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Abstract

This thesis work explores the possibility of finding exotic superconducting states in

the extended attractive Hubbard model. The model is studied within a mean-field

Bogoliubov-de-Gennes approach focusing on the nature of different superconducting

order parameters that can be energetically stable in different regimes of the parameter

space. In addition to pure singlet and pure triplet superconducting order, mixed par-

ity states are also allowed within the mean-field decoupling approach followed in this

work. In addition to s-wave and dx2−y2-wave order, an exotic px + ipy superconduct-

ing state is found to exist. The influence of temperature and an external magnetic

field is also studied. The transition between superconducting states with different

order parameter symmetries is uncovered upon variations in temperature or external

magnetic field. The details of the numerical methodology developed to investigate su-

perconductivity in the extended attractive Hubbard model, and the characterization

of the different superconducting states obtained in the study will be discussed.
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Chapter 1

Introduction

1.1 Historical Perspective

Superconductivity has been one of the most significant discoveries of the last century.

It all started the day Dutch physicist Heike Kamerling Onnes liquefied helium in his

cryogenic laboratory at Leiden University in the Netherlands [1]. It was around 7:30

pm on 10th July 1908 when the helium thermometer reading got quite stable at 4 K

and that miraculous moment created a cascade of events in Low-temperature physics

in the last century. Onnes set up a cryogenic laboratory to test and modify theo-

ries on non-ideal gases, given by his friend Johannes Diderik van der Waals. It was

a period when efforts had been going on for producing liquefied gases like oxygen,

nitrogen, hydrogen, and helium, etc. on a large scale. Though efforts on liquefaction

of oxygen, nitrogen, and hydrogen were quite successful, liquifying helium was still

beyond anyone’s reach before 10th July 1908. It was William Hampson and Carl Von

Linde, who independently conceived the Hampson-Linde cycle in 1895, which was to

be used for liquefaction of gases and was based on Joule-Thomson effect [2]. Onnes

purchased a Linde machine for liquefaction of helium and was successful on that front.

During that period, Scottish physicist James Dewar, known for his famous invention

of the vacuum flask, was already carrying out his research on the electrical resistance

of different materials at low temperatures. But to carry out experiments at really low

temperatures required unparalleled cryogenic facilities and cryogenic gases with very

low boiling temperature at atmospheric pressure. Onnes’ decade long efforts made it

possible to build a complex and perfect cryogenic facility which successfully liquefied

helium. During that period, no other laboratory on earth could carry out research at

such low temperatures as they did not have a perfect cryogenic facility that only the

Leiden group had at that time. Onnes and his assistant Jacob Clay reinvestigated

1



2 1. INTRODUCTION

Figure 1.1: Historic plot of resistance (Ω) versus temperature (K) for mercury from the
26 October 1911 experiment shows the superconducting transition at 4.2 K.
Within 0.01 K, the resistance jumps from unmeasurably small (less than 10–6

Ω) to 0.1 Ω.(From wikimedia commons)

some earlier experiments by Dewar on the reduction of resistance at low temper-

atures. Though thermometry was their primary interest, genuine scientific queries

pushed them to look into the variation of resistance with the temperature of different

metals like gold, platinum, and mercury, etc. After 10th July 1908, it took them al-

most three years to perfect a cryostat in which liquid helium was used as a cryogenic

liquid. On 26th October of 1911 the first astonishing result came into existence: at

4.2 K resistance of mercury resistor dropped from 0.1Ω to 10−6Ω within an interval

of 0.1 K (Fig.1.1). This was the first milestone in the field of superconductivity. Such

a sudden jump in resistivity was a fact of a huge surprise. But Onnes perceived

perfectly that what he found was indicative of a new state of matter, namely “supra-

conductivity”, as he used to call it at the beginning. Extensive research on these

materials by Onnes and his group was reported to the Royal Netherlands Academy

of Arts and Sciences. After the seminal discovery of superconductivity in mercury

Leiden group had a monopoly on experiments to find superconductivity in different

materials. Leiden group already discovered superconductivity in lead (Tc ≡ 6K) and

tin (Tc ≡ 3.8K). But the monopoly ended after first world war. Few years later
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Walther Meissner and his group at PTR (Physikalisch-Technische Reichsanstalt) pro-

cured an expensive helium liquefier, capable of liquifying 10 liters of helium per hour.

With the help of that liquefier, Meissner group successfully discovered superconduc-

tivity in three new elements: Thorium (Tc of 1.4 K), Tantalum (Tc of 4.4 K) and

Niobium (Tc of 9.2 K). The next surprise came from Walther Meissner and Robert

Ochsenfeld in 1933, when they demonstrated the expulsion of an external magnetic

field from the bulk of a superconductor [3]. This effect, which became popular as

Meissner–Ochsenfeld effect afterwards, actually proved that superconductivity is a

true thermodynamical macrostate of matter as it exhibits the property of a pure dia-

magnet. Since the discovery of superconductivity in mercury in 1911, there had not

been much a major contribution from the theoretical community until 1935. In 1935

London brothers introduced London’s equation making use of Maxwell’s equations

and intuitive approach to build a connection between superconducting current den-

sity js and externally applied magnetic field B and gave a proper explanation of the

complete expulsion of any magnetic field from the bulk of the superconductor, which

is deeper than the penetration depth (λL) from the surface of the superconductor.

Thus emerged the only free parameter of the theory, λL. Later many experiments

were carried out testing the effect of magnetic field on different superconductors. It

was found that the Meissner effect works only if the applied magnetic field is lower

than some critical field, Hc. It was also found that not all superconductors expel mag-

netic field completely from the bulk. And it was observed that there were actually

two types of superconductors: type-I and type-II. While type-I superconductors (such

as aluminium, lead, mercury, etc.,) have a single critical field Hc, type-II supercon-

ductors (such as niobium, vanadium, technetium, etc.) have two critical fields, Hc1

and Hc2 . In case of type-I superconductors beyond a critical field Hc superconduc-

tivity is completely destroyed and so is its pure diamagnetism. While in the case of

type-II superconductors, the external field is completely expelled from the bulk until

the strength of the magnetic field becomes equal to Hc1 . Beyond Hc1 the magnetic

field starts to penetrate the bulk of the superconductor, thus creating a coexistence

of superconducting and non-superconducting regions inside the bulk. But when the

applied field exceeds a value Hc2 superconductivity is completely destroyed in bulk

and the material becomes entirely non-superconducting.

1.2 Superconductivity and its theories

Even after 20 years of the discovery scientists were not successful in finding a theo-

retical breakthrough in explaining the phenomenon of superconductivity. As it was a
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period when the world had not gone through the breakthrough in quantum mechan-

ics, theoretical physicists were busy trying to understand the perfect conductivity

based on Drude theory of transport in metals. They were trying to understand how

resistivity should behave at low temperatures based on the behaviour of scattering

amplitude and mobility of electrons. But the perfect conductivity was not enough

to get a clue of the underlying phenomenon. It was 1933 when Walther Meissner

and his group discovered so-called “Meissner–Ochsenfeld effect”, theoretical physi-

cists got enough evidence to formulate different plausible theories. Though the most

important theoretical breakthroughs were the phenomenological theory given by Lev

Landau in 1950 and microscopic theory given by Bardeen, Cooper, and Schrieffer in

1957, it was London brothers, namely F. London and H. London, who successfully

formulated electrodynamics of superconductors and explained the Meissner effect in

the first place. It was after the discovery of Meissner effect scientists were convinced

about superconductivity being a thermodynamical state of matter.

1.2.1 London theory of superconductors

In 1935, German physicist Fritz Wolfgang London and his brother Heinz London

proposed a theory that describes electromagnetic properties of superconductors [4].

It is a phenomenological theory based on a two-fluid picture, which proposes a relation

between the current and the electromagnetic fields in and around a superconductor.

In a two-fluid picture it is assumed that in a superconducting state electrons form an

equilibrium of two different types of fluid, namely the normal fluid and the superfluid.

While the normal fluid carrys an ohmic current,

jn = σnE (1.1)

and governed by the Drude law,

σn =
e2nnτ

m
, (1.2)

the superfluid is assumed to move in a frictionless state, leading to free acceleration

of charges. Using Newton’s equation of motion

mv̇ = −eE (1.3)
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with the supercurrent

js = −ensvs (1.4)

we obtain the first London equation

∂js
∂t

=
e2ns
m

E. (1.5)

Using the Maxwell equation and the first London equation, we arrive at the following

equation:

∂

∂t

(
m

nse2
∇× js +

1

c
B = 0

)
. (1.6)

This perfectly describes the behaviour of a perfect conductor, but it fails to explain

the Meissner effect. In order to describe Meissner effect, London proposed that the

constant of integration must chosen to be zero, which gives us the second London

equation,

∇× js = −nse
2

mc
B. (1.7)

Applying Maxwell equations further on the second London equation, we arrive at two

important equations,

∇2B =
4πµ

c2λL
B and ∇2js =

4πµ

c2λL
js (1.8)

solutions to these equations explain the decay of the magnetic field and the persistent

current in the bulk of the superconductors. Thus it explains the Meissner effect and

gives us the free parameter λL, commonly known as the London penetration depth.

Both the London equations can be rewritten as a single equation,

js(r) =
nse

2

mc
A(r) (1.9)

where A is the electromagnetic vector potential. This raised concerns, as the current

density depends on the electromagnetic vector potential, which is not even a physical

variable. Furthermore, a gauge transformation of the vector potential, A(r)→ A(r)+

∇ϕ(r) can change the supercurrent density. Thus London theory of conservation of

current ∇ · js = 0 causes a serious restriction on the choice of the vector potential, ∇ ·
A = 0. London proposed that Eq.(1.9) is respected due to the rigidity of the collective
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wave function Ψs on a distance which is of the order of the London penetration depth.

The rigidity of Ψs was understood afterwards, in the BCS framework, as a result of

the existence of a non-zero energy gap for excitations of BCS ground state.

1.2.2 Ginzburg Landau theory

Ginzburg and Landau start their remarkable paper of 1950 by stating that London’s

existing phenomenological theory, despite successfully describing several aspects of

the electrodynamics of superconductors, cannot help determine the surface energy

at the normal-superconducting phase interface. Moreover, they assert, his theory

fails to describe the destruction of superconductivity by currents and magnetic fields.

Ginzburg and Landau’s starting key observation was that, in the absence of a a mag-

netic field, the transition into a superconducting state at the critical temperature Tc

is a phase transition of the second order. They postulated the existence of some order

parameter in the theory of this transition analogous with other second-order phase

transitions. They defined the order parameter Ψs that is finite in a superconducting

state and zero above Tc and postulated that Ψs plays the role of some “effective”

wave function, a complex function to allow for supercurrent flow. It is important to

remember, however, that Ψs is not the true wave function of the electrons in the metal

but rather some averaged quantity. In a nutshell the theory is based on minimization

of the total free energy F =
∫
drFs, where

Fs = Fn + α|Ψs|2 +
1

2
|Ψs|4 +

1

2m∗

∣∣∣∣(−i~∇− e∗A

c
Ψs

)∣∣∣∣+
1

8π
(B(r)−Ha). (1.10)

The minimization is carried out with respect to Ψs and vector potential A (corre-

sponding to the magnetic field B = ∇×A), choosing the London gauge.

GL theory provides us with two important characteristic length scales, namely the

penetration depth (λL) and the coherence length (ξ). The ratio of the two lengths,

the so-called Ginzburg-Landau parameter,

κ =
λ

ξ
(1.11)

is temperature independent and is the fundamental characteristic of a supercon-

ducting material. Although we provide an essence of the GL theory, we do not intend

to elaborate further, as we follow the BCS framework for most of our projects. Further

details can be found in standard texts [5].
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1.2.3 BCS Theory

Cooper Instability The first step in paving a path to formulate a microscopic theory

of superconductivity was taken by Leon Cooper in 1956 when he showed that even a

weak attractive interaction between two electrons on the Fermi sea of a degenerate

Fermi gas can lead to a stable two-electron bound state causing Instability in Fermi

sea [6]. Later this idea became popularly known as “Cooper Instability”. The idea of

“Cooper Instability” can be understood in different levels of complexity, starting from

solving a simple two-body quantum problem in the presence of Fermi sea, to invoking

Green’s function method and Feynman diagrams to understand the scattering process

leading to the effective attractive interaction. I would like to stay with the simplest

approach to motivate the idea in the following section.

The ground state of a non-interacting Fermi gas of electrons in a potential well

corresponds to the situation where all electronic states with wave vector k within the

Fermi sphere (E0
F (T = 0K) = ~2k2

F/2m) are filled and all states with E > E0
F are

unoccupied.

In a thought experiment we add to this system two electrons (k1, E(k1)) and

(k2, E(k2)) in states just above E0
F . The two electrons are made to experience a weak

attractive interaction due to the exchange of phonons.

All other electrons in the Fermi sea are assumed to be non-interacting. But the

presence of the background Fermi sea restrict the two electrons via Pauli exclusion

principle, i.e. further occupation of states with |k| < kF is not allowed. The two

additional electrons exchange phonons continually, thus changing their wave vectors.

However, momentum must be conserved:

k1 + k2 = k′1 + k′2 = K. (1.12)

The interaction in k-space is restricted to a shell with an energy thickness of ~ωD
(with ωD = Debye frequency) above E0

F . It can be shown that the number of energy-

reducing phonon exchange processes, i.e. the strength of the attractive interaction,

is maximum for K = 0. It is therefore sufficient in what follows to consider the

case k1 = −k2 = k, i.e. electron pairs with equal and opposite wave vectors. The

associated two particle wave function ψ(r1, r2) must obey the Schrödinger equation:
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− ~2

2m
(∇2

1 +∇2
2)ψ(r1, r2) + V (r1, r2)ψ(r1, r2) = Eψ(r1, r2) = (ε+ 2E0

F )ψ(r1, r2)

(1.13)

ε is the energy of the electron pair relative to the interaction-free state (V = 0), in

which each of the two electrons at the Fermi level would possess an eneryy E0
F =

~2k2F
2m

.

The two-particle function, in this case, consists of two plane waves

(
1√
L3
eik1·r1)(

1√
L3
eik2·r2) =

1

L3
eik·(r1−r2) (1.14)

We note that Eq.(1.14) implies that the two electrons have opposite spin. The

most general representation of a two-particle state for the case of a non-vanishing

interaction (V 6= 0) is given by the series

ψ(r1 − r2) =
1

L3

∑
k

g(k)eik·(r1−r2), (1.15)

which depends only on the relative coordinate r = r1 − r2. The summation is

confined to pairs with k = k1 = −k2, which, because the interaction is restricted to

the region ~ωD, must obey the condition

E0
F <

~2k2

2m
< E0

F + ~ωD (1.16)

The quantity |g(k)|2 is the probability of finding one electron in state k and the

other in −k, that is, the electron pair in (k,−k). Due to the Pauli principle and the

condition given in Eq.(1.16) we have

g(k) = 0 for

{
k < kF

k >
√

2m(E0
F + ~ωD)/~2

(1.17)

Inserting Eq.(1.15) in Eq.(1.13), multiplying by e−ik
′·r and integrating over the

normalization volume gives us
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~2k2

m
g(k) +

1

L3

∑
k′

g(k′)Vkk′ = (ε+ 2E0
F )g(k) (1.18)

The interaction matrix element

Vkk′ =

∫
V (r)e−i(k−k

′)·rdr (1.19)

describes scattering of the electron pair from (k,−k) to (k′,−k′) and vice versa.

In the simplest model this matrix element Vkk′ , is assumed to be independent of k

and attractive, that is, Vkk′ < 0:

Vkk′ =

{
−V0(V0 > 0) for E0

F < (~
2k2

2m
, ~

2k′2
2m

) < E0
F + ~ωD

0 otherwise
(1.20)

It thus follows from Eq.(1.18) that

(−~2k2

m
+ ε+ 2E0

F )g(k) = −A,where (1.21)

A =
V0

L3

∑
k′

g(k′) (1.22)

is independent of k.

After summing Eq.(1.21) over k and comparing with Eq.(1.22), consistency re-

quires

1 =
V0

L3

∑
k

1

−ε+ ~2k2/m− 2E0
F

. (1.23)

We replace the sum over k by the integral

1

L3

∑
k

→ 1

(2π)3

∫
dk (1.24)
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and keep in mind that the sum, as well as the integral, extends only over the

manifold of states of one spin type. We split the integral over the entire k-space into

an integral over the Fermi sphere and the energy and obtain from Eq.(1.23)

1 = V0
1

(2π)3

∫ ∫
dSE

|∇kE(k)|
dE

2E − ε− 2E0
F

with E =
~2k2

2m
(1.25)

Since the integral over the energy extends only over the narrow interval between

E0
F and E0

F +~ωD, the first part of the integral can be considered as a constant. This

constant is the density of states for one spin type at the Fermi level, which we shall

denote as Z(E0
F ). By performing the integration, we obtain

1 = V0Z(E0
F )

E0
F +~ωD∫
E0

F

dE

2E − ε− 2E0
F

=
1

2
V0Z(E0

F )ln
ε− 2~ωD

ε
, i.e.

ε =
2~ωD

1− exp[2/V0Z(E0
F )]

. (1.26)

For the case of weak interaction, V0Z(E0
F )� 1, it follows that

ε ≈ −2~ωDe−2/V0Z(E0
F ). (1.27)

Thus there exists a two-electron bound state, whose energy is lower than that of

the fully occupied Fermi sea by an amount ε = E−2E0
F < 0. The ground state of the

non-interacting free electron gas becomes unstable when a little amount of attractive

interaction between electrons is switched on.

BCS GROUNDSATE In the previous section, it should be noted that the energy

reduction ε is an outcome of a thought experiment, where the effect of attraction

between two additional electrons is treated in the presence of Fermi sea. In reality,

this instability leads to the formation of a high density of correlated electron pairs, so-

called Cooper pairs, via which the system tries to achieve a new lower-energy ground

state, namely superconducting state.

In general such a system of many Cooper pairs can be described by the following

effective Hamiltonian:

H =
∑
kσ

εkc
†
kσckσ +

1

N

∑
kk′

Vkk′c
†
k↑c
†
−k↓c−k′↓ck′↑ (1.28)
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Here, c†kσ creates an electron with momentum k and spin projection σ. We have

included the chemical potential via the definition, εk = εk − µ. The second term

describes the destruction of a Cooper pair (two electrons with opposite momenta and

spin) and the subsequent creation of another Cooper pair. Vkk′ is the strength of the

interaction, which is expected to generate an effective, attractive interaction between

the electrons.

Bardeen, Cooper, and Schrieffer (BCS) proposed an ansatz for the ground state

of the above Hamiltonian. It is based on the idea that electrons from the states |k, ↑〉
and |−k, ↓〉 form so-called Cooper pairs and that the ground state is a superposition

of states built up of such pairs.

The ansatz reads

|ψBCS〉 =
∏
k

(uk + vkc
†
k↑c
†
−k↓)|0〉 (1.29)

Now the idea is to minimize 〈ψBCS|H|ψBCS〉 with respect to the uk and vk.

Following a standard parametrization of uk and vk in terms of εk and ∆k, and then

using a proper normalization, the idea of above minimization leads to the following

equation:

∆k = − 1

N

∑
k′

Vkk′
∆k′

2
√
ε2
k′ + ∆2

k′
, (1.30)

popularly known as BCS gap equation. Solving this self-consistent gap equation we

can obtain the original variational parameters in terms of ∆k:

uk =
1

2

(
1 +

εk√
ε2
k + ∆2

k

)

vk =
1

2

(
1− εk√

ε2
k + ∆2

k

)
ukvk =

∆k

2
√
ε2
k + ∆2

k

(1.31)

Now choosing the right form of interaction Vkk′ and solving the above equation,

we can exactly calculate the BCS ground state energy and the corresponding BCS

wavefunction.
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Instead of solving the Hamiltonian in Eq.(1.28) using a variational approach

following the BCS ansatz, we can also find the solution following a mean-field ap-

proach. Following a standard Hartree-Fock mean-field decoupling in pairing channel

the Hamiltonian in Eq.(1.28) takes the following form:

HMF =
∑
kσ

εkc
†
kσckσ −

∑
k

(
∆kc

†
k↑c
†
−k↓ +H.c.

)
+
∑
k

|∆2
k| (1.32)

Now this Hamiltonian in Eq.(1.32) can be solved via the so called Bogoliubov

transformation [7],

ck↑ = u∗kγk↑ + vkγ
†
−k↓

c†−k↓ = ukγ
†
−k↓ − v∗kγk↑ (1.33)

Therefore, the effective Hamiltonian becomes

HMF =
∑
kσ

Ekγ
†
kσγkσ + E0 (1.34)

in terms of Bogoliubov-quasiparticle operators (γ†kσ).

The BCS ground state wavefunction, corresponds to the vacuum of these Bogoliubov-

quasiparticles:

γkσ|ψBCS〉 = 0 (1.35)

It is interesting to note that the parameters uk and vk in both the formalism

turns out to be the same. Thus BCS ground state can be formed using Eq.(1.35)

after solving for the corresponding uk and vk.

In this section, we tried to describe the basic essence of the original variational

BCS theory and the generalized BCS theory in terms of Bogoliubov excitations. De-

tailed calculations can be found in standard texts [7, 8]. In our projects, we followed

the general Bogoliubov-de Gennes framework of excitations to find solutions in the

effective lattice model we used.
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Figure 1.2: Timeline of discovery of different superconductors. Image courtesy of U.S.
DOE Office of Basic Energy Sciences

1.3 Unconventional Superconductivity

Since the discovery of the first superconductor by Kamerling Onnes, many materials

have been found to be superconducting. Fig.(1.2) provides us a very useful timeline

for the discoveries of different superconductors. While the line connecting the solid

red circles represents the group of conventional superconductors, rest of the lines

connecting blue diamond-shaped markers or the dark red squares represent uncon-

ventional superconductors. While the line connecting the blue diamonds represents

the family of unconventional high-Tc cuprate superconductors, the line joining the

dark red squares represents the family of unconventional heavy-fermion superconduc-

tors. On the one hand, the superconductors can be classified based on their magnetic

properties, their critical temperatures, their constituent materials, etc. On the other

hand, from a theorist’s point of view, we can definitely classify superconductors under

two broad categories, namely, conventional and unconventional superconductors. The

general consensus is that the superconductors which can be described in the frame-

work of conventional BCS-Eliashberg-Migdal theory of superconductivity [9], based

on electron-phonon interaction, are called conventional superconductors. On the other
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hand, the superconductors which cannot be described by the conventional theory, are

called unconventional superconductors. Unconventional superconductors cannot be

explained by the conventional theory, broadly, because of two reasons. Either they

have high critical temperatures or some of their properties point towards a different

pairing mechanism. Heavy fermion superconductors are the first class of supercon-

ductors which were identified as unconventional superconductors [10]. In 1979, Frank

Steglich found superconductivity below Tc ≈ 0.5K in CeCu2Si2, which was a heavy-

fermion superconductor [11]. In the same year, Klaus Bechgaard’s group discovered

superconductivity in an organic salt named (TMTSF)2PF2 with critical temperature

1.1 K. The next discovery of unconventional superconductor came from Bednorz and

Muller when they found superconductivity in a layered perovskite cuprate, namely

La2−xBaxCuO4 [12]. It has a critical temperature of the order of 35 K. In the following

years many other unconventional cuprate superconductors were found (See Fig.(1.2)).

Unconventional pairing mechanism and pairing symmetry Discoveries of

different classes of unconventional superconductors in the last decades motivated

physicists to look for unconventional pairing mechanisms and unconventional pair-

ing symmetries [13–15]. After the success of the conventional pairing mechanism,

driven by electron-phonon interaction, there had been many efforts to find new pair-

ing mechanisms. Magnetism-driven pairing mechanisms had been studied extensively.

Spin-fluctuation in different systems has been claimed as a strong candidate for uncon-

ventional pairing mechanism. While the search for unconventional pairing mechanism

has not been an easy path, understanding unconventional pairing symmetries of the

order parameter has been of utmost importance since it certainly gives us a clue about

the possible pairing mechanisms. Popular experiments like NMR, Angle-resolved

photo-emission spectroscopy (ARPES), Microwave resonator penetration depth mea-

surements, Josephson interferometry experiments, etc. can confirm the k-dependence

of the energy gap and reveal the existence of any nodal structure. Motivated by

these ideas, we intend to study unconventional pairing symmetries of the supercon-

ducting order parameter under the framework of a lattice Hamiltonian like extended

attractive Hubbard Hamiltonian.

1.4 Extended Attractive Hubbard Model

After the scientific community encountered discoveries of different classes unconven-

tional superconductors during the 70s and 80s, there was a strong urge amongst

theorists to find a quantum mechanical model Hamiltonian that will explain various



1.4. EXTENDED ATTRACTIVE HUBBARD MODEL 15

aspects of unconventional superconductivity. Hubbard model was found to be such

a model during that period, which qualified as a strong candidate to explain super-

conductivity. Initially conceived by British physicist John Hubbard in 1963 [16], the

Hubbard model has been one of the legendary models to describe strongly correlated

electronic behaviour. It’s worth mentioning that Swiss-American physicist Martin

Gutzwiller [17] and Japanese physicist Junjiro Kanamori [18] also conceived the same

model independently in the same year. Conceptualizing research on the Hubbard

model was not confined to the year it was designed first. In the following years,

Hubbard successfully published five more research articles on the Hubbard model as

an improvement to the original model [19–22], while Gutzwiller and Kanamori also

extracted different physics from the same model. Though originally Hubbard model

was conceived to explain the behaviour of strongly correlated electrons and itiner-

ant ferromagnetism in transition metals, over the years, it opened many doors of

research in multiple directions. Superconductivity was one of those directions. The

whole physics community was engulfed in the excitement of discovery of cuprates,

the class of unconventional high-Tc superconductors. Still, certainly, there were not

many effective Hamiltonians which can explain different aspects of these newly found

superconducting materials. Hubbard model gave hope in that direction. Before we

slide into the facts why we choose Extended Hubbard Model (EHM) we would like

to shed some lights on the Hubbard model itself, to create a premise for understand-

ing the reason to choose such effective Hamiltonians to study superconducting order

parameter.

1.4.1 Hubbard Model

The Hubbard model can be thought of as an extension to the famous tight-binding

model. So it looks like:

HHubbard = −t
∑
〈ij〉,σ

[c†iσcjσ +H.c.] + U
∑
i

n̂i↑n̂i↓ (1.36)

Where, c†iσ(ciσ) creates (annihilates) an electron in the Wannier state φ(r − Ri)

with spin projection σ, i being the lattice site index. 〈ij〉 represents nearest neighbor

sites i and j in the lattice. n̂i↑ and n̂i↓ are the corresponding number operators for ↑
and ↓ spin projections respectively.

While the first term in HHubbard denotes the kinetic energy of the electrons:
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Hband = −t
∑
〈ij〉,σ

[c†iσcjσ +H.c.] (1.37)

the second term represents the Coulomb repulsion between electrons with opposite

spin projections on the same orbital,

HU = U
∑
i

n̂i↑n̂i↓ (1.38)

We can define the interaction strength in HU , i.e. Hubbard-U , in the following

manner:

U =

∫
dr1

∫
dr2|φ(r1 −Ri)|2

e2

|r1 − r2|
|φ(r2 −Ri)|2 (1.39)

Looking at the definition of Hubbard-U , it is quite clear that we are talking

about repulsive-U Hubbard model. As long as superconductivity is concerned both

repulsive-U and attractive-U Hubbard models play important roles in describing dif-

ferent regime of correlated phenomena [23,24]. As our focus would be on negative-U

Hubbard model, we should clarify that negative-U Hubbard model can arise from

two different aspects. Firstly, negative-U Hubbard model can be derived from the

original repulsive-U Hubbard model, in some particular cases, following a straight-

forward canonical particle-hole transformation [25]. Secondly, negative-U Hubbard

model can be used as an effective model, describing a net effective electron-electron

attraction-mechanism, the details of the mechanism being not mentioned. Such ef-

fective Hamiltonians give us crucial insight into the interplay of different correlated

phases of matter. In the afore-mentioned spirit, we choose negative-U Hubbard model,

which is a natural model for superconductivity, where BCS theory can be applied in

the form of mean-field theory.

1.4.2 Extended Hubbard Model

In principle, we do not confine ourselves to the Hubbard model, as the effect of

Coulomb repulsion is restricted to the region of individual sites only. We choose

Extended Hubbard Model (EHM) as our base model and we should have a preliminary

idea where such a model comes from. So we would like to motivate the origin of EHM
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based on the idea of Coulomb repulsion. We can conveniently write Coulomb repulsion

term in Wannier basis as follows:

HCoulomb =
1

2

∑
g1,g2,g3,g4
σ1,σ2

c†g1σ1
c†g2σ2
V(g1,g2,g3,g4)cg4σ2cg3σ1 (1.40)

where g1,g2,g3,g4 are lattice sites, and the matrix elements are expressed in terms

of Wannier states φ(r− g) as:

V(g1,g2,g3,g4) =

∫
dr1

∫
dr2φ

∗(r1 − g1)φ∗(r2 − g2)
e2

|r1 − r2|
φ(r1 − g3)φ(r2 − g4)

(1.41)

It is reasonable to confine ourselves to on-site and nearest neighbor contributions.

While the largest matrix element is the Hubbard-U ≡ V(i, i, i, i), V ≡ V(i, j, i, j)

gives the strength of Coulomb interaction at nearest neighbor distance. And the

corresponding density-density interaction term is:

HV = V
∑
〈ij〉
σ1,σ2

n̂iσ1n̂jσ2 (1.42)

which is exactly the term we use with negative-V , along with negative-U Hubbard

term, in our model.

1.4.3 Motivation

Both the Hubbard model and Extended Hubbard model are fascinating models to

study correlated electron systems. While exact solutions for both the models in two

or more dimensions are still beyond reach, the emergent physics due to the considera-

tion of electron-electron correlation in these models is extremely fascinating in its own

right. Thus it’s crucial to understand the essence of these models. Before the arrival

of these models, the tight-binding model (TBM) was good enough to explain the be-

haviour of many metals and insulators. But TBM, which is basically a band theory

based on non-interacting electron picture, failed to explain certain metal-insulator

transitions. It was understood that band theory based on non-interacting electron

picture was not enough to describe such behaviour of metals or insulators. According

to band theory, a half-filled band cannot describe an insulator; it has to be metallic.
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In reality, it was not the case for many insulators, namely Mott-insulators. It was

British physicists Nevill Mott, Rudolf Peierls, and John Hubbard, whose work sug-

gested that taking electron-electron correlation into consideration can explain such

insulating behaviour and doping can cause a metal-insulator transition in such ma-

terials. Hubbard model at half-filling successfully reproduced such metal-insulator

transition, namely the Mott-Hubbard transition. d-wave pairing superconductivity is

well-known in cuprate superconductors, and it’s well explained by t-J model, which

is just another adaptation of the Hubbard model. While U -term is known to capture

on-site superconducting pairing correlation (such as s-wave pairing) and spin density

wave solutions (SDW), V -term is a natural candidate to generate inter-site super-

conducting pairing correlation (such as dx2−y2-wave pairing) and charge density wave

(CDW) solutions. There have been many studies indicative of unconventional super-

conductivity being an emergent phase, from spin or charge-ordered phases, due to

strong electron-electron correlations. For decades, the Hubbard model and Extended

Hubbard model has been one of the favourite tools to describe such correlated effects,

especially in the field of unconventional superconductivity.

1.5 Focus of the Thesis

1.5.1 Superconducting Order Parameter Symmetry

Understanding the order parameter symmetry of a superconductor is a key step to-

wards achieving a comprehensive understanding of the mechanism leading to super-

conductivity [26]. This serves as the central motivation for the present thesis. The

thesis explores the possibility of stabilizing unconventional order parameter symme-

tries for the superconducting order using a generic square-lattice model of on-site and

inter-site attractive interactions. The Bogoliubov-de Gennes mean-field approach is

used to analyze the model. The vital point of the exploration is that no order pa-

rameter symmetry is imposed on the superconducting solution, and the energetics

dictates the stability of different SC phases.

1.5.2 Outline of 1st Problem

It is a well-known and fact that an effective attraction between electrons is a key

ingredient to generate superconducting (SC) order [6, 27, 28]. Thus it is a common

practice to invoke effective models with attractive interaction to investigate properties

of superconductors [29, 30]. Attractive Hubbard model (AHM) [31, 32] is a natural
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candidate to study such SC states. On-site AHM has been extensively studied and

it is known to stabilize the most symmetric s-wave SC phase [29, 33, 34]. Including

a nearest-neighbour (nn) attractive interaction spontaneously supports the nodal d-

wave SC solutions [35]. In many scenarios, it is suggested that the induced effective

attraction between electrons is not enough to overcome on-site Coulomb repulsion,

but it can overcome nn repulsion. Such scenarios are investigated using an effective

extended Hubbard model (EHM) with on-site repulsion and nn attraction terms. Such

a model is useful in studying d-wave SC orders occurring in the vicinity of antifer-

romagnetic (AFM) state, specifically in case of cuprates [36–39]. Another plausible

direction is to consider the case where the effective attraction is strong enough to

overcome both the on-site and nn repulsions, leading to extended attractive Hubbard

model (EAHM). Surprisingly, this model has not been explored much for the pos-

sibility of unconventional, particularly the mixed OP symmetry, SC solutions. The

possibility of mixed symmetry superconductivity, although not reported in any exper-

iment yet, has not been ruled out [40]. Therefore, understanding and characterizing

unconventional mixed-symmetry SC states remain a problem of critical importance.

We address this problem in our first project, considering an EAHM on a square

lattice. In this model, we have two independent mechanisms, one favouring on-

site pairing and the other favouring inter-site pairing, competing with each other.

Motivated by the fact that unconventional SC order gets stabilized in the vicinity of

AFM state, we safely neglect the inter-site attractive interaction between electrons

with the same spin projections (↑↑ and ↓↓ spins). In fact, in the absence of any

magnetic or exchange field, it is natural to assume that equal-spin interactions will

not be favoured energetically. Next, we perform a general Hartree-Fock mean-field

(HFMF) decoupling in “pairing channel” [41], to consider possible SC orders. Also,

motivated by the fact that the long-range Coulomb interaction will not allow for

charge-inhomogeneities in the system, we look for homogeneous density SC solutions.

Thus, invoking translational invariance, we transform our Hamiltonian into a Hartree-

Fock-BCS (HFBCS) mean-field Hamiltonian in Fourier space. SC pairing correlations

terms, e.g. ∆+
iγ = 〈ci+γ↓ci↑〉, ∆−iγ = 〈ci↓ci+γ↑〉, are treated as mean fields [41], to be

calculated self-consistently, diagonalizing the mean field Hamiltonian. We emphasize

on the fact that, unlike most studies of SC orders in literature, we do not put any

restriction on these pairing correlations. And that gives us freedom to explore the

competition of all possible mixed-parity SC states at the mean-field level. We use

standard definitions of SC order parameter (OP) symmetries [13–15, 26, 42], e.g. s,

extended-s, d, and p-wave OPs, in terms of the set of mean field pairing correlations,
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denoted by the set {∆}.

In this project, we carried out explicit minimization of the energy over the vari-

ational space of the set {∆}. To reduce the number of variational parameters, we

study the energy variation of relative angles between different SC OPs. In most of

the cases, we found the relative phase angle between any such OPs is either 0 or π/2.

We summarize our results in terms of a n-(U/t) and a n-(V/t) phase diagrams, U ,

V , n, and t being the on-site attractive interaction, inter-site attractive interaction,

electron density per site and electron-hopping amplitude, respectively.

Most notably, we find a chiral px + ipy order being stabilized in the mid-density

region. The dx2−y2 + px is particularly stable over a large density regime. This is

intriguing as a number of experiments on cuprates report on the possibility of a

secondary unconventional OP in addition to the dominant order dx2−y2 . Moreover,

for smaller values of V we also find a pure dx2−y2 order in the low-doping regime.

Two of the unconventional phases, the dx2−y2 + px order and the chiral px + ipy state,

exist over a wide parameter regime. Both these orderings also support non-trivial

edge-state dispersions. We also discuss the finite-temperature behaviour and show

that for certain densities, the system undergoes multiple transitions before reaching

a normal state at high temperature. This work is published in Journal of Physics:

Condensed Matter [41].

1.5.3 Outline of 2nd Problem

One of the limitations of the study performed as a part of the first project is that

only Sz = 0 component of triplet was allowed as we restricted ourselves to nearest-

neighbour superconducting correlations with opposite spin pairing (OSP) states only.

It can be argued that the degeneracy of the triplet states in the absence of magnetic

fields ensures that crucial physics was not missed out as a result of the approximation

used. However, if the effect of the external magnetic field via Zeeman coupling is to

be investigated, then one must allow for the equal spin pairing (ESP) states to be

present in the analysis [43]. This is the second project undertaken as a part of this

thesis.

In this project, we retain the interactions between same spins on the neighbour-

ing sites and present a more complete analysis of the competition among various

superconducting order parameters. We perform a general Hartree-Fock mean-field

decoupling in pairing channel on the initial Hamiltonian to get an effective mean-

field Hamiltonian, where the effective, attractive interaction between an electron pair
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is mediated via a set of self-consistent mean fields. We incorporate the possibility of

ESP states by choosing appropriate HFMF decoupling of the initial Hamiltonian. As

we focus on finding homogeneous superconducting phases, we invoke the translational

symmetry of the underlying system and work with the mean-field Hamiltonian in the

Fourier space. The resulting Hamiltonian depends on parameters: U , the attractive

on-site potential, V , the inter-site attractive potential, and µ, the chemical poten-

tial. Variations with applied magnetic field B and temperature T are also studied.

We use iterative self-consistency method with variational initial-configuration as the

major tool to solve for the mean-field variables for a given parameter set. To include

the possibility of both OSP and ESP states, we write our effective k-space mean-field

Hamiltonian matrix using four-component Nambu spinors and diagonalize the Hamil-

tonian matrix using standard BdG canonical transformations. In this formulation,

∆̂k, a 2 × 2 matrix known as the superconducting gap function, characterizes the

superconducting order parameter. ∆̂k incorporates all possible superconducting pair-

ing correlations that can be derived from the effective mean-field Hamiltonian. To be

precise, it also contains information regarding the orbital and spin part of the Cooper

pair wavefunction. In our unrestricted approach, in addition to the pure singlet and

pure triplet pairing states, mixed parity superconducting states are also retained.

In the presence of a magnetic field, we find that ESP states are favoured energeti-

cally. To characterize the singlet and triplet pairing states of our system, we follow the

conventional d-vector formalism by Balian and Werthamer [44]. Applying a change

of basis in spin space we transform ∆̂k in a manner that the information about the

spin state of ∆̂k is retrieved from an anti-symmetric complex scalar function d0(k)

and a three-component symmetric complex vector function d(k). We use magnitudes

of d0(k) and d(k) averaged over the Brillouin zone to be the order parameters for

singlet (∆SP ) and triplet (∆TP ) pairing states respectively.

To understand the behaviour of the newly included pairing correlations related to

ESP states, we study the variation of energy with the relative phase angle between

such pairing correlations. We find that the system gains energy when the relative

phase angle between x and y pairing correlations corresponding to either ↑ or ↓ spin

projection assumes a value of π/2. But we find no such relation between spin ↑ and

spin ↓ pairing correlations along x (or y) direction. We also study the variation of

energy corresponding to ↑↑, ↓↓, and ↑↓ states with increasing hopping amplitude t and

in-plane magnetic field B. While energetics provides us with information regarding

the relative behaviour of ESP and OSP pairing correlations, a self-consistent approach

is used for a complete exploration of the different possibilities of stabilizing ESP
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or OSP states. We find the existence of singlet, triplet, and exotic mixed parity

states in different regimes of the parameter space of the model Hamiltonian. In the

absence of an external magnetic field, pure triplet occupies the mid-density region,

and mixed-parity states are found near half-filling. While the presence of a magnetic

field suppresses the OSP-states, a pure-triplet state occupies a larger region in the

parameter space. We also study the behaviour of these unconventional states at

finite temperature and discover temperature-driven transitions involving the change

in symmetry of the superconducting order parameters. The manuscript reporting all

these findings is currently under preparation.

1.5.4 Summary

In summary, this thesis presents the results of an extensive numerical study of the

extended attractive Hubbard model on a square lattice. Following an unrestricted

Hartree-Fock mean-field approach, we allow for the possibility of different broken-

symmetry superconducting phases and find unconventional superconducting phases

being stable in different regimes of parameter space. We also study possibilities

of phase transitions driven by external magnetic field and temperature. Motivated

by properties of unconventional superconductors discovered in the past few decades,

we explored EAHM as an effective model for unconventional superconductors. This

work also motivated an MS thesis that focused on topological transitions driven by

the proximity effect. This work has recently been accepted for publication in Physical

Review B [45].
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Chapter 2

Model and Methodology

As motivated in the previous chapter, the attractive Hubbard model and its extended

versions are the elementary lattice models that can describe the physics associated

with superconductivity. In this chapter, we describe extended attractive Hubbard

model in detail and discuss the methodology required to explore different supercon-

ducting order parameters that can emerge from such a lattice Hamiltonian.

2.1 Extended Attractive Hubbard Model

In real space, the Hamiltonian corresponding to the Extended Attractive Hubbard

Model (EAHM) on a two-dimensional square lattice can be written as,

H = Hkin +Hµ +Honsite
int +Hnn

int +HB, (2.1)

where, Hkin is the kinetic energy of the electrons, Hµ is the chemical potential term,

Honsite
int is the on-site attractive interaction and Hnn

int is the nearest-neighbor (nn) at-

tractive interaction. HB describes the Zeeman coupling of electrons to an external

magnetic field B. The corresponding operator terms, written in the second quantiza-

tion notation are,

25
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Hkin = −t
∑
〈ij〉,σ

c†iσcjσ +H.c.

Hµ = −µ
∑
iσ

niσ = −µ
∑
iσ

c†iσciσ

Honsite
int = −U

∑
i

ni↑ni↓ = −U
∑
i

c†i↑ci↑c
†
i↓ci↓

Hnn
int = −V

∑
〈ij〉

ninj = −V
∑
〈ij〉
σ,σ′

c†iσciσc
†
jσ′cjσ′ (2.2)

HB = −Bz

∑
i

(ni↑ − ni↓) = −Bz

∑
i

(c†iσ↑ciσ↑ − c†iσ↑ciσ↑).

In the above, c†iσ(ciσ) creates (annihilates) an electron at i-th site of the lattice. 〈ij〉
represents nearest-neighbor sites of the lattice. niσ is the electron occupation number

operator at i-th site for σ spin-projection. The total electron occupation number at

i-th site is defined via ni = ni↑ + ni↓. U is the onsite attractive interaction strength,

whereas V is the inter-site attractive interaction strength. Bz is the z- component of

the magnetic field. t is the nearest-neighbor hopping amplitude. µ is the chemical

potential, as the system is defined in a grand canonical ensemble.

2.2 Mean-Field Decoupling in Pairing Channel

Both the interaction terms, the on-site one and the inter-site one, are represented by

two-body operator terms in 2nd quantization formalism. To reduce the complexity

of these terms, we consider the path of mean-field treatment, where the many-body

interaction effects are mimicked via the interaction of a single-electron system with

a mean-field created by the aggregated effect of rest of the electrons, present in the

system. Mathematically speaking, such a two-body operator term X̂Ŷ can be written

as

X̂Ŷ =
{
〈X̂〉+ (X̂ − 〈X̂〉)

}{
〈Ŷ 〉+ (Ŷ − 〈Ŷ 〉)

}
= 〈X̂〉〈Ŷ 〉+ 〈X̂〉(Ŷ − 〈Ŷ 〉) + 〈Ŷ 〉(X̂ − 〈X̂〉)

+ (X̂ − 〈X̂〉)(Ŷ − 〈Ŷ 〉)
≈ X̂〈Ŷ 〉+ Ŷ 〈X̂〉 − 〈X̂〉〈Ŷ 〉, (2.3)

where we have neglected the deviation in the 2nd order. In practice, we can apply
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this idea of mean-field decoupling to the interaction terms of the Hamiltonian using

different channels, such as density channel or pairing channel etc. Where density

channel decoupling leads to mean-fields of the form 〈c†c〉, pairing channel decoupling

leads to mean-fields of the form 〈c†c†〉. As we are specifically interested in supercon-

ducting solutions, we carefully choose “pairing channel” decoupling for our system.

After mean-field decoupling in the particle-particle channel (or pairing channel), the

on-site interacting two-particle operator terms becomes:

Honsite
int = −U

∑
i

ni↑ni↓

= −U
∑
i

(c†i↑ci↑c
†
i↓ci↓)

= −U
∑
i

c†i↑c
†
i↓ci↓ci↑ Using Fermionic Anticommutation Property

≈ −U
∑
i

[
〈ci↓ci↑〉c†i↑c†i↓ +H.c.− 〈c†i↑c†i↓〉〈ci↓ci↑〉

]
Mean-Field Decoupling

= −U
∑
i

[
∆ic

†
i↑c
†
i↓ +H.c.− |∆i|2

]
where, ∆i = 〈ci↓ci↑〉 (2.4)

Expanding the inter-site interaction term we obtain:

H int
nn = −V

∑
〈ij〉

ninj = −V
∑
i,δ

nini+δ

= −V
∑
i,δ

(ni↑ + ni↓)(ni+δ↑ + ni+δ↓)

= −V
∑
i,δ

( A︷ ︸︸ ︷
ni↑ni+δ↑+

B︷ ︸︸ ︷
ni↓ni+δ↓+

C︷ ︸︸ ︷
ni↑ni+δ↓+

D︷ ︸︸ ︷
ni↓ni+δ↑

)
, (2.5)

where δ is an index, which denotes unit vectors along the direction of two nearest

neighbors, namely δ = +x̂ and δ = +ŷ. Note that we have grouped terms as A,B,C,

and D for the ease of reference. Now terms A and B lead to the possibility of triplet

solution with Sz = ±1, while terms C and D lead to singlet and triplet solution with

Sz = 0.

Singlet and Triplet with Sz = 0: Let’s start with term C:
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− V
∑
i,δ

ni↑ni+δ↓

= −V
∑
i,δ

c†i↑ci↑c
†
i+δ↓ci+δ↓

= −V
∑
i,δ

c†i↑c
†
i+δ↓ci+δ↓ci↑ Using Anti-commutation

= −V
∑
i,δ

〈ci+δ↓ci↑〉c†i↑c†i+δ↓ +H.c.+ V
∑
i,δ

|〈ci+δ↓ci↑〉|2

= −V
∑
i,δ

∆+
iδ c

†
i↑c
†
i+δ↓ +H.c.+ V

∑
i,δ

|∆+
iδ|2 (2.6)

Similarly for term D:

V
∑
i,δ

ni↓ni+δ↑

= −V
∑
i,δ

c†i↓ci↓c
†
i+δ↑ci+δ↑

= −V
∑
i,δ

c†i+δ↑c
†
i↓ci↓ci+δ↑ Using Anti-commutation

= −V
∑
i,δ

〈ci↓ci+δ↑〉c†i+δ↑c†i↓ +H.c.+ V
∑
i,δ

|〈ci↓ci+δ↑〉|2

= −V
∑
i,δ

∆−iδ c
†
i+δ↑c

†
i↓ +H.c.+ V

∑
i,δ

|∆−iδ|2 (2.7)

Triplet with Sz = ±1 Term A goes like:

− V
∑
i,δ

ni↑ni+δ↑

= −V
∑
i,δ

c†i↑ci↑c
†
i+δ↑ci+δ↑

= −V
∑
i,δ

c†i↑c
†
i+δ↑ci+δ↑ci↑ Using Anti-Commutation

= −V
∑
i,δ

〈ci+δ↑ci↑〉c†i↑c†i+δ↑ +H.c.+ V
∑
i,δ

|〈ci+δ↑ci↑〉|2

= −V
∑
i,δ

∆↑iδ c
†
i↑c
†
i+δ↑ +H.c.+ V

∑
i,δ

|∆↑iδ|2 (2.8)
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Similarly, term B goes like:

− V
∑
i,δ

ni↓ni+δ↓

= −V
∑
i,δ

c†i↓ci↓c
†
i+δ↓ci+δ↓

= −V
∑
i,δ

c†i↓c
†
i+δ↓ci+δ↓ci↓ Using Anti-Commutation

= −V
∑
i,δ

〈ci+δ↓ci↓〉c†i↓c†i+δ↓ +H.c.+ V
∑
i,δ

|〈ci+δ↓ci↓〉|2

= −V
∑
i,δ

∆↓iδ c
†
i↓c
†
i+δ↓ +H.c.+ V

∑
i,δ

|∆↓iδ|2 (2.9)

Effective Mean-Field Hamiltonian in Real Space:

So the effective mean-field hamiltonian in real space becomes:

HMF = −t
∑
〈ij〉,σ

[
c†iσcjσ +H.c.

]
− µ

∑
iσ

c†iσciσ

−Bz

∑
i

(c†i↑ci↑ − c†i↓ci↓)

− U
∑
i

[
∆ic

†
i↑c
†
i↓ +H.c.− |∆i|2

]
− V

∑
i,δ

[
∆+
iδc
†
i↑c
†
i+δ↓ +H.c.− |∆+

iδ|2
]

− V
∑
i,δ

[
∆−iδc

†
i+δ↑c

†
i↓ +H.c.− |∆−iδ|2

]
− V

∑
i,δ

[
∆↑iδc

†
i↑c
†
i+δ↑ +H.c.− |∆↑iδ|2

]
− V

∑
i,δ

[
∆↓iδc

†
i↓c
†
i+δ↓ +H.c.− |∆↓iδ|2

]
(2.10)

2.3 Effective Hamiltonian in Momentum Space

Observing the effective mean-field Hamiltonian in real space (Eq.2.10) it’s apparent

that the effective Hamiltonian is a function of

• a set of parameters: t, µ, U , V , Bz, and

• a set of complex variables (pairing correlations): ∆i, ∆+
iδ, ∆−iδ, ∆↑iδ, and ∆↓iδ.
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In our projects, we treat a clean system on a square lattice. Thus we exclude

the possibility of inhomogeneity in our solutions, i.e., we expect our superconducting

solutions to respect translational symmetry of the underlying lattice. This particular

choice of translational symmetry makes Bloch basis to be more suitable candidate to

describe the effective Hamiltonian. Thus we apply the following transformation from

Wannier basis to bloch basis:

ciσ =
1√
Ns

∑
k

e−ik·rickσ and c†iσ =
1√
Ns

∑
k

eik·ric†kσ (2.11)

In Bloch basis, the effective mean-field Hamiltonian looks like:

HMF =
∑
k

[
ε↑(k)c†k↑ck↑ + ε↓(k)c†k↓ck↓

]
+
∑
k

[
∆↑↓(k)c†k↑c

†
−k↓ +H.c.

]
+
∑
k

[
∆↑↑(k)c†k↑c

†
−k↑ +H.c.

]
+
∑
k

[
∆↓↓(k)c†k↓c

†
−k↓ +H.c.

]
+NsU |∆|2

+NsV
∑
δ

[
|∆+

δ |2 + |∆−δ |2 + |∆↑δ|2 + |∆↓δ|2
]

(2.12)

Where,

ε↑(k) = −2t(cos(kx) + cos(ky))− µ−Bz

ε↓(k) = −2t(cos(kx) + cos(ky))− µ+Bz

∆↑↓(k) = −U∆− V
∑
δ

[
∆+
δ e
−i(k·δ) + ∆−δ e

i(k·δ)
]

∆↑↑(k) = −V
∑
δ

∆↑δe
−i(k·δ)

∆↓↓(k) = −V
∑
δ

∆↓δe
−i(k·δ) (2.13)

As mentioned earlier, in Fourier space, translational invariance leads to spatial ho-

mogeneity of the set of variables, namely superconducting pairing correlations. So

the set of variables: {∆i,∆
↑
iδ,∆

↓
iδ,∆

+
iδ and ∆−iδ} becomes independent of site index
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i and our new set of variables becomes: {∆,∆↑δ ,∆↓δ ,∆+
δ and ∆−δ }. In this effective

Hamiltonian, ε↑(k) describes the kinetic energy of ↑-spin electrons with respect to

an effective chemical potential µ↑eff = µ + Bz. Similarly ε↓(k) describes the kinetic

energy of ↓-spin electrons with respect to an effective chemical potential µ↓eff = µ−Bz.

It’s evident that the presence of a magnetic field breaks the spin-degeneracy in the

system via Zeeman coupling. It’s worth mentioning that we work in the regime where

magnetic field couples only with spin-degree of freedom. Orbital degree of freedom

remains completely unperturbed by the presence of magnetic field, which leaves us

with the freedom to ignore the inclusion of Peierls substitution. In the above men-

tioned Hamiltonian (Eq.2.12) ∆↑↑(k) and ∆↓↓(k) represent superconducting corre-

lations corresponding to equal spin pairing (ESP) states, while ∆↑↓(k) represents

superconducting correlations corresponding to opposite spin pairing (OSP) states.

While the on-site attraction strength U controls OSP states only, which is evident

from the definitions of these pairing correlations (Eq.2.13), inter-site attraction V

controls both OSP and ESP states. This very fact suggests that V is meant to play

an important role in stabilizing non-trivial superconducting orders with variety of

pairing symmetries.

2.4 Solving the Hamiltonian

To understand the nature of the superconducting solutions emerging from the effec-

tive Hamiltonian in Eq.(2.12) we need to diagonalize the Hamiltonian and study its

eigenspectrum. It is apparent from the Eq.(2.12) that the effective Hamiltonian is

not diagonal in Bloch basis. Presence of pairing terms like c†k↑c
†
−k↓ have the following

important consequences:

1. Particle number is not conserved in the ground state of the Hamiltonian, and

2. Bloch states are not eigenstates of such Hamiltonian.

Thus we follow Bogoliubov–de Gennes approach to diagonalize such Hamiltonian [7].

In the following sections (Section 2.4.1-2.4.2) we address this problem.

2.4.1 Bogoliubov-de Gennes Method

As we focus on finding the eigenspectrum of the Hamiltonian in Eq.(2.12), we ignore

the extra classical energy terms in the Hamiltonian. Such Hamiltonian, also known

as BdG Hamiltonian, takes the form:
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HBdG =
∑
k

[
ε↑(k)c†k↑ck↑ + ε↓(k)c†k↓ck↓

]
+
∑
k

[
∆↑↓(k)c†k↑c

†
−k↓ +H.c.

]
+
∑
k

[
∆↑↑(k)c†k↑c

†
−k↑ +H.c.

]
+
∑
k

[
∆↓↓(k)c†k↓c

†
−k↓ +H.c.

]
. (2.14)

We use Bogoliubov-Valatin transformation, which was independently developed in

1958 by Nikolay Bogolyubov and John George Valatin for finding solutions of BCS

theory in a homogeneous system [8,46], to diagonalize the Hamiltonian in Eq.(2.14).

The canonical transformation looks like:

ck↑ =
∑
n

unk↑γkn + (vnk↑)
∗γ†−kn

ck↓ =
∑
n

unk↓γkn + (vnk↓)
∗γ†−kn (2.15)

Where γ†kn (γkn) creates (annihilates) so called “Bogoliubov quasi-particles”, k

and n being the indices associated with momentum k and pseudospin of the quasi-

particle. Coefficients unkσ and vnkσ connects to electron-like and hole-like (quasi-holes)

quasi-particles respectively. In the quasi-particle (quasi-hole) picture the Hamiltonian

in Eq.(2.14) must be diagonalized:

HBdG =
∑
kn

Eknγ
†
knγkn + EG. (2.16)

EG is the ground state energy of the system, γ† being the creation operator corre-

sponding to the excitations above the ground state.

Invoking the following identities between anticommutator and commutator of any

three quantum-mechanical operators A, B, and C:

[A,BC] = {A,B}C −B{A,C} (2.17)

we can derive the following identities, if we calculate the commutators of ck↑, c
†
−k↓,
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ck↓, and c†−k↑ with H:

[ck↑,HBdG] = ε↑(k)ck↑ + ∆↑↓(k)c†−k↓ + 0× ck↓ + ∆↑↑s (k)c†−k↑

[c†−k↓,HBdG] = (∆↑↓(k))∗ck↑ − ε↓(−k)c†−k↓ + (∆↓↓s (k))∗ck↓ + 0× c†−k↑

[ck↓,HBdG] = 0× ck↑ + ∆↓↓s (k)c†−k↓ + ε↓(k)ck↓ −∆↑↓(−k)c†−k↑

[c†−k↑,HBdG] = (∆↑↑s (k))∗ck↑ + 0× c†−k↓ − (∆↑↓(−k))∗ck↓ − ε↑(−k)c†−k↑ (2.18)

Where, ∆↑↑s (k) = (∆↑↑(k) − ∆↑↑(−k)) and ∆↓↓s (k) = (∆↓↓(k) − ∆↓↓(−k)). While

calculating the first commutator in Eq.(2.18), if we look closely, we notice how ck↑ is

coupled with the operators c†−k↓ and c†−k↑. This coupling, natuarally occuring due to

the form of the Hamiltonian itself, is used a guide to calculate the other commutators.

Applying Eq.(2.15) in Eq.(2.18) and collecting Coefficients of γkn we get the following

equation:

MBdG(k)︷ ︸︸ ︷

ε↑(k) ∆↑↓(k) 0 ∆↑↑s (k)

(∆↑↓(k))∗ −ε↓(−k) (∆↓↓s (k))∗ 0

0 ∆↓↓s (k) ε↓(k) −∆↑↓(−k)

(∆↑↑s (k))∗ 0 −(∆↑↓(−k))∗ −ε↑(−k)



ϕkn︷ ︸︸ ︷

unk↑

vn−k↓

unk↓

vn−k↑


= Ekn



unk↑

vn−k↓

unk↓

vn−k↑


(2.19)

On the other hand, if we collect coefficients of γ†−kn after applying Eq.(2.15) in

Eq.(2.18) and make a parity transformation k → −k, we get the following equa-

tion:
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MBdG(−k)︷ ︸︸ ︷

ε↑(−k) ∆↑↓(−k) 0 ∆↑↑s (−k)

(∆↑↓(−k))∗ −ε↓(k) (∆↓↓s (−k))∗ 0

0 ∆↓↓s (−k) ε↓(−k) −∆↑↓(k)

(∆↑↑s (−k))∗ 0 −(∆↑↓(k))∗ −ε↑(k)



φkn︷ ︸︸ ︷

(vn−k↑)
∗

(unk↓)
∗

(vn−k↓)
∗

(unk↑)
∗


= −Ekn



(vn−k↑)
∗

(unk↓)
∗

(vn−k↓)
∗

(unk↑)
∗


(2.20)

Comparing Eq.(2.19) with Eq.(2.20) we observe that if ϕkn is an eigenstate of the

matrix MBdG(k) with an eigenvalue Ekn, there must exist a state φkn, which is also

an eigenstate of MBdG(−k) with an eigenvalue −Ekn. It’s easy to test it numerically

diagonalizing both the matrices MBdG(k) and MBdG(−k). We found that eigenvalues

of these two matrices are connected. Negative counterparts of two positive eigenvalues

of MBdG(k) can be found as eigenvalues of MBdG(−k) and vice versa. This actually

gives us the idea of how the very design of BdG Hamiltonian (Eq.2.14) imposes a

particle-hole symmetry in the space of quasi-particles. Quasi-particles with energies

E,-E are not actually two different states. Rather it represents a single quantum state,

which is a coherent superposition of electron-like and hole-like states. This idea will

also be evident in the next section.

2.4.2 BdG with Nambu spinors

Rather than treating the Hamiltonian in Eq.(2.14) in the typical BdG-equations ap-

proach, we can use Nambu spinors to describe the same Hamiltonian. Our mean field

Hamiltonian HBdG (Eq.2.14) can be written in terms of Nambu spinors Ψk as:

HBdG =
∑
k

Ψ†kMBdG(k)Ψk (2.21)

Where, Nambu spinor Ψk is a column vector of the following form: Ψk = (ck↑ c†−k↓ ck↓ c†−k↑)

and MBdG(k) is a 4× 4 Hamiltonian matrix of the following form:
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MBdG(k) =



ε↑(k) ∆↑↓(k) 0 ∆↑↑s (k)

(∆↑↓(k))∗ −ε↓(−k) (∆↓↓s (k))∗ 0

0 ∆↓↓s (k) ε↓(k) −(∆↑↓(−k))

(∆↑↑s (k))∗ 0 −(∆↑↓(−k))∗ −ε↑(−k)


(2.22)

MBdG(k) is known as the mean-field Bogoliubov-de Gennes Hamiltonian matrix. It

is to be noted that while forming the BdG matrix we doubled the available degrees

of freedom offered in HBdG. This particular point is not apparent while dealing with

BdG-equations in the previous section. While writing down the BdG Hamiltonian

HBdG in terms of Nambu spinors, we perform a particle-hole transformation (c†σ → cσ;

cσ → c†σ) to each spin-sectors and effectively make two copies of the Hamiltonian, one

corresponding to the particle sector and the other corresponding to the hole sector.

This redundant degree of freedom is needed to incorporate Bogoliubov excitations.

So-called “Bogoliubov quasi-particles” are actually a superposition of electron-like

and hole-like states, as mentioned earlier. One should take note of the fact that while

calculating different expectation values, after having diagonalized this Hamiltonian,

this redundant degree of freedom is ignored.

2.5 Energy Minimization and Self-consistency

Having solved the BdG Hamiltonian matrixMBdG, we calculate different pairing cor-

relations {∆,∆↑δ ,∆↓δ ,∆+
δ and ∆−δ } in terms of the eigenspectrum of the diagonalized

BdG Hamiltonian. In our projects we use two approaches to find superconducting

solutions:

1. Brute-force energy minimization with respect to {∆,∆↑δ ,∆↓δ ,∆+
δ and ∆−δ }

2. Calculating the set {∆,∆↑δ ,∆↓δ ,∆+
δ and ∆−δ } in a self-consistent manner by

diagonalizing HBdG repetitively and using the set {∆,∆↑δ ,∆↓δ ,∆+
δ and ∆−δ } as

a feedback to the corresponding matrix MBdG.

In the first method, we perform a pair-wise energy minimization with respect to the

relative phase angle between each member of the set {∆,∆↑δ ,∆↓δ ,∆+
δ and ∆−δ }. Then

we assume that the phase relations among these members still hold in general, which
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leads to a huge reduction of the size of the parameter space. Then we perform a

brute-force energy minimization with respect to that reduced parameter space to find

the minimum energy superconducting solutions.

In the second method we treat the set {∆,∆↑δ ,∆↓δ ,∆+
δ and ∆−δ } as a group of mean-

field variables, which are calculated self-consistently by diagonalizing the BdG Hamil-

tonian HBdG repetitively. To be more perfect, we use a variational self-consistency

approach, where we start the self-consistent iteration from different initial point in

the parameter space and ultimately choose the converged solution with minimum en-

ergy. More importantly, we have verified for selected points in the parameter space

that the two methods described above lead to identical superconducting solutions.
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Chapter 3

Unconventional superconducting

phases from opposite spin pairing

We show that the extended attractive Hubbard model on a square lattice allows

for a variety of superconducting phases, including exotic mixed-symmetry phases

with dx2−y2 + i[s + s∗] and dx2−y2 + px symmetries, and a novel px + ipy state. The

calculations are performed within the Hartree-Fock Bardeen-Cooper-Schrieffer (HF-

BCS) framework. The ground states of the mean-field Hamiltonian are obtained via

a minimization scheme that relaxes the symmetry constraints on the superconducting

solutions, hence allowing for a mixing of s-, p- and d-wave order parameters. The

results are obtained within the assumption of uniform-density states. Our results

show that extended attractive Hubbard model can serve as an effective model for

investigating properties of exotic superconductors.

3.1 Introduction

Identifying the symmetry of the superconducting (SC) order parameter (OP) is an

important step towards understanding the properties of a SC state [47]. The OP

symmetry can also provide crucial insights regarding possible pairing mechanisms.

Indeed, the appearance of a non-s-wave component in the OP symmetry is taken as

an indication of unconventional pairing mechanism. Non-trivial OP symmetries have

been experimentally identified in many SC materials. Cuprates provide a famous

example where the OP symmetry is known to be of d-wave type with a possible

mixing of a secondary s-wave or p-wave component in some materials [48–54]. Recent

ARPES experiments also show the evolution of the OP from a node less form to the

nodal d-wave form [55]. An exotic chiral p-wave OP has been put forward as a

39
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strong candidate for the SC state in Sr2RuO4 [56–59]. Spin triplet SC order has

also been inferred from Knight-shift experiments on Bechgaard salts, TMTSF2PF6

and TMTSF2ClO4 [60–64]. A direct observation of a parity-breaking transition in

an attractive cold-atom system has been reported recently [65]. The possibility of

mixed parity superconductivity, although not reported in any experiment yet, has not

been ruled out [66–68]. Therefore, understanding and characterizing unconventional

mixed-symmetry SC states remains a problem of critical importance.

It is well accepted that an effective attraction between electrons is a prerequi-

site for generating SC order. Therefore, effective models with attractive interac-

tions are commonly employed for investigating properties of SC states [69–72]. The

simplest choice among such models is the attractive Hubbard model (AHM) which

has been extensively studied using a variety of numerical and semi-analytical meth-

ods [71,73–79]. The on-site AHM allows for the conventional s-wave superconductiv-

ity. Including a nearest-neighbour (nn) attractive term readily supports a d-wave SC

solution [69, 80–82]. It has been asserted that in some cases the induced attraction

between electrons is not large enough to overcome the on-site Coulombic repulsion.

However it can overcome the nn repulsion, and therefore an effective model with on-

site repulsion and nn attraction may be realized [69,83,84]. Indeed, this is a popular

model for studying the competition between antiferromagnetism and d-wave super-

conductivity in the context of cuprates [69, 85–87]. Another realistic possibility is

that the induced attraction overcomes both the on-site and nn repulsive interactions,

leading to an EAHM. Surprisingly, this model has not been explored much for the pos-

sibility of unconventional, particularly the mixed OP symmetry, SC solutions [87,88].

In this work, we unveil the exciting possibility of the existence of unconventional

mixed symmetry SC states in an EAHM on a square lattice. A justifiable approxima-

tion on the nn attractive interaction followed by a general decoupling scheme together

with an explicit minimization procedure allows us to construct comprehensive phase

diagrams for the model. Superconducting phases with mixed OPs dominate the phase

diagram. We present simple energetic arguments for the stability of mixed OP phases.

Two of the unconventional phases, the dx2−y2 + px order and the chiral px + ipy state,

exist over a wide parameter regime. Both these orderings also support non-trivial

edge-state dispersions. While the two OP symmetries mentioned above are directly

relevant to some cuprates and Sr2RuO4, respectively, our results have a general impli-

cation that the EAHM can be a universal effective model for studying unconventional

superconductivity. We also discuss the finite-temperature behavior and show that for

certain densities the system undergoes multiple transitions before reaching a normal

state at high temperature.
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3.2 Model and Method

3.2.1 Extended Attractive Hubbard Hamiltonian

We begin with the EAHM defined on a 2D square lattice. The model is described by

the Hamiltonian,

H = −t
∑
〈ij〉,σ

[c†iσcjσ +H.c.]− µ
∑
iσ

c†iσciσ

−U
∑
i

ni↑ni↓ − V
∑
〈ij〉

ninj. (3.1)

Here ciσ(c†iσ) annihilates (creates) an electron at site i with spin σ, 〈ij〉 implies that

sites i and j are nearest neighbours. µ is the chemical potential, niσ = c†iσciσ is the

electron number operator at site i and spin-projection σ, and ni = ni↑ + ni↓. U

and V denote the strengths of on-site and nearest neighbour attractive interactions,

respectively. Using t = 1 as the basic energy scale, and restricting ourselves to

zero temperatures (T = 0), we are left with three independent parameters in the

Hamiltonian, viz., U , V and µ.

Before we proceed with the study of the Hamiltonian Eq. (3.1), it is important

to motivate the physical relevance of the EAHM as an effective lattice model. A

possible realization of such a model via a competition of bare Coulomb repulsion

and phonon-mediated effective attraction was already mentioned in the previous sec-

tion. In general, the EAHM represents a physical situation where two independent

mechanisms, one favouring on-site pairing and other favouring inter-site pairing, are

simultaneously active [88]. These mechanisms then compete for superconducting or-

der with different OP symmetries. A microscopic model for such a situation will

depend of the specific details of the system. Nevertheless, the EAHM can serve as

an elementary model to study such a competition among different SC states. Fur-

thermore, it has been shown that a model with on-site repulsion and inter-site Ising

type antiferromagnetic exchange can be mapped onto an on-site attractive model [89].

The existence of such mappings between attractive and repulsive models also makes

it worthwhile to investigate the ordered states arising in purely attractive models. A

promising avenue for realization of such models is ultracold Fermionic atoms in opti-

cal lattices [90–94]. The standard Hubbard model with both repulsive and attractive

interactions has indeed been realized in these systems. Yet another possibility, which

has so far been demonstrated for repulsive models, is the use of artificial crystals
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where semiconducting quantum dots can be patterned to form a two dimensional

lattice [95].

We analyze the Hamiltonian in Eq. (3.1) by making a mean-field approximation

for the interaction term [96]. In the inter-site attractive term we ignore the same-spin

attraction parts ni↑nj↑ and ni↓nj↓. This can be qualitatively justified for systems

where superconductivity emerges in the vicinity of antiferromagnetism. The antifer-

romagnetic tendency ensures that electrons with opposite spin orientations are more

likely to reside on neighbouring sites as compared to those with same spin orientation.

3.2.2 General Decoupling in the Pairing Channel

We now discuss how a general decoupling of the nearest-neighbour (nn) attractive

interaction allows for possible mixed order parameter solutions. The interaction term

is given by,

Hint = −U
∑
i

ni↑ni↓ − V
∑
〈ij〉

ninj. (3.2)

The Hartree-Fock decoupling in the pairing channel of the first term in Eq. (3.2) is

straightforward, and leads to the replacement ni↑ni↓ −→ [〈ci↓ci↑〉c†i↑c†i↓+〈c†i↑c†i↓〉ci↓ci↑−
〈ci↓ci↑〉〈c†i↑c†i↓〉]. The second term in Eq. (3.2) can be written as,

Hnn
int = −V

∑
i,γ=+x̂,+ŷ

(ni↑ + ni↓)(ni+γ↑ + ni+γ↓). (3.3)

In the above, γ denotes the unit vectors +x̂ and +ŷ on the square lattice. Expanding

further, we obtain four terms corresponding to each i, i+γ bond. These are ni↑ni+γ↑,

ni↓ni+γ↓, ni↑ni+γ↓ and ni↓ni+γ↑. As mentioned earlier, we assume that electrons with

identical spin orientations are less likely to reside on nn sites, and taking an approxi-

mation we drop the ↑↑ and ↓↓ interaction terms. Rearranging the order of c operators,

we can write the remaining terms as,

Hnn
int ≈ −V

∑
i,γ=+x̂,+ŷ

[c†i↑c
†
i+γ↓ci+γ↓ci↑ + c†i+γ↑c

†
i↓ci↓ci+γ↑] (3.4)

Implementing the mean-field decoupling in the pairing channel for the on-site and
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the nn interaction term, we obtain the mean-field Hamiltonian,

HMF = −t
∑
〈ij〉,σ

[
c†iσcjσ +H.c.

]
− U

∑
i

[
∆ic

†
i↑c
†
i↓ +H.c.

]
−V

∑
iγ

[
∆+
i,γc
†
i↑c
†
i+γ↓ + ∆−i,γc

†
i−γ↓c

†
i↑ +H.c.

]
+U

∑
i

|∆i|2 + V
∑
i,γ

[
|∆+

i,γ|2 + |∆−i,γ|2
]
. (3.5)

Note that in order to retain the generality of the decoupling we have introduced two

different pair expectation values for a given nn pair of sites. These expectation values,

∆+
i,γ = 〈ci+γ↓ci↑〉 and ∆−i+γ,γ = 〈ci↓ci+γ↑〉 need not be equal, in principle. Indeed, if we

assume that the pair satisfies antisymmetry under spin exchange, then ∆+
i,γ = ∆−i+γ,γ,

and if the pair satisfies antisymmetry under site-index exchange then ∆+
i,γ = −∆−i+γ,γ.

In most studies a singlet condition on the pairing correlations is imposed and therefore

the possibility of odd parity pairing in this model is left out. Here, we do not impose

this symmetry constraint on our pairing correlations.

Motivated by the fact that large-scale charge inhomogeneities will not be allowed

by long range Coulomb interactions in any real material, we search for uniform den-

sity solutions. Therefore, we focus on the SC phases that respect the translational

symmetry of the Hamiltonian, and assume the above quantum expectation values to

be independent of lattice sites, ∆i ≡ ∆0, ∆+
i,x/y ≡ ∆+

x/y and ∆−i,x/y ≡ ∆−x/y, leading to

five complex-valued mean-field parameters. Given that the model is purely attrac-

tive, possibility of magnetic ordering is ruled out [89, 97]. The charge ordering may

be present at special filling fractions such as half-filling. Furthermore, while on-site

attraction leads to charge ordering at half filling, the inter-site attraction destabilizes

such charge modulated order. Therefore, we have not considered the competition

between charge- and spin-ordering and superconductivity. The competition between

superconductivity and charge ordering has been discussed in the extended model with

on-site attraction and inter-site repulsion [89, 97]. Among the different possibilities

for SC order, we have considered those OPs that are spatially uniform, therefore,

possibilities such as pair density wave or finite momentum pairing have not been

considered. Going over to the Fourier space by using, ciσ = N
−1/2
s

∑
k e
−ik·rickσ and

c†iσ = N
−1/2
s

∑
k e

ik·ric†kσ, Ns being the number of sites, the Hamiltonian can be re-

duced to a 2 × 2 matrix form. The resulting HF-BCS Hamiltonian in the Nambu

spinor notation is,
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HMF =
∑
k

[
c†k↑ c−k↓

] [ h11(k) h12(k)

h21(k) h22(k)

][
ck↑
c†−k↓

]
+

Ns

{
U |∆0|2 + V (|∆+

x |2 + |∆−x |2 + |∆+
y |2 + |∆−y |2)

}
.

(3.6)

The matrix elements in the above equation are explicitly given by,

h11(k) = −2t(cos kx + cos ky)− µ = −h22(k)

h12(k) = −U∆0 − V (∆+
x e
−ikx + ∆−x e

ikx

+∆+
y e
−iky + ∆−y e

iky) = h∗21(k). (3.7)

For a given set {∆} ≡ {∆0,∆
+
x ,∆

−
x ,∆

+
y ,∆

−
y }, we can diagonalize the electronic part

of the Hamiltonian Eq. (3.6) via the Bogoliubov transformations,

[
ck↑
c†−k↓

]
=

[
uk −v∗k
vk u∗k

][
γk0

γ†−k1

]
, (3.8)

where uk and vk are complex numbers satisfying |uk|2 + |vk|2 = 1 for all k, and γ,

γ† are the annihilation and creation operators for Bogoliubov quasiparticles. The

resulting quasiparticle dispersion is given by,

Ek =
√

(−2t(cos kx + cos ky)− µ)2 + ∆2
g,

∆2
g = | − U∆0 − V (∆+

x e
−ikx + ∆−x e

ikx

+∆+
y e
−iky + ∆−y e

iky)|2 (3.9)

Using the above quasiparticle spectrum along with the purely classical terms in the

mean-field Hamiltonian Eq. (3.6), we can compute the total energy E of a general

SC state specified by set {∆}. This is achieved by constructing HF-BCS states as the

vacuum of Bogoliubov quasiparticle for the given set {∆}. Therefore, the problem

now reduces to minimizing the total energy of such HF-BCS states w.r.t. the set {∆}
of pairing correlations. We want to emphasize here that in most previous studies

a particular form of the SC OP is assumed a priori [88]. In contrast, we allow for

different combinations of spatially uniform OPs.
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3.2.3 Minimization scheme

To put our results in proper context, we observe the following relations between

the pair expectation values defined in the previous section (section 3.2.2) and the

commonly used SC OPs.

∆s = ∆0

∆s∗ = (∆+
x + ∆−x + ∆+

y + ∆−y )/4

∆dx2−y2
= (∆+

x + ∆−x −∆+
y −∆−y )/4

∆px = (∆+
x −∆−x )/2

∆py = (∆+
y −∆−y )/2. (3.10)

The s-, p- and d-wave OPs defined above have their usual meaning. ∆s∗ denotes the

OP for the extended s-wave order which arises due to inter-site attraction [98]. It is

easy to see that the form-factors that enter the k-space matrix acquire their typical

pure-singlet or pure-triplet form in the limiting cases. Note that a general set {∆}
may break symmetries of the Hamiltonian Eq. (3.1). Such broken-symmetry states

are indeed allowed at the mean-field level, and therefore to retain the generality of the

discussion within the mean-field approach we have included such broken symmetry

states in our variational set {∆}. In addition to the magnitude of the OPs in the

minimum energy state, we also need to determine the relative phase angles between

different OPs in the mixed states. Therefore, we carry out variational calculations

for energy as a function of relative phase angle between different OPs. We illustrate

the details in Fig. 3.1 (a) where we assume the magnitudes of the order parameters

∆s and ∆s∗ to be finite, keeping all other OPs equal to zero, and compute the total

energy with varying relative phase angle Φ. Variation of E/Ns as a function of Φ for

the state described by OP ∆s + eiΦ∆s∗ is shown in Fig. 3.1 (a). This allows us to

determine the value of the phase angle corresponding to the minimum energy. This

is defined as Φmin for the pair of OPs selected. The variation in Φmin with chemical

potential is shown in the inset in Fig. 3.1 (b). Similarly, we are able to find Φmin for

other choices of OP pairs.

The results are summarized in Fig. 3.1 (b) where we plot the variation in Φmin

for a different pairs of OPs as a function of chemical potential µ. For s-wave and

dx2−y2-wave order, we find that Φ = ±π/2 leads to the minimum energy for any value

of chemical potential µ (see Fig. 3.1 (b)). Similarly, the relative phase angle between

px and py order parameters, when both of them are assumed finite in magnitude, is
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Figure 3.1: (Colour online) (a) Variation of energy per site with change in relative phase
angle Φ between OPs ∆s and ∆s∗ for different values of µ. Angle corre-
sponding to the minimum energy is defined as Φmin. Panel (b) shows Φmin

for different OP pairs, indicated by legends, as a function of chemical poten-
tial. Inset in (b) shows variations in Φmin with chemical potential for OP
pair ∆s and ∆s∗ .

±π/2. The relative angle Φmin vanishes for s and dx2−y2 , and s and px OP pairs.

These results do not depend on the choice of µ values.

The relative angle between s-wave and s∗-wave order parameters shows an interesting

behavior. Φmin is found to evolve with change in µ. For µ = 0, corresponding to the

half-filled band, Φmin = π/2. It decreases monotonically and becomes zero near

µ = −1, which corresponds to n ≈ 0.7 (see inset in Fig. 3.1 (b)). However, we will

see that s and s∗ OPs are found to be finite only in the low density regime. Therefore,

we can safely assume the relative phase between these two OPs to be zero. For most

range of parameters, the relative phase angle between different OP pairs is either 0 or

π/2. The above analysis helps us in reducing the number of variational parameters

used in the minimization scheme by assigning fixed values to these relative phases.

This allows us to perform explicit minimization by discretizing the parameter space

of five real valued variables corresponding to the magnitudes of s-, s∗-, px-, py- and

d-wave OPs.
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3.3 Results and Discussions

3.3.1 Order parameters and phase diagram

We focus our discussion on the variations in U/t and µ for a fixed value of V/t = 4.

Direct minimization is carried out by varying different real-valued OPs and relative

phase factors among them. The density dependence of SC OPs corresponding to

minimum total energy are plotted in Fig. 3.2(a)-(d). For small U , the high-density

regime is dominated by dx2−y2 and px OPs. Both px and py are finite in the inter-

mediate density range. At further lower densities OPs with px, s and s∗ (also called

extended-s) symmetries are finite. Eventually, the low-density regime supports s and

s∗ OPs (see Fig. 3.2(a)-(b)). For larger values of on-site attraction, ∆px and ∆py

remain zero, and instead ∆s∗ and ∆dx2−y2
together with s-wave OP become finite (see

Fig. 3.2(c)). Finally, in the limit of large U , s and extended-s OPs dominates. We

simultaneously track the values of relative phase angles between these OPs in the

minimum energy state, allowing us to describe the specific combination of the mixed

SC OPs. The step-like behavior in the density dependence of OPs is a consequence

of the discretization of the parameter space and should not be misunderstood as a

finite-size effect. For V = 4 and U = 2, the OPs are allowed to vary with an increment

of 0.01 (0.02) for px and py (s, s∗ and dx2−y2). We have ensured that the step-size

used for a given choice of Hamiltonian parameters does not effect the observed trends.

We will further discuss finite-size effects in section III C.

We summarize the results in the form of a n−U phase diagram in Fig. 3.3. Most

notably, a chiral px + ipy order is present in the density range 0.35 < n < 0.55 in

the limit of weaker on-site attraction. Within this interaction regime, px order also

mixes with dx2−y2 and extended s-wave order for different electronic densities. The

possibility of chiral p-wave order in the extended repulsive Hubbard model has been

pointed out within fluctuation exchange approximation [99,100]. The dx2−y2+px order

is particularly stable over a large density regime. This is intriguing as a number of

experiments on cuprates report on the possibility of a secondary unconventional OP

in addition to the dominant dx2−y2 order. The secondary OP is proposed to be either

s-wave or p-wave. Interestingly, phases with dx2−y2+i[s+s∗] and dx2−y2+px OPs reside

next to each other in the density regime 0.6 < n < 1. Moreover, for smaller values of V

we also find a pure dx2−y2 order in the low-doping regime. This will be discussed later

in section III D.. From the angular dependence of the gap function it is easy to see

that some of the OPs break the rotational symmetry of the lattice (see Fig. 3.3(b)-(e)).

Such spontaneously-broken-symmetry states are allowed in our explicit minimization
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Figure 3.2: (Colour online) (a)-(d) The values of various OPs corresponding to the min-
imum energy states as a function of average electronic density n. Results
for representative values of U are shown. The dashed vertical lines in each
plot mark the boundary between qualitatively distinct phases. The results
are obtained for V = 4t. In the minimization procedure the OP values are
discretized in units of 0.01 (0.02) for px and py (s, s∗ and dx2−y2).

approach. Note further that the inversion symmetry is also spontaneously broken

by the mean-field solutions that allow for a mixing of singlet and triplet symmetries.

The mean-field Hamiltonian (3.6) can also be solved via the standard self-consistent

approach [96]. We have checked that various SC states discussed above are also the

self-consistent states. At the mean-field level it is easy to motivate the stability of

the SC states discussed here, against possible charge- and spin-ordering. Inter-site

attraction, V , favour equal charge on neighbouring sites. Given that the SC states

are all charge homogeneous, they will be preferred over any charge modulated state.

Similarly, attractive interactions energetically disfavour magnetic moment formation

and therefore magnetic ordering is not expected to be present in the phase diagram.

We also note that allowing for same-spin pairing interactions can lead to spin-triplet

SC states with Sz = ±1. Such states, However, require population imbalance between

↑ and ↓ electrons and are likely candidates only in the presence of external magnetic

field. Furthermore, charge ordering, as compared to superconductivity, is strongly

suppressed by quenched disorder which is always present in real materials [101]. It
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is important to add that while we discuss the presence of dx2−y2 symmetry of the

OP in the present model, we do not claim the EAHM to be a microscopic model for

cuprates. Indeed, the presence of strong on-site repulsions in cuprates suggest that

t−J−U model is a better candidate for a microscopic model [102–105]. The effect of

antiferromagnetic exchange term in a model with inter-site pairing has been discussed

by R. Micnas and coworkers [106]. They conclude that the inter-site exchange term

favours extended-s or d-wave pairing over the p-wave. It is also worth noting that the

density-density part of the interaction term in the t− J model is of attractive type.

3.3.2 Bulk and edge-state spectra

We now investigate further some of the mixed OP SC phases discussed above. We

begin with the calculation of tunneling density of states (TDOS) in different phases.

Normalized TDOS is defined as,

N(ω) = 1/Ns

∑
k

[
|uk|2δ(ω − Ek) + |vk|2δ(ω + Ek)

]
, (3.11)
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where Ek is the energy dispersion for Bogoliubov quasiparticles and uk measures

electron-like amplitude in the quasiparticle state labeled by wave vector k. TDOS

can be directly probed by tunneling experiments and therefore characterization of

different mixed OP states in terms of TDOS is desirable [107,108].

Mixing of a px component in the dx2−y2 superconductivity completely modifies

the TDOS structure and opens a clean gap much like that present in the simple s-

wave superconductors (see Fig. 3.4 (a)). Indeed, the nodes present in the dx2−y2 gap

function are removed by the presence of i∆px sin kx term. Multiple coherence peaks

in the TDOS are also clearly observed. In fact, it is easy to see why a mixing of

p-wave component is energetically favoured. The system gains energy by pushing the

eigenenergies further away from the chemical potential by opening a clean gap. The

chiral p-wave order and the mixed s+ s∗ + px orders also support a clean gap in the

TDOS (see Fig. 3.4 (b)). The s + s∗ ordering shows the expected TDOS with the

coherence peaks residing right at the gap edge. In the dx2−y2 + i[s + s∗] state the

features corresponding to s-wave and d-wave ordering are present at larger value of

electronic density (see Fig. 3.4 (d)). For the smaller density, the d-wave component

reduces and the TDOS appears s-wave-like. The occurrence of a d + is phase in

extended Hubbard model has also been reported previously [82]. Recent ARPES

data on cuprates is consistent with the presence of a secondary OP that opens a gap

at the nodal points of the pure d-wave OP [109].

We further investigate the nature of various phases in terms of their edge-state

spectra. To this end, we perform calculations on a 20×200 stripe by imposing periodic

boundary conditions only along the y direction and plotting the spectra as a function

of ky. Two of the new phases obtained from our calculations turn out to be trivial as

no edge states are found to appear inside the SC gap (see Fig. 3.5(c)-(d)). The chiral

p-wave superconductor shows the expected non-trivial behaviour wherein counter-

propagating edge states appear in the gap (see Fig. 3.5(b)) [110]. An intriguing

situation occurs for dx2−y2 + px superconductor where pairs of states are present on

each edge (see Fig. 3.5(a)). While the topology of the bulk band will remain trivial

in this case as the states traverse back to their respective original band, the presence

of such mid-gap states will have observable consequences. Indeed, if such a situation

can be realized in a real material, then the surface spectroscopy with voltage bias

smaller than the gap value will have contributions from the edge states. This is in

contrast to the situation where such states are absent, and only Andreev reflection

contributions are observed in tunnelling.
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3.3.3 Finite-size effects and V − n phase diagram

Although the detailed discussion for the phase diagram has been presented for V = 4t,

it is important to discuss the dependence of results on the specific choice of the inter-

site interaction strength. Before we present results for smaller values of V , it is

instructive to discuss the role of lattice sizes used for calculations. In Fig. 3.6 we

show the dependence of OPs on number of lattice sites, Ns, for different values of V .

Since explicit minimization on larger lattices is time consuming, we have made use of

the self-consistent approach for obtaining data on larger lattices. Starting with some

initial values of OP set {∆}, we can calculate different pair correlations using the set

of equations,
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∆0 = 1/Ns

∑
k

ukv
∗
k(2f(Ek)− 1)

∆+
x = 1/Ns

∑
k

eikx ukv
∗
k(2f(Ek)− 1)

∆−x = 1/Ns

∑
k

e−ikx ukv
∗
k(2f(Ek)− 1)

∆+
y = 1/Ns

∑
k

eiky ukv
∗
k(2f(Ek)− 1)

∆−y = 1/Ns

∑
k

e−iky ukv
∗
k(2f(Ek)− 1). (3.12)

In the above, Ek are the eigenvalues, f(Ek) denotes the Fermi function and uk, vk

are the coefficients that appear in the Bogoliubov transformation Eq. (3.8). We

then repeat this procedure of diagonalizing the Hamiltonian for a given set {∆} and

recalculating the set {∆} using Eq. (3.12) until the parameters converge within
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an accuracy limit of 10−6. We have preferred explicit minimization over the above

self-consistent approach for the reason that in a multivariable parameter space self-

consistent solutions may lead to metastable states. However, the availability of results

from explicit minimization guides our choice of initial set {∆} and hence the self-

consistency approach can then be used to obtain results on much larger lattices.

For V = 4 the results obtained on Ns = 162 are representative of thermodynamic-

limit behaviour (see Fig. 3.6 (a)). For smaller values of V , one needs to perform

calculations on progressively larger lattices in order to obtain reliable results. For

example, for V = 0.5 one needs to use Ns ≈ 1002 (see Fig. 3.6 (d)). This restricts

the use of our explicit minimization procedure to V ≥ 1.5. To illustrate further

the point about finite size effects, we obtain results for V = 1.5 using Ns = 322.

As one can anticipate by looking at Fig. 3.6 (c), Ns = 322 should lead to results

representative of the thermodynamic limit. Nevertheless, fluctuations are expected

to be present. We indeed find that while the overall trends for the OPs are well

behaved, considerable fluctuations in the n-dependence are present (see Fig. 3.7).

Comparing the results with those presented in Fig. 3.2 (a), we find that the trends

in terms of OP symmetries are similar. For small density, s- and extended s-wave

OPs are finite while all other OPs remain zero. Near n = 0.3, px + ipy order emerges
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while s+ s∗ disappears. This is followed by the appearance of dx2−y2 + px order near

n = 0.55 and finally pure d-wave order is present for n ≥ 0.7. The trends for U = 1.0

(3.7 (b)) are similar to those just described. The key difference w.r.t. the results for

V = 4 are the following: (i) The s + s∗ + px state is absent, and (ii) a pure dx2−y2

state is present for V = 1.5.

For a comprehensive picture of the type of SC OPs present in the U − V − n pa-
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rameter space, we show V − n phase diagram for U = 1. Most of the interesting

superconducting states appearing in the EAHM are covered within the U − n (Fig.

3.3) and V − n (Fig. 3.8) phase diagrams. Given that we need to perform calcula-

tions on larger lattices for smaller V , we had to further restrict our OP choices for

completing the V − n phase diagram. For V ≥ 1.5 we have used Ns = 322, and the

minimization over the entire parameter space is performed. For smaller values of V

(V ≤ 1.5), we specifically compute energy for the following phases: (i) s + s∗, (ii)

s+ s∗ + px, (iii) px + ipy and (iv) dx2−y2 + px. This variational set covers most of the

non-trivial OPs found in the large V regime. Additionally, all the OPs defined in Eq.

(3.10) are allowed to exist in pure form without mixing with each other. Limiting

the variational set of OPs allows us to perform calculations using Ns = 5122, and

therefore the results can be trusted for smaller values of V . A particularly interesting

question is how a weak inter-site attraction effects the phase diagram of the on-site

attractive model. In the purely on-site attractive model (U 6= 0, V = 0), s-wave SC

order is present at all fillings except at n = 1 where a charge ordered state is degener-

ate with the s-wave SC state. Switching on inter-site attractive term V , we find that

the extended s-wave order is induced leading to the s+ s∗ SC phase. unconventional

SC states begin to appear in the regime where the inter-site scale V dominates over

the on-site term U . In this regime, we recover SC states with s + s∗ + px, px + ipy,

dx2−y2 and dx2−y2 + px symmetries. Note that unlike the repulsive model where U

is the dominant energy scale over V , the hierarchy of these scales may be reversed

in the attractive model. This is easy to see by recalling that the effective attractive

couplings in the EAHM emerge as the sum of two contributions, the bare Coulom-

bic repulsion and, say, the phonon-mediated attraction. If the spatial dependence

of the phonon-mediated attraction happens to be weaker than 1/r, then |V | > |U |
with both U and V being negative is a likely scenario. In fact, repulsive U -attractive

V model can be seen as an extreme case of reversed hierarchy of the EAHM where

the phonon-mediated attraction can overcome the inter-site repulsion while it cannot

overcome the on-site repulsion.

3.3.4 Finite temperature behaviour

It is interesting to also study the finite-temperature evolution of the ground-state

phase diagram. The simplest scenario for the finite temperature behaviour in a mean-

field scheme is that each of the superconducting phases have an associated Tc and a

normal state is obtained for T > Tc. However, within our approach we can perform

the explicit minimization at finite T and investigate into more general possibilities.
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Figure 3.9: (Colour online) Superconducting order parameters as a function of tempera-
ture for U = 2 and V = 4 for some representative values of density.

Indeed, we uncover an interesting possibility of multiple phase transitions. We find

that one superconducting order can disappear and another one can appear upon

raising temperature before a normal non-superconducting state is finally obtained at

high temperature. To demonstrate this, we plot the T -dependence of the SC OPs for

a few representative average electronic densities for V = 4t and U = 2t (see Fig. 3.9).

We find that the dx2−y2 + px state at n ≈ 0.7 gives way to a pure dx2−y2 state, and

finally to a non-superconducting state upon increasing temperature (Fig. 3.9 (a)).

Similarly, px+ ipy state at n ≈ 0.45 melts into a dx2−y2 + s∗+px state at intermediate

temperatures, before leading to a non-superconducting state (Fig. 3.9 (b)). Generally

the p-wave order seems to disappear at lower temperatures leading to a different

intermediate temperature state. The conventional scenario is found for n ≈ 0.2 where

s+ dx2−y2-wave ordering disappears at T/t = 1.2 and a non-superconducting state is

directly obtained. Of course, the TC scales obtained within mean-field theory are not

reliable. However, the feature that one superconducting order disappears and gives

way to another is likely to be robust and can be tested in future studies involving more

sophisticated methods such as the auxiliary field quantum Monte Carlo. Note that in
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our calculations the chemical potential is adjusted to obtain a specific target density

and the full minimization is performed at every trial value of chemical potential.

There are still variations in density of the order of ∼ 0.01 (see inset in panel (d))

which cause some fluctuations in the T -dependence of order parameters. The overall

trends, however, are robust.

3.4 Conclusion

In conclusion, we have shown that the EAHM treated without imposing symmetry

constraints presents an exciting possibility for hosting a variety of SC states with

mixed OP symmetries. Our approach allowed for competition between SC orders of

s- p- and d-wave type. The resulting phase diagram hosts some very interesting SC

phases. Most notable of these are, (i) the chiral p-wave state, (ii) states with mixed

d-wave and p-wave, and with s-wave, extended s-wave and px symmetries, and (iii)

a dx2−y2 + i[s + s∗] SC phase. To the best of our knowledge, the possibility of such

mixed order-parameter phases has not been explored in the EAHM [111]. We should

add that the SC phases obtained in this work are the broken-symmetry solutions of

the mean-field Hamiltonian. Further work is required to test the stability of such

exotic states in treatments of the model that go beyond mean-field. The comprehen-

sive mean-field phase diagrams presented here should serve as a reference for such

future studies. Some experiments on cuprates report the possibility of a mixed s and

d wave order [51], while a possible mixing of a p-wave component with the d-wave

order has been inferred via thermal transport measurements [112]. Experiments on

Sr2RuO4 indicate a chiral px + ipy-wave order. Similarly, p-wave SC OP is consistent

with experiments on Bechgaard salts TMTSF2PF6 and TMTSF2ClO4 [60–64, 113].

Although a microscopic theory of superconductivity in some of these systems is still

awaited, our results suggest that EAHM can serve as the effective model for a num-

ber of such unconventional superconductors. It is particularly interesting to see the

possibility of topologically non-trivial SC states being realized in the EAHM. One of

the promising avenues for experimental realization of such states is in the ultracold

Fermionic atoms trapped in optical lattices [114, 115]. Given the presence of vari-

ous non-trivial SC phases, a number of interesting questions can be further asked

for the EAHM. Indeed, the effect of non-magnetic and magnetic impurities, influ-

ence of Zeeman and Peierls’s terms arising from an external magnetic field, effects of

next-nearest hopping, etc. are some of the problems that can be readily addressed

using the present model. The model can be made material specific by estimating the

values of effective on-site and nn electron-electron attractions. Such model studies
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can help in a microscopic characterization of various mixed-symmetry states and can

be useful in improving our understanding of the rich experimental data available on

unconventional superconductors.
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Chapter 4

Effect of Zeeman coupling on

superconducting phases with equal

and opposite spin pairing

In the previous chapter we have shown the existence of unusual superconducting

states in the extended attractive Hubbard model (EAHM). However, for simplicity

we ignored equal spin pairing terms in our analysis. The present chapter is devoted

to the study of the EAHM including the equal spin pairing terms. The physical

motivation is to understand the influence of Zeeman coupling to an external magnetic

field on the nature of superconducting order parameters.

4.1 Introduction

Superconducting wavefunctions with spin-singlet and spin-triplet pairing symmetry

are well-known [15,33,43,116–118]. It is interesting to note that pairing between ↑ spin

and ↓ spin electrons can lead to a more general scenario where mixed-parity states can

also become stable. The functional form of the superconducting term ∆↑↓(k) is such

that, depending on the values of self-consistent pairing correlations (∆
+(−)
δ ) it can take

either the form of a singlet pair,
1√
2

(|↑↓〉 − |↓↑〉), or that of a |Sz = 0〉 triplet pair,

1√
2

(|↑↓〉 + |↓↑〉) or even a mixed-parity state. On the other hand, superconducting

terms ∆↑↑(k) and ∆↓↓(k) represent equal spin-pairing states (ESP) |Sz = 1〉 ≡ |↑↑〉
and |Sz = −1〉 ≡ |↓↓〉 respectively. The purpose of the present chapter is two-fold.

Firstly, we validate the assumption of ignoring ↑↑ and ↓↓ pairing in the absence of

a magnetic field. Secondly, we study the effect of an external magnetic field in the

61
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form of Zeeman coupling on the stability of triplet superconducting phases.

4.2 Model and Method

The extended attractive Hubbard model (EAHM) was already described in chapter

2. We had studied a simplified version of EAHM in chapter 3. In the present chapter

we take up the task of studying the full EAHM with Zeeman coupling to an external

magnetic field. The model is described by the Hamiltonian:

HMF =
∑
k

[
ε↑(k)c†k↑ck↑ + ε↓(k)c†k↓ck↓

]
+
∑
k

[
∆↑↓(k)c†k↑c

†
−k↓ +H.c.

]
+
∑
k

[
∆↑↑(k)c†k↑c

†
−k↑ +H.c.

]
+
∑
k

[
∆↓↓(k)c†k↓c

†
−k↓ +H.c.

]
+NsU |∆|2

+NsV
∑
δ

[
|∆+

δ |2 + |∆−δ |2 + |∆↑δ|2 + |∆↓δ|2
]

(4.1)

Where,

ε↑(k) = −2t(cos(kx) + cos(ky))− µ−Bz

ε↓(k) = −2t(cos(kx) + cos(ky))− µ+Bz

∆↑↓(k) = −U∆− V
∑
δ

[
∆+
δ e
−i(k·δ) + ∆−δ e

i(k·δ)
]

∆↑↑(k) = −V
∑
δ

∆↑δe
−i(k·δ)

∆↓↓(k) = −V
∑
δ

∆↓δe
−i(k·δ) (4.2)

In the above, we continue to follow the standard notation introduced in the previ-

ous chapters. Following the standard mean-field decoupling scheme in the pairing

channel discussed in the chapter 2, and imposing the spatial uniformity on the super-

conducting solutions, the mean field Hamiltonian HMF (4.1) can be written in terms

of Nambu spinors Ψk as:
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HMF =
∑
k

Ψ†kHBdG(k)Ψk (4.3)

Where, Nambu spinor Ψk is a column vector of the form, Ψk = (ck↑ c†−k↓ ck↓ c†−k↑)

and HBdG(k) is a 4× 4 Hamiltonian matrix of the form:

HBdG(k) =



ε↑(k) ∆↑↓(k) 0 ∆↑↑s (k)

(∆↑↓(k))∗ −ε↓(−k) (∆↓↓s (k))∗ 0

0 ∆↓↓s (k) ε↓(k) −(∆↑↓(−k))

(∆↑↑s (k))∗ 0 −(∆↑↓(−k))∗ −ε↑(−k)


(4.4)

HBdG(k) is known as the mean field Bogoliubov-de Gennes Hamiltonian. We can

diagonalize the BdG Hamiltonian via the canonical transformations:

ck↑ =
∑
k,α

uαk↑γkα + (vαk↑)
∗γ†−kα

ck↓ =
∑
k,α

uαk↓γkα + (vαk↓)
∗γ†−kα (4.5)

such that the BdG Hamiltonian acquires a diagonal form,

HMF = Eg +
∑
kα

Ekαγ
†
kαγkα (4.6)

where {Ekα} is the set of positive eigenvalues and γ†kα(γkα) creates(annihilates) a

Bogoliubov-quasiparticle with momentum k and pseudospin α. The BdG quasipar-

ticles describe elementary excitations of BCS condensate, Eg being the ground state

energy of the condensate.
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d-vector formalism

In equation (4.3), if we rearrange the structure of the Nambu spinors in the form:

Ψk = (ck↑ ck↓ c†−k↑ c†−k↓), the resulting BdG matrix becomes,

HBdG(k) =



ε↑(k) 0 ∆↑↑s (k) ∆↑↓(k)

0 ε↓(k) ∆↓↑(k) ∆↓↓s (k)

(∆↑↑s (k))∗ (∆↓↑(k))∗ −ε↑(−k) 0

(∆↑↓(k))∗ (∆↓↓s (k))∗ 0 −ε↓(−k)


(4.7)

Where, we used the identity: ∆↓↑(k) = −∆↑↓(−k). Now the 2 × 2 matrix of top

right corner of the above 4× 4 matrix describes the mean field gap function:

∆̂k =

∆↑↑s (k) ∆↑↓(k)

∆↓↑(k) ∆↓↓s (k)

 . (4.8)

The spin dependence of the pairing motivates the use of a general 2×2 matrix for-

malism for ∆̂k. The matrix elements correspond to the spin state of the electrons that

constitute the Cooper pair. In this formalism, a singlet superconductor is described

by setting ∆↑↑(k) = ∆↓↓(k) = 0 and ∆↑↓(k) = −∆↓↑(k) = ∆s, while for the triplet

case, ∆↑↓(k) = ∆↓↑(k) = ∆0. For singlet state ∆̂k can be written as : ∆̂k = d0(k)χ̂0,

where the quantity

χ̂0 = iσ̂2 =

(
0 1

−1 0

)
(4.9)

corresponds to the singlet wave function 1√
2
[|↑〉|↓〉 − |↓〉|↑〉]. The factor χ̂0 is an-

tisymmetric upon interchanging spin variables of the order parameter while d0(k)

is symmetric upon interchanging orbital variables of the order parameter, that is,

d0(−k) = d0(k).

For the triplet pairing state, the total spin is S = 1 for the two paired electrons

and accordingly there are three spin wavefunctions. Therefore, the pairing amplitude

for each of these spin states can be different. The order parameter can then be written
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in the form: ∆̂k = d(k) · χ̂. where the complex vector d measures the amplitude of

the order parameter and the matrices

χ̂1 = iσ̂1σ̂2 =

(
−1 0

0 1

)
,

χ̂2 = iσ̂2σ̂2 =

(
i 0

0 i

)
, and

χ̂3 = iσ̂3σ̂2 =

(
0 1

1 0

)
(4.10)

correspond to the following spin wavefunctions:

χ̂1 −→
−1√

2
[|↑〉|↑〉 − |↓〉|↓〉]

χ̂2 −→
−1√

2
[|↑〉|↑〉+ |↓〉|↓〉]

χ̂3 −→
−1√

2
[|↑〉|↓〉+ |↓〉|↑〉] (4.11)

Now all three of these wavefunctions are symmetric upon interchanging the spin

indices. So we must have d(−k) = −d(k).

4.3 Determination of Relative Phase Angle between

different Pairing Correlations

Before we discuss the competition among different superconducting states, we note the

possibility of obtaining different triplet states from different combinations of pairing

mean field parameters.

Triplet combinations from ∆↑↓(k):

1. px state: ∆+
x = −∆−x = C; ∆+

y = ∆−y = 0 (C is some complex number)

2. px ± ipy state : ∆+
x = −∆−x = C; ∆+

y = −∆−y = iC

In general, px and py can be of the form: px + eiθpy. With the help of energetics and

self-consistency we have checked that θ = π
2
(−π

2
), i.e. it takes the form px ± ipy. So
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−6.0
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〈E〉

∆↑x = 0.5,∆↑y = 0.5eiΦ1

∆↓x = 0.5eiΦ2 ,∆↓y = 0.5ei(Φ1+Φ2)

Figure 4.1: Variation of ground state average energy 〈E〉 with relative phase angle Φ1 at
zero magnetic field for the parameter values U = 1,V = 4 and µ = 0, where
we chose ∆↑x = 0.5,∆↑y = 0.5eiΦ1 ,∆↓x = 0.5eiΦ2 and ∆↓y = 0.5ei(Φ1+Φ2). The
variation shown here is independent of the choice of µ, t and B.

the phase relations among ∆+
x ,∆

−
x ,∆

+
y and ∆−y is fixed. This is ensured by energetics

checked through numerical simulations.

Triplet combinations from ∆↑↑(k) and ∆↓↓(k) :

1. ∆↑↑ = 2iV
[
∆↑x sin(kx) + ∆↑y sin(ky)

]
2. ∆↓↓ = 2iV

[
∆↓x sin(kx) + ∆↓y sin(ky)

]
Again by comparing energies we find the phase relations between ∆↑x and ∆↑y, ∆↑y =

eiΦ1∆↑x, and ∆↓y = eiΦ1∆↓x. We find that Φ1 = π
2

gives us the solution corresponding

to the minimum average energy 〈E〉 (Fig.4.1). These phase relations reduce our

parameter space considerably. Though these relations are checked on the basis of mere

energetics, we also checked the validity of these relations in self-consistent solutions.

We do not find a similar phase relation between ∆↑↑(k) and ∆↓↓(k).
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Figure 4.2: (a)-(d) Variation of average energy 〈E〉 corresponding to three triplet states
with hopping amplitude t at zero temperature for different magnitudes of
magnetic field B ((a) Bz = 0, (b) Bz = 0.2, (c) Bz = 0.5 and (d) Bz = 2.0).

.

4.4 Competition among the different triplet states

In this section we compare the energies of the three triplet states: |Sz = 0〉 ≡(
1√
2
(| ↑↓〉+ | ↓↑〉)

)
, |Sz = 1〉 ≡ | ↑↑〉 and |Sz = −1〉 ≡ | ↓↓〉. The expectation is

that all three states |Sz = 0〉,|Sz = 1〉 and |Sz = −1〉 are degenerate in the absence of

magnetic field. Furthermore, equal spin pairing states (ESP) |Sz = 1〉 and |Sz = −1〉
will become lower in energy in the presence of a magnetic field. In our formulation

singlet and |Sz = 0〉 triplet component enter into the hamiltonian through the super-

conducting pairing correlation ∆↑↓(k) and |Sz = 1〉, |Sz = −1〉 triplet contributions

enter through the triplet superconducting correlations ∆↑↑(k) and ∆↓↓(k).

We conclude this section with Fig.(4.2) and Fig.(4.3). In Fig.(4.2) we plot the

variation of average system energy corresponding to all possible triplet states (both

OSP and ESP) with increasing amplitude of nearest-neighbor hopping parameter t.

As we focus on the energies of the triplet states, we pick a specific point in the

parameter space (U = 0, V = 1.8, µ = −1.5) where we found pure-triplet (px ± ipy



68
4. EFFECT OF ZEEMAN COUPLING ON SUPERCONDUCTING PHASES WITH EQUAL AND OPPOSITE SPIN

PAIRING

type) state being stabilized in our previous study. As the interaction strength V is

kept fixed while increasing nearest-neighbor hopping amplitude t, effectively we are

moving from a strong-coupling (BEC) limit to a weak-coupling (BCS) limit.

0 2 4 6

Bz

−14

−12

−10

−8

−6

〈E〉

(a) t = 0

↑↓
↑↑
↓↓

0 2 4 6

Bz

(b) t = 1

Figure 4.3: Variation of energy for the three triplet states with Bz, for (a) t = 0 and (b)
t = 1.

In the strong-coupling limit, where the electron-pairs are tightly bound, we can ap-

propriately apply the well-known physics of spin-singlet and spin-triplet pairing to

the spin degrees of freedom associated with the electron-pairs. In this limit, absence

of magnetic field leads to degenerate triplet states. In fact, absence of magnetic field

provides the freedom to transform ESP states into specific OSP states, via a suitable

choice of quantization axis. In the presence of a magnetic field this symmetry is broken

and therefore the degeneracy is lifted. In weak-coupling limit the system gains energy

via de-localization of electrons and characterization of different triplet states in terms

of local spin operators is not valid. We use the phase-lock between different pairing

correlations obtained in the previous section. This reduces the parameter space signif-

icantly and gives us the freedom to use only magnitudes of different ∆s. In Fig.(4.2.a),

at t = 0, we choose these magnitudes in a manner so that all the triplet states (both

OSP and ESP) remain degenerate. With the increase of nn hopping amplitude t we

note that the OSP state (↑↓ in figure) becomes energetically favourable. At any finite

value of Zeeman-coupling ↑↑-type ESP state remain energetically favourable, while

the energy of ↓↓-type ESP state and OSP state behave differently in different coupling

regimes. At moderate values of Zeeman-coupling system prefers OSP state to ↓↓-type

ESP state in both weak and strong coupling limits (Fig.4.2.(b)-(c)). At a larger value

of Zeeman-coupling OSP state is completely disfavoured in the weak-coupling (BCS)
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limit (Fig.4.2.(d)). In fact, one should take a note of the fact that this particular ob-

servation is validated by self-consistent solutions we find in our next study. Fig.(4.3)

completes this particular study, as it captures the variation of energy of the afore-

mentioned triplet states with increasing values of Zeeman-coupling in the two limiting

cases (t = 0 and t = 1). At strong-coupling (t = 0) limit, OSP state is of lower energy

compared to ↓↓-type ESP state below a critical Zeeman-coupling (Bz ≈ 2). Beyond

such critical value of Zeeman-coupling OSP state becomes completely disfavoured en-

ergetically with respect to the ESP states. On the other hand, at weak-coupling limit

(t = 1), energy of OSP state remains comparable with ↓↓-type ESP state at moder-

ate values of Zeeman-coupling, and eventually becomes energetically disfavoured at

higher values of Zeeman-coupling. On one hand this study provides us with the idea

of how OSP and ESP states behave at two different coupling regimes. On the other

hand, it provides us an insight into the nature of triplet states likely to be stabilized

at different values of Zeeman-coupling.

4.5 Ground State Phase Diagrams

In the previous study we explored the possibility of stabilizing OSP superconducting

solutions in the framework of Extended attractive Hubbard model defined on a square

lattice in the absence of a magnetic field. The results of the previous study was

based on the set of order parameters {∆} = { ∆s,∆s∗ ,∆dx2−y2
∆px ,∆py }, which were

obtained using standard definition of superconducting OPs, defined in literature, from

the original set of pairing correlations { ∆,∆+
δ ,∆

−
δ }. Note that δ index actually

defines unit vectors δ = x̂, ŷ along two independent directions on a square lattice. So

{ ∆,∆+
δ ,∆

−
δ } is actually a shorthand notation for { ∆,∆+

x ,∆
+
y ,∆

−
x ,∆

−
y }.

In this study we also include the possibility of the ESP-type superconducting

solutions along with OSP-type solutions. Thus our new set of pairing correlations

include four more terms, namely ∆↑x, ∆↑y, ∆↓x, and ∆↓y. So, our new set of order

parameters becomes

{∆} =

OSP︷ ︸︸ ︷
{∆, ∆+

δ , ∆−δ ,

ESP︷ ︸︸ ︷
∆↑δ , ∆↓δ}, (4.12)

where, again we have used a shorthand notation as explained above. Note that, in

Eq.(4.12), we have grouped the pairing correlations in two sets, namely OSP and

ESP. The OSP group contains pairing correlations (∆,∆+
δ ,∆−δ ) that allow the OSP-



70
4. EFFECT OF ZEEMAN COUPLING ON SUPERCONDUCTING PHASES WITH EQUAL AND OPPOSITE SPIN

PAIRING

type triplet states to exist, while the ESP group contains pairing correlations (∆↑δ ,∆
↓
δ)

that can give rise to ESP-type triplet states. We follow an unrestricted approach

where OSP group of pairing correlations are allowed to take such forms where they

can make the singlet or the OSP-type triplet or a mix of them to be stabilized in

different parameter regimes. On the other hand, ESP group of pairing correlations

allow only ESP-type triplet states to be stabilized.

Having defined our order parameters in the above manner, we set out to study

the variation of magnitudes of these order parameters with varying chemical potential

µ. Average electron density per site, 〈n〉, is calculated for each value of µ. Thus we

try to plot magnitudes of the order parameters, defined in Eq.(4.12), with changing

〈n〉. In the self-consistent approach, if we start with different initial values of these

{∆}, we find individual magnitudes of the converged solutions to be different for

different initial configurations. This prevents us to plot a smooth variation of these

OPs with 〈n〉. In the absence of Zeeman coupling this is quite expected. As in the

absence of Zeeman coupling, there is no fixed quantization axis present in the system,

possible OSP and ESP-type triplet states can form different linear combinations of

corresponding pairing correlations, leaving us with a degenerate set of solutions for

each value of µ. In this case the d-vector formalism, defined in the section 4.2,

comes to our rescue. We find magnitudes of d0(k) and d(k), averaged over the whole

Brillouin zone, to be the best suited order parameters for the singlet and the triplet

states in this scenario. Thus we define our singlet and triplet order parameters in the

following way:

∆SP =
1

Ns

∑
k

|d0(k)| and ∆TP =
1

Ns

∑
k

|d(k)| (4.13)

Using the order parameters, the way it is defined in Eq.(4.13), we study the varia-

tion of these order parameters with average electron density per site 〈n〉. In Fig.(4.4)

we plot the variation of singlet order parameter ∆SP and triplet order parameter ∆TP

with 〈n〉 for different values of inter-site attraction V . We keep on-site attraction at a

fixed value (U = t), as it is the inter-site attraction V that plays an important role in

stabilizing different unconventional superconducting orders. When inter-site attrac-

tion V is small (V = 0.4t) compared to on-site attraction U , it is the singlet phase

that occupies the whole density region (Fig.(4.4).(a)). At V = 1.6t, singlet phase oc-

curs both at lower density region and near half-filling (Fig.(4.4).(b)). Though orbital

information of the order parameter is kept hidden, it’s easy to suggest that the singlet

phase near half-filling is dx2−y2 type, while the singlet phase near low-density region is
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Figure 4.4: Variation of singlet (∆SP ) and triplet (∆TP ) OP magnitudes with electron
density 〈n〉 at zero temperature for onsite interaction U = 1 and inter-site
interaction strength: (a) V = 0.4t, (b) V = 1.6t, (c) V = 3.0t and (d)
V = 4.0t. The color in the background indicates the nature of the SC order
as, red: pure-singlet, green: pure-triplet and blue: mixed parity.

of s+s∗ type. Pure triplet phase occurs near quarter-filling, while singlet-triplet mixed

parity phase occurs between pure triplet phase and singlet phase of dx2−y2 type. It is

important to note that pure-dx2−y2 type singlet phase occurs at low-V region, when

V is still larger than on-site interaction U . At higher value of inter-site attraction

(V = 3t), pure-dx2−y2 type singlet phase vanishes (Fig.(4.4).(c)), while singlet-triplet

mixed phase occupies the corresponding density region (near half-filling). At V = 3t

a small window of singlet-triplet mixed phase occurs between s+ s∗ type singlet and

pure triplet phase. If we increase V further (V = 4t), most of the density region is

occupied by dominant singlet-triplet mixed phase, while s+s∗ type singlet phase still

occurs at low density region (Fig.(4.4).(d)).

This variation of order parameters with average electron density motivates us

to draw a V -〈n〉 ground state phase diagram in the absence of a magnetic field
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Figure 4.5: V -n ground state phase diagram at Bz = 0, U = t, color coding is consistent
with Fig.(4.4).

(Fig.(4.5)). We keep the on-site attractive interaction strength U at a fixed value

(U = t), for the reason mentioned before. We notice that when the inter-site inter-

action V is less than the on-site interaction, i.e. V < t, the whole density region is

occupied by the pure singlet phase (red in color). This is expected as a dominant

on-site attraction is known to stabilize singlet s-wave SC order. While U is stabilizing

singlet s-wave SC order, V is also playing an important role in stabilizing singlet s∗

and dx2−y2 SC orders in this region along with s-wave. When the lower density region

prefers singlet s and s∗ SC orders to other phases, near half-filling it is the singlet

dx2−y2-wave that prevails. As inter-site interaction V becomes larger compared to on-

site interaction U , it not only stabilizes singlet s∗ and dx2−y2 SC orders, it also helps

pure triplet and mixed-parity phases to get stabilized at different density regimes.

The pure triplet phase (green in color) occurs in a delta-shaped region near quarter

filling (0.4 ≤ 〈n〉 ≤ 0.6), when the inter-site attraction V is higher than the on-site at-

traction U but not as large as V = 4t. With V getting larger, the mixed-parity (blue

in color) phase becomes more stable, specially in the higher density region. It’s inter-

esting to note that dx2−y2-type singlet phase is prone to get stabilized near half-filling

region and pure triplet phase has a tendency to get stabilized near quarter-filling. But

depending on the strength of inter-site interaction the system gains energy by stabi-

lizing a new mixed-parity (possibly d+ p-type) state, near the higher density region.
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Figure 4.6: Variation of singlet (∆SP ) and triplet (∆TP ) OP magnitudes with tempera-
ture in the absence of Zeeman-coupling for on-site interaction U = t, inter-
site interaction V = 3t, and average electron density: (a) 〈n〉 = 1.0 and
(b) 〈n〉 = 0.44. Color coding in the background is consistent with Fig.(4.4).
Dark red in the background represents non-superconducting region.

It’s also important to note that, in the absence of a magnetic field OSP-type triplet

states are likely to be stabilized. Presence of dx2−y2-type SC order in mixed-parity

state indicates that pairing between opposite spin still survives. This will not be the

case, as we will see in section 4.7, when Zeeman-coupling to an external magnetic

field will be considered.

4.6 Finite Temperature Study

After exploring the stability of singlet, triplet and mixed-parity states in the ground

state of the EAHM on a square lattice, we intend to study the behavior of the cor-

responding SC states at finite temperatures. General consensus is that thermal exci-

tations destroy superconductivity. So the expectation is that the magnitudes of the

superconducting order parameters, defined in our system, will decrease and eventu-

ally vanish when temperature is increased beyond a critical value. It is well-known

that beyond this critical temperature, Tc, superconductors make a transition from

superconducting state to the normal state. As we limit ourselves to the framework of

mean-field theory, it is not our aim to infer about the specific values of Tc we obtain

in our calculations. We rather intend to study how different SC orders react to the

onset of finite temperature.

In Fig.(4.6) we plot the variation of singlet (∆SP ) and triplet (∆TP ) order pa-

rameter with temperature for two different points in parameter space taken from the
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Figure 4.7: T -〈n〉 phase diagram, in the absence of a magnetic field, at U = t and V = 3t.
Dark red represents non-superconducting region, while the rest of the color
coding is consistent with Fig.(4.4).

ground state V -〈n〉 phase diagram. In Fig.(4.6.(a)) we start with a mixed-parity state

exactly at half-filling (〈n〉 = 1). While the red dashed line represents the singlet order

parameter (∆SP ), the green dotted line represents triplet order parameter (∆TP ). As

temperature is increased, the triplet order parameter starts to fall off and around

T ≈ 0.38 it vanishes completely. Most interestingly, the singlet order parameter

∆SP remains almost constant while ∆TP falls off. It seems the dx2−y2 type singlet

remains protected as long as the triplet order parameter is finite. At T ≈ 0.38 the

system makes a transition from a mixed-parity SC state to a pure dx2−y2 type sin-

glet superconducting state. If temperature is increased further ∆SP starts to fall off

and it completely vanishes at T ≈ 0.68. Thus Fig.(4.6.(a)) depicts how interestingly

the system makes a transition from a mixed-parity superconducting state to a pure

singlet superconducting state before making a transition to a non-superconducting

state. In Fig.(4.6.(b)), we start with a different point of the parameter space, again

taken from the ground state V -〈n〉 phase diagram. In this case our zero tempera-

ture initial choice is at density 〈n〉 = 0.44, where we find pure triplet state being

stable. Notably with the increase of temperature the triplet order parameter ∆TP

falls off exactly the way it did for the previous case and the temperature where ∆TP

completely vanishes is exactly same as the previous case, i.e., T ≈ 0.38. But in this
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Figure 4.8: V -n ground state phase diagram at finite magnetic field,Bz = 0.1t and U = t.
Dark red represents the non-superconducting region and the white represents
phase separation as inferred from 〈n〉 vs. µ plots in Fig.(4.9).

case the triplet SC state makes a direct transition to non-superconducting state. In

order to summarize these results we draw a T -〈n〉 phase diagram to complete the

picture of the finite temperature effects (Fig.(4.7)). In the T -〈n〉 phase diagram we

find, in general, every superconducting phases at zero temperature (x-axis) makes a

transition from superconducting to non-superconducting phase when temperature is

increased. While the transition temperature for singlet phase takes a dome-shaped

feature as a function of density, for triplet and mixed-parity states the transition

temperature does not have such sharp feature with varying density. As discussed

earlier, we find four different sectors of such transition. In three sectors the system

makes a direct transition from superconducting state to non-superconducting state

retaining the specific form of pairing symmetry, while the mixed-parity state in the

density region 0.5 ≤ 〈n〉 ≤ 1.0 makes a transition to singlet superconducting state

before making a transition to non-superconducting state.

4.7 Effect of Zeeman Coupling

After validating our results for zero temperature and finite temperature in the ab-

sence of a magnetic field, we intend to study the effect of a magnetic field on the
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Figure 4.9: Variation of average electron density 〈n〉 with chemical potential µ for, (a)
Bz = 0 and Bz = 0.1t. Note the discontinuity in (b) signifies the phase
separation.

superconducting phases we found in different regimes of the parameter space. We

limit our study to the effect of Zeeman-coupling to an external magnetic field. Thus

we ignore the effect of an external magnetic field on orbital degrees of freedom and

confine ourselves to study the effect of a magnetic field on the spin degrees of free-

dom only. An in-plane magnetic field serves our purpose. Motivated by the zero

temperature V -〈n〉 phase diagram (Fig.(4.5)), we drew in the absence of a magnetic

field, we take interest in knowing how that V -〈n〉 phase diagram changes with the

onset of a Zeeman field. In Fig.(4.8) we draw a similar phase diagram, but in the

presence of a magnetic field, Bz = 0.1t. The first thing we notice is the appearance

of a non-superconducting region (dark red in color) in the phase diagram, which is

quite expected.

From the ground state V -〈n〉 phase diagram in the absence of a magnetic field

(Fig.(4.5)), we notice that when inter-site interaction is less than the on-site interac-

tion the whole density region is occupied by singlet superconducting phase. When

the Zeeman field is switched on and the strength of the Zeeman field is maintained at

Bz = 0.1t, it is strong enough to destroy superconductivity when V is approximately

less than 0.8t. So any superconducting phase occuring below V ≈ 0.8t is destroyed

by a Zeeman field of strength Bz = 0.1t. In the absence of a magnetic field, there

is a pure dx2−y2 type singlet phase, which is stable near half-filling. It appears that

presence of an external magnetic field of strength Bz = 0.1t, destroys such pure dx2−y2

type superconducting phase, as for any strength of V (within the scale provided in
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Figure 4.10: Bz-n Phase Diagram at zero temperature, V = 2t, U = t,light red de-
fines the singlet region,light violet defines the singlet-triplet mixed phase,
the light green defines the pure triplet phase, dark red defines the non-
superconducting region.

Fig.(4.8)) only mixed-parity state gets stabilized. Most interestingly, the pure triplet

superconducting phase appears to be enhanced by the onset of a magnetic field. The

region, where pure triplet superconducting phase is stabilized in V -〈n〉 phase diagram,

gets larger in presence of the Zeeman-coupling. Another important aspect we notice

is that there is a region of phase separation appearing between the pure singlet phase

and the pure triplet phase when V is appropriately greater than 2t.

To prove this aspect of phase separation, we draw a variation of average elec-

tron density per site, 〈n〉, with the chemical potential µ at two values of Zeeman-

coupling,(a) Bz = 0 and (b) Bz = 0.1t (Fig.(4.9)). For the purpose of the above-

mentioned illustration we keep the on-site interaction at U = t, while the inter-site

interaction is kept fixed at V = 4t. While in the absence of a Zeeman-coupling we

see a continuous variation of 〈n〉 with µ, in the presence of a Zeeman-coupling we

definitely notice a jump in the electron density at µ ≈ −2.5.The jump in the density

is of the order δ〈n〉 ≈ 0.1, at V = 4t (Fig.(4.8)).

To completely understand the effect of Zeeman-coupling on the superconducting

phases, we further draw a zero temperature Bz-〈n〉 phase diagram at U = t and

V = 2t (Fig.(4.10)). At Bz = 0, U = t and V = 2t, singlet, triplet and mixed-parity
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Figure 4.11: Bz-T Phase Diagram at U = t and V = 3t. Dark red represents non-
superconducting region, while the rest of the color coding is consistent with
Fig.(4.4).

superconducting phases occupy different sectors of density region, as observed in the

ground state V -〈n〉 phase diagram in the absence of the Zeeman-coupling to an exter-

nal magnetic field. As the strength of the magnetic field is increased it appears that

the pure triplet superconducting state becomes favourable. In fact, the pure singlet

superconducting phase disappears from the whole density region when the strength

of the magnetic field becomes approximately greater than 0.23t, while the mixed-

parity state completely disappears from the whole density region when Bz becomes

approximately larger than 0.4t. Eventually at Bz > 0.4t (approximately) only pure

triplet superconducting phase survives throughout the whole density region. Though

we must take a note of the fact that a non-superconducting region (dark red in color)

prevails over the other phases at very low electron densities. The information we

gather from this study is of two-fold nature. Firstly, it is clear that Zeeman-coupling

to an external magnetic field at low strength favours pure triplet superconductivity.

Secondly, the disappearance of pure singlet and mixed-parity state indicates the pos-

sibility of disappearance of OSP type superconducting states and appearance of ESP

type superconducting states beyond certain strength of the external magnetic field.

As OSP type states give rise to singlet states like s,s∗ and dx2−y2 etc., and ESP type

states give rise to pure triplet superconducting phases, the above-mentioned behavior
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Figure 4.12: Variation of different quantities related to OPs or d-vector formalism, with
average electron density per site 〈n〉 to characterize different superconduct-
ing phases. The entities on different plots are: (a) ESP pairing correlations

∆↑δ and ∆↑δ , (b) n↑ and n↓, (c) magnitude of non-unitarity of phases (|q|),
(d) magnitude of broken time reversal symmetry (TR), (e) relative phase

angle between ∆↑x and ∆↓x, (f) relative phase angle between ∆↑y and ∆↓y,
(g) relative phase angle between ∆↑x and ∆↑y, (h) relative phase angle be-

tween ∆↓x and ∆↓y, (i) three components of d-vector, (j) x and y components
of OSP pairing correlations, (k) magnitude of singlet order parameters in
terms of s, s∗ and dx2−y2-wave components, and (l) singlet and triplet order
parameters in terms of |d0| and |d| averaged over the whole Brillouin zone.

is well-explained. We conclude our study of the effect of Zeeman-coupling on different

superconducting orders by looking at the effect of Zeeman-coupling at finite temper-

atures. We plot a Bz-T phase diagram to describe these effects at a specific point of

the parameter space, namely U = 1, V = 3 and µ = 0 (Fig.(4.11)).

4.8 Characterization of Phases

The motivation of this chapter has been the study of different superconducting order

parameters in the presence of Zeeman coupling to an external magnetic field. So

far we have classified our superconducting states in terms opposite spin pairing and
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equal spin pairing states, giving rise to pure singlet, pure triplet and mixed-parity

superconducting states in the form of stabilized solutions. While, the main classi-

fication is done based on the nature of the spin state of the system we do mention

different pairing symmetries like s-wave, s∗-wave, px + ipy-wave and dx2−y2-wave to

define the nature of the orbital part of the gap function. In case of pure singlet or

pure triplet phase the nature of the orbital part can be easily understood, while for

mixed-parity states such separation does not exist. In Fig.(4.12) we make an effort

to study different entities related to the superconducting order parameters at zero

temperature with varying average electron density per site 〈n〉. All the entities are

plotted for the following set of parameter values: Bz = 0.1t, U = t and V = 2t. In

Fig.(4.12.(l)) we plot the singlet and triplet order parameters as defined previously in

this chapter. Clearly we observe three different sectors in the whole density profile,

pure singlet at lower density region, pure triplet near quarter filling, and mixed-parity

solution around half filling. In Fig.(4.12.(k)) we plot the magnitudes of different com-

ponents of singlet order parameter in terms of s, s∗ or sss and dx2−y2-wave pairing

symmetries, which describes the orbital part of the gap function. This plot confirms

the existence of s and s∗ type singlet superconducting state at lower densities, while

dx2−y2 type singlet state occurs near half filling. Though in this case, it is a mixed

parity state with dx2−y2 component singlet. Fig.(4.12.(a)) describes the variation of

ESP type pairing correlations with average electron density. We observe that in the

pure triplet state ∆↑x and ∆↑y become equal in magnitude. Similarly magnitudes of

∆↓x and ∆↓y also become equal, while ∆↑δ and ∆↓δ acquire different values due to the

Zeeman coupling. This relation among the triplet ESP correlations appears to be

different in the presence of dominant dx2−y2 singlet component near half filling. In

Fig.(4.12.(b)) spin-resolved average electron densities are plotted. In the pure triplet

region we observe the possibility of the formation of an effective magnetic moment.

Fig.(4.12.(c)) tells us that the gap function is non-unitary in nature when the triplet

order parameter is finite. Fig.(4.12.(c)) describes the amount of non-unitarity of the

gap function. Time reversal symmetry is broken for the same state (Fig.(4.12.(d))).

2nd row of plots describes the relative phase angle between different pairing correla-

tion as discussed in section 4.3. And these results from self-consistent calculations

proves the prediction we made via energetics in section 4.3.

4.9 Conclusion

In this chapter we have studied the stability of spatially homogeneous superconduct-

ing solutions of the extended attractive Hubbard model including the possibility of
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equal spin pairing correlations. Inclusion of equal spin pairing terms along with the

opposite spin pairing terms allowed us to treat the problem in the presence of an

external magnetic field coupled via Zeeman term. We found pure singlet, pure triplet

and unconventional mixed-parity superconducting solutions being stabilized at differ-

ent parameter regimes. We studied the effect of finite temperature on the stabilized

superconducting orders. We observed different inter-state transitions driven by tem-

perature and Zeeman coupling. Finally we characterized the different ESP and OSP

type superconducting solutions in terms of relevant entities obtained via d-vector

formalism. Most importantly we observe the effect of broken parity and time reversal

symmetry on superconducting solutions at different parameter regimes. This study

opens up many important directions to investigate superconducting orders in a lattice

model like extended attractive Hubbard model.





Chapter 5

Thesis summary and future

directions

In this thesis we study the possibility of stabilizing different unconventional supercon-

ducting phases in an extended attractive Hubbard model defined on a square lattice.

Discoveries of different unconventional superconductors in recent decades motivated

scientists to look for new unconventional pairing mechanisms. The conventional BCS

theory certainly fails to explain high critical temperatures and various other prop-

erties of these unconventional superconductors. Search for different pairing mecha-

nisms has been crucial to the understanding of these new family of superconductors.

While finding new pairing mechanisms has not been an easy tasks for scientists, it

drove physicists to study different pairing symmetries of the energy gap. In modern

days experiments like NMR, angle-resolved photo-emission spectroscopy (ARPES),

microwave resonator penetration depth measurements, Josephson interferometry ex-

periments, etc., are capable of finding the angular dependence of energy gaps in mo-

mentum space and verify whether there is a nodal structure to it. Motivated by these

lines of thoughts, it seems very crucial to study unconventional pairing symmetries

in an effective lattice Hamiltonian.

In chapter 1 we introduce superconductivity from a historical point of view. We

discuss the relevant properties of a superconductor. We elaborate on the relevant

theories of superconductivity and discuss about our choice of framework to study

superconductivity. It is important to understand the motivation behind the term

unconventional. So we clarify the well-known differences between conventional and

unconventional superconductors. We motivate the reason behind choosing extended

attractive Hubbard model as the effective lattice Hamiltonian to study unconventional

superconductivity. Attractive on-site Hubbard model has been a strong candidate to

83
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explain conventional s-wave superconductivity. We explain how extended attractive

Hubbard model helps us to look for different unconventional pairing symmetries in a

lattice Hamiltonian.

In chapter 2 we discuss our model of choice, i.e., extended attractive Hubbard

model in greater detail. We discuss the general mean field decoupling scheme we use,

which allows us to study the possibilities of stabilizing pure singlet, pure triplet and

even mixed-parity superconducting states. We discuss the minimization method and

the self-consistent approach we chose to find different superconducting solutions.

In chapter 3, for simplicity of the calculation, we ignore equal spin pairing corre-

lations in our model Hamiltonian. Absence of an external magnetic field justifies our

choice. We study the system in the framework of a grand canonical ensembe. We find

different superconducting phases with unconventional pairing symmetries being sta-

bilized in our system. We draw different phase diagrams with average electron density

being a variational parameter and study characteristics of different superconducting

phases, which get stabilized at different density region.

In chapter 4 we study the effect of the Zeeman coupling to a planar magnetic

field. Presence of magnetic field motivated us to incorporate both opposite spin

pairing and equal spin pairing. We justify our choice in this chapter using energy

minimization. We draw different phase diagrams to validate our results in the absence

of a magnetic field. Then We study the effect of both temperature and magnetic field

on the superconducting phases we find being stable in our system.

This work also motivated an MS thesis that focused on topological transitions

driven by the proximity effect. This work has recently been accepted for publication

in Physical Review B [45]. Using a prototype model for proximity-induced super-

conductivity on a bilayer square lattice, we show that interlayer tunnelling can drive

change in the topology of the Bogoliubov quasiparticle bands. Starting with topolog-

ically trivial superconductors, transitions to a nontrivial px + ipy state and back to

another trivial state are discovered. We characterize these phases in terms of edge-

state spectra and Chern indices. We show that these transitions can also be controlled

by experimentally viable control parameters, the bandwidth of the metallic layer, and

the gate potential. Insights from our results on a simple model for proximity-induced

superconductivity may open up a new route to discover topological superconductors.

It is important to note that the possibility of different modulated phases is not

considered in this study. The possibility of charge density wave coexisting with su-

perconducting order at half-filling for the on-site attraction case is well known. And

so is the possibility of the existence of unconventional superconducting order in the

vicinity of the anti-ferromagnetic order. There has also been the indication of super-
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conducting modulated phase (Fulde-Ferrell-Larkin-Obchinikov phase) in the presence

of a magnetic field. Possibility of all these modulated phases, although very interest-

ing, if incorporated, increases the complexity of the “ground state finding process”

exponentially, even at the mean-field level. There has been a lot of study in the liter-

ature relating to the competition between superconducting phases and other phases,

including charge order and different magnetic orders already. However, that is not the

case when the competition between different superconducting orders are concerned.

Thus our focus remains to study an effective Hamiltonian which reveals the possible

competition between different exotic superconducting orders with uniform charge and

spin distribution. On the other hand, it is very promising to look for the possibility

of stable modulated phases, which is on the list of our future endeavours. So is the

aim to incorporate thermal fluctuations, using auxiliary field Monte Carlo, to study

the effect of finite temperature more accurately.
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