0

µ(Ai) logµ(Ai)

= −
2n−1∑
i=0

1

2n
log

1

2n

=
2n

2n
n log 2

Hence,

h(T,A) = lim
n→∞

1

n
H(

n−1∨
i=0

T−i(α))

= lim
n→∞

1

n
. n log 2

= log 2

But h(T ) ≥ h(T,A) for all A. So,

h(T ) > 0

5.7 Topological Dynamics

Before heading into explaining how topological entropy is defined, certain topics needed to be discussed
to fully grasp the notions behind Adler’s Topological Entropy.

For the ease of notations, from here on wards the space X will denote a compact metric space unless
stated otherwise.

Definition 5.7.1: A homeomorphism T : X → X is said to be minimal if for all x ∈ X, the set
{Tn(x) : n ∈ Z} is dense in X.

Recall that the orbit of x ∈ X under T was defined as OT (x) = {Tn(x) : n ∈ Z}. Thus if X is
minimal, then all the orbits of T must be dense.

Theorem 5.7.2: Consider homeomorphism T : X → X. Then the following are equivalent,

1. T is minimal.

2. ∅ and X are the only closed subsets E of X with TE = E.

3. If U is a non-empty open subset of X then
⋃∞
−∞ Tn(U) = X.

Proof. For (1) =⇒ (2), suppose that E is closed but E 6= ∅ and TE = E. Clearly if x ∈ E then the
orbit, OT (x) ⊂ E. But OT (x) is dense in X. That is, X = OT (x) ⊂ E. Hence E = X.

For (2) =⇒ (3), Let U be a non-empty open set. Then clearly E = X \ ∪∞n=−∞T
n(U) is closed and

TE = E. This implies either E is X or ∅. But E 6= X so E = ∅. Thus ∪∞n=−∞T
n(U) = X.

For (3) =⇒ (1), Suppose x ∈ X and U be a non-empty open subset of X. Then x ∈ Tn(U) for some
n ∈ Z. So, T−n(x) ∈ U . Since this holds for any open subset U , the orbit, OT (x) is dense in X and thus
T is minimal.
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Note that for a subet E of X which is closed and T -invariant, T |E is a homeomorphism of the compact
metric space E.

Definition 5.7.3: For a homeomorphism T : X → X, a T -invariant closed set E of X is said to be a
minimal set with respect T if T |E is minimal.

It can be shown with the help of Zorn’s lemma that any homeomorphism T : X → X has a minimal
set.

Theorem 5.7.4: Let G be a compact metric group and T (x) = ax. Then T is minimal if and only if
{an : n ∈ Z} is dense in G.

Proof. Let the identity element of G be denoted as e. Then the orbit of e, OT (e) = {an . e = an : n ∈ Z}.
And the orbit of e is dense because T is minimal.

For the converse, suppose the set {an : n ∈ Z} is dense in G. Let x, y ∈ G.Then there is sequence
{ni} such that,

ani → y x−1

or,

ani x→ y

or,

Tni(x)→ y

Therefore for all x ∈ G,

OT (x) is dense in G

The following is a particular transformation which will be used as example for wandering sets.

5.7.1 The North-South Map

S

N

φ(x)

x

φ(x)
2

T (x)

Figure 5.2: The North-South Map

Consider a unit circle in R2, centered at (0, 1). Let the north pole , N = (0, 2) and the south pole,
S = (0, 0). Let φ be a map defined as, φ : X \ {N} → R×{0}, which takes maps a point x ∈ X \ {N}on
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the unit circle to the point on the x-axis intersected by the line that joins the north pole and x. Then
we define the north-south map as,

T : X → X

T (x) =

{
φ−1( 1

2φ(x)), if x ∈ X \ {N}
N, if x = N

It can be observed that T (N) = N and T (S) = S. And when x 6= N,S, then Tn(x)→ S as n→∞.
Also see that this transformation is not minimal as the orbit of the north pole is not dense.

5.7.2 The Non-Wandering Sets

Definition 5.7.5: For a continuous transformation T on a compact metric space X and x ∈ X, the
ω-limit set of x is the collection of all the limit points of {Tn(x) : n ≥ 0}, i.e.,

ω(x) = {y ∈ X : ∃ni →∞ with Tni(x)→ y}

Theorem 5.7.6: For a continuous transformation T on a compact metric space X and x ∈ X,

1. ω(x) 6= ∅

2. ω(x) is a closed subset of x.

3. T (ω(x)) = ω(x)

Proof. For (1) the proof is obvious as T is continuous transformation.
For (2), let yk ∈ ω(x) with yk → y ∈ X. For eachi ≥ 1, choose a ki such that.

d(ykj , y) <
1

i

And choose ni such that.

d(Tni(x), yki) <
1

i

Then,

d(Tni(x), y) <
1

i
=⇒ y ∈ ω(x)

For (3), it is clear that T (ω(x)) ⊂ ω(x). If y ∈ ω(x) then there exist some sequence {ni} such that
Tni(x) → y. Also there must be a subsequence {nij} such that Tnij−1(x) → z for some z ∈ X. .Then,
Tnij (x)→ T (z) so that T (z) = y. Clearly z ∈ ω(x). Then

y = T (z) ∈ T (ω(x))

=⇒ ω(x) ⊂ T (ω(x))

∴ ω(x) = T (ω(x))

Definition 5.7.7: Suppose T is a continuous transformation on X. An x ∈ X is called wandering for T
if there is an open set U such that for all the sets T−nU are mutually disjoint. Hence the non-wandering
sets for T , denoted by, Ω(T ), are

Ω(T ) = {x ∈ X : for every neighbourhood U of x, ∃n ≥ 1 with T−nU ∩ U 6= ∅}

Observe that for a homeomorphism T ,

T−n(U) ∩ U = T−n(U ∩ TnU)

So,

Ω(T−1) = Ω(T )

Theorem 5.7.8: For a continuous transformation T on X,
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1. Ω(T ) is closed.

2. ∪x∈Xω(x) ⊂ Ω(T ); in particular, Ω(T ) 6= ∅.

3. Ω(T ) contains all periodic points of X for T .

4. T (Ω(T )) ⊂ Ω(T ) and the equality holds when T is a homeomorphism.

Proof. For (1), X \ Ω(T ) is open from the definition of Ω(T ). Therefore Ω(T ) is closed.

For(2), Suppose x ∈ X and y ∈ ω(x), Suppose V is some neighbourhood of y. If we can show that for
some n ≥ 1, TnV ∩V 6= ∅ then we are done. For this, consider a subsequence {ni} such that Tni(x)→ y.
Choose nia and nib from this subsequence such that nia < nib with Tnia (x) ∈ V and Tnib (x) ∈ V . Set
n = nia − nib and z = Tnia (x). So we can see that,

z = Tnia (x) ∈ V

and,

Tn(z) = Tn+nia (x) = Tnib (x) ∈ V

For(3), if x is a periodic point and thus for some n ≥ 1, Tn(x) = x. So for a neighbourhood V of x,

x ∈ T−nV ∩ V

=⇒ x ∈ Ω(T )

For (4), let x ∈ Ω(T ). Suppose V is a neighbourhood of T (x). Then obviously, T−1V is a neighbourhood
of x. Then there is some n ≥ 1 such that,

T−(n+1)V ∩ T−1V 6= ∅
∴ T−nV ∩ V 6= ∅

=⇒ T (x) ∈ Ω(T )

And if T is homeomorphic, Ω(T ) = Ω(T−1). So

T−1Ω(T ) ⊂ Ω(T )

∴ T (Ω(T )) = Ω(T )

The points from the north-south map apart from the poles are wandering. To show this, let y be
point lying between T−1(x) and x . Then clearly T (y) will lie between x and T (x).

Suppose U is an open arc between y and T (y). Then U is a neighbourhood of x. So for any n ∈ Z,
TnU is an open arc between TnU and Tn+1U . Hence, the collection {Tn(U)}∞−∞ are pair-wise disjoint.
Therefore x is wandering and Ω(T ) = {N,S}.

5.8 Invariant Measures for Continuous Transformations

Definition 5.8.1: Let M(X) denote the collection of all probability measures defined on the measurable
space (X,B(X)), where B(X) is the Borel σ-algebra generated on X.. The elements of M(X) are called
the Borel Probability Measures.

For a continuous transformations T over the compact metrisable space X, the collection {A ∈ B(X) :
T−1(A) ∈ B(X)} forms a σ-algebra and contains all opens sets. So,

T−1B(X) ⊂ B(X)

73



in other words, T is measurable. This helps us define the following map,

T̃ : M(X)→M(X)

(T̃ µ)(A) = µ(T−1(A)

Lemma 5.8.2: For a continuous transformations T over the compact metrisable space X, and let
T̃ : M(X)→M(X) as defined above. Then for every f ∈ C(X),∫

f d(T̃ µ) =

∫
f ◦ T dµ

From definition of T̃ , integrating the characteristic function χA under the measure T̃ µ is same as
integrating χA ◦ T under µ, i.e., ∫

χA d(T̃ µ) =

∫
χA ◦ T dµ

This would hold for a simple function as it can be seen as the limit of an increasing sequence of charac-
teristic functions. Hence for any non-negative measurable functions f would satisfy this relation. Since
any functions f ∈ C(X) can be split into f = f+ + f−, the same relation holds for any f .

Theorem 5.8.3: The map T̃ is continuous and affine.

Proof. Suppose there is sequence {µn : µn ∈ M(X)} such that µn → µ ∈ M(X). From the previous
lemma 5.8.2, for f ∈ C(X),

∫
f d(T̃ µ) =

∫
f ◦ T dµ. So ,∫

f d(T̃ µn) =

∫
f ◦ T dµn →

∫
f ◦ T dµ =

∫
f d(T̃ µ)

Then,

T̃ µn → T̃ µ

Thus shows that T̃ is continuous.

Let µ1, µ2 ∈M(X) and p ∈ [0, 1]. So, for all A ∈ B(X),

T̃ (pµ1 + (1− p)µ2)(B) = p µ1(T−1A) + (1− p) µ2(T−1A)

= (p T̃µ1 + (1− p) T̃ µ2)(A)

Thus T̃ is affine.

Definition 5.8.4: Define M(X,T ) := {µ ∈M(X) : T̃ µ = µ}. This set consists of all the measures that
make T measure-preserving for the the measure space, (X,B(X), µ).

Theorem 5.8.5: For a continuous transformations T over the compact metrisable space X, consider a
sequence {νn}∞n=1 in M(X). Define a new set sequence from {νn}∞n=1 as {µn = 1

n

∑n−1
i=0 T̃

iνn}. Then
M(X,T ) contains all the limit points of {µn}∞n=1.

Proof. Note that the existence of the limit point is ensured with the compactness of M(X)and M(X)
has weak-* topology. Let µ be a limit point in M(X). Then there is some sequence {ni} such that
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µni → µ. For f ∈ C(X),

|
∫
f ◦ T dµ−

∫
f dµ| = lim

j→∞
|
∫
f ◦ T dµni −

∫
f dµni |

= lim
j→∞

|
∫

(
1

ni

ni−1∑
j=0

f ◦ T j+1) dνni − (
1

ni

ni−1∑
j=0

f ◦ T j) dνni |

= lim
i→∞

| 1

ni

∫ ni−1∑
j=0

(f ◦ T j+1)− f ◦ T j)) dνni |

= lim
i→∞

| 1

ni

∫
(f ◦ Tni − f) dνni |

≤ lim
i→∞

2||f ||
ni

= 0

Thus µ ∈M(X,T ).

As a result of this we get the following result.

Corollary 5.8.5: (Krylov and Bogolioubov Theorem) For a continuous transformations T over
the compact metric space X, M(X,T ) is non-empty.

Lemma 5.8.6: For a continuous transformations T over the compact metrisable space X, µ is an extreme
point of M(X,T ) if and only if T is an ergodic measure-preserving transformation of (X,B(X), µ).

Proof. Suppose µ ∈ M(X,T ) is not ergodic. Then for an T -invariant Borel measure set E will satisfy,
0 < µ(E) < 1. Let for A ∈ B(X),

µ1(A) =
µ(A ∩ E)

µ(E)
and µ2(A) =

µ(A ∩ (X \ E))

µ(X \ E)

It can be seen that µ1 and µ2 ∈M(X,T ). Clearly µ1 6= µ2 and µ(A) = µ(E) µ1(A) + (1− µ(E)) µ2(A).
This says that µ is not an extreme point of M(X,T ).

For the converse, let µ ∈M(X,T ) be ergodic. Let µ1, µ2 ∈M(X,T ) such that

µ = p µ1 + (1− p)µ2

where p ∈ [0, 1]. If µ1 = µ2 then clearly µ is an extreme point. Also µ is absolutely continuous with
respect to µ1. Therefore the Radon Nikodym derivative dµ1

dµ exists. So for any A ∈ B(X),

µ1(A) =

∫
A

dµ1(x)

dµ
dµ(x)

The derivative is non-negative. So if we choose the set A as,

A = {x :
dµ1

dµ
< 1}

then, ∫
A∩T−1A

dµ1

dµ
dµ+

∫
A\T−1A

dµ1

dµ
dµ = µ1(A) = µ1(T−1A)

=

∫
A∩T−1A

dµ1

dµ
dµ+

∫
T−1A\A

dµ1

dµ
dµ

=⇒
∫
A\T−1A

dµ1

dµ
dµ =

∫
T−1A\A

dµ1

dµ
dµ

With,
dµ1

dµ
< 1 on A \ T−1A and

dµ1

dµ
> 1 on T−1A \A
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and,

µ(A \ T−1A) = µ(A)− µ(A ∩ T−1A)

= µ(T−1A)− µ(T−1A ∩A)

= µ(T−1A \A)

would give,
µ(A \ T−1A) = µ(T−1A \A) = 0

Hence µ(A∆T−1A) = 0. This shows that A is T -invariant so µ(A) = 1 or µ(A) = 0. But if µ(A) = 1,
then µ(X) =

∫
A
dµ1

dµ dµ < µ(A) = 1. This is a contradiction to the definition of µ1 and the fact that

µ1(X) = 1. Thus the only possible case is µ(A) = 0.

Similarly if we choose the set B as,

B = {x :
dµ1

dµ
> 1}

then µ(B) = 0.

Therefore,

dµ1

dµ
= 1

hence,

µ1 = µ

i.e., µ1 = µ2 or µ is an extreme point of M(X,T ).

Definition 5.8.7: A continuous transformation T over the compact metrisable space X is called
uniquely ergodic if M(X,T ) consists of only a single point. In other words There is only one T -
invariant Borel probability measure.

Clearly if there is only a single point M(X,T ) then that point is an extreme point making T ergodic
from theorem 5.8.6.

Theorem 5.8.8: For a homeomorphic transformation T over the compact metrisable space X, let T be
uniquely ergodic which makes M(X,T ) = {µ}. Then T is minimal if and only if for all non-empty open
sets U , µ(U) > 0.

Proof. Let T be minimal. So for an open set U ,

∞⋃
n=1

TnU = X

so if U has µ(U) = 0 then µ(X) = 0 which is a contradiction.

For the converse, suppose that T is not minimal. Then there is some closed set K ⊂ X and an integer
n > 0 such that TnK = K. Note that ∅ 6= K 6= X. Looking at the restriction of T over the closed set K,
using the Corollary 5.8.5, M(K,T ) is non-empty. Let µK be a non-invariant Borel probability measure
on K.
Define a new measure µ̃ on X as,

µ̃(A) = µK(K ∩A)

for all A ∈ B(X). Then clearly µ̃ ∈ M(X,T ) and µ̃ 6= µ as µ(X \K) > 0 while µ̃(X \K) = 0. This
says that there are more than one T -invariant Borel probability measure which implies T is not uniquely
ergodic.
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Theorem 5.8.9: Let T (x) = a x be a rotation on a compact metrisable group G. Then T is uniquely
ergodic if and only if T is minimal. The Haar measure is the only invariant measure here.

Proof. The first part of the theorem is proved by the Theorem 5.8.8. Only thing that remains is to show
that the Haar measure is the only invariant measure. Note that the Haar measure assigns an invariant
volume to the subsets of a locally compact topological groups.

With T being minimal, the set {an}∞−∞ is dense in G. For µ ∈M(G,T ), every f ∈ C(X) and every
n ∈ Z, ∫

f(an x) dµ(x) =

∫
f(x) dµ(x)

And if b ∈ G, there exists a sequence such that ani → b. Applying the dominated convergence
theorem here, for every f ∈ C(X),∫

f(bx) dµ(x) = lim
i→∞

∫
f(anjx) dµ

=

∫
f(x) dµ(x)

Hence we can see an invariant volume under every rotation of G. This unique measure µ is the Haar
measure.

5.9 Topological Entropy

Like how partitions helped us in defining entropy of a transformation with respect to a sub-algebra, here
we look into how open covers help in defining entropy. Recall that X is a compact metric space.

Definition 5.9.1: For two open covers α and β, over X, their join α ∨ β is the open made by the sets
of the form A ∩B where A ∈ α and B ∈ β.

Definition5.9.2: For two open covers α and β, over X, β is said to be a refinement of α if every member
of βis a subset of α.This can be notated as α < β.

Definition 5.9.3: For an open cover α over X, if N(α) denote the number of sets in a finite sub-cover
of α which has the smallest cardinality. The entropy of α is defined as,

H(α) = logN(α)

As we can see the open covers are analogous to the partitions discussed earlier in this chapter. Similarly
H(α) have all the properties H(A) had.

Definition 5.9.4: For an open cover α over X, if T : X → X is a continuous map then the entropy of
T with respect to the open cover α is given as,

h(T, α) = lim
n→∞

1

n
H(

n−1∨
i=0

T−i(α))

Definition 5.9.5: For a continuous map, T : X → X, the topological entropy is,

h(T ) = sup
α
h(T, α)

Here the supremum is taken over from all the open covers α of X.

Theorem 5.9.6: For a homeomorphism, T : X → X,

h(T ) = h(T−1)
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Proof.

h(T, α) = lim
n→∞

1

n
H(

n−1∨
i=0

T−i(α))

Using Theorem 5.3.2 (10),

= lim
n→∞

1

n
H(Tn−1

n−1∨
i=0

T−i(α))

= lim
n→∞

1

n
H(

n−1∨
i=0

T i(α))

= h(T−1, α)

Again here, the definition for the entropy is not easy to calculate. So like before we need to find
sub-covers for T whose entropy equals the entropy of T .

Definition 5.9.7: For a compact metric space X, let T be a homeomorphic map. A finite cover α of
X is said to be a generator for T if for every {An}∞−∞ of the members of α the set

⋂∞
n=−∞ T−nAn

contains at most one point of X.

Definition 5.9.8: A homeomorphism T is said to be expansive if there is some δ > 0 with the property
that if x 6= y then there exists n ∈ Z such that,

d(Tn(x), Tn(y)) > δ

Here δ is called the expansive constant for T .

It can be seen that the rotation map is not expansive. This is because if we choose some x, y ∈ X
such that d(x, y) < δ, then for all n ∈ Z,

d(Tn(x), Tn(y)) < δ

Theorem 5.9.9: For an expansive homeomorphism T over a compact metric space X, if α is a generator
of T then h(T ) = h(T, α).

Proof. Let δ be the expansive constant. Let β be an open cover such that δ is the Lebesgue number of
β. Choose N > 0 such that the elements of

∨N
n=−N T

−nα. Then
∨N
n=−N T

−nα is a refinement of β. So,

h(T, β) ≤ h(T,

N∨
n=−N

T−nα)

= lim
k→∞

1

k
H(

k∨
i=0

T−i(

N∨
n=−N

T−nα))

= lim
k→∞

1

k
H(

N+k−1∨
i=−N

T−nα)

= lim
k→∞

1

k
H(

2N+k−1∨
i=0

T−nα)

= lim
k→∞

2N + k − 1

k

1

2N + k − 1
H(

2N+k−1∨
i=0

T−nα)

= h(T, α)

Since this holds for all open covers β,
h(T ) = h(T, α)
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5.10 Relating Topological Entropy and Measure-Theoretic En-
tropy

The relationship between topological entropy and measure-theoretic entropy is also called the variation
principle. But before showing the relation, let us define an entropy map.

Definition 5.10.1: The entropy map of a continuous transformation T : X → X is the map that
takes µ→ hµ(T )which is defined on M(X,T ) and has values in [0,∞).

Theorem 5.10.2: Let T : X → X be a continuous map for a compact metric space X. Then

h(T ) = sup{hµ(T ) : µ ∈M(X,T )}

The proof can be referred from Peter Walters’ Introduction to Ergodic Theory[1], where the author
uses the proof done by M Misiurewicz.

Definition 5.10.3: Let T : X → X be a continuous transformation on a compact metric space X. A
member µ of M(X,T ) is called a measure of maximal entropy for T if

hµ(T ) = h(T )
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Further Reading

The reader can refer to further topics from Walter’s Introduction to Ergodic Theory [1]. But I will give
a brief overview of subjects that proceed from where I have stopped.

Bowen’s definition for topological entropy using separating and spanning sets helped in defining en-
tropy for non-compact spaces.

With Bowen’s method one can explore about topological pressure which is a generalization of topolog-
ical entropy. Similarly there is a measure-theoretic pressure for Borel probability measures. A variation
principle similar to that of entropy can be shown to relate the topological and measure-theoretic entropies.

Several ergodic theorems were spawned from Brikhoff’s Ergodic theorem and Von Neumann’s theo-
rem. Once such is the subadditive ergodic theorem which is a generalization of Birkhoff’s theorem. The
Oseledet’s multiplicative theorem helps in calculating the Lyapunov constants associated with non-linear
dynamical systems.

The quasi-invariant measures are measures which preserves sets of measure zero while having a
transformation that is not measure-preserving. On topological groups these measures can be seen as
a generalization of Haar measures. They are useful in the study of differential dynamical systems and
geometry of manifolds.

One could also look into the applications of ergodic theory in Riemannian Geometry such as the
ergodicity of the geodesic flow on compact Riemann surfaces.
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