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Chapter 1

Introduction

Differential equations describing nonlinear dynamics are often not complicated in form,
and just involve some additional nonlinear terms. However their analysis is not easy,
starting from the example of a simple pendulum, where one needs the help of elliptic
function to solve the system analytically without small angle approximation. The simple
pendulum is a two-dimensional oscillator in phase space. Since trajectories cannot in-
tersect in the phase plane, for two-dimensional systems the Poincaré-Bendixson theorem
implies that the dynamics is quite simple. But it becomes complicated when we add one
more dimension to phase space and the newly born interesting dynamics that may arise
in systems of 3 or more dimensions is known as chaos. The word chaos itself suggests the
unpredictability and great sensitivity to initial conditions. So in such dynamical systems,
two different but very close initial conditions can show completely uncorrelated dynamics
after some time, i.e. with time, the information of the previous states decay. Here is a

quote relevant to this behaviour:

Physicists like to think that all you have to do is say, these are the conditions, now

what happens next?
—RICHARD P. FEYNMAN

The effective unpredictability of deterministic dynamical systems is popularly known
as the The Butterfly Effect, and more technically this captures the extreme sensitive
dependence on initial conditions. First observed in the Lorenz attractor, many chaotic
oscillators have been found since now in chemical, biological and mechanical systems.

Since the start of the study of complex systems, chaotic behaviour is quite often seen in



such systems due to the high dimensionality of these systems.

1.1 Dynamical systems

In nature, every system that evolves in time is a dynamical system. Dynamical systems
can be represented by ordinary differential equations, partial differential equations or
difference equations. The dynamical equations may be autonomous (explicit time in-
dependence) or non-autonomous (explicit time dependence), discrete (iterated maps) or
continuous in time. In particular, continuous time systems are widely used to model a
large class of natural phenomena, and have a lot of applications in wide-ranging engi-
neered systems. In this thesis, we have only considered continuous-time systems, more
specifically nonlinear ordinary differential equations with limit cycle and chaotic dynam-

ics. We give below all the oscillators considered in this thesis.

1.1.1 Stuart-Landau oscillator

Stuart-Landau oscillator is a phase oscillator in two-dimensional phase space. Any oscil-
lator near the Hopf-bifurcation point can be described by Stuart-Landau oscillators [1]

given by equations:

) = [(p+iw) —|2(8)]}z(t) (1.1)

where /p is the amplitude and w is the frequency of the oscillator. Fig 1.1(a) shows
the time-series of the x and y variable after the transient behaviour and Fig. 1.1(b) shows
the phase-portrait in the z-y phase plane with angular frequency w = 2.0 and amplitude
1.0.

Substitution of z(t) = re® into the Eqn. 1.1, reduces the system to the following set

of equations:

o= r(p—1?) (1.2)



which clearly shows that the system is a phase oscillator with a limit cycle.
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Figure 1.1: (a) Time-series and (b) Phase-portrait of the Stuart-Landau oscillator with
w = 2.0 and p = 1.0.

1.1.2 Lorenz Attractor

This is a system of three coupled first order ordinary differential equations, developed by
Edward Lorenz as a simplified model of atmospheric convection. The three state vari-
ables make it possible to show chaotic behaviour, as allowed by the Poincaré-Bendixson

theorem. The equations of the system are:

& = oly—2
y = (r=z2z—y (1.3)
z = xy— Pz

Setting time derivative terms on the LHS to zero gives three fixed points: (0,0,0),

(v/B(r —1),4/B(r —1),r—1) and (—/B(r — 1), —/B(r — 1),r—1). Estimation of linear
stability analysis around these fixed points suggest that the stability of the fixed point

changes for different parameter values. In this thesis, we have fixed the value of o = 10.0,
f = 8.0/3.0 and varied the parameter r. For r > 24.74, all the fixed points are unstable
and the Lorenz system yields a chaotic attractor. Fig. 1.2 shows the time-series and

phase-portraits of the Lorenz system described by Eqn 1.3.
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Figure 1.2: (a) Time-series and Phase-portraits of Lorenz system in the (b) x — y, (c)
y — z and (d) = — z plane, with parameter values o = 10.0, 5 = 8.0/3.0 and r = 28.0.

1.1.3 Rossler Oscillator

First studied by Otto Rossler, the dynamics of the Rossler oscillator is given by the

following coupled non-linear first order ordinary differential equations:

T = —y—=z
Yy = x+ay (1.4)
2 = b+z(x—c)

It is a simple model of the dynamics of chemical reaction observed in a stirred tank



of reactants [2]. Setting time derivative terms on the LHS to zero gives two fixed points:

2_ e 2~ 2_ 2 _ 2_ /2
(ch\/cZ 40,b7 c \/20 40Lb7 c+Ve 4ab) and (c V2 —4ab c+vc2—4ab c—v/¢ 4ab). Ollt Of these two
a 2a 2 ’ 2a ’ 2a

fixed points, one fixed point lies in the centre of the attractor and other lies far away.

Depending upon the parameter values, this system can show period one, period two,
period four oscillations, all the way to chaos. Fig. 1.3 shows the time-series and phase-

portraits of representative Rossler systems described by Eqns. 1.4.

20

Figure 1.3: (a) Time-series and Phase-portraits of Rossler oscillator in the (b) x — v, (c)
y — z and (d) x — 2z plane, with parameter values a = 0.2, b = 0.2 and ¢ = 5.7.

1.2 Analysis of the dynamics of the oscillators

In this section, we present an outline of the various analyses undertaken in the thesis to

characterize the dynamics of the oscillators.



1.2.1 Linear Stability Analysis

The qualitative behaviour of an oscillator can be obtained by the linear stability analysis
around the fixed point. The analysis is the approximation of nonlinearity in the small
neighbourhood of fixed point but is sufficient to describe the flow of the system in the
phase plane. To begin with, let’s take a set of functions describing the dynamics in

two-dimensional phase plane:

y = g(z,y)

Expansion of these functions in the neighbourhood of the fixed points (¢, yo) produce a

set of linear equations:

: of of

— _— + _—
¢ ox JCOC oy yon
. Og Jg
= ox xoc + dy "o

and the eigen values of this matrix determine the nature of the flow in the phase-plane
in the neighbourhood of the fixed point. We give below a table describing the dynamical

behaviour depending upon the eigen values of the Jacobian:

A1 Ao Dynamics
-Real -Real Stable node
+Real +Real Unstable node
-Real +Real Saddle node
Imaginary Imaginary Center
-Real and Imaginary | -Real and Imaginary | Stable focus
+Real and Imaginary | +Real and Imaginary | Unstable focus

1.2.2 Basin Stability

Linear stability analysis provides qualitative behaviour around the fixed points. If there
are more than one fixed points, we have to check the stability of each of them to un-
derstand the system. But this analysis is very local and does not account for dynamics
outside of the neighbourhood of the fixed points, i.e. nonlinearity of the system is com-

pletely ignored. It becomes more complicated when there is more than one attractor.

6



So to obtain some idea of the global stability of complex systems, it is more useful to
implement the concept of basin stability [3] given as follows: We take initial conditions
with a uniform random distribution in a designated volume of phase space, and evolve the
system. Then we determine how many initial conditions go to a specific attractor. The
fraction of initial conditions going to a particular attractor, is used to define the global
stability of the attractor and reflects the probability of a random initial condition going
to the attractor. In a sense, this idea is more general, because typically the dynamics can
be very different in regions of phase space far from the neighbourhood of an attractor,

and so linear stability cannot account for the global stability of an attractor.

1.2.3 Lyapunov Exponents

With the linear stability analysis, one can calculate the eigen values of the Jacobian and
find out whether the system is oscillatory or not. But if the system is oscillatory, it
cannot further classify the type of oscillations, namely whether periodic or chaotic. For
identification of chaotic oscillators, we use the definition of chaos. Lyapunov exponent of
dynamical systems quantifies the rate of separation of two trajectories starting from very
close initial conditions. If the separation of the trajectories after some time ¢ is 6(¢) then

the definition of Lyapunov exponent is:
161 = [[6(0)]]e

where A is the Lyapunov exponent. The maximum value of the Lyapunov exponent

quantifies the characteristics of the dynamics, as follows:

e )\ >0 : chaos
e )\ =0 : periodic or quasi-periodic

e )\ < (: stable equilibrium

1.3 Coupled Oscillators

Coupled oscillators are quite often found in nature, and the interaction of the system
leads to the various complex phenomenon like multistable systems, chimera states, syn-

chronization, oscillation suppression. The type of interaction may be broadly classified



into two classes: directional (or unidirectional) and un-directional (or bidirectional). A

general form of coupling can be formally written as

X1 = F(X))4eGi(Xy, X))
Xz = F(Xs) +eGa(Xy, Xo)

where F(X) is the function determining the time evolution of uncoupled oscillator,
G(X1, Xy) is the functional form of coupling and ¢ is the strength of coupling of both
the oscillators. All these three factors play a crucial role to determine the dynamics of
the system. For ¢ = 0, there is no coupling between the oscillators and they sustain their
dynamics as defined by the function F'(X), which might be limit cycle, quasi-periodic or
chaotic attractor. The coupling form G(X;, X5) starts playing a role in determining the
dynamics when we turn on the coupling strength. Depending upon the system, there are

different types of interaction or coupling functions used:

Type of coupling | Functional form
Diffusive (xj — ;)
Conjugate (y; — x4)
Mean field (T — ;)
Lotka-Volterra (yj x x;)

Additionally, there may be coupling to an external environment, through feedback from

an external variable (often denoted as u).

In the real-world, typically not just two oscillators, but a lot of oscillators interact with
each other to form a complex network. The connectivity of a complex network may a have
a wide range of topologies, such as: a star network, ring network, small-world network,
scale-free network, random scale-free network, random network, globally connected net-
work. The implementation of these topologies requires an appropriate adjacency matrix

(A) in the dynamical equations:

N
Xi = F(X)+ > AyG(X))
i=1

| ™

where X; = [x},27,...,27"]7 denotes states of m-dimensional nonlinear oscillators and
A represents N x N matrix with entries 0 (not connected) and 1 (connected). These
complex systems exhibit wide-ranging phenomena, and we outline some of the important

and interesting ones below.



1.3.1 Synchronization

Synchronization is a phenomenon in nature where dynamical systems acquire the same
synchronized rhythm if there is a transfer of some information. When a system does not
feel the presence of another system, its dynamics is independent of the other system,
and hence uncorrelated. However when coupled, a collection of systems may adjust
their dynamics, and start evolving in a correlated manner, i.e. their collective dynamics
changes from incoherent to coherent. Fire-flies, swimming fishes, bird flocks, pacemaker
are some of the classic examples of synchronization. Depending upon the nature of
interaction and type of system, different types of synchronization have been observed,
such as complete synchronization, phase synchronization, anti-phase synchronization,

delayed or lag synchronization.

In order to quantify complete synchronization, in this thesis, we have calculated the

synchronization error:

_ 1 Zil(mi_i’y
Z = f;\/ ¥ (1.5)

where Z represents the time averaged standard deviation of the state variables and x =
+ ZZ]\LI x;. Further we average Z over different initial states to obtain an ensemble

averaged synchronization error (7).

1.0W

5.0 7.5 10,0 125 150 175  20.0
t

Figure 1.4: Time-series of z-variable of two Stuart-Landau oscillators coupled via diffusive
coupling, with w = 5.0 and € = 0.2.



Now we show an illustrative example of synchronization of two Stuart-Landau oscil-

lators, when coupled diffusively via state variable z.

Z1(t) =

(14 iw) — |21(8))*]21(t) + e(Re(2z2) — Re(z1))
(14 iw) — |22(t)]?]22(t) + e(Re(z1) — Re(2))

(1.6)

Fig 1.4 shows the time-series of two coupled Stuart-Landau oscillators. It is evident

from the figure that starting from the different initial condition, both the oscillators

become synchronized when we turn on the coupling.

1.3.2 Suppression of Oscillations

Suppression of oscillation is yet another interesting phenomenon of coupled oscillators.

When two or more systems are coupled to each other, depending upon the oscillator and

the form and strength of coupling, oscillations may be quenched. Oscillation suppression

can be characterized into two broad categories: amplitude death and oscillation death.

Amplitude death

Oscillation death

Also referred as Homogeneous Steady State
(HSS)

Also referred as In-homogeneous Steady
State (IHSS)

System of oscillators stabilizes to one fixed

point

System of oscillators stabilizes to different

fixed points

Usually obtained from limit cycle via Hopf

bifurcation

Usually obtained from amplitude death via

pitchfork bifurcation

Relevant in laser systems and others, where
it is important to stabilize the system to a

particular fixed point

Relevant in systems, where homogeneous
systems evolve to heterogeneous solutions,

like cellular differentiation

Now we present an illustrative demonstration of amplitude death and oscillation death

in two conjugately coupled Stuart-Landau oscillators, with equations:

10

[(1+iw) — |21(8)[*]21 () + e(Img(z2) — Re(z1))
[(1 +iw) — |22(t) ] 22(t) + e(Img(z1) — Re(2))

(1.7)




where z; = x; + 1y; is a complex number and the coupling is only in real part, i.e. in

x-variable.

Figure 1.5: Bifurcation diagram of (a) x-variable and (b) y-variable of two conjugately
coupled Stuart-Landau oscillators, with w = 2.0.

Fig 1.5 shows the bifurcation diagram of x and y variable of both the oscillators. It is
evident that at low coupling strength, both the oscillators are limit cycles, with decreasing
amplitude as coupling strength increases. When the coupling strength increases beyond a
critical value, the fixed points become stable via Hopf bifurcation. On further increasing
the coupling strength, these fixed points are de-stabilized again, and new sets of stable
fixed points are created via pitchfork bifurcation. Though this route to Amplitude Death
and Oscillation Death is common, other mechanisms of obtaining Amplitude Death and

Oscillation Death also exist.

1.4 Outline of the Thesis

Now we present an outline of the work done in this thesis. In this thesis we have considered

four broad problems and I give the central ideas of these problems below.

In chapter 2 we present the collective behaviour of an ensemble of chaotic oscillators
diffusively coupled only to an external chaotic system, whose intrinsic dynamics may be
similar or dissimilar to the group. Counter-intuitively, we find that a dissimilar external
system manages to suppress the intrinsic chaos of the oscillators to fixed point dynamics,
at sufficiently high coupling strengths. So, while synchronization is induced readily by

coupling to an identical external system, control to fixed states is achieved only if the

11



external system is dissimilar. We quantify the efficacy of control by estimating the fraction
of random initial states that go to fixed points, a measure analogous to basin stability.
Lastly, we indicate the generality of this phenomenon by demonstrating suppression of

chaotic oscillations by coupling to a common hyper-chaotic system.

In chapter 3 we present the behaviour of chaotic oscillators in hierarchical networks
coupled to an external chaotic system whose intrinsic dynamics is dissimilar to all the
oscillators in the network. We find that coupling to one such dissimilar external system
manages to suppress the chaotic dynamics of all the oscillators at all levels of the network,
at sufficiently high coupling strength. The chaos suppression is independent of system
size and occurs irrespective of whether the connection to the external system is direct, or
indirect through oscillators at another level in the hierarchy. Though the steady states
vary across different tiers, the oscillators are synchronized to the same steady state at a
particular level of hierarchy. For this problem also, we quantify the efficacy of control
by estimating a global stability measure analogous to the basin stability of the emergent

steady state.

In chapter 4 we present the impact of a common external system, which we call a
common environment, on the Oscillator Death (OD) states of a group of Stuart-Landau
oscillators. The group of oscillators yield a completely symmetric OD state when uncou-
pled to the external system, i.e., the two OD states occur with equal probability. However,
remarkably, when coupled to a common external system this symmetry is significantly
broken. For exponentially decaying external systems, the symmetry breaking is very
pronounced for low environmental damping and strong oscillator-environment coupling.
Further, we consider time-varying connections to the common external environment, with
a fraction of oscillator-environment links switching on and off. Interestingly, we find that
the asymmetry induced by environmental coupling decreases as a power law with increase
in fraction of such on-off connections. This suggests that blinking oscillator-environment
links can restore the symmetry of the OD state. We also considered the effect of dis-
connections of the oscillator-environment links on this asymmetry in the basin stability
of the OD states. Interestingly, we find that the asymmetry induced by environmental
coupling decreases with increase in fraction of such disconnections, and at some inter-
mediate fraction close to half the symmetry is restored. However, further increase in
disconnections induce asymmetry in the OD state again, until all oscillator-environment
links are switched off. Lastly, we demonstrate the generality of our results for a constant
external drive and find marked breaking of symmetry in the OD states there as well.
When the constant environmental drive is large, the asymmetry in the OD states is very

large, and the transition between the symmetric and asymmetric state with increasing

12



oscillator-environment coupling is very sharp.

In chapter 5 we present the emergent dynamical patterns in a system of coupled
Stuart-Landau oscillators whose coupling form varies periodically and probabilistically
in time. We find, through bifurcation diagrams and Basin Stability analysis, that there
exists a window in coupling strength where the oscillations get suppressed. Beyond this
window, the oscillations are revived again. A similar trend emerges with respect to
the relative predominance of the coupling forms, with the largest window of fixed point
dynamics arising where there is balance in the occurrence of the coupling forms. Further,
significantly, more rapid switching of coupling forms yields large regions of oscillation
suppression. Lastly, we propose an effective model for the dynamics arising from switched
coupling forms and demonstrate how the bifurcations in this model capture the basic
features observed in numerical simulations and also offers an accurate estimate of the

fixed point region through linear stability analysis.

In summary, we have explored a broad range of problems concerning the control of
networks of chaotic oscillators, including hierarchical networks. Further we have explored
the suppression and revival of oscillations, as well as the phenomena of symmetry breaking
in the basin stability of Oscillation Death states in coupled nonlinear oscillators. So our
results shed light on the emergent collective dynamics of interactive nonlinear systems,

thus serving to enhance the general understanding of such complex systems.
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Chapter 2

Suppression of chaos through
coupling to an external chaotic

system

Adapted from the work published in :

Chaurasia, S. S., Sinha, S., “Suppression of chaos through coupling to an external
chaotic system”, Nonlinear Dynamics 87., (2016) 159-167
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2.1 Introduction

The rapidly growing science of complex systems has helped in understanding spatiotem-
poral pattern formation in wide-ranging systems, from natural systems such as climate
and biological systems on one hand, to man-made systems such as lasers and electronic
circuits on the other hand. From the broad perspective of dynamical systems, the emer-
gent, behaviour of networks with different dynamical constituents is important. The basic
ingredient of network models consists of local dynamical units, which may range from
simple linear systems to chaotic systems. For instance, the electrical activities of neurons
can be very complex, and experiments show quiescent, spiking, or bursting behaviour
under varying excitability or external forcing current [4, 5]. The second important aspect
of such models is the nature of the coupling interaction, for instance it may be diffusive
or pulsatile, with or without delay. The last crucial feature is the topology of the con-
nection matrix that determines the linkage between the elemental dynamical units. For
instance, different collective behaviors are observed in networks of model neurons [6, 7]
under varying connectivities, ranging from synchronization and coherence resonance to
de-coherence [8]. Further, results from neuroscience suggest that perception and memory

arise f