
EFFECT OF ALLOYING AND NANOSTRUCTURING ON

THERMOELECTRIC PROPERTIES

PRABHJOT KAUR

(PH15209)

A thesis submitted for the partial fulfillment of

the degree of Doctor of Philosophy

Institute of Nano Science and Technology

Phase 10, Sector-64, Mohali, Punjab-160062, India.

And

Indian Institute of Science Education and Research Mohali

Knowledge city, Sector 81, SAS Nagar, Manauli PO, Mohali 140306, Punjab, India.

May 2019



ii



Declaration

The work presented in this thesis has been carried out by me under the guidance of my su-
pervisors DR CHANDAN BERA and DR SUVANKAR CHAKRAVERTY at the Institute
of Nano Science and Technology, Mohali. This work has not been submitted in part or
in full for a degree, a diploma, or a fellowship to any other university or institute. When-
ever contributions of others are involved, every effort is made to indicate this clearly, with
due acknowledgement of collaborative research and discussions. This thesis is a bona fide
record of original work done by me and all sources listed within have been detailed in the
bibliography.

PRABHJOT KAUR

In my capacity as the supervisor of the candidates thesis work, I certify that the above
statements by the candidate are true to the best of my knowledge.

DR CHANDAN BERA

DR SUVANKAR CHAKRAVERTY

iii



iv



Acknowledgements

By God’s grace, it is a time of great ecstasy for me to pay gratitude to my PhD
supervisors Dr. Chandan Bera and Dr. Suvankar Chakraverty for their immense support
and guidance. This thesis could not be possible without their constant hard working nature
and help.

I owe my special thank to former INST director Prof. Ashok K. Ganguli and present
INST director Prof. Hirendra N. Ghosh for their constant enthusiasm and help. I am
thankful to all my mentors during course work specially Dr. Kiran Hazra, Dr. Ehesan Ali
and Dr. Abhishek Chowdhari (IISER) for their valuable discussions.

I am thankful to the PETr group for discussions during presentations, tea break and
meal times. I would like to acknowledge the support from my group members: Vishal
Kumar, Ajit Singh, Arnab Das, Sonali, Maneesh, Dr. Lenin, Parrydeep Kaur, Raveena.
I am also thankful to my friends from co-groups for numerous discussions : Prabhleen
Kaur, Dr. Seema Gautam, Aashish, Dimple, Nitya, Neha, Ruchi. I specially thank Mr.
Vikram and Mr. Boota Singh for providing us tea at all those high times.

I am thankful to my hostel friends Satnam Singh, Rashmika, Taru, Guratinder, Ritu for
their constant support and companionship, without them the hostel would have never felt
like home.

I would like to acknowledge the financial support from Department of Science and
Technology (DST), India during my PhD. I extend my huge thanks to CDAC Pune for
providing cluster facilities without any hassle.

I would not be able to just thank my father Late S. Malkit Singh who has brought me
up to watch dreams and fulfill them. I am extremely grateful to my mother Dr. Gurmel
Kaur who apart from all odds has helped me more like a friend. I am under debt to thank
my husband Dr. Paramjit Singh for standing like a wall and helping me to complete my
thesis. I am also thankful to my parents-in-law and whole family for their silent help and
cooperation.

Finally, I thank my dearest friend Manpreet Kaur for always being there for me. I
lovingly thank my younger cousin sister Jashanpuneet Kaur for her childish pleasure and
all help. And last but not the least, I thank my brother Harinder Singh whole heartily.

v



vi



Abstract

There has been a constant search for thermoelectric materials with higher power conver-
sion efficiency to enhance waste heat recovery. Efficiency of a thermoelectric material is
calculated as figure of merit (ZT = S2σT/κ where S2σ is power factor and κ is thermal
conductivity). The expedition for exploring better thermoelectric performance among a
copious number of materials is based either on finding a new material or on modifying the
thermoelectric properties of existing ones. To enhance the thermoelectric performance of
already existing materials, different methods have been used like nanostructuring, doping,
rattling atoms, alloying etc. These methods either target at modifying the electronic band
structure to enhance the power factor, or on the other hand, steering the phonon scatterings
to reduce the thermal conductivity. In result, it increases the overall performance based
on the strategy of “Phonon glass electron crystal”. Thermal conductivity is one of the
dominant parameters for efficiency optimization. Besides the intrinsic properties, alloying
and nanostructuring have been found to be very effective in controlling the thermal con-
ductivity in large range of materials. Apart from promising low-cost binary thermoelectric
materials (CdSe, PbTe etc), only a few ternary MZX (M=group IX, X; Z= Group V; X is
chalcogenide) chalcogenides such as CoSbS, NiSbS, FeSbS have been studied for ther-
moelectric applications. Thermoelectric performance of ternary pnictide chalcogenide of
d8 transition metal materials PdPS, CoAsS have been investigated in this thesis work. A
worth appraised values of ZT have been calculated for these materials. Thermoelectric
figure of merit calculated for PdPS is very significant in the nano regime and due to its lay-
ered structure, it will be having many applications in the field of biology, space, computers
etc. Another very important application of this research is in the thermoelectric modules
in which the provision to use both legs of the module from CoAsS alloy can be possible.
A significant reduction in the lattice thermal conductivity of type-I clathrate Ba8Cu6Si40

by introducing alloy scattering and boundary scattering is observed which can be useful
for many Si based technologies.
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The contents of the thesis have been divided into five chapters whose brief account is
outlined as below:

Chapter 1 introduces an overview of the concept of thermoelectricity. It includes the
state-of-the-art of evolution and advancement of the performance of thermoelectric mate-
rials. We start by introducing the Boltzmann transport theory to quantify the thermoelec-
tric effect. Best thermoelectrics are epitomes of “phonon glass electron crystal” concept,
which tend to increase the transport ratio. Such naturally occurring thermoelectric mate-
rials hardly exist. The electronic transport can be enhanced by band structure engineering
and doping of the pure semiconductor material. The thermal transport can be decreased
by various methods such as nanostructuring, alloying, rattling, complex structuring etc.
This chapter sheds light on all the ways to increase the figure of merit of thermoelectric
materials. We discuss in this chapter the theoretical calculation details and the procedure
for finding thermoelectric properties of different materials.

Chapter 2 presents the thermoelectric properties of layered ternary metal chalco-
genide Palladium Phosphide Sulphide (PdPS). Unlike few other ternary metal chalco-
genides, orthorhombic PdPS has anisotropic transport properties both for electron as well
as phonon. Seebeck coefficient found by our calculations is as high as 300 µVK−1 at 300
K and reaches upto 400 µVK−1 at 800 K for both p-type and n-type PdPS. Strong in-plane
anisotropy in power factor is highly promising for two different type of legs in a thermo-
electric module. Sound speed is almost 20 times lower in z-direction of PdPS compared
to bulk sound speed due to flat phonon dispersion in z-direction. Low phonon velocity
in z-direction plays a crucial role in reducing thermal conductivity. In the z-direction,
larger wavelength phonon carries most of the heat, which can be easily blocked by nanos-
tructuring. So larger reduction in κ along z-direction is obtained compared to bulk or x-
and y-direction. Along the z-direction, thermal conductivity is ultra-low and more than
ten times lower than the bulk thermal conductivity. Nanostructured p-type PdPS shows a
much superior value of ZT in the z-direction than n-type. The anisotropy in the in-plane
electrical and thermal conductivity can also be related to the periodic fashion in which all
the three atoms are aligned in PdPS. It can be seen that the position of Pd atoms is same
in x- and y-directions but that of P and S is though periodic in y-direction but not in the
x-direction. This unevenness in the arrangement of P and S atoms gives anisotropy in
the in-plane conductivity. These high Seebeck coefficient values, large anisotropic power
factor, and low thermal conductivity suggest that PdPS can be a utilitarian thermoelectric
in the medium temperature range, 300 K - 800 K.

Chapter 3 shows the effect of alloying on the thermoelectric properties of cobaltite
(CoAsS) and paracostibite (CoSbS), both having orthorhombic structure. From electronic
band structure calculations, it is shown that flat regions in conduction band of CoAsS
lead to higher Seebeck values (∼ 193 µVK−1), whereas valence band having lesser flat
maxima gives smaller Seebeck coefficient value (∼ 154 µVK−1) at 300 K temperature.
Due to substantially higher conductivity values ∼ 304 Ω−1cm−1 of the p-type than n-
type ∼ 98 Ω−1cm−1, the power factor values for the p-type CoAsS are more enhanced
than n-type. Phonon calculations estimate the thermal conductivity of CoAsS quite higher
∼ 12 Wm−1K−1 at temperature of 300 K than other thermoelectric materials like PbTe,
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Bi2Se3 and even CoSbS. The effect of alloying has been calculated for the CoAsxSb1−xS,
CoAsSxSe1−x, and CoSbSexS1−x and it is seen that the reduction of thermal conductivity
from 13 Wm−1K−1 to 5.37 Wm−1K−1 is maximum when the concentration of Sb in the
CoAsxSb1−xS alloy is 80%. A 44% reduction in thermal conductivity is also observed for
20% of Sb in CoAsxSb1−xS alloy. The behavior of ZT is seen to be different for the two
charge carriers. ZT values show up the maximum for n-type and p-type at different frac-
tional values of alloying. The substantial superiority of charge carriers depend upon the
alloy concentration and temperature leading to maximum value of n-type ZT ∼ 0.45 and
that of p-type ∼ 0.41. Thus, alloyed cobaltite and paracostibite is seen to have enhanced
thermoelectric properties which can be utilized as both n-type and p-type in different tem-
perature ranges and concentration. This work provides insight into rational design of alloy
for thermoelectric device, and the high ZT values of CoAsxSb1−xS alloy is good enough
to encourage further investigation of this alloy.

Chapter 4 studies the enhancement of thermoelectric figure of merit under the ef-
fect of alloying and nanostructuring on the type-I clathrate Ba8Cu6Si40. We have also
calculated the contribution of various atoms in reducing the lattice thermal conductivity
in the clathrate structure. Atomistic Grüneisen calculations show that the Ba atoms of
one type are major cause of enhanced anharmonicity in the material. Alloy scattering
has been shown to reduce the lattice thermal conductivity of pure Si-clathrate Ba8Cu6Si40

from 1.64 Wm−1K−1 to 0.80 Wm−1K−1 in Ba8Cu6Si17Ge23 clathrate alloy at 400 K. Fur-
thermore, the effect of boundary scattering is calculated and there has been seen a re-
duction of the clathrate lattice thermal conductivity to 0.15 Wm−1K−1 in case of 30 nm
sized Ba8Cu6Si17Ge23 clathrate alloy nanowire. Such reduced values of the nanostructured
clathrate alloy can direct to make good performing Si based thermoelectric. A nanowire
Ba8Cu6Si17Ge23 clathrate alloy with ZT ∼ 0.40 around room temperature can be useful
for micro refrigeration in Si-chips. It can also benefit the industry for heat barrier applica-
tion in nanoelectronics.

Chapter 5 discusses the findings of present thesis work and future applications. In this
chapter, we consider major outcomes of the work and discuss their relevance in the present
status of energy conversion and power generation. We also discuss here the possible ways
to steer this work for further enhancement in the thermoelectric performance.
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Chapter 1

Introduction

The world’s sustainable energy is going through a huge crisis since last many decades.
Vehicles’ exhaust, industrial processes, thermal power plants and space programs generate
enormous amount of waste heat. This waste heat is toggling the global climate change on
an alarming level. The only way to dump this waste is to scavenge it for useful purposes.
The conversion of this waste heat into electricity is worth accomplish for. Thermoelectrics
could be the solution for surviving this energy problem. Thermoelectricity is the process
by which waste heat is converted into useful electrical energy. This thesis is a compre-
hensive introduction to the every aspect of the thermoelectric energy conversion. The
efficiency of a thermoelectric material is measured by figure of merit ZT . The progress in
the thermoelectric performance is achieved by increasing the efficiency of thermoelectric
materials by reducing the thermal conductivity of crystal lattice and improving the power
factor by alloying and nanostructuring.

1.1 Thermoelectric and related effects

1.1.1 Seebeck effect and Peltier effect
T. J. Seebeck in 1821 discovered that on heating the junction of two dissimilar electrical

conductors, an electromotive force could be produced. These two dissimilar conductors
are said to form a thermocouple (Fig.1.1). The amount of voltage produced is directly
proportional to the difference in the temperature of two junctions. When a temperature
difference ∆T is applied between the junctions of two conductors A and B, a potential
difference V is appeared across them. The appeared voltage V is directly proportional
to the temperature difference ∆T with constant of proportionality known as differential
Seebeck coefficient SAB, given by

SAB =
V

∆T
(1.1)

After a decade, J. Peltier found the reverse effect, in which the passage of an electric
current through junction produces heating or cooling depending on the direction of current.

1



CHAPTER 1. INTRODUCTION

When an external potential is applied across the junction, current starts moving in the
circuit and the junctions start heating up or cooling down. Peltier coefficient ΠAB in this
case is equal to ratio of rate of heating or coolingQ at the junction to the amount of current
I passing through the junction,

ΠAB =
Q

I
(1.2)

The interdependency of these two effects was realized much later by W. Thomson
(Lord Kelvin). He coined the third thermoelectric effect known as Thomson effect which
happens in a homogeneous conductor. The effect states that when there are both electric
current and temperature gradient in the conductor, reversible heating or cooling occurs.
Seebeck coefficient and Peltier coefficient are related as ΠAB = TSAB, where T is the
absolute temperature. Thomson coefficient β is defined as,

β = T
dS

dT
(1.3)

Thomson coefficient is seldom taken care of, however it is important for precise observa-
tions. Both Seebeck and Peltier effects depend on the bulk material properties despite of
showing only the inter-facial phenomenon. Energy carried by electrons is different when
current passes from one conductor to another. This difference in energy appears at the
junction as heating or cooling making the Peltier effect. In Seebeck effect, electrons gen-
erate potential difference when they go from lower energy material to that in which their
energy is higher under the application of heat.

Figure 1.1: Thermoelectric couple made up of two conductors A and B.

In a thermocouple, heat flow and charge flow are linked to one another. Current flux
due to electric charge and heat is given as [1],

Je = L11(−dφ
dx

) + L12(−dT
dx

) (1.4)

Jq = L21(−dφ
dx

) + L22(−dT
dx

) (1.5)

where Lij are transport coefficients, φ is the electric potential. For isothermal condition,
dT =0, heat current flux is given as,

Jq =
L21

L11

Je = ΠABJe (1.6)
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When there is no current, Je = 0, value of Seebeck coefficient is defined as,

SAB =
−dφ
dx

/
dT

dx
=
−V
∆T

=
L12

L11

(1.7)

Both the coefficients SAB and ΠAB are defined for a pair of two conductors. However,
it would be much significant if these coefficients could be found for a single material. The
absolute value of these coefficients can be found by regarding zero absolute value for the
second material. In such case, absolute values will be equal to the differential values of
these coefficients. In practice, most metals have very small values of absolute Seebeck co-
efficient as compared to semiconducting thermoelectric materials. One of these metals can
be chosen as a reference to determine the absolute coefficients. Due to irreversible Joule
heating and heat conduction effects, thermocouples were not used for significant conver-
sion of heat to electricity and vice-versa before 1950’s. After the introduction of semicon-
ductor thermoelectric materials, the conversion of this energy became practical as Peltier
refrigerators. Thermoelectric effects are always associated with irreversible processes like
electrical resistance and thermal conduction. In addition to thermoelectric coefficients,
these two also come under the category of transport properties of the solid. Electrical con-
ductivity σ (reciprocal of electrical resistivity ρ) is defined for flow of charges through a
material of area A and length L,

I =
σV A

L
(1.8)

where I is the electric current and V is the voltage applied to the material. Similarly,
thermal conductivity (κ) is defined for rate of flow of heat (Q) through the same material
when a temperature difference (∆T ) is applied across it,

Q =
−κA∆T

L
(1.9)

1.1.2 Efficiency and figure of merit of thermoelectric material
Assessment of thermoelectric performance is done by using one thermocouple, while

practical modules are used made up of number of thermocouples. These thermocouples
are connected electrically in series and thermally in parallel. Area of application of Peltier
effect lies in the refrigeration and heat pumps. In this case, the source of electrical en-
ergy is provided by applying a potential difference across the two elements in series. The
performance of refrigeration is calculated by quantity called coefficient of performance
(COP ) which is the ratio of amount of heat extracted from the source (at lower tempera-
ture T1) to the amount of electrical energy consumed [2]. The rest of the energy is given
to sink (at higher temperature T2). The optimum or maximum value of COP is calculated
as,

(COP )max =
T1[(1 + ZCTm)1/2 − (T2/T1)]

(T2 − T1)[(1 + ZCTm)1/2 + 1]
(1.10)
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where Tm is the average temperature, ZC is the figure of merit of the thermocouple given
as,

ZC =
(Sp − Sn)2

[(κpρp)1/2(κnρn)1/2]2
(1.11)

where Sp and Sn are Seebeck coefficients for p-type and n-type semiconductors respec-
tively and κp and κn are thermal conductivities of p-type and n-type semiconductors re-
spectively. While searching for good thermocouple, figure of merit Z = S2σ/κ of the
single material is more convenient to find. Although, the value of Z cannot be used to as-
sess the thermocouple performance. However, the value of ZC tends to be the average of
two Zp and Zn. Therefore, it is practical to search materials on the basis of single material
figure of merit Z.

Figure 1.2: Thermoelectric generator using one thermoelectric element with p-type and
n-type semiconductor. Temperature T1 is source temperature and T2 is sink temperature
(T1>T2).

On the other hand, Seebeck effect finds its area of application in thermoelectric gener-
ators. The arrangement for thermocouple is same as in Peltier effect, with only difference
that temperature difference is applied across its end and potential difference is calculated
(Fig.1.2). The quantity of importance is efficiency, η of the generator, defined as the ratio
of generated output voltage to the heat extracted from the source [3].

η =
(T1 − T2)((1 + ZCTm)1/2 − 1)

T1((1 + ZCTm)1/2 + T2/T1)
(1.12)

If ZCTm would be very large, the efficiency η = (T1 − T2)/T1 becomes equal to
carnot’s efficiency. Present day efficiency of thermoelectrics is not competing with the
conventional converters such as steam engines [4]. On the other hand, the cooling is
also not up to the mark to compete with conventional refrigerator. Thermoelectrics are
interesting due to solid state operation, noise proof working, reliability and compact size.
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1.1.3 State-of-the-art of thermoelectric materials
Thermoelectric material Bi2Te3 opened a window of thermoelectric applications in

long back 1950’s. Till then, there has been a constant search for thermoelectric materials
as shown in Fig.1.3 [5]. The performance of thermoelectric materials was enhanced as
suggested by Ioffe using alloying of Bi2Te3 with Bi2Se3 and Sb2Te3. Similarly, the alloy
of PbTe was made with PbSe and SnTe [3, 6, 7, 8]. These compounds contain heavy
elements which reduce the phonon velocity [9], thus affecting the thermal conductivity.
Bi2Te3 alloys with Bi2Se3 and Sb2Te3 have shown ZT values of ∼ 1.0 in temperature
range of 300 K-500 K for both n-type and p-type [10]. PbTe alloys having ZT ∼ 1.0 at
room temperature is stretched up to ∼ 2.2 for p-type [11]. TAGS ((AgSbTe2)1−x(GeTe)x)
has also shown ZT ∼ 1.2 for p-type [9, 12]. On the other hand, SiGe alloys are operated
at high temperature [13, 14, 15].

Slack had proposed the idea of enhancing the ZT by reducing lattice thermal conduc-
tivity [16]. This was done by introducing rattler atoms in open and large cage structures
of crystals like skutterudites, clathrates etc [10]. Skutterudites have shown thermoelec-
tric coverage in large temperature region for power generation [17]. General formula for
skutterudites is MX3, where M is Co, Rh, Ir and X is P, As, Sb. These crystal structures
occupy large empty space [18]. Huge reduction in thermal conductivity is seen by intro-
ducing rare earth atoms in the empty space [19]. For e.g., n-type BaxYbyCo4Sb12 has an
order of magnitude reduction in thermal conductivity at 300 K in comparison to CoSb3

and ZT values reached 1.7 at room temperature [18, 19, 20, 21].
Clathrates have large unit cells containing huge number of atoms. Their open struc-

tures host loosely bound atoms. They have usually very low lattice thermal conductiv-
ity (1 Wm−1K−1) at room temperature. There are many types of clathrate structures,
among which type-I is the most explored [5, 10]. General formula for type-I clathrates is
X2Y6E46, where X and Y are guest atoms which fill the two types of voids in the clathrate
structure, E represents Si, Ge, Sn. The ZT of ∼ 1.4 is obtained for n-type Ba8Ga16Ge30

[22, 23]. These structures have been shown with their ZT values in Fig.1.4. Complex
crystal structures are prone to have extra low thermal conductivity due to large optical
branches having low velocity phonons. Examples of compounds with extra low values of
thermal conductivity are β- Zn4Sb3 with 0.65 Wm−1K−1 and Zintl Yb14MnSb11 with 0.4
Wm−1K−1 [24, 25].

Half heusler compounds made of transition metal atoms, usually have cubic structure.
Uher et al. have studied pure and alloyed half heusler compounds. Figure of merit ZT of
half heusler alloy Zr1−xTixCoSb0.8Sn0.2 is obtained around 1.0 for p-type and n-type [26].

Oxides show stable behavior for high temperature applications. Despite of low mobil-
ity of carriers, NaCo2O4 and Ca4Co3O9 have shown ZT ∼ 1.0 at high temperature around
800 K [27, 28]. The n-type perovskites SrTiO3 and CaMnO3 are good thermoelectric
oxides [29, 30].

In addition to bulk engineering of ZT , PGEC (phonon glass electron crystal) can be
found in low dimension materials too. The interest in thermoelectric was rejuvenated after
multiple decades with the theoretical prediction of high efficiency nanostructure materials
contingent to experimental observations. According to Hicks and Dresselhaus, phonons
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Figure 1.3: Time-line of thermoelectric materials (Ref.[5]).

having classical effects and electrons with quantum effects in nano-dimensions can tend
to high ZT values [31, 32, 33]. Both power factor and thermal conductivity are modified
as required to give high ZT values. There are two branches comprising single nanos-
tructures such as nanowires, super-lattices and bulk nanostructures [31]. Superlattice
Bi2Te3/Sb2Te3 have shown ZT ∼ 2.4 at room temperature with lattice thermal conduc-
tivity of 0.2 Wm−1K−1 [34]. This value of thermal conductivity is 2.5 times smaller than

6
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Figure 1.4: Summary of some of the best ZT for bulk thermoelectric materials to date as
a function of temperature (a) n-type (b) p-type (Ref.[17]).

alloy Bi0.5Sb1.5Te3 values of 0.5 Wm−1K−1. Hence, superlattices have lower thermal con-
ductivity than their alloy counterparts.

Nanostructured thin films and wires have been predicted to have superior ZT values
which was afterwards proved experimentally [31]. Films of Bi2Te3-Sb2Te3 and PbTe-
PbSe have shown extremely low value of thermal conductivity (∼ 0.3 Wm−1K−1) [35, 36,
37]. Nanowires of GaN, Bi2Te3, InSb and InAs have reduced thermal conductivity due to
phonon-boundary scattering. Si-nanowires have two orders of lattice thermal conductivity
reduction without disturbing electronic transport. Si-nanowires have ZT ∼ 1.0 at 200
K [38]. WSe2 crystals in layered form have thermal conductivity below the minimum
predicted value [39]. Polycrystalline Si-Ge alloy nanostructure are studied with enhanced
ZT values [13, 40].

Nanotubes also claim even reduced values of lattice thermal conductivity. Nanocom-
posites have geometry in which nanoinclusions such as nanowires or nanoparticles are
embedded in host structure. Similar lattice thermal conductivity reduction is shown by
nanograined materials.

1.2 Boltzmann transport equation
The phenomenon of transport of charge carriers is linked with the average macroscopic

quantities like thermal conductivity, electrical conductivity etc. Microscopic behavior of
charge particles gives rise to macroscopic behaviour of a material. Due to difficulty in
tracking the microscopic motion of particles (such as electrons, holes, phonons etc) in the
system, the statistical approach is considered for the evaluation of transport coefficients.
Such a statistical approach is hired using Boltzmann transport equation which gives the
position and velocity of particles as its solution. The equation balances the various pro-
cesses in the steady state and extract out macroscopic physical properties of carriers in

7
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metals or semiconductors [41, 42].
The motion of carriers in a metal or semiconductor are affected by external fields, tem-

perature gradients, concentration gradients, impurities and lattice waves etc. We consider
the scenario where the electron gains energy under the effect of a field or a temperature
gradient and loses its energy and momentum by scattering. The particular state of carriers
in the material is defined by distribution function f(k, r, t) which is a function of phase-
space and time. Distribution function f(k, r, t) is the local concentration of carriers in the
state k (momentum space) in the neighborhood of r in space. The probability of finding a
particle (electron or phonon) in the phase space region [r, r + dr] and [k, k + dk] at time t
is given by f(k, r, t)drdk. Electron wave vector or momentum vector is represented by k
and phonon wave vector will be represented by q.

Carriers move in and out of the region r as a result of various forces acting on it.
Boltzmann transport equation accounts for all possible mechanisms by which f changes.

df

dt
=
∂f

∂r
dr
dt

+
∂f

∂k
dk
dt

+
∂f

∂t

dt

dt
(1.13)

where the first term on right hand side represents the change in f due to various processes
based on the position like temperature gradient, concentration gradient etc, second term
represents the effect of external fields which will change the momentum of the particle and
third term contains the various scattering (collision) processes which use to be random.
Rate of change of distribution f due to temperature or concentration gradient is given as:

∂f

∂t
|diffusion = −vk.

∂f

∂r
= −vk.∇f (1.14)

where vk is velocity of the particle in state k. Distribution changes due to the fields (electric
field E) at the rate:

∂f

∂t
|fields = − e

h̄
E.
∂f

∂k
(1.15)

where e is the electronic charge and h̄ is the reduced Planck’s constant.
Regarding the collision term, there are numerous processes which would affect the

electron’s motion. Electron may collide with other electrons, however this can be ne-
glected in non-degenerate semiconductors. The effect of electron-electron collision is
more in degenerate semiconductors. Apart from this, electron may collide with defects,
impurities in the crystal and exchange its energy. While calculating the effect of collision
term, it is assumed that the collision time is extremely small. Due to collisions, electrons
get transferred from one point in k-space to another. The probability of transition from a
point around k to a point k

′
is given by Q(k, k

′
). Q will have various expressions based on

different scattering mechanisms (e-e scattering, e-phonon scattering, e-impurity scattering
etc). Effect of scattering is more complicated. This gives rise to rate of change of f as,

∂f

∂t
|scatt. =

∫
[f
′
(1− f)− f(1− f ′)]Q(k, k

′
)dk

′
(1.16)

8
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where f ′ is the distribution corresponding to point k
′
. Our theory is based upon the Boltz-

mann equation for the motion of carriers in the material. Boltzmann equation combines
the effects of externally applied fields and the scattering of carriers by different mech-
anisms. Due to the different physical processes, the function f would change and we
suppose that this change is relatively smaller and the Boltzmann equation is written in
steady state (df/dt = 0) as,

−vk.
∂f

∂r
− e

h̄
E.
∂f

∂k
= −∂f

∂t
|scatt. (1.17)

The two terms on left hand side are related with temperature gradient or concentration
gradient and electric field respectively. The left hand side of the equation is determin-
istic, however the right hand side is non-deterministic. The scattering or collision term
is comprising of non-linear integrals which are difficult to solve analytically. Therefore,
Boltzmann transport equation is solved for distribution function by various methods like
numerical methods (Monte Carlo method, finite element method etc.) and approximation
methods (variational method and relaxation time approximation method etc). Among nu-
merous methods of solving Boltzmann transport equation, some of the methods have been
explained below briefly.

1.2.1 Variational method
Boltzmann transport equation is an integral equation over many variables. Its solu-

tion is found by various approximations. As this is an integral equation, mathematics of
integral equations can be used to link this theorem with variational problem. By interpret-
ing Boltzmann equation as variational problem, its approximate solution will be found by
variational theorem.

Physical interpretation of Variational theorem: Variational function or the integral ex-
pression is directly proportional to rate of entropy production by collisions or scatterings
[43]. Moreover, entropy plays an important role in macroscopic theory of thermodynam-
ics of irreversible processes, therefore connection between microscopic statistical theory
which originates from Boltzmann equation and macroscopic thermodynamic theory is by
transport coefficients like electrical conductivity (σ) and thermal conductivity (κ). Now,
both of the approaches have the same scalar quantity. Entropy signifies a connection be-
tween equilibrium statistical mechanics and thermodynamics. In case of non-equilibrium
statistical mechanics, variational theorem corresponds to steady state thermodynamics.

Boltzmann equation represents the state originating from balancing the rates at which
electrons transfer from one quasi-stationary state to another. The solution of this equation
can be obtained by applying variational theorem to a general function. In the steady state,
total rate of change should be zero and Boltzmann transport equation is given by Eq.(1.17),
assuming the change in the distribution function from equilibrium distribution function
(f0) to be very small (f ≈ f0) and the electron is under the effect of electric field only,

−vk.eE
∂f0

∂Ek
=

∫
[f
′
(1− f)− f(1− f ′)]Q(k, k

′
)dk

′
(1.18)
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where Ek is the energy in state k. Introduce a new function φ such that f can be expanded
by using Taylor’s theorem,

f = f0 − φ
∂f0

∂Ek
(1.19)

f = f0 + φ
f0(1− f0)

kBT
(1.20)

Boltzmann equation becomes:

−vk.eE
∂f0

∂Ek
=

∫
[f
′
(1− f)− f(1− f ′)]Q(k, k

′
)dk

′
(1.21)

−vk.eE
∂f0

∂Ek
=

1

kBT

∫
(φ− φ′)P (k, k

′
)dk

′
(1.22)

where P (k, k
′
) is the equilibrium transition probability rate between k and k

′
. This equa-

tion can be written in general form where this is solved for unknown distribution function
φ:

X(k) =
∫

(φ(k)− φ(k
′
))P (k, k

′
)dk

′
(1.23)

where X(k) is a known function of k and depends upon the external fields. And P (k, k
′
)

is also known, φ(k) has to be found. This equation can be written in the other form as,

X = Lφ (1.24)

Scattering operator L transforms φ into another function of k by integration. Notations:

< φ,ψ >=
∫
φ(k)ψ(k)dk (1.25)

< φ,Lψ >=< ψ,Lφ > (1.26)

Variational Principle: “If φ is the solution of the Boltzmann integral equation and ψ is
any function which satisfies the condition < ψ,Lψ >=< ψ,X >: then the variational
theorem states that of all the functions which satisfy this condition, φ makes < ψ,Lψ > a
maximum.” In another way the principle is written as,
“If φ is the solution of the Boltzmann equation then

< φ,Lφ >

(< φ,X >)2
(1.27)

has its minimum value and we are left with the inverse of the one side (< φ,Lφ > say) or
the other which by principle is maximized.”

For constructing the variational function (< φ,Lφ >), it is needed to multiply the
Boltzmann equation by φ(k) and integrate over k. The scattering part :

∂f

∂t
|scatt. = − 1

kBT

∫
(φ− φ′)P (k, k

′
)dk

′
(1.28)

10
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−
∫
φ
∂f

∂t
|scatt.dk =

1

kBT

∫
φ
∫

(φ− φ′)P (k, k
′
)dk

′
dk (1.29)

Statistical definition of entropy is given by:

S = −kB
∫

[flnf + (1− f)ln(1− f)]dk (1.30)

Differentiating with respect to ‘t’ (f=f0):

∂S

∂t
= − 1

T

∫
(φ
∂f

∂t
)dk (1.31)

In the steady state, ∂S/∂t is zero, but separately they have values using the Boltzmann
equation. Using Eq. 1.29, the scattering part of above equation becomes,

∂S

∂t
]scatt. = − 1

T

∫
φ
∂f

∂t
]scatt.dk =

1

kBT 2

∫
φ
∫

(φ− φ′)P (k, k
′
)dk

′
dk (1.32)

By using Eq. 1.26, above equation becomes,

∂S

∂t
]scatt. =

1

kBT 2

∫ ∫
(φ− φ′)2P (k, k

′
)dk

′
dk (1.33)

The field part can be written by using Eq 1.20 and Eq 1.22,

−∂S
∂t

]field =
1

T

∫
φ
∂f

∂t
]fielddk = − 1

T

∫
φeE.vk

∂f0

∂Ek
dk (1.34)

−∂S
∂t

]field =
1

T
E.

∫
evk(f − f0)dk =

1

T
E.J (1.35)

where J is the electric current density in steady state. In the thermodynamics of irreversible
processes, entropy production (by Onsager relations) is given by:

∂S

∂t
=

∑
k

XkJk (k = 1, 2, 3.....) (1.36)

From above equation we can see that the analogue of current is φ and generalized force
corresponding to this is,

Xk = − 1

T
eE.vk

∂f0

∂Ek
=

∫
L(k, k

′
)φ
′
dk
′

(1.37)

We can write in general,
Xk =

∑
k

Lk,k′Jk′ (1.38)

And Onsager relations from this comes out as: Lk,k′ = Lk′ ,k. It can be written in this form
as:

∂S

∂t
]scatt. =

∑
k,k′

Lk,k′JkJ
′

k =< φ,Lφ > (1.39)
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−∂S
∂t

]drift =
∑
k

XkJk =< φ,X > (1.40)

For all current distributions (for which ∂S
∂t

]scatt. = −∂S
∂t

]field), steady state distribution
makes the ∂S

∂t
]scatt. a maximum. In other words, currents be such that

∑
k,k′

Lk,k′JkJk′ − 2
∑
k

JkXk (1.41)

is a minimum. It is just the negative of the actual entropy production in dissipative pro-
cesses.

1.2.2 Monte Carlo method
This method is used to solve Boltzmann transport equation for small scale transport

processes. As this is one of the numerical methods, it has many applications in high
energy physics, device designing, radiative transfer, nuclear reactor designing etc. This is
a semi-classical approach to study the transport of charge carriers in the semiconductors.
Trajectories of charge particles are simulated under the effect of external fields. The free
paths and the scattering events are assumed on the basis of random numbers [44, 45].

The numerical solution of transport equation is done on the basis of stochastic ap-
proach in Monte Carlo method. This statistical method gives the solution of Boltzmann
transport equation using band structure and scattering mechanisms. Fermi-Golden rule
is used to extract scattering mechanism, which is quantum mechanical in nature. In this
method, the particle’s free flight and scattering mechanism is chosen stochastically, by
giving quantum mechanical treatment to various scattering mechanisms.

There are various types of Monte Carlo simulations among which a few are one particle
simulation, ensemble simulation and self consistent simulation. One particle simulation is
suitable for studying bulk properties such as drift velocity. The motion of single particle is
tracked at one time and the same process is repeated for another particle and the ensemble
of trajectories is collected. On contrary to it, in ensemble simulation, a large number
of particles are tracked at a same time. Third type known as self consistent, clubs the
ensemble simulation with the Poisson equation and is useful for device simulation.

Time of free path flight is determined from the scattering rate. Scattering events can
be characterized in two ways as elastic in which energy is not changed, and other is in-
elastic in which energy is transferred during the scattering. Electron impurity and surface
scattering are examples of elastic scattering. Inelastic scattering includes electron phonon
scattering. At the end of the flight, scattering rates determined by Born approximation are
randomly selected. In Born approximation, transition between two states is calculated in
the scattering event. Fermi-Golden rule gives the first order transition probability per time
for scattering from a k-state to k

′
-state,

Q(k, k′) =
2π

V
| < k|H ′|k′ > |2δ(E − E ′) (1.42)
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where H ′ is the collision Hamiltonian and E and E ′ are initial and final energies re-
spectively. After scattering probability, scattering rate is calculated for a given scattering
process.

1.2.3 Relaxation time approximation
To understand the transport of electrons and holes in semiconductors, the concept of

relaxation time τk is used. This time is assumed to be the interval during which a disturbed
distribution function f relaxes back to its equilibrium value f0. The concept of relaxation
time for the carriers will be used and the disturbance of distribution function from its
equilibrium state is supposed to be linear. The total relaxation time builds itself from
various scattering processes as scattering by acoustic lattice vibrations, ionized impurities
etc. The Boltzmann equation after incorporating above suppositions is given as,

−vk.
∂f

∂T
∇T − vk.e

∂f

∂Ek
E =

f0 − f
τk

(1.43)

Thermoelectric behavior of a material depends upon its transport properties, which
usually come from charge carriers. Therefore, transport coefficients are related to elec-
tronic band structure of a material. Transport of electric charge is executed by quasi-free
electrons in metals. While in semiconductors, charge transport is done by holes in addi-
tion to free electrons. The process of conduction of electrons was successfully explained
by quantum theory [46]. According to this theory, an electron can acquire energy lev-
els in a crystal depending upon its interaction with the crystal’s periodic potential. This
interaction gives rise to energy bands for electrons separated by forbidden energy gaps.
The difference in the forbidden gap sheds light on the superior transport of electric charge
in metals than insulators. The probability that an energy state having energy E will be
occupied by an electron is given by Fermi distribution function as,

f0(E) = [exp(
E − EF
kBT

) + 1]−1 (1.44)

where EF is the Fermi energy level and kB is the Boltzmann constant. The probability of
finding the electron goes from one to zero asE−EF goes from less than kBT to more than
kBT respectively. Every electron state is dependent upon the momentum (i.e. wave vector
k) in addition to energy. Energy bands which are only near the Fermi level contribute in
the transport process. For conduction of electrons, they must go from one filled energy
state to empty state. In case of metals, Fermi level exists well inside the conduction band,
which gives great number of electrons to jump into the empty states. This makes a metal
highly conducting in nature. On the other hand, when the Fermi level lies in between the
energy gap, there will be no electrons to fill the states in conduction band which leads to
insulating behavior. When the Fermi level lies close to conduction band, a small amount
of conductivity is present due to few number of electrons present near the conduction
band empty states. In case when the Fermi level is close to valence band, there will be a
conduction of charge due to empty states in valence band. The conduction is still due to
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negative electrons but the process is defined by motion of positive holes. Both these cases
make the material semiconducting with moderate amount of conductivity.

The transport of charge carriers is understood with the help of Boltzmann equation.
The transport coefficients are obtained by using boundary conditions. Electrical conduc-
tivity σ is defined at zero temperature gradient and electronic thermal conductivity κe is
defined for zero electric current. The current density is given as the integral of group
velocity times the probability of occupation integrated over all the possible states,

J = − 2e

8π3

∫
v(k)fdk (1.45)

For defining transport coefficients, assuming no concentration or temperature gradient,
and assume system to be in steady state, df/dt = 0, the Boltzmann equation (Eq 1.17)
becomes,

F

h̄
.∇kf =

∂f

∂t
]scatt. (1.46)

Assuming the change in the distribution to be very small, we can expand the f to first
order in δk using Taylor expansion,

f(k) = f0(k− δk) = f0(E)−∇kf0(E)δk (1.47)

f(k) = f0(E)− h̄df0(E)

dE
v(k).δk (1.48)

f(k) = f0(E) + eτ(E)
df0(E)

dE
v(k).E (1.49)

where δk = −(eEτ(E))/h̄. Putting the above equation in the formula for current density
J in Eq. 1.45,

J = − 2e

8π3

∫
v(k)(eτ(E)

df0

dE
v(k).E)dk (1.50)

As J = σE, thus the formula for electrical conductivity can be obtained as,

σ = − 2e2

3(8π3)

∫
v2(Ek)τ(Ek)

df0

dE
dk (1.51)

The value of σ can be written in a more generalized manner as,

σ = e2
∫
dE(−∂f0

∂E
)Σ(E) (1.52)

where Σ is known as transport distribution function and is given as,

Σ =
∑
k
v2
x(k)τ(k)δ(E − E(k)) (1.53)

The electrical conductivity is seemed to depend on the relaxation time. On the other hand,
the Seebeck coefficient comes out to be independent of the relaxation time and is given as,

S =
e

σT

∫
dE(−∂f0

∂E
)Σ(E)(E − EF ) (1.54)
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1.2. BOLTZMANN TRANSPORT EQUATION

The electronic thermal conductivity is given as,

κe =
1

T

∫
dE(−∂f0

∂E
)Σ(E)(E − EF )2 − σS2T (1.55)

We approximate the values of these parameters by considering low and high extremes
of EF compared to kBT . When EF >> kBT , we deal with conductor under degenerate
case. The electrical conductivity is given as,

σ =
8π

3
(

2

h2
)3/2e2(m∗)1/2τ0E

r+3/2
F (1.56)

where r denotes the scattering mechanism for the electrons and τ0 also depends upon the
scattering process. Electronic thermal conductivity in case of metal is related to electrical
conductivity by Wiedemann-Franz law. According to this law, the ratio of κe/σ is equal
L = (π2k2)/3e2 for all metals at a particular temperature. The expression for Seebeck
coefficient for metals is,

S = ∓π
2

3

k

e

r + 3/2

EF/kBT
(1.57)

As (EF/kBT ) >> 1, so Seebeck coefficient is smaller for metals. On the other
hand, when EF << kBT , we consider the case of intrinsic semiconductor under the non-
degenerate approximation. The values of electrical conductivity and Seebeck coefficient
are,

σ =
8π

3
(

2

h3
)3/2e2(m∗)1/2Tτe(kBT )r+3/2Γ(r + 5/2)exp(EF/kBT ) (1.58)

S = ∓k
e

[
EF
kBT

− (r + 5/2)] (1.59)

In case of extrinsic semiconductor, EF/kBT >> 1, so S may be much smaller. Value
of S in case of semiconductor is much different from metals, however the ratio of κe/σ
differ by factor less than two. Electronic thermal conductivity is linked to electrical con-
ductivity by Lorentz factor L. This factor varies with carrier concentration [47]. For low
value of concentration, the Lorentz factor is reduced from its free electron value. The
calculated electronic thermal conductivity is thus, overestimated in this case of lower con-
centration. S for n-type semiconductor is negative because EF is calculated upwards
from conduction band edge. Whereas S acquires positive value for p-type semiconductor
because EF is measured downwards from valence band edge.

Value ofEF depends on amount of doping and it is measured from the edge of conduc-
tion band EC in case of n-type. Seebeck coefficient is seen as average value of electron
energy in the range of Fermi level EF . Looking at σ closely, we observe that ∂f0/∂E is
having non-zero value only near the Fermi level. Seebeck coefficient expression reveals
that, as for a metal EF is well inside the band so electron distribution above and below EF
cancel each other, therefore metals have smaller S values. Deeper EF gives rise to higher
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electrical conductivity because of higher density of states (DOS) inside the band. G. D.
Mahan had proposed ideal DOS to be equivalent to Dirac delta function [48]. After this
idea, materials with such electronic DOS were searched for. Materials having d-electrons
and f -electrons give rise to such DOS values.

1.3 Factors affecting charge transport

1.3.1 Bipolar effects
At ordinary temperature, narrow band gap semiconductor has both electrons and holes

available for conduction. For wide band gap material, such condition occurs at high tem-
perature. In such a material, electrical conductivity is linear sum of conductivities of
individual carriers.

σ = σn + σp (1.60)

whereas S is weighted average of Seebeck values of both types,

S =
Snσn + Spσp
σn + σp

(1.61)

As Seebeck values for n-type and p-type are opposite in sign so overall S will be lower.
Therefore, bipolar term decreases the Seebeck coefficient, because both types of carriers
move from hot end to cold end and neutralize the appeared voltage. The expression for
electronic thermal conductivity is,

κe = κn + κp +
σnσp
σn + σp

(Sn − Sp)2T (1.62)

The additional term is due to bipolar flow of charges [49]. The bipolar term is although
not included in W-F law, therefore this contribution goes into lattice thermal conductivity
part erroneously. Bipolar contribution rises at high temperature and usually coincides with
peak value temperature of S and σ. The κe/σ ratio also increases much in case of bipolar
conduction. This can be reduced by selectively removing the minority carriers.

1.3.2 Importance of energy gap
The value of Seebeck coefficient is maximum when carrier concentration of minority

carriers is small. The maximum value of Seebeck coefficient Smax depends on the energy
gap of the semiconductor [50]. Estimate of the energy gap Eg is done by measuring the
Seebeck coefficient, according to Goldsmid-sharp rule [51],

Eg = 2kBTSmax (1.63)

The maximum value of Seebeck coefficient is obtained when Fermi level lies some-
where between the middle and edges of the conduction or valence bands. Seebeck coeffi-
cient for a bipolar semiconductor can be written as,
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S =
Sn

σn
σp

+ Sp
σn
σp

+ 1
(1.64)

σn
σp

= Cexp(
(EF )n
kBT

− (EF )p
kBT

), C =
µn
µp

(
m∗n
m∗p

)3/2 (1.65)

where (EF )n and (EF )p are Fermi levels corresponding to conduction band and valence
band, µn and µp are carrier mobilities and m∗n and m∗p are effective masses of electrons
and holes in n-type and p-type respectively. The maximum Seebeck coefficient for a small
gap semiconductor need not lie for Fermi level far from either band. When both type
of carriers have equal product value of mobility and effective mass, maximum Seebeck
coefficient remains close to Eg/2kBT . Even if one of the carriers dominates, the value of
S remains close to above given value. For an optimum value of Seebeck coefficient, energy
gap should be larger than 6kBT , however the practical materials having high mobility and
mass product have smaller energy gaps.

1.3.3 Mobility and effective mass

The condition of high effective mass contradicts with high value of mobility simul-
taneously to make maximum ZT . Larger effective mass increases Seebeck coefficient,
though decreases the electrical conductivity. Density of states effective mass m∗ becomes
larger for less sharper and high density of narrow bands near the Fermi level. Larger effec-
tive mass reduces the carrier mobility. However, the precise relationship between the two
depends on many perspectives such as electronic band structure, scattering of carriers and
anisotropy in the crystal [52]. For a semiconductor material having multi-valley valence
and conduction bands, the effective mass is given by product of effective mass of single
band and N2/3

v where Nv is the number of valleys. Effective mass is given as,

m∗ = N2/3
v (m1m2m3)1/3 (1.66)

where m1,m2 and m3 are effective masses along symmetry axes. Variation of mobility
withm∗ depends on scattering mode. For acoustic mode scattering, inertial mass for single
valley MI is given as,

µ(m∗)3/2 ∝ Nv

MI

, MI =
3

1
m1

+ 1
m2

+ 1
m3

(1.67)

Therefore to achieve optimum ZT , we should choose a semiconductor having more num-
ber of valleys and low inertial mass for carriers. Covalent compounds usually have high
mobility and ionic compounds have low mobility with narrow bands. However, both types
show good thermoelectric properties [53, 54].
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1.3.4 Power factor
The numerator of figure of merit Z at a given temperature is known as power factor

(S2σ). Its value depends upon the carrier concentration. A large value of power factor
corresponds to high voltage and current. In case of metals or degenerate semiconductor,
the value of S and σ is given as,

S =
8π2k2

B

3eh2
m∗T (

π

3n
)2/3 (1.68)

σ = neµ (1.69)

where n is carrier concentration, µ is carrier mobility. As carrier concentration increases,
Seebeck coefficient decreases and electrical conductivity increases. In case of non-degenerate
semiconductor, the expression for carrier concentration and carrier mobility is given by,

n = 2(
2πm∗kBT

h2
)3/2exp(

EF
kBT

) (1.70)

µ =
4

3π1/2
Γ(r +

5

2
)
eτ0(kBT )r

m∗
(1.71)

where Γ is gamma function. The electrical conductivity varies as exponential function
of EF/kBT whereas S varies linearly with EF/kBT . There will be a particular value of
Fermi level which will correspond to maximum power factor. The peak of ZT is obtained
at carrier concentration of 1019 to 1021 cm−3, which is found in heavily doped semicon-
ductors. Figure of merit depends on carrier mobility and effective mass,

ZT =
[ EF

kBT
− (r + 5/2)]2

(βexp( EF

kBT
))−1 + (r + 5/2)

(1.72)

where β = (k/e)2σ0T/κ and σ0 = 2eµ(2πm∗kBT
h2 )3/2. For particular type of material and

scattering, ZT ∼ µ (m∗)3/2. For high value of ZT , we require materials having high value
of mobility and high effective mass of carriers. There is a particular value of EF or carrier
concentration which makes S2σ maximum. Therefore, such value of carrier concentration
can be achieved by doping.

1.4 Phonon conduction
In addition to heat conduction by electrons, lattice atoms also contribute in transport-

ing heat across the solid. The phenomenon of heat conduction in solids was understood
with the help of quantum theory of lattice dynamics. Solid is composed of regular array
of atoms connected with one another by means of hypothetical springs (almost harmonic
potential). When one of the atoms in the solid is given a displacement, the resultant distur-
bance is travelled in whole of the lattice passing through all the atoms. This disturbance
constitutes lattice vibrational spectrum which is characteristic of every solid. Vibrational
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spectrum consists of acoustic and optical branches in case of more than one atom in the
unit cell of solid. If unit cell contains n atoms, there will be three acoustic modes and rest
of 3n modes will be optical. Debye proposed that only a definite number of wavelengths
can pass in a solid [55]. Lower limit for the wavelength is set by the lattice constant of the
solid. The amount of energy associated with each vibrational mode is,

W = h̄ω[exp(
h̄ω

kBT
)− 1]−1 (1.73)

where ω is the angular frequency of the phonons. The trend of specific heat with tempera-
ture was solved by Einstein’s model and Debye’s model. Specific heat at constant volume
is given by,

Cv = 9nkB(
T

θD
)3

∫ θD/T

0

x4exp(x)

(exp(x)− 1)2
dx, x =

h̄ω

kBT
(1.74)

where θD is the Debye temperature. The results of Debye model comes out to be almost
close to real solids for their general behavior. Einstein treated the ideal solid as harmonic
oscillator. In real solids though, harmonic oscillator approximation is not valid. However,
the model was unable to explain the behavior of lattice thermal conductivity. Peierls intro-
duced the idea of phonons and their interaction to explain the thermal conductivity trend
in real solids taking anharmonicity into picture [56]. According to him, phonons interact
with one another based on the anharmonic interatomic potential. The interactions among
phonons consist of Normal or N-processes and Umklapp or U-processes. N-processes
conserve momentum and implicitly affect the thermal conductivity by redistributing the
energy among phonons. On the other hand, U-processes do not conserve momentum and
lead to thermal resistivity in the solid. The representation of the two processes is as under,

Figure 1.5: Representation of three phonon scattering processes (a) Normal process (b)
Umklapp process. The shaded part shows the first Brillouin zone.

q3 = q1 + q2 (N − process) (1.75)

q3 = q1 + q2 + G (U − process) (1.76)
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where G is the reciprocal lattice vector (Fig.1.5). The number of U-process increases with
temperature. Peierls had taken into account only the U-processes. This is due to the fact
that as temperature rises, number of phonons with large wave-vectors also increases.

1.4.1 Relaxation time approximation for lattice thermal conductivity
Heat current is determined by distribution of phonons, which is obtained by the so-

lution of Boltzmann transport equation. Like electrons, let the distribution function for
phonons is given as N , and the Boltzmann transport equation for phonons is written as,

−vG.∇T
∂N

∂T
=
∂N

∂t
|scatt. (1.77)

where vG is the group velocity of phonons. The left hand side is due to convection and
right hand side is due to discontinuous processes.

∂N

∂t
|scatt. =

∑
(α)

∂N

∂t
](α) (1.78)

where (α) are constituting various processes: (1) N-proceess, (2) U-process, (3) Defect
Scattering etc. Processes (1),(2) arise from anharmonicities of inter-atomic forces. Per-
turbation results in a transition where one phonon is destroyed and two are created and
vice-versa.

∂Ni

∂t
] =

∑
j

∑
k

NiNj(Nk + 1)− (Ni + 1)(Nj + 1)Nk (1.79)

For (1)-proceeses : ωi + ωj = ωk and qi + qj = qk.
For (2)-processes : ωi + ωj = ωk and qi + qj = qk + G.
The equilibrium distribution function N0 is assumed to be changed by a small amount n.
Due to small change, we can take its first order in new distribution function only, as higher
order terms would be negligibly effective.

N = N0 + n (1.80)

As n << N0, therefore dn/dT << dN0/dT . The term ∂N/∂t will have only first order
of n.

For the calculation of formula for thermal conductivity, the equation of heat current is
given by,

Q =
∑
j

∫ ∫ ∫
Nj(q)h̄ω

q.∇T
|q||∇T |

vGj(q)p(q)dq (1.81)

where h̄ω is the energy of one phonon, Ni is the number of phonons in one normal mode,
dq is the interval. p(q)dq is the number of modes in the interval dq. Nip(q)dq is the total
number of phonons in the interval dq. h̄ωNip(q)dq is the total energy in the interval dq.
Heat current is energy flux which is given by (energy × velocity). Mode is represented as
wave-vector q and polarization j.

Q =
∑
j

∫ ∫ ∫
nj(q)h̄ωµvGj(q)p(q)dq (1.82)
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µ is cosine of angle between q and ∇T . First order approximation is valid if n and ∇T
are small. For isotropic systems:

Q =
∑
j

∫ 4π

3
njh̄ωvGj(q)p(q)dq (1.83)

Under relaxation time approximation, defining relaxation time τ(α) for each scattering
process separately such that the rate of change of distribution function due to one type of
scattering process is given as,

∂N

∂t
](α) = − n

τ(α)

(1.84)

Here we assume that discontinuous processes tend to cut exponentially any deviation from
equilibrium. Assuming all the scattering proceesses, the Boltzmann equation (Eq. 1.77)
can be written as,

vGµ
dT

dz

dN0

dT
=
n

τ
(1.85)

where τ is the total relaxation time due to all the processes. Various processes scatter-
ing rates get added according to the Matthiessen’s rule. According to this rule, the total
resistivity of a crystalline material is the sum of the resistivity due to various processes
like thermal agitation and resistivity due to the presence of defects and impurities in the
crystal.

1

τ
=

∑
(α)

1

τ(α)

(1.86)

Eq 1.85 can be written to obtain the expression of n,

n = τvGµ
dT

dz

dN0

dT
(1.87)

n = τvGµ
dT

dz

h̄ω

kBT 2

e
h̄ω

kBT

(e
h̄ω

kBT − 1)2
(1.88)

Putting this value of n in Eq 1.83, the heat current is written as,

Q =
∑
j

∫ 4π

3
τvGµ

dT

dz
h̄ωkBT

2 e
h̄ω

kBT

(e
h̄ω

kBT − 1)2
h̄ωvGj(q)p(q)dq (1.89)

From above equation, the formula of thermal conductivity can be obtained as,

κ =
4π

3

∑
j

∫
τ(q)

h̄2ω2

kBT 2
v2
G(q)

e
h̄ω

kBT

(e
h̄ω

kBT − 1)2
p(q)dq (1.90)

Energy per unit volume from normal modes between q and dq is given as:

E(q, T ) =
h̄ω

(e
h̄ω

kBT − 1)
p(q)4π (1.91)
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Relaxation length = l(q) = vG(q)τ(q). The formula for thermal conductivity is,

κ =
1

3

∑
j

∫ ∂E(q, T )

∂t
l(q)vG(q)dq (1.92)

Lattice thermal conductivity can be expressed under relaxation time approximation
(RTA) by solving BTE as,

κl =
1

3

∫ ωmax

0
C(ω)v2(ω)τ(ω)dω (1.93)

Callaway had claimed to include both the processes into thermal conductivity expres-
sion as N-processes indirectly do affect the thermal transport [57].

Specific heat and velocity are directly calculated from vibrational spectrum. Klemens
found expression for different phonon scattering mechanisms and different scatterings
rates were added according to Matthiessen’s rule. The trend of lattice thermal conductivity
with temperature is having a particular shape for almost all the crystalline semiconduc-
tors. Different temperature regions contain different dominating scattering mechanisms
for phonons. At high temperature, thermal conductivity behaves as T−n, with n∼1. The
value of specific heat at elevated temperature is constant. As temperature increases, num-
ber of phonons also increases linearly. As scattering rate is directly proportional to number
of phonons, thermal conductivity reduces as temperature rises in high temperature range.
The specific heat goes as T 3 at low temperature. Due to less number of phonons at lower
temperature, scattering of phonons is also smaller. Due to this, phonon wavelengths are
larger than sample sizes. Therefore, phonons will get scattered from the boundaries of the
sample. This was discovered by De Haas and studied by casimir [58, 59]. Phonon mean
free path becomes equal to the size of the sample and thus becomes independent of the
frequency of phonons. Thermal conductivity in this region is ∝ T 3. In the intermediate
temperature range, the flatter part and peak is dependent on impurity scattering. The varia-
tion of lattice thermal conductivity with crystal density and atomic mass is given by Keyes
expression,

κlT ∝
T 3/2
m ρ2/3

γ2A7/6
(1.94)

where Tm is the melting temperature, ρ is density of unit cell and A is atomic weight of
unit cell. Low melting point corresponds to low thermal conductivity. Thermal conduc-
tivity will be less for crystals having large inter-atomic distances between its atoms. The
transport of charge carriers and phonons remain independent in most of the solids. In some
of the cases, a new effect introduces based on the interlinking of the two transports, known
as phonon drag. This effect is significant when carrier concentration and temperature both
have lower value. Electrons scatter by phonons of much lower energy and transfer their
momentum to phonons. But according to saturation effect at high concentration, momen-
tum is transferred back to electrons from phonons. Due to this effect, phonon drag is not
significant in enhancing the thermoelectric parameters.

Apart from formula for thermal conductivity given by Klemens, in 1980’s, thermal
conductivity calculations were carried out using molecular dynamics simulations. How-
ever, results of MD simulations based on empirical potentials can have entirely different
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results than experiments. Quite satisfying agreement between calculations and measure-
ments is obtained using first principle calculations also known as ab-initio. Density func-
tional theory provides electronic charge density which then is used to find the inter-atomic
potential. These calculations are free from any fitting parameters and are highly reliable
though expensive too. There are rare experimental methods to explore phonon disper-
sion. These methods include Raman spectroscopy, inelastic neutron scattering, inelastic
X-ray scattering. These theoretical and experimental methods deepen our understanding
of the heat transport in different materials. For eg. PbTe and PbSe have much lower lat-
tice thermal conductivity despite its symmetric cubic structure. This is due to significantly
strong coupling between acoustic and optical phonons and soft transverse acoustic phonon
modes.

The trend of lattice thermal conductivity is that for a similar crystal structure and sim-
ilar bonding between atoms, thermal conductivity decreases if we increase the atomic
weight [60]. Ionic compounds have much lower lattice thermal conductivity, however
their carrier mobility is very low, so they are not useful for thermoelectric applications.
The compounds which are worthful for thermoelectric applications are covalent bonded
compounds. Lattice thermal conductivity values are smaller when the constituent elements
have high mass difference. Formula for lattice thermal conductivity given by Leifried and
Schlomann based on variational principle [61],

κl = 3.5(
kB
h

)3MV 1/3θ3
D

γ2T
(1.95)

where M is the average atomic mass, V is the unit cell volume, γ is the Gruneisen pa-
rameter which measures the effect of change in volume on the frequency spectrum of the
phonons.

1.4.2 Anharmonic scattering

Phonons in a solid are scattered by different mechanisms namely anharmonic Umklapp
scattering (U-scattering), normal, boundary, defect, alloy scattering etc. We will consider
mainly the anharmonic U-scattering which is dominated at reasonable frequencies. An-
harmonic scattering is calculated following the three-phonon scattering model. Slack has
given the formula for model τ based on the work of Leibfried and Schlomann [61, 62, 63].

τ−1
U = pω2 T

θ̃D
e−θ̃D/3T (1.96)

where p is an adjustable parameter. Another model for finding thermal conductivity around
Debye’s temperature is given by Slack [61, 62, 64],

κl(θD) =
0.849× 3× 41/3

20π3(1− 0.514
γ

+ 0.228
γ2 )

(
kBθD
h̄

)2kBMV 1/3

h̄γ2
(1.97)
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On comparing these two models, the value of adjustable parameter is calculated as [65],

p =
1− 0.514√

γ̄2
+ 0.228

γ̄2

0.0948

h̄2γ̄2

kB θ̃DMV 1/3s
(1.98)

here s is sound speed and θD is the Debye’s temperature. There are many ways of calcu-
lating θD, however we will be using the full phonon dispersion to calculate it as defined
below,

θ̃D = n−1/3

√√√√ 5h̄2

3k2
B

∫∞
0 ω2g(ω)dω∫∞

0 g(ω)dω
(1.99)

here n is the number of atoms per unit cell and γ̄2 is mode averaged-squared Grüneisen
parameter

γ̄2 =

∑
j

∫ dq
8π3γ

2
jqCjq∑

j

∫ dq
8π3Cjq

(1.100)

γjq = − V

ωjq
∂ωjq
∂V

(1.101)

where γjq is the Grüneisen constant for each mode, ωjq is mode dependent angular fre-
quency. We require the thermal conductivity to be less in thermoelectric materials and will
talk about different ways to do the same.

1.4.3 Normal scattering
As suggested by Callaway, although normal processes don’t claim to produce thermal

resistance, however they can affect the thermal conductivity drastically [57]. The modified
Debye-Callaway model is written for both longitudinal and transverse phonons as [63],

κl = κL + κT (1.102)

where κL = κL1 + κL2 , and similar for the transverse part.

κL1 =
1

3

k4
B

2π2h̄3vL
T 3

∫ θL/T

0

τLC (x)x4ex

(ex − 1)2
dx (1.103)

κL2 =
1

3

k4
B

2π2h̄3vL
T 3

[
∫ θL/T

0
τLC (x)x4ex

τLN (x)(ex−1)2 ]2dx∫ θL/T
0

τLC (x)x4ex

τLN (x)τLR(x)(ex−1)2

, x =
h̄ω

kBT
(1.104)

where (τC)−1 = (τN)−1 +(τR)−1, where τC is the combined relaxation time due to normal
and resistive processes. Like U-scattering model as done in the earlier section, there are
many forms for N-scattering. The normal scattering rate for one type of crystals is given
as,

(τLN(ω))−1 ≈ k3
Bγ

2
LV

Mh̄2v5
L

ω2T 3, (τTN(ω))−1 ≈ k4
Bγ

2
TV

Mh̄3v5
T

BT
NωT

4 (1.105)
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1.4.4 Effect of temperature

Depending upon the melting point and chemical stability, it is not possible to use one
material in the full temperature range for thermoelectric applications. For eg., Bi2Te3

is used in moderate temperature for cooling purposes. Apart from melting point, when
the temperature rises, more electron-hole pairs will be generated which leads to decrease
in Seebeck value and simultaneously increasing the thermal conductivity. This is due
to bipolar conduction. The ZT increases with T in the absence of bipolar conduction.
Optimum Seebeck coefficient remains almost constant with temperature. Carrier concen-
tration varies as T 3/2 while µ decreases with T and the trend depends upon the scattering
process. Electrical conductivity thus becomes temperature independent. Therefore, tem-
perature dependence of ZT arises from thermal conductivity. The κe is proportional to T
but due to dominance of κl, total thermal conductivity decreases as T increases. Therefore,
ZT increases as T increases.

1.5 Minimizing lattice thermal conductivity
The spectrum of phonons having large variation of wavelength and mean free path are

used in transporting heat through the solid. Mean free path of phonons ranges from few
nanometers to micrometers. All these phonons scatter according to their wavelength, so
different scattering processes scatter a range of phonons having a particular wavelength.
The idea of maximum possible reduction of thermal conductivity was introduced by Slack.
Minimum thermal conductivity will be possible when MFP of phonons become equal to
their wavelength. Afterwards, Cahill proposed half the thermal conductivity values given
by Slack. Cahill based his analysis on random walk theory. Klemens formula based on
Debye’s theory gave correct trend for large experimental data. However, Debye’s model
does not take into account the optical modes. These modes are flatter though, even then
they have non-zero velocities. Secondly, whole of the acoustic spectrum as taken in Debye
theory is not linear. High frequency acoustic phonons have lower velocities. Density of
states in a real crystal do not vary as ω2. Despite these peculiarities, Klemens model based
on Debye’s theory mimic the experimental trend. This is because of the different set of
fitting parameters. The lattice thermal conductivity can be reduced below the minimum
value for single crystals (where only phonon-phonon scattering is present) by using defects
and boundary scattering. The scattering of phonons is different from scattering of charge
carriers. This is due to the difference in the mean free path of the two. Electrons have
higher mean free path than phonons, therefore, the electrons will get scattered from large
sized grains, whereas phonons are scattered from small sized grains. Both have different
scattering windows. Lattice thermal conductivity can be reduced by mainly three ways.
The first one is to produce local disorder in the crystal structure and scatter phonons by
alloying, interstitial substitution and rattling atoms [66]. Second way is to search for
complex crystal structures based on PGEC to enhance ZT . On the third point, the thermal
conductivity reduction is done by scattering of phonons at boundaries and interfaces in
nanostructures [52, 67].
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1.5.1 Phonon scattering by point defects
Thermal conductivity can be reduced to a greater extent by making an alloy from two

semiconducting materials having similar crystal structure [8]. The scattering of charge
carriers would be negligible due to their long wavelength or long mean free path which
matches with the long range order of the alloy. This long range order of alloy is preserved
as before. On the other hand, the phonons which transfer the most of the heat were having
small wavelength and are now scattered from the short range defects in the crystal [68, 69,
70, 71, 72].

Alloying and phonon rattler have same concept behind their transport behavior. In
alloy, there is inclusion of atomic disorder substitutionly and in rattling, disorder is intro-
duced interstitially. Alloying is seen to show reduced thermal conductivity without mod-
ifying the electronic transport. In an alloy, the scattering of phonons is due to changes in
atomic distribution locally. Rayleigh scattering is used to account for impurity scattering.
According to Rayleigh scattering, the scattering rate is proportional to ω4. In addition to
these, other interstitial impurities and partial vacancies add in to the scattering of phonons.
In general, the defect scattering rate is given as,

τ−1
I (ω) =

V

4πv3

N∑
i=1

ci(1−
∆Mi

M̄
)2ω4

where V is the volume of the unit cell, v is sound speed, ci is the concentration of the
defect or impurity. ∆Mi is the difference in the mass of defect from host atom maas, M̄
is the average mass.

The scattering of phonons can be due to local elasticity variation and density variation.
Density fluctuation is also known as mass fluctuation. Scattering due to fluctuations in
elasticity is difficult to comprehend. The defect atom creates strain in the crystal due to
different bonding and inadequate size in the lattice. The comparison of theoretical values
with the experimental data shows that strain scattering does exist and therefore experimen-
tal values are all lower than calculated ones. Alloying reduces the thermal conductivity
of a solid solution to a value less than the average of thermal conductivity of the pure
materials. The reduction of alloy thermal conductivity depends upon the mass difference
between the pure materials. Si1−xGex alloy has thermal conductivity of 10 Wm−1K−1,
whereas thermal conductivity of pure Si and Ge is of the order of 150 Wm−1K−1 and
60 Wm−1K−1 respectively [13, 14, 15]. Abeles introduced a model to study the alloying
between different material having same crystal structure. This model was known as the
virtual crystal approximation, in which the alloy crystal structure is assumed to be average
of the pure materials.

Virtual crystal approximation gives quite satisfying results to match with experimental
data. Despite this, the actual alloy properties can not just be a mere average. The ac-
tual dispersion and other physical properties might be hidden. During the calculation of
scattering times, the application of Rayleigh scattering mechanism is valid only for low
frequency phonons, as Rayleigh criterion works when wavelength of phonons is much
larger than the scattering site. However, we cannot use this criterion for high frequency
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phonons, which make little contribution in the thermal transport [73]. In the model, the
atomic mass difference quantity does not take into account the sign of mass difference, as
the added impurity is larger or smaller than the pure atom. Due to this, the frequency of
the impurity atom is uncertain as it lies above or below the main phonons frequency.

The process of rattling is associated with the loosely bound motion of the guest atom
in the open cage structure. This rattling motion creates a local disorder among the peri-
odic crystal which becomes center of the point defect like scattering. In alloying, guest
atoms also known as impurity atoms form normal bonds within the crystal lattice. Unlike
alloying, guest atoms in rattling motion are loosely bound in an open cage structure of
the crystal. These guest atoms locally vibrate in the void and scatter phonons of the host
crystal. Skutterudites and clathrates are such examples of guest-host structures proposed
by Slack. Both of these structures contain heavy metal atoms or ions in the oversized
cages to make the rattling motion possible [18, 74]. Motion of filler atom depends on its
relative size in the cage or void. These filler atoms do not share any strong bond with the
lattice and give rise to local phonon modes and soft phonon modes due to weaker local
interatomic bonding [75].

The reduction of thermal conductivity due to rattler atom is not yet fully understood.
There exists many underlying theories and experimental observations. In the independent
rattling picture of the guest atoms, many ideas have been proposed. Sales et al. have
assumed the localized motion of guest atoms which generates localized modes. These
modes in turn are responsible for lower thermal conductivity. These modes are experi-
mentally verified in skutterudites by inelastic neutron scattering. On the other hand, in
the resonant scattering of phonons, the phonons with frequencies near the localized fre-
quency get scattered more by these modes. This theory is also verified experimentally by
using more than one type of guest atoms in the host cage. In such structures, there exists
number of different resonant frequencies. According to this theory, the reduced thermal
conductivity is due to resonant interaction between guest and host atoms. In another view,
the virtual crystal approximation can also be used with mass fluctuation for more than
one type of guest atoms in multi-filled skutterudites. Another observation is due to flat-
tening of phonon modes due to filler atoms, which thus reduce the thermal conductivity.
Unlike these views, Koza et al. have studied the different observations of LaFe4Sb12 and
CeFe4Sb12, where p-type skutterudites have higher thermal conductivity due to guest atom
[76]. This idea thus denies the rattling motion of the guest atom.

Moreover, disorder in a pure material often leads to wave interference phenomenon
in the material. It brings about different transport regimes namely ballistic, diffusive and
localized. The occurrence of specific regime for transport in the system is based on the
characterization length for various phonons [77]. As alloying usually introduces disorder
in the system and the amount of disorder is quantified by the energy fluctuations among
different sites [78]. Due to alloying, high mass ratio can trigger mass induced Anderson
localization of phonons [79, 80, 81, 82, 79]. Anderson localization originates when there
is enough disorder in the lattice which can disrupt the band structure of phonons [79]. This
broken band structure picture is due to disorder in the bond strength values or masses. This
results in scattering or interference of lattice waves due to non-periodicity and confinement
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of vibrations to a group of atoms. This scattering of waves leads to reduction of thermal
conductivity. Huge mass ratio and inhomogeneity of bonds in Hydrogen-Deuterium alloy
has shown evidence of localization [83]. As large amount of disorder is needed for lo-
calization effects, the amount of localization is not observable in many systems due to its
negligible contribution [79, 77].

1.5.2 Phonon Glass Electron Crystal

Amorphous materials like glass have been known for the lowest thermal conductiv-
ity. From this Slack introduced the concept of glass like thermal conductivity in crystals
[16]. For glass, in addition to poor thermal conductivity, electrical conductivity is also
of the same nature. Therefore amorphous materials are out from the category of good
thermoelectric materials due to their unfavorable electronic properties. These crystalline
materials have glass like thermal conductivity, even then their electronic properties are
like other crystals, are called phonon glass electron crystal materials. Cahill et al. studied
such materials and revealed that these materials have loosely bound atoms in their lattice
structure. These loosely bound atoms do not usually sit on lattice sites. These rattling
atoms are caged in bigger unit cells and thus are responsible for large phonon scattering.
The PGEC material having rattling atoms produces damped phonon vibrations. The pres-
ence of rattling motion is confirmed by highly enhanced atomic displacement such as in
clathrates [84, 85]

Complex unit cell structures also claim to have extremely low lattice thermal con-
ductivity and behave like PGEC. β-Zn4Sb3 creates phonon glass due to its disordered
Zn-sublattice and electron crystal due to ordered Sb network [86]. Zintl compounds are
complex structure containing multiple structural units with different bonding types such
as covalent and ionic. Yb14MnSb11 is such a structure with multiple units leading to low
thermal conductivity of 0.4 Wm−1K−1 and ZT ∼ 1.0 at 900 K [87, 25]. Zintl compounds
can be a good candidate for substructure approach. According to this approach, a complex
material can have different functioning regions for PGEC to bypass the contradictions in
achieving optimum ZT . A complex structure can have electron crystal like properties with
high mobility and phonon glass at the different places in the crystal interwoven with each
other. Substructure approach can be combined with nanostructuring to achieve high power
factor and extremely low lattice thermal conductivity. Thermal conductivity can also be
reduced in large unit cells, where phonons have to travel a long distance to transport heat.
Thus the mean free path of phonons reduces which decreases the thermal conductivity.

1.5.3 Boundary scattering

Alloy structures scatter very short wavelength phonons. Unlike this, nanostructures
are able to scatter long wavelength phonons due to interfaces and boundaries [59]. At
low temperatures, boundary scattering is predominant [88]. However, the observation of
boundary scattering at room temperature is possible only if the grain size is extremely
small. The mean free path of phonons usually fall in range of 10 nm. Boundary scattering
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has significant effect in case of an alloy than pure material. It has been said that boundary
scattering can occur for grain sizes around 1000 nm also [89]. Free path for a phonon de-
pends upon its frequency. Low frequency phonons contribute to the thermal conductivity
as they scatter the least. Therefore, low frequency phonons have large free path lengths.
The U-scattering varies as ω−2, whereas defect scattering varies as ω−4. Therefore, point
defect scattering will scatter the most high frequency phonons. Rest of the phonons lie
in the low frequency range and have large mean free path. These phonons are now not
affected by defect and U-scatterings.

MFP of phonons ranges over a wide length scale from nanometer to micrometer. Each
material has different type of distribution of phonons as far as their MFP is concerned.
This distribution is characteristic of every material. Distribution trend guides us to find the
possible nanostructure dimensions of the material to reduce thermal conductivity. For eg.,
Si-nanostructures of size 100 nm are good at scattering more phonons, whereas for PbTe,
the effective dimension is around 10 nm [88, 90].

By the idea of Hicks and Dressulhaus, thermal conductivity of Si-nanowires was stud-
ied first of all by Li et al [91]. The two order reduction was understood by phonon-
boundary scattering. Many theoretical calculations based on the BTE solutions agree with
the experimental results for wire sizes more than 20 nm. When wire’s sizes become of
the order of 20 nm, many other effects come into picture and theoretical results overesti-
mated the experimental values. The low value of experimental thermal conductivity may
be due to the measurement of sleek nanowires which are sensitive to varying diameters
and surface roughness. The theoretical model calculations lack in the proper treatment of
the phonon-boundary scattering and phonon confinement at lower dimensions. Phonon
confinement affects the dispersion spectrum of phonons, and thus calculation of full dis-
persion spectrum of wires is suggested as one method. The effect of surface roughness on
phonon confinement is not fully understood.

As we have already read, the thermal conductivity of superlattices are reduced to values
lower than alloys. Therefore, Chen et al. has proposed that the Cahill’s model and Slack’s
model of minimum thermal conductivity might not be valid for low dimensional materials
[1]. The basic reason underlying this denial was supposed to be due to anisotropic behavior
which generates direction dependent phonon spectrum. Chen found the reason behind
this reduction to be diffuse and inelastic interface scattering in case of Si/Ge superlattice.
Nanocomposites are alternatives to superlattices because of large density of interfaces.

1.6 Transport in lower dimensions
The increasing demand of microelectronics and nanoelectronics has made size effected
transport phenomenon of considerable importance. Theoretical studies of transport in
lower dimensions such as nanotubes, nanowires and thin films have been modifying to
consider some of the fruitful effects at lower dimensions. These effects comprise of com-
parable length and time scales with the carrier’s mean free path and relaxation time re-
spectively. This leads to quantization of modes in case of phonons having wavelength
comparable to the dimensions of the material.
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The applicability of Boltzmann transport equation for transport in lower dimensions
is justified by considering effective carrier-boundary scattering. The effect on thermal
conductivity with the thickness of thin films is examined by using Boltzmann transport
equation in Ref.[92, 93, 94]. Dominated boundary scattering at lower dimensions reduces
the thermal conductivity and the theoretical values were compared with the experiment
[95, 96]. There are other reports of Nath and Chopra [97] considering more rigourous
solution of Boltzmann equation considering other scattering effects and obtained results
match with the experimental data for thin films. More work on the Boltzmann equation
analysis could give the exact view of thin film transport property behavior.

1.7 Potential thermoelectric materials
Since the discovery of thermoelectric materials for waste heat recovery and electric

power generation, there has been set up a voyage for exploring superior thermoelectric
system. Recently, there has been a great inclination in the investigation of greater ZT
materials by various groups in the literature [98, 22, 99, 100, 101] with improved ther-
moelectric properties either by improving the power factor (P) [99, 100, 102, 103] or by
reducing the thermal conductivity κ [103, 104]. New transition metal compounds have
been reported with improved thermoelectric performance in the temperature range of 300
K - 1000 K. In one such example, Cu2−xSex has shown a high ZT value of 1.4 [100].
Similarly, Sb2Te3 and Bi2Te3 based nanostructured compounds have shown high values
of ZT at room temperature [105]. The thermoelectric power generators based on cubic
PbTe (either n-type or p-type) have ZT ∼ 1.0, and Pb - Ag - Sb - Te alloys have ZT ∼
2.0 [106] in the temperature range of 300 K - 700 K. For commercial applications, Pb and
Te based compounds are mainly used for waste heat recovery in the temperature range of
300 K - 800 K. However, the use of Pb based thermoelectric devices is restricted due to
its toxicity. This motivates for the development of lead free materials for thermoelectric
devices.

1.8 Problems addressed in the thesis
Thermoelectric performance of already existing compounds can be extended further by
different methods like nanostructuring, doping, rattling atoms, alloying etc. The reduction
of thermal conductivity for enhancing efficiency besides the intrinsic properties depends
on alloying and nanostructuring. We have incorporated in our work the modification of
thermoelectric performance of various materials based on alloying and nanostructuring.
There have been reliable and cheaper binary thermoelectric materials (CdSe, PbTe etc)
which have shown productive since a long time. However, only a few ternary chalco-
genides such as CoSbS, NiSbS, FeSbS have been studied for thermoelectric applications.
Thermoelectric performance of ternary pnictide chalcogenide of d8 transition metal mate-
rials PdPS, CoAsS have been investigated in this thesis work. A worth appraised values
of ZT have been calculated for these materials. Thermoelectric figure of merit calculated
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for PdPS is very significant in the nano regime and due to its layered structure, it will
be having many applications in the field of biology, space, computers etc. Another very
important application of this research is in the thermoelectric modules in which the pro-
vision to use both legs of the module from CoAsS alloy can be possible. A significant
reduction in the lattice thermal conductivity of type-I clathrate Ba8Cu6Si40 by introduc-
ing alloy scattering and boundary scattering is observed which can be useful for many Si
based technologies.

This thesis deals with finding new thermoelectric materials and the studying the effect
of alloying and nanostructuring on thermoelectric materials. In Chapter 2, we present the
thermoelectric properties of layered ternary metal chalcogenide Palladium Phosphide Sul-
phide (PdPS). Due to layered structure, we study its different directional properties and
effect of nanostructuring on its lattice transport properties. Orthorhombic PdPS has shown
anisotropic transport properties both in electron and phonon due to uneven arrangement
of the P and S atoms in the in-plane direction. Through nanostructuring, bulk thermal
conductivity and thermal conductivity in layered direction can be made very small in tem-
perature range of 300 K-800 K. This significant reduction is predicted to enhance the
thermoelectric power factor ZT.

Chapter 3 studies the effect of alloying on the thermoelectric properties of cobaltite
(CoAsS) and paracostibite (CoSbS), both having orthorhombic structure. Both structures
having similar atoms show different electronic and lattice properties based on the crystal
structure. Using alloying techniques, the thermoelectric performance of cobalt and para-
costibite is enhanced for both n-type and p-type in different temperature ranges and con-
centrations of alloying. The reduction in thermal conductivity is mainly due to reduction
of mean free path of phonons on alloying.

In Chapter 4, we study the enhancement of thermoelectric figure of merit under the
effect of alloying and nanostructuring on the type-I clathrate Ba8Cu6Si40. Clathrates are
guest-host assemblies, therefore the guest atoms affect the dynamics of transport largely.
We have calculated the contribution of various atoms in reducing the lattice thermal con-
ductivity in the clathrate structure using phonon band structure. Alloy scattering has been
shown to reduce the lattice thermal conductivity of pure Si-clathrate Ba8Cu6Si40. Further-
more, the effect of boundary scattering is calculated and there has been seen a reduction
of the clathrate lattice thermal conductivity in case of nm-sized Ba8Cu6Si17Ge23 clathrate
alloy nanowire.

Chapter 5 discusses the summary of present thesis work and future applications. We
also discuss here the possible ways to steer this work for further enhancement in the ther-
moelectric performance.
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Chapter 2

Thermoelectric properties of layered
material PdPS

2.1 Introduction

New materials with superior thermoelectric figures of merit have appeared, thus the
possibility of large scale thermoelectric generation for making better use of energy re-
sources has become more obvious. Metal chalcogenides have been seen participating in
the thermoelectric performance race from past many years. These compounds contain
oxygen, sulphur, selenium, and tellurium in combination with the transition metals in
binary, ternary, and quaternary proportions. Transition metals due to their flexibility in
oxidation state and coordination number lead to different structures such as pyrite, mar-
casite, pararammelsbergite. Only few ternary A-B-X class chalcogenides such as CoSbS
[107, 108], NiSbS [107], FeSbS [107] have been studied recently for thermoelectric appli-
cations, where A is a transition metal, B is an element from group V and X is a chalcogen.
Keeping this in mind, the band structure and transport properties of Palladium Phosphide
Sulphide (PdPS) have been calculated, which has an orthorhombic crystal structure sim-
ilar to pararammelsbergite (NiAs2). The PdPS has not been studied for thermoelectric
applications so far. The thermopower, anisotropic power factor, and thermal conductivity
of PdPS in different crystallographic directions have been calculated.

Thermoelectric applications are limited to binary chalcogenides such as PbTe and
Bi2Te3 for decades. These traditional materials have chaired the thermoelectric application
sector for a long time due to the heavy Te atoms. Heavy atoms contribute in comparatively
smaller thermal conductivity in these materials. However, the less abundance, high price
and toxic nature of Tellurium has always put metal Tellurides on an edge to be replaced
by other similar elements. Sulphur and Selenium being abundant, less costly and non-
toxic, can replace the metal Tellurides by metal Sulphides and Selenides. Leading bulk
Sulphides and Selenides of copper have ZT values around 2.0 at 1000 K for both Cu2Se
and Cu2S. High power factor values around 23 µWcm−1K−2 have been obtained for SnTe
and In2Te3 compound [101]. Unlike PbTe, SnSe crystallizes in distorted rock salt struc-
ture and is highly anisotropic. Single crystal maximum ZT for SnSe in b-crystallographic
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direction is 2.6 at 973 K, whereas polycrystalline sample offers less superior values such
as ZT ∼ 1.36 at 823 K. Thus there are many compounds which can overtake the usage
of PbTe in high temperature region. The thermoelectric figure of merit of PbTe is 1.4
around 800 K and Pb-Ag-Sb-Te alloys have ZT ∼ 2.0 [106] in the temperature range
300 K-700 K. The nanocomposites of Cu2Se with CuInSe2 gives a maximum ZT of 2.6
at 850 K. Ternary chalcogenides like CuGaTe2 have ZT of 1.4 at 950 K due to superior
charge transport properties and strong temperature dependence of thermal conductivity.
Similarly, there are quarternary chalcogenides Cu12−xCoxSb4S13 of copper having ultra
low thermal conductivity less than 0.6 Wm−1K−1.

For commercial applications, Pb, and Te based compounds are being mainly used
for waste heat recovery in 300 K-800 K temperature range, however, due to the toxic-
ity of Pb, the use of the thermoelectric devices based on Pb is restricted. This generates
a strong motivation for finding suitable “Pb-free” materials for thermoelectric devices.
The ongoing quest for an improved thermoelectric device in the temperature range of
300 K-800 K has been leading many groups, to work in transition metal chalcogenide
compounds. Many such compounds have been analyzed to achieve better thermoelec-
tric properties among which there are binary [109, 98] compounds like Bi2Se3, PbTe and
ternary [110, 111, 108, 112] such as FeSbS, CoSbS, PdPS etc and quaternary [113] such
as Cu2CdSnSe4 etc.

In the present chapter, the thermoelectric properties of PdPS have been calculated
using band structure calculations and Boltzmann transport theory. Electronic transport
properties have been calculated by using constant time relaxation method for solving
Boltzmann equations as embedded in software BoltzTraP. The room temperature Seebeck
coefficient is found to be reasonably high for both n-type and p-type PdPS. Similarly,
phonon transport properties are calculated based on frozen phonon approach embedded
in PHONOPY and homemade code. The calculated thermal conductivity in the layered
direction is found to be ultra low than the bulk values. Effect of nanostructuring further
reduces the thermal conductivity values which enhances the thermoelectric power factor.

2.2 Electronic structure calculations

2.2.1 Method

PdPS was synthesized experimentally earlier in 1971 [114] and has shown resistivity,
ρ = 3× 104 Ωcm, at 425 K [114]. The intrinsic resistivity is quite high due to much lower
intrinsic carrier concentration and can be improved by extrinsic doping [114]. An earlier
study [115] showed that PdPS is an indirect band gap material with a structure containing
puckered net of pentagons. These pentagons act as a building block with the alignment
of two nets (PdP2 and PdS2) on each other as the distinguishing feature, Fig.2.1. PdPS
derives its properties related to both PdP2 and PdS2 with bonding in the two nets. It is due
to the strong bonding between P atoms of two neighboring nets and an S lone pair with Pd
atom of another layer, which gives rise to its double layered type structure [116].
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Figure 2.1: Unit cell crystal structure of PdPS, direction x, y and z represents Γ − X ,
Γ− Y and Γ− Z crystallographic directions in the first Brillouin zone (a) Front view (b)
Top view (c) Side view.

The raw crystal structure is taken from the earlier published data, and the self consis-
tent calculations are performed using the density functional theory. We used PBE func-
tional [117] and PAW basis set as implemented in VASP [118, 119] with a k-mesh of
2 × 2 × 1 to optimize PdPS structure. The crystal structure unit cell chosen for calcu-
lations contains 24 atoms and the energy cut off was chosen to be 350 eV. The k-mesh
is obtained after performing a minimum formation energy calculation on the initial struc-
ture (Fig.2.2). Orthorhombic PdPS has been obtained with lattice parameters a = 5.62Å,
b = 5.69Å, c = 14.81Å.

Figure 2.2: Variation of free energy of PdPS vs density of k-point mesh.
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2.2.2 Electronic band structure
The computed electronic band structure and density of states (DOS) are presented in

Fig.2.3. Directions x, y, and z (shown in Fig.2.1) correspond to Γ−X , Γ−Y , and Γ−Z
in the first Brillouin zone. The valence band maximum occurs along the Γ−X direction
as shown in inset of Fig.2.3, and it is composed of heavy hole band which is favorable
for thermoelectric applications as discussed in chapter 1. There is another maximum just
below ≈ 5 meV of the Fermi level in the Γ − Y direction and it consists of a relatively
lighter band. In the conduction band, there are two minima in Γ−X and Γ−Y directions,
and both consist of mixed light and heavy bands. The calculated indirect band gap is 1.24
eV, where experimentally reported band gap is 1.38 eV [114]. Palladium being a transition
metal has d - electrons, so that it might show spin-orbit coupling, but for the present time,
we have not included spin-orbit calculations.

Figure 2.3: Electronic band structure along orthorhombic symmetry k-points (without
spin-orbit coupling) on left; on right side, total density of states and projected density of
states of PdPS. On the extreme right is the inset for conduction band minimum and valence
band maximum.

2.3 Electronic transport properties

2.3.1 Method
The transport of electric charge is due to quasi-free electrons in the solid. In semicon-

ductors and metals, the electrons also carry thermal energy in addition to electrical charge.
For the electronic transport properties calculation, we used constant relaxation time ap-
proximation as implemented in BoltzTraP [120]. Here large k-point is necessary to obtain
the convergence and hence a 19 × 19 × 9 k-mesh for PdPS was used. The calculations
of transport coefficients have been carried out as discussed in chapter 1 according to the
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Figure 2.4: Seebeck coefficient of (a) n-type and (b) p-type at 300 K with carrier concen-
tration.

following equations. Each transport coefficient can be calculated from density of states.
The electrical conductivity is calculated according to the equation,

σ = e2
∫
dE(

∂f0

∂E
)Σ(E) (2.1)

where Σ is given as,
Σ =

∑
k
v2
x(k)τ(k)δ(E − E(k)) (2.2)

The electrical conductivity seems to depend on the relaxation time, however we have cho-
sen a constant relaxation time as 5× 10−15 s. On the other hand, the Seebeck coefficient
comes out to be independent of the relaxation time and is given as,

S =
e

σT

∫
dE(−∂f0

∂E
)Σ(E)(E − EF ) (2.3)

The electronic thermal conductivity is given as,

κe =
1

T

∫
dE(−∂f0

∂E
)Σ(E)(E − EF )2 (2.4)

2.3.2 Calculation of Seebeck coefficient
Seebeck coefficient calculation of n-type and p-type PdPS at 300 K in a carrier con-

centration range of 1018 − 1021 cm−3 (which is a suitable carrier concentration range for
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Figure 2.5: Variation of Seebeck coefficient for (a) n-type PdPS and (b) p-type PdPS at
carrier concentration, 1020 cm−3 with temperature.

better ZT ) is shown in Fig.2.4 (a, b). The variation of Seebeck coefficient with temper-
ature is shown in Fig.2.5 (a, b) for both the n-type and p-type PdPS. Thermopower of
p-type is little superior to n-type, and in n-type, the variation of thermopower with tem-
perature is more anisotropic in different crystallographic directions. At 300 K and carrier
concentration of 1020 cm−3, thermopower of n-type along x direction is 335 µVK−1 and
total thermopower is 303 µVK−1, whereas for p-type, thermopower along y direction is
343 µVK−1 and total thermopower is 327 µVK−1. At 800 K, these values approach to
400 µVK−1 and 380 µVK−1 for n-type and 411 µVK−1 and 383 µVK−1 for p-type at 1020

cm−3 (see Fig.2.5 (a, b)). This anisotropy in the thermopower values in the two different
crystallographic directions might enable to design transverse thermoelectric device [121].

Seebeck coefficient values of PdPS in both the p-type and n-type are quite high as
compared to thermoelectric materials reported in the temperature range of 300 K-800 K.
These values are more than three times higher of the reported binary chalcogenides [100,
101] and two times greater than those for CoSbS [108]. Calculated n-type thermopower
of PdPS in z direction is similar to FeSbS thermopower (∼365 µVK−1 along x direction
) [107], however for p-type PdPS, we obtain much higher thermopower as compared to
FeSbS. High thermopower is crucial to design a stable Pb-free thermoelectric device.

2.3.3 Behavior of electrical conductivity

The behavior of electrical conductivity with carrier concentration is opposite to that
of Seebeck coefficient. Electrical conductivity increases with increasing carrier concen-
tration. The Seebeck coefficient in PdPS has mild anisotropy in the three crystallographic
directions. However, the electrical conductivity has much higher anisotropy if we consider
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isotropic scattering rate in all directions (Fig.2.6) (a, b). Since scattering time, τ or tem-
perature dependence of τ is unknown, the absolute values of σ/τ could not be related to
the actual electrical conductivity, σ(T ). The relative values of σ/τ in different directions
are physically very significant and some of the earlier reports [122, 123] of σ/τ show that
anisotropy of binary chalcogenides calculated by similar model are highly consistent with
experimental values. The conductivity of n-type is much higher than p-type which can

Figure 2.6: Electrical conductivity σ/τ vs carrier concentration for (a) n-type and (b)
p-type PdPS at 300 K.

be explained by band structure of the PdPS (Fig.2.3), where valence bands consist mostly
of massive holes as compared to lighter electrons in conduction band. Among the three
crystallographic directions, x and y directions exhibit strong anisotropy. Unlike the x and
y-direction, the n-type PdPS in z-direction may have more electron scattering than other
directions as z-direction has both S and σ/τ the lowest of all the directions.

2.3.4 Anisotropic power factor
The performance of a thermoelectric material is assessed by the value of power fac-

tor S2σ. As power factor combines the behavior of two oppositely varying parameters,
it needs to optimize an optimum carrier concentration at which S2σ maximizes. Seebeck
usually varies linearly with carrier concentration as discussed in chapter 1, therefore σ
dominates due to its exponential behavior at moderate concentration. Large power factor
values in PdPS are highly promising for two different type of legs in a thermoelectric mod-
ule (See Fig.2.7 (a,b)). Electrical conductivity can be improved by external doping or by
alloying which can also reduce thermal conductivity. By changing the initial PdPS growth
conditions, several phases with minor variation in Pd:P:S can be obtained [114]. A ratio
of P:S slightly higher than unity shows very low resistivity ∼ 2× 10−4Ωcm [114]. There-
fore alloying can be highly effective for PdPS based thermoelectrics. High anisotropic
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Figure 2.7: Power factor vs carrier concentration for (a) n-type and (b) p-type PdPS at 300
K.

transport properties along different crystallographic directions can also play a major role
for nanostructured PdPS thermoelectric power generator (TEG). Nanostructured PdPS or
2D layered doped PdPS in a particular crystallographic direction can be used for TEG.
For τ ∼ 5 × 10−15s, power factor reaches 1589 µWm−1K−2 and 1015 µWm−1K−2 for
n-type and p-type PdPS respectively at 400 K and 1020 cm−3 carrier concentration. These
power factor values of PdPS are comparable to those of commercially used p-type (∼ 1670
µWm−1K−2) and n-type (∼ 1200 µWm−1K−2) PbTe [109].

The power factor values are also much anisotropic with n-type values superior to p-
type except in the z-direction. The anisotropy in the in-plane transport properties can be
related to the periodic fashion in which all the three atoms are aligned in PdPS (as shown
in the (Fig.2.8)). It can be seen that the position of Pd atoms is same in x- and y- directions
but that of P and S is though periodic in y but not in the x direction. This unevenness in
the arrangement of P and S atoms gives anisotropy in the in-plane properties in addition
to cross plane layered direction.

2.4 Lattice transport properties

2.4.1 Method
Lattice thermal conductivity depends upon scattering of phonons by other phonons,

defects, boundaries, charge carriers etc. As the performance of thermoelectric materi-
als depends on the thermal conductivity, we have calculated phonon transport properties
based on a recent ab-initio approach [124]. VASP code is applied to calculate the forces
and 2×2×1 supercell with 96 atoms is used for this force calculation. We have calculated
forces on all atoms for symmetry reduced atomic displacement of 0.06Å and the volume
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Figure 2.8: Anisotropic arrangement in the in-plane directions (x and y crystallographic
directions) in PdPS.

derivative for Grüneisen parameter is calculated using volume range of ±3%. The frozen
phonon approach is adopted for extracting the force constants as implemented in the pro-
gram PHONOPY [125]. We have plotted the phonon dispersion for PdPS in Fig.2.9(a)
and phonon DOS and phonon velocity distribution in Fig.2.9(b). We have found, phonon
dispersion is flat along the Γ−Z direction, and phonon velocity distribution is very low in
z crystallographic direction. Sound speed is almost 20 times lower in z crystallographic
direction of PdPS compared to bulk sound speed. Low phonon velocity in z direction
plays a crucial role in reducing thermal conductivity.

The formula for lattice thermal conductivity is generalized as given in Ref.[124],

kl(T ) =
1

3

∑
j

∫ dq

8π3
v2
jqτjqCjq (2.5)

here summation is over all the phonon bands (polarization) from acoustic to optical. The
integration is done over all the q points in the first Brillouin zone. Phonons are character-
ized by band index and q value, each phonon mode has group velocity vjq and specific
heat capacity Cjq depending upon frequency and temperature. Phonon relaxation time
is calculated considering model for anharmonic scattering as discussed in last chapter.
Model relaxation time for anharmonic scattering is taken as,

τ−1
U = pω2 T

θ̃D
e−θ̃D/3T (2.6)
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Figure 2.9: (a) Phonon dispersion of PdPS, (b) Phonon DOS and phonon velocity distri-
bution for bulk and different crystallographic direction.

where p is an adjustable parameter whose value is approximated as,

p =
1− 0.514√

γ̄2
+ 0.228

γ̄2

0.0948

h̄2γ̄2

kB θ̃DMV 1/3s
(2.7)

and s is sound speed and θD is the Debye’s temperature. There are many ways of calcu-
lating θD, however we will be using the full phonon dispersion to calculate it as defined
below,

θ̃D = n−1/3

√√√√ 5h̄2

3k2
B

∫∞
0 ω2g(ω)dω∫∞

0 g(ω)dω
(2.8)

here n is the number of atoms per unit cell and γ̄2 is mode averaged-squared Grüneisen
parameter taken over all the modes.

γ̄2 =

∑
j

∫ dq
8π3γ

2
jqCjq∑

j

∫ dq
8π3Cjq

(2.9)

γjq = − V

ωjq
∂ωjq
∂V

(2.10)

Grüneisen parameter for a single phonon mode may have negative or positive value. The
mode value of Grüneisen parameter usually varies from ∼ 0.8 to ∼ 2.0.

In addition to intrinsic scattering process (U-processes), the effect of nanostructuring
is also calculated for PdPS. Apart from intrinsic scattering, phonons get scattered at the
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boundaries of the crystal. The trend of thermal conductivity at lower dimensions is gov-
erned by the mean free path of phonons and the sample size. A diffusive type scattering
rate [126] is used for the boundary scattering,

τ−1
B = v/d (2.11)

where v is the phonon velocity and d is the diameter. The overall relaxation time is taken as
additive reciprocal relaxation time of boundary scattering and intrinsic phonon scattering.
The total value of scattering rate τ−1

T is given as,

τ−1
T = τ−1

U + τ−1
B (2.12)

where τ−1
U is scattering rate for anharmonic scattering depending upon frequency and tem-

perature and τ−1
B is boundary scattering rate independent of frequency and temperature.

Using above equations, the values of lattice thermal conductivity is calculated for dif-
ferent temperature and sample diameter values. The results of which are shown in next
section.

2.4.2 Lattice thermal conductivity calculations

The lattice thermal conductivity for all the crystalline materials has a universal shape
depending upon frequency and temperature. As at high temperature, the lattice thermal
conductivity decreases with rise in temperature. However, this decrease is much specific to
a particular material. PdPS is anisotropic material as far as electronic transport properties
were concerned in the first part of this chapter. In Fig.2.10, we plot thermal conductivity
of PdPS along different crystallographic directions for temperature range of 300 K-800 K.
Lattice thermal conductivity has very large anisotropy in the three crystallographic direc-
tions. Along the z crystallographic direction, thermal conductivity is ultra-low and more
than ten times lower than the bulk thermal conductivity. In-plane thermal conductivity val-
ues are also different similar to charge transport properties. However, the in-plane values
of thermal conductivity are quite higher, which can be reduced by alloying.

Fig.2.11 (a) reports the thermal conductivity with reducing size at 300 K. Nanostruc-
turing also has a strong connection with thermal conductivity reduction in z crystallo-
graphic direction as compared to other directions and bulk κ. In Fig.2.11 (b), we plot
relative κ with phonon mean free path (Λ) for different crystallographic directions. While
in x and y direction, Λ below µm size contributes 80% in thermal conductivity, in z di-
rection this contributes only 40%. Therefore, in the z direction, larger wavelength phonon
carries most of the heat, which can be easily blocked by nanostructuring. So larger reduc-
tion in κ along z direction is obtained as compared to bulk or x and y direction.
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Figure 2.10: Variation of thermal conductivity in different crystallographic directions and
in bulk PdPS with temperature.

2.5 Thermoelectric figure of merit

2.5.1 Effect of nanostructuring on figure of merit

The efficiency of a thermoelectric material is calculated by a parameter called figure
of merit (ZT ), which is a ratio of charge transport to heat transport in a material. Fig.2.12
(a, b) represents ZT for n-type and p-type at 300 K and 800 K. Though, in the z direction,
ZT is always higher compared to bulk for p-type, for n-type ZT along z direction starts
dominating around 500 nm due to a strong reduction in thermal conductivity. We have
obtained ZT ∼ 0.02 for bulk PdPS and ∼ 0.02 along z crystallographic direction of PdPS
for n-type and ∼ 0.01, ∼ 0.09 for p-type at 300 K. These ZT values approach ∼ 0.27, ∼
0.20 for n-type and ∼ 0.20, ∼ 1.17 for p-type at 800 K.

In the realm of 100 nm, ZT values increase to ∼ 0.05 and ∼ 0.23 for n-type and
∼ 0.03 and ∼ 0.86 for p-type at 300 K, and ZT ∼ 0.50 and ∼ 0.86 for n-type and ∼ 0.34
and∼ 5.15 for p-type at 800 K. Nanostructured p-type PdPS shows a much superior value
of ZT in the z crystallographic direction than n-type. All these values are obtained at 1020

cm−3 carrier concentration and for τ = 5× 10−15 s.
Even though bulk thermoelectric properties of PdPS may not be touching the horizon
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Figure 2.11: (a) Thermal conductivity in different crystallographic directions and in bulk
PdPS with diameter, (b) Relative contribution in thermal conductivity of phonon mean
free path.

Figure 2.12: (a) ZT with sample diameter for (a) n-type and (b) p-type.

of superior thermoelectric materials, its lower dimensions may prove much useful in ther-
moelectric applications. Specifically the layered direction has shown ultra superior values
of figure of merit theoretically.

Fig.2.13 presents ZT for bulk and nanostructured PdPS at carrier concentration range
of 1018 − 1021 cm−3 at 800 K. Significant high ZT values have been found by our theo-
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Figure 2.13: ZT of bulk and nanostructured PdPS at 800 K.

retical calculation for nanostructured PdPS in both n-type and p-type.

2.6 Conclusions
In conclusion, we have presented transport properties calculations of a potential can-

didate for high-performance thermoelectricity, palladium pnictide chalcogenide. Seebeck
coefficient found by our calculation is as high as 300 µVK−1 at 300 K and reaches to 400
µVK−1 at 800 K for both p-type and n-type PdPS and ultra low thermal conductivity of
0.11 Wm−1K−1 along z crystallographic direction at 300 K. These high Seebeck coef-
ficient values, large anisotropic power factor, and low thermal conductivity suggest that
PdPS can be very useful as a thermoelectric in the medium temperature range (300 K-800
K). To the best of our knowledge, there is no experimental or theoretical report published
on PdPS thermoelectric properties so far. These encouraging thermoelectric properties
may motivate for further experimental investigations which will also help to optimize the
thermoelectric properties of orthorhombic PdPS.
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Chapter 3

Effect of alloying on thermoelectric
properties of CoAsS and CoSbS

3.1 Introduction

The thermoelectric system is based on an environment-friendly energy conversion
technology with the advantages of small size, high reliability, no pollutants and feasibility
in a wide temperature range. Many such compounds have been analyzed to achieve bet-
ter thermoelectric properties among which there are binary compounds like Bi2Se3, PbTe
[98, 109] and ternary such as FeSbS, CoSbS, PdPS [107, 111, 112] etc and quaternary
such as Cu2CdSnSe4 [113] etc. Transition metal compounds arose with an ample number
of structures thus giving rise to a broad spectra of physical properties among them which
make them in a constant race for becoming better than the already known compounds.
This expedition for exploring better thermoelectric performance among a copious num-
ber of compounds is based either on finding a purely new compound or on modifying the
thermoelectric properties of existing compounds by specific techniques.

To enhance the thermoelectric performance of already existing compounds, different
methods have been devised like nanostructuring, doping with different elements at dif-
ferent sites in a crystal, rattling atoms, alloying with different elements etc. All these
methods either target at modifying the existing band structure to fall into the patternized
format having larger effective mass but higher mobility too and higher density of states
near the Fermi level or on the other hand steering the phonon scatterings to reduce the
thermal conductivity. Thus this increases the overall performance based on the strategy of
“phonon glass electron crystal” [127, 128]. Among these methods, alloying has remark-
able effects on the thermoelectric behavior as it produces defect atoms of different kind on
the lattice sites thus changing the volume of the overall crystal structure [127, 128].
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3.2 Alloying in pure materials
Alloying is one of the methods of introducing local disorder in the crystal lattice as

discussed in chapter 1. Alloying affects a particular range of phonons and scatter them se-
lectively and thus enhances the thermoelectric figure of merit of the alloy. It is substitution
of other atoms in the host crystal structure at lattice sites. In literature, the thermal con-
ductivity of binary compound Cu2X (where X stands for S, Se, Te) is reduced in case of
Cu2S0.52Te0.48, Cu2S0.08Se0.92 from 0.8 Wm−1K−1 to 0.4 Wm−1K−1. The alloy ZT hikes
to around 2.2 at 1000 K, whereas the pure material ZT stays around 1.5 [129, 130, 131].
SnTe when alloyed with Mg with composition Sn0.94Mg0.09Te reaches in ZT ∼ 1.2 at 860
K [132]. Sn1−xPbxSe alloy has reduced thermal conductivity from 1.4 Wm−1K−1 to 0.85
Wm−1K−1 for x=0.12. The intrinsic ZT of polycrystalline SnSe is around 0.85 at 800
K. The value of ZT after alloying enhances due to much reduced thermal conductivity
[133, 134]. Half heusler alloy of NbFeSb with Ta has shown a significant increase in ZT .
(Nb1−xTax)0.8Ti0.2FeSb (x varies from 0 to 0.4) has a maximum ZT ∼ 1.6 at 1200 K with
much reduced thermal conductivity at x = 0.4 [135].

Formation of an alloy is conditioned to the structure of forming components of alloy.
The crystal structure of the forming materials should be approximately similar. This is
easily achieved by choosing materials with iso-electronic elements which usually tend to
make similar kind of structure. Among many chalcogenides of Co, paracostibite CoSbS
has orthorhombic structure with space group Pbca, it shows semiconducting nature and
has been explored for thermoelectric performance. CoAsSe and CoSbSe have also been
synthesized long back in 1974 by H. Nahigian and both are shown to have orthorhom-
bic structure [136]. CoAsS, also known as cobaltite possesses similar structure to that of
iron pyrite FeS2, having same number of valence electrons and due to similarity to pyrite,
has semiconducting nature. It has been predicted that many such compounds can be ob-
tained by substituting three of its components by other suitable elements [137]. Recently,
there has been an experimental research on the Sb alloyed pseudo-ternary compounds
GeTe(1−2x)SexSx in which remarkable reduction (∼ 76%) of thermal conductivity has been
observed in GeTe on alloying it with Se, S and Sb atoms up to a small concentration [138].
Thus a similar substitution as suggested by Hulliger can surely guide us through making
different alloys for this compound in achieving good thermoelectric properties. CoAsS
exists in two different forms based on the formation temperature, one is disordered pyrite
structure formed at 800 K-850 K and the other one is ordered structure formed at lower
temperatures [139]. Among these two forms, we are using the ordered orthorhombic form
having space group Pca21 which is synthesized in the laboratories[139].

3.3 Electronic structure calculations

3.3.1 Method
DFT calculation is performed on CoAsS and CoSbS for our present calculations,

among which there has been already considerable theoretical and experimental published
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data on thermoelectric performance of paracostibite CoSbS [107, 111, 108], however the
cobaltite CoAsS has not yet been investigated thoroughly apart from some preliminary
electrical properties studies [136]. Both the cobaltite and paracostibite are orthorhom-
bic in nature. DFT calculation is done using PBE functional [117] and PAW basis set as
embedded in VASP [118, 119].

Figure 3.1: Crystal Structure of CoAsS (a) Front view (b) Side view (c) Top view and
CoSbS (a) Front view (b) Top view (c) Side view, direction x, y and z represents Γ −X ,
Γ − Y and Γ − Z crystallographic directions in the first Brillouin zone in CoAsS and
CoSbS.

The lattice sides a, b, and c of CoAsS are obtained as 5.576 Å, 5.578 Å, and 5.582
Å respectively after performing the self-consistent calculations using VASP on unit cell
containing 12 atoms. Similarly for CoSbS relax structure, the lattice parameters are 5.833
Å, 5.966 Å, and 11.691 Å choosing unit cell of 24 atoms, where the experimentally re-
ported lattice constant is 5.576 Å for CoAsS [136] and 5.834 Å, 5.953 Å, and 11.664 Å
for CoSbS [136]. The k-points for structure optimization in case of CoAsS and CoSbS
are taken (4×4×4) and (2×2×1) with energy cut off values around 350 eV. In the or-
dered structure, the anions occupy the lattice sites in the same pairing as 4 As-ions will
be lying in the lower part of the cube and the 4 S-ions lie in the upper half of the cube
and vice-versa Fig.3.1 (a). Earlier electrical measurements on the compound CoAsS were
carried out showing the electrical resistivity of 1.49×10−1 Ωcm which is lesser than that
of CoSbS (1.12 Ωcm) and by substitution of S by heavier Se, a much lower resistivity of
4.57×10−4 Ωcm has been reported [136].
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3.3.2 Electronic band structure

The electronic band structure calculations are carried out for both the compounds and
Fig. 3.2 (a) represents CoAsS electronic band structure and density of states (DOS) plot.
The theoretically calculated band gap for CoAsS is 0.75 eV, and 0.33 eV for CoSbS,
where the experimentally measured values in Ref.[136] are 0.05 eV and 0.11 eV respec-
tively. The density of states for p-type CoAsS is very high near Fermi level, which is
good for electronic transport properties as temperature rises. In recent publications of
electronic band structure and electronic properties of CoSbS by using the linearized aug-
mented plane wave (LAPW) code WIEN2K and experimental date have reported much
higher band gap of 0.5 eV and 0.37 eV respectively and the reported electrical conductiv-
ity in Ref. [111, 108] is much higher as compared to values given in Ref. [136] values.
Our electronic structure calculations based on VASP agrees with these recent calculations
in Ref. [111, 108]. We have further calculated the electronic transport properties of both
the compounds. We have compared our theoretical calculations with the experimental
data reported on CoSbS [111]. In the Fig.3.2 (b), there are many small pockets in the band
structure in the valence band which is favorable for the p-doping and good thermoelectric
properties optimization. The conduction band has much flat regions at Γ−point, which
are directly responsible for the higher Seebeck coefficient, S of the compound. In com-
parison, the valence band has replicate maxima at Γ − X , Γ − Y and Γ − Z direction
which are sharper giving lesser Seebeck coefficient. However, for the higher temperature,
as there are more number of smaller pockets in the valence band than conduction band,
the electrical conductivity of p-type will rise sharply. Also the conduction band second
minima are lesser flat so rise in Seebeck coefficient with temperature will be slower in
n-type as compared to the p-type which has a more flat second maxima. And apart from
that, the p-type has a high density of states near the Fermi level which is also good for
enhancing the thermoelectric properties, thus making CoAsS a very prominent candidate
to be a good p-type TE material.

3.4 Electronic transport properties

3.4.1 Method

The electronic transport properties have been calculated using Boltzmann transport
equation with constant value of relaxation time embedded into the BoltzTraP software
[120]. The equations used to calculate transport coefficients are same as discussed in
chapter 1. The electrical conductivity data of CoAsS has been calculated by using con-
stant relaxation time by fitting the experimental data of CoSbS with the current calcu-
lations. Relaxation time, τ will depend on different scattering mechanisms involved in
the materials, depending on the scattering mechanism, τ has different temperature depen-
dence. Here we consider an isotropic τ as 1.8 × 10−18 T−1.2 s for CoSbS at concentration
of 4× 1020 cm−3, and the same has been taken for CoAsS transport calculations. Since As
atom is lighter than Sb, thus apart from structural differences, there can be a slight higher
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Figure 3.2: Electronic band structure of (without spin-orbit coupling) (a) CoAsS and (b)
CoSbS.

value of relaxation time for the CoAsS based on the mass difference which will further
increase the electrical conductivity, thus enhancing the power factor values calculated.
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Figure 3.3: (a) Electrical conductivity, σ vs temperature, T and Seebeck coefficient, S vs
T for CoSbS, CoSbSe, and CoSbS0.5Se0.5 alloy. The scatterer represents the experimental
values (Ref. [140]), and solid lines are theoretical values for S and dashed lines are for σ.
(b) Power factor vs T .

An alloy is supposed to be an average of its component structures. The electronic
properties of alloy can be calculated by considering the virtual crystal approximation (as
discussed in chapter 1). We have calculated the power factor of the recently reported
CoSbSexS1−x alloy by using the virtual crystal approximation (Fig.3.3). We have found
very good agreement of theoretical calculations of experimental measurement of Seebeck
coefficient for pure and alloy materials. Theoretical and experimental power factor also
match with the virtual crystal approximation. We have calculated the power factor of alloy
considering the virtual crystal approximation as,

S2σT = x(S2
AσAT ) + (1− x)(S2

BσBT ) (3.1)

where the (S2
AσA) and (S2

BσB) are the power factors of two components A and B of the
alloy.

3.4.2 Seebeck coefficient and electrical conductivity
3.4.2.1 Calculations for CoAsS and CoSbS

The calculated transport properties have been compared in the case of CoSbS with the
Ref.[111] at 300 K and as found from the Fig.3.4, there is a maximum agreement (∼ 93%)
between the theoretical CoSbS and experimental data at concentration of ∼ 1021 cm−3

and the maximum mismatch of ∼ 13% is observed between experimental and theoretical
values of Seebeck coefficient at concentration of 1020 cm−3. The calculated values of
Seebeck coefficient for n-type CoAsS is ∼ 193 µVK−1 and for p-type, ∼ 154 µVK−1 and
∼ 155 µVK−1, ∼ 145 µVK−1 for CoSbS respectively at 300 K temperature and 4 × 1020

cm−3 carrier concentration. It has been observed that Seebeck coefficient for CoAsS is
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Figure 3.4: Seebeck coefficient, S of both CoAsS and CoSbS (a) n-type and (b) p-type
at temperature 300 K with carrier concentration along with the experimental data of the
Ref.[111] for n-type CoSbS.

higher than that of CoSbS for the same charge carrier concentration of 4 × 1020 cm−3 for
both n and p-type at 300 K (Fig.3.4). The Seebeck coefficient data has been calculated for
the temperature range of 300 K-800 K. As the temperature is increased up to 800 K, the
Seebeck coefficient keeps on rising for CoAsS as shown in Fig.3.5 whereas in the case of
CoSbS, it starts saturating around 650 K, but this bend in the Seebeck curve smooths out
as we increase the concentration.

The electrical conductivity values for p-type CoAsS are more enhanced as shown in
Fig.3.6, which is clear from the band structure as there are several maxima lying just below
the Fermi level. Due to substantially higher conductivity values ∼ 304 Ω−1cm−1 of the
p-type than n-type∼ 98 Ω−1cm−1, the power factor values for the p-type CoAsS are more
enhanced than n-type and are even more superior to n-type CoSbS by a factor of two. The
power factor values are calculated for the same relaxation time τ and concentration of 4×
1020 cm−3 and data has been compared with the CoSbS experimental data [111] turning
up with a good agreement in all temperature range.

3.4.2.2 Calculations for alloy

We have studied the method and validity of virtual crystal approximation to study the
properties of alloy in Sec.3.4.1. It can be seen that this average approximation works good
for Seebeck coefficient as it does not depend upon the relaxation time, however electrical
conductivity for alloy case differs from virtual crystal approximation values. Apart from
this, the power factor values quite match in the theoretical and experimental case. Similar
method has been used to calculate the alloy properties of CoAsS and CoSbS. The power
factor values are always average of the two participating materials, and resultant values
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Figure 3.5: Variation of Seebeck coefficient, S for CoAsS and CoSbS (a) n-type and
(b) p-type at carrier concentration, 4 × 1020 cm−3 with temperature, T along with the
experimental data of the Ref.[111] for n-type CoSbS.

bend towards the major component used in the alloy as shown in Fig.3.7 (a,b). The power
factor of CoAsS is superior to CoSbS for both n-type and p-type data.

3.5 Lattice transport properties

3.5.1 Method

Another major component of TE properties is the thermal conductivity, κ. For calcu-
lating it, the phonon band structure has been calculated using the PHONOPY code [125].
Phonon band structure for both the CoAsS and CoSbS has been presented in Fig.3.8 (a,b).
The speed of sound as seen from the acoustic modes is higher in case of CoAsS ∼ 5136
ms−1 than CoSbS ∼ 4292 ms−1, so as the thermal conductivity of CoAsS is also higher
than CoSbS which has lower sound speed. As the thermal conductivity is highlighted
mainly due to the lattice part in semiconductor material, we have calculated the lattice
thermal conductivity using the recent ab-initio approach [124, 112]. The force constant
calculations are carried out via making a CoAsS supercell of 2 × 2 × 2 using VASP
code with 96 atoms using the frozen phonon approach as implemented in the program
PHONOPY [125]. Similarly, the force constant calculations for CoSbS are carried out by
constructing a supercell of 2 × 2 × 1 constituting 96 atoms. We have calculated forces on
all the atoms in both the compounds for symmetry reduced atomic displacement of 0.06
Å and the volume derivative for Grüneisen parameter is calculated using volume range of
±1%. The thermal conductivity is calculated from the generalized formula as given in the
previous chapter by considering the anharmonic scattering. We have incorporated alloy
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Figure 3.6: Electrical conductivity σ in temperature range of 300 K-800 K for CoAsS
and CoSbS (a) n-type and (b) p-type at concentration of 4 × 1020 cm−3 along with the
experimental data of n-type CoSbS [111].

scattering into the scattering of phonon transport via following equations. The inverse
relaxation time corresponding to alloy scattering [141, 142]

τ−1
A =

ω4δ3Γ

4πv3
(3.2)

where ω is the angular frequency of the alloy, v is the speed of sound in the alloy, δ3 is the
atomic volume of the alloy given as

δ3 = x(VA) + (1− x)(VB) (3.3)

where the VA and VB are the atomic volumes of the component A and B and Γ is the
scattering cross section of the impurity atom and given as

Γ = x(1− x)(
∆M

M
)2 (3.4)

where ∆M is given as,
∆M = MA −MB (3.5)

M = xMA + (1− x)MB (3.6)

where MA and MB are the masses of the components A and B in the alloy and x is the
fractional concentration of A in the alloy.

3.5.2 Effect of alloying on thermal conductivity
The thermal conductivity data is plotted for both CoAsS and CoSbS along with the un-
doped (pure) and doped experimental data of CoSbS [111]. The calculated thermal con-
ductivity of CoAsS is quite higher∼ 12 Wm−1K−1 at temperature of 300 K (Fig.3.9 (a,b))
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Figure 3.7: Power factor vs T for CoAsS and CoSbS in temperature range of 300 K-800
K (a) n-type and (b) p-type at concentration of 4× 1020 cm−3 along with the experimental
data of n-type CoSbS [111].

Figure 3.8: Phonon band structure of (a) CoAsS and (b) CoSbS.

than other thermoelectric materials like PbTe, Bi2Se3 or even CoSbS. As the power factor
of CoAsS is having superior values, a small reduction in thermal conductivity can pro-
vide very efficient ZT . As concluded by Hulliger [137], the cobaltite CoAsS can have
many substitutions in its atomic positions which can be used for finding a fine alloy of the
compound.

The effect of alloying has been calculated for the CoAsxSb1−xS, CoAsSxSe1−x, and
CoSbSexS1−x (Fig.3.10) and it is observed that the reduction of thermal conductivity
from 13 Wm−1K−1 to 5.37 Wm−1K−1 is maximum when the concentration of Sb in the
CoAsxSb1−xS alloy is 80%, as the reduction is around 2 times thus increasing the figure of
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Figure 3.9: Thermal conductivity κ vs temperature T of alloying for (a) CoAsS, (b) CoSbS
along with the pure and doped experimental data of CoSbS Ref.[140].

Figure 3.10: Thermal conductivity κ vs fractional concentration x of alloying for three
alloys CoAsxSb1−xS, CoAsSxSe1−x, and CoSbSexS1−x at 300 K along with the experi-
mental data of CoSbSexS1−x Ref.[140].
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Figure 3.11: Figure of merit ZT vs temperature T for pure CoAsS, CoSbS and alloyed
CoAsxSb1−xS (a) n-type (b) p-type at carrier concentration 4 × 1020 cm−3 along with the
experimental data of n-type CoSbS.

merit with the similar scale. A 44% reduction in thermal conductivity is also observed for
20% of Sb in CoAsxSb1−xS alloy. It will play a significant role to further optimize p-type
TE materials based on CoAsxSb1−xS alloy. There is further reduction of thermal conduc-
tivity when CoAsS is alloyed with Se in place of S giving the reduced value of thermal
conductivity of 5.36 Wm−1K−1 in the Se concentration of 0.4. Such reduced values of
thermal conductivity on alloying will increase the ZT to higher values.

3.6 Thermoelectric figure of merit

3.6.1 Effect of alloying
The figure of merit calculations are carried out in the carrier concentration of 4 × 1020

cm−3 (Fig.3.11). The figure of merit calculations for the alloy case has been done using
the formula

ZT =
x(S2

AσAT ) + (1− x)(S2
BσBT )

κalloy
(3.7)

where the (S2
AσA) and (S2

BσB) are the power factors of the two components A and B of
the alloy and the κalloy is the value of thermal conductivity of alloy as calculated above.

The figure of merit of p-type CoAsS is higher than that of n-type in between the tem-
perature range of 300 K-800 K. As we reach the higher temperature range, n-type CoAsS
starts dominating in this concentration range and becomes ∼ 0.37 for both n-type and p-
type at temperature of 800 K. As the fraction of alloying is incorporated, the n-type will
start overcoming the p-type values and will reach 0.45, a bit higher than p-type value of
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Figure 3.12: Variation of figure of merit ZT with fractional concentration of alloying x
in CoAsxSb(1−x)S at different temperatures such as 300 K, 600 K and 800 K. The filled
scatter are for n-type and empty scatter are for p-type at different temperature.

0.41. As alloying is increased, the ZT values start becoming superior than the pure CoAsS
and both n-type and p-type CoAsS show raised ZT values. With increasing the alloying
concentration, the n-type starts dominating in the temperature regime 300 K-800 K and
reaches much higher values of ZT 0.45 for n-type at temperature 800 K.

The behavior of ZT is different for the two charge carriers. As it can be seen in
the Fig.3.12, the ZT values show up the maximum for n-type and p-type at different
fractional values of alloying. When x = 0, the n-type dominates as it is purely CoSbS and
as x increases, the p-type starts dominating. We have found maximum ZT for n-type in
CoAs0.2Sb0.8S alloy and for p-type, the maximum ZT is obtained for CoAs0.8Sb0.2S alloy
at temperature of 800 K. At 300 K, ZT values for n-type and p-type in these alloys are
0.019 and 0.029, and these values approach 0.45 and 0.41 respectively at 800 K.

Almost similar ZT for both n-type and p-type can be achieved by varying As percent-
age in CoAsxSb(1−x)S alloy. For a TE device, same ZT values are important for both
n-type and p-type, and alloying can play a crucial role to achieve this. Although many
other properties, such as thermal expansion coefficient, thermal and mechanical stability
and doping by n-type and p-type element control the possibility of designing a TE device,
the almost similar ZT values for both p-type and n-type in the temperature range of 300
K-800 K for CoAsxSb(1−x)S alloy can lead to a TE device based on abundant and cheap
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metal chalcogenide.

3.7 Conclusions
The ordered cobaltite CoAsS is concluded to show good thermoelectric behavior in both
n-type and p-type based on the different conditions of doping and alloying. The power
factor value for the p-type CoAsS is much superior to n-type. The thermal conductivity
values are higher ∼ 13 Wm−1K−1, so on reducing this value by alloying, the figure of
merit ZT values rise for both n-type and p-type. The substantial superiority of charge
carriers depend upon the alloy concentration and temperature leading to maximum value
of n-type ZT ∼ 0.45 and that of p-type ∼ 0.41. Thus, alloyed cobaltite and paracostibite
is shown to have enhanced thermoelectric properties which can be utilized as both n-type
and p-type in different temperature ranges and concentration. This work provides insight
into rational design of alloy for TE device, and the high ZT values of CoAsxSb1−xS alloy
is good enough to encourage further investigation of this alloy.
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Chapter 4

Thermoelectric figure of merit and
thermal conductivity of type-I clathrate
alloy nanowires

4.1 Introduction

Understanding of thermal transport properties in complex nanomaterials can lead
to the design of many modern devices such as thermoelectric [10, 143], optoelectronic
[144, 145], photovoltaics [145, 146] and storage devices [147]. The ability to optimize
the thermoelectric performance of materials by minimizing its lattice thermal conductiv-
ity opens for the fabrication of a much larger category of efficient thermoelectric mate-
rials. There is a close relation between the complexity of the crystal structure and the
thermal conductivity. Thermal conductivity is directly related to the phonon velocities in
the system, which in turn can be strongly anisotropic depending on the crystal structure
[112]. The anharmonic scattering rates also depend intricately on the crystal structure and
constituent atoms [65]. Besides the intrinsic properties, alloying, substitution and nano-
structuring have been found to be very effective in controlling the thermal conductivity of
large range of materials. For thermoelectric applications, a semi-conducting material with
low (lattice) thermal conductivity and high electrical conductivity is a long-standing quest.
Clathrates are one type of compounds which show such behavior and have been reported
as potential efficient thermoelectric materials due to their very low thermal conductivity
[22, 148, 149, 150].

4.2 Crystal structure of clathrate

Clathrates are made up of a guest-host assembly with a complex crystal structure, Fig.4.1,
and the anharmonicity of the atoms depends on the chemical bonding between the dif-
ferent atoms. The vibrations of the guest atoms depend on their position in the clathrate
cage [151] as off-center and on-center vibrations of the guest atoms will be very different.
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Figure 4.1: Ba8Cu6Si40 clathrate where red atoms are Ba, dark blue atoms are Si and light
blue atoms are Cu.

Type-I and II clathrate structures with the general formulas A8E46 and AxE136 (0<x< 24)
(where “A belongs to alkali or alkaline earth metals and “E belongs to group 14 of the pe-
riodic table), both have tetrahedral bonded networks as host structures. Type-II clathrates
have partially filled cages in contrast to the completely filled type-I clathrates. Type-I and
II clathrates exhibit a comparable lattice thermal conductivity. However, most of the type-
II fully filled clathrate structures are metallic and have a low Seebeck coefficient. On the
other hand, type-I clathrate compounds are generally narrow band gap semiconductors.
Due to this, they have desirable electronic properties to fall in the category of potential
thermoelectric materials [152, 153, 154].

Clathrates have a complex structure where a cage-like structure hosts looser bound
atoms which are usually heavier in mass and have very low energy optical modes, also
known as rattler modes. These low energy localized modes can give rise to acoustic
phonon scattering, thus reducing the thermal conductivity. In Ref.[124], it has been ob-
served that the complex crystal structure and rattler atom both contribute to reducing the
lattice thermal conductivity by increasing anharmonicity by a factor of six and reducing
sound speed by a factor of two as compared to diamond-Si structure. Recently, it has been
reported that the guest atom significantly increases the anharmonic scattering and very
high scattering rate in the type-I Ba8Si46 structure compared to Si46 [155]. The inclusion
of Ba and Cu also modifies the electronic transport, as the Ba guest atoms provide valence
electrons and fill the bands of the covalent network, whereas the inclusion of Cu atoms
also helps in tuning the cage electronic structure [152].

We have studied the thermal properties of clathrate alloys with special focus on type-I
Silicon containing clathrates which are potentially useful for application in Silicon-based
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technology. Furthermore, the effect of nano-structuring on this complex structure has
been investigated for further optimization of thermoelectric efficiency. The lattice thermal
conductivity is calculated based on a model approach to the relaxation time approximation
(RTA) for phonon transport. We have included anharmonic scattering, alloy scattering and
boundary scattering for the relaxation time calculation as discussed in previous chapters.

4.3 Electronic transport properties
Clathrates of type-I have cubic structure with space group Pm3̄n. The relaxed struc-

ture of cubic clathrates Ba8Cu6Si40 and Ba8Cu6Ge40 are obtained using VASP [119] with
PBE correlation functional [118]. Energy cut off was set to 300.0 eV and k-mesh was
converged with k-points 4×4×4. The lattice constant of the cubic clathrates comes out to
be 10.38 Ȧ.

The electronic transport coefficients were calculated using the Boltzmann transport
equation coded in BoltzTraP software [120]. The data was fitted with the concentration of
experimental alloy [156]. The concentration of Ba8Cu6Si40 and Ba8Cu6Ge40 was chosen
to fit the data was 1.12×1021 cm−3 and 1.57×1021 cm−3 respectively. The relaxation time
fitted with the experimental data [156] was 1.8×10−15 s.

Figure 4.2: (a) Seebeck coefficient and (b) Electrical conductivity for Ba8Cu6Si40,
Ba8Cu6Ge40 and Ba8Cu6Si17Ge23.

The calculation of Seebeck coefficient and electrical conductivity for Ba8Cu6Si40,
Ba8Cu6Ge40 and Ba8Cu6Si17Ge23 is shown in Fig.4.2. The data is sufficiently matching
with the experimental data for alloy. The calculation of Seebeck coefficient and electri-
cal conductivity for alloy is done using virtual crystal approximation as discussed in last
chapter.
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4.4 Lattice transport properties

4.4.1 Method
The phonon dispersion of the type-I clathrates Ba8Cu6Si40, Ba8Cu6Ge40 and diamond-

Si structures have been calculated using the frozen phonon approach as implemented in
PHONOPY [125]. The forces are calculated on the atoms using 54-atoms unit cells using
VASP [119]. The forces on all atoms are calculated using the PBE-GGA functional and a
300 eV cut-off energy. The forces on all the atoms in both Ba8Cu6Si40 and Ba8Cu6Ge40

clathrates are calculated with symmetry reduced atomic displacement of 0.03 Ȧ and the
volume derivatives for the Grüneisen parameter are calculated using a volume range of
±1%. A k-grid of size (4 × 4 × 4) is used for calculating the forces. The dynamical
matrix calculations are carried out on denser k-point mesh (20 × 20 × 20). Similarly, for
the diamond-Si structure, the Gruneisen parameter and thermal properties are calculated
and compared with the clathrate structure.

Figure 4.3: Phonon band structure along high symmetry direction for (a) Ba8Cu6Si40 and
(b) Ba8Cu6Ge40.

Lattice thermal conductivity of a material is related to how the energy is being trans-
ferred across the whole lattice by each phonon mode. The phonon band structures of
Ba8Cu6Si40 and Ba8Cu6Ge40 are shown in Fig.4.3. The acoustic modes of both Ba8Cu6Si40

and Ba8Cu6Ge40 clathrates have similar slopes. However, the Ba8Cu6Ge40 has much lower
energy optical phonon modes and the bands are flatter compared to Ba8Cu6Si40.

4.4.2 Atom-wise calculation of anharmonicity
From the calculation of atomistic contribution of the Gruneisen coefficient of diamond-

Si (Fig.4.4(a)), Ba8Cu6Si40 clathrate (Fig.4.4 (b)), and Ba8Cu6Ge40 clathrate (Fig.4.4 (c))
by its constituent atoms, it is found that in Ba8Cu6Si40 and Ba8Cu6Ge40, the Ba atoms have
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Figure 4.4: Atomistic contribution of Gruneisen parameter in (a) Diamond-Si, (b)
Ba8Cu6Si40 and (c) Ba8Cu6Ge40.

the largest contribution to Grüneisen parameter in lower energy phonon modes. The Ba
atoms contribution are∼ 10 times higher as compared to Si atoms and∼ 3 times higher as
compared to the Cu atoms in both the clathrate structures. Contributions from the frame-
work atoms to the Grüneisen coefficient in both Ba8Cu6Si40 and Ba8Cu6Ge40 are very
similar (see Fig.4.4). The thermal conductivity due to phonons is calculated from the RTA
as discussed in chapter 2. Overall scattering includes anharmonic, alloy and boundary
scattering mechanisms. The calculated value of Debye temperature for Ba8Cu6Si40 is 128
K and for Ba8Cu6Ge40 is 83 K respectively. The mode squared Grüneisen parameter for
the Ba8Cu6Si40 and Ba8Cu6Ge40 are 1.92 and 1.89 respectively. The transport mode distri-
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Figure 4.5: Phonon DOS (black line), velocity density distribution (blue line) and transport
distribution (red line) in (a) diamond-Si, (b) Ba8Cu6Si40 and (c) Ba8Cu6Ge40.

bution, (gv2C/ω2), and velocity distribution in Ba8Cu6Si40, Ba8Cu6Ge40 and diamond-Si,
Fig4.5 (a, b, c), are calculated following Ref. [65]. Due to the strong anharmonicity at
low energy due to the guest Ba atom, Ba8Cu6Si40 has a sharp decrease in transport mode
distribution. In diamond-Si, a broad energy mode contributes in thermal transport, these
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modes sharply decrease in the clathrates due to anharmonicity of Ba atoms.

4.4.3 Effect of alloying on total thermal conductivity
Alloy scattering is incorporated in phonon transport by atomistic mass difference in the
alloy as given in chapter 3. The scattering rate due to alloy scattering is calculated as given
in Ref.[157, 158]. The calculated speed of sound is 2872 ms−1 for the Ba8Cu6Si17Ge23

clathrate alloy, whereas the speed of sound in the pure compounds Ba8Cu6Si40 and Ba8Cu6Ge40

is calculated as 3297 ms−1 and 2559 ms−1 respectively.
The total thermal conductivity (κT ) due to phonons and electrons is plotted for Ba8Cu6Si40,

Ba8Cu6Ge40 and Ba8Cu6Si17Ge23 in the Fig.4.6 with the experimental data from Ref.[156,
159]. The experimental data includes both lattice and electronic transport. The electrical
conductivity is fitted with the experimental data and the fitted value of electronic relaxation
time is ∼ 1.8 × 10−15s. The electronic thermal conductivity of Ba8Cu6Si17Ge23 clathrate
alloy is calculated as,

κel = x(κelA) + (1− x)(κelB) (4.1)

where κelA and κelB are the electronic thermal conductivities of two compounds A, B. The
total thermal conductivity for pure and alloy compounds is calculated as κT = κph + κel,
where κph and κel are phonon and electronic thermal conductivities respectively of pure
compounds Ba8Cu6Si40, Ba8Cu6Ge40 and Ba8Cu6Si17Ge23 clathrate alloy. The plotted
data is sufficiently capturing the transport of heat in the pure clathrate Ba8Cu6Si40 and
Ba8Cu6Si17Ge23 clathrate alloy.

The total thermal conductivity of the Ba8Cu6Si40(1−x)Ge40x clathrate is calculated by
tuning alloying and nano-structuring. The total thermal conductivity of Ba8Cu6Si40(1−x)Ge40x

is plotted for varying alloy concentration at temperature of 400 K in Fig.4.6 and it is ob-
served that the value of the pure Si-clathrate Ba8Cu6Si40 is reduced by 40% when the
alloying concentration is ∼ 50% . This reduction is mainly due to a 50% reduction of
the phonon lattice thermal conductivity from 1.64 Wm−1K−1 to 0.80 Wm−1K−1. The
theoretical values for the total lattice thermal conductivity is in good agreement with the
experimental values for pure Si-clathrate Ba8Cu6Si40 and Ba8Cu6Si17Ge23 clathrate alloy
[156, 159].

4.4.4 Effect of nanostructuring on total thermal conductivity
The clathrate lattice thermal conductivity can be further reduced by around ∼ 90% by
nano-structuring compared to the pure Ba8Cu6Si40 clathrate (Fig.4.7 (a)). Boundary scat-
tering is incorporated using a diffusive model as discussed in chapter 2. Such a model
has been shown to predict the thermal conductivity of Si nanowires [160] and Si1−xGex
alloy nanostructure [126, 161] accurately for nanostructure with sizes larger than 20 nm
[162]. The phonon lattice thermal conductivity (κph) of Ba8Cu6Si17Ge23 clathrate alloy
nanowire with a diameter of 30 nm is found to be 0.15 Wm−1K−1. The total thermal
conductivity, κT for the Ba8Cu6Si17Ge23 clathrate alloy nanowire is ∼ 0.50 Wm−1K−1.
In Fig.4.7 (b), as we decrease the nanostructure of the alloy, more phonons get scattered.
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Figure 4.6: Thermal conductivity of (a) Ba8Cu6Si40, (b) Ba8Cu6Ge40 and (c)
Ba8Cu6Si17Ge23 alloy due to phonons (dashed line) and electrons (dotted line) with tem-
perature along with experimental data from Ref.[156] and [159]. Solid lines are for total
thermal transport due to both phonons and electrons transport.

The cumulative thermal conductivity is plotted for the mean free path (MFP) range in dif-
ferent compounds Fig.4.7(b). It has been seen that as the wavelength of the heat carrying
phonons decreases, the cumulative contribution sharply decreases for both pure diamond-
Si and type-I Ba8Cu6Si40. The behavior of Ba8Cu6Si17Ge23 clathrate alloy and Si0.5Ge0.5

alloy is similar. Alloy scattering due to atomistic mass difference strongly reduces the heat
transport by short wavelength phonon. Therefore, thermal conductivity in both the simple
Si1−xGex alloy and Ba8Cu6Si40(1−x)Ge40x clathrate alloy is reduced as compared to the
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pure materials. A large reduction in thermal conductivity is also possible in the complex
structure like clathrates by increasing the atomistic mass difference. The thermal conduc-
tivity profile of diamond-Si and Si-clathrate Ba8Cu6Si40 is quite similar at large phonon
wavelength but as the wavelength of phonon decreases, the effect of the clathrate struc-
ture starts impinging. As the phonon wavelength for Si-clathrate Ba8Cu6Si40 decreases,
the heat conduction also reduces which is indicative of the complex structure. Nano-
structuring has different effect for pure diamond-Si and Ba8Cu6Si40 clathrate. We can
see here that the alloying decreases the phonon lattice thermal conductivity by 50% and
nano-structuring reduces the same by ∼90% with ultra-low values near 0.15 Wm−1K−1

(Fig.4.7(a)). The scattering rates of the nanostructure are determined by its dimensions.
For clathrates, more than 90% of heat is carried by the phonons having wavelength more
than 10 nm (See Fig.4.7(b)). Nano-structuring can block these heat carrying phonons very
effectively. Hence, we observed a large reduction in thermal conductivity in nanostructure
clathrates alloy and found an ultra-low thermal conductivity in semiconducting materials.
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Figure 4.7: (a) Total thermal conductivity of Ba8Cu6Si(1−x)40Ge40x clathrate alloy (bulk)
and clathrate alloy nanowire at 400 K along with the experimental data (Ref.[156, 159])
and (b) cumulative contribution of phonon lattice thermal conductivity by phonon mean
free path.

4.5 Thermoelectric figure of merit
Experimentally, the thermoelectric figure of merit, ZT , of type-I Ba8Cu6Si40 clathrate

is reported to be 0.07 with a total thermal conductivity of 2.40 Wm−1K−1 at 400 K [159].
The reported ZT of Si clathrate is low compared to other Si based materials. The figure
of merit for the alloy is calculated according to the formula,

ZT = (x(S2
AσAT ) + (1− x)(S2

BσBT ))/κalloy (4.2)
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where x is the fractional concentration of the pure compoundA and rest is of the other pure
compound B. In the numerator, the S2

AσA and S2
BσB are power factors for compounds A

and B respectively. The denominator κalloy is total thermal conductivity of clathrate alloy
comprising of phonon and electron part as κalloy = κph + κel. The value of figure of merit
for bulk and nanometer size is shown in the Fig.4.8. The value of figure of merit for bulk
clathrate alloy is around 0.17 at temperature ∼ 400 K with total thermal conductivity of
1.18 Wm−1K−1. The ZT values can be further optimized to ∼ 0.39 for Ba8Cu6Si17Ge23

clathrate alloy nanowire (diameter 30 nm) with the calculated total thermal conductivity
0.50 Wm−1K−1 and considering electronic properties (electrical conductivity (σ) (0.022×
106 Sm−1), Seebeck coefficient (S) (159 µVK−1)). For the electronic properties, there are
minimal effects of alloying [163] and nano-structuring and the predicted ZT for clathrate
alloy nanowire is encouraging for further experimental investigation of this system.

Figure 4.8: (a) Figure of merit (ZT ) with temperature for Ba8Cu6Si40, Ba8Cu6Ge40 and
Ba8Cu6Si17Ge23 for (a) Bulk and (b) 30 nm.

4.6 Conclusions

In conclusion, we have found a significant reduction in the lattice thermal conductiv-
ity of type-I Si-clathrate Ba8Cu6Si40 by introducing alloy and boundary scattering. Alloy
scattering has been shown to reduce the lattice thermal conductivity of pure Si-clathrate
Ba8Cu6Si40 from 1.64 Wm−1K−1 to 0.80 W/m-K in Ba8Cu6Si17Ge23 clathrate alloy at 400
K. Furthermore, the effect of boundary scattering is calculated and there has been seen
a reduction of the clathrate lattice thermal conductivity to 0.15 W/m-K in case of 30 nm
sized Ba8Cu6Si17Ge23 clathrate alloy nanowire. Such reduced values of the nanostructured
clathrate alloy can direct to make good performing Si based thermoelectrics. Si1−xGex al-
loy has very low ZT ∼ 0.1 at room temperature. A nanowire of Ba8Cu6Si17Ge23 clathrate
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alloy with ZT ∼ 0.40 around room temperature can be useful for micro refrigeration in
Si-chips. It can also be very useful for heat barrier application in nanoelectronics.
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Chapter 5

Summary and future perspectives

Looking towards the conclusive remarks, we have assessed the effect of two techniques
alloying and nanostructuring on the performance of various thermoelectric systems. A
worth appraised values of figures of merit of transition metal compounds have been seen in
this thesis. As thermoelectric systems urge the unison of contradictory properties, there is
a vast field of research for finding materials with such properties. Apart from finding new
materials, there is a grand room for screwing the existing materials for better performance.

In the first instance, as there are binary chalcogenides which have shown good ther-
moelectric properties, we have selected the ternary materials in metal chalcogenides. We
have chosen the orthorhombic material Palladium Phosphide Sulphide, which is quite sta-
ble up to high temperature. Apart from chemical and physical stability, PdPS exists in
double layer structure, which makes it interesting for many lower dimension applications.
Anisotropic thermoelectric figure of merit calculated for PdPS is very significant in the
nano regime and due to its layered structure, it will be having many applications in the
field of biology, space, computers etc. The calculated values will get even enhanced on
steering the lattice thermal conductivity values. Alloying can also play a specific role in
reducing the thermal values.

On the similar line of ternary material, we selected the chalcogenides of Co family
viz., cobaltite (CoAsS) and paracostibite (CoSbS). The thermal conductivity of both the
materials is not extremely low, howsoever it is reduced to quite lower values by alloying.
This results in superior ZT values for both the n-type and p-type compounds. Therefore,
another very important application of this research is in the thermoelectric modules in
which there will be a provision to use both legs of the module from a single material
CoAsS as it is having high ZT values for both n-type and p-type.

As enhanced thermoelectric performance is easily achievable by reducing lattice ther-
mal conductivity, we chose to select materials with already known low thermal conduc-
tivity. We steered the values of final ZT by reducing the lattice thermal conductivity by
alloying and nanostructuring in clathrate structure Ba8Cu6Si40 and Ba8Cu6Ge40. These
alloy nanowires can be a potential alternative to Si-nanowires.This research will definitely
lead to greatly improved efficiencies if it lives up to its theoretical promise.

The future prospects for extension of the present work in this thesis can be stated
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CHAPTER 5. SUMMARY AND FUTURE PERSPECTIVES

below: Alloying can be an efficient tool for enhancing the thermoelectric properties of
materials having low values of thermal conductivity and large room for substitution of
different atoms. There are many bulk complex crystal structures which can be alloyed to
have even reduced values of thermal conductivity. Another direction can be the study of
possible doping for present materials to achieve the required level of carrier concentration.
Among 370 combinations of ternary chalcogenide material from groups VIII, VA, VIA,
only 23 have been reported, further study can be done among these numerous combination
for finding thermoelectric properties.
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