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〈𝐀𝐁𝐒𝐓𝐑𝐀𝐂𝐓〉 

The interplay of charge, spin, and valley pseudospin degrees of freedom (DOF) in a 

single integrated system is the future prospect of next-generation electronic devices. In this 

thesis, monolayers (ML) of Group-VIB transition metal dichalcogenides (TMDCs) with 

generic chemical formula MX2 (M = Mo, W, etc. and X = S, Se, Te) have been studied as 

potential candidates for two-dimensional (2D) electronics, spintronics, and valleytronics. 

Being atomically thin semiconductors, ML-MX2 is endowed with many fascinating properties, 

such as intrinsic direct bandgap (Eg ~ 1-2 eV) lying within the visible light region, high room 

temperature carrier mobility (~ 100-700 cm2V-1s-1) and giant spin-orbit coupling (~148-456 

meV) close to the K point where the direct bandgap occurs. Moreover, the lattice inversion 

symmetry is explicitly broken in the monolayers of MX2, giving rise to a high degree of 

piezoelectricity (~ 3-7 pm/V). The exciting valley contrasting Berry curvature at the low energy 

time-reversal valleys at K and -K points in the Brillouin Zone is an exotic phenomenon, 

allowing to exploit the spin-valley coupled carriers in these multivalley electronic systems.  

More recently, a new class of monolayer MXY, the so-called Janus derivative of MX2, 

has drawn a great deal of research attention, where; X ≠ Y. By breaking the out-of-plane 

chalcogen sublattice symmetry, novel Rashba-type band splitting and large vertical 

piezoelectricity has been induced in MXY monolayers. Furthermore, the Rashba spin-orbit 

interaction is highly strain-tunable in MXY on account of the sensitivity of the dipolar contrast 

between chalcogen sublattices to the application of strain. The valley contrasting phenomena 

is also found to be strongly modulated via the application of strain, where the effect is found 

to be greater for tungsten-based systems. 

From the family of semiconducting TMDCs, monolayer MoS2 has drawn a great deal of 

scientific attention and has been considered to be a perfect semiconducting alternative to semi-

metallic graphene. Considering ML-MoS2 as a candidate system for ab initio studies, the 

potential of this host semiconductor for electronics, spintronics, and valleytronics has been 

studied under varying in-plane strain. The elastic strength and mechanical stability under 

various strain modes have been analyzed in detail. 

Under the application of uniaxial strain, the conduction band minimum (CBM) of a strained 

ML-MoS2 is found to drift nearly 2-times that of the valence band maximum (VBM) about the 

K-point. The resulting strain induced valley decoherence lifts the valley momentum 

degeneracy of carriers, thereby affecting the valley contrasting phenomena in a strained MX2 

lattice considerably. The origin of the decoherent valley under applied strain has been 

ascertained from both geometric and electronic effects, i.e., via alteration in its 2D elasticity 

and the orbital wave function of low-energy Bloch bands at the respective band-edges. 

Raman spectroscopy has proven itself to be a non-invasive tool for atomically-thin monolayers 

under strain. Using first-principles density functional perturbation theory (DFPT), the behavior 

of crystal phonons in a strained ML-MoS2, mainly, the characteristic Raman and IR active 

vibrations in ML-MoS2 have been investigated. A large phonon anisotropy and an anomalous 
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frequency shift in the vibrational modes have been observed under the application of strain. 

The original two-fold frequency degeneracy in its in-plane 𝐸2𝑔
1  Raman active vibration splits 

into nondegenerate 𝐸2𝑔
1+ & 𝐸2𝑔

1− singlet sub-bands under anisotropic lattice deformation. The 

vibrational anisotropy is found to scale with the strain-induced elastic anisotropy in its planar 

stiffness tensors, C11 and C22, and anisotropic phonon electrostatic coupling in a polar 

semiconductor like ML-MoS2. Strong strain-phonon coupling is of crucial importance in 

accessing the vibrational fingerprints of ML-MoS2 under the application of various kinds of in-

plane strain.  

The predictive findings presented in this thesis on Group-VIB transition metal dichalcogenides 

(TMDCs) with a particular focus on ML-MoS2 and its strain sensitive properties are of 

paramount interest in future flexible electronics, where the simultaneous occurrence of various 

quantum DOF in a single integrated electronic system comprising of MX2 & MXY monolayer 

crystals can be gainfully exploited. 
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〈𝐋𝐢𝐬𝐭 𝐨𝐟 𝐅𝐢𝐠𝐮𝐫𝐞〉 

Figure 1.1. Crystal structures of bulk and monolayer MX2 in semiconducting 2H and 1H phase, 

respectively. (a) Side view schematic geometry of bulk MX2 in its 2H polytypic phase (space 

group P63/mmc) with two-layer repeating molecular units of MX2 in a bulk unit cell (dashed 

line). (b) Top view of 2H-MX2 in a hexagonal symmetry and trigonal prismatic coordination 

of chalcogen element (X-atom, in violet) around the central transition metal element (M-atom, 

in gray) in sandwich X-M-X structure. (c) A single layer of 2H-MX2 named as 1H-MX2 with 

symmetry reduction and the vacuum spacing around the layer to isolate the structure from 

surrounding interaction from its periodic replicas. .................................................................. 12 

Figure 1.2. Calculated band structure of bulk and monolayer MoS2 at the DFT-PBE level. (a) 

Band stru.cture of bulk MoS2 and total density of states, the Figure inset includes the irreducible 

Brillouin zone of bulk MoS2 with high-symmetry points. An indirect band gap of ~0.87 eV 

occurs along the Г-K high-symmetry line as indicated by the arrow from the top of valence 

band located at the Г point (green circle) to the lowest energy of conduction band (red circle) 

originates at nearly halfway (Λ) between Г-K high-symmetry line. (b) Band structure of 

monolayer MoS2 (ML-MoS2) with a direct band gap ~1.76 eV occurring at the K-point of the 

Brillouin zone. The electron and hole effective masses are shown at the corresponding band 

edges in units of the rest mass of the electron (m0). (c) Energy contour plot of highest of the 

valence band of monolayer MoS2, (d) energy contour plot of the lowermost conduction band 

of monolayer MoS2 in a 2D k plane. The energy of valence and conduction band in the contour 

plot referenced with respect to the top of valence band energy and bottom of conduction band 

energy (or fundamental band gap). .......................................................................................... 14 

Figure 1.3. Atom and orbital projected band structure of bulk and monolayer MoS2. The 

conduction and valence band edges are comprised of Mo d and S p atomic orbital with a 

majority of orbital contribution arising from the Mo d orbitals that are weakly hybridized with 

the p orbitals of S atom. The Bloch bands at the conduction and valence band edges in a 

monolayer MoS2 is coupled in nature because of the mixing of Mo d and S p atomic orbitals.

.................................................................................................................................................. 15 

Figure 1.4. Calculated spin-resolved band structure of monolayer MoS2 with spin-orbit 

coupling effects. The spin-projection operator, <Sz> (dimensionless spin Pauli matrix) is along 

the perpendicular direction and normal to the basal plane of ML-MoS2. The red and blue colors 
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are the indicator of spin-up and spin-down polarization states. ............................................... 17 

Figure 1.5. (a) The Berry curvature of monolayer MoS2 for valence and conduction bands. The 

valence band Berry curvature distribution (Ωv) is derived for all the occupied states below the 

Fermi energy and the conduction band Berry curvature distribution (Ωc) is over the two 

lowermost spin-split conduction bands. (b) Berry curvature distribution for occupied states in 

a 2D k-plane. (c) Polarization resolved circular dichroism for a direct optical transition from 

the highest of spin-split valence band top at K points to the lowermost spin-split conduction 

band at the K point. The scale represents the degree of circular polarization. ........................ 19 

Figure 1.6. Simultaneous coupling of a high degree of piezoelectricity and semiconducting 
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“things take time – there are many examples of materials taking more than 20 years to get to market”                                                                                                                             

Amaia Zurutuza

 

Chapter 1 

 

In this chapter, we provide a general introduction to the discovery of two-dimensional (2D) 

material: “graphene” and the emergence of several other 2D materials in the post-graphene-era 

with particular attention on the emerging properties of transition-metal dichalcogenides 

(TMDCs) or semiconducting MX2 monolayers of Group VIB elements (where M = Mo, W, etc. 

and X = S, Se, Te); and their Janus structures, namely MXY monolayers (where X ≠ Y = S, Se, 

Te). 
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INTRODUCTION 

1.1 A general introduction to two-dimensional materials 

Since prehistoric times, the foundation of our human civilization has great chemistry with its 

surrounding matter in discovering, understanding, and utilizing various materials to leverage 

the human potential and ease human life.[1] From the ancient Stone, Bronze and Iron Ages 

down to the current information age, the search and use of new materials with superior 

functionalities for sustainable development has always been a significant driver of ambitious 

technological inventions[2] and future energy systems[3] in the advancement of the human 

race as a whole.[4]  

The better we understand the behavior, composition, and properties of different materials, the 

more we can push today’s technological boundaries for tomorrow’s need.[5], [6] The discovery 

of precious metals, minerals, and polymers in the century past was brought a significant 

industrial revolution for our immediate ancestors. In this modern information age -with massive 

digital data & internet of things, the storage and processing capacity for high-speed digital 

information transfer across the globe at a much faster pace has thrown new material challenges 

on the current microelectronics that are built upon the decade past silicon technology.[7] To 

reduce the feature size of processor units in electronic devices with high-end energy-saving 

performance, the advancement of new nanostructures, multi-functional two-dimensional 

materials, and hybrid complex structures is of immediate need.[8], [9]  

Over the past few decades, the discovery and designing of new materials with sophisticated 

fabrication techniques have shown tremendous technological potential for future nanoscale 

electronics and optoelectronics.[9]–[11] Among several other material options, 2D materials 

are ideal and have a clear advantage to supplement the well-established manufacturing 

techniques developed for silicon microelectronics in order to fabricate 2D material based 
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ultrathin, flexible and low power electronic devices.[10], [12]–[14] In recent years, atomically 

thin 2D materials have shown far greater potential for novel electronics and energy conversion 

applications.[14]  

The research and search of new atomically thin 2D materials with various desired 

functionalities is currently at its peak[15], and emerging as one of the fastest-growing research 

areas in contemporary material science that offers rich physics, such as valley Hall effect, spin 

Hall effect, topological superconductivity, Klein tunneling, circular dichroism, second 

harmonic effects, and so on[16]–[18] in reduced dimensions that are promising for future multi-

functional technological applications.[19], [20]  

In a simplified term, “2D materials” are referred to as atomically thin crystals consisting of 

one or a few atomic layers with high aspect (surface-to-volume) ratios that can be potentially 

isolated and become stable without any surface epitaxial layer. 2D materials offer many exotic 

properties that are very different and sometimes unique as compared to their host bulk crystals 

including the ultra-high elastic stiffness (Young’s modulus > 1TPa) of graphene,[21] intrinsic 

direct bandgap (~ 1.8-1.9 eV) in monolayer MoS2 [22] with high electroluminescence [23] and 

strong spin-orbit coupling (~ 150-500 meV),[24] and the insulating wide bandgap of  (~ 4-6 

eV) hexagonal boron nitride.[25], [26] Besides, the pristine surfaces of 2D materials that are 

free from any surface dangling bonds provide a natural benefit for efficient catalytic 

activity[27] and greater sensitivity for molecular sensing applications.[28] 

The overwhelmingly increasing application potential of 2D materials in recent years has made 

us believe that the current discoveries and research avenues for 2D materials will continue to 

evolve in an unprecedented manner with the appearance of many unique properties for future 

technological challenges for high-speed electronics, optoelectronics and energy 

applications.[29]  
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In fact, in the early days of quantum theory (1935), Peierls[30] and Landau[31] theoretically 

argued the thermodynamical unfavorability of strictly two-dimensional (2D) atomic crystals 

down to an atomic thickness at any finite temperature. Their empirical deduction pointed out, 

the fluctuations in the energy of the wave packet can destroy the long-range crystalline order 

of 2D atomic crystals at any finite temperature, eventually leading to a segregated island of 

atomic clusters or warping of 2D monolayer sheets into random 3D structures[32]. This 

pragmatic argument was later supported by Mermin-Wagner[33], [34], and endorsed by the 

omnibus of experimental observations in due course, ultimately solidifying the hypothesis that 

atomically thin 2D crystals could not exist at room temperature. Nearly eight-decade this 

prevalent hypothesis lingered the discovery of 2D materials, until the year 2004 for its 

disapproval. The groundbreaking discovery of atomically thin films of carbon by Konstantin 

Novoselov and Andre Geim in 2004[35] completely mopped this enduring hypothesis by 

isolating a monolayer sheet of graphite, so-called “graphene.” Since then, the thriving 

properties and divergent application potential of this novel quantum material (graphene) with 

a magnitude of unique properties demonstrated over the years have revolutionized many areas 

of science & technology and recognized for the 2010 Nobel Prize in Physics.  

The revolutionary discovery of graphene through a simple mechanical exfoliation strategy has 

spurred tremendous scientific attention in the “gold rush” of 2D atomic crystals in their 

perfectly one-atom-thick flat-land or quasi-2D layered structures of ultrathin monolayers from 

various van der Waals (vdW) crystals.[12] Extensive studies worldwide in recent years has led 

to the discovery of many inorganic 2D crystals, including hexagonal-boron-nitride (h-BN), 

molybdenum disulfide (MoS2), and phosphorene (a monolayer of black phosphorus) to name 

a few emerging 2D materials from a large pool of 2D atomic crystals.[12], [36] With the 

number of currently available 2D materials, it is now possible to cover a wider range of 

electromagnetic energy starting from near UV (ultraviolet) to the far IR (infrared) spectrum 



  

6 
 

with the range of electronic character in available materials ranging from semi-metallic 

graphene, silicene, and germanene[12], [37]–[39] to the semiconducting transition metal 

dichalcogenides (MoS2, ReS2, ZrS2, HfSe2, TaS2, PtSe2 and so on),[40], [41] transition metal 

oxides (VO2, WO3, MoO3),[42] insulating hexagonal boron nitride (h-BN), semiconducting 

black phosphorus (bandgap ~ 0.3-2 eV),[43], [44] and topological insulators (Bi2Se3, Bi2Te3, 

Sb2Se3, WTe2, etc.).[45], [46] 

The constellation of 2D materials has been increasing steadily by the utilization of recent data 

mining approaches and high-throughput quantum simulation methods.[47], [48] The use of 

intelligent search algorithms and high-performance computing architectures to explore and 

design new materials with desired properties are evolving in an unprecedented way with the 

use of computer-aided artificial intelligence (AI) neural network architecture, now, in 

computational material science.[15], [49], [50]  

Using data mining and high-throughput calculations, many new 2D materials have been 

investigated in recent years, including layered MAX phases,[51] 2D MXenes (Ti2AlC, 

Ti3AlC2, Ta4AlC3 and so on),[9], [52] 2D magnetic structures of metal phosphorous 

trichalcogenides (MPX3; M= V, Cr, Mn, Fe, Ni Zn, etc; X = S, Se, Te),[53], [54] complex 2D 

oxides (Ba2Sr2CaCu2Ox)[26], 2D halides (CrI3)/ carbides (Ti2C, Zr2C)/ nitrides (NbN) [55]–

[57], and over more than 216 MXY Janus monolayers (MoSSe, WSSe, PtSSe and so on) have 

been discovered more recently.[58] Moreover, using the same workflow algorithm, many 

current phases of 2D materials, such as h-BN, TMDCs (MoS2, WSe2, etc.) and phosphorene, 

have been reconfirmed in their most stable structural phases.[59] Besides, several new 

structural polytypic phases of already existing 2D materials have been discovered through 

global energy optimization approaches,[15], [59]–[61] such as a new 1T’’ phase of MoS2 with 

nontrivial band gap ~ 0.42 eV that exhibit quantum spin Hall effect,[62] and stable symmetry 

reduced charge density wave phase of monolayer 1T-TiSe2.[63]   
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Many of these 2D crystals have been experimentally synthesized, in recent past, through 

sophisticated layer isolation techniques from their parent 3D crystals,[60], [63]–[65] including 

methods, such as surfactant-assisted ultrasonication,[9] synthetic wafer-scale growth via 

chemical vapor deposition (CVD), liquid-phase exfoliation,[66] ion intercalation, molecular 

beam epitaxy (MBE), surface segregation[9] and simple micromechanical cleavage technique 

pioneered by K. Novoselov and A. Geim (2004)[35] for the first isolation of graphene (scotch-

tape peeling method). Moreover, the 2D material transfer techniques have been largely 

improved over the years with efficient sample transfer methods in order to achieve high-quality 

defect-free monolayer crystals.[9] The weak van der Waals (vdW) interactions that present in 

families of layered materials, including graphene, h-BN, and MoS2, make them easy to 

exfoliate due to weak interlayer binding energy.[67], [68] Moreover, graphite, and bulk crystals 

of h-BN, and MoS2 are commonly used as solid or dry-lubricants in friction units owing to 

their weakly coupled inter-layer structure. Thus, it is easy to exfoliate a single or few-layers of 

material from their parent bulk crystals for laboratory research to promote the isolation of 

similar 2D materials for future technological applications. 

Furthermore, the method of van-der-Waals epitaxy[68], [69] in the making of multilayer 

heterostructures[68], [70], [71] and homostructures,[72]–[74] designed by the systematic 

stacking of atomic crystals in a layer-by-layer sequence with atomic precision to form complex 

artificial hybrid geometries in a Lego building assembly is appealing to create a plethora of 

functionalities via the combination of individual unique properties of 2D materials,[75], [76] 

which also sometimes shows revealing unusual properties, not accessible in individual 

monolayers. This strategy is fascinating to investigate various novel phenomena in 2D material, 

such as carrier tunneling and carrier drag in heterostructures, commensurate-incommensurate 

transitions, excitonic effects, Moiré patterns, and topological currents.[77]–[79] 
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Taking into account the unprecedented future technological potential of emerging 2D 

materials, in 2013 the European Commission of scientific research has initiated the Graphene 

Flagship project,[80] Europe’s highest ever research budget of > 1 billion euros for a span of 

10 years [81] that incorporates the scientific work and technological breakthroughs as one of 

its “Future and Emerging Technology” the vision for Horizon 2020.[82] 

In the following section, we provide a pedagogical overview of transition-metal 

dichalcogenides (TMDCs), widely studied atomic crystals after graphene. The stable crystal 

geometry and various fundamental properties of TMDCs have been presented in subsequent 

sections to give an introductory understanding of novel electronic and vibrational properties in 

TMDCs by taking MoS2 as an example system. 

1.2 Transition metal dichalcogenides: An overview  

Layered transition-metal dichalcogenides (TMDCs) are family of van der Waal (vdW) crystals 

with generic chemical expression MX2, where M stands for the transition metal atom (M = Mo, 

W, Zr, Hf, Nb, or Ta, and so on) and X is the chalcogen element (X = S, Se, or Te). In recent 

years, there has been a resurgence of scientific interest on MX2 crystals owing to their unique 

layered structure, anisotropic lattice environment with weakly coupled out-of-plane 

interactions of individual atomic layers attributed with the excellent electronic, optical, 

catalytic, and mechanical properties that are remarkably well suited for fundamental scientific 

studies and high-end technological applications for the achievable future avenues in electronics 

and optoelectronics.[2], [83] Several recent studies have shown numerous physical properties 

in monolayer TMDCs that are very different from those of their bulk crystals. Linus Pauling 

first demonstrated the bulk crystal structure of TMDC (molybdenite) in the year 1923.[84] 

Over the years, several TMDCs were discovered, and by the end of 1960, about 60 TMDCs 

were reported with more than 40 layered structures that can be cleaved down to a thickness < 

1000 Å.[85] Many of the discovered TMDCs have shown distinctive physical properties 
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including, direct band-to-band transitions, exciton screening effects, d-band formation, charge 

density waves, and the metal-insulator transitions; also magnetism, superconductivity, and 

topological properties have been demonstrated.[2], [85]–[87]  

In the year 1963, the method of adhesive tapes was first introduced by Robert Frindt in order 

to isolate and study the physical properties of ultrathin atomic layers of molybdenum disulfides 

(MoS2), up to a thickness < 100 Å, via mechanical cleavage technique.[88] In the year 1986, 

Joensen et al. achieved a single-layer MoS2 via liquid-phase exfoliation method by the 

intercalation of lithium into MoS2 suspensions followed by water treatment reactions. Their X-

ray diffraction data demonstrated the exfoliated MoS2 thin layers have one-molecule-thick 

sheets in the MoS2 suspension that are randomly stacked over one another.[89] The 

molybdenum disulfide (MoS2) is a well-known solid lubricant used in friction units, tribology 

and also exhibit better catalytic response for the hydrodesulfurization reactions; and serves as 

an essential precursor for oxide-based fuel cells.[2]  

Moreover, followed by the discovery of C60 chemistry, the cylindrical nanotubes and inorganic 

fullerene structures of tungsten disulfide (WS2) and molybdenum disulfide (MoS2) were 

synthesized in large quantities in controlled gas-phase growth conditions in 1992[90] and 

1995[91], respectively. The fast pace research in graphene and related 2D materials in 2004 

has brought a renewed interest in inorganic layered TMDCs in search of new stable 

semiconducting materials for photodetection platforms including ultrafast light detection, 

terahertz frequency generation and integrated optoelectronic systems by solely controlling their 

dimensionality.[86], [87], [92]  

In TMDCs, the individual molecular units of X-M-X are held together by weakly van der Waals 

(vdW) forces of interactions, whereas, within a given layer, each M-atom is strongly 

coordinated with six chalcogen atom (X-atom) in a prismatic fashion. The central metal atom 
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layer (M-atom) in the MX2 structure is sandwiched between two layers of chalcogen, forming 

a honeycomb lattice structure similar to graphene. Moreover, TMDCs can exist in various 

polymorphic structural phases with the difference in their atomic coordination between 

chalcogen–metal–chalcogen atoms and stacking sequences of individual MX2 layers within the 

bulk unit cell or in a multilayer TMDC stacked units. The most common polytypes are trigonal 

prismatic (2H) phase, the octahedral (1T) phase, the dimerized (1T′) phase, and the 

orthorhombic (1Td) phase.[93] The chemical composition and crystal symmetry play a crucial 

role in determining the electronic properties of crystals. Depending on the presence of 

transition-metal elements of Group-IV, V, VI, VII, IX, or X elements, TMDCs can exhibit in 

several stable and metastable polymorphic structures with very distinctive electronic 

properties.[94] For example, the Group VIB transition metals (M= Mo, W) are found to be 

most stable in their bulk 2H phase by forming trigonal prismatic coordination with surrounding 

chalcogen (S, Se, Te) elements.[95] In the bulk 2H phase, the Group VIB TMDCs exhibit a 

semiconducting indirect bandgap in the range of visible light Eg ~ 1-2 eV,[40] where the layers 

are stacked over one another in an ABA stacking order. On the other hand, the 1T (𝑃3̅𝑚2) 

phase of Group VIB TMDCs is metastable at ambient condition and form octahedral prismatic 

coordination with chalcogen lattices in a rhombohedral ABC stacking pattern, exhibiting 

metallic behavior, ideal for electrochemical reactions.[96] In sharp contrast, the 1T phases of 

Group IVB TMDCs (ZrS2, HfS2, HfSe2 and so on) are found to be most stable in their 1T 

octahedral phase as compared to the most stable 2H trigonal phase of Group VIB TMDCs.[97], 

[98] In 1T octahedral phase, the Group IVB TMDCs (HfS2, HfSe2, ZrS2, and ZrSe2 etc.) exhibit 

sizable global indirect band gaps in the visible light range Eg ~ 1.07-2.03 eV,[99]–[101] 

ultrahigh carrier mobility (100-1250 cm2V-1s-1)[99], [102]–[104] at room temperature, much 

higher than Group VIB semiconducting monolayer TMDCs (MoS2 ~ 300 cm2V-1s-1),[10], [105] 

low lattice thermal conductivity of ZrSe2 (𝑘𝐿= 1.2 Wm-1K-1),[106] and p-type conductivity in 

https://link.springer.com/article/10.1007/s11709-018-0491-5
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tunnel field-effect transistors (T-FETs).[107] Free-standing geometry of Group VIB TMDCs 

are unstable in the 1T phase, undergo lattice reconstruction (Peierls distortion) due to on-site 

electrostatic interactions by forming periodic zigzag chains of lattices along one of the crystal 

axes.[108] The dimerization of 1T octahedral phase due to Peierls distortion reduces the lattice 

symmetry into lower periodic 1T’ (𝑃21/𝑚) metastable phase[109], [110] or distorted 

orthorhombic 1Td (𝑃1𝑚1) phase that are accompanied by the charge density wave phases.[111] 

These lower symmetric phases offer rich physics, example includes, the emergence of non-

trivial topological bands,[112]–[114] ferroelasticity in 1T’-MX2 phase,[115] quantum 

nonlinear Hall effect,[116] non-zero Berry curvature in 1T’ phase,[108] metal-insulator 

transition in 1T’-MoS2 under the lattice strain,[117] topological superconductivity,[118], [119] 

and strongly correlated phenomena.[120]  

1.2.1 Crystal structure of Group VIB TMDCs 

The semiconducting bulk crystals of hexagonal 2H phase (see Figure 1.1) are energetically 

most stable for group VIB transition metal dichalcogenides that mainly includes widely studied 

MoS2, WS2 crystals and other dichalcogenides of the same group of elements, 2H-MX2 (where 

M = Cr, Mo, W; and X = S, Se, or Te). The honeycomb arrangement of Mo and S atoms in 

MX2 is akin to graphene, where the individual monolayers are stacked over one another in an 

ABA type layer sequence pattern and held together by the weak van der Waal (vdW) forces of 

interactions in the crystal thickness direction (c-axis). The monolayer MoS2 is prepared by 

isolating a single layer from the multilayer unit of MX2 or the bulk samples of 2H-MX2. A 

monolayer MoS2 isolated from the 2H structure is commonly referred to as 1H-MX2 where the 

hexagonal symmetry of the lattice structure is retained with space group 𝑃6̅𝑚2. In 1H-MX2 

structures, the center of inversion is explicitly broken, and the monolayer crystals of Group 

VIB TMDCs belong to the non-centrosymmetric family of crystals. In a single atomic layer, 

the individual molecular units of X-M-X are tightly bound together via covalent interactions 
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with an intercalated M atom layer between hexagonal planes of X atoms in ABA Bernal 

stacking pattern. The strong covalent interactions in 1H-MX2 arising from the hybridization of 

Mo 4d and S 3p atomic orbitals. 

 

Figure 1.1. Crystal structures of bulk and monolayer MX2 in semiconducting 2H and 1H phase, 

respectively. (a) Side view schematic geometry of bulk MX2 in its 2H polytypic phase (space 

group P63/mmc) with two-layer repeating molecular units of MX2 in a bulk unit cell (dashed 

line). (b) Top view of 2H-MX2 in a hexagonal symmetry and trigonal prismatic coordination 

of chalcogen element (X-atom, in violet) around the central transition metal element (M-atom, 

in gray) in sandwich X-M-X structure. (c) A single layer of 2H-MX2 named as 1H-MX2 with 

symmetry reduction and the vacuum spacing around the layer to isolate the structure from 

surrounding interaction from its periodic replicas.  

1.2.2 Electronic structure of TMDCs 

The noncovalent interlayer vdW interaction in TMDCs plays a crucial role in determining the 

electronic properties of MX2 (e.g., 2H-MoS2). In Figure 1.2, we have shown the band structure 

of bulk and monolayer MoS2. The bulk crystal of MoS2 exhibits a global indirect energy gap 
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of about ~ 0.87 eV (experimental gap ~ 1.29 eV) using the DFT+PBE level of theory along its 

high symmetry line Г-K [40] [See Figure 1.2 (a)], where the band edge of the valence band top 

(VBM) is occurring at the Г point. Whereas, the conduction band edge (CBM) is occurring at 

the midpoint (Λ) of the line connecting the high-symmetry point Г with K. When the number 

of MoS2 layers reduces to a monolayer limit (only one S-Mo-S unit), a direct fundamental band 

gap of ~ 1.76 eV (experimental gap ~ 1.8-1.9 eV) emerge at the K point of the Brillouin zone 

(BZ), as shown in Figure 1.2 (b).[40] The effective masses of electron and hole are different 

for bulk and monolayer MoS2 due to the curvature modification at the band edges, where the 

electron effective mass is smaller as compared to the hole effective mass, this breaks the 

electron-hole symmetry in MoS2, as shown in Figure 1.2 (a)-(b). For clarity, we have also 

shown, in Figure 1.2 (c)-(d), the energy-momentum dispersion for the top of the valence band 

and bottom of the conduction band in a 2D k plane. The energy contour around the Г point is 

circular, thus isotropic energy dispersion around the zone center, whereas the same around the 

K point is triangular and exhibits a 3-fold rotational symmetry in energy contour around the 

central K point. The occurrence of a global direct bandgap (~ 1.76 eV) at the K point of 

freestanding monolayer MoS2 facilitates the vertical optical transition between low energy 

valleys of electronic band structure with enhancement in luminescence quantum efficiency by 

a factor > 104 with respect to bulk MoS2 crystals.[121] 
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Figure 1.2. Calculated band structure of bulk and monolayer MoS2 at the DFT-PBE level. (a) 

Band stru.cture of bulk MoS2 and total density of states, Figure inset, includes the irreducible 

Brillouin zone of bulk MoS2 with high-symmetry points. An indirect bandgap of ~ 0.87 eV 

occurs along the Г-K high-symmetry line as indicated by the arrow from the top of valence 

band located at the Г point (green circle) to the lowest energy of conduction band (red circle) 

originates at nearly halfway (Λ) between Г-K high-symmetry line. (b) Band structure of 

monolayer MoS2 (ML-MoS2) with a direct bandgap ~1.76 eV occurring at the K-point of the 

Brillouin zone. The electron and hole effective masses are shown at the corresponding band 

edges in units of the rest mass of the electron (m0). (c) Energy contour plot of highest of the 

valence band of monolayer MoS2, (d) energy contour plot of the lowermost conduction band 

of monolayer MoS2 in a 2D k plane. The energy of valence and conduction band in the contour 
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plot referenced with respect to the top of valence band energy and bottom of conduction band 

energy (or fundamental bandgap). 

 

Figure 1.3. Atom and orbital projected band structure of bulk and monolayer MoS2. The 

conduction and valence band edges are comprised of Mo-d and S-p atomic orbital with a 

majority of orbital contribution arising from the Mo d orbitals that are weakly hybridized with 

the p orbitals of S atom. The Bloch bands at the conduction and valence band edges in a 

monolayer MoS2 is coupled in nature because of the mixing of Mo-d and S-p atomic orbitals. 

One of the major distinctive features of TMDCs are the conduction and valence band 

states are composed of Mo (d) and S (p) atomic orbitals with a majority of the orbital 

contribution arising from the out-of-plane Mo (𝑑𝑧2) and in-plane Mo (𝑑𝑥2−𝑦2) atomic orbitals, 

as shown in Figure 1.3 of the density of states (DOS) of orbital projections. A small 

contribution to the band edges also rises from the px and py orbitals of S atom. The trigonal-

prismatic crystal field on free Mo 4d orbitals lifts the five-fold degeneracy of atomic orbitals 

into three major energy groups, that are spread out in energy ranges, giving rise to two doubly 

degenerate energy levels (i) 4dxy, 4dx2−y2 and (ii) 4dyz, 4dzx and one singly degenerate energy 

level (iii) 4dz2 [122]. The in-plane 4dxy, 4dx2−y2 orbitals, and the out-of-plane 4dz2 orbitals are 

symmetric with respect to its horizontal mirror plane (σh) passing over the Mo atomic layer. 
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The out-of-plane mirror symmetry (z = −z) in ML-MoS2 allows hybridization between its 4dxy, 

4dx2−y2, and 4dz2 orbitals with 3(px, py ), 3(pz) orbitals of ligand sulfur (S) atoms, which opens 

up a tunable energy gap in MoS2.  

1.2.3 Spin-orbit coupling in monolayer MoS2 

The absence of lattice inversion symmetry and the presence of frontier Mo 4d orbitals 

lift the spin degeneracy of electronic states near the VBM and CBM band edges due to a strong 

spin-orbit induced (SOI) spin splitting of bands.[123], [124] Strong spin-orbit coupling (SOC) 

in monolayer MoS2 reduces the direct bandgap at K point to 1.61 eV (1.76 without SOC), as 

shown in Figure 1.4. The manifestation of strong SOC in monolayer MoS2 lifts the Kramer’s 

degeneracy between spin degenerate bands due to missing inversion symmetry, a large energy 

separation of ~ 149.3 meV in the valence band sector and a small energy separation of ~ 3 meV 

in the conduction band sector appears with the inclusion of SOC effects into the band structure 

while keeping the spin-split band edges at the same momentum position (i.e., at K point), as 

shown in Figure 1.4. The same magnitude of spin-splitting with opposite spin polarization also 

occurs at its opposite momenta, –K point in the Brillouin zone, as the K and –K valleys are 

time-reversal partners. Strong SOC effects at the low energy valleys of TMDCs provide an 

ideal playground to investigate the interplay of coupled spin-valley degrees of freedom (DOF) 

for next-generation integrated spintronic and valleytronic devices which is accompanied by the 

novel coexistence of spin-momentum locking and coupled spin-valley index of valley carriers 

in monolayers of MX2. Strong spin-orbit coupling is desired for spintronic functionalities. For 

tungsten-based MX2 monolayers, the spin-orbit splitting energy is substantial ~ 400-500 meV 

due to different sizes of cation, atomic number, and higher d states, making them an ideal 

candidate for the suppression of spin-valley relaxation in spintronics that prolong the carrier 

lifetime and suppress electron intrinsic intervalley spin relaxation channels due to D'yakonov–

Perel' mechanism.[124], [125] Besides, the optical transitions between the spin split valence 
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band to the conduction band minimum at the K point of monolayer MoS2 reveals strongly 

bound A and B excitons for each spin transition states measured in the photoluminescence 

spectroscopy with large exciton binding energy ~ 0.5 eV in MX2 monolayers due to strong 

Coulomb interaction between carriers.[126], [127] 

 

Figure 1.4. Calculated spin-resolved band structure of monolayer MoS2 with spin-orbit 

coupling effects. The spin-projection operator, <Sz> (dimensionless spin Pauli matrix), is along 

the perpendicular direction and normal to the basal plane of ML-MoS2. The red and blue colors 

are the indicator of spin-up and spin-down polarization states. 

1.2.4 Valley polarization in monolayer TMDCs 

Monolayer TMDCs harbor a pair of energy degenerate and symmetry inequivalent 

time-reversed valleys at the K and K’ points of the Brillouin zone (BZ).[128] The low energy 

valleys of  TMDCs are well-separated in the momentum space, making them ideal for 

valleytronic devices.[129]–[131] The valley pseudospin refers to the occurrence of multiple 
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degenerate energy extrema in the low energy electronic spectrum that offers an ideal platform 

to confine or manipulate the charge carriers in these distinct valleys in order to storage and 

process discrete digital information bits by systematic controlling the degree of valley 

polarization of carriers at K and K’ points.[132] Valley polarization in TMDCs can be achieved 

via optical and electrical means,[130], [133] where the use of polarization selective optical 

pumping technique via circularly polarized laser radiation have been demonstrated to achieve 

near 100% valley polarization in monolayer MoS2.[134]–[136] Theoretically, the valley 

degrees of freedom in monolayer TMDCs can be manipulated through non-zero Berry 

curvatures, which acts as an effective magnetic field in the momentum space.[128] The 

integration of Berry curvature over the entire Brillouin zone gives the transverse Hall 

conductivity of a material. For a non-zero Berry curvature, either the time-reversal symmetry 

or the crystal inversion symmetry has to be explicitly broken, while the presence of both the 

symmetry leads to a vanish of Berry curvature in the entire momentum space (bulk MoS2). In 

monolayer crystals of TMDCs, the lattice inversion symmetry is explicitly broken, leading to 

a non-zero Berry curvature where the time-reversal symmetry is preserved between degenerate 

valleys located at K and K’ points of BZ.  Figure 1.5 (a) shows the Berry curvatures for the 

valence and conduction bands of monolayer MoS2. The absence of lattice inversion symmetry 

and the presence of strong spin-orbit interaction allow the charge carriers in K and -K valley 

to take opposite Berry curvatures, where the Berry curvature is mainly localized around the 

K/K’ valleys and significantly peaked at both the K and K’ points in the BZ with opposite sign, 

as required by the time-reversal symmetry of the system. Away from K/K’, Ω(k) decays rapidly 

and eventually vanishes at the Г point. The charge carriers in K/K’ valleys are associated with 

distinct valley index into their real spin moments; hence the inter-valley spin-flip transitions 

are greatly restricted due to time-reversal symmetry in the system.[137] The valley index is 

ideal for carrying out various exotic physical phenomena, such as spin Hall and valley Hall 
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effects, where the valley pseudospin DOF of charge carriers: via optical manipulation can drive 

counter-propagating valley current when the system is in the presence of an applied external 

transverse electric field.  

 

 

Figure 1.5. (a) The Berry curvature of monolayer MoS2 for valence and conduction bands. The 

valence band Berry curvature distribution (Ωv) is derived for all the occupied states below the 
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Fermi energy, and the conduction band Berry curvature distribution (Ωc) is over the two 

lowermost spin-split conduction bands. (b) Berry curvature distribution for occupied states in 

a 2D k-plane. (c) Polarization resolved circular dichroism for a direct optical transition from 

the highest of spin-split valence band top at K points to the lowermost spin-split conduction 

band at the K point. The scale represents the degree of circular polarization. 

The local curvature of the electronic wave function corresponding to a given Bloch 

energy band at a particular momentum position in the band structure is defined as the Berry 

curvature (BC). This is the geometric property of Bloch electrons in certain solids. The Berry 

curvature for electronic Bloch states of the nth band is expressed as, 

Ω𝑧
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Where 𝜖
𝑘⃗ 
(𝑛)

 represents the eigenvalues of the Hamiltonian operator 𝐻𝑘⃗ ̂  and 𝑢
𝑘⃗ 
(𝑛)

 denotes 

the corresponding eigenfunctions for the nth band at crystal momentum 𝑘⃗ . The operator 𝑃𝑖(𝑘⃗ ) =

(𝑒/ℏ) 𝜕𝐻𝑘⃗ ̂ 𝜕𝑘𝑖⁄  is the current operator. 

Moreover, the coexistence of strong SOC and loss of crystal inversion symmetry in 

monolayer TMDCs uniquely couples the spin and valley DOF of carriers at K and K’ points of 

the BZ. A direct optical transition between spin-split valence and conduction bands at the K 

point via helicity selective laser excitation can selectively excite the valley carriers from one 

of the valleys (K/K’) due to unique optical selection rules of spin-valley index. The helicity 

selective optical excitation of carriers from each valley K/K’ by the use of circularly polarized 

radiation of particular handedness (left-handed or right-handed polarization) is a unique 

phenomenon of circular dichroism (CD). In Figure 1.5 (c), we have shown the CD from the 
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spin-split valence band at K point to the bottom of the 1st spin-split conduction band at K point 

in a 2D hexagonal Brillouin zone. 

1.2.5 Piezoelectricity in monolayer TMDCs 

Certain material shows an innate ability to generate or polarize electric charge within 

itself under the application of external mechanical load in the form of applied stress or 

strain.[138], [139] Conversely, one can apply an electric field to deform these materials 

mechanically. The former is known as a direct piezoelectric effect, while the latter is termed as 

the inverse piezoelectric effect. The necessary condition for materials to show this effect, is the 

absence of an inversion center, or, in other words, these materials need to belong to the class 

of non-centrosymmetric crystals. Piezoelectricity was first studied in bulk quartz crystals in 

1880 by Curie brothers, Pierre Curie and Jacques Curie.[140] Since then, the bulk 

piezoelectricity has been well studied over the years.[141] The well known bulk piezoelectric 

crystals are AlN,[142] GaN,[143] quartz, zinc oxide (ZnO),[144], and oxide perovskites, such 

as BaTiO3, and lead zirconate titanate (PZT, PbZrTiO3).[145], [146]  

Piezoelectric crystals are ideal for a wide range of applications including low-energy 

power conversion logic circuits,[147] self-powered devices,[148] mechanical resonators,[149] 

and high-performance electronics,[150] where the use of smart piezoelectric materials can 

effectively manage the energy feedback mechanism in micro-electro-mechanical systems 

(MEMS).[151], [152]  

The emergence of a high degree of piezoelectricity at the atomic scale is a relatively 

new research area for the harvesting/recycling of nanoscale energies.[148], [153], [154] A tiny 

atomic displacement within the atomically thin 2D crystals can bring colossal changes in the 

nanoscale piezoelectric and electronic properties.[155] 2D piezoelectricity is very useful for 

ultrasensitive biological sensors,[156] nanoscale robotics,[157] flexible and wearable self-
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powered electronic devices[158] to monitor cellular deformation in various tissues that can 

immensely benefit the future point of care diagnosis.[139], [159], [160] Many non-

piezoelectric crystals, when reduced to their one or few atomic thicknesses, are found to be 

piezoelectric.[159], [161], [162] In monolayer and an odd number of atomic layers of transition 

metal dichalcogenides (TMDCs), the inversion symmetry is explicitly broken, and these 

monolayers belong to the class of non-centrosymmetric crystals. By reducing the number of 

monolayers in a multilayer MoS2, Zhu et al.[159] has demonstrated a transverse piezoelectric 

coefficient of ~ 10-10 C.m-1 (≈ 3 pm.V-1) in a single layer MoS2 free-standing nanosheet.[163] 

The magnitude of the piezoelectric coefficient increases by decreasing the number of MoS2 

layers, while for even the number of monolayer sheets, the piezoelectricity vanished due to the 

restoration of the center of inversion.[163] 

 

Figure 1.6. Simultaneous coupling of a high degree of piezoelectricity and semiconducting 

properties in Group VIB monolayer TMDCs (MX2) for adaptive piezotronics. 
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Moreover, for integrated high performance flexible electronic devices, in monolayers 

of TMDCs, a simultaneous occurrence of good semiconducting property (direct 

semiconducting bandgap ~ 1-2 eV, mobility ~ 100-700 cm2V-1s-1),[93], [164], [165] 

remarkable elasticity (Young’s modulus ~ 270±100 GPa),[166] and high in-plane 

piezoelectricity (3-16 pm/V)[167] can be envisioned for nano-electro-mechanical systems 

(NEMS).[163], [168], [169] Furthermore, the ultimate crystal thickness, atomic-scale 

semiconducting properties, superior mechanical strength, thermal-chemical-mechanical 

stability at ambient condition, and high-quality freestanding surface structures of monolayer 

TMDCs can be used for biocompatible piezotronic energy conversion applications.[93], [139], 

[155], [169]–[172] 

The degree of piezoelectricity in monolayer TMDCs is expressed in terms of  

piezoelectric stress tensors 𝑒𝑖𝑗 or piezoelectric strain tensors 𝑑𝑖𝑗. In monolayer TMDCs, the 

hexagonal crystal symmetry 𝐷3ℎ reduces the number of tensor coefficients of 𝑒𝑖𝑗 matrix into a 

single independent coefficient 𝑒11which uniquely determines the piezoelectric strength of the 

material. The corresponding piezoelectric strain coefficient 𝑑11 is calculated from 𝑒11 via in-

plane elastic stiffness constants 𝐶11 and 𝐶12, 

𝑑11 = 
𝑒11

𝐶11−𝐶12
       (1.3) 

The elastic stiffness constants 𝐶𝑖𝑗 is evaluated by fitting the second-order polynomial 

into the changes in the total elastic energy of a strained lattice concerning the in-plane applied 

strain per unit lattice area along the Basal plane of 2D lattice in a small strain range −1% ≤

𝜀 ≥ 1% around the equilibrium crystal lattice 𝑎0, where 𝜀 =
𝑎−𝑎0

𝑎0
 × 100%, 𝑎 is the strained 

lattice parameter. 

The elastic strain energy (𝐸𝑠) per unit surface area of the 2D lattice plane is defined as, 
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𝐸𝑠 =
1

2
𝐶11𝜀𝑥𝑥

2 +
1

2
𝐶22𝜀𝑦𝑦

2 +
1

2
𝐶11𝜀𝑥𝑥𝜀𝑦𝑦 + 2𝐶66𝜀𝑥𝑦

2                             (1.4) 

Here 𝜀𝑥𝑥, 𝜀𝑦𝑦, and 𝜀𝑥𝑦 are planar tensile strain coefficients along x and y directions of 

crystal corresponding to lattice vectors a and b of the unit-cell. The simplest way to introduce 

strain in monolayer crystals of TMDCs by varying the lattice vectors in the scales of 

interatomic bond lengths along a given crystal axis, x, and y directions. 

1.2.6 Lattice dynamics in monolayer TMDCs 

Lattice dynamics in transition metal dichalcogenides (TMDCs) governs its fundamental 

physical properties, such as mechanical, thermal, and optical properties of materials are 

determined by the behavior of crystal phonons.[173], [174] Besides, the electronic transport of 

charge carriers and optical excitations between low energy valleys is assisted by the interaction 

of different phonon vibrations.[175], [176] Figure 1.7 (a) shows the phonon dispersion of 

monolayer MoS2 along the high-symmetry direction of the Brillouin zone. The absence of 

imaginary phonon frequency in the entire Brillouin zone is a signature of the dynamical 

stability of crystal. In experiments, the use of inelastic neutron scattering (INS) technique can 

determine various phonon branches along different crystal momentum.[177] The phonon 

dispersion of monolayer MoS2 shows 3-acoustic and 6-optic branches, where the high energy 

LA and TA acoustic branch shows linear dispersion close to the zone center (Г), while the low 

energy ZA mode display quadratic dependence with crystal moment. The acoustic and optic 

branches are leveled as per their polarization symmetry of phonon modes near the Brillouin 

zone center, Г point. The high energy longitudinal acoustic mode shows maximum phonon 

group velocity ~ 2.2 km/s. An indirect phononic energy gap ~ 44 cm-1 separates the optical 

modes from the maximum of the acoustic branch at K point. In the phonon density of states 

(phDOS), the acoustic region is dominated by Mo atom, while the lower branches of optical 

phonon are dominated by S atom, as shown the Figure 1.7 (b).  



  

25 
 

 

Figure 1.7. Lattice vibration in monolayer MoS2. (a) Phonon dispersion and phonon group 

velocity (inset horizontal color bar) projected on corresponding phonon branches of acoustic 

and optic phonons of monolayer MoS2. (b) Atom projected phonon density of states (phDOS) 

depicting a wide indirect phononic energy gap ~ 43.92 cm-1 between acoustic and optical 

phonon modes. (c) Characteristic Raman active vibrations of monolayer MoS2. 

Raman spectroscopy offers a simple non-destructive versatile technique to characterize 

structure-property relationships of materials that are directly related to the crystal phonon, 

including the phonon dispersion and phonon density of states (phDOS). In monolayer MoS2, 

the characteristic Raman active vibrations are out-of-plane 𝐴1𝑔vibration and in-plane 

𝐸2𝑔
1 vibration.[178]  Figure 1.7 (c) shows a typical Raman spectrum involving the vibrational 

modes 𝐴1𝑔 and 𝐸2𝑔
1 . These two Raman active modes usually found in experiments to 

characterize various properties of monolayer TMDCs and widely used to measure, strain in the 

lattice, the number of layers in TMDCs,[179], [180] electron-hole doping in transport 

study,[181] and temperature,[182] pressure effects[183]  from the behavior of frequency 

softening/ hardening of 𝐴1𝑔 and 𝐸2𝑔
1  vibrations.[178] 
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1.3 Janus monolayers of transition metal dichalcogenides 

The breaking of sublattice crystal symmetry in parent 1H-MX2 structure of TMDCs can 

create a completely new structural phase, namely, Janus TMDCs (MXY), where X ≠ Y (X, Y 

= S, Se, Te). In a well-controlled CVD synthesis process, Lu et al. [184] were first able to 

demonstrate the production of MXY (MoSSe) monolayer Janus structure, where the top S atom 

layer in pristine MoS2 monolayer crystal was completely replaced by the Se atoms via 

sophisticated plasma irradiated atom stripping technique as a synthetic route to achieve perfect 

X-M-Y atomic structure.[185] The vertical mirror symmetry (D3v) of identical chalcogen atoms 

of MoS2 is broken in MoSSe, leading to an out-of-plane polarization or vertical piezoelectricity 

(d33 ~ 0.1-13.5 pm V–1) in mono- to multi-layer stacks of MXY [184], [186]. A non-vanishing 

built-in perpendicular dipole moment in MXY monolayer/multilayers brings a spontaneous 

out-of-plane electric field due to a local asymmetric potential perpendicular to it basal plane 

that can give rise to novel momentum-dependent spin splitting of electronic bands, so-called 

the Rashba effect at the valence band top at Г point. These asymmetric MXY structures are 

ideal to realize the spin-polarized field-effect transistors (spin-FETs) without the use of an 

external perpendicular electric field and provide a new means to improve catalytic activity in 

hydrogen evolution reaction (HER) or heterojunction photocatalytic water splitting due to the 

inherent structural asymmetry of ultrathin Janus XMY.[187], [188]  

In chapter 3, we have provided the crystal structure and various electronic properties of Janus 

transition-metal dichalcogenides (J-TMDCs) of Group VIB elements. 

1.4 Scope of this thesis 

The research work presented in this thesis is aimed to explore the electronic, spintronic, and 

valleytronic functionalities of monolayer transition-metal dichalcogenides (TMDCs) of Group 

VIB elements and their structural Janus derivatives, MXY monolayers. Particular attention has 
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been given to the monolayer crystal of MoS2, the pristine and strain responsive properties of 

this widely explored 2D material has been investigated under various strain geometry. We 

found the novel pristine properties of monolayer MoS2 can significantly be manipulated via 

strain engineering of its crystal lattice. Owing to the high elasticity, monolayer MoS2 provides 

ample opportunity to investigate its electronic and lattice properties from a small 0-2% up to 

an extreme range of 0-10% lattice strain. The strain sensitive investigation of exotic electronic, 

mechanical, and lattice dynamical properties presented in individual chapters taking monolayer 

MX2 and MXY as ideal candidate systems may pave the way to the next-generation 2D flexible 

electronics and energy conversion applications. A similar investigation for families of other 

transition metal dichalcogenide groups may be envisioned to explore some novel properties in 

their pristine and Janus 2D crystals; and their strain responsive fascinating properties. 

1.5 Structure of the thesis 

The research work presented in this thesis is organized into the following chapters:  

Chapter 1 gives an excellent overview of the discovery of two-dimensional (2D) material 

“graphene” and several other 2D materials that have emerged after graphene. We also have 

provided a descriptive review and essential properties of transition-metal dichalcogenides by 

considering MoS2 as an example system. Specific attention has given to the family of transition 

metal dichalcogenides of Group VIB elements. Towards the end of chapter 1, a brief 

introduction to the Janus crystal structure of  Group VIB elements has been provided. 

Chapter 2 provides the theoretical background of various computational methods and 

simulation tools useful in understanding the calculation of results presented in this thesis.  

Chapter 3  infers to the ab initio study of crystal structure, lattice stability and coupled spin-

valley nature of charge carriers in a series of semiconducting monolayers of Group VIB 

transition metal dichalcogenides 1H-MX2 (where M = Cr, Mo, W, etc.; X = S, Se, or Te) and 
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their Janus structures 1H-MXY (where X ≠ Y). Here, we have shown the structural stability of 

Janus monolayers, which we have confirmed from the phonon study and room temperature 

AIMD simulations. Furthermore, the Janus monolayers of Group VIB TMDCs is found to have 

comparable cohesive energy (~ 2-3 eV/atom) to that of their parent, energetically stable, 1H-

MX2 structure, and this suggests the relative chemical stability of Janus monolayers and their 

experimental feasibility. In all cases, a semiconducting electronic bandgap (~ 0.25 – 1.7 eV) 

has been found. The bandgap of M-S-Se and M-Se-Te (where, M = Cr, Mo, W) Janus 

monolayers are found to be direct at the K-point of the BZ under SOC, whereas in all other 

cases an indirect bandgap is observed with valence band maximum (VBM) occurring at the Г–

point of the BZ and the conduction band minimum (CBM) situated at the K–point. The 

variation in the direct and indirect bandgap exhibits a linear dependency as a function of applied 

mechanical strain within the -3% to +6% of biaxial strain, and the Janus monolayers remain 

semiconducting within this strain range except for CrSTe strained system that shows a 

semiconductor-to-metal transition with strain > +3%. The electrostatic potential difference 

(∆𝑉) is found to increase with an increase in dipolar contrast between chalcogen lattices, which 

enhances the SOC splitting energy of spin bands at the K–point of BZ both in the VBM and 

CBM sectors of the electronic dispersion. The Rashba parameters (𝐸𝑅  & 𝛼𝑅) are found to be 

highly strain sensitive and significantly get enhanced with lattice compression. The strain 

sensitive variation in Rashba coefficient 𝛼𝑅 is found to exhibit asymmetric behavior about the 

K'-Г-K and M'-Г-M high symmetry line in the 1st BZ. Under compressive biaxial strain the 

enhancement in 𝛼𝑅 along the K'-Г-K line is nearly 2-orders of magnitude higher than the same 

along the M'-Г-M high symmetry line for a given strain value.  Furthermore, the strain-tunable 

alteration in Berry curvature in pristine and Janus monolayer TMDCs can be a potential avenue 

for the effective controlling of transverse velocities of valley carriers in the future flexible 

valleytronic device. 
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Chapter   4  focuses on tailoring of low energy valleys of monolayer (ML) MoS2 in response 

to a directional lattice deformation. In this study, we find applied uniaxial strain on ML-MoS2 

nanosheet can drift the low-energy electron/hole valleys far-off  K/K’ points in the Brillouin 

zone (BZ). The magnitude of drift in the low energy spin-split conduction band minimum 

amounts 2-times than the drift in the valence band maximum with a progressive increase of 

strain field in an in-plane strain range of 0-10%. As a result of an unequal valley drift at the 

conduction band edge and valence band edge, the momentum degeneracy of valley carriers at 

the K point gets lost. The underlying valley decoherence of carriers can affect the low-energy 

valley excitations and valley polarization properties of a stained ML-MoS2 lattice. We have 

also demonstrated the effect of a considerable strain on the strength of spin-orbit induced spin 

splitting of bands at the low energy conduction band and high energy valence band around the 

K point. We find a sizably enhancement (∼7 meV) in the spin-orbit induced spin splitting of 

bands at the valence band maximum at K point that has been tailored simply by the strain-

controlled orbital motions of overlapping atomic orbitals. The results and discussion presented 

in this chapter highlight the importance of strain in tailoring the spintronic and valleytronic 

potential of ML MoS2. 

Chapter 5 looks at the simultaneous response of high piezoelectricity and novel 

semiconducting properties of a monolayer MoS2. Under the application of various in-plane 

strain mode, we have explored a synergic coupling between semiconducting behavior and a 

high degree of piezoelectricity for adaptive, flexible nanopiezotronic devices based on a 

monolayer (ML) MoS2 sheets. We find the shear strain and uniaxial tensile strain optimally 

enhances the piezoelectric constants by retaining a semiconducting gap in monolayer (ML) 

MoS2. We have further analyzed the elastic limit and critical strain for the mechanical stability 

of monolayer (ML) MoS2 nanosheets under various strain geometry. The elastic limit under 

different strain modes shows well agreement result with recent experiments on ML-MoS2. 
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Additionally, charge carrier mobilities have been predicted as a function of uniaxial strain 

along mutual orthogonal crystal direction of ML-MoS2 useful for flexible low-power switches 

and nanoelectromechanical systems. 

Chapter 6 investigates the effect of various planar strain modes on the evolution of Raman and 

IR spectra of a strained monolayer MoS2 nanosheet. The breaking of two-fold degenerate in-

plane atomic vibrations into nondegenerate singlet frequency states has been demonstrated. 

The broken frequency degeneracy in phonon modes is a signature of lattice anisotropy brought 

about by an asymmetric strain field that only occurs in the case of uniaxial and shear strain. 

We have also demonstrated the anisotropy in Young’s modulus and Poisson ratio to arise due 

to asymmetric lattice environment along the mutually orthogonal directions in monolayer 

MoS2 when the nanosheet is under an asymmetric strain field. 

Chapter 7 concludes this thesis by summarizing the essential outcome of individual studies 

presented in different chapters. A possible future extension of this research work in a similar 

work theme for other 2D materials has been suggested with valuable pointers as thoughts on 

forthcoming research outlook. 

 

--------------------------**********************---------------------------- 
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Chapter 2 

 

Theoretical background and Simulation tools 

In this chapter, we briefly describe the central theoretical foundations of computational 

methods that are pivotal to the calculation of results presented in this thesis by the use of 

different quantum simulation tools. The fundamental aspects of many-body Schrödinger 

equation, introductory density functional theory (DFT) methods, exchange-correlation 

functionals, and basis-sets essential to layout various ab initio calculations within the DFT have 

been presented in this chapter. I encourage the readers’ to follow-on reference materials 

provided in each section for a complete description of the theoretical backgrounds of various 

quantum mechanical methods.   
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2.1 Elementary quantum chemistry 

The surrounding matter in our everyday experience is comprised of a systematic 

collection of electrons that surrounds a few different kinds of nuclei. Starting from the air 

molecule, we breathe to the advanced automobile that we drive, all matter in our daily 

encounter is essentially a soup of many electrons, nuclei, and various interactions among them.  

In a many-electron quantum system, the fundamental electrostatic interactions between 

electrons and nuclei are Coulombic in nature and governed by the many-particle Schrödinger 

equation, and mathematically described as, 

𝐻̂Ψ𝑖(𝑥 1, 𝑥 2, …… , 𝑥 𝑁 , 𝑅⃗ 1, 𝑅⃗ 2, …… , 𝑅⃗ 𝑀) = E𝑖Ψ𝑖  (𝑥 1, 𝑥 2, …… , 𝑥 𝑁 , 𝑅⃗ 1, 𝑅⃗ 2, …… , 𝑅⃗ 𝑀)     (2.1) 

Here, 𝐻̂ is the Hamiltonian operator for an isolated N electron system consisting of M nuclei 

in the absence of any external perturbations, Ψ𝑖(𝑥 1, 𝑥 2, …… , 𝑥 𝑁 , 𝑅⃗ 1, 𝑅⃗ 2, …… , 𝑅⃗ 𝑀) stands for 

the wave function of the ith state, and E𝑖 energy eigenvalues of a given quantum state described 

by Ψ𝑖. 

The Hamiltonian operator describing the total energy of a coupled electron-ion system is 

defined as 

𝐻̂ = −
1

2
∑ ∇𝑖

2𝑁
𝑖=1 −

1

2
∑

1

𝑀𝐴 
∇𝐴

2𝑀
𝐴=1 − ∑ ∑

𝑍𝐴

𝑟𝑖𝐴

𝑀
𝐴=1

𝑁
𝑖=1  + ∑ ∑

1

𝑟𝑖𝑗

𝑁
𝑗>𝑖 +𝑁

𝑖=1 ∑ ∑
𝑍𝐴𝑍𝐵

𝑅𝐴𝐵

𝑀
𝐵>𝐴

𝑀
𝐴=1      (2.2) 

Here, A and B denotations are over the M nuclei present in the system, while i, and j run over 

the N electrons. The first two terms in the total energy operator are the kinetic energy of N 

electrons and M nuclei, respectively, where MA is the mass of the nucleus in units of the electron 

mass. The remaining three terms in the energy Hamiltonian operator are the attractive 

electrostatic interaction between the nuclei and the electrons, and repulsive potential due to the 

electron-electron and nucleus-nucleus interactions, respectively. 
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Born-Oppenheimer approximation: The wave function Ψ𝑖(𝑥 1, 𝑥 2, …… , 𝑥 𝑁 , 𝑅⃗ 1, 𝑅⃗ 2, …… , 𝑅⃗ 𝑀) 

of a many-particle quantum system contains essential information and central to describe all 

the desired physical properties of a given quantum system by various quantum operations. The 

Schrödinger equation (2.1), can further be simplified by considering the famous clamped-

nuclei approximation for nuclear dynamics, comely referred to as Born-Oppenheimer 

approximation. The approximation takes advantage of differences in electron and proton (1H) 

masses, which for the lightest nuclei (1H), proton mass is 1800 times more than a single electron 

mass. Thus, the motion of nuclei is much slower as compared to the electron dynamics, and 

electronic motion happens within a fixed field of nuclear potential; therefore, the clamped-

nuclei approximation is, in principle, an excellent approximation to simplify the problem by 

ceasing the nuclear dynamics. The kinetic energy term for the nuclear motion becomes zero 

under the Born-Oppenheimer approximation, and the rigid potential energy due to nucleus-

nucleus repulsion becomes constant. The total energy operator can be rewritten under the Born-

Oppenheimer approximation as the electronic Hamiltonian 

𝐻̂𝑒  = −
1

2
∑ ∇𝑖

2𝑁
𝑖=1 − ∑ ∑

𝑍𝐴

𝑟𝑖𝐴

𝑀
𝐴=1

𝑁
𝑖=1  + ∑ ∑

1

𝑟𝑖𝑗

𝑁
𝑗>𝑖

𝑁
𝑖=1   = 𝑇̂ + 𝑉̂𝑁𝑒 + 𝑉̂𝑒𝑒              (2.3) 

Where the first term 𝑇̂  is the kinetic energy of N electrons in the system, the attractive 

potential acting on electrons due to the nuclei in the second term 𝑉̂𝑁𝑒 is the nuclei-electron 

interaction potential and often termed as the external potential 𝑉𝑒𝑥𝑡. in density functional 

theory (DFT), while the last term  𝑉̂𝑒𝑒 represents the electron-electron interaction potentials. 

The solution of Schrödinger equation (2.1) for electronic Hamiltonian 𝐻̂𝑒 is the electronic 

wave function Ψ𝑒 and the corresponding electronic energy eigenvalues 𝐸𝑒. The electronic 

wave function Ψ𝑒 explicitly dependent on electron coordinates only and the nuclear 

coordinates enter only parametrically, which do not appear explicitly in Ψ𝑒. Then the total 
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energy 𝐸𝑇 become the sum of electronic energy 𝐸𝑒 part and constant nuclear repulsion term 

E𝑛, the electronic Schrödinger equation is expressed as 

𝐻̂𝑒 Ψ𝑒 = E𝑒Ψ𝑒                                                                      (2.4) 

and 

 E𝑇 = E𝑒 + E𝑛; where  E𝑛 = ∑ ∑
𝑍𝐴𝑍𝐵

𝑅𝐴𝐵

𝑀
𝐵>𝐴

𝑀
𝐴=1                                   (2.5) 

The above many-electron Schrödinger equation (2.4) for a given quantum system is essentially 

a simple story that describes everything about a system. The wave function itself is not an 

observable quantity in quantum mechanics and commonly interpreted by the probability 

density, which is the square of the wave function when multiplied with its complex 

conjugation. To solve the Schrödinger equation (2.4) for an arbitrarily chosen quantum system, 

first, the Hamilton operator for the target system needs to be set. The electronic Hamiltonian 

in equation (2.3) infers that the specific part of the total energy operator 𝐻̂ that is relevant to 

an actual system depends only on the number of electrons in the system N and external potential 

𝑉𝑒𝑥𝑡.. The later is completely determined through the position and charge of all nuclei within 

the system, and the remaining parts of 𝐻̂, such as kinetic energy or the electron-electron 

repulsion, are independent of the system under our consideration. Since the eigenfunctions Ψ𝑖 

is dependent on corresponding eigenvalues of 𝐻̂, all properties of the system can be derived 

once the Ψ𝑖 is fully determined. The operation of appropriate operators on the wave function 

can extract the desired physical properties of the system if and only if Ψ𝑖 is fully described. 

However, these simple-sounding steps are hard in practice even for simple atomic and 

molecular systems due to the absence of adequate technique to solve the many-particle 

Schrödinger equation precisely by wave function determination method, which is a central 

quantity in this model.  
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Nonetheless, over the years this simplified description has traversed a long path in predicting 

and describing the structure-property relation of various real materials starting from the simple 

atomic and molecular structures to the solving of complex DNA structures, polymers, proteins, 

and solid crystals in the conventional electronic wave function minimization strategy to get the 

ground state wave functions and corresponding low energy states of material using variational 

methods, and Hartree-Fock approaches. These all-electron wave function minimization 

schemes are computationally way more expensive for a system containing a large number of 

electrons to be exactly solvable by the wave function minimization methods and often suffer 

for its computation volume of the problem.  

The present-day computational approach in solving the many-electron Schrödinger equation 

takes a simple route via density functional theory (DFT) approach, where the consideration of 

electron density 𝜌(𝑟 ) of materials has simplified the enormity of solving the many-electron 

wave function Ψ𝑖 for complex materials. In recent years, the use of sophisticated computational 

methods by clever algorithms has enabled the predictive accuracy of ground-state electronic 

properties of materials with near exactness. 

In the following section, we present the basic foundations of modern-day density functional 

theory methods for a non-relativistic, interacting Coulomb system based on electron density 

and approximate functionals. 

2.2 Electron density theory  

The density functional theory (DFT) or electron density theory reformulates the many-electron 

Schrödinger equation in terms of electron density 𝜌(𝑟 ) of materials that give a reliable 

computational measure and efficiency to solve the many-electron quantum system for various 

complex materials. The electron density or the probability density 𝜌(𝑟 ) of an N electron system 
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is the central variable in DFT and defined as the integral over the spin coordinates of all N 

electrons within a volume element of 𝑑3𝑟 . 

𝜌(𝑟 ) = 𝑁 ∫…∫|Ψ𝑖(𝑥 1, 𝑥 2, … , 𝑥 𝑁)|2𝑑3𝑟                                          (2.6) 

The probability density 𝜌(𝑟 ) is a non-negative function of position variables of N electrons 

which vanishes when 𝑟 → ∞ and integrates to the total number of electrons N present in the 

system. The electron density 𝜌(𝑟 ) is then used to calculate various material properties that are 

directly or indirectly related to the ground-state electron density and the corresponding total 

minimum energy of the system 𝐸0. In principle, 𝜌(𝑟 )  is an observable quantity and can be 

experimentally measured by X-ray diffractions. The basic foundation of the density-based 

approach to describe the behavior of electrons in a quantum system was first theoretically 

demonstrated by Hohenberg and Kohn in their seminal work back in 1964 and Kohn-Sham in 

1965, for which Walter Kohn was awarded the Nobel Prize in Chemistry in 1998. Their 

density-based approaches in solving the electronic structure of materials are still the most 

successful theoretical approach in density functional theory.  However, the initial attempt to 

this simplified density-based approach to describe the properties of many-body quantum 

systems in terms of their electron density dates back to 1927 in Thomas-Fermi (TF) model of 

approximation, where the non-interacting kinetic energy functional of a many-electron system 

was approximated by the uniform electron gas with electron density 𝜌(𝑟 ). 

                                          𝑇𝑇𝐹[𝜌[𝑟 ]] = A∫𝑑3𝑟 𝜌5 3⁄ (𝑟 )                                                      (2.7) 

Where 𝜌(𝑟 ) is the electron density of homogeneous non-interacting electron gas, and 𝐴 is a 

numerical constant 
3

10
(3𝜋2)2/3. The total energy of a system was determined by adding 

electrostatic energies using the classical expression for the nuclear-nuclear potential and the 

electron-electron potential. 
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𝐸𝑇𝐹[𝜌[𝑟 ]] = 𝐴∫𝑑3𝑟 𝜌5 3⁄ [𝑟] − Z∫
𝜌[𝑟]

𝑟
 𝑑3𝑟 +

1

2
∬

𝜌[𝑟]𝜌[𝑟′]

|𝑟 − 𝑟′|
𝑑3𝑟𝑑3𝑟′                  (2.8) 

The first term in the above expression is the non-interacting kinetic energy density of a many-

electron system, whereas the second term represents the energy of the ion-electron interaction 

energy or Coulombic term, and the third term is the classical Hartree energy.  

The total energy of a many-electron system can be obtained by minimizing non-interacting 

wave function corresponding to a given electron density in some external potential, as given in 

equation (2.3), where the total electron number 𝑁 in the system remains constant.  

However, the description for total energy in the original Thomas-Fermi model 

overestimates the ground-state energy of many quantum systems because of an improper 

account of exchange-correlation energy, which is completely neglected in the Thomas-Fermi 

model which is expected to further lower the ground-state energies for interacting particles. 

In summary, though the basic structure of a many-electron system based on Thomas-

Fermi approximation provides a reasonable approximate result for non-interacting electronic 

systems with a few numbers of electrons, it fell short of predicting electrons in many real 

materials. Nonetheless, the use of electron density mapping over the conventional many-

electron wave function method, without any additional information as a variable, established 

by the Thomas-Fermi model can describe divergent properties of materials and eventually gave 

birth to the foundation of modern density functional theory. 

2.2.1 Hohenberg-Kohn theorem 

The modern density functional theory methods that we use today was first established in 1964 

by Hohenberg and Kohn. Hohenberg–Kohn (HK) stated, ‘the ground state of any interacting 

many-electron system with a given fixed inter-particle interaction is a unique function of the 
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electron density 𝜌(𝑟 )’; where the ground-state wave function Ψ0 can be written as a unique 

functional of ground-state electron density n0 as, Ψ0 =  Ψ [n0].  

The equation (2.4) can now be rewritten in terms of the ground-state energy 𝐸0 as a unique 

functional of ground-state electron density n0, which enables one to establish a single physical 

quantity to describe all the properties of an interacting many-particle system.  

𝐸0[Ψ [n0]] = < Ψ [n0]|𝑇̂ + 𝑉̂𝑁𝑒 + 𝑉̂𝑒𝑒|Ψ [n0] >                              (2.9) 

First HK theorem: In the first Hohenberg-Kohn (HK) theorem, they proved, the ground state 

electron density n0 uniquely determines the Hamiltonian operator thereby can determine the 

number of electrons (N) and external potential V𝑒𝑥𝑡.(𝑟 ) to within a constant that fixes 𝐻̂ for 

many-particle interacting ground states. 

Second HK theorem: In the second Hohenberg-Kohn theorem, they proposed a universal 

functional: Hohenberg-Kohn functional, 𝐹𝐻𝐾[𝜌̃] as a function of certain unknown ground state 

density 𝜌̃, where 𝐹𝐻𝐾[𝜌̃] = 𝑇[𝜌̃] + 𝑉𝑒𝑒 that exists completely independent of the choice of the 

system to be solved the many-electron Schrödinger equation (2.4), exactly! However, the 

explicit form of these functionals is still under mystery. The functional 𝐹𝐻𝐾[𝜌̃] delivers the 

ground state energy of the system independent of the external potential into its lowest energy 

configuration if and only if the input electron density is close to the actual ground-state density 

𝜌0 of material. The second Hohenberg-Kohn theorem was the simplified version of the 

variational principle with a trial density 𝜌̃. 

𝐸𝑜 ≤ 𝐸[𝜌̃] =  𝑇̂[𝜌̃] + 𝑉̂𝑁𝑒[𝜌̃] + 𝑉̂𝑒𝑒[𝜌̃]                                    (2.10) 

This trial density 𝜌̃ in Hohenberg-Kohn theorem satisfies the necessary boundary conditions, 

𝜌̃(𝒓⃗ )  ≥ 0, ∫ 𝜌̃(𝒓⃗ ) 𝑑3𝑟 = 𝑁, and associate the external potential 𝑉𝑒𝑥𝑡. that give rise an upper 

bound to the true ground state energy 𝑬𝒐 of a quantum system. 
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In summary, the Hohenberg-Kohn theorems have provided necessary methods to calculate all 

physical properties of a material as a unique functional of its ground-state density and some 

external potential V𝑒𝑥𝑡.(𝑟 ) in terms of a universal trial function 𝐹𝐻𝐾[𝜌̃] through the variational 

procedure that associate to an unknown density 𝜌̃ to determine the true ground state density of 

electrons n0. However, the application of the Hohenberg-Kohn theorem is only limited to the 

ground state material properties and intricate to generalize the method for the excited state 

problems due to challenges in Hohenberg-Kohn functional. 

2.2.2 Kohn-Sham formalism  

The second seminal contribution to the development of modern density functional theory was 

come by Kohn and Sham in 1965, a year after the Hohenberg-Kohn theorem (1964). Kohn-

Sham introduced the concept of a non-interacting reference system built from a set of orbitals 

in a way such that the kinetic energy part of the universal Hohenberg-Kohn functional 𝐹𝐻𝐾[𝜌̃] 

can be calculated with sufficient accuracy.  

The true ground state energy of a system can be obtained as a function of the trial density where 

the universal functional 𝐹𝐻𝐾[𝜌̃] contains the kinetic energy, classical Coulomb potential, and 

non-classical interactions 

𝐸0 = 𝑚𝑖𝑛 𝜌̃→𝑁(𝐹𝐻𝐾[𝜌̃] + ∫ 𝜌̃(𝑟 ) 𝑉̂[𝜌̃] 𝑑3𝑟)                                       (2.11) 

𝐹𝐻𝐾[𝜌̃] = 𝑇̂[𝜌̃] + 𝐽[𝜌̃] + 𝐸̂[𝜌̃]                                                          (2.12) 

Where 𝐽[𝜌̃] is the classical part of the energy, 𝑇̂[𝜌̃] kinetic energy part and 𝐸̂[𝜌̃] self-interaction 

correction, exchange, and Coulomb correlation. 

The exact kinetic energy part which is poorly described in the Thomas-Fermi model as well as 

in Hohenberg-Kohn theorems for a non-interacting reference system with the same density as 

the real interacting system is obtained by the energy functional 𝐸[𝑛[𝑟]] as a global minimum 
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to the total energy of the system corresponding to electron density 𝑛[𝑟] within a fixed number 

of electrons N by incorporating the exchange-correlation functional parts into the equation (2.9) 

                                          
𝛿

𝛿𝑛(𝑟)
[𝐸[𝑛(𝑟)] − 𝜇 ∫𝑛(𝑟)𝑑𝑟] = 0                                            (2.13) 

where 𝜇 is a Lagrange multiplier and the corresponding Euler equation: 

                                                               
𝛿𝐸[𝑛(𝑟)]

𝛿𝑛(𝑟)
= 𝜇                                                               (2.14) 

Kohn-Sham (KS) separated the universal Hohenberg-Kohn energy functional 𝐹[𝑛(𝑟)] into 3-

parts so that the energy functional 𝐸[𝑛(𝑟)] become 

          𝐸[𝑛(𝑟)] = 𝑇[𝑛(𝑟)] +
1

2
∬

𝑛(𝑟)𝑛(𝑟′)

|𝑟 − 𝑟′|
+ 𝐸𝑋𝐶[𝑛(𝑟)] + ∫𝑛(𝑟)𝑉𝑒𝑥𝑡(𝑟)𝑑𝑟            (2.15) 

where 𝑇[𝑛(𝑟)] is the kinetic energy part of a non-interacting electron system with electron 

density 𝑛(𝑟).  

In terms of effective KS potential, 𝑉𝐾𝑆(𝑟), equation (2.13) can be expressed as 

                                                         
𝛿𝑇[𝑛(𝑟)]

𝛿𝑛(𝑟)
+ 𝑉𝐾𝑆(𝑟) = 𝜇                                                   (2.16) 

where 

                                               𝑉𝐾𝑆(𝑟) = 𝑉𝑒𝑥𝑡(𝑟) +
𝛿𝐸𝐻[𝑛(𝑟)]

𝛿𝑛(𝑟)
+

𝛿𝐸𝑋𝐶[𝑛(𝑟)]

𝛿𝑛(𝑟)
                     (2.17) 

  = 𝑉𝑒𝑥𝑡(𝑟) + 𝑉𝐻(𝑟) + 𝑉𝑋𝐶(𝑟)                                                                     

and 

                                                      𝑉𝐻(𝑟) = ∫
𝑛(𝑟′)

|𝑟 − 𝑟′|
𝑑𝑟′                                                             (2.18) 
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By using a well defined external potential 𝑉𝐾𝑆(𝑟) for a give, non-interacting reference system 

the Kohn-Sham orbitals of the electronic wave function can uniquely determine the  ground 

state properties that are based on gound state electron density 𝑛0 and minimum total ground 

state energy  𝐸0 (equation 2.10) by iteratively solving the one-particle Schrödinger equations 

through effective KS potentials 𝑉𝐾𝑆(𝑟), 

                                       (−
1

2
∇2 + 𝑉𝐾𝑆(𝑟))Ψ𝑖(𝑟) = 𝜀𝑖 Ψ𝑖(𝑟)                                        (2.19) 

where Ψ𝑖(𝑟) is the one-electron wavefunction of a  non-interacting reference system that is 

dependent on the electron density 𝑛(𝑟) 

                                                            𝑛(𝑟) = ∑|Ψ𝑖(𝑟)|
2

𝑁

𝑖=1

                                                  (2.20) 

One should note here if the exact form of 𝑉𝑋𝐶(𝑟) and 𝑉𝐾𝑆(𝑟) is known to us, by using the Kohn-

Sham strategy, one could get the exact ground-state electron density 𝑛0 of a non-interacting 

real system when the density of reference system approaches to its real value in an effective 

Kohn-Sham potential. 

Strictly speaking, in Kohn-Sham approach the exchange-correlation functional 𝐸𝑋𝐶[𝑛(𝑟)] is 

unknown, and the orbitals have no physical significance, except the highest occupied orbital 

(negative of exact ionization energy). To describe a real interacting quantum system the 

description of accurate exchange-correlation functionals 𝐸𝑋𝐶[𝑛(𝑟)] is of utmost importance. 

Two widely studied approximate exchange-correlation functional 𝐸𝑋𝐶[𝑛(𝑟)] methods arise 

after the  Kohn-Sham theory in the name of local density approximation (LDA) [189] and the 

generalized gradient approximations (GGA). [190] 
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2.2.3 Exchange-correlation functionals  

2.2.3.1 Local Density Approximations 

The LDA approximation for approximate exchange-correlation functionals is the 

general basis of all other density-based approximations. The LDA model is based on uniform 

electron gas where the motion of the electron is considered under a positive, ionic background 

charge distribution, with a total neutral charge ensemble of particles. In LDA, the exchange-

correlation energy at a point 𝑟 per particle remain the same in an ideal homogeneous electron 

gas with electron density 𝑛(𝑟). In this approximation the exchange-correlation functional  

𝐸𝑋𝐶[𝑛(𝑟)] takes the following form 

                                             𝐸𝑋𝐶
𝐿𝐷𝐴[𝑛(𝑟)] = ∫𝑛(𝑟)𝜖𝑋𝐶

ℎ𝑜𝑚𝑛(𝑟)𝑑𝑟                                              (2.21) 

                                              = ∫𝑛(𝑟)[𝜖𝑋
ℎ𝑜𝑚(𝑛(𝑟)) + 𝜖𝐶

ℎ𝑜𝑚(𝑛(𝑟))]𝑑𝑟            (2.22) 

                         = 𝐸𝑋
𝐿𝐷𝐴[𝑛(𝑟)] + 𝐸𝐶

𝐿𝐷𝐴[𝑛(𝑟)]                                   (2.23) 

The exchange-correlation functional  𝐸𝑋𝐶[𝑛(𝑟)] in LDA assumption splits into two parts, the 

exchange part  𝐸𝑋
𝐿𝐷𝐴[𝑛(𝑟)] and the effective correlation contribution 𝐸𝐶

𝐿𝐷𝐴[𝑛(𝑟)]. The 

exchange part gives the exchange energy of an electron in a homogeneous electron gas of 

particular density 𝑛(𝑟), and initially deduced by Bloch and Dirac around the late 1920s. 

The exchange part 𝐸𝑋
𝐿𝐷𝐴[𝑛(𝑟)] in the exchange-correlation functional 𝐸𝑋𝐶[𝑛(𝑟)] can be 

derived analytically for a system of uniform electron gas with density 𝑛(𝑟): 

                                             𝐸𝑋
𝐿𝐷𝐴[𝑛(𝑟)] = ∫𝑛(𝑟)𝜖𝑋

ℎ𝑜𝑚𝑛(𝑟)𝑑𝑟                                            (2.24) 

                  = −
3

4
(
3

𝜋
)
1 3⁄

∫𝑛(𝑟)4 3⁄ 𝑑𝑟                                   (2.25) 
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where 

                                                       𝜖𝑋
ℎ𝑜𝑚 = −

3

4
(
3

𝜋
)
1 3⁄

𝑛(𝑟)1 3⁄                                              (2.26) 

is the homogeneous electron density for the exchange part in LDA.[191]  

No such analytical expression for the correlation part 𝐸𝐶
𝐿𝐷𝐴[𝑛(𝑟)] explicitly exist in the LDA 

approximation for a system of uniform electron gas with density 𝑛(𝑟) leading to an 

overestimation of the correlation energy up to a factor of 2, which is rather smaller for real 

materials. On the other hand, the accuracy of exchange energy in LDA ~ 10%. The 

underestimation of exchange energy in LDA formalism and the overestimation of correlation 

energy error partially cancel one another and gives a moderate accuracy for ionization energies 

of atoms, dissociation energies of molecules, and cohesive energies ~ 10-20%. However, the 

bond lengths of molecules and solids are obtained with remarkable accuracy ~ 2% at the LDA 

level. 

The moderate accuracy of local density approximation (LDA) is insufficient for most solids for 

practical applications in material science, it also failed miserably for heavy fermions, and 

systems that are primarily dominated by the electron-electron interactions. 

Most DFT+LDA formalism uses the analytic forms for 𝜖𝐶 to fit the accurate quantum 

simulation results for the correlation energy by considering an intermediate density, that is used 

to map out the results obtained at the high- and low-density limits. In theory, the local density 

approximation works well for systems with slowly varying electron density and with rapid 

density variation, the LDA tends to underestimate bond-length by 1-2% [192], vibrational 

frequencies of molecules within 5-10 % accuracy, overestimate the binding energies by 10-

50% [193], [194], and largely underestimate the fundamental transition energy gaps or bandgap 

of solids by up to ~ 50% [195]. 
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2.2.3.2 Generalized Gradient Approximations 

Since the exchange-correlation energy of a homogeneous electron distribution widely differs 

for a real material with non-local density variations, the first thoughtful step to go beyond the 

LDA formalism is the use of not only the information about the density 𝑛(𝑟) at a particular 

point 𝑟 in space, but to supplement this uniform density with gradient correction of the charge 

density, ∇𝑛(𝑟) that accounts for the non-homogeneity of the actual electron density. Thus, the 

exchange-correlation energy in the generalized gradient approximation (GGA) becomes,[196] 

  𝐸𝑋𝐶
𝐺𝐺𝐴[𝑛(𝑟), 𝑛(𝑟′)] = ∫𝑓 [𝑛(𝑟), 𝑛(𝑟′), ∇𝑛(𝑟), ∇𝑛(𝑟′)]𝑑𝑟                        (2.27) 

The GGA is found to work much better than the LDA in predicting material properties to their 

approximate real value in the Kohn-Sham method. The overcorrection of the local electronic 

density of uniform electron gas by gradient corrected density was hugely successful useful for 

semiconducting systems which largely reduce the ground state properties such as lattice 

constants were smaller by < 0.6% than an experiment, cohesive energy, dielectric function, 

elastic constants within 3% of its experimental value, and bandgap underestimation problem 

of LDA within 0.2 eV of its experimental value in GGA.[197], [198] 

 Over the years many progress has been made in deriving the successful GGA 

functionals.[199], [200] The most commonly used GGA formalism in DFT is Perdew-Wang  

(PW91)[201] and Perdew-Burke-Ernzerhof exchange-correlation energy for the GGA’s.[200] 

In most of our DFT calculation results, we have used the Perdew-Burke-Ernzerhof variant of 

the generalized gradient approximation (GGA), which incorporates some inhomogeneity 

effects that are well suited for predicting the electronic properties of various semiconducting 

systems. The combination of GGA and PBE provides better accuracy than normal GGA’s, 

results close to the experimental results for layered materials.[202] However, the prediction of 

material properties using GGA’s still remains to the electronic ground state and fail measurably 
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in predicting the excited state properties of semiconductors such as optical transition energies, 

excitation banding energy, accurate band edges of electron-hole and optical absorption in most 

semiconducting materials. Nonetheless, due to its higher computing efficiency and reasonable 

accuracy of results, it has remained the primary choice to study various trends in material 

properties such as the bandgap engineering and lattice dynamics under external perturbation in 

the form of lattice strain, pressure, and electric field.[203]–[206] 

2.2.3.3 Hybrid functionals 

In a conventional local density approximation or gradient corrected density functional 

approximation, we have repeatedly seen that the exchange contribution 𝐸𝑋  is usually much 

larger than the corresponding correlation 𝐸𝐶 effects. Even the semilocal correction effects do 

not reproduce the reasonable bandgap in semiconductors due to self-interaction errors and 

missing derivative discontinuity in electron density. Hence, a reasonable accuracy of exchange 

functional is a prerequisite to get meaningful results in DFT. A straightforward way to get the 

most accurate exchange-correlation energy is the use of exact exchange energy in the Kohn–

Sham density functional theory.  

In hybrid density functionals, we include certain parts of the exact Hartree-Fock exchange 

energy to improve the results of our GGA calculations. However, the use of hybrid density 

functionals is computationally costly for most materials and very much dependent on the size 

of the system. In 1992, Axel D. Becke et al. [207] established a simple but rather powerful 

strategy to link the Hartree-Fock-based methods with the density functional theory calculation, 

the so-called “Hartree-Fock-Kohn-Sham” scheme by using an adiabatic connection to the 

nonlocal exchange potential in which the non-local Fock exchange operator replaces a part of 

the local exchange energy.[208] 

The exchange-correlational energy in hybrid approximation, 
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𝐸𝑋𝐶
ℎ𝑦𝑏.

= 𝑎𝐸𝑋
𝐾𝑆 + (1 − 𝑎)𝐸𝑋𝐶

𝐺𝐺𝐴                                                  (2.28) 

where 𝐸𝑋
𝐾𝑆 is the exchange energy of the exact Kohn-Sham wave function, 𝐸𝑋𝐶

𝐺𝐺𝐴 approximate 

energy in GGA  and 𝑎 is a fitting parameter which determines the amount of non-local 

exchange part in the hybrid approximation, typically  𝑎 ~ ¼ % of Hartree-Fock mixing. 

The widely used hybrid functional in DFT is the Heyd–Scuseria–Ernzerhof (HSE) screened 

Coulomb potential were a part of short and long-range interaction of PBE exchange functional 

is replaced by the short-range non-local Hartree-Fork exchange interaction. [209], [210]    

The use of HSE functionals in DFT significantly improved the lattice parameters, bandgap, and 

elastic properties for many nonmetallic systems where the errors in the fundamental bandgap 

of semiconductors get reduce to 50% than the same calculated by using the GGA functionals 

alone.[211] 

In a nutshell, the predictive potential of different functionals through incorporating 

various exchange-correlation parts to the density functional theory is progressively improving 

the accuracy of theoretical results close to the experimental values, where the accuracy in the 

bandgap: LDA < GGA < hybrid functional is scaling with the computing need of the problem. 

Using HSE functionals, the errors in ionization energy and affinity have reduced to ~ 0.2 eV 

for many semiconducting materials, including transition metal dichalcogenides.[212]–[215]  

2.2.4 Basis sets  

Slater-type-orbitals (STO): For the wave function computation of atomic and diatomic systems, 

the STO seems to be the natural choice for basis functions. They are exponential functions that 

decay at long range and provide cusp condition in a short-range mimicking the exact 

eigenfunctions of the hydrogen-like atom. A typical STO is expressed as, 

ղ𝑆𝑇𝑂 = 𝑁𝑟𝑛−1exp [−𝛽𝑟]𝑌𝑙𝑚(𝜃, 𝜑)                                           (2.29)  
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Here, ղ corresponds to the principal quantum number, and the orbital exponent is denoted by 

β and the spherical harmonics 𝑌𝑙𝑚. Unfortunately, many-center integrals are complicated to 

compute with an STO basis, and they do not play a significant role in quantum chemistry. 

Gaussian-type-orbitals (GTO): The Gaussian basis sets are the usual choice in computational 

chemistry and molecular physics. GTO is used to describe electron orbitals in a range of  atomic 

and molecular structures and expressed as  

ղ𝐺𝑇𝑂 = 𝑁𝑥𝑙𝑦𝑚𝑧𝑛   exp [−𝛼𝑟2]                                                  (2.30) 

N is a normalization factor ensuring 〈ղ
𝜇
|ղ

𝜇
〉 = 1, 𝛼 is the orbital exponent. L = l+m+n is used 

to classify the GTO as s-functions (L = 0), p-functions (L = 1), etc. The GTO requires a large 

number of basis functions for predicting molecular properties, decay rapidly at a larger 𝑟 and 

does not have a cusp condition around the nuclei. 

Plane-wave-basis (PWB): For periodic solids, the plane wave basis is most suited to express 

cell-periodic functions using Fourier analysis. Using Bloch theorem, the eigenfunctions of 

Kohn-Sham equation with  wave vector k can be expressed as 

                                                         Ψ𝑘(𝑟) = 𝑒𝑖𝑘.𝑟u𝑘(𝑟)                                                 (2.31) 

where u𝑘(𝑟) is the cell-periodic function that can be expanded in a Fourier series: 

                                          u𝑘(𝑟) =
1

√Ω
∑𝑐𝑘(𝐺)

𝐺

𝑒𝑖𝐺.𝑟                                                 (2.32) 

here 𝐺 reciprocal lattice vector, Ω unit cell volume, 𝑐𝑘(𝐺) expansion coefficient to 𝐺, and 𝑒𝑖𝐺.𝑟 

is the exponent to phase. The eigenfunction Ψ𝑘(𝑟) can be expanded using a plane-wave basis 

as: 

                                        Ψ𝑘(𝑟) =
1

√Ω
∑𝑐𝑘(𝐺)

𝐺

𝑒𝑖(𝑘+𝐺).𝑟                                        (2.33) 
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In a crystalline solid, many elements contribute to a band structure, and the free electron model 

can be used to interpret the orbitals of different elements. Only the valence electrons majorly 

participate in the orbital interactions, and it is convenient to use the pseudopotential theory to 

represent the interaction of valence electrons with an effective ionic core. Since the core is 

frozen, the pseudopotential wavefunctions can be built to match the wavefunctions of valence 

electrons independent of atomic positions, where the plane wave basis provides a natural 

periodicity to the electronic wavefunctions, they are orthogonal and complete functions. The 

number of electrons in a typical solid ~ 1028 per mole of atoms, thus, the number of plane wave 

basis part used in DFT to describe the gound state density is significantly large and depends on 

the volume of the unit cell and plane-wave cutoff energy. The accuracy of DFT results for a 

reference material system is improved mainly by using a large energy cutoff to estimate the 

ground state energies of materials. The plane-wave basis can also be used for non-periodic 

systems as the basis function treats all regions of space equally; however, there is an added 

memory get unnecessarily utilized while treating the molecules in a vacuum space. 

2.2.5 Density-functional perturbation theory 

Many physical properties of a material are dependent on its response to an external perturbation 

in the form of lattice displacement or an applied external electric field. The lattice dynamics of 

crystalline solid can determine many such properties including the polarizability, elastic 

stiffness, phonon vibrational modes, thermal expansion of solids, specific heat, electron-

phonon interactions, charge transport mechanism, superconducting properties, phonon 

dispersion, and thermal properties via ab initio density functional perturbation theory (DFPT) 

calculations. The determination of vibrational properties of materials from its crystal phonon 

is one of the astonishing success of modern electronic structure theory. The density functional 

theory (DFT) deals with the electronic part of the system, while the DFPT is a linear response 

method to deal ionic part of the problem and the interaction among electron-phonon. The linear 
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response properties in DFPT are calculated from the interatomic force constants for each 

atomic displacements, where a small perturbation is applied to the equilibrium lattice structure 

in terms of strain or electric field.[216] 

2.2.5.1 Perturbation in Kohn-Sham scheme 

The standard perturbation strategies in the form of small strain or electric field perturbations to 

the lattice displacement enter into the DFT scheme through an effective potential 𝑉𝑒𝑓𝑓(𝑟) in 

the Kohn-Sham equation.[217] Moreover, a linear variation in perturbation will remain 

dependent on the ground state density of electrons. The effective potential under the Kohn-

Sham scheme is defined as 

               𝛿𝑉𝑒𝑓𝑓(𝑟) = 𝛿𝑉𝑒𝑥𝑡(𝑟) + 𝛿𝑉𝑠𝑐𝑟(𝑟) = 𝛿𝑉𝑒𝑥𝑡(𝑟) + ∫𝑑3𝑟′𝐼(𝑟, 𝑟′) 𝛿𝑛(𝑟′)      (2.34)      

           

                         𝐼(𝑟, 𝑟′) ≡
𝛿𝑉𝑠𝑐𝑟(𝑟)

𝛿𝑛(𝑟′)
=

𝛿𝑉𝐻(𝑟)

𝛿𝑛(𝑟′)
+

𝛿𝑉𝑋𝐶(𝑟)

𝛿𝑛(𝑟′)
                                         (2.35) 

The perturbation induces the 1st-order variation in the single-particle wave function and defined 

as  

                                           𝛿𝜓𝑖(𝑟) = ∑
< 𝑗|𝛿𝑉𝑒𝑓𝑓|𝑖 >

𝜖𝑖 − 𝜖𝑗
𝑗(≠𝑖)

𝜓𝑗(𝑟)                                           (2.36) 

Using a similar expression for 𝜓𝑖
∗(𝑟) gives 

                                     𝛿𝑛(𝑟) = ∑
𝑓𝑖 − 𝑓𝑗

𝜖𝑖 − 𝜖𝑗
< 𝑗|𝛿𝑉𝑒𝑓𝑓|𝑖 >

𝑖≠𝑗

𝜓𝑖
∗(𝑟)𝜓𝑗(𝑟)                    (2.37) 

 

An iterative solution to the equation (2.19) using (2.36) and (2.37) gives a 1st – order variation 

in density and corresponding total energy change of the system. 
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2.2.5.2 Lattice dynamics approach 

The lattice dynamics under the Kohn-Sham perturbation scheme is the ionic displacement in 

solids.[217] Using the Hellmann-Feynman theorem, the potential corresponding to an applied 

perturbation is expressed in the Talyor expansion: 

                                         𝑉𝜆(𝑟) = 𝑉0(𝑟) + 𝜆
𝜕𝑉

𝜕𝜆
+ 𝜆2

𝜕2𝑉

𝜕𝜆2
+ ⋯                                   (2.38) 

The corresponding electron density 𝑛(r) and wave function 𝜓(r) under such perturbation  

                                              𝑛𝜆(𝑟) = 𝑛0(𝑟) + 𝜆
𝜕𝑛

𝜕𝜆
+ 𝜆2

𝜕2𝑛

𝜕𝜆2
+ ⋯                                  (2.39) 

                                           𝜓𝜆(𝑟) = 𝜓0(𝑟) + 𝜆
𝜕𝜓

𝜕𝜆
+ 𝜆2

𝜕2𝜓

𝜕𝜆2
+ ⋯                                 (2.40) 

The 1st order solution to the equation (2.19) will be the 1st order Schrödinger equation under 

perturbation terms in equation (2.38)-(2.40) that leads to the Hellman-Feynman theorem to 

define the expectation value of the derivative of the Hamiltonian operator to get the eigenvalues 

of the system 

                                              
𝜕𝐸

𝜕𝜆
=< 𝜓 |

𝜕𝐻

𝜕𝜆
|𝜓 >                                                   (2.41) 

Using Hellman-Feynman theorem and 1st-order perturbation of electron density, the total 

energy expression of a perturbed system becomes: 

 

𝐸 = 𝐸0 + ∑𝜆𝑖 ∫𝑛0(𝑟)

𝑖

𝜕𝑉(𝑟)

𝜕𝜆
𝑑𝑟 +

1

2
∑𝜆𝑖𝜆𝑗 ∫(

𝜕𝑛(𝑟)

𝜕𝜆𝑖

𝜕𝑉(𝑟)

𝜕𝜆𝑗
+ 𝑛0

𝜕2𝑉(𝑟)

𝜕𝜆𝑖𝜆𝑗
)

𝑖,𝑗

𝑑𝑟    (2.42) 

and Taylor series expansion of total energy 
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                            𝐸 = 𝐸0 +
1

2
∑∑𝑢𝑖(𝑅𝐿)𝑢𝑗(𝑅𝐿′)𝐶𝑖,𝑗(𝑅𝐿 , 𝑅𝐿′)

𝑖,𝑗𝐿,𝐿′

                                  (2.43) 

2nd order term to the force constant becomes 

𝐶𝑖,𝑗(𝑅𝐿 , 𝑅𝐿′) = ∫(
𝜕𝑛(𝑟)

𝜕𝑢𝑖(𝑅𝐿)

𝜕𝑉(𝑟)

𝜕𝑢𝑗(𝑅𝐿′)
+ 𝑛0

𝜕2𝑉(𝑟)

𝜕𝑢𝑖(𝑅𝐿)𝜕𝑢𝑗(𝑅𝐿′)
)𝑑𝑟                    (2.44) 

In equation (2.41) a 1st order perturbation to the electron density is required to evaluate the 2nd 

order force constants. Ref. [217] gives further details on density functional perturbation theory 

methods to calculate the phonon and related crystal properties of materials. 

2.3 Vienna ab-initio simulation package 

The calculation results presented in this thesis were carried out by the Vienna Ab-initio 

Simulation Package (VASP). VASP is a sophisticated quantum simulation tool to perform ab 

initio calculations within the density functional theory at zero Kelvin temperature. The 

interaction between ions and electrons is described by the projector-augmented wave (PAW) 

pseudopotential methods using a plane-wave basis set to solve the Kohn-Sham equations in 

DFT with kinetic energy cut off > 500 eV. The all-electron Kohn-Sham wave function is 

linearly transferred into a pseudo wave function in PAW for computational convenience 

implemented in VASP. For periodic solids, the use of a plane-wave basis set is advantageous 

over the other localized orbital basis, and the results produced are well endorsed by the 

computational material science community. The optimization of electronic wave functions 

leads to an instantaneous ground-state electron density by using efficient iterative matrix 

diagonalization schemes (RMM-DISS, and blocked Davidson) that allow a sufficient reduction 

in the number of plane-waves per atom, typically ~ 100 plane waves per atom in bulk solids. 

The Hellman-Feynman forces acting on various atomic species and a full stress matrix can be 

evaluated using VASP, whereas for each self-consistency cycle the minimum energy and 
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corresponding stress matrix is determined, to minimize the same, with respect to the previous 

iteration till a reasonable accuracy is achieved in total energy change. The convergence in total 

energy is controlled by the cut off energy and k mesh sampling. The execution time in VASP 

scales with N3, where N number of valence electrons in the system. VASP is useful for systems 

containing a number of valence electrons by up to 4000. The code also uses different symmetry 

reduction schemes for the efficient calculation of bulk properties of materials. Electronic 

smearing methods such as Fermi, Gaussian, and tetrahedron smearing are used in the 

integration of band structure energy in the Brillouin zone. The Blöchl's corrections for the 

semiconductors are used in our calculation to remove the quadratic errors in the linear 

tetrahedron smearing method that leads to faster convergence of energy. VASP runs well in 

many computing platforms, both in vector computers and parallel computers, at nearly the same 

speed. 

The Vienna Ab-initio Simulation Package (VASP) consists of 4 input files for the calculation 

of various material properties: INCAR, POSCAR, POTCAR, and KPOINTS. Besides, an 

execution script is required to submit the VASP calculation in a high-performance computing 

platform. 

INCAR: The INCAR file contains all the input commands implemented in the VASP code to 

calculate the desired properties of a material. It usually contains a large number of input 

parameters and certain default flags that are central to a specific calculation of properties. 

KPOINTS: This file contains the wave vector coordinates or reciprocal lattice coordinates in a 

weighted mesh form (k-point grid) for the Brillouin zone integration. The denser is the k mesh 

grid, the higher will be the CPU time and accuracy of results.  

POSCAR: The POSCAR file contains the real space lattice information (lattice position and 

unit-cell vectors) of different elements present within a material. 
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POTCAR: The POTCAR is the pseudopotential file for individual elements of the system that 

contains valence and core electronic information. 

The job execution script depending on the computing architecture, is used to submit the VASP 

job to obtain the electronic properties of a given material specified in the POSCAR file. In the 

initial step, the geometry of a given crystal is optimized to its ground state crystal structure 

within DFT, and the corresponding optimized lattice coordinates appear in the CONTCAR file. 

The process is achieved by minimizing the total energy, and the Hellmann-Feynman forces 

exerting on individual atomic species in the stress matrix printed in the OUTCAR file. All 

desired properties of a material can be extracted from the WAVECAR and CHGCAR file, the 

WAVECAR file contains the wave function information of Kohn-Sham equation, and the 

CHGCAR file contains the ground state change density of a material, respectively. 

 

--------------------------**********************---------------------------- 
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Chapter 3 

 

Coupled spin-valley phenomena in monolayers of 

Group-VIB transition metal dichalcogenides & their 

Janus derivatives: A strain-dependent study 

 

This chapter is based on the following unpublished work: 

Nityasagar Jena, Raihan Ahammed, and Abir De Sarkar*, “Spin-orbit interaction and valley 

contrasting phenomena in pure and Janus monolayers of Group-VIB 1H transition-metal 

dichalcogenides”,                                                                                                 [In manuscript]     

 

 

3.1 INTRODUCTION  

 

Spin-orbit interactions (SOI) in non-magnetic semiconductors with missing inversion 

symmetry can lift the spin degeneracy of electronic states due to an asymmetry in crystal-field 

potential [218], [219]. Spintronics, the mechanism to manipulate and control electron spin 

degrees of freedom (DOF) in information processing, is radically a new frontier in the pursuit 

of spin-based integrated electronics [220], [221]. Atomically thin monolayers of group-VIB 

transition-metal dichalcogenides (TMDCs) or commonly referred as 1H-MX2 (where M = Cr, 

Mo, W, etc; X = S, Se, or Te) [93], [222], [223] are family of noncentrosymmetric 

semiconductors with intrinsic direct band gaps Eg ~ 1.1-1.9 eV in the range of visible light [93], 

[224], [225], good charge carrier mobility ~ 200-700 cm2.V-1.s-1 in field-effect transistors 
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(FETs) operating at room temperature, and giant spin-splitting energy (~148-456 meV) [86], 

[123] originating from the domination of frontier d-orbitals of transition metal atoms have 

recently recognized as ideal hosts for next-generation innovative electronics, optoelectronics 

[226], [227] and spintronics [86], [228]. Besides, the honeycomb lattices of 1H-MX2 acquire a 

pair of symmetry inequivalent time-reversed (TR) valleys situated at opposite edges of a 2D 

hexagonal Brillouin zone (BZ), at the corner K (+K) and K' (-K) points of 1st BZ, respectively. 

A simultaneous entanglement of charge, spin, and valley pseudospin DOF are perspective 

phenomena in these monolayers to exploit this distinctive quantum DOF for novel coupled 

spin-valley physics, including valley-selective circular dichroism (CD) [229], spin-Hall effect 

(SHE) [86], [230], and valley-Hall effect (VHE) [231], [232]. All these exciting physics is 

possible in these ultrathin atomic crystals due to the fascinating chiral nature of its valley 

carriers at K/K' points. The valley contrasting phenomena that drive this interlinked quantum 

DOF through optical and electrical selectivity are exotic signatures of Berry-phase curvature 

distribution Ω(𝑘) of low-energy Bloch bands that are occurring close to the fundamental direct 

band gap of 1H-MX2 semiconductors [135], [136], [233]. The orbital and crystal symmetry 

guided spin-momentum locking, and quantum control of valley pseudospins are compelling 

events towards the inventive design of integrated excitonic circuits [234], so-called valleytronic 

devices [16], such as valley filter and valley valves [129]. 

Additionally, the absence of inversion symmetry in MX2 monolayers and the same in 

the odd-numbered layers of it gives rise to sizeable in-plane piezoelectricity (3-7 pm/V). [163] 

The occurrence of a high degree of piezoelectricity in MX2 monolayers is a sought-after 

phenomenon for high-performance piezotronic energy conversion,[22] and piezoelectric 

actuation, [235], [236] owing to a reversible nanoelectromechanical coupling of electric 

polarization and external mechanical strain [163], [171]. However, the out-of-plane 

polarization is restricted (𝑃𝑧  = 0) in pristine MX2 monolayers due to the presence of vertical 
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mirror symmetry (D3v) of identical chalcogen atoms (X2) that isotropically sandwitch the 

central metal atom (M) layer in a X-M-X sequence with a trigonal prismatic coordination 

geometry of lattices and strong polar covalent bonding of Mo d and S p atomic orbital 

overlapping with the basal plane. In recent experiments, this out-of-plane mirror symmetry of 

chalcogen sublattice is broken by the formation of Janus monolayers, namely MXY structures 

[184], [185], where X ≠ Y. A well-controlled CVD synthesis process demonstrated by  Lu et 

al. [184] have shown it is possible to make thermodynamically stable, perfect MoSSe (Eg ~ 

1.68 eV ) Janus monolayer structures through a plasma irradiated atom stripping technique as 

a synthetic route for the production of perfect X-M-Y monolayer structures derivable from 

their parent MX2 monolayer crystals. The result of structural inhomogeneity around the central 

metal atom (M) leads to a spontaneous out-of-plane electric field generated within X-M-Y 

structures, and this is stemmed from the built-in perpendicular dipole moment of asymmetric 

sublattice potential over the X and Y atoms [184], [188], [237]. The induced effective vertical 

electric field couples to the carriers Kramer spin degeneracy through relativistic spin-orbit 

interactions (SOI) in a broken inversion symmetric system and give rise to the novel 

momentum-dependent spin splitting of electronic bands, so-called Rashba effect [184], [238], 

[239] and also brings a large intrinsic vertical piezoelectricity in monolayer/multilayer stacks 

of Janus MXY systems (d33 ~ 0.1-13.5 pm V–1) [184], [186]. 

Although, the Rashba effect in inversion asymmetric surfaces [240]–[242]; hybrid 

heterojunctions [221], [228], [243], [244]; and weakly coupled van der Waal (vdW) interfaces 

[228], [245] resulting from proximity-induced exchange field have long been studied for their 

spintronic functionalities. The evidence of a large Rashba-type band splitting (Rashba 

parameter, αR ~ 2-14 meVÅ) in these new class of ultrathin Janus (MXY) monolayers are quite 

intriguing to enrich and propel the emerging field of 2D semiconductor-based spintronics, 

valleytronics and piezotronics[82], [246]. Here, the realization of a long-sought goal of spin-
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polarized field-effect transistor (spin-FET) proposed by Datta and Das in their seminal work 

back in 1990[247] is viable without any requirement of the high magnitude of external 

electric/magnetic gating [248] or magnetic element doped into the host crystal lattice to induce 

the Rashba type band splitting. 

In this chapter, we theoretically demonstrate a significant intrinsic Rashba effect in 

Group VIB Janus transition metal dichalcogenide monolayers (1H-MXY, M = Cr, Mo, W; X 

≠ Y = S, Se, Te) using density functional theory calculations. Here, we attempt to present a 

comprehensive analysis of electronic structure results for pristine transition metal 

dichalcogenide monolayers (1H-MX2) and their Janus monolayer derivatives (1H-MXY) for 

Group VIB monolayer TMDCs.  Further manipulation of the Rashba spin splitting of bands 

around the Г point and the Zeeman type spin splitting of bands at the K point in the Brillouin 

zone (BZ) has been investigated through a uniform strain engineering of Janus monolayer 

lattices. The extent of orbital overlapping of transition metal 𝑑𝑧2 and chalcogen 𝑝𝑧 atomic 

orbitals, together with a changing dipolar contrast due to a lateral Poisson contraction of 

chalcogen sublattices in response to an applied in-plane biaxial strain, can magnify the intrinsic 

build in vertical electric field, thereby, offers a broad tunability in Rashba parameters. A 

colossal change in the Rashba parameter, such as a massive increase in SOC spin splitting 

energy at K/K’ points of low energy valleys of electron and hole states and a strain tunable 

Berry curvature in 1H-MXY monolayers offers a fertile ground for spintronics and 

valleytronics in these multi-valley 2D electronic systems. 

3.2 COMPUTATIONAL DETAILS 

Quantum simulations have been carried out using density functional theory (DFT) 

based methods implemented within the Vienna ab-initio simulation package (VASP version: 

5.3) [249]–[251]. The generalized gradient approximations (GGA)[190] in its Perdew-Burke-
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Ernzerhof (PBE)[252] parametrization has been used for the exchange-correlation functionals. 

The electron-ion interaction was treated by the projector augmented plane wave (PAW) 

potentials. An energy cutoff of 600 eV was used to expand the electronic wave functions on a 

plane wave basis. Conjugate gradient optimization schemes were used for the full relaxation of 

lattices and interatomic coordinates till the Hellmann–Feynman forces acting on individual 

atoms reduces to < 1 x 10-3 eV.Å-1. In a self-consistent energy convergence loop, the criterion 

for total energy convergence between successive cycles was set at 1 x 10-6 eV. For the Brillouin 

zone integration, a 9 x 9 x 1 Г-centered mesh was used in the geometry optimization, while a 

denser mesh of 19 x 19 x 1 was used for the electronic structure calculations with electronic 

energy smearing of 0.05 eV. The monolayers were isolated by considering a sufficient 

empty/vacuum spacing > 15 Å on either side of a free-standing slab geometry along the z-

direction that effectively isolates a monolayer nanosheet in a supercell. The lattice dynamical 

stability of pure and Janus monolayers was accessed through the calculation of phonon 

dispersion based on DFPT [217] as implemented in VASP and the Phonopy [253] interface 

code is used to process the results from the elements of force constant matrix. The Young’s 

modulus and Poisson ratios have been derived from the coefficients of elastic stiffness matrix 

(Cijkl). The finite difference methods were used to calculate the in-plane relaxed-ion elastic 

stiffness coefficients, such as C11 and C12, including both the electronic and ionic contributions 

to the total elastic matrix. The piezoelectric constants have been evaluated by using a linear 

response method within the DFPT as embedded in the VASP code [216]. [216]. Ab initio 

molecular dynamics (AIMD) simulation approach has been used to access the thermal stability 

of Janus monolayers using the PBE functionals as implemented in the VASP program. The 

optimized ground state structures were annealed at room temperature, 300K in NVT ensemble 

using Nosé–Hoover thermostat for a time duration of 5 ps with a step size of 1.0 fs. 
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3.3 RESULTS AND DISCUSSION 

3.3.1 Crystal structure and electronic properties  

Janus monolayers of transition-metal dichalcogenides (JTMDCs) or chalcogen asymmetric X-

M-Y monolayer structures have been prepared from their most stable, parent X-M-X 

monolayer structures (1H-MX2), by replacing one of the chalcogen sublattices of MX2 with a 

higher chalcogen element, where X ≠ Y (X, Y = S, Se, or Te), as depicted in Figure 3.1 (a)-(b). 

Analogous to the semiconducting MX2 monolayers, the atomic layers of Janus MXY exhibit in 

a hexagonal crystal symmetry with symmetry reduction in the space group from the parent 

𝑃6̅𝑚2 noncentrosymmetric structure to the Janus 𝑃3𝑚1 symmetry, which is also a  

noncentrosymmetric space group. The polar Janus monolayers are enforced with the trigonal-

prismatic coordination of chalcogen sublattice on either side of the transition metal atom that 

differs in bond length between M-X and M-Y with an absence of vertical mirror plane as 

compared to their pristine monolayers. The asymmetry in the chalcogen sublattice in the polar 

MXY monolayer removes the out-of-plane chalcogen reflection symmetry, thereby, induces a 

vertical dipole moment and out-of-plane piezoelectricity which found of the order of ~ 0.1-1.0 

pm/V in Janus monolayers. Moreover, the in-plane piezoelectricity of pristine and Janus 

monolayers are of the order of ~ 2-13 pm/V, which is significantly larger as compared to the 

most common 3D piezoelectric system, such as α-quartz (d11 = 2.27 pm/V) and AlN (d33 = 5.6 

pm/V). 

Before going to the results on electronic properties, we first analyze the chemical 

stability of pristine and Janus monolayers by computationally accessing their relative cohesive 

energies, which is defined as, 𝐸𝑐𝑜ℎ = (𝑛𝐸𝑀 + 𝑛𝐸𝑋 + 𝑛𝐸𝑋/𝑌 − 𝐸𝑀𝑋2/𝑀𝑋𝑌)/N, where 𝐸𝑀, 𝐸𝑋 

and 𝐸𝑋/𝑌 are total energies of transition metal atom and chalcogen atoms within the MX2 or 

MXY crystal structure, 𝐸𝑀𝑋2/𝑀𝑋𝑌 is the total energy of pristine MX2 or Janus MXY monolayer, 
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n is the number of atoms of a given atomic species in the corresponding monolayer structure 

and N is the total number of atoms in the unit cell. The cohesive energies of all pristine and 

Janus monolayers of Group VIB TMDCs have been examined and presented in Table 3.1 and 

Table 3.2, respectively. The calculated cohesive energies of our optimized Janus monolayers 

are comparable to their stable pristine MX2 monolayer structures, and the energy trend in 

cohesive energy decreases with an increase in chalcogenide atomic radius for a given transition 

metal atom. The relative stability of Janus monolayers infers a robust covalent bonding in the 

X-M-Y network that is evident from their comparable cohesive energies. The sublattice 

symmetry breaking of MX2 monolayers leads to a non-zero out-of-plane polarization in MXY 

structures that are arising due to the electrostatic potential difference between the top and 

bottom chalcogen atomic layers of MXY (e.g., WSeTe), as shown in Figure 3.1 (d). The 

asymmetric chalcogen surfaces of Janus monolayers differ in their work function, and a 

difference of ~ 0.29 eV originates from the potential difference between the chalcogen atomic 

layers in a Te-W-Se sandwiched structure, as depicted in Figure 3.1 (d). The potential 

difference increases with an increase in dipolar contrast between chalcogen lattices, as 

presented in Table 3.2. However, the same for pristine TMDCs is null due to isotropic 

chalcogen lattices about the central metal atom layer; thus, a homogenous potential surface on 

either side of central metal atom in the MX2 infers isotropy in work function, as tabulated in 

Table 3.1. Our calculated work function of pristine and Janus monolayers lies in the energy 

range of 4-6 eV,[254]–[256] which is ideal for many of the commonly used contact electrodes, 

such as Au (work function W ~ 5.2 eV), and Pd (W ~ 5.12 eV) in the formation of Schottky 

type metal-semiconductor interface for efficient electron injection to its conduction band.[257] 

The potential difference caused by the vertical inversion asymmetry of chalcogen sublattices 

with broken crystal inversion symmetry in MXY can give rise to a giant momentum dependent 

spin splitting of its Kramer degenerate bands, so-called Rashba-type spin splitting of electronic 
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bands, as shown in Figure 3.1 (c). Besides, in the formation of Janus monolayers, the intrinsic 

direct nature of its semiconducting band gap is found to be retained at the K point of the BZ 

with an enhancement in the Zeeman-type spin splitting of electronic bands occurring around 

the K and K’ valleys in the valence and conduction band sectors of the spin-polarized electronic 

bandstructure, as shown in Figure 3.1 (c).  

Table 3.1 and Table 3.2 summarizes the lattice parameter, cohesive energy, electronic 

band structure information (e.g., bandgap, SOC splitting energy, and work function), 2D elastic 

constants (e.g., Young’s modulus and Poisson ratio) and piezoelectric coefficients (in-plane d11 

and out-of-plane d31 piezoelectric coefficients) for both pristine and Janus TMDC monolayers. 

The Young’s modulus and Poisson ratio of Janus monolayers are comparable to their parent 

pristine monolayer TMDCs, where the elastic stiffness of S-Se based Janus system lies within 

the pristine values of MS2 and MSe2 monolayer crystal (where M = Cr, Mo, W). However, 

Young’s modulus values are much smaller as compared to single-layer graphene (Y = 341 

N/m) or h-BN (Y = 275.9 N/m).[258]  

For pristine monolayer TMDCs (1H-MX2), the S, Se, and Te based systems are found 

to exhibit a direct semiconducting bandgap ~ 0.4-1.8 eV at the K point, where the valence band 

maximum (VBM) and conduction band minimum (CBM) are located at the same K – point in 

the 1st BZ, whereas, the SOC spin splitting energy at the VBM of K point is found to be of the 

order of ~ 64-487 meV (Cr-Mo-W) and the SOC energy in CBM at the K point, which is 

relatively smaller in magnitude is of the order of ~ 2-52 meV. A significant spin splitting of 

bands close to the fundamental direct band gap of monolayers is desirable for spintronic 

functionalities where the distinct spin DOF of valley carriers can be exploited in digital 

information storage and processing. 
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Figure 3.1. (a)-(b) Crystal structure of pristine and Janus monolayer transition-metal 

dichalcogenides (c) Spin-polarized band structure of Janus WSeTe monolayer with spin 

projection operator Sy as the spin quantization axis and (d) electrostatic potential of WSeTe 

monolayer. 

Table 3.1. Summary of the lattice parameter (a = b), cohesive energy per atom (𝐄𝐜𝐨𝐡) in 

the unit cell, the work function of pristine monolayer TMDCs, a global energy gap 

between valence band maximum (VBM) and conduction band minimum (CBM) 

calculated without and with the exclusion/inclusion of SOC effects into the band structure 

using the DFT PBE functionals, the valence band spin splitting  (∆𝐬𝐨𝐜
𝐯_𝐊

) at the K point and 

the conduction band spin splitting (∆𝐬𝐨𝐜
𝐜_𝐊

) at the CBM of K point due to SOC in meV, 

Young’s modulus (Y) and Poisson ratio (𝛝) of monolayer TMDCs, and the in-plane 

piezoelectric coefficient (𝐝𝟏𝟏). 

MX2 a=b 

(Å) 

𝑬𝒄𝒐𝒉 

(eV/atom) 

𝑾 

(eV) 

 

𝑬𝒈
𝑷𝑩𝑬 

(eV) 

𝑬𝒈
𝑷𝑩𝑬+𝑺𝑶𝑪 

(eV) 

∆𝒔𝒐𝒄
𝒗_𝑲 

(meV) 

∆𝒔𝒐𝒄
𝒄_𝑲 

meV 

𝒀 

(N.m-1) 

 

𝝑 

 

𝒅𝟏𝟏 

(pm.V-1) 

CrS2 3.04 3.25 5.81 0.93𝐾−𝐾  0.89𝐾−𝐾  68.52 3.54 112.28 0.26 6.22 

CrSe2 3.20 2.08 5.26 0.75𝐾−𝐾 0.69𝐾−𝐾  90.34 15 89.94 0.29 8.42 

CrTe2 3.47 1.53 4.82 0.53𝐾−𝐾  0.46𝐾−𝐾  106.76 20.18 65.09 0.33 13.65 

MoS2 3.18 3.66 5.88 1.66𝐾−𝐾 1.59𝐾−𝐾 148.05 3.03 137.78 0.24 3.24 

MoSe2 3.32 3.13 5.31 1.44𝐾−𝐾 1.33𝐾−𝐾 183.85 20.56 104.37 0.22 4.35 

MoTe2 3.55 2.77 4.88 1.08𝐾−𝐾 0.94𝐾−𝐾 214.69 33.48 81.17 0.22 6.81 

WS2 3.18 3.78 5.68 1.81𝐾−𝐾 1.54𝐾−𝐾 431.44 29.38 140.42 0.21 2.19 

WSe2 3.32 3.24 5.12 1.54𝐾−𝐾 1.24𝐾−𝐾 466.97 36.16 116.85 0.18 2.56 

WTe2 3.55 2.86 4.70 1.06𝐾−𝐾 0.73𝐾−𝐾 486.91 51.77 85.95 0.18 4.36 
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Table 3.2. Summary of the lattice parameter (a = b), cohesive energy per atom (𝑬𝒄𝒐𝒉) in 

the unit cell, the potential difference between the chalcogen atomic layers (∆𝑽𝑿−𝒀) in 

MXY structure, a fundamental energy gap between the valence band maximum (VBM) 

and conduction band minimum (CBM) calculated without and with the 

exclusion/inclusion of SOC effects into the band structure using the PBE functionals, the 

valence band spin splitting  (∆𝒔𝒐𝒄
𝒗_𝑲

) at the K point and the conduction band spin splitting 

(∆𝒔𝒐𝒄
𝒄_𝑲

) at the CBM of K point due to SOC effects in meV, Young’s modulus (Y) and Poisson 

ratio (𝝑) of Janus TMDCs, the in-plane piezoelectric coefficient (𝒅𝟏𝟏), and  the out-of-

plane piezoelectric coefficient (𝒅𝟑𝟏). 

MXY a=b 

(Å) 

𝑬𝒄𝒐𝒉 

(eV/atom) 

∆𝑽𝑿−𝒀 

 (eV) 

 

𝑬𝒈
𝑷𝑩𝑬 

(eV) 

𝑬𝒈
𝑷𝑩𝑬+𝑺𝑶𝑪 

(eV) 

∆𝒔𝒐𝒄
𝒗_𝑲 

(meV) 

∆𝒔𝒐𝒄
𝒄_𝑲 

meV 

𝒀 

(N.m-1) 

 

𝝑 

 

𝒅𝟏𝟏 

(pm/V) 

𝒅𝟑𝟏 

(pm/V) 

CrSSe 3.12 3.02 2.61 0.83Г−𝐾 0.79𝐾−𝐾 81.52 10.39 98.37 0.26 7.36 0.48 

CrSeTe 3.34 1.81 11.99 0.63Г−𝐾 0.58𝐾−𝐾 100.13 19.32 76.68 0.31 10.97 0.52 

CrSTe 3.27 2.09 10.31 0.26Г−𝐾 0.25Г−𝐾 94.36 17.81 87.21 0.33 10.04 0.91 

MoSSe 3.22 3.32 2.52 1.56𝐾−𝐾 1.47𝐾−𝐾 167.97 13.2 114.37 0.23 4.00 0.20 

MoSeTe 3.43 3.08 11.14 1.27𝐾−𝐾 1.15𝐾−𝐾 199.31 29.54 91.16 0.22 5.75 0.20 

MoSTe 3.36 3.15 9.38 1.02Г−𝐾 0.99Г−𝐾 185.08 25.92 101.05 0.22 5.26 0.38 

WSSe 3.23 3.52 2.61 1.69𝐾−𝐾 1.41𝐾−𝐾 446.38 29.83 128.01 0.20 2.33 0.14 

WSeTe 3.43 3.04 10.98 1.34𝐾−𝐾 1.04𝐾−𝐾 462.39 41.12 101.18 0.17 3.38 0.14 

WSTe 3.36 3.28 9.15 1.22Г−𝐾 1.13Г−𝐾 425.55 29.45 113.15 0.18 3.09 0.27 

 

In monolayer transition metal dichalcogenides (TMDCs), the absence of lattice 

inversion symmetry and the domination of frontier metal d orbitals near the valence and 

conduction band edges lift the spin degeneracy of electronic states due to a strong spin-orbit 

induced spin splitting of bands. Figure 3.2 (a)-(b) shows the spin-resolved electronic band 

structure of pristine MoS2 and Janus MoSSe monolayers where the spin projection is along the 

out-of-plane spin quantization axis (Sz). 
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Figure 3.2. (a) Spin-resolved electronic band structure of monolayer MoS2 and (b) Janus 

MoSSe monolayer with SOC turned on. The carrier spin projection is along the out-of-plane 

spin quantization axis, Sz (dimensionless spin Pauli matrix), and perpendicular to the basal 

plane of the monolayer. The green and blue color is an indicator of spin-up and spin-down 

polarization state. The spin-orbit induced spin splittings of bands across the valence band sector 

and the conduction band sector at the K point of Brillouin zone has been presented therein 

along with the fundamental electronic bandgap of monolayers for a relative comparison of 

electronic band structure modification. 

This out-of-plane spin polarization of carriers in TMDCs is an interplay of planar 

electronic confinement of d electrons’ motion and the asymmetry in the crystal potential 

gradient arising from the broken in-plane inversion symmetric structure of the lattice. The K 

and K' points in a monolayer TMDC are the time-reversal partner of one another. Hence the 

electronic states at the K valley remain at least two-fold Kramer degenerate with those of its 

entangled time-reversed pair at K'. The time-reversal symmetry present in the system requires 

the spin-split of bands at the opposite momenta, i.e., at K and K' points of the BZ to take the 

same energy with opposite spin polarization of spin states where the distinct spin-index of 
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valley carriers are locked to their crystal momentum at the low energy valleys which forms a 

general basis for their coupled nature of valley carriers that can be exploited in several spin and 

valley dependent phenomena, such as spin Hall and valley Hall effects. In monolayer MoS2, 

the SOC spin splitting energy at the VBM at K point ~ 150 meV, which is significantly higher 

as compared to the splitting occurring in its conduction band ~ 3 meV at the K point of BZ. 

Upon the formation of the Janus MoSSe, the SOC spin splitting energy at the K point of BZ 

increases to 170 meV in the valence band sector and a similar enhancement of 13.9 meV is 

observed in the conduction band sector of electronic dispersion by keeping a semiconducting 

direct bandgap at the K point of the BZ. The direct bandgap ~ 1.46 eV and the SOC spin 

splitting energies of MoSSe monolayer lie in the intermediate range of values than those for 

the pristine MoS2 and MoSe2 monolayer, this infers the universality of electronic structure 

results for Group VIB TMDCs upon the formation of Janus structures that can offer additional 

functionalities under the out-of-plane chalcogen mirror symmetry breaking, such as Rashba 

type band splitting around the Г point due to potential asymmetry in the dissimilar chalcogen 

lattice (∆𝑉𝑋−𝑌 = 2.5-12 eV) and large vertical piezoelectricity ~ 0.1-1.0 pm/V potential to the 

application in spintronics and nanoelectromechanical systems. 

3.3.2 Phonon and thermal stability of Janus monolayers 

3.3.2.1 Phonon Stability  

In order to check the kinetic stability of Janus monolayers, we have calculated the phonon 

dispersion along the high symmetry lines in the Brillouin zone via density functional 

perturbation theory methods. Figure 3.3 (a)-(c) shows the phonon dispersion and phonon 

density of states (phDOS) of Janus CrSSe, MoSSe, and WSSe monolayer, respectively. The 

absence of any imaginary phonon branch in the 1st Brillouin zone is a signature of the kinetic 

stability of the Janus structure. The phonon branches for all other cases also exhibit a positive 

frequency dispersion of acoustic and optical phonon modes, thereby merely confirms the lattice 
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dynamical stability of MXY monolayers of Group VIB TMDCs. The group velocity of different 

phonon branches has been projected into their corresponding phonon branches, as shown in 

Figure 3.3 (a)-(c), respectively. The increase in atomic mass of transition metal atoms from Cr, 

Mo to W decreases the highest of the phonon group velocity of its longitudinal acoustic (LA) 

phonon branch from 1.9 km/s to 1.6 km/s, as depicted in Figure 3.3 (a)-(c). The acoustic 

vibrations are found to be dominated by the heavy transition-metal atom and Se atoms, whereas 

the high-frequency optical modes are predominantly contributed by the lattice vibrations that 

involve the light S atoms. Moreover, the highest of the optical phonon frequency decreases 

from Cr to W via Mo, and this is caused by the differences in their interatomic bonding strength 

and orbital overlap of transition metal d and chalcogen p orbitals. The observed phononic 

energy gaps in Janus MXY structures are very different from their parent MX2 structures. Here, 

multiple phononic frequency gaps are observed in the optical frequency, whereas in the case 

of pristine MX2, a single frequency gap is primarily observed between optical and acoustic 

phonons. Furthermore, the intermediate optical phonon modes are less dispersive in MXY 

structures, thereby can effectively reduce the phonon scattering as compared to their parent 

pristine monolayer TMDCs. The decrease in the highest of acoustic phonon frequency from Cr 

to W can increase the phonon scattering rates and reduce the thermal conduction of Janus 

monolayers. The frequency separation between the highest of the acoustic branch and the 

lowest of the optical branch increases from CrSSe (5.4 cm-1), MoSSe (17.91 cm-1) to WSSe 

(43.84 cm-1) that can largely facilitate in the reduction of the acoustic and optical phonon 

interaction, which is higher in case of heavy transition metal atom, e.g., WSSe. 
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Figure 3.3. (a)-(c) Phonon band structure of Janus CrSSe, MoSSe, and WSSe monolayers of 

transition metal dichalcogenides in their stable 1H-phase. The atom projected phonon density 

of states with different phononic energy gap in the phonon spectrum and phonon group velocity 

of corresponding phonon branches had been included for each case. The absence of any 

imaginary phonon branch in the phonon dispersion confirms the kinetic stability of Janus 

monolayers. 

3.3.2.2 Thermal Stability 

In order to further establish the thermal stability of Janus monolayers, we have 

performed ab initio molecular dynamics (AIMD) simulations at room temperature, 300 K. We 

have used a relatively large 3 x 3 supercell to access the free energy change, pressure variation 

and temperature fluctuation for a duration of 5 ps with an interval of 1.0 fs. Figure 3.4 (a)-(c) 

shows the AIMD simulation results for energetically most preferable Janus monolayers, CrSSe, 

MoSSe, and WSSe, respectively. The average free energy change is found to be the lowest for 
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WSSe (𝐸̃ = -202.29±0.54 eV) monolayer followed by the MoSSe (𝐸̃ = -186.66±0.46 eV) and 

CrSSe (𝐸̃ = -169.52±0.34 eV) structures, respectively. The pressure exerted on the Janus 

monolayers for each interval of AIMD simulation has also been calculated, and the average 

change in pressure in the unit cell is much smaller, which is of the order of ~ 1 ± 2 kBar. The 

temperature fluctuation during the AIMD remains around room temperature, 300 K, and the 

temperature fluctuation lies with the temperature range of ± 60 K, as shown in Figure 3.4 (a)-

(c). A snapshot of the corresponding monolayer structure has been presented as the Figure 

insets at the end of the 5 ps of simulation in Figure 3.4 (a)-(c). The structural integrity of the 

Janus monolayers is found to retain at room temperature AIMD without any disruption in the 

lattice which can be affirmed from Figure 3.4 (a)-(c), thus, provides the room temperature 

thermal stability of Janus monolayers and its experimental feasibility via different synthesis 

routes, such as chemical vapor deposition or molecular beam epitaxy. 
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Figure 3.4. (a)-(c)  Ab initio molecular dynamics (AIMD) simulations of Janus CrSSe, MoSSe, 

and WSSe monolayers at room temperature, 300 K. Figure inset shows the snapshots of the 

equilibrium structure at the end of AIMD simulation, at 5 ps. The values over the Figures 

represent the average value of free energy, pressure, and temperature change for a time interval 

of 0-5 ps. No structural disruption in the lattice structure at room temperature confirms the 

thermal stability of Janus monolayers. 

3.3.3 Strain engineering of Rashba parameters 

The out-of-plane mirror symmetry breaking of chalcogen sublattices in the parent MX2 

monolayer can induce an intrinsic build-in electric field perpendicular to the basal plane of 

Janus MXY owing to a large difference in the electrostatic potential between chalcogen lattices. 

The mirror symmetry breaking and strong SOC in MXY structures can induce the Rashba-type 

splitting of electronic bands near the Brillouin zone center, at the Г point. The momentum 

dependent spin splitting of energy bands are found to be asymmetric about the K'-Г-K and M'-

Г-M high symmetry lines in the Brillouin zone (BZ), where the Rashba momentum 𝑘𝑅 is found 

to differ along the K'-Г-K and M'-Г-M high symmetry path keeping the Rashba energy 𝐸𝑅 same 

along these high symmetry lines. The Rashba energy 𝐸𝑅 is found to be maximum for MoSeTe 

monolayer, which is followed by WSeTe and CrSeTe Janus monolayers, as shown in Figure 

3.5 (a). A biaxial strain is found to further enhance the Rashba energy 𝐸𝑅 under the lattice 

compression that reaches close to 90 meV for MoSeTe monolayer at a biaxial lattice 

compression of -3%. A similar enhancement in the Rashba parameter 𝛼𝑅 has been observed 

under the biaxial compressive strain where the MoSeTe and WSeTe monolayers show higher 

variation in 𝛼𝑅 as a function of biaxial strain along the K'-Г-K high symmetry line, as shown 

in Figure 3.5 (b). Figure 3.5 (d) shows a similar variation in the Rashba parameter 𝛼𝑅 along the 

M'-Г-M high symmetry path depicting an apparent anisotropy in 𝛼𝑅 along the K'-Г-K and M'-

Г-M high symmetry line. Figure 3.5 (c) and Figure 3.5 (e) further provide clarity on the 
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anisotropic Rashba effect along the K'-Г-K and M'-Г-M high symmetry line, respectively, and 

the modification in the Rashba bands at ±3% tensile/compressive biaxial strain. 

 

Figure 3.5. (a) Rashba energy 𝐸𝑅 of valence band at the Г-point of BZ as a function of biaxial 

strain in units of meV. (b) and (d) Rashba coefficient 𝛼𝑅 along the high symmetry line K'-Г-K 

and M'-Г-M, respectively in units of meVÅ depicting a clear anisotropic response in 𝛼𝑅 with 

applied biaxial strain. (c) and (e) Rashba type band splitting along the K'-Г-K and M'-Г-M high 

symmetry line in the 1st BZ under the pristine condition (0% strain) and a biaxial strain of ±3%. 

3.3.4 Strain effect on SOC at the K point of VBM and CBM 

In Figure 3.6, we have investigated the biaxial strain response on the SOC spin splitting 

energies of valence and conduction band edges at the K point. Figure 3.6 (a) shows the SOC 

spin splitting energy at the VBM located at the K point of BZ. Under biaxial tensile strain, we 

see a maximum increase in SOC energy for WSeTe Janus monolayer, which is followed by 

WSSe and WSTe Janus monolayers. The Janus monolayers of Mo series and Cr series of 
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chalcogenides exhibit much smaller variation in the valence band spin splitting energy as 

compared to the tungsten series of Janus monolayers. A similar enhancement in the conduction 

band spin splitting energy is observed for WSeTe under the compressive biaxial strain, which 

is followed by the WSSe and WSTe Janus monolayers, however under the biaxial tensile strain 

the energy splitting in CBM decrease in all cases. This altered response in SOC spin splitting 

energy at the VBM and CBM band edges at the K point under the biaxial strain is because of 

their orbital nature of Bloch bands corresponding to the respective band edges and the 

rehybridization and redistribution of overlapping atomic orbitals of metal d and chalcogen p 

atomic orbitals at these low energy valleys or high energy hills at the K point, as shown in 

Figure 3.6 (c)-(d). 

Figure 3.6. (a) Variation in SOC energy at the valence band maximum (VBM) at K-point of 

BZ as a function of biaxial strain. (b) The SOC energy variation at the conduction band 

minimum (CBM) at the K-point. (c)-(d) SOC spin-split electronic band at the VBM and CBM 

at +K point of BZ under pristine condition (0% strain) and ± 3% of biaxial strain. Figure inset 

in (a) & (d) pictorially depicts the SOC spin band of spin split VBM and CBM at the K point 

of the 1st BZ. 
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3.3.5 Variation in direct and indirect bandgap under strain  

In Figure 3.7 (a), we have shown a typical spin-polarized electronic band structure of 

Janus monolayer of Group VIB transition metal dichalcogenide (TMDC), e.g., WSeTe 

monolayer. The fundamental direct bandgap lies at the K points of the Brillouin zone with 

valence band maximum (VBM) and the conduction band minimum (CBM) occurring at the 

same K point. The neighboring valence band maximum, which occurs at the Г point lies at 

lower energy with respect to the valence band top at the K point. Figure 3.7 (b)-(c) shows the 

variation in the direct (𝐸𝑔
𝐾−𝐾) and indirect (𝐸𝑔

Г−𝐾) bandgap energy as a function of biaxial 

strain. Nearly linear variation in the bandgap is observed for the direct and indirect transition 

energy as a function of biaxial strain. The compressive strain tends to increase the magnitude 

of the direct and indirect bandgap in a near-linear progression, while the tensile strain tends to 

decrease the same in a regressive manner. Except for the CrSTe monolayer, all other monolayer 

Janus structures exhibit a semiconducting bandgap under the range of applied biaxial strain 

from -3% to +6%, whereas a semiconductor-to-metal transition is found to occur in CrSTe 

under biaxial tension exceeding the +3%. 
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Figure 3.7. (a) Spin-orbit coupled (SOC) electronic band structure of a typical Janus monolayer 

of Group VIB transition metal dichalcogenide (TMDC). (b) The variation in the direct bandgap 

(𝐸𝑔
𝐾−𝐾) at the K-point of the Brillouin zone (BZ) as a function of applied biaxial strain. (c) 

Changes in the indirect bandgap (𝐸𝑔
Г−𝐾) as a function of biaxial strain in the strain range from 

-3% to +6%. In all cases, a semiconducting bandgap is observed; however, a semiconductor-

to-metal transition has been observed for Janus CrSTe monolayer with tensile biaxial strain > 

3%. 
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3.3.6 Strain tunable Berry curvature 

The missing inversion symmetry and strong SOC at the low energy valleys of pristine and 

Janus monolayers are good candidates for valleytronic applications. The valley pseudospin at 

the time-reversal invariant (TRI) points, such as +K and –K, can be optically addressable 

through valley selective optical pumping. Using the helicity of circularly polarized (right or 

left ) laser radiation, one can address the valley carriers at TRI points via optical selection. In 

theory, the Berry curvature of electronic Bloch bands is central to distinguish the energy 

degenerate valley states at +K and –K points of the BZ. The broken lattice inversion symmetry 

and stong SOC creates non-vanishing Berry curvature at +K and -K points of the BZ with 

opposite polarity as dictated by the time-reversal symmetry of the system. As shown in Figure 

3.8 (a), the valence band Berry curvature distribution of Janus WSeTe monolayer is 

significantly peaked near the TRI points and sharply decays around it that eventually vanishes 

at any other high symmetry points in the BZ. The applied biaxial strain is found to modulate 

the curvature distribution around the +K and –K points in the BZ in a similar manner with 

opposite polarity where the tensile strain is found to increase the Berry curvature at TRI while 

the compressive strain decreases the same. In Figure 3.8 (b), we have computed the strain-

dependent Berry curvature modulation for pristine and Janus monolayers of Group VIB 

transition metal dichalcogenides (TMDCs). The strain-dependent variation in Berry curvature 

is found to be maximum for WTe2 followed by CrTe2 in the case of pristine monolayer TMDCs, 

whereas for the Janus structures, the WSeTe monolayer shows a linear variation with a 

maximum positive slope in the biaxial strain range of -2.5% to +2.5%. Both the theoretical and 

experimental findings have demonstrated the unprecedented mechanical strength and elastic 

stability of monolayer TMDCs. Hence, the strain-tunable alteration in Berry curvature can be 

a simple, effective tool in controlling the transverse velocities of charge carriers in a future 

flexible valleytronic device. 
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Figure 3.8. (a) Berry curvature distribution Ω𝑣(𝑘) of monolayer WSeTe over all the occupied 

Bloch states in units of Å2 along the high-symmetry momentum path [–M]-[–K]-[Г]-[+K]-

[+M] in the 1st Brillouin zone (BZ), under varying degrees of biaxial strain field from -2.5% to 

+2.5%. Figure inset shows the contour map of Berry curvature of occupied bands in a 2D k 

plane. (b) Strain tunable Berry curvature distribution of valence band for pristine and Janus 

monolayers in a biaxial strain range of -2.5% to +2.5% at +K or –K points in the BZ. The Berry 

curvature exhibit a linear variation as a function of biaxial strain, where the tensile strain 

increases the curvature distribution around the K point, and the compressive strain reduces the 

same. The pristine monolayer WTe2 shows the maximum variation in Berry curvature, 

whereas, from the Janus series, the monolayer WSeTe shows the maximum slope with applied 

strain. 
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3.4 CONCLUSIONS 

In summary, we have theoretically demonstrated the crystal structure, lattice stability 

and coupled spin-valley nature of the charge carriers in a series of semiconducting monolayers 

of Group VIB transition metal dichalcogenides 1H-MX2 (where M = Cr, Mo, W, etc.; X = S, 

Se, or Te) and their Janus structures 1H-MXY (where X ≠ Y). Atomically thin MXY 

monolayers are found to be structurally stable, which we have confirmed from the phonon 

study and room temperature AIMD simulations. Furthermore, the Janus monolayers of Group 

VIB TMDCs possess comparable cohesive energy (~ 2-3 eV/atom) to that of their parent, 

energetically stable, 1H-MX2 phase, this suggests the relative chemical stability of Janus 

monolayers. In all cases, a semiconducting electronic bandgap (~ 0.25 – 1.7 eV) has been found 

in Janus monolayers. The bandgap of M-S-Se and M-Se-Te (where, M = Cr, Mo, W) Janus 

monolayers are found to be direct at the K-point of the BZ under SOC, whereas in all other 

cases an indirect bandgap is observed with valence band maximum (VBM) occurring at the Г–

point of the BZ and the conduction band minimum (CBM) situated at the K–point. The 

variation in the direct and indirect bandgap exhibits a linear dependency as a function of applied 

mechanical strain within the -3% to +6% of biaxial strain, and the Janus monolayers remain 

semiconducting within this strain range except for CrSTe strained system that shows a 

semiconductor-to-metal transition with strain > +3%. The electrostatic potential difference 

(∆𝑉) is found to increase with an increase in dipolar contrast between chalcogen lattices, which 

enhances the SOC splitting energy of spin bands at the K–point of BZ both in the VBM and 

CBM sectors of the electronic dispersion. The Rashba parameters (𝐸𝑅  & 𝛼𝑅) are found to be 

highly strain sensitive and significantly get enhanced with lattice compression. The strain 

sensitive variation in Rashba coefficient 𝛼𝑅 is found to exhibit asymmetric behavior about the 

K'-Г-K and M'-Г-M high symmetry line in the 1st BZ. Under compressive biaxial strain the 

enhancement in 𝛼𝑅 along the K'-Г-K line is nearly 2 orders of magnitude higher than the same 
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along the M'-Г-M high symmetry line for a given strain value.  Furthermore, the strain-tunable 

alteration in Berry curvature in pristine and Janus monolayer TMDCs can be a potential avenue 

for the effective controlling of transverse velocities of valley carriers in a future flexible 

valleytronic device. 

 

--------------------------**********************---------------------------- 
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Chapter 4 

 

Valley-engineering under strain: decoherent valley-

drift 

 

This chapter is based on the work published in: 

Nityasagar Jena, Dimple, Raihan Ahammed, Ashima Rawat, Manish Kumar Mohanta, and 

Abir De Sarkar*, “Valley drift and valley current modulation in strained monolayer MoS2”,        

Phys. Rev. B 2019, 100, 165413 

 

 

4.1 INTRODUCTION 

Apart from a unit electric charge and discrete spin configurations, electrons in certain 

crystalline semiconductors acquire another valley pseudospin degrees of freedom for their low-

energy valley carriers due to the occurrence of multiple energy extrema in the electronic band 

spectrum[259]. Monolayer MoS2 (ML-MoS2) and other members of Group VIB transition-

metal dichalcogenides (TMDCs), such as 1H- MX2 (M = Mo, W and X = S, Se) have been a 

subject of intense focus in recent times owing to its direct semiconducting band gaps (Eg ∼ 1–

2 eV) and rich d-electron states[260]. While bulk  MoS2 is an indirect-gap semiconductor (Eg 

∼1.29 eV) [121], [261], a direct semiconductor bandgap (∼1.8–1.9 eV) emerges at its two 

symmetry-inequivalent but energy-degenerate valleys (K/K’), when the bulk MoS2 lattice is 

scaled down to its ultimate two-dimensional (2D) limit, i.e., single-layer MoS2 [262]. In ML-

MoS2, the K and K’ valleys are time-reversal partners and form a binary index in the low-

energy electronic spectrum for valley-selective carrier excitations under a polarization selective 
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photoexcitation[135]. The presence of unique high-symmetry valleys (K/K’) and strong SOC 

endows this material with novel coupled spin-valley physics such as spin Hall and valley Hall 

effects [259]. The chiral nature of exotic valley carriers at K/K’ points has been demonstrated 

in recent experiments, which can serve as a building block in future integrated spintronic and 

valleytronic devices[135], [136]. Additionally, the pristine surfaces of TMDCs devoid of any 

surface dangling bonds allow a facile integration with various substrates, and charge transport 

through them remains free from carrier localization or charge traps from surface roughness 

scattering, thereby leading to a high room temperature mobility ∼200 cm2.V−1.s−1 in a 

top/bottom gated HfO2/MoS2/SiO2 dielectric environment, where the current on/off ratios of a 

single-layer MoS2 transistor can exceed (1 × 108) [263] [9], which is ideal for next-generation 

low-power digital electronics.  

In recent years, strain engineering of the electronic structure has emerged as an efficient 

strategy to improve the performance of monolayer devices[264]–[267]. Elastic strain in MoS2 

has proved to reversibly modulate its tunnel resistance[268], charge carrier mobility[269], 

[270], and optical absorption/emission efficiency to a large extent[205], [265]. The 

unprecedented elastic tolerance of single- to few-layer-thick suspended MoS2 nanosheets have 

been demonstrated in previous experiments, where an elastic deformation under a spherical 

nanoindenter (atomic force microscopy tip) reveals a surprisingly high average Young’s  (Y) 

modulus of 0.33 ± 0.07 TPa[166], [271], which is 1/3 lower than the stiffness of freestanding 

graphene (1.0 TPa)[21], but higher than a freely suspended reduced graphene oxide (rGO, ∼ 

0.25 TPa)[272]. A strong in-plane ionic (polar) covalent bonding in ML-MoS2 [121] emanating 

from a strong overlap between 4d orbitals of molybdenum (Mo) and 3p orbitals of sulfur 

(S)[273] has enabled the sustenance of reversible dilation deformation in the range of strain 

from 6–11%, and the critical breaking strength can exceed 23 GPa (15 ± 3 N.m−1)[166], [274], 

[275]. Besides, ML-MoS2 is insensitive to a lateral electric field in terms of its bandgap 
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modulation[276], [277]. Thus, mechanical strain within the elastic bound is the most effective 

strategy in altering the bandgap and optoelectronic response of ML-MoS2. The ease of applying 

mechanical strain reversibly in low-dimensional structures[278]–[280] and the alteration in 

optoelectronic properties with strain as a potential device have led to the emergence of 

straintronics[281]–[283], a new frontier in tailored nanoelectromechanics. It is now well 

established that the electronic transport and optical excitations in a crystalline semiconductor 

(e.g., ML-MoS2) is solely dependent on the characteristics of its electronic band dispersion, 

E(k) and local curvature of bands (low-energy band topology) in the immediate vicinity of the 

Fermi energy (EF),[267] thus, the conduction band minima (CBM) correspond to the excited 

states of electrons, and the valence band maxima (VBM) refer to the excited states of holes. 

An understanding of energy valley dynamics of low-energy states with respect to a symmetry 

lowering elastic strain is of prime importance in strain engineering of a multi-valley electronic 

material such as ML-MoS2. Moreover, a simultaneous occurrence of strong SOC and broken 

lattice inversion symmetry in ML-MoS2 allows valley selective optical excitations between its 

time-reversed valley pairs (K/K’). It can be optically driven through helicity selective circularly 

polarized laser radiation, which causes excitonic excitations governed by its chiral optical 

valley selection rules (k space valley physics)[135], [136], [259], [284]. A range of exciting 

possibility opens up  to manipulate charge carriers in these time-reversed valley points with 

contrasting Berry-phase curvatures for electron/holes near the K/K’ valleys (valley-Hall 

effects)[285]. Furthermore, valley and spin properties in these monolayers are closely related 

to the  crystal symmetry and wave function of atomic orbitals at the energy band 

extremum[286]. Therefore, an alteration in these properties is expected under a symmetry-

lowering uniaxial strain[137], similar to the experimental observation in an AlAs two-

dimensional electron system[287].  
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In this chapter, the effects of in-plane lattice deformation on monolayer MoS2 have 

been systematically investigated. The energy valley dynamics of low-energy valleys are found 

to differ distinctively as a function of a directional strain perturbation; we find the conduction 

band minimum (CBM) exhibit a pronounced drift of energy band relative to the valence band 

maximum (VBM). Furthermore, the energy-valley drift response is more massive when the 

strain direction is along the zigzag (ZZ) axis of MoS2 in comparison to the armchair (AC) axis. 

The underlying asymmetry in the band drift is attributed to two physical effects brought about 

simultaneously by a symmetry-breaking strain: one is the geometric effect under a direction-

dependent strain, which leads to the anisotropy of elastic constants, while the other one is the 

electronic effect due to a changing orbital manifold, and the overlap of states at the local band 

edges, i.e., CBM/VBM energy valleys. The asymmetry in valley drift leads to the anomalous 

valley current in a strained nanosheet of monolayer MoS2, and the Berry curvature distribution 

around the K point gets considerably modified under a direction-selective strain perturbation. 

Under extreme strain (∼ 10%), we also notice a finite enhancement in the SOC spin split bands 

across the VBM and CBM around the K and K points, where a strong coupling between strain 

and electronic spin degrees of freedom can manipulate the spintronic capability of this material. 

4.2 COMPUTATIONAL DETAILS 

The density functional theory (DFT) calculations have been performed based on 

projector augmented wave (PAW) [288], [289] pseudopotentials implemented within the 

plane-wave Vienna ab initio simulation package (VASP, version: 5.3) [290]–[292]. 

Generalized gradient approximations (GGAs) for the exchange-correlation (XC) energy in its 

Perdew-Burke-Ernzerhof (PBE) [293], [294] parametrization has been used to describe the 

electronic wave functions in a plane-wave basis set. The electronic and ionic relaxation was 

based on the conjugate-gradient (CG) algorithm with a kinetic energy cutoff of 520 eV and Г-

centered 16 × 9 × 1 k-mesh for the Brillouin- zone (BZ) integration. The valence electronic 
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configurations for Mo and S atoms are 4p65s14d5 and 3s23p4, respectively. Energy tolerance 

for the total energy convergence in a self-consistent iteration was set to 1.0 × 10−8 eV, where 

the individual atoms are allowed to relax till the Hellmann-Feynman forces acting on each atom 

reaches less than 1.0 × 10−3 eV/Å. The periodic slabs in the supercell were decoupled by 

considering a large vacuum spacing > 14 Å (the dimension of the supercell along the c axis 

was > 18 Å). Furthermore, dipole corrections have been incorporated to eliminate the spurious 

dipolar interactions between the periodic replicas of nanosheets along the direction normal to 

the surface of ML-MoS2. Fully relativistic SOC effects were considered for the self-consistent 

ion relaxation of strained geometries. The Berry curvatures were calculated with SOC effects 

turned on using the methods discussed in Ref. [295]. 

4.3 RESULTS AND DISCUSSION 

The results and discussion presented in this chapter are divided into following subsections and 

the essential observations have been concluded at the end of chapter 4. 

4.3.1 Strain geometry and Brillouin zone folding 

A honeycomb lattice structure of monolayer (ML) MoS2 was composed of covalently 

bonded triatomic planes of S-Mo-S atoms with a transition-metal (Mo) layer sandwiched 

between two staggered hexagonal sublattices of chalcogen (S) in an ABA Bernal stack 

sequence, as schematically represented in Figure 4.1 (a) and 1(b). An orthorhombic supercell 

was constructed for the purpose of applying strain independently along two of the most relevant 

crystallographic orientations of MoS2, namely, the zigzag (ZZ) and armchair (AC) directions 

[283]. The inherent hexagonal symmetry of MoS2 is retained in an orthorhombic supercell upon 

geometry optimization, where the input experimental bulk lattice constant, a = 3.16 Å (dMo−Mo) 

for a primitive hexagonal unit cell, converges to a = 3.17 Å (dMo−Mo), b = 5.50 Å for an 

orthorhombic supercell, shown in Figure 4.1 (a)-(ii). The optimized lattice parameters shown 
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in Figure 4.1(a) and 4.1(b) are in very close agreement with earlier numerical results using 

similar exchange-correlation functionals and supercell symmetry[296], [297]. Investigations 

reported herein are based on an orthorhombic supercell.  

 

Figure 4.1. (a) Schematic of monolayer (ML) MoS2: (i) optimized geometry in a primitive 

hexagonal unit cell, and (ii) rectangular supercell with lattice parameters presented in panels 

(iii) and (iv), respectively. The lattice vectors for hexagonal and rectangular cells are ah, bh and 

ar, br, respectively, whereas, e1, e2, e3 are the nearest neighbor vectors about a C3-rotation axis 

centered over the S atom in a Mo-S trigonal-prismatic coordination. (b) A side view schematic 

of ML-MoS2 with an A-B-A type trilayer S-Mo-S atomic packing. The dashed blue line in (b) 

over the central Mo layer is an indicator of the plane of mirror symmetry (σh) in broken 
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inversion symmetric ML-MoS2. (c)–(d) A schematic representation of the 2D unfolded 

hexagonal Brillouin zone (BZ) (yellow filled region) and folded rectangular BZ (white filled 

region) for a primitive hexagonal and orthorhombic supercell superimposed with relevant high-

symmetry k points. 

The BZs of the unstrained system is constructed by a proper folding of its hexagonal 

Brillouin zone (yellow filled region) into a rectangular zone (white filled region), as shown in 

Figure 4.1(c) and 4.1(d), where the high-symmetry K point of a hexagonal BZ is folded into 

the midpoint of the line connecting K and (in the hexagonal BZ), i.e., the symmetry point K 

(1/3 0 0) (black dot), located at a 2/3 length of the Г-X high-symmetry line in a rectangular 

BZ[298], [299]. The blue rectangular line inside of folded rectangular BZ in Figure 4.1(c) and 

4.1(d) shows the first BZ of strained MoS2 when strain is along its ZZ/AC direction in an 

orthorhombic supercell.  

4.3.2 Impact of strain on low-energy valleys 

Figure 4.2(a) shows the energy-momentum dispersion, E(k) of strain-free monolayer 

MoS2 in an orthorhombic supercell. Without explicit inclusion of the SOC effect, a direct 

semiconducting bandgap, Eg(K-K) ∼ 1.69 eV, occurs along the X- high symmetry line, where 

the band extrema of electron/hole states lie over a single folded K point (1/3 0 0), positioned at 

2/3 of the length of the Г-X line. The highest occupied states (VBM) occurring at EK and that 

lying at a slightly lower energy (∼20 meV offset) EГ show excellent agreement with previous 

theoretical results using a similar level of DFT methodology[300][301]. Next, uniaxial tensile 

strain in a dilation deformation range of 0–10% was applied along both the ZZ as well as AC 

directions of ML-MoS2. The evolution in the band dispersion and curvature of bands around 

the Fermi energy (EF) within an energy range of E(k) ± 2 eV is shown in Figure 4.2(b). We 

find a robust strain-valley coupling between low-energy Bloch bands and mechanical strain 
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near the CBM/VBM band edges, where an applied uniaxial deformation significantly drifts 

around the CBM valleys and VBM hills far away from K/K’ points in the momentum space, as 

shown in Figure 4.2(b). 

 

Figure 4.2. (a) The band structure of strain-free ML-MoS2 in an orthorhombic supercell shows 

a direct semiconducting bandgap, Eg = 1.69 eV (without SOC), along the X- high symmetry 

line. (b) Evolution in the band structure of unstrained (0%) and uniaxially strained (5%, 9%) 

ML-MoS2 along the ZZ/AC direction. The CBM valleys near K/K′ show a strong strain-

dependent momentum drift over the valence band hills. The band structure shown in (b) 

includes the effect of SOC. (c)–(d) Low-energy spin-split conduction band minima (CB1, CB2) 



  

87 
 

and valence band maxima (VB1, VB2) around the K point, when ML-MoS2 is strained by 1%. 

The CBM/VBM valleys drift along the opposite direction in response to lattice strain along the 

ZZ/AC direction. The vertical color bars represent the position of energy band top or bottom. 

This arc-shaped drift response is found to be stronger in the electron sector of band 

dispersion than the hole sector, with several band extrema crossing around K and K’ point for 

different values of uniaxial strain. In the limit of a small strain of 1%, in Figure 4.2(c) and 

4.2(d), we have shown the energy valley drift in the lowermost spin split conduction band 

(CB1, CB2) and the uppermost valence band (VB1, VB2). The parabolicity of electron subbands 

gets more heavily deformed than the hole bands with energy vertices crossing around the K 

point, when strained along the ZZ/AC axis [see Figure 4.2(c) and 4.2(d)]. The curvature 

distortion can introduce particle-hole asymmetry due to a nonidentical band dispersion around 

the K point [267], [302]. Microscopically, the origin of this strong strain-valley coupling is due 

to a changing geometric effect that reduces the symmetry of the underlying lattice and a 

changing orbital hybridization effect (wave-function overlap effect) for relevant local Bloch 

states at the CBM/VBM band edges. A strain-induced modification in the band-edge orbital 

wave functions generates a scalar potential of varying strength for corresponding Bloch bands 

that are described by the low-energy electron and hole valleys of a monolayer MoS2. 

4.3.3 Isoenergy contours of low-energy valleys  

To make this energy valley drift response more evident, in Figure 4.3 we present the 

constant energy contours of highest occupied (VBM) and lowest unoccupied (CBM) bands 

near the K point. Unlike graphene, the VBM/CBM isoenergy contours of monolayer MoS2 are 

not isotropic in close proximity of the K point, and a trigonal warping (TW) effect of energy 

bands can be seen in the equienergy lines around the K point (this feature is also true for energy 

vertices around the K’ point, as a consequence of time-reversal symmetry in the system) [24], 
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[303]. When uniaxially stained (5%), an increase in the warping effect distorts the isoenergetic 

lines around the energy valleys due to a continuous reduction in threefold planar rotational 

symmetry (C3v) and translational symmetry along its mutually perpendicular lattice directions. 

The TW effect is more pronounced at a larger k, and increases with an increasing strain field 

with an antisymmetric warping strength, when strain is along the ZZ/AC direction. In the 

immediate proximity of K, the hole surface is more strongly warped than the electron, where 

the low-energy contours of a strained system (along the ZZ direction) show an elliptic warping 

of band topology extending to a much higher energy with flattening of convexity revolution 

around the K point along the direction of applied strain, while it is closer to a triangular shape 

along the AC direction. 

The uniaxial strain-induced anisotropy in electronic band dispersion (trigonal warping 

effect) Coulomb drags the charge carriers anisotropically due to a strong interparticle-particle 

correlation that lead to an anisotropy in carrier mass/carrier mobilities and optical anisotropy 

in absorption coefficient as seen in our previous strain-engineering studies [304], [305]. The 

CBM drift is larger than the VBM hills, with energy valleys drifting along opposite directions 

when strained along the ZZ/AC direction. This observation is in line with the result of our band 

structure calculation presented in Figure 4.2(b). 



  

89 
 

Figure 4.3. Isoenergy contours of low-energy valence and conduction bands in a 2D k plane 

for unstrained (0%) and 5% strained ML-MoS2 along the ZZ/AC direction. The dashed line 

and arrows illustrate the energy valley drift near the K point. This energy contour feature is 

also true for its symmetry inequivalent K point due to time-reversal symmetry. The VBM/CBM 

constant energy contours have been scaled with respect to the energy of the valence band top 

and conduction band bottom at the K point. Under strain, we see a strong effect of trigonal 

warping (TW) of energy bands near the K point, where the energy valleys drift along opposite 

directions under the ZZ/AC strain. 
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4.3.4 Measure of valley drift, 2D elasticity, and bandgap under strain 

In the following, we quantify the energy valley drift in the lowermost spin-split 

conduction band (CB1) and the uppermost valence band (VB1). We further study the band-

edge deformation energies of spin-split CBM (CB1, CB2) and VBM (VB1, VB2) and, 

concurrently, the changes in elastic constants such as Young’s modulus, the Poisson ratio, and 

band-gap variations with strain, as the SOC is turned off or on. The changes in the above-

mentioned quantities have been analyzed in a strain range of 0–10% along the ZZ as well as 

AC direction. Uniaxial strain, which gets applied asymmetrically along a given crystal axis 

(ZZ/AC direction), reduces the original hexagonal symmetry in ML-MoS2 about a C3 rotation 

axis. As a result, both the translational symmetry and rotational symmetry are broken due to 

asymmetric Mo-S bond stretching[137].  
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Figure 4.4. (a) Momentum drift in the lowermost spin-split conduction band (CB1) and 

uppermost valence band (VB1) at K/K’ points as a function of uniaxial strain along the ZZ/AC 

direction in a strain range of 0–10%. Variation in Young’s modulus (b) and Poisson’s ratio (c) 

with strain. A strong strain-dependent anisotropy in elastic parameters can be seen in (b) and 

(c) when strain is along its ZZ/AC direction. (d)–(e) Functional relationship of band-edge 

deformation energy with uniaxial strain applied along the ZZ/AC direction. CB1, CB2 is the 

spin-split conduction band minima (CBM) and VB1, VB2 is the spin-split valence band 

maxima (VBM) near the K/K’ point, while VB is the spin-degenerate valence band top at the 

Г point. The bracketed numbers are their variation rates in units of meV/strain%, with energy- 
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referenced to the absolute vacuum energy (Evac.). (f)–(g) Variation in the direct, Eg(K-K ) and 

indirect, Eg(Г-K ) band gaps with the uniaxial tensile strain (0–10%) along the ZZ/AC 

direction, with (w/) and without (w/o) explicit inclusion of SOC effects into the band structure 

calculation. The red and green shading in (f) and (g) is the strain range for direct-to-indirect 

band-gap crossover w/o, and w/ SOC effects turned on. 

As shown in Figure 4.4(a), the lowermost spin-split CBM (CB1) drifts off the K/K’ 

point at a rate (CB1/ZZ) ∼ 4.50 × 10−3 Å−1 /1% when strain is along the ZZ direction, while it 

drifts towards the zone-center (Г) at a rate (CB1/AC) ∼ 2.66 × 10−3 Å−1 /1% when strain is 

along the AC direction. We find the energy valley drifts in spin-split CB1 is higher (>1.5 times) 

along the ZZ direction than the corresponding drift along its AC direction. The momentum drift 

rates are found to be equal in magnitude at K and K’ but of opposite nature in their slopes. A 

similar drift response is found for the valence band hills, where the uppermost spin-split 

valence band top (VB1) drifts away from K/K’ at a rate (VB1/ZZ) ∼ 2.84 × 10−3 Å−1 /strain % 

when strain is along the ZZ direction, while it drifts towards the zone center (Г point) at a rate 

(VB1/AC) ∼ 1.69 × 10−3 Å−1 /strain % when strained along the AC direction.  

A higher drift in momentum-space for both CB1 and VB1, when applied strain is along 

the ZZ direction, is attributed to a drastic change in elastic constants, such as Young’s modulus 

(Y) and Poisson ratio (υ), as shown in Figure 4.4(b) and 4.4(c). A significant drop in the Poisson 

ratio along its ZZ lattice direction has a profound effect on the Brillouin zone deformation, 

which scales linearly with strain applied along the ZZ direction. Valley drift shows a large 

strain dependency. The CBM valley drift is nearly two times the drift in its VBM hill. 

Consequent to the application of uniaxial strain, the electron/hole valleys at K or K’ points no 

longer coincide. As a result, the valley symmetry between excitons (valley coherence) gets 

destroyed due to a strong strain-induced electron-hole valley asymmetry near the K point.  
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Since the valley degrees of freedom emerge from the local band extrema, the drift could 

soften the valley-selective optical selection rules due to changes in the optical matrix elements 

and excitonic wave functions, which in turn can have profound effects on intervalley optical 

excitations and electron dynamics due to radiative dephasing of carriers in a strained ML-MoS2 

lattice. This uniaxial strain-induced valley asymmetry in the vicinity of transition point (K/K’) 

could be the reason for a drastic reduction in the degree of circular polarization (K-valley 

polarization) in uniaxially strained ML-MoS2 in the experimental observation led by Zhu et al. 

[137] in polar photoluminescence (PL) emission measurement, where the degree of valley 

polarization gets reduced with increase in strain magnitude.  

It is worth noting here that, although the low-energy valleys of strained ML-MoS2 show 

a strong momentum-dependent valley drift around K/K’ points, no energy difference between 

K and K’ is observed, i.e., the energy degeneracy in the symmetry inequivalent valleys of 

strained ML-MoS2 is retained even up to a large uniaxial strain of 10%. This shows that the 

uniaxial elastic deformation alone (without a real external magnetic field) is not sufficient to 

lift the valley energy degeneracy between K and K’ by a strain-induced fictitious gauge-field 

vector potential (which generates a uniform pseudo magnetic field) due to its time-reversal-

invariant (TRI) nature. However, a pure shear strain that induces a spatially varying strain field 

can lift the valley degeneracy in transition-metal dichalcogenide monolayers, including ML-

MoS2 [232], similar to the observed phenomenon in a nonuniformly shear strained monolayer 

graphene [306]. Figures 4.4(d) and 4.4(e) track the subband energy evolution (band-edge 

deformation potentials) of spin-split conduction band minima (CB1, CB2) and valence band 

maximum (VB1, VB2) as a function of uniaxial strain. VB lies at the edge of the spin-degenerate 

valence band at the Г point. ML-MoS2 shows a direct gap with CB1 and VB1 coinciding at the 

K point. When influenced by a uniaxial deformation, the spin split CBM (CB1, CB2) at the 

K/K’ point show a stiff energy variation at a rate 76–78 meV/% due to a strong out-of-plane 
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character of Mo 4dz2 orbital states, when strain is along the ZZ/AC direction, while the spin-

degenerate VBM (VB) at Г point varies at a rate (24–26 meV/%) with a valence band crossover 

occurring at 2% strain. On the other hand, the spin-split VB1, VB2 exhibit a smaller energy 

shift at a rate of 24–26 meV/strain % due to the pure in-plane nature of Mo 4dxy + 4dx2−y2 

orbitals which gets weakly influenced by an in-plane strain. Figures 4.4(d) and 4.4(e) shows 

the band-edge deformation potential to be highly strain tunable for low energy Bloch bands 

having out-of-plane orbital character (i.e., CBM at K). Figures 4.4(f) and 4.4(g) show the 

energy evolution in the direct (K-K) and indirect (Г-K) band-gap energies (Eg), with (w/) and 

without (w/o) explicit inclusion of SOC effects. Inclusion of SOC effects leads to a giant spin 

splitting at VBM (VB1, VB2) that reduces the direct bandgap in ML-MoS2 by 80 meV (w/o 

SOC, Eg ∼ 1.69 eV; w/ SOC, Eg ∼ 1.61 eV)[126] while keeping the band edges at the K point, 

where the spin-split valence band top VB1 shifts up in energy by an amount 57.2 meV and VB2 

shifts down by 92 meV with respect to the spin-degenerate valence band (w/o SOC) at the K 

point. An energy separation of 149.3 meV between spin-split VB1 and VB2 in our calculation 

shows very close agreement with experimentally measured values for strain-free monolayer 

MoS2 (146 meV)[279] and a numerical calculation reporting a value of 148 meV [123]. The 

valence band energy offset between EK and EГ increases by a factor of 4 under SOC (∼ 92.58 

meV) with respect to the energy offset w/o SOC (∼ 20 meV), which is much higher than the 

room temperature thermal energy (∼ 26 meV). This important feature in the band structure of 

ML-MoS2 has not received much attention, but it moves the critical strain limit to ∼ 2% for a 

direct-to-indirect band-gap crossover. Our theoretical calculation shows excellent quantitative 

agreement with several experimental observations where the direct-to-indirect band-gap 

transition in ML-MoS2 occurs at a critical strain strength of ∼ 2% [266], [307], [308], whereas 

without SOC this crossover in bandgap occurs at < 1% of lattice strain due to a relatively small 

energy offset (∼ 20 meV) between occupied bands. This also agrees with the numerical results, 
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where the SOC effects have not been explicitly included in the band structure calculation [300], 

[301]. The VBM energy at the Г point is found to be lower by 14 meV under SOC than that of 

w/o SOC. In Figure 4.4(f) and 4.4(g), for all cases, the bandgap decreases monotonically with 

increasing strength of the uniaxial strain, maintaining a nearly linear redshift in energy gaps. 

The redshift rate in the direct bandgap is Eg(K-K) ∼ 53 meV/(% of strain) along the ZZ direction 

and Eg (K-K) ∼ 51 meV/(% of strain) along the AC direction. The redshift rates with and 

without inclusion of SOC effect show excellent quantitative agreement with experimentally 

observed redshift rates in the direct-gap optical transition energies: ∼ 35 meV/% strain[309], 

∼ 45 ± 7 meV/% strain [307], and ∼ 48 meV/% strain [137] measured in several optical 

absorption and photoluminescence (PL) measurements. Moreover, the redshift in their indirect 

band gap, Eg(Г-K) ∼ 100 meV/%, is in good accord with its theoretical value of 94.6 ± 2.2 

meV/%[308]. The energy band-gap redshift rate is slightly higher along the ZZ direction as 

compared to the AC direction, attributed to a faster decline in elastic constants along the ZZ 

direction, which seems to be the elastically soft direction in ML-MoS2 with respect to its 

relatively stiff AC direction [see Figure 4.4(b) and 4.4(c)]. 

 



  

96 
 

Figure 4.5. (a) Band-edge valley drift at 5% shear (S1 and S2) mode of strain. S1 (where the 

tensile and compressive strain of 5% magnitude has been simultaneously applied along zigzag 

and armchair directions) and S2 (where the tensile and compressive strain of 5% magnitude has 

been simultaneously applied along armchair and zigzag direction, respectively). Band gap 

remains direct up to 5% of shear (S1 and S2) strain. (b) Band structure evolution with the biaxial 

tensile strain of 3%, 5% relative to pristine unstrained ML-MoS2. In all cases, the band structure 

includes the effect of SOC. 

We have also explored shear and biaxial strain modes. Due to a relatively low elastic-

bound of shear strain ∼ 5–6%, we have not considered this as our main discussion[274]. 

However, interestingly, even at high value of shear strain ∼ 5%, the bandgap remains direct at 

K/K’ [see Figure 4.5 (a)]. Priya Johari et al.[310] attribute this to the inability of shear strain to 

delocalize the electronic charge density isosurfaces of MoS2. In contrast, the biaxial strain 

mode does not affect the valley degeneracy lifting due to the isotropic nature of the strain field 

that preserves the symmetry of underlying crystal [see Figure 4.5 (b)]. 

4.3.5 Strain effect on Bloch orbitals at band edges  

Apart from a strain-induced geometric effect that reduces the symmetry of a hexagonal 

lattice, another microscopic physical effect underlying energy valley drift is the asymmetry in 

the orbital overlap of electronic states under a symmetry breaking lattice displacement. In 

Figure 4.6(a)–4.6(c), we have carefully mapped the orbital wavefunctions of relevant band 

edge states that describe the low-energy electron and hole dispersion of a pure and strained 

ML-MoS2 lattice. The orbital wave functions at the band edges are primarily composed of 4d 

orbitals of Mo and 3p orbitals of S with a dominance of d character in electronic states. In ML-

MoS2, the trigonal-prismatic crystal field on Mo 4d orbitals lifts the fivefold degeneracy of 

free Mo d orbitals into three energy groups, which spread out in energies, giving rise to two 
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doubly degenerate energy levels (i) 4dxy, 4dx2−y2 and (ii) 4dyz, 4dzx and one singly degenerate 

energy level (iii) 4dz2 [122]. The in-plane 4dxy, 4dx2−y2 orbitals, and the out-of-plane 4dz2 orbitals 

are symmetric with respect to its horizontal mirror plane (σh) lying over the Mo atomic layer. 

The out-of-plane mirror symmetry (z = −z) in ML-MoS2 allows hybridization between its 4dxy, 

4dx2−y2, and 4dz2 orbitals with 3(px, py ), 3(pz) orbitals of ligand sulfur (S) atoms, which opens 

up a tunable energy gap at its two symmetry inequivalent K/K’ valleys. The CBM of a strain-

free ML-MoS2 mainly originates from the mixing of 4dz2 orbitals of Mo with 3(py + px ) orbitals 

of sulfur (S). A small contribution also arises from Mo 5s orbitals. The bandwidth analysis of 

each contributing orbital to the relevant band-edge states is summarized in a table in Figure 

4.6, which shows that each Mo atom contributes a total of 92% spectral weight to its CBM 

antibonding state, while each S atom puts in 4%. The VBM states at the K point are constructed 

by a linear combination of doubly degenerate 4(dxy + dx2−y2 ) bonding orbitals of Mo, with an 

orbital weight of 42%, contributed in equal proportion hybridized with sulfur 3py and 3px 

orbitals each contributing 3.8% of the spectral weight. A vanishing contribution to VBM (at 

K) also arises from Mo 4py and 4px orbitals, each having 0.2% spectral weight. The nearby 

valence band tops at the point (VBM_Г), resulting from the hybridization of Mo (4dz2 ) orbitals 

with antibonding 3pz orbitals of S, each contribute 79% and 9.3%, respectively, with weakly 

contributing 5s and 3s orbitals of Mo and S atoms. Under the application of uniaxial strain, the 

bandwidths of the contributing orbitals show a pronounced change that arises due to a change 

in the crystal field splitting between metal and ligand (Mo-S) in the trigonal prismatic 

coordination geometry. It strongly affects the low-energy band topology of a strained ML-

MoS2 lattice.  
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Figure 4.6. Bloch states at various k points, orbital wavefunction of electronic states at the 

vertices of the conduction band valley (CBM_K), and valence band hills (VBM) located at K 

and Г points for strain-free (a), and 5% strained ML MoS2 along the zigzag (b) and armchair 

(c) directions. The orbital structure of Bloch states is projected from different crystallographic 

viewpoints with their orbital character labeled therein. The charge density isosurfaces have the 

same isolevel along a particular column in (a)–(c) in units of e/Å3. The table summarizes the 

orbital composition of Bloch states at the band edges of CBM/VBM. (d)–(e) Difference in 
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Bloch wavefunction along the ZZ/AC direction for relevant edges at an isosurface level of 0.6 

× 10-3 e/Å3. A strong delocalization effect can be seen when strain is along the ZZ direction. 

In Figure 4.6(d) and 4.6(e), a higher deformation in the orbital charge density 

distribution is noticed when strain is along the ZZ direction as compared to the AC direction. 

The charge density redistribution leads to non-negligible changes in the orbital occupancy that 

lifts the orbital degeneracy of Bloch states that were initially degenerate for a given 

electron/hole band at CBM/VBM. The d and p orbitals that are along the strain axis get higher 

in energy, and the orbital wave functions become more stretched along the direction of applied 

strain. Uniaxial strain-induced orbital motion reduces the orbital overlap between ions, and, in 

turn, the covalency gets partially reduced with progressive domination of ionicity in the metal-

chalcogen bond. As a result, the d bandwidth resulting from the orbital overlap or covalency in 

the bonds can show a considerable change in the orbital projected density of states [see Figure 

4.7]. 
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Figure 4.7. Orbital projected partial density of states of a strain-free and strained monolayer 

MoS2. The orbital projection has been made on Mo and S orbitals, separately, and the orbital 

states across the band-edges have been marked therein. The Fermi level is set to zero energy 

as a standard reference. 

 



  

101 
 

 

Figure 4.8. (a) Spatial distribution of Bloch wave functions at the band edges, CBM (at K), 

and (b)–(c) VBM at K and Г, respectively, when strained along the ZZ/AC direction. The 

planar-average squared wave functions (|ψ|2) have been projected along the direction 

perpendicular to the basal surface of ML-MoS2 (width direction). The atomic positions have 

been marked therein with solid vertical lines on S-Mo-S. 

In Figure 4.8, we have shown the spatial profile of Bloch wave functions for relevant 

band-edge states projected along the direction perpendicular to the MoS2 surface. Under strain, 

the stretching of the Mo-S bond reduces the probability density of the wave functions, which 

shows a higher drop when strain is along the ZZ direction.  

4.3.6 Impact of strain on Berry curvatures 

 In direct intervalley optical excitations via a circularly polarized light, the optical field 

only couples to the orbital part of the Bloch wave functions, near the K/K’ valleys, while the 

spin component of carriers remains unaffected during this process. The modification in the 

onsite electronic energy and orbital occupation factor of a given Bloch state can significantly 
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alter the strength of the Berry curvature distribution of valley carriers that associate valley Hall 

and spin Hall effects in ML-MoS2, due to an asymmetric momentum drift in its low-energy 

Bloch bands[137]. In ML-MoS2, the degenerate electron/hole bands are energetically 

indistinguishable around K/K’. Nevertheless, the valley carriers can be identified by their 

opposite nature of Berry curvature distributions, Ω(k). In this section, we have studied the effect 

of a uniaxial tensile deformation on the Ω(k) of electron/hole bands, near K/K’–points.  

 

Figure 4.9. (a) Berry curvature distribution Ω(k) over all the occupied Bloch bands in units of 

Å2 along the high-symmetry k-line X’-K’-Г-K-X, under varying degrees of strain (5%, 9%) 

along the ZZ/AC direction. (b) Berry curvature distribution of two lowermost unoccupied 

bands under strain. Inset in (a): contour map of Berry curvature distribution in a 2D k plane for 

occupied bands. 

Figure 4.9(a) shows the Berry curvatures of all the occupied bands below the Fermi 

energy for strain-free and strained ML-MoS2, and Figure 4.9(b) represents Ω(k) for two lowest 

unoccupied bands along the high-symmetry line X’-K’-Г-K-X. The lattice inversion symmetry 

breaking and strong spin-orbit interaction allows charge carriers in these valleys to take 

opposite spin polarization and Berry curvatures, where the Berry curvature is mainly localized 

around the K/K’ valleys and significantly peaked at both the K and K’ points in the BZ with 
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opposite sign, as required by the time-reversal symmetry of the system. Away from K/K’, Ω(k) 

decays rapidly and eventually vanishes at the Г point. When uniaxially strained along the 

ZZ/AC direction, the intensity profile of Ω(k) shows a strong drift around K/K’, similar to the 

energy valley drift response in the low energy Bloch bands. The drift is opposite around K/K’, 

with Ω(k) crossing K/K’ when tensile strain is along the ZZ/AC direction. Importantly, the Ω(k) 

distribution is symmetric [Ω (−k) = Ω −(k)] about the point along the Г-X and Г-X’ high-

symmetry lines for both unstrained and strained systems. So, the total valley Chern number 

(Cq) will be null as the valleys at K/K’ follow CK = −CK, which is expected from a system that 

respects time-reversal symmetry under strain. However, an increase in Ω(k) flux intensity 

together with a drift would affect the dynamics of valley carriers due to a strong coupling 

between external strain and carriers’ valley pseudospin at the band edges that could 

conveniently alter the valley current (valley Hall conductivity) in uniaxially strained ML-

MoS2, when the system is under an applied transverse electric field. The anomalous transverse 

velocity gained by the dissociated valley carriers (two different longitudinal charge current 

polarization for each valley index) could be addressed in a controlled valley-dependent 

transport experiment where the associated charge carriers are expected to be deflected under 

an asymmetric strain perturbation[259], [311].  

4.3.7 Strain effect on SOC energy splitting  

Since a large strain-field can substantially alter the electronic states around K/K’ points, 

it is worthwhile to address the effect of a uniaxial strain-field in an extensive strain range of 0–

9% on the changes in spin-split valence band maxima (VB1, VB2) and conduction band minima 

(CB1, CB2) at K/K’ points. In ML-MoS2, the K/K’ valleys are associated with strong SOC. The 

absence of lattice inversion symmetry and the presence of frontier Mo 4d orbitals lift the spin 

degeneracy of electronic states near VBM/CBM due to a strong spin-orbit induced spin 

splitting of bands[123], [124]. Figures 4.10 (a–c) show the spin-resolved electronic structure 
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of strain-free (0%) and strained (9%) ML-MoS2 along the ZZ/AC direction, where the spin 

projection of carriers is along the out-of-plane spin quantization axis (Sz). Under SOC, 

electronic states at each valley (K) remain at least twofold Kramer degenerate with those of its 

entangled time-reversed pair (K’). The spin-split bands at K/K’ valleys remain degenerate in 

electronic energy with opposite spin polarization and crystal momenta in the Brillouin zone, as 

required by the time-reversal symmetry in the system, with the spin index of carriers locked to 

their valley index, which forms a general basis for coupled spin-valley physics in ML-MoS2. 

Pure out-of-plane spin polarization is the result of an interplay of planar electronic confinement 

of d electrons’ motion and the asymmetry in the crystal potential gradient arising from the 

broken in-plane inversion symmetry[123], [312]. A giant spin splitting observed at the VBM, 

∼ 149.3 meV, and a relatively small splitting at the CBM, ∼ 3.28 meV, in our DFT calculations 

shows great agreement result with earlier numerical findings reported using both the analytical 

k · p Hamiltonian model and ab initio calculations[24], [124]. In ML-MoS2, the SOC effects 

primarily arise from the inner orbitals of Mo atoms, and the modification in the geometry of 

the d orbital wave functions of Bloch electron/holes at the band edges has a sizable effect on 

the spin-split energies of CBM/VBM under a symmetry-breaking strain, as shown in Figure 

4.9.  
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Figure 4.10. (a)–(c) Spin-resolved band structure of strain-free (0%) and uniaxially strained 

(9%) ML-MoS2 along the ZZ/AC direction. The spin projection is along the out-of-plane spin-

projection operator, Sz (dimensionless spin Pauli matrix), and perpendicular to the basal plane 

of ML-MoS2. The green and blue colors indicate spin-up and spin-down polarization states. (d) 

Spin-orbit induced spin splittings of the conduction band (CB1, CB2) and (e) valence band 

(VB1, VB2) under varying degrees of uniaxial strain along the ZZ/AC direction. Insets in (d) 

and (e) show the CBM and VBM band dispersions for strain-free (0%) and 9% strained cases 

along the ZZ direction. 
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A giant spin splitting in the VBM mainly arises from the hybridization between 

degenerate Mo 4dxy and 4dx2−y2 orbitals, where the spatial redistribution of the valley carriers 

lifts the orbital degeneracy of relevant states under a uniaxial strain by altering their orbital 

occupancies. This induces a strain-controlled visible splitting in VBM which increases linearly 

with strain, and reaches ∼ 7 meV at 9% of strain, as indicated in Figure 4.10(e), while the CBM 

of ML-MoS2 is a result of weak mixing between in-plane S 3py + 3px and out-of-plane Mo 4dz2 

orbitals. Therefore, the CBM shows a small spin splitting ∼ 1 meV under the application of 

strain. However, fluctuation in spin splitting at some intermediate strain values is observed in 

Figure 4.10(d). This fluctuation in the spin-split conduction band edge (CBM) could be due to 

an asymmetric hybridization (i.e., a random spatial overlap) between out-of-plane (Mo 4dz2) 

and in-plane (S 3py + 3px) Bloch states on sublattices, which in turn leads to a potential 

asymmetry around Mo atoms accompanied by the elongation in Mo-S bond. 

In contrast, the VBM at the point plays no role in spin splitting due to its pure out-of-

plane orbitals, S 3pz and Mo 4dz2, arising from the crystal symmetry of ML-MoS2. The 

occurrence of inversion symmetry along the z-direction causes no spin splitting at the Г point. 

Since the robustness of valley and spin indexes of valley carriers is closely associated with the 

carriers’ relaxation time, an increase in the SOC energy difference in hole bands (∼ 7 meV) 

can hold the spin orientations of carriers for a longer time, and the hole relaxation is expected 

to be slower due to the suppression of Dyakonov-Perel spin relaxation[313]. In ML-MoS2, the 

direct interband optical transitions from a spin-split valence band (VB1, VB2) to the conduction 

band (CB1, CB2), at the K point, give rise to strongly bound A and B excitons, with optical 

selection rules maintaining spin conservation of valley carriers [124][314][279]. Strong spin-

strain coupling in a strained ML-MoS2 is expected to widen the energy separation between A 

and B excitons leading to a strain tunable exciton splitting under a large strain field (0–9%). 

Experiments on ML-MoS2 shows the ability of ML-MoS2 to withstand a sufficiently large 
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elastic strain field as high as 6% to 11% without undergoing any mechanical failure[166]. 

Therefore, SOC spin splitting at the VBM/CBM can be considered carefully in studies 

pertaining to a large strain engineering in MoS2 monolayers, where the spin degrees of freedom 

of valley carriers can be manipulated simply by controlling the spatial distribution of their 

Bloch orbitals.  

4.4 CONCLUSIONS  

In conclusion, using first-principle calculations, we have shown the impact of a 

symmetry reducing mechanical deformation on the low-energy carrier dynamics in strained 

ML-MoS2, around K/K’ points. We find a robust strain-valley coupling for low-energy valley 

carriers, where the energy extrema of electron/hole bands drift away from K/K’ points in 

response to a symmetry lowering uniaxial strain. A significant valley asymmetry between 

electron and hole states (i.e., the CBM valley drift is nearly 2-times that of the VBM hills) can 

conveniently lift the valley symmetry (valley momentum degeneracy at K/K’) of 

electrons/holes. The resulting effect considerably influences the valley selective optical 

excitations and valley polarization properties in a multi-valley electronic system like ML-

MoS2. A drastic drop in the degree of circular polarization (K valley polarization) can be 

optically addressed by a polar PL emission measurement[137]. Besides, the K-valley coherence 

effect can manipulate the valley-contrasting Berry curvature distributions around K/K’, where 

the rise in flux profile together with a drift can lead to anomalous valley current in strained 

ML-MoS2 [259]. The strain-induced modification in Bloch states can substantially alter the 

strength of valley-contrasting phenomena in a strained ML-MoS2 leading to an anomalous 

valley current for different Kramer channels that can mechanically be controlled by a strong 

strain-valley coupling near K and K’ points. This strong valley asymmetry between valley 

carriers under a directional lattice strain is the interplay of geometric and orbital overlap effects 
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that breaks the lattice symmetry and symmetry between orbital wave functions at the relevant 

band-edge points. 

Moreover, the spatial redistribution and rehybridization of states near the band edges 

can potentially pave the way to controlling the spin degrees of freedom in a uniaxially strained 

ML-MoS2, where the SOC induced spin-splitting energy at the VBM can be sizably enlarged 

by an amount of ~ 7 meV at a strain of 9%. This could potentially alter the spintronic capability 

of this material and allow manipulating the spin degrees of freedom in a strained MoS2 lattice. 

The spin relaxation times of carriers are expected to be prolonged by the suppression of 

Dyakonov-Perel spin relaxation due a strain-induced increase in the spin-splitting energy. The 

theoretical findings in this report may drive further experimental investigations of ML-MoS2 

under the application of in-plane lattice strain to realize its future technological applications.  

 

--------------------------**********************---------------------------- 
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Chapter 5 

 

Strain-induced optimization of nanopiezotronic 

response in monolayer MoS2  

 

This chapter is based on the work published in: 

Nityasagar Jena, Dimple, Shounak Dhananjay Behere, and Abir De Sarkar*, "Strain-

Induced Optimization of Nanoelectromechanical Energy Harvesting and Nanopiezotronic 

Response in a MoS2 Monolayer Nanosheet",        J. Phys. Chem. C 2017, 121, 9181-9190 

 

 

5.1 INTRODUCTION 

In comparison to one-dimensional materials (1D), two-dimensional (2D) 

nanostructures have drawn a surge of research interest for their potential applications as a 

channel material in next-generation nano transistors, owing to the relative ease in fabricating 

complex structures from them. Graphene is certainly the most studied 2D nanomaterial. 

However, the absence of a finite semiconductor bandgap in pristine graphene precludes its 

applications in nanoelectronics, where a semiconducting bandgap of material is of utmost 

desire. The engineering of bandgap in graphene elevates the fabrication complexity and either 

reduces carrier mobility to the level of strained silicon[315]–[321] or requires high 

voltage[322], [323]. Lately, semiconducting transition-metal dichalcogenide monolayers 

(mTMDCs, with general chemical formula MX2, where M = Mo, W, etc. and X = S, Se, or Te) 
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have been emerging as promising alternatives to graphene, owing to their intrinsic 

semiconducting band gap in the range (1-2eV)[266], [324]–[326], commendable performance 

(high on/off ratios) in transistors, inherent flexibility, transparency, and atomically layered 

planar structures arranged in a hexagonal honeycomb lattice.[165], [327] Besides, their pristine 

interfaces devoid of out-of-plane dangling bonds facilitate their facile integration with various 

substrates. Moreover, mTMDCs show strong piezoelectricity owing to the absence of inversion 

symmetry, unlike their bulk counterparts, which are centrosymmetric.[163][328][329]  

Recently, piezoelectric properties have been experimentally investigated in free-

standing monolayer MoS2 (ML-MoS2) and nanosheets containing an odd number of MoS2 

layers.[163], [330] Furthermore, Rezk et al. have also investigated intrinsic piezoelectricity in 

ML-MoS2 via acoustically driven trion and exciton modulation.[331] The world’s thinnest 

nanoscale energy-generator happens to be ML-MoS2 nanosheet.[163], [330], [332] Broken 

inversion symmetry together with strong spin-orbit coupling in monolayer TMDCs such as 

ML-MoS2 leads to the emergence of robust spin and valley related properties, such as valley-

selective circular dichroism, valley-contrasting spin splitting, and valley and spin Hall 

effects.[136], [259], [333], [334] These are of enormous scientific interest in the potential 

application of these materials in valleytronics- and spintronics-based devices.  

Nanopiezotronics[330], [335], which couples piezoelectricity to semiconducting 

electronics at the nanoscale, is a vibrant domain of research that can potentially have a wide 

range of applications in nanoscale energy conversion for self-powered nanosystems, 

harvesting/recycling energy from the environment, low-power switches in digital electronics, 

and electromechanically coupled sensors and actuators. However, this relatively new research 

area is in its infancy for 2D piezoelectricity. A microscopically clear understanding of the 

mechanism underlying piezoelectricity in atomically thin nanomaterials and its synergic 

coupling to the semiconducting properties is indispensable for its gainful exploitation in vivid 



  

111 
 

applications such as strain-gated piezoelectric field-effect transistors (PE-FET), piezoelectric 

diodes, strain sensors, and futuristic self-powered two-dimensional semiconducting 

nanodevices for nanoelectromechanical energy harvesting (i.e., conversion of mechanical 

energy into electrical energy). Moreover, the utility of such systems can be integrated into some 

futuristic devices, such as self-powered artificial retina, cardiac activity monitoring devices 

(e.g., self-powered pacemakers), contact lenses, and artificial skin sensors, which can monitor 

several bodily activities and can be potentially beneficial in future point-of-care diagnosis.  

Although a plethora of first-principles studies on strain-induced bandgap engineering 

in semiconducting nanostructures,[336]–[339] investigations on piezoelectric properties are 

relatively sparse.[340]–[342] Apart from the semiconducting band gap in ML-MoS2, 

piezoelectricity occurs due to the broken inversion symmetry. This underlines the need to 

reveal the simultaneous response of the semiconducting (SC) and the piezoelectric (PE) 

properties to the application of mechanical strain for its worthwhile utilization in 

nanopiezotronic devices. To the best of our knowledge, a concerted interplay of the SC and PE 

properties in semiconducting nanosheets, which is of utmost importance from both scientific 

and technological perspectives, has not been addressed so far. The piezoelectric response of 

the ML-MoS2 sheet has been experimentally studied in terms of its current-voltage 

characteristics upon the application of mechanical strain and the asymmetric tuning of the 

Schottky barrier at the metal-semiconductor contacts.[330] Nevertheless, no effort has been 

made to benchmark the conversion of mechanical-to-electrical energy with the strain of 

different modes and magnitude. Furthermore, the underlying linear response properties in ML-

MoS2, such as changes in effective dynamical charges along different lattice directions, have 

not yet been correlated with its piezoelectric strength for an in-depth atomistic insight of the 

phenomena.  
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This chapter unravels the atomistic origin of PE properties in ML-MoS2 through their 

direct correlation with the changes in intrinsic polarization in ML-MoS2. The simultaneous 

response of the piezoelectric (PE) and semiconducting (SC) properties in ML-MoS2 to the 

application of different modes of strain has been presented in this chapter to realize a seamless 

merger between these two intrinsic properties in nanopiezotronic applications. The uniqueness 

of this finding lies in the first-time calibration of piezoelectric properties in ML-MoS2 with the 

strain of various modes, within the bounds, where ML-MoS2 remains elastic and 

semiconducting, thereby enabling one to ascertain the optimal piezoelectric strength and the 

maximal nanoelectromechanical energy harvestable in nanopiezotronic applications. Through 

this systematic approach, the multifunctionality of a particular nanomaterial can be fully 

explored for its fruitful integration into futuristic two-dimensional (2D) semiconducting self-

powered nanoscale devices.  

5.2 COMPUTATIONAL DETAILS 

Ab initio calculations were performed within the density functional theory (DFT)[189], 

[343], as implemented in the plane wave Vienna ab-initio simulation package (VASP, version: 

5.3).[292], [344] Projector-augmented wave (PAW)[289] pseudopotentials and the exchange-

correlation (XC) functional at the level of the Perdew-Burke-Ernzerhof (PBE) variant of the 

generalized gradient approximation (GGA)[293], [345] have been employed in all calculation 

results presented in this chapter. The lattice geometry of ML-MoS2 nanosheet has been 

optimized in a supercell with rectangular symmetry, as shown in Figure 5.1. Upon geometry 

optimization, the lattice constants reach to 3.17 (a) × 5.50 (b) × 18.02 (c) Å. This has been used 

for subsequent calculations on strained geometries. In a supercell approach, a vacuum thickness 

larger than 14 Å has been introduced along the direction perpendicular to the MoS2 nanosheet 

in order to decouple the periodic images. The Brillouin zone has been sampled through a Γ-

centered 16 × 9 × 1 k-mesh with an energy cutoff of 520 eV. Ionic relaxation has been 
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performed based on the conjugate-gradient (CG) optimization algorithm until the Hellmann-

Feynman forces on individual atoms reach less than 0.1 meV/Å. The piezoelectric tensor 

coefficients have been computed using DFPT, which efficiently calculates the linear response 

properties of materials, such as piezoelectric stress tensors (𝑒𝑖𝑗) and Born effective charges 

(𝑍[𝐵]
∗ ). The tensor components reported in this study correspond to the relaxed ion geometry, 

which is relevant to the experimental situation, where ionic relaxation has been performed on 

strained lattices to compute polarization-dependent parameters. The elastic stiffness 

coefficients have been computed using the finite differences approach as implemented in 

VASP.[216] Furthermore, the elastic limit for various strain modes has been studied.  

5.3 RESULTS AND DISCUSSION 

The results and discussion presented in this chapter are divided into the following subsections, 

and essential observations have been concluded at the end of chapter 5. 

In order to probe the piezoelectric response of ML-MoS2 with strain, the optimized 

nanosheet of ML-MoS2 has been subjected to different modes and magnitudes of strain. The 

response in the piezoelectric property to an applied mechanical strain has been quantified by 

piezoelectric tensor coefficients, such as piezoelectric stress (𝑒11) or piezoelectric strain (𝑑11) 

tensor coefficients. An enhancement in piezoelectric coefficients at certain levels and modes 

of strain with respect to pristine, unstrained ML-MoS2 has been noticed. This enhancement in 

the magnitude of coefficients is the signature of the increasing piezoelectric strength of ML-

MoS2 nanosheet upon straining. However, at certain specific levels and modes of strain, within 

the elastic limits, the system has been found to show the maximum piezoelectric response. The 

underlying mechanism of this enhancement lies in the changes in intrinsic electric polarization 

of the material upon applying strain, which has been elucidated by computing a polarization-

dependent linear response parameter, such as Born-effective charge tensors 𝑍[𝐵]
∗  on ionic 
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species (Mo/S) along different in-plane lattice directions (zz/ac). Furthermore, elastic stiffness 

coefficients (𝐶𝑖𝑗), Young’s modulus (Y), and Poisson’s ratio (ϑ) have been studied to ascertain 

the elastic limits of ML-MoS2 under different strain modes. Experimentally, ML-MoS2 is found 

to withstand a mechanical strain higher than 11%.[166] The elastic limits of the sheet lie in the 

6−11% range contingent upon different modes of strain applied to it. Therefore, a 10% strain 

is the maximum strain magnitude that has been considered in all the cases.  

5.3.1 Strain geometry  

MoS2 belongs to the family of layered transition-metal dichalcogenides (TMDCs), 

where the stacked layers are held together by the weak van der Waals forces of attraction. 

Depending on the stacking pattern, MoS2 can exhibit in different polytypic structural phases, 

such as 1T, 2H, and 3R, with AA, AB, and ABC stacking sequences. 1T metallic phase and 3R 

semiconducting phase are metastable[346] at the ambient environment and transform to the 

stable 2H semiconducting phase in response to external stimuli, such as thermal treatment, 

mechanical or electrical perturbations.[347]–[349] The 2H phase is the most stable bulk phase 

of MoS2 having D6h point group symmetry of hexagonal lattice structure. For the present study, 

the stable 2H phase of ML-MoS2 having trigonal prismatic coordination belonging to the 1H 

phase has been considered. A monolayer of 2H-phase is referred to as the 1H phase belongs to 

D3h point group symmetry.  

The monolayer of MoS2 has a hexagonal honeycomb lattice structure like graphene, but 

unlike graphene, ML-MoS2 is a covalently bonded S−Mo−S trilayer, as shown in Figure 5.1 

(b), where the hexagonal Mo-layer is sandwiched between two hexagonal S-layers in an ABA 

stacking sequence. 
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Figure 5.1. (a) Top view of a monolayer MoS2 (ML-MoS2) nanosheet. The rectangular box 

bounds the optimized supercell of strain-free, pristine ML-MoS2. The optimized cell 

parameters are listed in the right panel. (b) Lateral view of ML-MoS2 nanosheet. The strong 

covalent bonding between Mo (blue sphere) and S (yellow sphere) atoms, bond length, bond 

angle, and thickness of a pristine, strain-free ML-MoS2 nanosheet is depicted therein. 

The inherent hexagonal symmetry of ML-MoS2 has been purposefully converted into a 

rectangular orthorhombic supercell, to enable the application of mechanical strain along two 

of its nonequivalent lattice directions, namely, the zigzag (zz) and the armchair (ac) direction, 

respectively. The optimized geometry and lattice parameters listed in the right panel of Figure 

5.1 (a), and also in Table 5.1 are in good accord with the previously reported optimized 

geometries adopted for this system.[350] The strain has been applied by scaling the lattice 

constants while relaxing the ionic positions in a supercell with strained lattices, as routinely 

followed in earlier theoretical reports.[310], [351]–[353] 
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Table 5.1. Optimized Lattice Parameters (𝐚𝐌𝐨−𝐌𝐨), Bond Lengths (𝐝𝐌𝐨−𝐌𝐨, 𝐝𝐒−𝐒, 𝐝𝐌𝐨−𝐒), 

Bond Angles [Θ(S-Mo-S)], Piezoelectric Coefficients [stress (𝐞𝟏𝟏) and strain (𝐝𝟏𝟏) 

coefficients], and Born Effective Charges (𝐙[𝐁]
∗ ) on Mo and S Ions in Pristine, Monolayer 

1H-MoS2 Calculated in This Study and Benchmarked with Reported Experimental and 

Theoretical Findings To Ascertain the Reliability of Applied Methods. 

 𝒅𝑴𝒐−𝑴𝒐, 𝒂 (Å) 𝒅𝑺−𝑺 (Å) 𝒅𝑴𝒐−𝑺 (Å) Θ (deg) 𝒆𝟏𝟏×10-10  

 

(C.m-1) 

 

𝒅𝟏𝟏  

 

(pm/V) 

 

𝐙[𝐌𝐨]
∗ (e) 𝐙[𝐒]

∗ (e) 

1H-MoS2[350] 

 
3.22 3.15 2.43 80.6 -- -- +1.21 -0.57 

 

     2.9[163]b --   

     3.62[154] 3.65[154]   

1H-MoS2[354] 3.19 

 

3.14 

 

-- -- 3.64 

 

3.73 

 

  

1H-MoS2
a 3.17 

 

3.12 

 

2.40 

 

80.8 

 

3.07 

 

2.99 

 

+1.06 

 

-0.55 

 
a Present work. b Experimentally measured value. 

 

5.3.2 Piezoelectric coefficients 

Certain materials show an innate ability to generate or polarize an electric charge within 

itself under the application of an external mechanical load in the form of stress or strain. 

Conversely, one can apply an electric field to mechanically deform these materials. The former 

is known as the direct piezoelectric effect, while the latter is termed as the inverse piezoelectric 

effect. The necessary condition for materials to show this effect in the absence of an inversion 

center, or in other words, these materials need to belong to the class of noncentrosymmetric 

crystals. Both direct and converse piezoelectric effect are related to the intrinsic polarization 

vector via the Maxwell relation; 

eijk = (∂Pi /∂εjk)E,T    (for the direct piezoelectric effect), 

and, eijk = −(∂σjk/∂Ei )ε,T (for the converse piezoelectric effect), 
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where eijk is a third-rank piezoelectric stress tensor, Pi is the electric polarization vector, εjk is 

the strain tensor, σjk is the stress tensor, Ei is the macroscopic electric field, and T is the 

temperature; i, j, k ∈ {1, 2, 3}, and 1, 2, and 3 correspond to x-, y-, and z-directions, respectively.  

Piezoelectric properties of a material are generally expressed by the piezoelectric strain 

tensor (dijk), which is related to the piezoelectric stress tensor (eijk) via the elastic stiffness 

tensors (Cijkl). The Maxwell relation for piezoelectric strain tensor coefficients is dijk = (∂Pi 

/∂σjk)E,T = (∂εjk/∂Ei )σ,T.  

MoS2 belongs to the class of centrosymmetric crystals in its bulk form; however, when 

thinned down to a monolayer or an odd number of a few layers, inversion symmetry is broken, 

and hence, the piezoelectric effect is induced in ML-MoS2, which has been theoretically 

mapped and experimentally verified by Zhu et al.[163]  

As reported by Duerloo et al.,[354], the presence of the D3h point group in ML-MoS2 

reduces the number of nonvanishing piezoelectric tensor coefficients (eijk or dijk) to only one 

independent coefficient, which thereby uniquely quantifies the piezoelectric property of this 

system of materials. Under this symmetry, the nonvanishing piezoelectric stress tensor 

components in Voigt notation are related as follows:  

𝑒111= 𝑒11 

𝑒122= 𝑒12= −𝑒11 

𝑒212= 𝑒221= 𝑒26=  −𝑒11 

In our study, the piezoelectric stress tensor component 𝑒21 (where 𝑒21 = −𝑒11) has been 

considered to calculate the piezoelectric property. The in-plane piezoelectric properties of this 

system have been quantified by the piezoelectric strain tensor coefficient 𝑑11, which is related 

to 𝑒11 via in-plane elastic stiffness coefficients (C11 and C12) as 𝑑11 = 𝑒11/ (C11 − C12). The 
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piezoelectric response has been calculated on tracking the changes in 𝑑11 coefficients under 

various strain modes. The piezoelectric coefficients for a pristine and a strained ML-MoS2 

sheet have been analyzed using DFPT, which efficiently calculates linear response properties 

of materials, like piezoelectric stress coefficient (𝑒𝑖𝑗) and Born-effective charge tensor 

components (𝑍[𝑖𝑗]
∗ ), which arise due to small perturbations applied to the system in the form of 

electric field or strain.  

In order to check the reliability of the applied method, we have first computed 

piezoelectric stress coefficients 𝑒11 for a pristine ML-MoS2 nanosheet. 𝑒11 = 0.49 C/m2 

obtained in our calculations is found to be in excellent agreement with the experimental value 

of 𝑒11 = 2.9 × 10−10 C/m (or 𝑒11 = 0.5 C/m2, when normalized by the thickness of the ML-MoS2 

sheet)[163], and close to the numbers reported in various theoretical studies, 𝑒11 = (2.9 ± 0.5) 

× 10−10 C/m.[154], [354] The values are tabulated in Table 5.1 for a direct comparison with 

other reported works on pristine ML-MoS2. Upon yard sticking 𝑒11  and 𝑑11 for the unstrained 

sheet, different possible strain modes have been realized on the ML-MoS2 nanosheet, and the 

resultant changes in the piezoelectric strain coefficient 𝑑11 as a function of different strain 

modes are shown in Figure 5.2 (a). An optimal enhancement in 𝑑11 is noticed for certain strain 

modes. At low magnitudes of applied strain (piezoelectric strain coefficient  𝑑11 and electronic 

band gap Eg with strain has been drawn, in Figure 5.2 (c-d). Shear (S1) mode of strain and 

uniaxial strain along the zigzag (zz) direction have been chosen for their abilities to induce a 

greater enhancement in 𝑑11. The encircled regions represent a favorable zone in 

nanopiezotronics where piezoelectricity synergistically meets semiconducting nanoelectronics 

for its fruitful integration into nanopiezotronic devices. 
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Figure 5.2. Assessment of piezoelectric and semiconducting properties and their synergic 

coupling in adaptive nanopiezotronics. (a) Variation in piezoelectric strain coefficient d11 with 

the strain of different modes applied to ML-MoS2; negative values imply compressive strain, 

while positive ones signify tensile strain. (b) Bar diagram comparing the piezoelectric response 

to different strain modes at the lower elastic limit for all strain types studied: d11 at 5% strain. 

(c, d) Simultaneous variation in d11 and semiconducting electronic bandgap (Eg) with shear (S1) 

mode of strain and uniaxial strain applied along the zigzag (zz) direction. The directness in 

bandgap in a specific range of strain has been indicated in the panels. [Shear strain S1 indicates 

the simultaneous application of tensile strain along the zigzag (zz) direction and compressive 

strain of the same magnitude along the armchair (ac) direction.] The enclosed regions represent 

the favorable zone for nanopiezotronic applications, where d11 is maximized. At the same time, 
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the semiconducting bandgap of the system is retained. 

Figure 5.2 (c-d) shows that nanopiezotronic properties are maximally utilizable around 

4−5% of the shear (S1) mode of strain, and 6−7% uniaxial tensile strain along the zigzag 

direction. More importantly, the directness of the bandgap has been observed around 4−5% of 

the shear (S1) mode of strain corresponding to a high value of 𝑑11, whereas in the case of 

uniaxial tensile strain applied along the zigzag direction, the bandgap turns indirect under 

tensile strain with respect to the direct bandgap in pristine ML-MoS2. However, the bandgap, 

which remains semiconducting at 6−7% uniaxial tensile strain, shows a smooth decrement with 

further application of strain until it reaches the elastic limit of 9%.  

5.3.3 Born-effective charges 

The dynamical or Born-effective charge (𝑍[𝐵]
∗ ), provides microscopic details of the polarization 

change on ionic species along different lattice directions under strain. The macroscopic current 

and spontaneous polarization change arising due to the displacement of ions is quantifiable 

through 𝑍[𝐵]
∗ .[355] Born-effective charge tensors also provide microscopic insight into the 

enhancement in piezoelectric coefficients via changes in intrinsic polarization in the system 

and is related to the electric polarization vector as 𝑍[𝑖𝑗]
∗  = Ω/e(∂Pi /∂uj) = 1/e(∂Fi /∂Ej), where 

i, j = x, y, z, and Ω is the unit cell volume, u is the strain, E is the electric field, and F is the 

Hellmann−Feynman forces acting on ionic species. Ataca et al. have reported the Born 

effective charges for pristine 1H-MoS2 to be of 𝑍[𝐵]
∗  [Mo] = +1.21 electronic charge on each 

Mo atom and 𝑍[𝐵]
∗  [S] = −0.57 electronic charge on each S atom, respectively.[350] These 

numbers for the pristine 1H-ML-MoS2 are close to the ones found in our study and have been 

tabulated in Table 5.1 for a direct comparison with reported work. Due to the inherent 

symmetry of the structure of ML-MoS2, the positive and negative charge centers in the 

supercell coincide, and as a result, unstrained, pristine ML-MoS2 shows no intrinsic 
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polarization. However, ionic displacements brought about by the application of strain cause 

charge centers to shift away from each other along the armchair direction. This results in the 

occurrence of an intrinsic polarization vector along the armchair direction, the magnitude of 

which varies with the type and magnitude of strain. The variation in in-plane effective 

dynamical charges, 𝑍[𝑧𝑧]
∗  and 𝑍[𝑎𝑐]

∗ , with different modes of strain, are shown in Figure 5.3. For 

a pristine ML-MoS2 sheet, the in-plane effective dynamical charges on Mo and S ions are found 

to be of the same magnitude. In all strain modes studied, changes in the Born-effective charges 

on ionic species have been observed.  

 

Figure 5.3. Born effective charges on each Mo and S ion. (a-d) Variation in the effective 

dynamic charges Z[B]
∗  on the ionic species with the strain (Born effective charge, Z[B]

∗ ; in-plane 
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tensor components along zigzag and armchair lattice directions, Z[zz]
∗  and Z[ac]

∗ , respectively. 

Considerable enhancement in piezoelectric coefficients has been noticed when the 

effective dynamical charges on Mo and S ions increase in numerical value along the y- or the 

armchair direction and decrease along the x- or the zigzag direction in response to the applied 

strain. This occurs in uniaxial strain applied along the zigzag direction and compressive strain 

applied along the armchair direction. These two effects add up in the case of shear (S1) mode 

of strain and thereby maximizes the piezoelectric coefficient under the shear (S1) mode of 

strain. The increment in the Born-effective charges on the ions enhances the intrinsic 

polarization vector along the armchair direction. The aforementioned 3-strain types enhance 

the intrinsic polarization vector along the armchair direction, which scales with the strain 

magnitude. So, the mechanism underlying the enhancement in the piezoelectricity in ML-MoS2 

is revealed through the increase in the Born-effective charges on the ions and, in turn, the 

increase in the intrinsic polarization vector along the armchair direction. Therefore, the 

alteration in piezoelectric response is found to be intimately correlated with the Born-effective 

charges via the changes in electric polarization. 

Furthermore, the strain-induced enhancement in intrinsic polarization along the y- or 

the armchair direction builds up a potential, known as the piezo potential, along the y-direction. 

The magnitude of this piezo potential is proportional to the magnitude of the applied strain. For 

current flow along the x-direction (i.e., zigzag), the piezo potential along the y- (i.e., armchair) 

or transverse direction may serve as the gate voltage, which is tunable by the degree of applied 

strain. Conversely, for current to flow along the armchair direction, the strain-induced piezo 

potential along the longitudinal direction will facilitate the transport of charge carriers. The 

shear (S2) mode of strain (where S2 denotes lattice compression along the zigzag direction and 

dilation by the same magnitude along the armchair direction) causes a large decrement in 
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effective dynamical charges on both the ions along the armchair direction and a significant 

increase in the same along the zigzag direction. This results in a significant reduction in the 

intrinsic polarization vector along the armchair direction, which can be utilized for 

piezoresistive purposes. 

5.3.4 Elastic coefficients 

In order to calibrate the elastic strength of ML-MoS2 nanosheet and to ascertain the elastic 

limits for different types of strain considered, elastic stiffness tensors (Cij) have been 

investigated under different modes and magnitude of strain. Moreover, the piezoelectric strain 

tensor coefficient (𝑑11) is related to the stress coefficient (𝑒11) via the elastic stiffness of the 

material as 𝑑11= 𝑒11/ (C11 − C12). Young’s modulus (Y) and Poisson’s ratio (ϑ) are important 

elastic parameters to calibrate the mechanical strength and stability of a system under the 

application of external load. These elastic parameters can be derived from the elastic stiffness 

tensor coefficients (Cij) from the relation as follows:  

                                        𝑌 =  (
𝐶11

2 −𝐶12
2

𝐶11
)        and,        ϑ = 

𝐶12

𝐶11
 

Figure 5.4. Elastic constants for the assessment of mechanical stability or elastic limits in 

ML-MoS2. (a) Changes in Young’s modulus (Y) and (b) Poisson’s ratio (ϑ) with strain. 
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The variation in Young’s modulus (Y) and Poisson ratio (ϑ) with strain has been shown 

in Figure 5. 4 (a-b). A significant decrease in Y has been observed for the shear mode of strain 

S1 followed by the uniaxial tensile strain along the zz-direction, biaxial tensile strain, and 

uniaxial compressive strain along the ac-direction. The variation in Y with strain in all these 

cases has been found to scale inversely with the piezoelectric response. Y is found to reach 

close to zero for shear strain S1 exceeding 7%, signifying the instability of ML-MoS2 for shear 

strain S1 > 7%. However, the stability/elastic limit under shear strain S1 is found to be 5% from 

the analysis of Poisson’s ratio (ϑ). In the case of shear strain S1, the gradual occurrence of the 

negative value of Y indicates the onset of mechanical instability above 6% strain. Poisson’s 

ratio (ϑ) for most of the materials lies between −1 and 0.5. In contrast, a negative Poisson’s 

ratio (ϑ) corresponds to the materials belonging to the auxetic family of material classes, which 

is mechanically a sporadic phenomenon and of great scientific interest. A value of ϑ exceeding 

0.5 is generally a sign of a mechanically anisotropic response arising in the system. However, 

in our studies, ϑ > 0.5 noticed for ∼ 5% shear strain and ∼ 9% uniaxial tensile strain, as evident 

from Figure 5.4 (b), is a clear sign of mechanical instability. A compressive strain of up to 3% 

has been demonstrated to be experimentally feasible and realizable in monolayer lattice 

structures.[169], [355]–[357] Large compressive strain beyond Euler’s critical load may cause 

buckling or ripple in the sheet. The buckling or rippling in the lattice inducible at large 

compressive strain would be manageable to some extent under experimental conditions through 

the usage of an underlying flexible substrate, like PDMS, confined within vertical support or 

by using a channel material of short length. It will inhibit rippling or buckling in the sheet in 

the direction perpendicular to the sheet. With the progressive advancement in the experimental 

tools and techniques, the application of higher magnitudes of compressive strain is foreseeable 

in the near future. In theoretical studies, the compressive strain has been routinely varied over 

a wide range to understand or predict the trend.[269], [357], [358] Therefore, results for small 
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to large values of compressive strain have been included in the current work for completeness. 

In the present study, the structure is found to remain mechanically stable under the compressive 

strain of up to 10%, as evident from Figure 5.4. 

5.3.5 Carrier mobility 

From the perspective of nanoelectronics, the mobility of electron (e) and hole (h) in 

ML-MoS2 nanosheet and its variation with uniaxial strain applied along two lattice directions 

have been studied. Out of all strain modes studied, the uniaxial strain has been deliberately 

chosen for the sake of simplicity and also for the following reasons. Uniaxial tensile strain 

along the zigzag direction is found to be most effective in nanopiezotronic applications owing 

to the smooth tunability in bandgap and an optimal enhancement in piezoelectric property with 

the application of this strain. Moreover, the zigzag direction also turns out to be mechanically 

softest to the application of uniaxial strain, as it is able to sustain its elasticity up to 9% strain. 

The acoustic phonon limited carrier mobility has been calculated, which is based on the 

effective mass and the deformation-potential approximation proposed by Bardeen and 

Shockley.[359] In inorganic semiconductors at room temperature, the coherent wavelength of 

thermally agitated carriers (electrons & holes) is much larger than their lattice constants. It is 

close to acoustic phonon modes at the zone center of the Brillouin zone, where coupling 

between electron and acoustic phonons dominates over carrier scattering in the low-energy 

regime. Therefore, in this limit, carrier mobility can be effectively derived from the effective 

mass and the deformation potential approximation. Moreover, this approach has been 

extensively used[296], [360]–[362] to study charge carrier mobility in 2D materials using the 

relation:  μ(mobility) = 2eℏ3C2D /3kBT|m*|2E2D
2, where the in-plane elastic stiffness constant is 

designated as C2D, effective mass as m* in units of the rest mass of an electron (mo), acoustic 

phonon limited deformation potential as E2D, and relaxation time as τ = m*μ/e.  
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Table 5.2. Charge Carrier Mobility (μ) at T = 300 K for Electrons (μe) and Holes (μh) 

along zz and ac Lattice Directions, Elastic Stiffness Constant (C2D), Carrier Effective 

Mass (m*, in units of rest mass of an electron, mo), Acoustic Phonon Limited Deformation 

Potential (E2D), and Relaxation Time (τ) for a Pristine Monolayer MoS2 Nanosheet. 

carrier type C2D (N/m) m* (mo) E2D (eV) μ (cm2
.V-1

.s-1) τ (fs) 

e(zz) 134.9 0.468 -10.94 73.08 19.42 

h(zz) 134.9 0.57 -5.84 172.88 55.97 

e(ac) 134.9 0.468 -11.84 62.39 16.58 

h(ac) 134.9 0.57 -5.58 189.37 61.31 

 

The mobility of electron (μe) and hole (μh) calculated at 300 K is found to be highly 

anisotropic under uniaxial strain applied along zigzag and armchair directions, respectively. 

The strain-free, pristine ML-MoS2 nanosheet shows higher electron mobility (73.08 cm2.V−1.s 

−1) along the zz direction as compared to the ac direction (62.39 cm2.V−1.s −1) as shown in Table 

5.2. Under uniaxial tensile strain, μe decreases along the zz-direction, whereas μe increases 

along the ac-direction up to 3% of strain and then drops smoothly. However, the extent of 

decrement is not considerable under the tensile strain along the ac-direction as compared to the 

zz-direction, as shown in Figure 5.5 (a).  

 

Figure 5.5. Charge carrier mobilities under lattice deformation. (a, b) Mobility of electrons (μe) 
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and holes (μh) along the zigzag (zz) and armchair (ac) lattice directions, respectively. (Inset: a 

closeup to show higher hole mobility along the ac direction as compared to the zz direction). 

While under the compressive strain along the zz-direction, a significant rise in μe has 

been observed after a sharp drop at 3% compressive strain. This is attributable to the lowering 

of the bandgap for compressive strain greater than 3%, while the bandgap remains direct up to 

7%. However, along the ac-direction, the same drastic drop occurs again at 3% strain. After 

that, a damped oscillatory behavior has been observed for compressive strain greater than 3%. 

The abrupt drop in μe at 3% compressive strain along both the directions may be potentially 

utilized in designing switches where the unstrained and pristine ML-MoS2 nanosheet will serve 

as the on-state, while the same under 3% compressive uniaxial strain will function as the off-

state of the device. Hole mobility (μh) turns out to be higher along the ac direction than along 

the zz-direction, as shown in the inset of Figure 5.5 (b) and in Table 5.2 for a pristine sheet. 

Under a uniaxial tensile strain of 1%, μh falls sharply from its unstrained, pristine value along 

both the directions, as shown in Figure 5.5 (b). This occurs due to the fact that under ≥ 1% 

uniaxial tensile strain, the top of the valence band switches from K point to Γ point in the 

Brillouin zone, whereas the bottom of the conduction band remains around the K point, thereby 

making the system an indirect bandgap semiconductor. The drastic drop in hole mobility (μh) 

at 1% tensile strain can be exploited in developing switches. For tensile strain exceeding 1%, 

μh increases along both the zz- and ac-direction with respect to μh at 1% tensile strain; however, 

the rate of increase is higher along the ac direction. Upon compression, μh rises along the zz-

direction, while it declines along the ac direction. Compressive strain along the zz-direction is 

effectual in enhancing the mobility of both of the carriers. As the hole mobility is much higher 

than the electron mobility, a metal with a high work function may be used as contacts/leads to 

lower the Schottky barrier and, in turn, the contact resistance. As carrier mobility is found to 

increase under the uniaxial compressive strain along the zigzag direction, ML-MoS2 serving as 
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the channel material needs to interface the electrodes on either side along its zigzag directions. 

The zigzag direction along the channel length would be favorable for the conduction of both 

types of carriers. 

5.4 CONCLUSIONS  

A systematic investigation of the nanopiezotronic response of ML-MoS2 nanosheet to 

different modes of applied strain has been performed. Our study shows that shear strain S1 and 

uniaxial tensile strain applied along the zigzag direction are most effective in reinforcing the 

nanopiezoelectric response in ML-MoS2, which is followed by biaxial tensile strain and 

uniaxial compressive strain applied along the armchair direction. Polarization-dependent linear 

response properties, such as Born effective charges (𝑍[𝐵]
∗ ), have been investigated to attribute 

the change in piezoelectric response to the alteration in the intrinsic polarization vector. The 

simultaneous variation in piezoelectric and electronic bandgap with the shear strain (S1) and 

uniaxial tensile strain along the zigzag direction has been studied to ascertain the optimal strain 

values where piezoelectricity couples synergistically to the semiconducting properties for the 

maximal utility of ML-MoS2 in nanopiezotronic devices. It is found to occur around 4−5% 

shear strain and about 6−7% uniaxial tensile strain. Furthermore, the variation in carrier 

mobilities with strain has been addressed. Under the application of uniaxial compressive strain 

along both the zigzag and the armchair directions, electron mobility drops drastically at 3% 

strain. Likewise, hole mobility falls abruptly at 1% uniaxial tensile strain along both the zigzag 

and armchair directions. These behaviors in charge carrier mobility may find useful 

applications in designing low-power switches. Under uniaxial compressive strain, the charge 

carrier mobility is found to increase along the zigzag direction. Therefore, the channel material 

needs to interface the electrodes along the zigzag direction for higher carrier injection. 

Moreover, ML-MoS2 has been fortuitously found to be softest (or least stiff) along the zigzag 

direction, which shows higher strain sustainability and greater elastic limit. Our predictive 
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findings can facilitate in realizing energy-efficient nanopiezotronic devices by controlling the 

conversion of mechanical to electrical energy in 2D nanomaterials such as ML-MoS2. 
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Chapter 6 

 

Anomalous lattice vibration in monolayer MoS2: 

Breaking the vibrational degeneracy under extreme 

strain 

 

This chapter is based on the following unpublished work: 

Nityasagar Jena, Dimple, Raihan Ahammed, Manish Kumar Mohanta, Ashima Rawat, and 

Abir De Sarkar*, “Anomalous lattice vibration in strained monolayer MoS2: Breaking the 

vibrational frequency degeneracy under extreme in-plane strain”,                   [In manuscript] 

 

 

6.1 INTRODUCTION 

In recent years, monolayers of molybdenum disulfide (ML-MoS2), a well-known 

member from the Group of semiconducting transition-metal dichalcogenides (MX2; M = Mo, 

W, etc.; X = S, Se, or Te) has emerged as one of the perfect semiconductive counterparts to the 

semi-metallic graphene.[121], [363], [364] Unlike graphene, which is a perfect one-atom-thick 

honeycomb lattice of carbon atoms. The monolayer crystals of MoS2 are quasi-2D structures 

with a covalently bonded lateral sandwich of S-Mo-S atomic layers arranged in a trigonal 

prismatic molecular geometry.[222], [365] Subject to significant dimensional confinement, a 

spectrum of novel physical properties arises in ML-MoS2 that has brought this 2D material into 

prominence.[366]–[368] Some remarkable attribute of this atomically flat semiconductor is 1) 

emergence of an intrinsic direct bandgap (1.8-1.9 eV)[40], [278] at the K point of Brillouin 
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zone (BZ), when scaling down from its host bulk crystal (which is an indirect-gap 

semiconductor, Eg ~ 1.29 eV)[94], [121]; 2) a dramatic increase in photoluminescence (> 104 

-fold) than that of bulk MoS2[121]; 3) endurance to a large elastic mechanical deformation (> 

6-11%) without structurally falling apart[166], and last but not least 4) novel coupled spin-

valley physics, such as Spin-Hall & Valley-Hall effects with the explicit breaking of crystal 

inversion symmetry in their monolayer lattices.[259], [368], [369] Besides, due to an excellent 

pliancy of its metal-chalcogen (Mo-S) covalent bonding, the semiconducting gap of ML-MoS2 

is highly strain sensitive, and capable of being modulated further via external perturbations, 

such as external mechanical strain (0-10%).[205], [280], [310], [370] The elastic strength and 

mechanical failure of free-hanging ML-MoS2 membrane have recently experimented under a 

scanning probe (AFM nanoindentation set-up), where highly crystalline sheets of MoS2 

suspended over the substrate pre-patterned shallow depressions.[371], [372] The experiment 

demonstrates a high effective in-plane stiffness of 180±60 N.m-1, while the breaking (or elastic 

failure) occurs close to 11% of lattice deformation for pure and defect-free samples.[166] This 

ultrahigh mechanical strength in ML-MoS2 provides an unprecedented opportunity to modify 

its electronic and optical properties for strain mediated flexible electronics.[205] On the other 

hand, elastic lattice deformations in ML-MoS2 are known to drive a direct-to-indirect bandgap 

transition because of a very low electronic energy offset (~ 20-90 meV) between its indirect 

and direct transition energies, which occur at a small strain limit of 1-2%.[205], [266], [300], 

[310] Under extreme strain > 10-11%, a semiconductor-to-metal transition has also been 

reported in highly strained ML-MoS2 nanosheets.[283]  

Apart from strain-induced tailoring of its semiconducting bandgap and transport 

characteristics[305], [310], elastic mechanical deformations in ML-MoS2 has profound effects 

on its phonon dispersion and vibrational modes.[308], [373] A theoretical investigation of its 

crystal phonon analysis in response to lattice strain of several types under varying strain scale 
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(0, ±10%), within the elastic limit bound, can provide microscopic details of its vibrational 

characteristic for an efficient electronic and thermal management. Recent theoretical and 

experimental studies have predicted the capability of an anisotropic uniaxial tensile strain 

towards the breaking of twofold frequency degenerate 𝐸2𝑔
1  vibration of a ML-MoS2 into 𝐸2𝑔

1+ 

& 𝐸2𝑔
1− singly nondegenerate sub-band frequency components with polarization of splitted 

eigenvectors (𝐸2𝑔
1+ & 𝐸2𝑔

1−) orthogonal to one aonther.[205], [369] In an isotropic hexagonal 

lattice (e.g., ML-MoS2), this twofold frequency degenerate 𝐸2𝑔
1  vibration can only be lifted 

under an asymmetric strain-field (i.e., under uniaxial/shear strain), that breaks the underlying 

hexagonal symmetry and 3-fold triangular symmetry (C3v) of sub-lattices (Mo/S) around a C3 

rotation axis.[205], [278] Using micro-Raman spectroscopy, Conley et al.[205] have 

experimentally demonstrated the influence of a symmetry-breaking uniaxial tensile strain in a 

single-layer MoS2. The phonon softening and breaking-off its twofold frequency degenerate, 

𝐸2𝑔
1  mode into distinct frequencies (𝐸2𝑔

1+ & 𝐸2𝑔
1−) were analyzed in a strain range of 0-2.2%. The 

study finds, the splitting occurs at 0.8% uniaxial tensile strain with a redshift in both 𝐸2𝑔
1+ and 

𝐸2𝑔
1− nondegenerate phonon modes. This uniaxial tensile strain-induced frequency split-off 

response was also observed by Wang et al.[369] in their experimental study in a uniaxial tensile 

strain limit of 0-0.71%.  However, the direction of applied tension is arbitrarily chosen in these 

studies.  

In a similar study, using polarization-dependent Raman set-up, Wang et al.[278] has 

reported a red-shift (phonon softening) in 𝐸2𝑔
1  mode and polarization response of 𝐸2𝑔

1+ and 𝐸2𝑔
1− 

mode in response to an increasing uniaxial tensile strain that could serve as a potential indicator 

of its crystallographic orientation. Biaxial tensile strain in a strain range of 0-2.5% were 

analyzed by Lloyd et al.[370] in suspended monolayer nanosheets of MoS2. They found no 

splitting in the in-plane 𝐸2𝑔
1  mode within the studied range of strain.  
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Besides, in all these studies, the strain is only limited to the tensile elastic deformation, 

the effects of compressive strain, and tensile strain of higher magnitude (within its experimental 

failure limit  < 11%[374]) along the mutual orthogonal crystallographic axis, namely; the 

zigzag (ZZ) and armchair (AC) direction of ML-MoS2 together with the response of shear strain 

on its vibrational fingerprints of Raman and IR-active modes have severely been limited in 

experimental and theoretical phonon studies. Nonetheless, strain in 2D crystals is intrinsic in 

the process of sample preparation and underlying substrate effects due to incommensurate 

lattice interactions.[375] In some cases, we also apply stain intentionally to boost the charge 

carrier mobilities of semiconductors[376], likewise in case of strained silicon technology for 

microelectronics. Even though the electronic structure modification in ML-MoS2 from small 

(< 2%)[205], [308] to an extensive strain limit (> 10%) has been substantiated in scientific 

literature,[265], [308], [310] yet comprehensive knowledge of various in-plane strain effect on 

its phonon modes has not been well established. 

Therefore, in this work, we set out to perform a full comprehensive ab initio study of 

various in-plane strain effects on lattice dynamics and frequency shift of distinct phonon modes 

that correspond to the signature Raman and IR – active vibrations of a freestanding ML-MoS2. 

Uniaxial (tensile/compressive) strain along ZZ as well as AC lattice direction, together with 

biaxial (tensile/compressive) strain, in a wide strain range from -10% to +10% have been 

investigated systematically in this chapter. We also study the response of shear mode of strain, 

which we have modeled in two distinct ways, the shear strain of type - S1 & S2. In S1 type: 

simultaneous tensile and compressive strain has been applied along its mutual orthogonal 

direction, and for S2 type in an opposite manner. An in-plane symmetry preserving isotropic 

biaxial strain and symmetry breaking anisotropic uniaxial/shear strain that displaces the sub-

lattice positions within the basal plane of a hexagonal lattice symmetrically/asymmetrically 

along its ZZ or AC crystallographic axis is found to show anomalous frequency variation in 
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the Raman/IR-active modes. The twofold frequency degenerate in-plane 𝐸2𝑔
1  optical mode 

splits into 𝐸2𝑔
1+ and 𝐸2𝑔

1− singly nondegenerate phonon modes, under the application of uniaxial 

and shear strain, with eigenvectors parallel and perpendicular to the principal strain axis. The 

splitting occurs due to an increasing lattice anisotropy and consequent anisotropy in the 

electronic charge density distributions along the applied strain axis and the direction 

perpendicular to it. Depending on strain type, the anisotropy in electron-phonon interaction 

with strain-induced electrostatic field shifts the sub-band 𝐸2𝑔
1+ and 𝐸2𝑔

1−  phonon frequencies 

several tens of cm-1 and the separation between them scale with the magnitude of applied strain. 

The critical strain range to observe such frequency splitting varies between 1-3%, depending 

on the nature and direction of applied strain. On the other hand, the isotropic planar elasticity 

of strain-free ML-MoS2 become anisotropic under the application of uniaxial and shear strain, 

eventually leading to a strain-dependent anisotropy in Young’s modulus (Y) and Poisson’s ratio 

(𝜗) along the mutual orthogonal crystallographic axis, which we have carefully addressed in 

this work upon considering the lateral Poisson contraction of strained lattices in response to a 

transverse strain. The uniaxial and shear strain-induced frequency split-off response in the IR-

spectra is found to be more sensitive than the Raman-spectra at a lower critical strain range of 

~ 1-2%. We believe, together with Raman spectra, IR spectral response of a strained ML-MoS2 

can provide a rapid characterization technique to measure the amount of lattice anisotropy in 

an isotropic hexagonal honeycomb lattice (e.g., ML-MoS2). To our best interest, new Raman 

(𝐸2𝑔
′ ) and IR-active (𝐴1𝑔

′ ) vibrations start to appear in the frequency spectrum under extreme 

values of lattice deformations (8-10%). The appearance of new phonon modes in the frequency 

spectrum is due to a substantial modification in the crystal symmetry and orbital overlap effects 

due to a colossal change in charge density and electrostatic potential asymmetry over the 

vibrating ions (Mo/S). The Grüneisen parameter (𝛾𝑚) and shear deformation potentials (𝛽𝑚) of 

corresponding Raman and IR-active vibrations have also been derived for all strain types. Our 
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systematic, comprehensive ab initio study is of fundamental scientific interest to characterize 

ML-MoS2 under extreme strain (0 ~10 %), for monitoring its several crystal phonon responses 

with a future aspiration to a flexible ML-MoS2 based adaptable phononic and 

nanoelectromechanical system. 

To the best of our known knowledge, a systematic Raman and IR-spectral monitoring 

of distinct phonon modes of ML-MoS2, and the frequency splitting of its twofold degenerate 

𝐸2𝑔
1  mode into 𝐸2𝑔

1+ & 𝐸2𝑔
1−  nondegenerate singlets, under various in-plane strain geometry, in 

a broad strain range of -10% to +10% do not exist in the present scientific literature. Thus, our 

study provides a first-time comprehensive description in this respect. 

 6.2 COMPUTATIONAL DETAILS 

Plane-wave pseudopotential methods have been used to carry out the computation of 

equilibrium and strain structures of ML-MoS2 based on spin-polarized density functional 

theory (DFT) within the framework of projector augmented-wave (PAW)[252], [377] for 

electron-ion interaction as implemented in the Vienna ab initio Simulation Package (VASP; 

version 5.4.4).[250], [291], [292], [378], [379] The generalized gradient approximation (GGA) 

for the exchange-correlation functionals in its Perdew-Burke-Ernzerhof (PBE)[293] 

parametrization were employed for the expansion of Kohn-Sham wavefunctions in a plane-

wave basis. The electronic and ionic energy cutoff was set at 500 eV in the optimization steps. 

An orthorhombic supercell was constructed from the equilibrium primitive hexagonal lattice 

of ML-MoS2, as shown in Figure 6.1(a), for a systematic strain-engineering of monolayer 

lattice. A sufficient empty space, at least > 18 Å, was introduced along the lateral direction 

(i.e., along its c axis) to avoid any unwanted interaction with its periodic replicas in a periodic 

boundary condition (PBC), thereby, effectively isolating a freestanding ML-MoS2 structure. In 

an orthorhombic cell, the zigzag (ZZ) and armchair (AC) axis are independent. Thus, a pure 
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uniaxial strain can be applied along one of the lattice directions (i.e., ZZ/AC) without affecting 

the other lattice direction. We have applied uniaxial tensile and compressive strain along ZZ 

as well as AC direction in a strain range of 0 to ±10% (+ tensile, and - compressive). A 

symmetry-preserving biaxial tensile/compressive strain (hydrostatic) has been realized by 

symmetrically stretching/compressing the lattice vectors isotopically in the same strain scale. 

Whereas the shear strain, which preserves the area of the unit cell was modeled in two distinct 

ways, the S1-type: where tensile strain is along the ZZ axis, and the compressive strain was 

along the AC axis, S2-type: tensile strain along the AC axis and compressive strain along the 

ZZ axis. The strain is applied by scaling the lattice vectors along a and b axis, while under 

strain, the atomic coordinates of strained lattices were fully relaxed to minimize the total energy 

and inter-atomic forces on strained supercells in a manner similar to the other theoretical 

studies.[283], [296] An energy convergence tolerance of 1 x 10-6 eV with a Г – centered 16 x 

9 x 1 k mesh was considered for the electronic energy minimization using the conjugate 

gradient technique until the forces on individual atoms reach to a value < 1 x 10-3 eV/Å. Phonon 

dispersion and phonon eigenvectors of vibrational modes of equilibrium and strained lattices 

were evaluated from the interatomic force constants (IFC) using a linear response theory: DFPT 

methods implemented within the VASP[380], and the same is interfaced with PHONOPY[381] 

for the post-processing of results from the elements of second-order harmonic force constant 

matrix. In all cases, the Raman and IR-spectra are fitted with a Lorentzian with a frequency 

smearing of 1.2 cm-1. 

6.3 RESULTS AND DISCUSSION 

We organize the result and discussion section of this chapter into the following 

subsections. In Sec. 6.3.1; phonon dispersion, phonon density of states (phDOS), Raman, and 

IR-spectra of a strain-free equilibrium ML-MoS2 lattice have been presented. In Sec. 6.3.2, the 

spectral evolution of Raman modes for different strain geometries have been provided. In Sec. 
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6.3.3, we provide the spectral evolution in the IR modes and the corresponding frequency 

variation as a function of lattice strain. Sec. 6.3.4, describes the anisotropy in 2D elastic 

properties by the application of a symmetric (biaxial)/asymmetric (uniaxial & shear) lattice 

deformation. Essential observations have been concluded at the end of this chapter. 

6.3.1 Phonon dispersion and vibrational modes of pristine ML-MoS2 

As a starting point, we first investigate the phonon dispersion and phonon density of 

states (phDOS) of a strain-free ML-MoS2 and identify the symmetry of different phonon modes 

at the Brillouin zone (BZ) center (i.e., Г-point). Figure 6.1(a)-6.1(b) shows the top and side 

view representation of a freestanding ML-MoS2. The 6-atom or 2-molecular units of MoS2 

within a rectangular supercell is constructed from its 3-atom equilibrium primitive hexagonal 

lattice, as shown in Figure 6.1(a).[382] The optimized lattice parameters and inter-atomic bond 

distances are in excellent quantitative agreement with earlier DFT studies using a similar level 

of computational setting.[283], [382] 
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Figure 6.1. (a)-(b) Top and side view schematic of monolayer MoS2 (ML-MoS2) in a primitive 

hexagonal unit cell (green shade) and rectangular supercell (yellow shade) with equilibrium 

lattice parameters. (c) Phonon dispersion, (d) phonon density of states (phDOS) with symmetry 

assignment of different phonon eigenvectors at the Brillouin zone center (Г-point) determined 

via DFPT. The acoustic and optic phonon branches are labeled as per their standard symmetry 

representations. (e) Atomic displacements of Raman and IR-active modes of pristine ML-

MoS2, and (f) shows the representative Raman and IR-spectra of a freestanding ML-MoS2 in a 

Lorentzian fit with a peak smearing of 1.2 cm-1. 

Figure 6.1 (c-d) shows the representative phonon dispersion and phDOS of a strain-free 

ML-MoS2 in a primitive hexagonal lattice. We find a total of nine phonon branch within the 

first-BZ that comprise of 3 acoustic and 6 optic phonons. The phonon branches are labeled as 

per their polarization symmetry assignment of vibrational eigenvectors in Figure 6.1(c). The 

high-energy LA/TA mode exhibit a linear dependency with wavevector q close to the BZ center 

(Г point); whereas, the low-energy ZA mode shows a quadratic dependency (q2 relation), and 

is a signature of 𝐷3ℎ
1  point group symmetry of the 2D hexagonal lattice, such as graphene, 

silicene.[383] The lower branch of optic phonon at Г is well separated from the highest of its 

acoustic phonon at K point by an indirect phononic energy gap of ~ 43.83 cm-1 (∆𝜔). A large 

frequency gap (∆𝜔) within the phonon spectrum is due to a higher crystal symmetry and large 

atomic mass difference between the cation (Mo) & anion (S). This apparently protects the 

vibrations of acoustic phonons from being scattered by its optical phonons, thereby, effectively 

reduces the number of phonon scattering events in pristine ML-MoS2. The phonon dispersion 

and phDOS, as shown in Figure 6.1(c-d) are in good agreement with earlier ab initio studies 

on ML-MoS2.[373], [384] Figure 6.1(e) shows the atomic displacements of phonon 

eigenvectors of various optical modes near the Г point that corresponds to the characteristic 

Raman and IR-active vibrations of a strain-free ML-MoS2. The factor group analysis of a non-
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centrosymmetric 𝐷3ℎ
1  crystal lattice recognizes 3 Raman-active and 2 IR-active vibrations 

within the phonon dispersion. A detail discussion related to the polarization symmetry 

assignment of different phonon branches and their corresponding vibrational eigenvectors is 

well established in the previous scientific literature.[373], [383] The high-frequency 𝐴2𝑢
1  mode 

is purely IR-active vibration with Mo and S atoms vibrating along the lateral direction in anti-

phase to one another, whereas, the twofold degenerate 𝐸2𝑔
1  mode (polar TO2 - LO2 phonon 

mode) is both Raman and IR-active, and attribute to a broken lattice inversion crsyal such as 

ML-MoS2. This anti-parallel atomic displacement of Mo and S atoms in 𝐸2𝑔
1  mode induces 

planar dipole moment within the basal plane, thus, lead to an anomalous phonon electric field 

coupling in strained lattices of polar semiconductors (e.g. ML-MoS2). Whereas, the out-of-

plane 𝐴1𝑔 vibration and the low-energy 𝐸1𝑔 optic mode are purely Raman-active vibrations 

with atomic motions involving only the displacements of S atoms along the out-of-plane 

direction (for the former) and within the basal plane (for the latter) in counter-phase with 

respect to the top/bottom S-layers, as pictorially depicted in Figure 6.1(e).  

In pristine ML-MoS2, the twofold degenerate 𝐸2𝑔
1 -mode (in-plane vibration) and the 

nondegenerate 𝐴1𝑔-mode (out-of-plane vibration) are two most prominent signature Raman-

active vibrations that are mainly observed in a typical backscattering micro-Raman 

spectroscopy.[205], [278] In our DFPT study, the first-order nonresonant Raman-active 𝐴1𝑔-

vibration and the doubly degenerate 𝐸2𝑔
1 -vibration of a freestanding ML-MoS2 were observed 

at 398.2 cm-1 & 376.1 cm-1, respectively. Our calculation Raman frequencies are very close 

agreement with that of experimental observations ~ 403±2 cm-1 (𝐴1𝑔) and 384±2 cm-1 (𝐸2𝑔
1 ), 

respectively.[22], [205], [385], [386] The deviation of < 1% in the peak frequency position 

between theory and experiment could possibly due to the different laser wavelength used for 

the sample excitations in various micro-Raman measurement set-ups[205], [387] or the 
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inhomogeneity of monolayer membranes on different sample-substrate interfaces via the Van 

der Waals forces of interactions.[22], [94], [375] Besides, pH conditions during the growth 

process are found to alter the Raman frequency positions of both the vibrational modes of ML-

MoS2 to an extent ~ 3 cm-1.[388] The 𝐴2𝑢
1  IR-mode (461.1 cm-1)  and 𝐸1𝑔 Raman-active 

vibration (279.3 cm-1) have been excluded from the frequency spectrum in this study, due to 

their undetectably weak intensity and corresponding phDOS. 

6.3.2 Evolution in Raman-spectra under various strain geometry 

In a strain-free equilibrium ML-MoS2 lattice, the in-plane Raman-active 𝐸2𝑔
1 -mode 

remains twofold energy degenerate at the Brillouin zone center (at Г point). The 𝐸2𝑔
1  mode 

associated with two distinct eigenvectors 𝐸2𝑔
1+ & 𝐸2𝑔

1−, that are mutual orthogonal vibrations in 

a hexagonal lattice, and remain overlapped in the vicinity of Г point for a strain-free, 

equilibrium ML-MoS2 lattice, or under a symmetry preserving isotropic biaxial strain. When 

the honeycomb lattice of ML-MoS2 is subject to an asymmetric lattice displacement, which 

only occurs in case of a pure uniaxial or shear strain, the hexagonal symmetry of its honeycomb 

structure gets broken. Thus, the lattice environment becomes anisotropic along the mutual 

orthogonal crystallographic axis, i.e., along zigzag (ZZ) and armchair (AC) direction of ML-

MoS2.  Moreover, the anisotropy scales with the magnitude of applied uniaxial/shear strain due 

to a gradual reduction in 3-fold sub-lattice rotational symmetry (C3v), and translational 

symmetry around a given basis. In a honeycomb lattice, like ML-MoS2, this leads to an 

anisotropic charge density and potential distribution along its mutual orthogonal 

crystallographic directions.[283]  

Besides, the spatial extent of overlapping orbitals between Mo d and S p orbitals 

become different along the strain axis than the direction perpendicular to it, where the wave 

function of overlapping orbitals (Mo: d, S: p) become more spread-out along the principal strain 



  

142 
 

axis.[310], [389] This simultaneous coupling between strain and crystal symmetry has a 

fascinating consequence for a honeycomb lattice system like ML-MoS2, where an anisotropic 

lattice deformation (i.e., uniaxial and shear strain) can lift the vibrational energy degeneracy of 

its doubly degenerate in-plane 𝐸2𝑔
1  vibration into singly nondegenerate 𝐸2𝑔

1+ & 𝐸2𝑔
1− sub-bands. 

The split sub-bands can exhibit anomalous frequency variation, depending on the nature and 

magnitude of applied strain. This apparent anomalous frequency variation of Raman-active 

modes can be a valid indicator of the amount and the type of strain present in the lattice when 

ML-MoS2 is subject to various strain geometries. For all asymmetric strain cases (i.e., uniaxial 

and shear strain), the frequency separation between 𝐸2𝑔
1+ & 𝐸2𝑔

1− mode scales with the magnitude 

of applied strain-strength with the polarity of eigen vectors 𝐸2𝑔
1+ & 𝐸2𝑔

1− orthogonal to each 

other.  
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Figure 6.2. (a)-(b) Evolution of Raman spectra as a function of uniaxial tensile (ϵxx), and 

compressive (−ϵxx) strain, when the applied strain is purely only along the ZZ direction of 

ML-MoS2, (c)-(d) the same strain along the AC direction. (e)-(h) Functional dependency of 

Raman peak frequency position under various uniaxial strain condition. The dotted lines are 

linear fits to the selected portion of the data in order to extract the rates of their frequency 

variation with applied strain.  

Figure 6.2 (a)-(b) shows the evolution of Raman-spectra under uniaxial tensile/ 

compressive strain, when the applied strain is purely only along its ZZ direction (𝜖𝑥𝑥), and 

Figure 6.2 (c)-(d) along its AC direction. Under an increasing uniaxial tensile strain (𝜖𝑥𝑥 = 0-

10%), a clear red-shift (phonon softening of vibrational modes) in both 𝐴1𝑔 and 𝐸2𝑔
1 -mode has 

been observed. The overlapped frequency between its twofold degenerate 𝐸2𝑔
1  mode splits into 

𝐸2𝑔
1+ and 𝐸2𝑔

1− singlet sub-bands, at strain higher than 2%, and remain degenerate for smaller 

strain up to 1-2%. The 𝐸2𝑔
1− mode red-shifts in a linear regression (-4.52 cm-1/%). The 𝐸2𝑔

1− mode 

involves in-plane atomic vibrations along the strain axis (i.e., ZZ direction), thus, experiencing 

a higher phonon softening than that of 𝐸2𝑔
1+ mode (-2.99 cm-1/%), which vibrates orthogonal to 

it (along AC direction). The frequency separation between 𝐸2𝑔
1+ and 𝐸2𝑔

1− modes are found to 

scale with the applied strain strength, as shown in Figure 2(e), for 𝜖𝑥𝑥 > 2%. To our best 

interest, a new Raman-active mode pop-up in the Raman spectrum under uniaxial tensile strain 

(𝜖𝑥𝑥) higher than 7%. This additional peak (E2g
′ ) in the Raman spectrum within the same 

frequency scale is resulting from the atomic oscillations involving the vibration of neighboring 

chains of  S-atoms along the AC direction in counter-phase to one another. At higher strain (8-

10%), this new E2g
′  Raman-active vibration redshifts at a rate of -3.2 cm-1/%. On the other 

hand, the out-of-plane transverse Raman-active vibration, 𝐴1𝑔-mode, does not seems to express 

a considerable frequency shift (-0.52cm-1/%) even under a considerable uniaxial tensile strain, 
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𝜖𝑥𝑥 = 0-10%. This subtle frequency reduction of 𝐴1𝑔-mode is close consistent with the 

experimental measurements led by Rice et al.[390], Wang et al.[278] and Conley et al[205], 

thus illustrating the result of our theoretical calculations, are well suited to make a further 

computational prediction of physical parameters with reasonably well agreement results with 

that of experimental findings. Besides, under uniaxial lattice compression (−𝜖𝑥𝑥), a significant 

blue-shift at a rate of 1.36 cm-1/% is observed in the 𝐴1𝑔 mode. This is due to a large Coulomb 

screening attended with substantial modification in charge density distribution and the 

electrostatic potentials over the out-of-plane vibrating S atoms.[283] However, there is no 

evidence of any frequency splitting in the 𝐴1𝑔 mode even under a very large uniaxial strain of 

±10%. On the other hand, under the uniaxial compressive strain (−𝜖𝑥𝑥), we find a very altered 

frequency shift in the 𝐸2𝑔
1+ and 𝐸2𝑔

1− modes with polarity opposite to that of uniaxial tensile 

strain (𝜖𝑥𝑥), where the 𝐸2𝑔
1+ mode red-shifts at a rate of  -0.66 cm-1/% and 𝐸2𝑔

1− mode blue-shifts 

at a rate of 2.52 cm-1/% in a compressive strain range of 2-7%. The frequency separation 

between the 𝐸2𝑔
1+ and 𝐸2𝑔

1− modes become much wider ~ 30 cm-1 when strain (−𝜖𝑥𝑥) reaches a 

value of 10%. The frequency shift in 𝐸2𝑔
1+ and 𝐸2𝑔

1− Raman-active mode is very unique to −𝜖𝑥𝑥 

strain, therefore, can be persuaded to calibrate (−𝜖𝑥𝑥)  strain along its ZZ lattice orientation. 

We find a similar frequency splitting in the 𝐸2𝑔
1  mode, when uniaxial tensile strain (𝜖𝑦𝑦) 

is along the AC lattice orientation [See Figure 6.2 (c)]. But in this case, the splitting is found 

to occur at a much smaller strain scale of ~ 0-1%, with the polarization of 𝐸2𝑔
1+ & 𝐸2𝑔

1− mode 

opposite to that of uniaxial tensile strain (𝜖𝑥𝑥). The 𝐴1𝑔 mode red-shifts at a rate -0.70±0.02 

cm-1/%, which is a bit higher over the same shift along the ZZ direction. While the 𝐸2𝑔
1+ mode 

redshifts at a much higher proportion at a rate -5.09 cm-1/%, and 𝐸2𝑔
1− mode at a moderate rate 

of -1.89 cm-1/%, respectively. The frequency separation between 𝐸2𝑔
1+ and 𝐸2𝑔

1− mode become 

significantly wider for 𝜖𝑦𝑦 strain with several orders of magnitude higher for more significant 
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strains (> 5%) [See Figure 6.2 (g)], as compared to the same along its ZZ direction (𝜖𝑥𝑥) within 

the same strain limit. We attribute this wide frequency separation between 𝐸2𝑔
1+ and 𝐸2𝑔

1− mode 

with the uniaxial strain-induced electrostatic field in polar semiconductors like ML-MoS2, 

where strain along its AC direction induces a crystal dipole moment (polarization, P) parallel 

to the AC axis. The electronic contribution to the dielectric susceptibility becomes higher in 

the presence of an electrostatic-field that enhances the TO2 phonon interaction with a static 

electric field, as compared to its LO2 phonon that lies along the strain axis. Hence, the coupling 

of orthogonal 𝐸2𝑔
1+ & 𝐸2𝑔

1−  vibrations with electrostatic-field via phonon electric-field coupling 

can produce a wider frequency separation between 𝐸2𝑔
1+ & 𝐸2𝑔

1− -mode in a noncentrosymmetric 

ML-MoS2 crystal. 

Under uniaxial lattice compression (−𝜖𝑦𝑦) along AC direction, the 𝐴1𝑔 mode blue-

shifts at a significantly higher rate of 2.52±0.04 cm-1/% [See Figure 6.2 (d)]. This is highest for 

𝐴1𝑔 mode under all uniaxial strain types, whereas, the in-plane 𝐸2𝑔
1+ & 𝐸2𝑔

1− mode distinctly 

differ in the frequency with opposite polarization to that of tensile strain (𝜖𝑦𝑦) along the AC 

direction. Furthermore, in sharp contrast to the case of uniaxial compressive strain along ZZ 

direction (−𝜖𝑥𝑥), here, both 𝐸2𝑔
1+ & 𝐸2𝑔

1− mode blue shifts under the compressive strain (−𝜖𝑦𝑦) 

along AC direction. The blue-shift in 𝐸2𝑔
1+ mode (1.89±0.13 cm-1/%) saturates at 5% of lattice 

compression and then starts to red-shift upon further increase of strain, as seen in Figure 6.2 

(h). While the blue-shifts in 𝐸2𝑔
1− mode occurs at a much lower rate of 0.53 ± 0.06 cm-1/%, and 

the activity of this mode nearly vanishes beyond 5% strain. This peculiar behavior of 𝐸2𝑔
1+ & 

𝐸2𝑔
1− mode under uniaxial lattice compression along the AC lattice direction has yet to be 

understood. However, intuitively this is due to the unusual changes in the inter-atomic force 

constants attended due to a strong Coulomb repulsion between vibrating ions under enormous 

compressive strain that reinforce the effective harmonic force constants towards the quasi-
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harmonic or anharmonic limit. Such anharmonic effects on phonon modes, including the 

anharmonicity in force constants and anharmonic contribution to the derivative of electric 

susceptibility in the first-order Raman process, fall outside the scope of our present discussion. 

Besides, it is noteworthy to mention, in an isolated monolayer crystal, a very high value of 

lattice compression is impracticable. The nuclear or ion-core effects will start to dominate with 

neighboring atoms approaching a very close distance under extreme lattice compression. 

Furthermore, the basal-plane of freestanding monolayers would instead bend/ripple along the 

c axis (along the direction normal to the basal plane) before attaining such high lattice 

compressions. However, for the sake of completeness, here, we have provided both the 

tensile/compressive strain in a range from -10% to +10%.  

Theoretically, the effect of an arbitrary in-plane strain (𝜖𝑖𝑗) and the corresponding strain 

effects on the Raman and IR spectra, such as frequency split of degenerate 𝐸2𝑔
1  phonon mode 

and frequency shift (∆𝜔/𝜖) correlation as a function of applied strain are expressed as follows.  

In a two-dimensional crystal, the generic form of strain tensor takes the following form 

                   𝜖𝑖𝑗 = (
𝜖𝑥𝑥 𝜖𝑥𝑦

𝜖𝑦𝑥 𝜖𝑦𝑦
)                                                          (6.1) 

In the presence of strain, the secular phonon equation[391], [392] of phonon mode m describe 

the frequency shift rate as, 

∆𝜔𝑚
±/𝜖 =  − 𝜔𝑚

0 𝛾𝑚𝜖ℎ ± (𝜔𝑚
0 𝛽𝑚√𝜖𝑠

2 + 4𝜖𝑥𝑦
2 )/2                            (6.2) 

Any arbitrary in-plane strain perturbation to a hexagonal lattice is decomposed into a 

hydrostatic 𝜖ℎ = (𝜖𝑥𝑥 + 𝜖𝑦𝑦), and shear 𝜖𝑠 = √(𝜖𝑥𝑥 − 𝜖𝑦𝑦)2 + 4𝜖𝑥𝑦
2  component, by assuming 

its planar strain components remain unaffected 𝜖𝑥𝑦 = 𝜖𝑦𝑥 (verified in elastic stiffness tensor, 

C12 = C21), where 𝜖𝑥𝑥 is the longitudinal strain component parallel to the strain axis and 𝜖𝑦𝑦 
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relative transverse strain resulting from transverse lattice shrinkage or Poisson contraction 

along the direction perpendicular to the applied strain. 𝜔𝑚
0  and 𝜔𝑚 are frequency of m phonon 

in the absence and presence of an external strain. Grüneisen parameter (𝛾𝑚) and shear 

deformation potential (𝛽𝑚) of mode m. 

For a pure uniaxial strain along the ZZ direction, 𝜖𝑥𝑥 = 𝜖 (principal strain axis), the resulting 

transverse strain become 𝜖𝑦𝑦 = −𝜗𝜖. The strain components get reversed for strain applied 

along the AC direction. 𝜗 is the Poisson’s ratio of a free-standing ML-MoS2. The frequency 

shift in the non-degenerate 𝐸2𝑔
1+ and 𝐸2𝑔

1− modes are expressed by reducing the general phonon 

secular eqn. (6.2) into the following form: 

∆𝜔𝐸2𝑔
1±/𝜖 =  − 𝜔𝐸2𝑔

1
0 𝛾𝐸2𝑔

1 (1 − 𝜗) ± 𝜔𝐸2𝑔
1

0 𝛽𝐸2𝑔
1 (1 + 𝜗)/2                        (6.3) 

Here, 𝜔𝐸2𝑔
1

0  and ∆𝜔𝐸2𝑔
1±  are the mode shift in twofold degenerate 𝐸2𝑔

1  mode in the absence and 

presence of uniaxial strain (𝜖). From eqn. (3), the Grüneisen parameter (𝛾𝐸2𝑔
1 ), and shear 

deformation potential (𝛽𝐸2𝑔
1 ) under the uniaxial strain along ZZ direction is expressed as 

𝛾𝐸2𝑔
1 (𝑢𝑛𝑖𝑎𝑥./𝑍𝑍) = −(∆𝜔𝐸2𝑔

1
+ /𝜖 + ∆𝜔𝐸2𝑔

1
− /𝜖)/ [2𝜔𝐸2𝑔

1
0  (1 − 𝜗)]                   (6.4) 

𝛽𝐸2𝑔
1 (𝑢𝑛𝑖𝑎𝑥./𝑍𝑍) = (∆𝜔𝐸2𝑔

1
+ /𝜖 − ∆𝜔𝐸2𝑔

1
− /𝜖)/ [𝜔𝐸2𝑔

1
0  (1 + 𝜗)]                        (6.5) 

Considering the Poisson’s ratio of free-standing ML-MoS2 to be 0.248 (from our DFT 

calculation), and the frequency of 𝐸2𝑔
1  mode at equilibrium lattice (𝜔𝐸2𝑔

1
0 = 376.1 cm-1). The 

Grüneisen parameter (𝛾𝐸2𝑔
1 ) and shear deformation potential (𝛽𝐸2𝑔

1 ) of 𝐸2𝑔
1  mode results in 1.3 

(𝛾𝐸2𝑔
1 ) and 0.3 (𝛽𝐸2𝑔

1 ), respectively, under uniaxial tensile strain (𝜖𝑥𝑥) along ZZ direction, and 

the same under uniaxial compressive strain (−𝜖𝑥𝑥) become -0.32 (𝛾𝐸2𝑔
1 ) and -0.67 (𝛽𝐸2𝑔

1 ), 
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respectively, by considering the slope of ∆𝜔/𝜖 correlation in a uniaxial compressive strain 

(−𝜖𝑥𝑥) range of 2-7%. 

The Grüneisen parameter (𝛾𝐴1𝑔
) of singly nondegenerate 𝐴1𝑔-mode is defined as 

𝛾𝐴1𝑔
(𝑢𝑛𝑖𝑎𝑥./𝑍𝑍) = −(∆𝜔𝐴1𝑔

/𝜖 )/[𝜔𝐴1𝑔

0 (1 − 𝜗)]                               (6.6) 

Since only the hydrostatic component of stress is present, the 𝐴1𝑔 Raman-active vibration does 

not split, and the shear deformation potential cannot be evaluated for the 𝐴1𝑔 mode. Using the 

equilibrium phonon frequency of 𝐴1𝑔 mode 398.2 cm-1, the Grüneisen parameter (𝛾𝐴1𝑔
) 

become 0.17 for uniaxial tensile strain (𝜖𝑥𝑥) along the ZZ direction and -0.46 for uniaxial 

compressive strain (−𝜖𝑥𝑥). 

Since the Grüneisen parameter (𝛾𝐸2𝑔
1 ) and shear deformation potential (𝛽𝐸2𝑔

1 ) is a measure of 

lattice anharmonicity of interatomic potentials, the corresponding values along the AC 

direction would be a comparable measure. The same relation, as in eqn. (6.4)-(6.5) remain valid 

for uniaxial strain along its AC direction with a sign change in 𝛾𝐸2𝑔
1  and 𝛽𝐸2𝑔

1 , as the strain 

components get reverse for uniaxial strain along the AC direction, where 𝜖𝑦𝑦 = 𝜖 and 𝜖𝑥𝑥 =

−𝜗𝜖. The Grüneisen parameter (𝛾𝐸2𝑔
1 ) and shear deformation potential (𝛽𝐸2𝑔

1 ) for uniaxial 

tensile strain (𝜖𝑦𝑦) along AC direction become -1.23 (𝛾𝐸2𝑔
1 ) and 0.68 (𝛽𝐸2𝑔

1 ), respectively, where 

the 𝛾𝐸2𝑔
1  along AC direction is comparable to that of uniaxial tensile strain (𝜖𝑥𝑥) along ZZ 

direction, but the shear deformation potential is got almost doubled. Thus, a large shear 

deformation occurs when tensile strain is along the AC direction; the same is confirmed in our 

elasticity study in a subsequent section. The Grüneisen parameter (𝛾𝐴1𝑔
) for 𝐴1𝑔-mode also 

changes sign for strain along AC direction, and become -0.23 for uniaxial tensile strain (𝜖𝑦𝑦) 

along AC direction. Under compressive strain (−𝜖𝑦𝑦) along AC direction, the Grüneisen 
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parameter (𝛾𝐸2𝑔
1 ) and shear deformation potential (𝛽𝐸2𝑔

1 ) of 𝐸2𝑔
1  vibrational mode becomes 0.42 

(𝛾𝐸2𝑔
1 ) and -0.28 (𝛽𝐸2𝑔

1 ), respectively, that is much lower in values as compared to the (𝜖𝑦𝑦) 

strain case, as both 𝐸2𝑔
1+ and 𝐸2𝑔

1− mode blue-shifts under uniaxial lattice compression. While 

the Grüneisen parameter (𝛾𝐴1𝑔
) for 𝐴1𝑔 mode under compressive strain (−𝜖𝑦𝑦) become 0.84, 

that is much higher over the corresponding tensile strain (𝜖𝑦𝑦) along the AC direction. 

Figure 6.3. (a)-(b) Evolution of Raman-spectra under biaxial tensile (ϵxy) and compressive 

(−ϵxy) strain. (c) Raman spectrum under the shear strain of type, S1, and (d) for type, S2. (e-h) 

The corresponding Raman peak frequency variation for different biaxial/shear strain 

geometries. The biaxial strain does not break the frequency degeneracy of E2g
1  mode, due to its 

isotropic nature of the strain-field. 
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We now turn our discussion towards the effect of biaxial and shear mode of strain over 

the frequencies of Raman-active vibrations. Figure 6.3 (a)-(b) shows the evolution of Raman 

spectra under biaxial tensile/compressive strain. Under an isotropic biaxial strain field, the 

twofold energy degenerate 𝐸2𝑔
1 -mode does not split into individual components and remains 

degenerate even up to a sizeable biaxial strain of 0 to ±10%, at the zone-center (Г point). The 

isotropic biaxial strain-field that preserve the underlying hexagonal symmetry of ML-MoS2 

holds the two-fold degenerate 𝐸2𝑔
1  mode at a single phonon frequency. Thus, the frequency of 

two-fold degenerate 𝐸2𝑔
1  vibration remain protected (overlapped) under the isotropic biaxial 

strain. However, the Raman characteristic of the mode 𝐸2𝑔
1  & 𝐴1𝑔 show a collective phonon 

softening (or hardening) upon the increase (or decrease) of biaxial strain % [See Figure 6.3 (a)-

(b)]. The frequency shift response under biaxial strain is similar to the experimental observation 

led by Lloyd et. al.[370] for suspended nanosheets of ML-MoS2.  

Under biaxial tensile strain (𝜖𝑥𝑦), the out-of-plane 𝐴1𝑔 and the in-plane degenerate 𝐸2𝑔
1  

mode significantly downshift in frequency in a perfect linear regression at a rate of -3.76 ± 0.10 

cm-1/% and  -6.86 ± 0.12 cm-1/%, respectively. The frequency shift in both 𝐴1𝑔 and 𝐸2𝑔
1  mode 

are found to be the highest under biaxial tensile strain (𝜖𝑥𝑦) among all strain types studied in 

this work. This is because of a rapid changing geometry (Mo-S bond length and S-Mo-S angle) 

under biaxial strain mode [283], [308] that implies; biaxial tension has a combined effect of 

individual uniaxial strains along its respective orthogonal crystallographic axis (i.e., ZZ/AC). 

While under biaxial compressive strain (-𝜖𝑥𝑦), both 𝐴1𝑔 and 𝐸2𝑔
1  mode blue-shifts upto 6% of 

strain at rates, 𝐴1𝑔 (1.1 ± 0.07 cm-1/%) and 𝐸2𝑔
1  (2.66 ± 0.17 cm-1/%), respectively, which then 

starts to red-shift upon further increase of strain (> 6%). 

In the case of isotropic biaxial strain, the transverse and longitudinal strain components 

are the same  𝜖𝑥𝑥 = 𝜖𝑦𝑦 = 𝜖, hence, no shear deformation potential and no frequency splitting 
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in degenerate 𝐸2𝑔
1 -mode is noticed, the Grüneisen parameter under biaxial strain is expressed 

as  

𝛾𝐸2𝑔
1 (𝑏𝑖𝑎𝑥. ) = − 

1

2𝜖

∆𝜔𝐸2𝑔
1

𝜔
𝐸2𝑔

1
0                                                  (6.7) 

And for 𝐴1𝑔 mode, 

𝛾𝐴1𝑔
(𝑏𝑖𝑎𝑥. ) = −

1

2𝜖

∆𝜔𝐴1𝑔

𝜔𝐴1𝑔
0                                                 (6.8) 

The absence of shear deformation potential under the isotropic biaxial strain leaves the 

Grüneisen parameter-free from any Poisson term in it. Using the eqn. (6.7)-(6.8), the Grüneisen 

parameter (𝛾𝐸2𝑔
1 ) of 𝐸2𝑔

1  mode becomes 0.91 and for 𝐴1𝑔 mode 0.47, respectively. And the 

same for biaxial compressive strain (−𝜖𝑥𝑦) within the linear blue shift region up to 7% strain 

becomes -0.35 (𝛾𝐸2𝑔
1 ) and -0.13 (𝛾𝐴1𝑔

), respectively. 

Due to a reduction in underlying hexagonal symmetry and anisotropy in strain-field, 

shear strains (S1 & S2) are found to have similar effects on the frequency of 𝐸2𝑔
1  mode similar 

to that of uniaxial strain. However, the phonon modes shift in a different proportion under the 

shear strain of type- S1 and S2. Under the shear strain of S1-type, the 𝐴1𝑔 mode blue-shifts at a 

much higher rate of 3.13 ± 0.08 cm-1/% than the shear strain of S2-type (1.24 ± 0.03 cm-1/%). 

The in-plane doubly degenerate 𝐸2𝑔
1  mode splits into 𝐸2𝑔

1+ and 𝐸2𝑔
1− components under the shear 

strain of both S1 and S2 type. For S1 strain, the 𝐸2𝑔
1+ mode red-shifts at a rate -3.0 ± 0.12 cm-1/%, 

and the atomic displacement of this vibration (𝐸2𝑔
1+) is along the AC direction of ML-MoS2 and 

the 𝐸2𝑔
1−-mode that also red-shifts in a nearly similar rate of -2.95 ± 0.10 cm-1/%, due to a 

simultaneous presence of tensile/compressive deformation within the lattice. Under the shear 

S2 strain, the 𝐸2𝑔
1+ mode red-shifts at a much higher rate of -5.08 ± 0.08 cm-1/% as compared to 
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S1 strain, while the 𝐸2𝑔
1− mode blue-shifts at rate 1.12 ± 0.08 cm-1/% under the shear S2 strain. 

The frequency separation between 𝐸2𝑔
1+ mode & 𝐸2𝑔

1− mode almost get doubled under shear S2 

strain to that of uniaxial strain (−𝜖𝑥𝑥). This anomalous behavior is attributed to the anharmonic 

contributions to the interatomic potentials under the application of shear strain.  

6.3.3 Evolution in IR-spectra under various strain 

Experimental studies on IR spectra are relatively sparse than that of Raman spectra on 

ML-MoS2. This is partly due to its limited spatial resolution and low cross-section. However, 

the IR-active modes in ML-MoS2 are critical in interpreting the structural information from its 

phonon signatures similar to that of Raman active vibrations under strain. The twofold 

degenerate 𝐸2𝑔
1  Raman-active mode of a pristine strain-free ML-MoS2 is also IR-active, due to 

the missing lattice inversion symmetry in its monolayer structure. For simplicity, we assign 

𝐸2𝑔
1  Raman-active denotation for IR-active mode as 𝐸2𝑢

1 . 
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Figure 6.4. (a)-(b) Evolution in IR spectra under uniaxial tensile (ϵxx) and compressive (−ϵxx) 

strain when the applied strain is only along the ZZ axis of ML-MoS2, (c)-(d) IR spectra when 

the same strain is along the AC direction (ϵyy and −ϵyy). (e)-(h) Frequency shift in the 

corresponding IR active modes as a function dependent on uniaxial lattice strain.  

Figure 6.4 (a)-(b) shows the spectral evolution of its IR –active vibration under uniaxial 

tensile strain (𝜖𝑥𝑥), when strain is purely only along the ZZ direction. We see a similar 

frequency splitting in the 𝐸2𝑢
1  IR-active mode that splits into the 𝐸2𝑢

1+ and 𝐸2𝑢
1− sub-band 

frequencies even at a very small uniaxial strain of 0-1%, while the same splitting in Raman 

spectra were observed at a uniaxial tensile strain range of 2-3%. Both 𝐸2𝑢
1+ and 𝐸2𝑢

1− modes are 

found to red-shift at a rate -2.92 ± 0.11 cm-1/% (𝐸2𝑢
1+), and -4.41 ± 0.06 cm-1/% (𝐸2𝑢

1−) with an 

increase of strain (𝜖𝑥𝑥) from 0-10% [See Figure 6.4 (e)]. Remarkably, new IR-active vibrations 

(𝐴1𝑢
′ ) start to appear at 4-10% of tensile  (𝜖𝑥𝑥) strain with a smaller red-shift -0.25 ± 0.07 cm-

1/% in 𝐴1𝑢
′  vibration. Under the compressive uniaxial strain  (−𝜖𝑥𝑥), the  𝐸2𝑢

1+ mode blue-shifts 

at a rate of 2.68 ± 0.10 cm-1/% in a strain range of 0-6% and at a rate of 1.12 ± 0.09 cm-1/% in 

the strain range 7-10%, whereas the 𝐸2𝑢
1− mode red-shifts at a lower rate of -0.61 ± 0.06 cm-1/% 

in the range 1-6% and at a rate -1.59 ± 0.08 cm-1/% in the strain range of 7-10%. We do not 

find any new IR-active vibrations under −𝜖𝑥𝑥 strain. A similar red-shift of 𝐸2𝑢
1+ and 𝐸2𝑢

1− 

vibrations have also been observed for uniaxial tensile strain along the AC direction (𝜖𝑦𝑦) with 

a steep variation in the frequency of 𝐸2𝑢
1− mode, at a rate of -5.10 ± 0.10 cm-1/%, and 𝐸2𝑢

1+ mode 

at a lower rate of  -1.82 ± 0.02 cm-1/% with the appearance of no new IR-active modes on the 

same frequency scale. However, under −𝜖𝑦𝑦 strain, a new IR-active mode (𝐴1𝑢
′ ) starts to appear 

in the IR-spectra with a raise in peak intensity that blue-shift at a rate of 2.50 ± 0.04 cm-1/%  

with the increase in strain from 2-10%. Whereas, the 𝐸2𝑢
1+ and 𝐸2𝑢

1− modes also found to show 

a blue-shift in frequency at a rate of 1.69 ± 0.14 cm-1/% (for 𝐸2𝑢
1+) and 0.56 ± 0.04 (for 𝐸2𝑢

1−) 
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cm-1/%, respectively, up to a strain range of 0-5%. Upon further increase of −𝜖𝑦𝑦 strain > 5%, 

the  𝐸2𝑢
1+ and 𝐸2𝑢

1− mode starts to red-shift at a rate -0.68 ± 0.09 cm-1/% and -0.33 ± 0.05 cm-

1/%, respectively. The IR-active modes of ML-MoS2 are found to be more responsive at a lower 

critical strain than the Raman modes towards the lattice anisotropy by the breaking of its 

frequency degeneracy of modes and the emergence of new Raman/IR-active vibrations. 

Therefore, the strain-dependent spectral response of IR-active modes could be an effective 

indicator for strain monitoring in a monolayer MoS2 crystal. 

Figure 6.5. (a)-(b) Evolution in IR spectra under biaxial tensile (ϵxy) and compressive (−ϵxy) 

strain, (c) IR spectra under the shear strain of type, S1. (d) IR spectra under the shear strain of 

type, S2. (e-h) Frequency shift in the corresponding IR-active modes under different strain 

configurations. 
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Figure 6.5(a)-(b) shows the evolution in IR spectra under biaxial tensile (𝜖𝑥𝑦) and 

compressive (−𝜖𝑥𝑦) strain. The biaxial strain does not show any frequency split in its 𝐸2𝑢
1  mode 

(namely, the same denotation 𝐸2𝑔 
1 Raman mode), due to its isotropic strain distribution in a 

hexagonal honeycomb lattice. Under biaxial tensile strain (𝜖𝑥𝑦), the 𝐸2𝑢
1 -mode shows a 

monotonous frequency regression at a much higher rate of -6.84 ± 0.12 cm-1/%, whereas under 

biaxial compression (−𝜖𝑥𝑦) the 𝐸2𝑢
1  mode blue-shifts at a rate 2.66 ± 0.18 cm-1/% up to 7% 

lattice compression, which then starts to red-shift at a rate -2.25 ± 0.31 cm-1/% for −𝜖𝑥𝑦 strain 

beyond 7% lattice compression. Both shear S1 and S2 strain is found to split the degenerate 

frequency into 𝐸2𝑢
1+ and 𝐸2𝑢

1− vibrations with new IR-active mode (𝐴1𝑢
′ ) emerging in case of 

shear S1 strain, which starts to appear at a minimal value ~ 1% of S1 and pass on till 10% strain.  

6.3.4 Elastic anisotropy under strain 

In this section, we briefly study the elastic isotropy (or anisotropy) in ML-MoS2 under 

different in-plane strain geometry and ascertain the mechanical strength and stability of a 

strained ML-MoS2. 

The elastic strength and mechanical stability of a crystalline solid is expressed in terms of its 

elastic stiffness coefficients (or elastic matrix) 𝐶𝑖𝑗. In tensor notation, the 𝐶𝑖𝑗 is connected with 

the coefficients of strain tensor (𝜖𝑗) and the corresponding stress matrix (𝜎𝑖) via the generalized 

Hooke’s law, 

𝜎𝑖 = ∑ 𝐶𝑖𝑗𝜖𝑗
𝑗=1,6

                                                              (6.9) 

Where an infinitesimal stress component 𝜎𝑖  (𝑖 = 1,6) is generated by the application of a small 

strain component 𝜖𝑖 (𝑖 = 1,6) applied to the equilibrium crystal structure. The stiffness matrix 

is 6 × 6 symmetric and comprises of 21 independent stiffness components.[393] The Laue 

groups of various crystal class and additional symmetry constraints of lattices reduces the 
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number of independent stiffness coefficients in 𝐶𝑖𝑗. The 3D elastic matrix of a hexagonal lattice 

can reduce to its 2D form in a contracted Voigt notation as: 

𝐶𝑖𝑗 = (
𝐶11 𝐶12 .
𝐶21 𝐶22 .
. . 𝐶66

)                                                (6.10) 

In our study, the atomic positions of strained lattices are allowed to be fully relaxed. Thus, the 

relaxed-ion stiffness tensors are calculated as the sum of ionic (𝐶𝑖𝑗
𝑖𝑜𝑛) and electronic (𝐶𝑖𝑗

𝑒𝑙𝑒) 

components. The relaxed-ion components are the experimentally observable quantity over the 

fixed-ion (clamped-ion) components[354]. 

𝐶𝑖𝑗 = 𝐶𝑖𝑗
𝑖𝑜𝑛 + 𝐶𝑖𝑗

𝑒𝑙𝑒                                                               (6.11) 

Using the finite differences method proposed by Page and Saxe,[394] in a symmetry-general 

least-squares scheme, we calculate the elastic constants from our ab initio results. As shown in 

Figure 6.6, all eigenvalues of 𝐶𝑖𝑗’s are positive, that is the first sign of mechanical stability. 

But, the elastic stiffness tensors (𝐶𝑖𝑗) has to satisfy the necessary and sufficient stability 

criterion for a hexagonal lattice to declare the mechanical stability. Recently, the mechanical 

stability conditions for various crystal classes has been revised by Mouhat and Coudert[393]. 

This is a recent improvement in the understating of the mechanical stability of non-cubic 

systems, and provides a generic condition of elastic stability of materials over the well-known 

“Born-Huang elastic stability criteria.” The presence of D3h (6̅m2) point group symmetry of 

ML-MoS2 lattice yields only 2-independent stiffness tensors (C11 and C12) in the elastic matrix 

and the mechanical stability criterion for such case reads as[393] 

𝐶11𝐶22 − 𝐶12
2 > 0, 𝐶66 > 0,                                                   (6.12) 

Where, 𝐶66  = (𝐶11 − 𝐶12)/2, 2D shear modulus (G2D) 
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Figure 6.6. Variation in planar elastic stiffness tensors (Cij
′ s =  C11, C22, C12, C21, C66) under 

different in-plane strain geometry. All strain cases within the studied strain range satisfy the 

mechanical stability criteria for a hexagonal lattice except for shear strain S1 > 8%, where 

elastic instability occurs due to a ductile failure as C11 − C12 > 0 condition fails to satisfy.  

For a strain-free ML-MoS2 at equilibrium, the axial (C11=C22= 134.4 N.m-1) and planar 

component (C12=C21=33.4 N.m-1) of stiffness coefficients (𝐶𝑖𝑗) remains the same [See Figure 

6.6 at 0%], thus implies, 2D isotropic elasticity in pristine ML-MoS2 nanosheet is due to its 

isotropic crystal structure.[283] Our calculated elastic constants (C11, C12) are found to be in 

excellent quantitative agreement with other numerical data present in literature.[354], [395], 

[396] Besides, under a symmetry breaking uniaxial/shear deformation, this isotropy in planar 
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stiffness tensors goes-off (i.e., C11≠C22), where C11 and C22 follow different trends in responses 

to an increasing uniaxial/ shear strain, as shown in Figure 6.6. Under uniaxial strain along the 

ZZ direction, the C11 stiffness component shows a rapid variation with the applied strain-

strength over its C22 component, and their variation gets reversed when strain is along the AC 

direction, as shown in Figure 6.6 (a)-(b), respectively. On the other hand, under a symmetry 

preserving isotropic biaxial strain, the axial (C11=C22) and the planar (C12=C21) component of 

𝐶𝑖𝑗′s remains sathe me, this is well expected from an isotropic hexagonal lattice under a biaxial 

deformation. But, the variation in stiffness tensors (C11=C22) become much higher due to a 

rapid changing geometry for biaxial strain case over the uniaxial deformation.[283], [397] 

Whereas, under the shear strain of type S1 and S2, the variation in C11 and C22 is similar to that 

of uniaxial strain. However, at higher values of shear strain (> 8%) of S1 type, the elastic 

instability starts to appear due to a ductile failure, and the system undergoes a nonelastic 

regime. Notice that the calculated elastic stiffness tensors are all positive, and satisfying 

mechanical stability condition 𝐶11𝐶22 − 𝐶12
2 > 0, 𝐶66 > 0 for all strain cases, except for shear 

strain S1 > 8%. Here, we also note, the elastic instability or mechanical failure is not the only 

criteria to assess the mechanical instability due to a brittle/ductile failure. The phonon 

instability or the appearance of soft-phonon modes (i.e. imaginary frequency) in the phonon 

spectrum is also a well-known method to comment on the structural instability under external 

strain. In Figure 6.7, we have shown the phonon dispersion and atom projected phonon density 

of states (phDOS) under shear (S1) strain at a maximum strain value of 10%. The absence of 

any soft phonon mode around the Brillouin zone center confirm the kinetic stability of strained 

structures, and the ductile failure at shear S1 > 8%  could possibly due to the generation of 

reformed bonds due to a simultaneous elongation or shrinkage of bond length and bond angles.  
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Figure 6.7. Phonon dispersion for strain-free (0%) and shear (S1) strained ML-MoS2  nanosheet 

at 10% indicate no sign of soft phonon mode around the Brillouin zone center,  thereby, 

confirms the kinetic stability of strained structures. 

Figure 6.8. 2D Young’s modulus (Yij) in units of N.m-1 and Poisson’s ratio (ϑij) of a monolayer 

MoS2 under various strain geometry calculated from the elastic stiffness tensors along mutual 

orthogonal crystal axis (11 = xx = zigzag, 22 = yy = armchair). 2D Young’s modulus (𝑌𝑥/𝑦
2𝐷 ), 



  

160 
 

and Poisson’s ratio (𝜗𝑥/𝑦
2𝐷 ) can be determined by the following relationships from the 

coefficients of elastic stiffness matrix,  

𝑌𝑥
2𝐷 =  (𝐶11𝐶22 − 𝐶12𝐶21)/𝐶22 ,    𝑌𝑦

2𝐷 =  (𝐶11𝐶22 − 𝐶12𝐶21)/𝐶11  

𝜗𝑥
2𝐷 =  𝐶21/𝐶22 ,  𝜗𝑦

2𝐷 =  𝐶12/𝐶11  

Due to strain-induced lattice anisotropy, the isotopic elasticity in ML-MoS2 becomes 

anisotropic due to a transverse shrinkage effect along the mutual orthogonal axis in response 

to the applied strain axis. Thus, we carefully evaluate anisotropy in Young’s modulus and 

Poisson’s ratio for all strain cases in a rectangular unit cell by carefully considering the 

component of elastic stiffness tensors along the transverse axis of strain. Poisson’s ratio that 

characterizes the material response to a uniaxial load and is defined as the ratio of transverse 

to an axial component of stiffness tensor. Our calculated value for Young’s modulus (𝑌𝑥 =

𝑌𝑦 = 126.07 𝑁.𝑚−1) and Poisson’s ratio (𝜗𝑥 = 𝜗𝑦 = 0.24) for pristine ML-MoS2 lattice, at 

equilibrium, shows very close agreement result with other ab initio studies[283], [398], [399] 

and remain within the experimental prediction limit of 180 ± 60 𝑁.𝑚−1. As shown in Figure 

6.8, both the Young’s modulus and Poisson’s ratio induces a strong in-plane anisotropy along 

ZZ and AC lattice direction of ML-MoS2 under different strain geometry. In particular, the 

anisotropy is more substantial for both modes of shear strain (S1 & S2). On the other hand, the 

elastic constants remain isotropic under the biaxial tensile (or compressive) deformation with 

a gradual decrease (or increase) in Young’s modulus (𝑌) and Poisson’s ratio (𝜗). The result of 

this elastic anisotropy under uniaxial and shear strain keeps the lattice environment different 

along the mutual orthogonal direction of ML-MoS2, in return, enforces unique functionalities 

to the system in terms of strong electron-lattice coupling and anisotropy in electromechanical 

properties.  
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6.4 CONCLUSIONS 

A full comprehensive ab initio study has been conducted to demonstrate the effects of 

various in-plane strain on phonon modes and elastic anisotropy in a monolayer MoS2 

nanosheet. The phonon dispersion and vibrational modes that correspond to the characteristic 

Raman and IR-active vibrations of ML-MoS2 have been analyzed under various in-plane strain 

geometry. The response to uniaxial and shear strain in terms of the breaking of vibrational 

frequency degeneracy of its doubly degenerate 𝐸2𝑔
1  mode into two orthogonal non-degenerate 

singlet sub-bands 𝐸2𝑔
1+ & 𝐸2𝑔

1− has been demonstrated up to a considerable strain of 10%. The 

strain-induced lattice anisotropy is the source of this broken frequency degeneracy of modes. 

The mechanical and kinetic stability of strained lattices has been confirmed within the studied 

range of strain. The vibrational modes red-shift (blue-shift) in different proportions depending 

on the magnitude and nature of the applied strain, which has been systematically quantified for 

all strain cases. The degeneracy of 𝐸2𝑔
1 -mode is found to be lifted only when the underlying 

crystal symmetry is broken (i.e., under uniaxial/shear strain), while a biaxial strain is found to 

preserve the degeneracy due to its isotropic nature of strain field (C3-symmetry is retained).  In 

certain cases, we found the appearance of new Raman (E2g
′ ) and IR (𝐴1𝑢

′ ) active vibrations in 

the frequency spectrum. This is due to colossal modifications in the crystal symmetry and 

change density isosurface of vibrating ions. The frequency split-off response in the doubly 

degenerate 𝐸2𝑢
1  (IR) mode is found to be more sensitive to the lattice anisotropy, enabling to 

detect the anisotropy in honeycomb lattices at a shallow magnitude of lattice displacement. We 

believe, together with Raman spectra, the spectral response of IR modes could be a useful 

indicator for effective monitoring of lattice strain in a monolayer MoS2 lattice. The overall 

results indicate stain-induced phonon engineering by the changes in Raman and IR-active 

vibrations, and spectral evolution of modes are powerful avenues in interpreting the structural 
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and vibrational information of ML-MoS2 nanosheet for its application in phononics, 

thermoelectrics, and nanoelectromechanical systems. 

 

--------------------------**********************---------------------------- 

 

 

 

 

 

 

 

 

 

 

 

 

 



  

163 
 

 

Chapter 7 

 

Summary & Outlook  
 

 

The essential findings of this Ph.D. research work that has been presented in the form 

of different chapters in this thesis have been summarized in this final Chapter. 

In Chapter 1, I have provided a pedagogical introduction to the two-dimensional 

materials with particular attention on Group VIB transition-metal dichalcogenide (TMDC) 

monolayers MX2 (where M = Mo, W, etc. and X = S, Se, Te). A broad overview of different 

electronic properties and a brief introduction to the recently discovered Janus transition-metal 

dichalcogenides (JTMDCs), namely MXY monolayers (where X ≠ Y = S, Se, Te) have been 

presented in this chapter.  

In Chapter 2, theoretical methods and computational tools that are pivotal to carry out 

the calculation of electronic structure results presented in this Ph.D. thesis have been included. 

Besides, in the subsequent chapters, a computational details section has been devoted to 

producing the results presented in the chapter using the essential computational settings of 

VASP calculation. A general input and output file structure of VASP calculation has been 

provided to obtain some primary electronic structure results and the minimum energy 

configuration of a given system towards the end of chapter 2. 

In Chapter 3, we have theoretically demonstrated the crystal structure, lattice stability 

and coupled spin-valley nature of the charge carriers in a series of semiconducting monolayers 
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of Group VIB transition metal dichalcogenides 1H-MX2 (where M = Cr, Mo, W, etc.; X = S, 

Se, or Te) and their Janus structures 1H-MXY (where X ≠ Y). Atomically thin MXY 

monolayers are found to be structurally stable, which we have confirmed from the phonon 

study and room temperature AIMD simulations. Furthermore, the Janus monolayers of Group 

VIB TMDCs possess comparable cohesive energy (~ 2-3 eV/atom) to that of their parent, 

energetically stable, 1H-MX2 phase, this suggests the relative chemical stability of Janus 

monolayers. In all cases, a semiconducting electronic bandgap (~ 0.25 – 1.7 eV) has been found 

in Janus monolayers. The bandgap of M-S-Se and M-Se-Te (where, M = Cr, Mo, W) Janus 

monolayers are found to be direct at the K-point of the BZ under SOC, whereas in all other 

cases an indirect bandgap is observed with valence band maximum (VBM) occurring at the Г–

point of the BZ and the conduction band minimum (CBM) situated at the K–point. The 

variation in the direct and indirect bandgap exhibits a linear dependency as a function of applied 

mechanical strain within the -3% to +6% of biaxial strain. The Janus monolayers remain 

semiconducting within this strain range except for CrSTe strained system that shows a 

semiconductor-to-metal transition with strain > +3%. The electrostatic potential difference 

(∆𝑉) is found to increase with an increase in dipolar contrast between chalcogen lattices, which 

enhances the SOC splitting energy of spin bands at the K–point of BZ both in the VBM and 

CBM sectors of the electronic dispersion. The Rashba parameters (𝐸𝑅  & 𝛼𝑅) are found to be 

highly strain sensitive and significantly get enhanced with lattice compression. The strain 

sensitive variation in Rashba coefficient 𝛼𝑅 is found to exhibit asymmetric behavior about the 

K'-Г-K and M'-Г-M high symmetry line in the 1st BZ. Under compressive biaxial strain the 

enhancement in 𝛼𝑅 along the K'-Г-K line is nearly 2 orders of magnitude higher than the same 

along the M'-Г-M high symmetry line for a given strain value.  Furthermore, the strain-tunable 

alteration in Berry curvature in pristine and Janus monolayer TMDCs can be a potential avenue 



  

165 
 

for the effective controlling of transverse velocities of valley carriers in the future flexible 

valleytronic device. 

In Chapter 4, using first-principle calculations, we have shown the impact of a 

symmetry reducing mechanical deformation on the low-energy carrier dynamics in a strained 

ML-MoS2, around K/K’ points of the Brillouin zone. We have shown a robust strain-valley 

coupling for low-energy valley carriers, where the energy extrema of electron/hole bands drift 

away from K/K’ points in response to a symmetry lowering uniaxial strain. A significant valley 

asymmetry between electron and hole states (i.e., the CBM valley drift is nearly 2-times that 

of the VBM hills) is preferable in conveniently lifting the valley symmetry (valley momentum 

degeneracy at K/K’) of electrons/holes. The resulting effect can considerably influence the 

valley selective optical excitations and valley polarization properties of a multi-valley 

electronic system like ML-MoS2. A drastic drop in the degree of circular polarization (K valley 

polarization) is optically addressable by a polar PL emission measurement. Besides, the K-

valley coherence effect can manipulate the valley-contrasting Berry curvature distributions 

around K/K’, where the rise in flux profile together with a drift can lead to anomalous valley 

current in a strained ML-MoS2 lattice system. The strain-induced modification in Bloch states 

is substantial in order to alter the strength of valley-contrasting phenomena that can lead to an 

anomalous valley current for different Kramer channels, which are mechanically controllable 

by a strong strain-valley coupling near K and K’ points. This strong valley asymmetry between 

valley carriers under a directional lattice strain is the interplay of geometric and orbital overlap 

effects that breaks the lattice symmetry and symmetry between orbital wave functions at the 

relevant band-edge points. 

Moreover, the spatial redistribution and rehybridization of states near the band edges 

can potentially pave the way in controlling the spin DOF in a uniaxially strained ML-MoS2, 

where the SOC induced spin-splitting energy at the VBM can be sizably enlarged by an amount 
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of ~ 7 meV at a strain of 9%. This could potentially alter the spintronic capability of this 

material and allow manipulating the spin degrees of freedom in a strained MoS2 lattice. The 

spin relaxation times of carriers are expected to be prolonged by the suppression of Dyakonov-

Perel spin relaxation due to a strain-induced increase in the spin-splitting energy. The 

predictive findings presented in this chapter are useful for further experimental investigations 

on ML-MoS2 under the application of in-plane lattice strain to realize its strain functional future 

technological potential for flexible electronic, spintronic, and valleytronic devices.  

In Chapter 5, a systematic investigation of the nanopiezotronic response of ML-MoS2 

nanosheet to different modes of applied strain was performed. Our study shows that shear strain 

S1 and uniaxial tensile strain applied along the zigzag direction are most effective in reinforcing 

the nanopiezoelectric response in ML-MoS2, which is followed by biaxial tensile strain and 

uniaxial compressive strain applied along the armchair direction. Polarization-dependent linear 

response properties, such as Born effective charges (𝑍[𝐵]
∗ ) have been investigated to attribute 

the atomistic origin and changes in the large piezoelectric response to the alteration in the 

intrinsic polarization vector in ML-MoS2. The simultaneous variation in piezoelectric and 

electronic bandgap with the shear strain (S1) and uniaxial tensile strain along the zigzag 

direction was studied to ascertain the optimal strain values where piezoelectricity couples 

synergistically to the semiconducting properties for the maximal utility of ML-MoS2 in 

nanopiezotronic devices. The synergy is found to occur around 4−5% of shear strain and about 

6−7% of uniaxial tensile strain. Furthermore, the variation in carrier mobilities with strain has 

been addressed along the mutual orthogonal crystal direction of ML-MoS2. Under the 

application of uniaxial compressive strain along both the zigzag and the armchair directions, 

electron mobility drops drastically at a strain of 3%. Likewise, hole mobility falls abruptly at 

1% uniaxial tensile strain along both the zigzag and armchair directions. These behaviors in 

charge carrier mobility may find useful applications in designing low-power switches. Under 
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uniaxial compressive strain, the charge carrier mobility is found to increase along the zigzag 

direction. Therefore, the channel material needs to interface the electrodes along the zigzag 

direction for higher carrier injection. Moreover, ML-MoS2 has been fortuitously found to be 

softest (or least stiff) along the zigzag direction, which shows higher strain sustainability and 

greater elastic limit. The predictive findings presented in this chapter can facilitate in realizing 

energy-efficient nanopiezotronic devices by controlling the conversion of mechanical to 

electrical energy in 2D nanomaterial systems such as ML-MoS2. 

Chapter 6 provides a comprehensive ab initio study that has been conducted to 

demonstrate the effects of various in-plane strain on phonon modes and elastic anisotropy in a 

monolayer MoS2 nanosheet. The phonon dispersion and vibrational modes that correspond to 

the characteristic Raman and IR-active vibrations of ML-MoS2 were analyzed under various 

in-plane strain geometry. The response to uniaxial and shear strain in terms of the breaking of 

vibrational frequency degeneracy of its doubly degenerate 𝐸2𝑔
1  mode into two orthogonal non-

degenerate singlet sub-bands 𝐸2𝑔
1+ & 𝐸2𝑔

1− has been demonstrated up to a considerable strain of 

10%. The strain-induced lattice anisotropy is found to be the source of this broken frequency 

degeneracy of vibrational modes. The mechanical and kinetic stability of strained lattices has 

been confirmed within the studied range of strain. The vibrational modes red-shift (blue-shift) 

in different proportions depending on the magnitude and nature of the applied strain, which has 

been systematically quantified for all strain cases. The degeneracy of 𝐸2𝑔
1 -mode is found to be 

lifted only when the underlying crystal symmetry is broken (i.e., under uniaxial/shear strain), 

while a biaxial strain is found to preserve the degeneracy due to its isotropic nature of strain 

field (C3-symmetry is retained).  In some instances, we found the appearance of new Raman 

(E2g
′ ) and IR (𝐴1𝑢

′ ) active vibrations in the frequency spectrum. This is due to colossal 

modifications in the crystal symmetry and change density isosurface of vibrating ions. The 

frequency split-off response in the doubly degenerate 𝐸2𝑢
1  (IR) mode is found to be more 
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sensitive to the lattice anisotropy, enabling to detect the anisotropy in honeycomb lattices at a 

very low magnitude of lattice displacement. We believe, together with Raman spectra, the 

spectral response of IR modes could be an effective indicator for effective monitoring of lattice 

strain in a monolayer MoS2 lattice. The overall results presented in this chapter indicate that 

the stain-induced phonon engineering by the changes in Raman and IR-active vibrations and 

spectral evolution of modes are powerful avenues in interpreting the structural and vibrational 

information of ML-MoS2 nanosheet for its application in phononics, straintronics, 

thermoelectrics, and nanoelectromechanical systems. 
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