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Chapter 1

Introduction

Differential equations describing nonlinear dynamics are often not complicated in form,

and just involve some additional nonlinear terms. However their analysis is not easy,

starting from the example of a simple pendulum, where one needs the help of elliptic

function to solve the system analytically without small angle approximation. The simple

pendulum is a two-dimensional oscillator in phase space. Since trajectories cannot in-

tersect in the phase plane, for two-dimensional systems the Poincaré-Bendixson theorem

implies that the dynamics is quite simple. But it becomes complicated when we add one

more dimension to phase space and the newly born interesting dynamics that may arise

in systems of 3 or more dimensions is known as chaos. The word chaos itself suggests the

unpredictability and great sensitivity to initial conditions. So in such dynamical systems,

two different but very close initial conditions can show completely uncorrelated dynamics

after some time, i.e. with time, the information of the previous states decay. Here is a

quote relevant to this behaviour:

Physicists like to think that all you have to do is say, these are the conditions, now

what happens next?

—RICHARD P. FEYNMAN

The effective unpredictability of deterministic dynamical systems is popularly known

as the The Butterfly Effect, and more technically this captures the extreme sensitive

dependence on initial conditions. First observed in the Lorenz attractor, many chaotic

oscillators have been found since now in chemical, biological and mechanical systems.

Since the start of the study of complex systems, chaotic behaviour is quite often seen in
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such systems due to the high dimensionality of these systems.

1.1 Dynamical systems

In nature, every system that evolves in time is a dynamical system. Dynamical systems

can be represented by ordinary differential equations, partial differential equations or

difference equations. The dynamical equations may be autonomous (explicit time in-

dependence) or non-autonomous (explicit time dependence), discrete (iterated maps) or

continuous in time. In particular, continuous time systems are widely used to model a

large class of natural phenomena, and have a lot of applications in wide-ranging engi-

neered systems. In this thesis, we have only considered continuous-time systems, more

specifically nonlinear ordinary differential equations with limit cycle and chaotic dynam-

ics. We give below all the oscillators considered in this thesis.

1.1.1 Stuart-Landau oscillator

Stuart-Landau oscillator is a phase oscillator in two-dimensional phase space. Any oscil-

lator near the Hopf-bifurcation point can be described by Stuart-Landau oscillators [1]

given by equations:

ż(t) = [(ρ+ iω)− |z(t)|2]z(t) (1.1)

where
√
ρ is the amplitude and ω is the frequency of the oscillator. Fig 1.1(a) shows

the time-series of the x and y variable after the transient behaviour and Fig. 1.1(b) shows

the phase-portrait in the x-y phase plane with angular frequency ω = 2.0 and amplitude

1.0.

Substitution of z(t) = reiθ into the Eqn. 1.1, reduces the system to the following set

of equations:

ṙ = r(ρ− r2) (1.2)

θ̇ = ω

2



which clearly shows that the system is a phase oscillator with a limit cycle.
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Figure 1.1: (a) Time-series and (b) Phase-portrait of the Stuart-Landau oscillator with
ω = 2.0 and ρ = 1.0.

1.1.2 Lorenz Attractor

This is a system of three coupled first order ordinary differential equations, developed by

Edward Lorenz as a simplified model of atmospheric convection. The three state vari-

ables make it possible to show chaotic behaviour, as allowed by the Poincaré-Bendixson

theorem. The equations of the system are:

ẋ = σ(y − x)

ẏ = (r − z)x− y (1.3)

ż = xy − βz

Setting time derivative terms on the LHS to zero gives three fixed points: (0, 0, 0),

(
√
β(r − 1),

√
β(r − 1), r−1) and (−

√
β(r − 1),−

√
β(r − 1), r−1). Estimation of linear

stability analysis around these fixed points suggest that the stability of the fixed point

changes for different parameter values. In this thesis, we have fixed the value of σ = 10.0,

β = 8.0/3.0 and varied the parameter r. For r > 24.74, all the fixed points are unstable

and the Lorenz system yields a chaotic attractor. Fig. 1.2 shows the time-series and

phase-portraits of the Lorenz system described by Eqn 1.3.
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Figure 1.2: (a) Time-series and Phase-portraits of Lorenz system in the (b) x − y, (c)
y − z and (d) x− z plane, with parameter values σ = 10.0, β = 8.0/3.0 and r = 28.0.

1.1.3 Rössler Oscillator

First studied by Otto Rössler, the dynamics of the Rössler oscillator is given by the

following coupled non-linear first order ordinary differential equations:

ẋ = −y − z
ẏ = x+ ay (1.4)

ż = b+ z(x− c)

It is a simple model of the dynamics of chemical reaction observed in a stirred tank

4



of reactants [2]. Setting time derivative terms on the LHS to zero gives two fixed points:

( c+
√
c2−4ab
2

, −c−
√
c2−4ab
2a

, c+
√
c2−4ab
2a

) and ( c−
√
c2−4ab
2

, −c+
√
c2−4ab
2a

, c−
√
c2−4ab
2a

). Out of these two

fixed points, one fixed point lies in the centre of the attractor and other lies far away.

Depending upon the parameter values, this system can show period one, period two,

period four oscillations, all the way to chaos. Fig. 1.3 shows the time-series and phase-

portraits of representative Rössler systems described by Eqns. 1.4.
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Figure 1.3: (a) Time-series and Phase-portraits of Rössler oscillator in the (b) x− y, (c)
y − z and (d) x− z plane, with parameter values a = 0.2, b = 0.2 and c = 5.7.

1.2 Analysis of the dynamics of the oscillators

In this section, we present an outline of the various analyses undertaken in the thesis to

characterize the dynamics of the oscillators.
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1.2.1 Linear Stability Analysis

The qualitative behaviour of an oscillator can be obtained by the linear stability analysis

around the fixed point. The analysis is the approximation of nonlinearity in the small

neighbourhood of fixed point but is sufficient to describe the flow of the system in the

phase plane. To begin with, let’s take a set of functions describing the dynamics in

two-dimensional phase plane:

ẋ = f(x, y)

ẏ = g(x, y)

Expansion of these functions in the neighbourhood of the fixed points (x0, y0) produce a

set of linear equations:

ζ̇ =
∂f

∂x

∣∣∣∣
x0

ζ +
∂f

∂y

∣∣∣∣
y0

η

η̇ =
∂g

∂x

∣∣∣∣
x0

ζ +
∂g

∂y

∣∣∣∣
y0

η

and the eigen values of this matrix determine the nature of the flow in the phase-plane

in the neighbourhood of the fixed point. We give below a table describing the dynamical

behaviour depending upon the eigen values of the Jacobian:

λ1 λ2 Dynamics

-Real -Real Stable node

+Real +Real Unstable node

-Real +Real Saddle node

Imaginary Imaginary Center

-Real and Imaginary -Real and Imaginary Stable focus

+Real and Imaginary +Real and Imaginary Unstable focus

1.2.2 Basin Stability

Linear stability analysis provides qualitative behaviour around the fixed points. If there

are more than one fixed points, we have to check the stability of each of them to un-

derstand the system. But this analysis is very local and does not account for dynamics

outside of the neighbourhood of the fixed points, i.e. nonlinearity of the system is com-

pletely ignored. It becomes more complicated when there is more than one attractor.

6



So to obtain some idea of the global stability of complex systems, it is more useful to

implement the concept of basin stability [3] given as follows: We take initial conditions

with a uniform random distribution in a designated volume of phase space, and evolve the

system. Then we determine how many initial conditions go to a specific attractor. The

fraction of initial conditions going to a particular attractor, is used to define the global

stability of the attractor and reflects the probability of a random initial condition going

to the attractor. In a sense, this idea is more general, because typically the dynamics can

be very different in regions of phase space far from the neighbourhood of an attractor,

and so linear stability cannot account for the global stability of an attractor.

1.2.3 Lyapunov Exponents

With the linear stability analysis, one can calculate the eigen values of the Jacobian and

find out whether the system is oscillatory or not. But if the system is oscillatory, it

cannot further classify the type of oscillations, namely whether periodic or chaotic. For

identification of chaotic oscillators, we use the definition of chaos. Lyapunov exponent of

dynamical systems quantifies the rate of separation of two trajectories starting from very

close initial conditions. If the separation of the trajectories after some time t is δ(t) then

the definition of Lyapunov exponent is:

||δ(t)|| = ||δ(0)||eλt

where λ is the Lyapunov exponent. The maximum value of the Lyapunov exponent

quantifies the characteristics of the dynamics, as follows:

• λ > 0 : chaos

• λ = 0 : periodic or quasi-periodic

• λ < 0 : stable equilibrium

1.3 Coupled Oscillators

Coupled oscillators are quite often found in nature, and the interaction of the system

leads to the various complex phenomenon like multistable systems, chimera states, syn-

chronization, oscillation suppression. The type of interaction may be broadly classified

7



into two classes: directional (or unidirectional) and un-directional (or bidirectional). A

general form of coupling can be formally written as

Ẋ1 = F (X1) + εG1(X2, X1)

Ẋ2 = F (X2) + εG2(X1, X2)

where F (X) is the function determining the time evolution of uncoupled oscillator,

G(X1, X2) is the functional form of coupling and ε is the strength of coupling of both

the oscillators. All these three factors play a crucial role to determine the dynamics of

the system. For ε = 0, there is no coupling between the oscillators and they sustain their

dynamics as defined by the function F (X), which might be limit cycle, quasi-periodic or

chaotic attractor. The coupling form G(X1, X2) starts playing a role in determining the

dynamics when we turn on the coupling strength. Depending upon the system, there are

different types of interaction or coupling functions used:

Type of coupling Functional form

Diffusive (xj − xi)
Conjugate (yj − xi)
Mean field (x̄− xi)

Lotka-Volterra (yj × xi)

Additionally, there may be coupling to an external environment, through feedback from

an external variable (often denoted as u).

In the real-world, typically not just two oscillators, but a lot of oscillators interact with

each other to form a complex network. The connectivity of a complex network may a have

a wide range of topologies, such as: a star network, ring network, small-world network,

scale-free network, random scale-free network, random network, globally connected net-

work. The implementation of these topologies requires an appropriate adjacency matrix

(A) in the dynamical equations:

Ẋi = F (Xi) +
ε

k

N∑
i=1

AijG(Xj)

where Xi = [x1i , x
2
i , ..., x

m
i ]T denotes states of m-dimensional nonlinear oscillators and

A represents N × N matrix with entries 0 (not connected) and 1 (connected). These

complex systems exhibit wide-ranging phenomena, and we outline some of the important

and interesting ones below.
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1.3.1 Synchronization

Synchronization is a phenomenon in nature where dynamical systems acquire the same

synchronized rhythm if there is a transfer of some information. When a system does not

feel the presence of another system, its dynamics is independent of the other system,

and hence uncorrelated. However when coupled, a collection of systems may adjust

their dynamics, and start evolving in a correlated manner, i.e. their collective dynamics

changes from incoherent to coherent. Fire-flies, swimming fishes, bird flocks, pacemaker

are some of the classic examples of synchronization. Depending upon the nature of

interaction and type of system, different types of synchronization have been observed,

such as complete synchronization, phase synchronization, anti-phase synchronization,

delayed or lag synchronization.

In order to quantify complete synchronization, in this thesis, we have calculated the

synchronization error:

Z =
1

T

∑
t

√∑N
i=1(xi − x̄)2

N
(1.5)

where Z represents the time averaged standard deviation of the state variables and x̄ =
1
N

∑N
i=1 xi. Further we average Z over different initial states to obtain an ensemble

averaged synchronization error 〈Z〉.

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0
t

−1.0

−0.5

0.0

0.5

1.0

x

Figure 1.4: Time-series of x-variable of two Stuart-Landau oscillators coupled via diffusive
coupling, with ω = 5.0 and ε = 0.2.
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Now we show an illustrative example of synchronization of two Stuart-Landau oscil-

lators, when coupled diffusively via state variable x.

ż1(t) = [(1 + iω)− |z1(t)|2]z1(t) + ε(Re(z2)−Re(z1)) (1.6)

ż2(t) = [(1 + iω)− |z2(t)|2]z2(t) + ε(Re(z1)−Re(z2))

Fig 1.4 shows the time-series of two coupled Stuart-Landau oscillators. It is evident

from the figure that starting from the different initial condition, both the oscillators

become synchronized when we turn on the coupling.

1.3.2 Suppression of Oscillations

Suppression of oscillation is yet another interesting phenomenon of coupled oscillators.

When two or more systems are coupled to each other, depending upon the oscillator and

the form and strength of coupling, oscillations may be quenched. Oscillation suppression

can be characterized into two broad categories: amplitude death and oscillation death.

Amplitude death Oscillation death

Also referred as Homogeneous Steady State

(HSS)

Also referred as In-homogeneous Steady

State (IHSS)

System of oscillators stabilizes to one fixed

point

System of oscillators stabilizes to different

fixed points

Usually obtained from limit cycle via Hopf

bifurcation

Usually obtained from amplitude death via

pitchfork bifurcation

Relevant in laser systems and others, where

it is important to stabilize the system to a

particular fixed point

Relevant in systems, where homogeneous

systems evolve to heterogeneous solutions,

like cellular differentiation

Now we present an illustrative demonstration of amplitude death and oscillation death

in two conjugately coupled Stuart-Landau oscillators, with equations:

ż1(t) = [(1 + iω)− |z1(t)|2]z1(t) + ε(Img(z2)−Re(z1)) (1.7)

ż2(t) = [(1 + iω)− |z2(t)|2]z2(t) + ε(Img(z1)−Re(z2))
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where zj = xj + iyj is a complex number and the coupling is only in real part, i.e. in

x-variable.
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Figure 1.5: Bifurcation diagram of (a) x-variable and (b) y-variable of two conjugately
coupled Stuart-Landau oscillators, with ω = 2.0.

Fig 1.5 shows the bifurcation diagram of x and y variable of both the oscillators. It is

evident that at low coupling strength, both the oscillators are limit cycles, with decreasing

amplitude as coupling strength increases. When the coupling strength increases beyond a

critical value, the fixed points become stable via Hopf bifurcation. On further increasing

the coupling strength, these fixed points are de-stabilized again, and new sets of stable

fixed points are created via pitchfork bifurcation. Though this route to Amplitude Death

and Oscillation Death is common, other mechanisms of obtaining Amplitude Death and

Oscillation Death also exist.

1.4 Outline of the Thesis

Now we present an outline of the work done in this thesis. In this thesis we have considered

four broad problems and I give the central ideas of these problems below.

In chapter 2 we present the collective behaviour of an ensemble of chaotic oscillators

diffusively coupled only to an external chaotic system, whose intrinsic dynamics may be

similar or dissimilar to the group. Counter-intuitively, we find that a dissimilar external

system manages to suppress the intrinsic chaos of the oscillators to fixed point dynamics,

at sufficiently high coupling strengths. So, while synchronization is induced readily by

coupling to an identical external system, control to fixed states is achieved only if the

11



external system is dissimilar. We quantify the efficacy of control by estimating the fraction

of random initial states that go to fixed points, a measure analogous to basin stability.

Lastly, we indicate the generality of this phenomenon by demonstrating suppression of

chaotic oscillations by coupling to a common hyper-chaotic system.

In chapter 3 we present the behaviour of chaotic oscillators in hierarchical networks

coupled to an external chaotic system whose intrinsic dynamics is dissimilar to all the

oscillators in the network. We find that coupling to one such dissimilar external system

manages to suppress the chaotic dynamics of all the oscillators at all levels of the network,

at sufficiently high coupling strength. The chaos suppression is independent of system

size and occurs irrespective of whether the connection to the external system is direct, or

indirect through oscillators at another level in the hierarchy. Though the steady states

vary across different tiers, the oscillators are synchronized to the same steady state at a

particular level of hierarchy. For this problem also, we quantify the efficacy of control

by estimating a global stability measure analogous to the basin stability of the emergent

steady state.

In chapter 4 we present the impact of a common external system, which we call a

common environment, on the Oscillator Death (OD) states of a group of Stuart-Landau

oscillators. The group of oscillators yield a completely symmetric OD state when uncou-

pled to the external system, i.e., the two OD states occur with equal probability. However,

remarkably, when coupled to a common external system this symmetry is significantly

broken. For exponentially decaying external systems, the symmetry breaking is very

pronounced for low environmental damping and strong oscillator-environment coupling.

Further, we consider time-varying connections to the common external environment, with

a fraction of oscillator-environment links switching on and off. Interestingly, we find that

the asymmetry induced by environmental coupling decreases as a power law with increase

in fraction of such on-off connections. This suggests that blinking oscillator-environment

links can restore the symmetry of the OD state. We also considered the effect of dis-

connections of the oscillator-environment links on this asymmetry in the basin stability

of the OD states. Interestingly, we find that the asymmetry induced by environmental

coupling decreases with increase in fraction of such disconnections, and at some inter-

mediate fraction close to half the symmetry is restored. However, further increase in

disconnections induce asymmetry in the OD state again, until all oscillator-environment

links are switched off. Lastly, we demonstrate the generality of our results for a constant

external drive and find marked breaking of symmetry in the OD states there as well.

When the constant environmental drive is large, the asymmetry in the OD states is very

large, and the transition between the symmetric and asymmetric state with increasing

12



oscillator-environment coupling is very sharp.

In chapter 5 we present the emergent dynamical patterns in a system of coupled

Stuart-Landau oscillators whose coupling form varies periodically and probabilistically

in time. We find, through bifurcation diagrams and Basin Stability analysis, that there

exists a window in coupling strength where the oscillations get suppressed. Beyond this

window, the oscillations are revived again. A similar trend emerges with respect to

the relative predominance of the coupling forms, with the largest window of fixed point

dynamics arising where there is balance in the occurrence of the coupling forms. Further,

significantly, more rapid switching of coupling forms yields large regions of oscillation

suppression. Lastly, we propose an effective model for the dynamics arising from switched

coupling forms and demonstrate how the bifurcations in this model capture the basic

features observed in numerical simulations and also offers an accurate estimate of the

fixed point region through linear stability analysis.

In summary, we have explored a broad range of problems concerning the control of

networks of chaotic oscillators, including hierarchical networks. Further we have explored

the suppression and revival of oscillations, as well as the phenomena of symmetry breaking

in the basin stability of Oscillation Death states in coupled nonlinear oscillators. So our

results shed light on the emergent collective dynamics of interactive nonlinear systems,

thus serving to enhance the general understanding of such complex systems.
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Chapter 2

Suppression of chaos through

coupling to an external chaotic

system

Adapted from the work published in :

Chaurasia, S. S., Sinha, S., “Suppression of chaos through coupling to an external

chaotic system”, Nonlinear Dynamics 87., (2016) 159–167
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2.1 Introduction

The rapidly growing science of complex systems has helped in understanding spatiotem-

poral pattern formation in wide-ranging systems, from natural systems such as climate

and biological systems on one hand, to man-made systems such as lasers and electronic

circuits on the other hand. From the broad perspective of dynamical systems, the emer-

gent behaviour of networks with different dynamical constituents is important. The basic

ingredient of network models consists of local dynamical units, which may range from

simple linear systems to chaotic systems. For instance, the electrical activities of neurons

can be very complex, and experiments show quiescent, spiking, or bursting behaviour

under varying excitability or external forcing current [4, 5]. The second important aspect

of such models is the nature of the coupling interaction, for instance it may be diffusive

or pulsatile, with or without delay. The last crucial feature is the topology of the con-

nection matrix that determines the linkage between the elemental dynamical units. For

instance, different collective behaviors are observed in networks of model neurons [6, 7]

under varying connectivities, ranging from synchronization and coherence resonance to

de-coherence [8]. Further, results from neuroscience suggest that perception and memory

arise from synchronized networks [9].

A particular phenomenon of special significance in complex systems is the stabilization

of steady states, and this has been observed in systems ranging from chemical reactions

[10, 11] to biological oscillators [12, 13, 14, 15, 16]. Such fixed dynamics may be the

desired target in certain cases, for instance in laser systems [17, 18, 19], where it leads

to stabilization. In the biological context, some neurological diseases such as epilepsy

lead to excessive neuronal excitation and so exploration of mechanisms that can sup-

press excitation is important for regulation of the disease [20]. On the other hand, the

suppression of oscillations can also signal pathology, such as in neuronal disorders like

Alzheimer or Parkinson’s disease [21, 22, 23], where the focus is on prevention of fixed

dynamics. Further, the suppression of oscillations is important in human-engineered sys-

tems, where much effort is focussed on control methods that can effectively and efficiently

tame chaotic dynamics [24, 25, 26, 27, 28, 29, 30, 31]. For all these reasons, there has

been considerable sustained research on suppression of chaotic oscillations in nonlinear

systems over the years.

In this work we explore the behaviour of an ensemble of chaotic oscillators coupled

only to an external chaotic system. So there is no direct coupling amongst the oscillators,

and the interaction is mediated by coupling to the common external system [32]. So this
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external system can be thought of as a pacemaker [16] of the group of oscillators (cf.

Fig. 2.1 for a schematic). Note that the intrinsic dynamics of the external system can be

identical to the group, or it can be an entirely different type of dynamical system.

Figure 2.1: Schematic of a group of N oscillators coupled to an external oscillator.

Specifically, we first consider the example of N Rössler oscillators in a group, labelled

by node index i = 1, . . . N , with dynamics given by:

ẋi = −(ω + δ(x2i + y2i )) yi − zi + ε (xext − xi)
ẏi = (ω + δ(x2i + y2i )) xi + a yi (2.1)

żi = b+ zi(xi − c)

where xext is a dynamical variable of the common external system to which the group

is coupled diffusively.

The strength of coupling is given by ε.

When the external oscillator is also a Rössler oscillator, its governing equations are

given by:
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ẋext = −(ω + δ(x2ext + y2ext)) yext − zext +
ε

N

N∑
j=1

(xj − xext)

ẏext = (ω + δ(x2ext + y2ext)) xext + a yext (2.2)

żext = b+ zext(xext − c)

When the external oscillator is distinct from the group, for instance a Lorenz system,

its dynamical equations are given by:

ẋext = σ (yext − xext) +
ε

N

N∑
j=1

(xj − xext)

ẏext = xext (r − zext) − yext (2.3)

żext = xext yext − β zext

Parameters σ, β, r in the Lorenz system and parameters a, b, c, ω, δ in the Rössler

oscillator, regulate the nature of the uncoupled dynamics, which can range from fixed

points to chaos. In the sections below, we will present the spatiotemporal patterns aris-

ing in two distinct situations of interest: (a) the group of oscillators and the external

oscillator are of identical type, and (b) the external chaotic system is distinct from the

group of oscillators, and may even be hyper-chaotic.

2.2 Emergent Controlled Dynamics

Fig. 2.2 shows the bifurcation diagrams of the illustrative cases of an ensemble of chaotic

Rössler oscillators coupled to (a) a chaotic external system that is identical (namely

another Rössler oscillator) and (b) a chaotic external system that is dissimilar (namely,

a Lorenz system). We find that a group of chaotic oscillators can be controlled to fixed

points by the external dissimilar chaotic oscillator, when coupling is stronger than a

critical value. However, when the chaotic oscillators are coupled to an external chaotic

system of an identical type (namely all are Rössler oscillators), none of the oscillators are
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controlled to fixed states, even for strong coupling.
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Figure 2.2: Bifurcation diagrams, with respect to the coupling strength ε, of one repre-
sentative oscillator in the group (left) and an external oscillator (right). Here the group
consists of chaotic Rössler oscillators with parameters ω = 0.41, δ = 0.0026, a = 0.15,
b = 0.4 and c = 8.4 in Eqn. 2.1, and the external oscillator is: (a) a chaotic Rössler
oscillator with parameters ω = 0.41, δ = 0.0026, a = 0.15, b = 0.4 and c = 8.4 in
Eqn. 2.2, and (b) a chaotic Lorenz system with parameters σ = 10.0, β = 8.0/3.0 and
r = 25.0 in Eqn. 2.3. In all the diagrams (including ones below) we display the x variable
on the Poincare section of the phase curves of the oscillators at y = ymid, where ymid is
the mid-point of the span of attractors along the y-axis.

Fig. 2.3 further illustrates this behaviour through phase portraits for representative

Rössler oscillators from the group, for the case of coupling to (a) an identical external

oscillator, and (b) a dissimilar external system. It is clear that for strong coupling the

dynamics of the chaotic system is quenched to a fixed point when the external oscillator is

dissimilar (cf. Fig. 2.3b), while coupling to a similar external oscillator does not suppress

the chaos (cf. Fig. 2.3a).
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Figure 2.3: Phase portraits of a representative Rössler oscillator from the group (left)
with parameters ω = 0.41, δ = 0.0026, a = 0.15, b = 0.4 and c = 8.4 in Eqn. 2.1, coupled
to a common external system (right), at different coupling strengths ε. The panel (a)
shows the case of coupling to an identical external Rössler oscillator, while panel (b)
shows the case of coupling to a dissimilar chaotic oscillator, namely an external Lorenz
system with parameters σ = 10.0, β = 8.0/3.0 and r = 25.0 in Eqn. 2.3.

When a group of chaotic Rössler oscillators is coupled on a common external chaotic

Lorenz system, we find that there exists two steady states, as illustrated in Fig. 2.4.

Depending on initial conditions, the system can go to either of the steady states. Linear

stability analysis, via eigenvalues of the Jacobian, also corroborates the stabilization of

the fixed points seen in the bifurcation diagrams (see Appendix for details).
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Figure 2.4: Bifurcation diagrams, with respect to the coupling strength ε, of one rep-
resentative oscillator in the group (green) and an external oscillator (red), for the cases
where the group of oscillators is comprised of chaotic Rössler oscillators with parameters
ω = 0.41, δ = 0.0026, a = 0.15, b = 0.4 and c = 8.4 in Eqn. 2.1 and the external oscil-
lator is a chaotic Lorenz system with parameters σ = 10.0, β = 8.0/3.0 and r = 25.0 in
Eqn. 2.3.

2.3 Synchronization

We study the advent of synchronization in the group of oscillators, as a function of the

coupling strength, for the case of identical and distinct external systems. Our focus is

to ascertain what kind of external system facilitates synchrony, and which ones lead to

control to steady states.

We calculate the synchronization error of the group of oscillators, averaged over time

T , given by

Z =
1

T

∑
t

√
(x̄2)t − (x̄2)t

where (x̄)t = 1
N

∑N
i=1 xi and (x̄2)t = 1

N

∑N
i=1 x

2
i is the average value of x and x2 of

oscillators i = 1, . . . N , at an instant of time t. Further we average Z over different initial

states to obtain an ensemble averaged synchronization error 〈Z〉.

We display the average synchronization error defined above, in Fig. 2.5. It is clearly

evident from the figure that the group of oscillators, coupled only to a common external

chaotic system, get synchronized at sufficiently high coupling strengths. This trend holds

for both identical and distinct external oscillators, suggesting that coupling to an exter-

nal chaotic oscillator of wide-ranging dynamical types can induce synchronization. The

critical coupling at which synchronization occurs is higher when the common external
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Figure 2.5: Synchronization error 〈Z〉 of the chaotic Rössler oscillators in the group with
parameters ω = 0.41, δ = 0.0026, a = 0.15, b = 0.4 and c = 8.4 in Eqn. 2.1, averaged over
100 different initial conditions, with respect to coupling strength ε, for the case where the
common external system is an identical chaotic Rössler oscillator (blue) with parameters
ω = 0.41, δ = 0.0026, a = 0.15, b = 0.4 and c = 8.4 in Eqn. 2.2 and a chaotic Lorenz
attractor (red) with parameters σ = 10.0, β = 8.0/3.0 and r = 25.0 in Eqn. 2.3.

oscillator is distinct from the group.

Interestingly, as coupling strength increases further, the oscillators are controlled to

steady states, when the external oscillator is dissimilar. So an identical common external

oscillator induces synchronization at weaker coupling strengths than a dissimilar external

oscillator, but control to steady states occurs only when the external oscillator is distinct

from the group.

2.4 Basin Stability of the Spatiotemporal Fixed Point

We now quantify the efficacy of control to steady states by finding the fraction BSfixed

of initial states that are attracted to fixed points, starting from generic random initial

conditions. This measure is analogous to recently used measures of basin stability [3],

and indicates the size of the basin of attraction for a spatiotemporal fixed point state.

BSfixed ∼ 1 suggests that the fixed point state is globally attracting, while BSfixed ∼ 0

indicates that almost no initial states evolve to stable fixed states.
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Figure 2.6: Dependence of the fraction of initial states BSfixed attracted to the fixed
point state, on the coupling strength ε, for a group of chaotic Rössler oscillators with
parameters ω = 0.41, δ = 0.0026, a = 0.15, b = 0.4 and c = 8.4 in Eqn. 2.1, coupled to
a common external chaotic Lorenz system with parameters σ = 10.0, β = 8.0/3.0 and 3
different values of parameter r in Eqn. 2.3: 24.7 (red), 25.0 (green) and 25.3 (blue). Note
that there is no dependence of BSfixed on the number of oscillators N in the group.
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Figure 2.7: Dependence of the fraction of initial states BSfixed attracted to the fixed
point state, on the coupling strength ε, for a group of chaotic Rössler oscillators with
parameters ω = 0.41, δ = 0.0026, a = 0.15, b = 0.4 and c = 8.4 in Eqn. 2.1, coupled to
a common external chaotic Lorenz system with parameters σ = 10.0, β = 8.0/3.0 and
r = 25.0 in Eqn. 2.3. In the 5 curves are obtained from initial states randomly distributed
in a box of linear size l = 2 (red), 4 (green), 6 (blue), 8 (cyan), 10 (magenta) in the x, y
and z coordinates.
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Figure 2.8: Dependence of the fraction of initial states BSfixed attracted to the fixed
point state, on the appropriate scaling of coupling strength ε, for a group of chaotic
Rössler oscillators with parameters ω = 0.41, δ = 0.0026, a = 0.15, b = 0.4 and c = 8.4 in
Eqn. 2.1, coupled to a common external chaotic Lorenz system with parameters σ = 10.0,
β = 8.0/3.0 and r = 25.0 in Eqn. 2.3. For the 5 curves obtained in Fig. 2.7, we show
data collapse with v = l3, and εc = 0.524.

We show the dependence of this fraction BSfixed in Figs. 2.6-2.8 for a group of chaotic

Rössler oscillators coupled to an external chaotic Lorenz system as coupling strength is

varied. It is evident that there is a sharp transition to complete control, where the

spatiotemporal fixed point state is globally attracting, at sufficiently strong coupling.

Namely, there is a critical coupling strength εc beyond which the intrinsic chaos of the

oscillators is suppressed to fixed points, over a very large basin of initial states.

Note that qualitatively similar results, namely emergence of fixed point states at

large enough coupling, are obtained over a wide range of parameters in Eqns. 2.1-2.3,

indicating robustness of the phenomenon. However quantitatively, the precise value of εc

may depend on the parameters of the system.

For instance, the onset of the fixed point state for Rössler oscillators coupled to an

external chaotic Lorenz system, for different values of parameter c in Eqn. 2.1, is indepen-

dent of the parameter, as this parameter influences the lyapunov exponent of the intrinsic

dynamics of the Rössler oscillators very little. On the other hand, external Lorenz sys-

tems with varying parameter r in Eqn. 2.3 significantly affects εc (cf. Fig. 2.6). This

can be rationalized by noting that the lyapunov exponent of the intrinsic dynamics of

24



the external system increases linearly with r, and it is clearly observed that as the lya-

punov exponent of the external system increases, the transition shifts to higher coupling

strengths. Namely, it takes stronger coupling to yield control to steady states as the

common (dissimilar) external system gets more chaotic.

Lastly, note that we have not explicitly put in any feedback loops designed to achieve

the steady states, as often used in control schemes relevant to engineered systems. Rather

we have explored the naturally emergent behaviour of the system. Also interestingly, since

the stabilization of the steady states is independent of system size, if this were to be used

as a control strategy, arbitrarily large groups could potentially be controlled by just one

external chaotic system.

2.5 Control to Steady States via an External Hyper-

chaotic Oscillator

We have checked the generality of the results by considering a more stringent case of a

group of chaotic oscillators coupled to an external hyper-chaotic oscillator, given by:

ẋext = (k′ − 2)xext − yext −G(xext − zext) +
ε

N

N∑
j=1

(xj − xext)

ẏext = (k′ − 1)xext − yext (2.4)

żext = −wext +G(xext − zext)
ẇext = β′zext

where G(u) =
1

2
b′{|u− 1|+ (u− 1)}

where k′, β′, b′ are the parameters determining the dynamics of the oscillator.

We have coupled one variable (specifically, xext) of the hyper-chaotic external oscillator

with one variable (specifically, x) of the group of chaotic Rössler oscillators.
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Figure 2.9: Bifurcation diagram, with respect to the coupling strength ε, of one repre-
sentative oscillator of the group (left) and the external system (right), when the external
system is hyper-chaotic with parameters k′ = 3.85, β′ = 18.0 and b′ = 88.0 in Eqn. 2.4,
and the group consists of chaotic Rössler oscillators with parameters ω = 0.41, δ = 0.0026,
a = 0.15, b = 0.4 and c = 8.4 in Eqn. 2.1.

Interestingly, we again find that the intrinsically chaotic Rössler oscillators go to fixed

points, when coupled to a common external hyper-chaotic oscillator, for sufficiently strong

coupling (cf. Fig. 2.9). Further, it is apparent from Fig. 2.10 which displays the phase

portraits of the Rössler oscillators at different ε, that the group of oscillators become

regular when coupling strength is high.
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Figure 2.10: Phase portrait of a representative Rössler oscillator from the group with
parameters ω = 0.41, δ = 0.0026, a = 0.15, b = 0.4 and c = 8.4 in Eqn. 2.1, coupled
to a common external hyper-chaotic oscillator with parameters k′ = 3.85, β′ = 18.0 and
b′ = 88.0 in Eqn. 2.4, at different coupling strengths ε.
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Figure 2.11: Phase portrait of the external hyper-chaotic oscillator with parameters
k′ = 3.85, β′ = 18.0 and b′ = 88.0 in Eqn. 2.4, for the case of an uncoupled external
oscillator (red) and an oscillator with coupling to a group of chaotic Rössler oscillator
with parameters ω = 0.41, δ = 0.0026, a = 0.15, b = 0.4 and c = 8.4 in Eqn. 2.1, with
coupling strength ε = 1.0 (blue).

Fig. 2.11 shows the phase portrait for the external hyper chaotic oscillator. Again it is

clear that at high coupling strengths, the dynamics of the hyper-chaotic system becomes

regular. Further the size of the emergent external attractor is very small, though not a

fixed point.

Note that when coupling strength ε > εc, the (xext−zext−1) term in Eqn. 2.4 becomes

less than zero, implying that G(xext − zext) is always zero. So the dynamical equations

for ẋext and żext becomes uncoupled, yielding two independent sub-sets of equations, with

one coupled sub-set comprising of ẋext and ẏext, and another coupled sub-set comprising

of żext and ẇext.

2.6 Stability Analysis

We investigate the linear stability of the steady state obtained when a group of intrin-

sically chaotic Rössler oscillators is coupled to a common external intrinsically chaotic

Lorenz system, via the eigenvalues of the Jacobian matrix evaluated at those fixed points.

Specifically, the Jacobian for N number of oscillators and an external oscillator is given
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by 3(N + 1) × 3(N + 1) matrix. Calculating each term using Eqns. (2.1) and (2.3), we

obtain the Jacobian matrix to be:

J =



−σ − ε σ 0 ε
N

0 0 . . . .

r − z0 −1 −x0 0 0 0 . . . .

y0 x0 −β 0 0 0 . . . .

ε 0 0 −2δx1y1 − ε −ω − δ(x21 + 3y21) −1 . . . .

0 0 0 ω + δ(3x21 + y21) 2δx1y1 + a 0 . . . .

0 0 0 z1 0 x1 − c . . . .
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Figure 2.12: Maximum real part λmax of the eigenvalues of the Jacobian at the fixed
points, as a function of coupling strength ε, for the external Lorenz system having pa-
rameters σ = 10.0, β = 8.0/3.0 and (bottom to top) r = 24.7, 25.0, 25.3, 25.7, 26.0 in
Eqn. 2.3 and group of chaotic Rössler oscillator with parameters ω = 0.41, δ = 0.0026,
a = 0.15, b = 0.4 and c = 8.4 in Eqn. 2.1.

At each coupling strength, there is a set of 3(N + 1) eigenvalues of the Jacobian. We

show the maximum real part λmax of the eigenvalues as a function of coupling strength

ε in Fig. 2.12. Naturally, since the group of oscillators and the external oscillator are

28



intrinsically chaotic, λmax > 0 for ε = 0. However, it is clear that at a critical value of

coupling εc all eigen values are negative, indicating that all the oscillators in the group

and the external system go to stable fixed points (cf. Fig. 2.12).
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Figure 2.13: Dependence of λmax on parameter r of the external Lorenz system, at fixed
coupling strength (ε = 0.5 here), for the external Lorenz system with parameters σ = 10.0
and β = 8.0/3.0 in Eqn. 2.3 and group of chaotic Rössler oscillator with parameters
ω = 0.41, δ = 0.0026, a = 0.15, b = 0.4 and c = 8.4 in Eqn. 2.1.

Note that the εc obtained through linear stability analysis is smaller than that ob-

served from generic random initial states, as displayed in the bifurcation plots. So we

undertook additional numerical simulations from initial states sufficiently close to the

fixed point solutions and verified that for such close-by initial conditions the fixed point

state is indeed stable at lower coupling strengths, in accordance with that seen in Fig. 2.12.

Further, from Fig. 2.13 it is clear that λmax increases linearly with increasing pa-

rameter r in the external Lorenz system (cf. Eqn. 2.3). This supports the numerical

observations that the critical coupling strength εc increases linearly with r, as displayed

in Fig. 2.6.

2.7 Conclusions

We investigated the behaviour of an ensemble of uncoupled chaotic oscillators coupled

diffusively to an external chaotic system. The common external system may be similar or
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dissimilar to the group. We explored all possible scenarios, with the intrinsic dynamics of

the external system ranging from chaotic to hyper-chaotic. Counter-intuitively, we found

that an external system manages to successfully steer a group of chaotic oscillators on

to steady states at sufficiently high coupling strengths when it is dissimilar to the group,

rather than identical. So while the group of oscillators coupled to an identical external

system synchronizes readily, surprisingly enough, control to fixed states is achieved only

if the external oscillator is dissimilar. We indicate the generality of this phenomenon by

demonstrating the suppression of chaotic oscillations by coupling to an external hyper-

chaotic system.

Further, for the case of coupling to a non-identical external system, we quantified the

efficacy of control by estimating the fraction of generic random initial states where the

intrinsic chaos of the oscillators is suppressed to fixed points, a measure analogous to

basin stability. We showed that there was a sharp transition to complete control, where

the spatiotemporal fixed point is a global attractor, after a critical coupling strength.

In summary, our results demonstrate robust control of a group of chaotic oscillators

to fixed points, by diffusive coupling to a dissimilar external chaotic system. This sup-

pression of chaos occurs for arbitrarily large groups of chaotic oscillators at the same

critical coupling strength, indicating that coupling to just one external chaotic system

can suppress the intrinsic chaos of a large set of chaotic oscillators. We thus suggest a

way in which chaos in natural systems may potentially be tamed, and our observations

may also be used in design of potent control strategies in engineering contexts.
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Chapter 3

Control of hierarchical networks by

coupling to an external chaotic

system

Adapted from the work published in :

Chaurasia, S. S., Sinha, S., “Control of hierarchical networks by coupling to an

external chaotic system”, Europhysics Letters 125., (2019) 50006
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3.1 Introduction

Science of complex systems is an active area of research that has helped in understanding

large interactive systems ranging from man-made systems to natural systems, such as

Josephson junction arrays [33], chemical reactions [34], semiconductor lasers [35], power

grids [36, 37], neurons [38] and circadian pacemakers [39]. These complex systems typ-

ically consist of oscillators, whose intrinsic dynamics may be periodic, quasi-periodic or

chaotic. On coupling such oscillators one obtains a variety of spatiotemporal patterns,

such as synchronization [40, 41].

An important specific research direction involves the control of spatiotemporal pat-

terns. Of particular significance is the suppression of chaos to steady states [42, 43, 44,

45, 46, 47], namely the stabilization of steady states in complex systems comprised of

intrinsically chaotic sub-systems. Such fixed point dynamics serve as a target of control

mechanisms, ranging from the stabilization of coupled lasers to control of neuronal dis-

orders such as Alzheimer’s and Parkinson’s disease [21, 22, 23]. Given its wide potential

applications, research on the control of chaotic oscillations has seen intense activity over

the years.

In this direction it had been demonstrated recently that chaos in an ensemble of

oscillators could be suppressed through coupling to an external dissimilar chaotic system

[48]. Here we will demonstrate a very significant generalization of the idea, to the control

of an entire hierarchical network by coupling to a single external chaotic system, indicating

the enormous scope of controlling large networks of chaotic systems through a single

external system.

Hierarchical networks [49] combine properties of scale-free topology and high clus-

tering of the nodes, and describe connections characteristic of many real-life networks

ranging from metabolic networks to webpage and social networks. In particular we con-

sider a generic hierarchical network (see schematic in Fig. 3.1), with intrinsically chaotic

oscillators at different levels of the hierarchy. We consider level 0 to represent an external

system, which may be dissimilar to all other oscillators in the network. The oscillators at

each level of hierarchy are connected to one oscillator in the level above it and a cluster

of oscillators in the level below it in the hierarchy. For instance in the example illustrated

in the schematic, each of the three oscillators at level 1 are connected to the oscillator at

level 0 (i.e. one level above in the hierarchy) and to the three oscillators at level 2 (i.e.

one level below in the hierarchy).
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Figure 3.1: Schematic diagram of a hierarchical network with three levels of hierarchy,
derived in an iterative way by replicating the initial cluster. The tiers in the hierarchy
are labelled by l = 0, 1, 2, 3 and displayed in distinct colours.

The number of oscillators at different levels of the hierarchy is denoted by Nl, with

level 0 of the network having one oscillator (i.e. N0 = 1), and the state variables of the

ith oscillator at level l of the hierarchical network is denoted by X
(l)
i , with i = 1, . . . Nl.

In this work we will consider representative 3-dimensional systems, i.e X
(l)
i ≡ {x(l)i , y(l)i , z(l)i },

with the dynamics of the oscillators at different levels l = 0, . . . N of the hierarchy given

as follows:

dx
(l)
i

dt
= fl(X

(l)
i ) + ε[(〈x(l+1)〉 − x(l)i ) + (x

(l−1)
j − x(l)i )]

dy
(l)
i

dt
= gl(X

(l)
i ) (3.1)

dz
(l)
i

dt
= hl(X

(l)
i )

where 〈x(l+1)〉 = 1
Nl+1

∑
x
(l+1)
i is the mean-field of the x-variable of the oscillators at level

l+ 1 of the hierarchy, with the sum running over all the nodes at level l+ 1 connected to

level l. The index j denotes the node at the previous level l−1 connected to the oscillator

at level l. So each oscillator at level l of the hierarchy couples via the mean-field of the

oscillators below it in the hierarchy (i.e. at level l+ 1) and diffusively to the parent node

at level l − 1. The coupling strength is given by the real positive constant ε.

The two extremal levels, l = 0 (namely the external system) and l = k, have no
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oscillators at the l − 1 and l + 1 levels respectively. So the first dynamical equation of

Eqn. 3.1 for the zeroth level is dx0
dt

= f0(X0) + ε(〈x(1)〉 − x0) and for the last level l = k

is
dx

(k)
i

dt
= fk(X

(k)
i ) + ε(x

(k−1)
j − x(k)i )

We consider all oscillators in the network at levels l = 1, . . . k to be Rössler oscillators

in the chaotic region, with dynamical equations [50]:

fl(x, y, z) = −(ω + δ(x2 + y2)) y − z
gl(x, y, z) = (ω + δ(x2 + y2)) x+ a y (3.2)

hl(x, y, z) = b+ z(x− c)

Only the single oscillator at the zeroth level l = 0, is considered to be dissimilar, and

in particular is a Lorenz system in the chaotic region. So at level 0 of the hierarchical

network the intrinsic dynamical equations are:

f0(x, y, z) = σ (y − x)

g0(x, y, z) = x (r − z) − y (3.3)

h0(x, y, z) = x y − β z

Specifically, we consider the parameters of the Rössler oscillators to be ω = 0.41,

δ = 0.0026, a = 0.15, b = 0.4 and c = 8.4 in Eqn. 3.2, and the parameters of the Lorenz

system to be σ = 10.0, β = 8.0/3.0, and r = 25.0 in Eqn. 3.3. These parameter sets

ensure that each oscillator is in the chaotic region when uncoupled. So in this hierarchical

network, the external system at level l = 0 is a chaotic Lorenz system, while the rest of

the oscillators at levels l = 1, . . . k are chaotic Rössler oscillators.

3.2 Emergent Controlled dynamics

Fig. 3.2 shows the bifurcation diagram of one representative oscillator from each level

of hierarchy l = 0, 1, 2, 3 in the network shown schematically in Fig. 3.1. The emergent

behaviour is qualitatively the same for any number Nl of oscillators attached to level l.

At very low coupling strengths all the oscillators yield their intrinsic chaotic dynamics.

However, beyond a critical coupling strength (εc ∼ 0.4), there is sudden transition from

large chaotic oscillations to steady states. The chaos is suppressed to different fixed points

at the different levels of hierarchy, though the emergent steady state is the same for all
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oscillators at a particular level.
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Figure 3.2: Bifurcation diagram, with respect to coupling strength ε, of one representative
oscillator from the three levels of hierarchy, and the external system. Colours correspond
to the hierarchy level of the oscillators, as given in Fig. 3.1. In all bifurcation diagrams
in this work, we show the x-variable of the Poincare section of the phase curves of the
oscillators at y = ymid, where ymid is the mid-point along y-axis of the span of the
oscillator.

Fig. 3.3 shows the projection of phase portraits on the x−y plane of one representative

oscillator from each level of hierarchy at intermediate coupling strength ε = 0.2. The

colours correspond to the hierarchy level as illustrated in the schematic diagram. It is

evident that the oscillators at the level closest to the external system are most distorted.

At levels further from the external system (i.e. for larger l), the oscillations remain closer

to their intrinsic dynamics. The dots in the figure show the fixed points obtained at high

coupling strength (ε = 0.6).

So we find that the chaotic oscillators at all levels of hierarchy can be controlled to a

steady state, at sufficiently high coupling strengths, by a single external chaotic Lorenz

system. The results are unchanged on increasing the number of oscillators at a level Nl,

indicating that the control is effective independent of system size.

In order to ascertain the robustness of the control to steady states, we explore the

dynamics under parametric perturbations. Fig. 3.4 displays representative results, and

clearly shows that the emergent fixed point is robust under fluctuations in parameters,

at all levels of hierarchy.
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Figure 3.3: Phase portraits of (a) the external system and (b, c and d) one representative
oscillator from each level of hierarchy, for ε = 0.2. The dots are the fixed points obtained
for ε = 0.6. The colours represent the different hierarchy levels as given in Fig. 3.1.

Further, we explored the dynamics of the network with increasing levels of hierarchy

and increasing number of elements at each level of the hierarchy. We found that the

global control of the network to steady states, mediated by a single external system,

remained effective, even for large number of hierarchy levels. Note that the information

transfer here is a two-way process, and so the controlled states may be de-stabilized by

perturbations in levels both above and below it in the hierarchy. So the fact that the

chaos suppression is robust under the influence of a single dissimilar external system,

even when the number of hierarchy levels increases, is indeed quite remarkable.
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Figure 3.4: The effect of parametric perturbations on the bifurcation diagram in Fig. 3.2.
The figure shows the dynamics with respect to coupling strength ε, of one representative
oscillator from the three levels of hierarchy, and the external system, in colors given by
the scheme in Fig. 3.1.

3.3 Synchronization at a hierarchy level

It is evident from Fig. 3.2 that the oscillators at each level of hierarchy evolve to different

fixed points, i.e. there is no synchronization across different levels, though there is syn-

chronization within a level. Here we examine the advent of the intra-level synchronization

within a hierarchy level in the network, as a function of coupling strength. In order to

do so, we calculate the synchronization error of the oscillators at a particular level l of

the hierarchical network, averaged over time T , given as:

Z =
1

T

∑
t

√
(x̄2)t − (x̄2)t (3.4)

where (x̄)t = 1
Nl

∑Nl

i=1 x
(l)
i and (x̄2)t = 1

Nl

∑Nl

i=1(x
(l)
i )2 are the average value of x and x2 of

the oscillators, at an instant of time t, at level l of the hierarchy. Further we average Z

over different initial states to obtain an ensemble averaged synchronization error 〈Z〉.

Fig. 3.5 shows the variation of the ensemble-averaged synchronization error 〈Z〉 of

the different levels in the hierarchy with respect to coupling strength. It is evident that

oscillators within each level of hierarchy are also synchronized when the oscillations are
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suppressed, i.e oscillators at the same level evolve to the same fixed points, even though

there is no direct coupling between them.
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Figure 3.5: Synchronization error 〈Z〉 of the Rössler oscillators, with respect to coupling
strength, averaged over 1000 initial conditions. The colours correspond to the different
hierarchy levels, as given in Fig. 3.1.

3.4 Basin Stability of Steady States

The commonly employed linear stability analysis, based on the linearization in the neigh-

bourhood of fixed points, provides only local information about the stability at the fixed

point. It cannot accurately indicate the stability for large perturbations, nor indicate

the size of the basin of attraction of the dynamics, especially in the presence of other

competing attractors in phase space.

Here we quantify the efficacy of control to steady states by sampling a large set of

random initial conditions, spread uniformly over a volume of phase space and estimating

the fraction BSfixed of initial states attracted to fixed points. This measure is analogous

to recently used measures of basin stability [3, 51] and indicates the size of the basin of

attraction for the steady state. BSfixed ∼ 1 suggests that the fixed point state is globally

attracting, while BSfixed ∼ 0 indicates that almost no initial state evolves to stable fixed

points. So this measure truly reflects the reliability of control to steady states from generic

initial states.
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Figure 3.6: Dependence of the fraction of initial conditions attracted to the spatiotempo-
ral fixed point, BSfixed, on the coupling strength ε, averaged over 5000 initial conditions,
for three different parameters in Eqns. 3.3: r = 25 (red), r = 25.5 (green) and r = 26
(blue).

We show the variation of BSfixed as a function of coupling strength (cf. Fig. 3.6). It is

clear that there is a lower critical value of coupling for which the system does not evolve

to the fixed point state for any initial condition, while there is an upper critical value

of coupling beyond which BSfixed ∼ 1, suggesting that the network gets attracted to a

spatiotemporal fixed point for all initial conditions for sufficiently high coupling strengths.

In the intermediate range of coupling strengths, the network has a finite probability to

get attracted to the spatiotemporal fixed point state from a generic random initial state,

as indicated by BSfixed > 0. The values of the critical coupling strengths are dependent

on the specifics of the external system, but the qualitative behaviour is similar for all,

with global control arising when the hierarchical network is coupled strongly enough to

a dissimilar external oscillator.

3.5 Stability Analysis

Now we demonstrate the stability of the steady state through linear stability analysis

of the fixed point solution as a function of the coupling strength ε. Fig. 3.7(b) shows

the maximum eigenvalue of the Jacobian (J) obtained from the dynamical equations of

Eqn. 3.1 for a representative hierarchical network with 2 levels, with each node at each
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level coupled to two nodes at the next level.

J =



−σ − ε −σ 0 ε/2 0 0 . . .

r − z0 −1 −x0 0 0 0 . . .

y0 x0 −β 0 0 0 . . .

ε 0 0 −2δx1y1 − 2ε −ω − δx21 − 3δy21 −1 . . .

0 0 0 ω + 3δx21 + δy21 2δx1y1 + a 0 . . .

0 0 0 z1 0 x1 − c . . .

. . . . . . . . .

. . . . . . . . .

. . . . . . . . .
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Figure 3.7: (a) Bifurcation diagram, with respect to coupling strength ε, of one repre-
sentative oscillator from the two levels of hierarchy, and the external system. Colours
correspond to the hierarchy level of the oscillators, as given in Fig. 3.1 and (b) maximum
eigenvalue of Jacobian, with respect to coupling strength ε, of the whole system around
fixed point, when external system is chaotic Lorenz oscillator (blue) and chaotic Rössler
oscillator (red).

It is clearly evident from Fig. 3.7(b) that the fixed point of the system becomes stable

around ε ∼ 0.2, as the maximum eigenvalue (λmax) attains a negative value. Fig. 3.7(a)

shows the bifurcation diagram with initial conditions in the neighbourhood of the fixed

point, and we find complete agreement of the numerics with the analytical results. Notice

that the suppression of the oscillations occur at a lower coupling strength when the initial

state is close to the fixed point solution, than the coupling strength necessary for a generic

40



random state to be controlled to a steady state. The latter is around ε ∼ 0.4 as evident

from the basin stability estimates in Fig. 3.6. This indicates that obtaining control that is

effective for a large set of initial conditions requires stronger coupling strength than that

dictated by linear stability analysis. This further underscores the importance of global

stability measures such as Basin Stability in designing control.

3.6 Generality of the results

We have also investigated the dynamics of the hierarchical network when the external

system is a Rössler system with parameters that are different from those of all the other

oscillators, i.e. the dynamical equations are the same, but the parameters of the oscillator

at level 0 are different from all the others in the hierarchical network. We again find that

hierarchical network does get controlled, but the chaos suppression now occurs at much

higher coupling strengths. For instance, as evident from Fig. 3.8a, the steady states

emerge around ε ∼ 2 while it emerges around ε ∼ 0.4 when the external system is

a chaotic Lorenz oscillator. The critical coupling strength is especially high when the

external oscillator is not a chaotic system. For instance, when the intrinsic dynamics of

the external system is a limit cycle (cf. Fig. 3.8b) the coupling strength necessary to effect

control to steady states in the hierarchical network is greater than ε ∼ 3. So we deduce

that control to steady states is most efficient and occurs at lowest coupling strengths when

the external system is chaotic and dissimilar.

Next we examine a hierarchical network of chaotic Rössler oscillators coupled to an

external hyper-chaotic oscillator at level 0. The specific hyper-chaotic system chosen was:

fext(x, y, z) = (k′ − 2)x− y −G(x− z)

gext(x, y, z) = (k′ − 1)x− y (3.5)

hext(x, y, z) = −w +G(x− z)

h′ext(x, y, z) = ẇ = β′z

where G(u) = 1
2
b′{|u− 1|+ (u− 1)} and k′, β′, b′ are the parameters which determine

the oscillator dynamics. This system has efficient electronic circuit analogs, and thus

lends itself to experimental verification [46]. From Fig. 3.9 and Fig. 3.10, it is evident

that an external hyper-chaotic system is also capable of chaos suppression, with the

controlled dynamics being limit cycles here.
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Figure 3.8: Bifurcation diagram, with respect to coupling strength ε, of one representative
oscillator from each hierarchy level, with the external system being a Rössler system whose
intrinsic dynamics is (a) chaotic and (b) periodic. Colours correspond to the hierarchy
level of the oscillators.

0.0 0.2 0.4 0.6 0.8 1.0

ε

−10

−5

0

5

10

x

Figure 3.9: Bifurcation diagram, with respect to coupling strength ε, of one representative
oscillator from each hierarchy level. Here the external system is a hyper-chaotic oscillator,
described by Eqn. 3.5 with parameters k′ = 3.85, β′ = 18.0, b′ = 88.0. The colours
correspond to the hierarchy level of the oscillators.

Lastly, we investigate the effect of an external linear oscillator on a hierarchical net-

work of chaotic oscillators. Representative results are shown in Fig. 3.11. We find that

an external linear oscillator too can suppress the chaos to steady states, in all hierarchy

levels, when the coupling strength is sufficiently high. Further Fig. 3.12 shows the depen-

dence on the basin stability for different frequencies of the external linear oscillator. It is
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evident from the figure that the suppression of oscillations is stable in a larger window of

coupling strengths for higher frequency of the external oscillator.
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Figure 3.10: Phase portraits of the hyper-chaotic external system (left) and one represen-
tative oscillator from each level of hierarchy (right), for ε = 0.0 and 0.9, which correspond
to chaotic and one period oscillations respectively. The parameters for hyper-chaotic ex-
ternal system are k′ = 3.85, β′ = 18.0, b′ = 88.0 and the colours correspond to the
hierarchy level of the oscillators.
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Figure 3.11: Bifurcation diagram, with respect to coupling strength ε, of one represen-
tative oscillator from the three levels of hierarchy, and the external system. Here the
external system is a linear harmonic oscillator. Colours correspond to the hierarchy level
of the oscillators, as given in Fig. 3.1.
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Figure 3.12: Dependence of the fraction of initial conditions attracted to the spatiotempo-
ral fixed point, BSfixed, on the coupling strength ε, averaged over 5000 initial conditions,
for three different frequencies of external linear oscillator: ω = 1.0 (red), ω = 2.0 (green)
and ω = 3.0 (blue).

So we have explicitly demonstrated that a hierarchical network of intrinsically chaotic

systems can be effectively driven to regular states by coupling to a single external system

that may be linear, chaotic or hyperchaotic. This suggests that the potential scope of

this control mechanism is considerably wide.

3.7 Conclusions

We investigated the behaviour of a hierarchical network of chaotic oscillators, where at

the zeroth level of the hierarchy we have one chaotic external system that is dissimilar to

the rest of the oscillators in the network. Remarkably, this external system managed to

successfully steer the chaotic oscillators at all levels of the hierarchy onto steady states,

at sufficiently high coupling strengths. So this suggests a potent method to efficiently

control chaotic dynamics in a hierarchical network to stable steady states, by simply

coupling to an external chaotic system.
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3.8 Appendix

In this appendix, we consider a different coupling from in Eqn. 3.1. The number of

oscillators at different levels of the hierarchy is denoted by Nl, with level 0 of the network

having one oscillator (i.e. N0 = 1), and the state variables of the ith oscillator at level l

of the hierarchical network is denoted by X
(l)
i , with i = 1, . . . Nl.

Again we will consider representative 3-dimensional systems, i.e X
(l)
i ≡ {x(l)i , y(l)i , z(l)i },

with the dynamics of the oscillators at different levels l = 0, . . . N of the hierarchy given

as follows:

dx
(l)
i

dt
= fl(X

(l)
i ) + ε

[
1

Nl+1 + 1

(
x
(l−1)
j +

∑
x
(l+1)
i

)
− x(l)i

]
dy

(l)
i

dt
= gl(X

(l)
i ) (3.6)

dz
(l)
i

dt
= hl(X

(l)
i )

Here 1
Nl+1

∑
x
(l+1)
i is the mean-field of the x-variable of the oscillators at level l + 1 of

the hierarchy, with the sum running over all the nodes at level l + 1 connected to level

l. The index j denotes the node at the previous level l − 1 connected to the oscillator

at level l. So each oscillator at level l of the hierarchy couples via the mean-field of the

oscillators below (i.e. at level l + 1) and above (i.e. at level l − 1) in the hierarchy. The

coupling strength is given by the real positive constant ε. Specifically we will consider

Lorenz oscillator as the external system and Rössler oscillators in the rest of the network.

It is evident from Fig. 3.13 that increasing the number of oscillators at level 2 of the

hierarchy increases the required coupling strength to suppress the oscillations to fixed

points. However one observes that the chaotic dynamics is controlled to regular limit

cycle oscillations even when the number of oscillators increased (cf. Fig. 3.13c and d).

In the coupling form in Eqn.3.6, note that the effective contribution of the oscillator in

the level above reduces with increasing oscillators in the hierarchy level below, as the

interaction is through the mean-field of the state of oscillators in the level l + 1 and

l − 1. This implies that the flow of information from the external system decreases with

increasing levels. So the nature of the controlled regular dynamics depends upon the

specific form of coupling and the underlying hierarchical connectivity network. However

importantly, we find that the chaotic dynamics is always controlled to regular limit cycles

or fixed points for sufficiently high coupling strength in a wide range of systems.
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Figure 3.13: Bifurcation diagrams on the right, with respect to coupling strength ε, of one
representative oscillator from the all levels of hierarchy, and the external system. Colours
correspond to the hierarchy level of the oscillators as shown in the schematic diagrams
on the left.
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Chapter 4

Environment-induced symmetry

breaking in the basin stability of the

oscillation-death state

Adapted from the work :

Chaurasia, S. S., Yadav, M., Sinha, S., “Environment-induced symmetry breaking of

the oscillation-death state”, Phys. Rev. E 98., (2018) 032223

and

Yadav, M., Chaurasia, S. S., Sinha, S., “Asymmetry in the basin stability of

oscillation death states under variation of environment-oscillator links”, (To appear in

NODYCON 2019 Springer Proceedings).
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4.1 Introduction

Complex systems has been a very active area of research over the past few decades,

initiated by the discovery that even systems with low degrees of freedom can show a wide

range of dynamical patterns. For instance, two or more oscillators, when coupled to each

other can show completely synchronized oscillations, in-phase or antiphase synchronized

oscillations, oscillation quenching to homogeneous steady states or inhomogeneous steady

states, with transitions between different dynamical behaviours obtained by parameter

tuning.

In general, oscillation quenching is categorized into homogeneous steady state (HSS) or

amplitude death (AD) and inhomogeneous steady state (IHSS) or Oscillation death (OD)

[52]. AD refers to the situation where the coupled oscillator systems, under oscillation

quenching, evolve to the same fixed point. This type of quenching is relevant in laser

systems [17, 18, 19], and is important in situations involving stabilization to a particular

fixed point. A lot of mechanisms leading to amplitude death have been found, such as

time-delay in the coupling [53, 54], coupling via conjugate variables [55], introduction

of large variance of frequencies [56] and coupling to a dissimilar external oscillator [48].

However, oscillation quenching can give rise to oscillation death, a phenomenon that is

completely different from AD. Here the oscillators split into two sub-groups, around an

unstable fixed point via pitchfork bifurcations, generating a set of stable fixed points.

Oscillation death is very relevant to biological systems, as this oscillation quenching

mechanism can lead to the emergence of inhomogeneity in homogeneous medium. So,

for instance, OD has been interpreted as a mechanism for cellular differentiation [57, 58].

Thus a lot of research effort has centered around transitions from AD to OD [59, 60],

and mechanisms that steer the dynamics to the OD state have been investigated. For

example, OD can be achieved via parametric modulation in coupled non-autonomous

system [61], parameter mismatch (i.e. detuning of parameters) in coupled oscillators

[13, 62] and the introduction of local repulsive links in diffusively coupled oscillators [63].

In a complementary direction, some studies have also shown how OD states are eliminated

when gradient coupling is introduced in delay induced OD [64].

Our work here focuses on oscillation quenching mechanisms that give rise to inhomo-

geneous steady states. Our test bed will be a group of oscillators, coupled to a common

external system, which is dynamically very distinct from the oscillators. This common

external system provides a common “environment” and allows a group of oscillators to

be indirectly coupled via an external common medium. When uncoupled, the oscillators
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have equal probability to go to either of the OD states. However, we will show that

this system displays symmetry breaking in the basin stability of OD states when coupled.

That is, a specific oscillator-death state is preferentially achieved. This state selection

leads to asymmetric distribution of OD states in the ensemble of oscillators, suggesting

a natural mechanism that allows the emergence of a favored set of fixed points. Further,

we will explore the effect of the oscillator group connecting to the environment through

links that switch on and off. We will demonstrate that blinking oscillator-environment

connections will remarkably work toward partial restoration of the symmetry of the

oscillator-death states, though the presence of some blinking connections reduces the

symmetry of the dynamical equations. We then go on to investigate the dynamics as

the environment-oscillator links are disconnected one by one. We will show how cutting

off the environment-oscillator links leads to a restoration of symmetry in the distribu-

tion of OD states. We will further demonstrate that one can use the external medium

coupling strength and the environmental damping constant to control the distribution of

oscillators in the different OD-states for a given fraction of environment-oscillator links.

4.2 Oscillators Coupled via Common Environment

In the context of many real world systems, interactions can occur through a common

medium. For instance, chemical oscillations of catalyst-loaded reactants have been found

in a medium of catalyst-free solution, where the coupling is through exchange of chemicals

with the surrounding medium [65]. Similarly, in the context of genetic oscillators coupling

occurs by diffusion of chemicals between cells and extracellular medium [66, 67, 68, 69].

Further, in a collection of circadian oscillators, the concentration of neurotransmitter

released by each cell can induce collective behaviour [70, 71].

In general, such cases occur due to the common medium, referred to as a common

environment, interacting with the dynamical systems. So a model system mimicking this

scenario consists of N identical oscillator systems xi, i = 1, . . . , N coupled through a (pos-

sibly time-varying) environment, denoted by variables u, whose most general dynamical

equations is given as:

ẋi = fx(xi) + εext g(u) (4.1)

and

u̇ = fu(u) + εext h(x1,x2, . . . ,xn) (4.2)
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where xi and u are the variables of the oscillators and the environment respectively [72].

For instance, in the case of biological cells, this would be a vector whose components are

the concentrations of various biochemical species in cell and a vector of concentrations

of the relevant biochemical species in the exterior of the cells respectively. The coupling

parameter εext would reflect the ratio of the total intracellular volume to the volume

of the environment. The interaction of cells and environment may occur through the

diffusion and transport of chemical species across the cell membranes or through the

effects of the activation of receptors on the cell membrane. Now a variety of models of

biochemical oscillators coupled through an environment are described by equations of this

form [65, 66, 67, 68, 69, 70, 71, 73, 74, 75, 76, 77, 78, 79]. So this framework unifies many

specific models of particular systems [72], and allows us to obtain some basic general

results which potentially apply to all of them.

Specifically in this work we will consider a collection of Stuart-Landau oscillators [1]

whose coupling is mediated via a common external environment. The Stuart-Landau

oscillator is a generic two-dimensional oscillator of broad relevance. Complex systems

often undergo Hopf bifurcations and sufficiently close to such a bifurcation point, the

variables which have slower time-scales can be eliminated. This leaves us with a couple

of first order ordinary differential equations, popularly known as the Stuart-Landau (SL)

system.

So in this work we consider a group of N globally coupled SL oscillators (i.e. xi =

(xi, yi) in Eqn. 4.1), with the oscillators within the group are coupled via the mean field x̄

of the x-variable. Additionally, this oscillator group also couples to an external common

environment, denoted by a single-variable u. The environment exponentially decays to

zero, with decay constant k, when uncoupled from the oscillator group, namely fu = −ku
in the general dynamical equations. When coupled to the oscillators, the environment

provides an input to the oscillators, as well as receives a feedback proportional to the

mean field ȳ of the y-variables of the oscillators. The strength of this feedback from the

external system is given by the coupling strength εext. So the complete dynamics of the

group of oscillators, along with the external environment, is then given by the following

evolution equations:

ẋi = (1− x2i − y2i )xi − ωyi + εintra(qx̄− xi)
ẏi = (1− x2i − y2i )yi + ωxi + εextu (4.3)

u̇ = −ku+ εextȳ
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Here ω is the angular frequency of oscillator and εintra reflects the strength of intra-

group coupling, with x̄ = 1
N

∑N
i=1 xi and ȳ = 1

N

∑N
i=1 yi. In this coupling scheme, q is

a control parameter for the mean-field interaction, describing the influx and consequent

influence of the mean field in the oscillator group. A similar type of coupling mechanism

was suggested in the context of intercell communication of synthetic gene oscillators via a

small autoinducer molecule [75]. As q tends to zero, the effect of the mean-field interaction

decreases, suppressing the oscillations of the coupled systems. The limit q = 0 indicates

no interaction between the oscillators (i.e. they are simply uncoupled oscillators with

self-feedback), while the limit q = 1 maximizes the interaction with the mean field. At

intermediate values of q the oscillators are driven to AD/OD states.

So in our system the common external environment provides an indirect coupling

conjoining the different oscillators in the group, in addition to the direct coupling within

the group. Studies on the effect of an external environment on coupled Stuart-Landau

oscillators have revealed phenomena such as the revival of oscillations in a group of

oscillators at steady state by coupling to an oscillating group via a common environment

[80], phase-flip transitions in a system of oscillators diffusively coupled to the environment

[81] and co-existence of in-phase oscillations and oscillation death in environmentally

coupled oscillators [82].

In this work we will first explore in Section 4.3 the symmetry-breaking effect of the

common external environment on the oscillatory patterns. Further, we will explore the

spatiotemporal effects of the time variation and complete disconnection of the oscillator-

environment links in Section 4.4 and section 4.5 respectively. Lastly in Section 4.6, we will

demonstrate that a constant common environment also leads to pronounced symmetry

breaking in the Oscillator Death states, suggesting the generality of our central result.

4.3 Symmetry Breaking in the Oscillator Death States

We first present the bifurcation sequence of the oscillators as a function of the oscillator-

environment coupling strength εext. The values of εintra and q are fixed at 6.0 and 0.4

so that oscillators are in the oscillation death (OD) state in the absence of coupling to

the environment. Here one of the oscillator death states has positive x and negative y,

and the other oscillator death state has and negative x and positive y (cf. Fig. 4.1).

We call the steady state solution with x > 0 the “positive state” and the steady state

with x < 0 the “negative state”. In the bifurcation diagram in Fig. 4.1, the size of the
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symbols represent the probability of being in that state, with the probability estimated

by sampling over a large number of initial states.
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Figure 4.1: Bifurcation diagram of x of one of the Stuart-Landau oscillator in a group,
with respect to the coupling strength εext of the group with the environment (cf. Eqn. 4.3).
The diagram displays the superposition of the system evolving from a large range of
random initial states, with xi, yi ∈ [−1, 1] and the environmental variable u ∈ [0, 1]. The
size of the circle represent the probability of being in that state (positive or negative).
Here we consider the Stuart-Landau oscillators with parameters ω=2.0, q = 0.4 and
εintra = 6.0 (namely in the Oscillator Death region when uncoupled to the environment).
The environmental damping constant k = 0.01 and the system size N = 20.

It is evident from the figure that in the absence of coupling to an external environment,

the states of the group of oscillators are symmetrically distributed between the positive

and negative states. That is, starting from generic random initial conditions, the group

of oscillators will have equal probability to evolve to a positive state or a negative state.

So one typically observes an equi-distribution of positive and negative oscillators in a

group of Stuart-Landau oscillators in the oscillator death regime, when uncoupled to the

environment. This is evident from the bifurcation diagram, which shows equal probability

to be in either of the two OD states at εext = 0 (as reflected by symbols of the same size

in the positive and negative states in the figure at εext = 0). This behaviour is also clear

from the time series of the oscillator group displayed in Fig. 4.2a and histogram 4.3.

Interestingly however, when the oscillator group is coupled to the external environ-

ment we observe symmetry breaking in the basin stability of Oscillator Death states.
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Namely, the group of oscillators in the presence of the environment, preferentially go

to one of the oscillator death state. So, typically we do not obtain an equal number of

positive and negative states. Rather there is now a pronounced prevalence of one of the

Oscillator Death states.

This is evident from the bifurcation diagram, which shows unequal probability to be

in the OD states, especially at large εext (εext > 0.1). This is reflected by symbols of the

different sizes in the positive and negative states in the figure at large εext. Namely, it

is clear that for high coupling strengths an oscillator in the system has a much higher

probability of evolving to the negative OD state, as evident from the significantly larger

symbols for the negative states vis-a-vis those representing the positive OD states.
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Figure 4.2: Time series of twenty oscillators in the group (shown in distinct colours),
(a) in the absence of coupling to an external environment and (b) when the group is
connected to the external environment with coupling strength εext = 0.6, and k = 0.01.
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Figure 4.3: Histogram showing the probability of the fraction of oscillators in positive
state when the coupling of the oscillator group to the environment εext = 0.

53



This behaviour is also clear from the time series of the oscillator group displayed in

Fig. 4.2b, which shows the oscillators preferentially evolving to one of the two OD solu-

tions. Interestingly, note that for a specific initial state all oscillators may go to negative

OD states in the symmetry-broken parameter region, as seen in Fig. 4.2b. Typically, for

low values of damping constant k, a large majority of initial conditions evolve to a state

where all oscillators go to one of the OD states (cf. Fig. 4.2b), while for larger k most

initial conditions yield a state where oscillators occupy both OD states, but with one

state preferentially occupied yielding significant asymmetry as well.

Global Stability of the Oscillator Death States:

Now linear stability analysis shows that the both the OD states are stable, which is

consistent with the bifurcation diagram in Fig. 4.1. However, the significant question

here is the following: Which state does an oscillator in the system evolve to, starting

from initial states that are far from the state? This depends on the relative sizes of the

basins of attraction of the states. So we need to consider the global stability of the OD

states in order to understand the symmetry-breaking that emerges in the system.

In order to gauge the global stability of an Oscillator Death state, say the positive

state, we use the concept of Basin Stability. We choose a large number of random initial

conditions, uniformly spread over phase space volume. For each initial state, we calculate

the fraction f+ of oscillators that evolve to the positive OD state. The average of f+ over

random initial conditions 〈f+〉 yields an estimate of the Basin Stability of the positive

state, and indicates the probability of obtaining the positive oscillator death state in a

group of oscillators starting from random initial conditions in the prescribed volume of

phase space. The most symmetric distribution, namely half the oscillators in the positive

state and the other half in the negative state, leads to a Basin Stability measure of 0.5.

Deviations from 0.5 indicate asymmetry in the distribution of oscillator death states, with

a prevalence of the positive or negative state. So the quantity 〈f+〉 serves as an order

parameter for symmetry-breaking of the Oscillator Death states.

It is clearly evident from Fig. 4.4 that there is a sharp transition from a reasonably

symmetric state (where 〈f+〉 is close to 0.5) to a completely asymmetric state charac-

terized by 〈f+〉 ∼ 0 as εext increases. This suggests that the external environment plays

a key role in breaking the symmetry of the Oscillator Death state, as this phenomenon

emerges only when the oscillator-environment coupling is sufficiently strong, with the

sudden onset of asymmetry in the group of oscillators occurring at a critical coupling

strength. Further, it is clear from Fig. 4.4 that the symmetry breaking of the Oscillator
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Death states is independent of system size N , over a large range of system sizes.
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Figure 4.4: Basin Stability of the positive Oscillator Death state of coupled oscillators
with εext, where groups of oscillators of different sizes N=40, 60, 80, 100, 120 are shown in
different colours. Here the damping constant of the external environment is k = 0.2.

Lastly, we analyze the effect of this symmetry-breaking induced by the external en-

vironment. Now, the external system is a damped system influenced by the mean field

of the group of oscillators, and it settles down to a fixed point u? when the OD state

becomes stable. This is easily seen as follows: when the OD state is stable, ȳ is a con-

stant. So the steady state solution of u is given by εextȳ/k. Denoting the x variable of

the positive OD state by x+ and the y-variable as y+, and denoting the x variable of the

negative OD state by x− and the y-variable as y−, we have

ȳ = {f+y+ + (1− f+)y−},

yielding

u? =
εext{y+(2f+ − 1)}

k
.

Further, from linear stability analysis of the dynamics of the external system one can see

that u? is a stable steady state, as the derivative of the vector field governing u̇ is −k
which is always negative for a damped external system.

It is also clearly evdient from this analysis that if the probabilities of obtaining the

positive and negative OD states are equal, i.e. f+ = 0.5, then u? = 0. If the asymmetry is

extreme and f+ ∼ 0 we have u? = −{εexty+}/k. Since the positive OD state has x+ > 0

and y+ < 0, u? is positive. Also notice that the value of u? is inversely proportional to
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damping constant k (cf. Fig. 4.5). So a strongly damped environment evolves to u? close

to zero, as is intuitive.
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Figure 4.5: Environmental steady state u? with respect to damping constant k. Here
the number of oscillators in the group N = 20 and coupling strength of oscillators with
external environment εext = 0.6.

One can thus conclude that the state of the environment u? is strongly correlated to

the asymmetry. In fact, simply observing u? tells us if the symmetry-breaking in the

group of oscillators is pronounced or not.

Note that the above can also be rationalized by the fact that the damping constant

k controls how fast the external system decays. For high k, the intrinsic damping of the

environment is much more significant than the influence of the oscillator group, and so

the external system rapidly decays to u? = 0. However, for very small damping k, the

feedback from the oscillator group drives the environmental variable to a finite steady

state (cf. Fig. 4.5), which in turn drives the asymmetry in the OD state.

4.4 Effect of Blinking Connections

In the section above we considered the effect of the external environment on a group of

oscillators, when the external system was connected to all oscillators at all times, and

we clearly demonstrated that this lead to marked asymmetry in Oscillator Death states.

This is in contradistinction to the case where the group of oscillators are not connected
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to an external system, which leads to complete symmetry in the Oscillator Death states.

Now we will consider the effect of oscillator-environment connections blinking on-off, and

explore the effect of such time-varying links on the symmetry of the Oscillator Death

states.

In order to model connections to the environment blinking on and off, we consider a

time-dependent oscillator-environment coupling strength in Eqn. 4.3, with the feedback

from the oscillator group to the external system given by ȳ = 1
N

∑N
i=1 gi(t)yi . If the

connection of an oscillator to the environment is constant, gi(t) = 1 for all t. Such a

link is considered a time-invariant non-blinking connection. If the connection of the ith

oscillator in the group and the external system periodically switches on and off, namely

the link is a blinking connection, gi(t) is a square wave. When oscillator i in the group

is connected to environment gi(t) = 1, otherwise gi(t) = 0. So gi(t) switches between 0

(off) and 1 (on), with time period Tblink which provides a measure of the time-scale at

which the links vary. Here we will principally consider rapidly switching links, i.e. low

Tblink.

One of the most important parameters in this time-varying scenario is the fraction

of blinking oscillator-environment connections in the group, which we denote by fblink.

If all oscillators are connected to the external, then fblink = 0 and if all connections

are blinking, then fblink = 1. Here we will study the entire range 0 ≤ fblink ≤ 1, and

gauge the effect of the fraction of blinking connections on the symmetry of OD state.

Notice that the presence of connections switching on-off in a sub-set of oscillators results

in the dynamical equations of the oscillator groups being less symmetric, as the group

splits into two sub-sets having distinct dynamics. So it is most relevant to investigate if

this lack of symmetry in the dynamical equations leads to more asymmetry in the steady

states. However, what we will demonstrate in this Section is the following result: counter-

intuitively, blinking links partially restore the symmetry of the emergent Oscillator Death

states.

Fig. 4.6 shows the Basin Stability of the positive oscillator death state, as a function of

the fraction fblink of oscillators with blinking connections to the environment. We find that

when there are no blinking links, namely the connections of the oscillators to the external

system are always on, the emergent state is the most asymmetric. That is, the deviations

of the Basin Stability from 0.5 is the most pronounced for fblink = 0. Increasing the

number of blinking connections reduces the asymmetry and restores the symmetry of the

oscillator death states to a large extent, yielding states that are almost equi-distributed

between positive and negative states. The transition from the asymmetric state (where
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〈f+〉 ∼ 0) to a more symmetric state (where 〈f+〉 is significantly different from 0) occurs

sharply at a critical fraction of blinking links, which we denote by f cblink. Further, it is

evident from Fig. 4.6 that the symmetry breaking dynamics of the system, and f cblink in

particular, is independent of number N of oscillators in the group.
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Figure 4.6: Dependence of the Basin Stability of the positive Oscillator Death state 〈f+〉,
on the fraction of oscillators fblink with blinking oscillator-environment connections in the
group. Different system sizes N = 40, 60, 64, 100 are shown in different colours. Here the
time period of the on-off blinking Tblink = 0.02, oscillator-environment coupling strength
εext = 0.5 and the damping constant of the environment k = 0.2.

Fig. 4.7 and Fig. 4.8 shows the dependence of the Basin Stability of the positive

Oscillator Death state on the fraction of oscillators with blinking oscillator-environment

connections fblink, and the oscillator-environment coupling strength εext. It is evident that

for weaker coupling strengths the group of oscillators evolve to the positive and negative

OD states with almost equal probability, i.e. 〈f+〉 is quite close to 0.5. On the other

hand, for strong coupling strengths, there is a sharp transition from a very asymmetric

situation (where 〈f+〉 ∼ 0) at low fblink, to a more balanced situation (where 〈f+〉 is

closer to 0.5) at high fblink. Further, one observes that a system with a large fraction

of blinking connections does not become markedly asymmetric even for large coupling

strengths, i.e. 〈f+〉 is not close to 0 even for εext close to 1. However, in a system with

few blinking connections, there is a sharp transition to asymmetry for sufficiently high

coupling strengths.
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Figure 4.7: Basin Stability of the positive Oscillator Death state, as a function of fraction
of oscillators with blinking oscillator-environment connections fblink, for coupling strength
εext = 0.2 (green) and εext = 0.6 (blue). Here the time period of blinking Tblink = 0.02,
the damping constant of the environment k = 1.0 and N = 64.
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Figure 4.8: Basin Stability of the positive Oscillator Death state, as a function of
oscillator-environment coupling strength εext, for fblink = 0.25 (green) and fblink = 0.75
(blue). Here the time period of blinking Tblink = 0.02, the damping constant of the
environment k = 1.0 and N = 64.

We will now focus on the effect of the dynamical features of the common environment

on symmetry breaking of the OD state. Note that the common environment, when
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uncoupled to the oscillator group, is an exponentially decaying system u = u0e
−kt, where

u0 is the amplitude at time t = 0 and k is the damping rate.

Fig. 4.9 shows the probability of obtaining the positive Oscillator Death state, as

the fraction of oscillators with blinking connections is varied, for different environmental

damping constants k. It is evident that at high environmental damping rates, the effect

of environment is less pronounced, and the Oscillator Death states are selected with

almost equal probability. However, there is pronounced asymmetry in OD states when

the damping rate of the environment is low, with critical f cblink tending to 1 as k increases.
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Figure 4.9: Basin Stability of the positive Oscillator Death state on the fraction of oscil-
lators with blinking connections fblink, for environmental damping constant k = 0.1 (red),
k = 0.2 (green) and k = 1.0 (blue). The time period of blinking Tblink = 0.02, oscillator-
environment coupling strength εext = 0.5 and number of oscillators in the group N = 64.
To estimate the Basin Stability we randomly sampled u0 ∈ (0, 1], for each k.

Further we estimate the probability of an oscillator to be in the positive Oscillator

Death state, for the case of the sub-group of oscillators with blinking links to the environ-

ment (see Fig. 4.10a), and for the case of the sub-group of oscillators with static links to

the environment (see Fig. 4.10b). For low environmental damping rates, there is a sharp

boost in the probability of oscillators to be in the positive OD state in the sub-group

of oscillators with blinking oscillator-environment connections, at a critical f cblink (e.g.

f cblink ∼ 0.3 for k = 0.2 and f cblink ∼ 0.9 for k = 0.1.). For the case of the sub-group of

oscillators with static oscillator-environment connections, the probability of obtaining the

positive Oscillator Death state remains quite invariant. This implies that the sub-group

of oscillators with blinking connections to the environment is the group that is vital to the
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restoration of symmetry.
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Figure 4.10: Probability of obtaining the positive Oscillator Death state for the sub-group
of oscillators with (a) blinking oscillator-environment connections, denoted by p+blink, and
(b) static oscillator-environment connections denoted by p+static, as a function of the frac-
tion of oscillators with blinking connections fblink. Here the time period of blinking
Tblink = 0.02, the oscillator-environment coupling strength εext = 0.5, number of oscilla-
tors in the group N = 64, and the environmental damping constant k=0.1 (red), k = 0.2
(green) and k = 1.0 (blue).
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Figure 4.11: Basin Stability of the positive Oscillator Death state, as a function of the
damping constant k of the environment. Here time period of blinking Tblink = 0.02,
oscillator-environment coupling strength εext = 0.5 and the number of oscillators in the
group N = 64 and the fraction of blinking oscillator-environment connections are: fblink =
0.25 (red), fblink = 0.50 (green) and fblink = 0.75 (blue).
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Fig. 4.11 shows the dependence of the fraction of oscillators in the positive Oscilla-

tor Death state on the damping constant k of the environment, for different fractions of

blinking connections. It is evident that at low damping constants, there are very few

oscillators in the positive OD state. On increasing the damping constant of the environ-

ment there is a sharp jump in the fraction of oscillators in the positive OD state. So there

is a sudden transition from a very asymmetric state, where the fraction of oscillators in

the positive OD state is close to zero, to a more symmetric state, where this fraction is

close to half. The critical k where this jump occurs depends upon the number of blinking

oscillator-environment links. When there is a higher fraction fblink of blinking connections

in the system, the critical k is lower, i.e. the jump to a more symmetric situation occurs

at lower damping constants.
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Figure 4.12: Critical value of damping constant kc vs. fraction of blinking oscillator-
environment connections fblink. Here the time period of blinking Tblink = 0.02, oscillator-
environment coupling strength εext = 0.5 and number of oscillators in the group N = 64.
The data points from numerical simulations are in blue, and the curve given by equation:
kc = k0c − c fblink, for k0c ≈ 0.26 and c ≈ 0.16, is shown in red.

Further we estimate the value of damping constant k where 〈f+〉 crosses a threshold

value of 0.1 (with no loss of generality), denoted by kc. This critical value indicates the

damping constant below which significant symmetry-breaking of the Oscillator Death

states occurs. Fig. 4.12 shows critical kc as a function of the fraction of blinking con-

nections fblink. The critical damping kc decreases with increasing fraction of blinking

connections fblink. Specifically, in a large range of fblink we find that kc decreases linearly

with fblink (see Fig. 4.12). This demonstrates that low environmental damping favours
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enhanced asymmetry, while more blinking connections tends to restore the symmetry of

the OD states.
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Figure 4.13: Basin Stability of the positive Oscillator Death in the parameter space
of oscillator-environment coupling strength εext and environmental damping constant k.
The fraction of blinking oscillator-environment connections are: (a) fblink = 0.0 (i.e. the
static case), (b) fblink = 0.25, (c) fblink = 0.50, (d) fblink = 1.0. The time period of
blinking Tblink = 0.02 and the number of oscillators in the group N = 64.

The fraction of oscillators in the positive Oscillator Death state, in the parameter

space of k and εext, is displayed in Fig. 4.13, for different fraction of blinking oscillator-

environment connections. The black regions in the figures represent the asymmetric

state. Clearly, low environmental damping k and high oscillator-environment coupling

εext yields the greatest asymmetry in the emergent Oscillator Death states.

Now we focus on the line of transition from high 〈f+〉 to low 〈f+〉, shown in Fig. 4.14.

We find that k is proportional to ε2ext along the lines of transition, with the proportionality

constant depending on the fraction of blinking oscillator-environment connections (see

inset). Interestingly, comparing Fig. 4.12 and the inset of Fig. 4.14, reveals that both
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have the same dependence on fblink, and the proportionality constant is equal to 4kc.

This implies that the line of transition to asymmetry in the space of k-εext is given by:

k = 4kc ε
2
ext (4.4)

where kc is inversely proportional to the fraction of blinking connections fblink.
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Figure 4.14: Transition line in Fig. 4.13, fitted to the curve (solid lines): k = aε2ext, where
the different curves correspond to fblink = 0.0, 0.25, 0.50, 0.75, 1.0 from top to bottom.
The inset shows the variation of a with fblink.
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Figure 4.15: Environmental steady state u? with respect to the fraction of oscillator-
environment blinking connections, for damping constant k = 0.08 (red), 0.12 (green),
0.16 (blue). Here the number of oscillators in the group N = 64 and coupling strength
of oscillators with external environment εext = 0.5.
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The environmental steady state u? with respect to the fraction of oscillator-environment

blinking connections, is shown in Fig. 4.15, for different damping constants. It is clear

that as the fraction of blinking connections tends to one, the state of the environment

u? tends to zero. Consequently, the symmetry of the system is restored and the two OD

states are almost equally preferred when almost all links are blinking.

Effect of the frequency of blinking on Oscillation Death:

In the results discussed above the time-period of the blinking connections was small,

i.e. the links switched on-off rapidly. Now we will investigate the influence of the time-

period Tblink of the blinking oscillator-environment connections on the dynamics. Fig. 4.16

displays the effect of increasing blinking time-period on the state of the oscillators.
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Figure 4.16: Time series of one of the oscillators in group for Tblink = 0.02 (red), 200.0
(blue). Here N = 20, fblink = 0.1, εext = 0.6 and k = 0.01.

It is evident from the time-series of the oscillators (cf. Fig. 4.16) that after a critical

blinking time-period the system starts to oscillate and the OD steady state is destroyed.

That is, slow blinking of links leads to oscillation revival. This is also quantitatively

demonstrated in Fig. 4.17, which shows the amplitude of the oscillators. Clearly up to

Tblink ∼ 0.1 the amplitude is zero and one obtains a Oscillator Death state. However,

when Tblink increases further, the amplitude grows from zero to a finite value, indicating

the emergence of oscillations whose amplitude increases with Tblink. After a large value

Tblink (∼ 10) the amplitude of the oscillations saturate to a maximum value (cf. Fig. 4.17).
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We find that this maximum amplitude is the difference between the steady state solution

of the oscillator for the case of εext = 0 (i.e. when uncoupled from the external system)

and the steady state arising for εext > 0 (i.e. when the oscillator group is coupled to a

common environment). So the oscillator moves periodically between the two steady state

solutions when the blinking is slow enough to allow the system to reach the two distinct

steady states during the on and off period respectively.
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Figure 4.17: Amplitude of the x-variable for different Tblink. Here N = 20, fblink = 0.1,
εext = 0.6 and k = 0.01.

Further, notice that there are two distinct transitions to oscillation revival. The first

occurs around Tblink ∼ 0.1, with fixed states transitioning to non-zero amplitude oscil-

lations, saturating around amplitude ∼ 0.2. The second transition commences around

Tblink ∼ 2π/ω, where the amplitude starts to grow rapidly again, from amplitudes around

0.2, to the maximum amplitude.

4.5 Fractionally Disconnected Links

Previously, in Fig.4.2 we saw that coupling to an external damped environment lead

all the oscillators to one particular OD state, thereby breaking the symmetry of the

distribution of the OD states. Now, we will disconnect the oscillator-environment links

one at a time till all of the oscillators in the group are uncoupled to the external medium

and look for the changes in distribution of oscillators in the Oscillation Death states. In
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our case, we have two OD states on either side of the origin i.e positive x which we will

call x+ and another on the negative side which we name x− from now on. Without any

external environment the oscillators occur almost equally (statistically speaking) in the

positive and negative OD states. To quantify this observation we have shown in Fig.4.3

the probability distribution of the oscillators in the positive x+ steady state, obtained

by sampling over 50000 initial conditions, uniformly distributed over phase space volume

[−1,1], of globally coupled SL oscillators without external environment.
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Figure 4.18: Average fraction of oscillators in positive OD-state (〈f+〉), obtained by sam-
pling over 10000 initial conditions, with respect to the fraction of oscillators-environment
links for εext = 0.2 (blue) and 0.5 (red). Here N = 64 and k = 0.1.

In Fig.4.18 we plot the fraction of oscillators that go to the positive OD state (x+) with

respect to varying number of oscillator-environment links. In particular, we disconnect

one environment-oscillator link at a time, and we denote the fraction of disconnected

links by fdisc. So fdisc = 0 corresponds to the case where all oscillators in the group

are connected to the external environment, while fdisc = 1 corresponds to the limit of

a group of SL oscillators having no interactions with the common environment. We

observe changes in the fraction of oscillators in the positive OD-state, averaged over

different initial conditions, denoted by 〈f+〉, as a function of fdisc. That is, we investigate

how the distribution of the oscillators between the two available OD states changes as

the number of environment-oscillator links changes. The results of the dependence of

〈f+〉 on fdisc for different values of external environment coupling (εext = 0.2 and 0.5) are

displayed. It is clear that this dependence is non-monotonic and has several non-trivial

features. For instance, if we consider the case of ε = 0.5 in Fig. 4.18, we find that at

fdisc ' 0.2 the oscillators are predominately in the negative OD state and 〈f+〉 is ' 0.2,
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i.e. around 20% of the oscillators in the group go to the positive OD state, while the

rest are attracted to the negative OD state. As we change fdisc the probability of being

in the positive OD state increases to a maximum of 〈f+〉 ' 0.7 at fdisc ' 0.7. After

that, 〈f+〉 decreases again and reaches 0.5, namely the completely symmetric situation,

in the limit of fdisc = 1 where we have completely disconnected the oscillator group from

the environment. One remarkable observation is that at fdisc ' 0.5 the value of 〈f+〉
is 0.5. This implies that when half of the oscillators are connected with the external

common medium the statistical symmetry of the OD states returns i.e both the positive

and negative OD states are equally occupied by the oscillators. So when half of the

oscillators in the group are connected to the environment (fdisc = 0.5) we obtain a

dynamical outcome that is equivalent to the case of the oscillator group being completely

unconnected to the external environment (fdisc = 1).
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Figure 4.19: Average fraction of oscillators in positive OD-state (〈f+〉), obtained by
sampling over 10000 initial conditions, with respect the damping constant of the common
external environment k, for fdisc=0.25 (blue), 0.5 (red) and 0.7 (green). Here εext = 0.5
and N = 64.

Further, we examine the effect of the damping constant k of the external environ-

ment on the distribution of the oscillators between the positive and negative OD-states,

i.e. the dependence of 〈f+〉 (and 〈f−〉) on k for different values of fdisc. To illustrate

this, we show results for three values of external coupling (εext = 0.25, 0.5 and 0.7) in

Fig.4.19. For fdisc = 0.25 (blue), the fraction of positive OD-state (〈f+〉) always remain

less than 50% for the entire range of k sampled, and it slowly increases to ∼ 50% for

k ≥ 0.85. The oscillator distribution tends to maintain its symmetry (i.e 〈f+〉 ∼ 0.5)

for all values of k when only half of the oscillators are connected/disconnected with the

external environment (i.e. fdisc = 0.5). For fdisc = 0.7 (green) the oscillator distribution
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reaches its most skewed position when 〈f+〉 becomes maximum at ∼ 0.7 (cf. Fig. 4.18).

On increasing k, this again approaches 〈f+〉 ∼ 0.5 as k approaches 1. This suggests

that the environmental damping constant can be utilized as a parameter to control the

distribution of oscillators in the positive and negative OD-states.
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Figure 4.20: Average fraction of oscillators in positive OD-state (〈f+〉), estimated by
sampling over 10000 initial conditions, in the parameter space of εext− k for fdisc (a) 0.0,
(b) 0.25, (c) 0.5 and (d) 0.75, with N = 64.

The coupling strength between the external medium and the oscillators in the group

(εext) is vital in controlling the flow of information between the group of oscillators. So

we look for changes in 〈f+〉 in the parameter space of εext − k. Fig. 4.20 (a) shows 〈f+〉
when all oscillators are connected to the environment (i.e. fdisc = 0.0). This will act as a

reference for comparison with the case where some fraction of environment-oscillator links

are disconnected. For higher εext values and lower damping constant (k) the fraction 〈f+〉
is almost 0 (or 〈f−〉 ' 1). Interestingly, at this particular region of the εext−k parameter

space, 〈f+〉 increases for increasing fdisc. This demonstrates that as increasing number

of disconnections of the environment-oscillator links, the number of oscillators going to
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the positive OD state increases, leading to a more symmetric distribution of oscillators

among the two OD states. Further we consider the variation of 〈f+〉 with respect to

εext at fixed k in Fig. 4.21, for k = 0.1. Three scenarios become clearly evident from

the figure, corresponding to three different fractions of disconnected links. So we can

conclude that along with environmental damping constant (k), oscillator-environment

coupling strength (εext) is also an important parameter controlling the distribution of

oscillators between the positive and negative OD-states.
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Figure 4.21: Average fraction of oscillators in positive OD-state (〈f+〉), estimated by
sampling over 10000 initial conditions, with respect to εext, for fdisc=0.25 (blue), 0.5
(red) and 0.7 (green), with k = 0.1 and N = 64.

We had shown the histogram of the probability of obtaining fraction f+ in the positive

OD state, in Fig.4.3, for globally coupled SL oscillators in OD-state without environmen-

tal coupling, and seen a symmetric distribution of the oscillators around 0.5. Similarly,

we now estimate the distribution of oscillators in the positive OD-state in the presence

of a common environment. We explore cases with different fractions of disconnected

environment-oscillator links. In Fig. 4.22(a) we show the distribution for fdisc = 0.25,

with εext = 0.5 and k = 0.1. Interestingly, there is no spread in the distribution of os-

cillators, as is clearly seen from the single pronounced peak in the distribution at 0.5 for

Fig. 4.22(b) and around 0.7 in Fig. 4.22(c). This sharp localization of oscillators in one

of the two available stable states is in contradistinction to the usual statistical spread

observed in Fig. 4.3. This is especially remarkable for the case of the symmetric distribu-

tion that arises in Fig. 4.22(b), vis-a-vis the statistically symmetric case seen in Fig. 4.3.

So we can infer that one can tailor the distribution of oscillators in positive and negative

OD-states by disconnecting a suitable number of environment-oscillator links (fdisc) and
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adjusting the control parameters εext and k.
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Figure 4.22: Histogram showing the probability of the fraction of oscillators in positive
state when the coupling of the oscillator group to the environment εext = 0.5 and damping
constant of the environment k = 0.1, with fraction of disconnected links (a) fdisc = 0.25,
(b) fdisc = 0.5, (c) fdisc = 0.7.

4.6 Constant Common environment

We have shown the effect of exponentially decaying external environment on the OD

state and the effect of blinking connections. This mimics a situation where the external

environment is a small bath, and so the dynamics of the oscillator group affects the

dynamics of the common environment.
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Figure 4.23: Basin Stability of the positive Oscillator Death state in the parameter space
of coupling strength εext and constant environment (uc), with fraction of blinking oscil-
lators (a) fblink = 0.0, (b) fblink = 0.25, (c) fblink = 0.50, (d) fblink = 1.0. Here the time
period of blinking T=0.02 and the number of oscillators in the group N = 64.

In this section, we will consider a common external environmental system mimicking a

large bath, where the external environment does not get affected by the oscillator group.

Rather it acts as a constant drive, which we denote by uc. The strength of this oscillator-

external drive connection is given by the coupling strength εext. So the complete dynamics

of the group of oscillators is now given by the following evolution equations:

ẋi = (1− x2i − y2i )xi − ωyi + εintra(qx̄− xi)
ẏi = (1− x2i − y2i )yi + ωxi + εextuc (4.5)
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where x̄ = 1
N

∑N
i=1 xi.

Fig. 4.23 shows the fraction of oscillators in positive Oscillator Death state, in the

parameter space of uc and εext. Different panels correspond to different fraction of blinking

connections, and the black regions in the figures represent the asymmetric state. It is

evident that even for the case of constant drive, the symmetry of the Oscillator Death state

is broken, and the system moves preferentially to the negative state. Interestingly, for

constant negative drive, i.e. uc < 0, the positive Oscillator Death state is preferentially

selected. This further indicates the generality of our observations, and emergence of

symmetry-breaking in a group of oscillators due to coupling to a common external system.

4.7 Conclusion

We investigated the impact of a common external system, which we call a common

environment, on the Oscillator Death states of a group of Stuart-Landau oscillators. First

we consider external systems that exponentially decay to zero when uncoupled from the

oscillator group. Note that a group of oscillators yield a completely symmetric Oscillator

Death state when uncoupled to the external system, i.e. the positive and negative OD

states occur with equal probability, and so in a large ensemble of oscillators the fraction

of oscillators attracted to the positive/negative state is very close to half. However,

remarkably, when coupled to a common external system this symmetry is significantly

broken. This symmetry breaking is very pronounced for low environmental damping and

strong oscillator-environment coupling, as evident from the sharp transition from the

symmetric to asymmetric state occurring at a critical oscillator-environment coupling

strength and environmental damping rate.

Further, we consider a group of oscillators with time-varying connections to the com-

mon external environment. In particular, we study the system with a fraction of oscillator-

environment links that switch on-off. Interestingly, we noticed that the asymmetry in-

duced by environmental coupling decreases as a power law with increase in fraction of

such on-off connections. This suggests that blinking oscillator-environment links can

restore the symmetry of the Oscillator Death state.

In the next section we demonstrated the effect of permanently disconnection of the

oscillation-environment links. The symmetry breaking in the basin stability of OD states

depends on damping constant of the external system k, environment-oscillator coupling

strength εext and the fraction of oscillators connected to the external system. When very
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few oscillators are connected to the environment, the OD states are almost symmetri-

cally distributed. On the other hand when a large fraction of oscillators are coupled to

the environment, the symmetry is broken to a very high extent, for high environment-

oscillator coupling strengths and low environmental damping constants. Interestingly,

when half the environment-oscillator links are disconnected, the symmetry is restored,

independent of the damping constant of the environment and the environment-oscillator

coupling strength. In fact in this case, exactly half of the oscillators attain positive OD

states and the other half attain negative OD states.

Lastly, we demonstrated the generality of our results for a constant external drive,

i.e. a constant environment, and found marked breaking of symmetry Oscillator Death

states there as well. When the constant drive is large, the asymmetry in OD-state is very

large, and the transition between the symmetric and asymmetric state, with increasing

oscillator-environment coupling, is sharp.

In summary, we have shown the existence of a pronounced breaking of symmetry

in the Oscillator Death states of a group of oscillators induced by a common external

environment. So our results demonstrate an environment-mediated mechanism for the

prevalence of certain states in a system of oscillators, and suggests an underlying process

for obtaining certain states preferentially in ensembles of oscillators. So our work here

suggests a potent method to control the basin stability of the oscillation death states.
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Chapter 5

Suppression and revival of

oscillations through time-varying

interaction

Adapted from the work published in :

Chaurasia, S. S., Choudhary, A., Shrimali, M. D., Sinha, S., “Suppression and revival

of oscillations through time-varying interaction”, Chaos, Solitons and Fractals

118., (2019) 249-254
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5.1 Introduction

Coupled dynamical systems have been extensively studied over the last few decades as

they provide us a framework for modelling many complex systems [83, 84]. The focus

of investigations have mostly been on phenomena emerging under variation of the local

dynamics of the units and the interactions among them. Most studies have assumed the

interactions among the nodes to be invariant over time. However in recent times there

have been efforts to incorporate a time-varying links, namely changing connections be-

tween the units in a dynamical network [85, 86, 87, 88, 89, 90, 91, 92, 93, 94]. Such time

varying interactions model the evolution of connections over time, and are commonly

found in physical, biological, social and engineered systems [95, 96, 97, 98, 99, 100, 101].

Studies so far have considered the variation in links as a function of time, while the form

of coupling remains the same. Here we will explore a new direction in time-varying inter-

actions: we will study the effect of switched coupling forms on the emergent behaviour.

We consider two coupling functions, one diffusive and the other conjugate coupling

between the two oscillators. Coupling via conjugate variables is natural in a variety

of experimental situations where sub-systems are coupled by feeding the output of one

into the other. An example from the recent literature is provided by the experiments of

Kim and Roy on coupled semiconductor laser systems [18], where the photon intensity

fluctuation from one laser is used to modulate the injection current of the other, and

vice versa. Hybrid coupling [102, 103] also has relevance in ecological models, where

migration and cross-predation (analogous to conjugate coupling) [104] occurs between

two population patches, namely over some time migration or diffusive coupling may be

dominant, while at other times cross-predation between the two patches is prevalent.

The primary goal of this study is to demonstrate the non-trivial dynamical states

arising out of the temporal interplay between two coupling forms, through extensive

bifurcation analysis. The test-bed of our inquiry will be a generic system of coupled

oscillators, which we describe in detail below.

5.2 Coupled oscillators

A general form of coupled dynamical oscillators is given by:

Ẋi = F (Xi) +KGi(Xj, X
′
j, Xi) (5.1)
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where Xi denotes the set of m dynamical variables of the ith oscillator. The matrix K

of dimension m ×m contains information on the coupling topology. Gi is the coupling

function that represents the nature of the interaction and the variables involved in the

interaction term, with the superscript primes (′) on X denoting conjugate or “dissimilar”

variables [105].

Now, complex systems often undergo Hopf bifurcations and sufficiently close to such

a bifurcation point, the variables which have slower time-scales can be eliminated. This

leaves us with a couple of simple first order ordinary differential equations, popularly

known as the Stuart-Landau system [1]. In this work we will consider two diffusively

coupled oscillators of this form, namely two coupled Stuart-Landau systems.

When the coupling between the oscillators is through similar variables, the dynamical

equations are given by:

ẋ1 = fx(x1, y1) + ε(x2 − x1)
ẏ1 = f y(x1, y1) (5.2)

ẋ2 = fx(x2, y2) + ε(x1 − x2)
ẏ2 = f y(x2, y2)

and when the oscillators are coupled to each other through dissimilar variables, the

dynamical equations are given by:

ẋ1 = fx(x1, y1) + ε(y2 − x1)
ẏ1 = f y(x1, y1) (5.3)

ẋ2 = fx(x2, y2) + ε(y1 − x2)
ẏ2 = f y(x2, y2)

with

fx(x, y) = x(1− (x2 + y2))− ωy (5.4)

f y(x, y) = y(1− (x2 + y2)) + ωx

Specifically, in this work we consider the angular frequency ω of the Stuart-Landau
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oscillator to be 5, and the coupling strength ε to be in the range [0, 10].

Now coupled Stuart-Landau oscillators have been a good model for the study of

oscillation death [55, 106] and amplitude death [107, 108, 32, 109]. When the coupling

is through similar variables (cf. Eqn. 5.2), the oscillators get synchronized at a very low

coupling strengths, and remain oscillatory and synchronized up to very high coupling

strength. However when coupling is through dissimilar variables (cf. Eqn. 5.3), the

system shows oscillatory behaviour for small coupling strengths, and increasing coupling

strengths give rise to amplitude death and subsequently oscillation death [110].

5.3 Time-varying Coupling Form

Now we consider a scenario where the form of the coupling between the oscillators is

time dependent, namely, the form of coupling switches between the similar and dissimilar

variables. The switching of the coupling form may be periodic or probabilistic.

5.3.1 Periodic Switching of Coupling Forms

Here the oscillators change their coupling form periodically. If the time period of the

switch is T , we consider the system to be coupled via similar variables for fraction fsim

of the cycle, followed by coupling to dissimilar variables for the remaining part. So when

fsim = 0, the oscillators are always coupled to dissimilar variables and when fsim = 1

the oscillators are coupled through similar variable for all time. For 0 < fsim < 1,

the oscillators experience coupling through similar variables for time fsimT , followed by

coupling through dissimilar variables for time T (1− fsim), in each cycle of period T .

ẋ1 = fx(x1, y1) + εδ(x2 − x1) + ε(1− δ)(y2 − x1)
ẏ1 = f y(x1, y1) (5.5)

ẋ2 = fx(x2, y2) + εδ(x1 − x2) + ε(1− δ)(y1 − x2)
ẏ2 = f y(x2, y2)
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where

δ =

1, if t ∈ [NT, (fsim +N)T )

0, if t ∈ [(fsim +N)T, (N + 1)T )
(5.6)

where T is the switching period, N = 0, 1, 2, ... is the number of periods.
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Figure 5.1: Bifurcation diagram displaying variable x of one of the oscillators, with respect
to coupling strength ε. Here the coupling switches between similar and dissimilar variables
periodically, with similar-variable coupling (for time fsimT ) followed by dissimilar-variable
coupling (for time (1 − fsim)T ), for (a) fsim=0.2, (b) fsim=0.4, (c) fsim=0.6 and (d)
fsim=0.8, and time period of switching T = 0.10. The two colours represent symmetric
solutions around the unstable fixed point, arising from different initial conditions. In all
these diagrams, we display the x variable on the Poincaré section of the phase curves of
the oscillators at y = ymid, where ymid is the mid-point of the span of phase space along
the y-axis.

In this work we will consider coupling forms switching at frequencies ranging from

very high to very low, as compared to the frequency of oscillation of the Stuart-Landau

oscillators (cf. Eqn. 5.4). So when we refer to fast changes in coupling forms, we imply
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that these changes occur at timescales significantly shorter than the oscillatory time

period, namely, the switching time period T is much smaller than 2π/ω (which is ∼ 1.26

here).
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Figure 5.2: Time series of the variable x of one of the oscillators, shown in blue. The
periodically switched coupling form is shown schematically, with red representing similar-
variable coupling and green representing dissimilar-variable coupling. Here fsim = 0.4,
T = 0.10 and the coupling strengths are: (a) ε = 1.0, (b) ε = 4.0 and (c) ε = 9.0. Note
that both the oscillators are synchronized, i.e. x1(t) = x2(t)

Fig. 5.1 shows the bifurcation diagram for a system of two coupled oscillators with

periodically changing coupling form, with respect to coupling strength, for different fsim.

At ε = 0, i.e. for uncoupled Stuart-Landau oscillators, one naturally obtains period 1

oscillations. Increasing the coupling strength results in suppression of oscillations. Inter-

estingly though, the window of coupling strength over which oscillations are suppressed

depends non-monotonically on fsim. At first, as fsim increases the fixed point window in-

creases (cf. Fig. 5.1a for fsim = 0.2 vis-a-vis Fig. 5.1c at fsim = 0.6). However, when fsim

gets even larger this window vanishes entirely (cf. Fig. 5.1d), namely the oscillations are
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no longer suppressed anywhere. So importantly, it is evident from Fig. 5.1a-b that low-

amplitude oscillations are restored at higher coupling strengths again, for intermediate

fsim.
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Figure 5.3: Time series of the variable x of one of the oscillators, shown in blue. The
periodically switched coupling form is shown schematically, with red representing similar-
variable coupling and green representing dissimilar-variable coupling. Here coupling
strength ε = 6, T = 0.10 and fsim is: (a) 0.1 (namely, dissimilar-variable coupling
operates over much larger intervals than similar-variable coupling), (b) 0.5 (namely, suc-
cessive equal time intervals of similar and dissimilar-variable coupling occurs) and (c) 0.9
(namely, similar-variable coupling operates over much larger intervals than dissimilar-
variable coupling).

In order to gain an intuitive understanding of the suppression and revival of oscilla-

tions, we now examine the time series of the system with relation to the periodic switching

of coupling forms. Fig. 5.2 shows the illustrative case of fsim = 0.4, namely the case where

the system experiences similar-variable coupling for a duration that is shorter than the

duration of dissimilar-variable coupling. It is evident from Fig. 5.2a that when coupling
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strength is relatively small, the dissimilar-variable coupling does not manage to influence

the dynamics enough to suppress the oscillations induced by similar-variable coupling.

This holds true, even though the dissimilar-variable coupling is operative for a much

longer period than the similar-variable coupling.

Increasing the coupling strength decreases the amplitude of the oscillations, and be-

yond a critical value of coupling the oscillations are entirely suppressed (cf. Fig. 5.2b).

However, beyond a window of coupling strengths, the oscillations are restored again (cf.

Fig 5.2c). That is, for very high coupling strengths, the system evolves towards the at-

tractor of the coupling form it experiences, and after the coupling switches, the system

evolves towards the attractor characteristic of the other coupling form. Namely, for the

duration the coupling is via similar variables, the system tends towards the limit cycle,

and when the coupling is via dissimilar variables, the system tends towards the attractive

fixed point. So, unlike the case of intermediate coupling strengths, the system switches

its behaviour and never settles down to the fixed point attractor. This results in a cyclic

behaviour following the periodic switching pattern. So remarkably different dynami-

cal behaviour arises under identical switching of coupling forms, for different coupling

strengths.
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Figure 5.4: Dependence of A = xmax − xmin on the frequency of switching (where
xmax/xmin are the maximum/minimum values of variable x of an oscillator). Here
fsim = 0.4, ε = 9.0, and the coupling switches between similar and dissimilar variables
periodically, with similar-variable coupling for time fsimT , followed by dissimilar-variable
coupling for time (1− fsim)T , where 1/T is the frequency of switching.
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Further, it is very illustrative to examine the time series of the system with relation to

the switching of coupling forms, ranging from the case where dissimilar-variable coupling

occurs over much longer time intervals than similar-variable coupling (i.e. fsim close to

zero) to the case where similar-variable coupling dominates (i.e. fsim close to one), via

the balanced case where equal periods of similar-variable and dissimilar-variable coupling

occurs. It is evident from Fig. 5.3 that oscillation suppression occurs when there is balance

in the two types of coupling. So very distinct dynamical behaviour arises under identical

coupling strengths, but different switching patterns of the coupling forms.

Further, Fig. 5.4 shows the effect of the frequency of switching coupling forms upon

the amplitude of the revived oscillations. Increase in frequency of switching leads to the

reduction of oscillation amplitude, and the results approach those arising from effective

mean-field like dynamical equations (cf. Eqn. 5.9) which will be presented in Section

5.5 (namely, Fig. 5.1(b) approaches Fig. 5.13(b) obtained from an approximate effective

description of the system).

5.3.2 Probabilistic Switching of Coupling Forms

Here the oscillators change their coupling form at intervals of time T , with the coupling

form chosen probabilistically. We consider the probability for the oscillators to be coupled

via similar variables to be psim, and the probability of coupling mediated via dissimilar

variables to be (1− psim). For 0 < psim < 1, at the time of switching, the similar-variable

coupling form is chosen with probability psim and the dissimilar-variable form is chosen

with probability (1− psim). So larger psim favours coupling through similar variables and

smaller psim favours dissimilar-variable coupling, with the oscillators always experiencing

dissimilar-variable coupling for the limiting case of psim = 0 and similar-variable coupling

for psim = 1. Here the probability psim plays a role equivalent to fsim in the case of

periodic switching of coupling forms.

This is explicitly given as follows:

ẋ1 = fx(x1, y1) + εδ(x2 − x1) + ε(1− δ)(y2 − x1)
ẏ1 = f y(x1, y1) (5.7)

ẋ2 = fx(x2, y2) + εδ(x1 − x2) + ε(1− δ)(y1 − x2)
ẏ2 = f y(x2, y2)
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where

δ =

1, if p ≤ psim at t = NT

0, if p > psim at t = NT
(5.8)

where T is the switching period, N = 0, 1, 2, ... is the number of periods.
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Figure 5.5: Bifurcation diagram displaying variable x of one of the oscillators, with
respect to coupling strength ε. Here the coupling form probabilistically switches at time
intervals of T between similar and dissimilar variables, with the probability of similar-
variable coupling being psim, and the probability of dissimilar-variable coupling being
(1 − psim), for (a) psim = 0.2, (b) psim = 0.4, (c) psim = 0.6 and (d) psim = 0.8 (with
T = 0.02). The two colours represent emergent dynamics from different initial conditions

Fig. 5.5 shows the bifurcation diagram, with respect to coupling strength, for different

psim. Again it is evident that the window of coupling strength over which oscillations are

suppressed, depends non-monotonically on psim, as it did under variation of fsim for the

case of periodically switched coupling forms (cf. Fig. 5.8). First, as psim increases from

zero, the fixed point window increases, as seen from Fig. 5.5a for psim = 0.2 vis-a-vis
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Fig. 5.5c for psim = 0.6. However, when psim gets even larger this window vanishes en-

tirely, as evident from Fig. 5.5d, and the oscillations are no longer suppressed anywhere.

This suggests that when the probability of coupling through similar variables and dis-

similar variables is similar (i.e. psim ∼ 0.5) oscillations are suppressed to the greatest

degree.
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Figure 5.6: Time series of the variable x of one of the oscillators, shown in blue. The
probabilistically switched coupling form is shown schematically, with red representing
similar-variable and green representing dissimilar-variable coupling. Here psim = 0.4,
T = 0.01 and the coupling strengths are: (a) ε = 1.0, (b) ε = 4.0 and (c) ε = 9.0

In order to gain an intuitive understanding of the revival of oscillations, we now ex-

amine the time series of the system with relation to the random switching of coupling

forms. Fig. 5.6 shows the illustrative case of psim = 0.4. It is evident that when cou-

pling strength is relatively small (cf. Fig. 5.6a), the dissimilar-variable coupling does not

manage to influence the dynamics enough to suppress the oscillations arising from the

similar-variable coupling. So one obtains noisy cycles. The amplitude of the oscillations

again decreases with increasing coupling strength, and after a critical value the oscilla-

85



tions are fully suppressed (cf. Fig. 5.6b). However when the coupling strength is too

high, oscillatory behaviour is revived once more. Underlying this revival of noisy oscilla-

tions is the following dynamics: the system evolves towards the attractor characterizing a

coupling form for the duration that it experiences that particular coupling form. Namely,

for the duration of similar-variable coupling, the system tends towards a limit cycle, and

when the coupling is via dissimilar variables, the system tends towards the attractive

fixed point (cf. Fig 5.6c). So the system switches its behaviour and never settles down

to the fixed point attractor. This results in a fuzzy cyclic behaviour and so for coupling

strengths higher than a critical value, noisy oscillations emerge again.
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Figure 5.7: Time series of the variable x of one of the oscillators, shown in blue. The
probabilistically switched coupling form is shown schematically, with red representing
similar-variable coupling and green representing dissimilar-variable coupling. Here cou-
pling strength ε = 6, T = 0.01 and psim is: (a) 0.1 (namely, dissimilar-variable coupling
occurs much more frequently than similar-variable coupling), (b) 0.5 (namely, similar
and dissimilar-variable coupling occurs equally often on an average) and (c) 0.9 (namely,
similar-variable coupling occurs much more frequently than dissimilar-variable coupling).
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Further, it is very illustrative to examine the time series of the system with relation to

the switching of coupling forms, ranging from the case where dissimilar-variable coupling

occurs more frequently than similar-variable coupling (i.e. psim close to zero) to the

case where similar-variable coupling dominates (i.e. psim close to one), via the balanced

case where similar-variable and dissimilar-variable coupling occurs equally often on an

average. It is evident from Fig. 5.7 that very distinct dynamical behaviour arises under

identical coupling strengths, but different switching patterns of the coupling forms, with

oscillation suppression occurring when there is balance in the two types of coupling.

5.3.3 Dependence of the fixed point window on switching pa-

rameters
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Figure 5.8: Relative width of the fixed point window (namely, the fraction of the coupling
range under consideration that is occupied by the fixed point regime), as a function of
fsim (blue) for the case of periodic switching of coupling forms, and psim (red) for the
case of probabilistic switching of coupling forms, with switching period T = 0.02. Here
we consider coupling strengths ε in the range [0 : 10].

Fig. 5.8 shows the width of fixed point window, with respect to fsim for the case of

periodic switching of coupling forms, and psim for the case of probabilistic switching of

coupling forms. Now it is evident that if one has only similar-variable coupling, one

obtains no fixed point states. On the other hand completely dissimilar-variable coupling

yields a large amplitude death region. As one intuitively expects, one needs the system to

experience dissimilar-variable coupling for sufficient time to yield fixed points. However,
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one may also have expected simplistically that the amplitude-death window would reduce

monotonically to zero as the probability of similar-variable coupling increased to one. But

counter-intuitively, the size of the amplitude-death window in coupling parameter space

is non-monotonic, and the largest window is obtained when dissimilar-variable coupling

is switched approximately equally with similar-variable coupling. Namely, the width of

the fixed point window has a maximum at fsim(psim) ∼ 0.58, an so the largest window

of fixed point dynamics arises where there is balance in the probability of occurrence of

the coupling forms.

5.4 Global stability measure

The commonly employed linear stability analysis, based on the linearization in the neigh-

bourhood of fixed points, provides only local information about the stability at the fixed

point. It cannot accurately indicate the stability for large perturbations, nor the basin of

attraction of the dynamics, especially in the presence of other attractors in phase space.

Here we calculate the Basin Stability of the dynamical states [3]. This is a more

robust and global estimate of stability, and effectively incorporates non-local and non-

linear effects on the stability of fixed points. Specifically, Basin Stability is calculated as

follows: we choose a large number of random initial conditions, spread uniformly over

a volume of phase space, and find what fraction of these are attracted to stable fixed

points.
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Figure 5.9: Basin Stability of the fixed point state of coupled oscillators, in the parameter
space of coupling strength ε and fsim. Here the coupling periodically switches between
similar and dissimilar variables, with similar-variable coupling (for time fsimT ), followed
by dissimilar-variable coupling (for time (1− fsim)T ), for (a) T = 0.01, (b) T = 0.10, (c)
T = 1.00 and (d) T = 2.00. The region in yellow represents fixed point dynamics (i.e.
oscillation suppression), and the region in black represents oscillatory dynamics.

Figs 5.9 shows the Basin Stability of the fixed point state, in the parameter space of

fsim and coupling strengths, for different time periods of switching T . Clearly one obtains

oscillation suppression in windows of coupling strength and fsim, and oscillation revival

again beyond the window. The window of coupling strengths that gives rise to fixed points

is very sensitive to the frequency of switching, at low frequencies, namely at frequencies

that are considerably smaller than the oscillator frequency. After a high enough switching

frequency (i.e. low enough T ), the fixed point region remains unchanged, as evident

through the fact that Fig. 5.9a and Fig. 5.9b are identical.

Now, the dependence of the fixed point window on fsim is actually quite counter-

intuitive, as already indicated in the bifurcation diagrams. For rapidly switched coupling

forms, at large coupling strengths, the oscillation suppression occurs at an intermedi-

ate value of fsim. Namely, as the dominance of similar-variable coupling fsim increases

the oscillations are first suppressed and then after a point the oscillations are revived

again, with the window of fixed points shifting towards higher fsim, as coupling strength

increases. This is counter-intuitive, as similar-variable coupling is known to only allow

oscillations, while dissimilar-variable coupling can yield some windows of oscillation sup-

pression. Also interestingly for low fsim, as we increase the coupling strength, first we

encounter oscillation suppression and then on further increase of coupling strength the

oscillations are restored. So there exists an intermediate window of coupling strength
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that yields fixed point dynamics.
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Figure 5.10: Basin Stability of the fixed point state of coupled oscillators, in the parameter
space of coupling strength ε and frequency of switching. Here the coupling periodically
switches between similar and dissimilar variables, with similar-variable coupling (for time
fsimT ), followed by dissimilar-variable coupling (for time (1− fsim)T ), for (a) fsim = 0.3,
(b) fsim = 0.4, (c) fsim = 0.5 and (d) fsim = 0.7. The region in yellow represents fixed
point dynamics (i.e. oscillation suppression), and the region in black represents oscillatory
dynamics.

Fig 5.10 shows the Basin Stability of the fixed point state, in the parameter space of

the frequency of switching and coupling strengths, for different fsim. It is clear again that

after a critical switching frequency the dynamics does not depend on the rate at which

the coupling form is changed. Significantly, it is also evident that fast changes in coupling

form, namely lower time period for change, yields large fixed point regions in parameter

space. However, at low switching frequencies the emergent dynamics is sensitive to how

rapidly the coupling form varies.
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Figure 5.11: Basin Stability of the fixed point state of coupled oscillators, in the param-
eter space of coupling strength ε and psim. Here the coupling probabilistically switches
between similar and dissimilar variables, with the probability of similar-variable coupling
being psim, and the probability of dissimilar-variable coupling being (1 − psim) with the
period of switching (a) T = 0.01, (b) T = 0.02, (c) T = 0.10 and (d) T = 1.00. The
region in yellow represents fixed point dynamics (i.e. oscillation suppression), and the
region in black represents oscillatory dynamics. Notice the marked similarity of panel (a)
with Fig. 5.9a.

Fig 5.11 shows the Basin Stability of the fixed point state for the case of probabilis-

tically varying coupling form, in the parameter space of psim and coupling strengths.

Interestingly again, as we increase the coupling strength, oscillations first get suppressed

and then restored. Also notice the marked similarity of Fig. 5.11a and Fig. 5.9a. Namely

frequent periodic switching of coupling forms yields the same result as the frequent prob-

abilistic switching of coupling forms.
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Figure 5.12: Basin Stability results for coupled oscillators, in the parameter space of
coupling strength ε and frequency of switching, when coupling switches between similar
and dissimilar variables probabilistically, with a probability of similar coupling psim, and
probability of dissimilar coupling (1 − psim), for (a) psim = 0.2, (b) psim = 0.3, (c)
psim = 0.5 and (d) psim = 0.7. The region in yellow represents fixed point dynamics (i.e.
oscillation suppression), and the region in black represents oscillatory dynamics.

Fig. 5.12 shows the Basin Stability of the fixed point state, in the parameter space

of frequency of switching and coupling strengths. Clearly the effects of the frequency

of switching are pronounced over a larger range of switching frequency for probabilistic

switching, as compared to periodic switching. But significantly again, it is evident that

fast changes in coupling form, namely lower time period for change, yields large fixed

point regions in parameter space. Lastly, it is also clear that as the frequency of switching

increases, the fixed point region moves towards higher values of psim where similar-variable

coupling dominates. This is again surprising, as similar-variable coupling is known to

support only oscillations, while dissimilar-variable coupling has more propensity towards

oscillation suppression.
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5.5 Effective model for time dependent coupling

Now we attempt to rationalize our results through an effective phenomenological model

for the dynamics. The idea is to mimic the time-dependent coupling by a coupling form

where the similar and dissimilar coupling forms are appropriately weighted by fsim. This

is given by:

ẋ1 = fx(x1, y1) + ε[fsim(x2 − x1) + (1− fsim)(y2 − x1)]
ẏ1 = f y(x1, y1) (5.9)

ẋ2 = fx(x2, y2) + ε[fsim(x1 − x2) + (1− fsim)(y1 − x2)]
ẏ2 = f y(x2, y2)

This effective picture is then akin to hybrid coupling, and this is expected to hold

true when the frequency of switching is very high (namely T is very small). Completely

equivalent results can be obtained with psim in place of fsim in the equations above.

The Jacobian of the effective system is given by:



1− 3x21 − y21 − ε −2x1y1 − ω εfsim ε(1− fsim)

−2x1y1 + ω 1− x21 − 3y21 0 0

εfsim ε(1− fsim) 1− 3x22 − y22 − ε −2x2y2 − ω

0 0 −2x2y2 + ω 1− x22 − 3y22


(5.10)

The eigenvalues of the matrix above, evaluated at the fixed points, determine the sta-

bility of the fixed points, and the change in the eigenvalues under variation of parameters

indicates the nature of bifurcations. Thus the mechanism for the suppression of oscilla-

tions following the stabilization of fixed points, and the revival of oscillations following

the destabilization of fixed points, can be obtained by inspection of the eigenspectrum.
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Figure 5.13: Bifurcation diagram displaying variable x of one of the oscillators of the
effective coupled system given by Eqn. 5.9, with respect to coupling strength ε, at different
fsim values: (a) fsim=0.2, (b) fsim=0.4, (c) fsim=0.6 and (d) fsim=0.8. The two colours
represent symmetric solutions around the unstable fixed point, arising from different
initial conditions.

Fig. 5.13 displays the bifurcation diagram of the effective coupled system given by

Eqn. 5.9. The nature of the bifurcations is determined by the change in the eigenspec-

trum under varying coupling strength. For instance, for fsim < 0.58, there are two

bifurcation points. At the first bifurcation point occuring at low coupling strength, the

real parts of complex eigenvalues cross zero and become positive as coupling strength

is decreased, leading to a transition from a stable fixed point to a limit cycle, namely

we have a supercritical Hopf bifurcation. At the second bifurcation point occuring at

high coupling strength, the real eigenvalues cross zero and become positive as coupling

strength increases, leading the fixed point to become unstable and this is accompanied by

the creation of two new fixed points, namely we have a supercritical pitchfork bifurcation.

In particular, notice the marked similarity of the fixed point region in Fig. 5.13 with the
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fixed point regions evident in Figs. 5.1 and 5.5.
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Figure 5.14: Results from Linear Stability analysis of the effective model of the coupled
oscillators given by Eqn. 5.9, in the parameter space of coupling strength ε and fsim. The
colour code represents the value of the maximum eigen value of the Jacobian given by
Eqn. 5.10, λmax. The region in pink, where λmax < 0, represents stable fixed points. The
region in green, where λmax > 0, represents unstable fixed points. Notice the marked
similarity with Figs. 5.9a and 5.11a.

Further, Fig. 5.14 shows results from the linear stability analysis of Eqn. 5.9, in the

neighbourhood of the fixed point at zero. The region in pink represents the stable fixed

point, where the maximum eigen value of the Jacobian (cf. Eqn. 5.10) corresponding to

Eqn. 5.9, λmax, is negative. The region in green represents unstable fixed points, and

this corresponds to the parameter region where λmax > 0. Notice the marked similarity

of these results with Fig. 5.9a (or equivalently Fig. 5.11a), namely the fixed point region

is completely well-described by the analysis of Eqn. 5.9 when the frequency of switching

is high (∼ 100 Hz). Significantly then, the results from the global estimates of the basin

of stability of the fixed point, for rapid periodic and probabilistic switching of coupling

form, are recovered accurately through the linear stability analysis of a set of effective

dynamical equations. So our effective picture provides insight into the suppression and

revival of oscillations in the coupled oscillator system with time-varying coupling forms.
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5.6 Conclusions

While the variation in links, namely the connectivity matrix, as a function of time has

been investigated in recent times, the dynamical consequences of time-varying coupling

forms is still not understood. In this work we have explored this new direction in time-

varying interactions, namely we have studied the effect of switched coupling forms on the

emergent behaviour. The test-bed of our enquiry is a generic system of coupled Stuart-

Landau oscillators, where the form of the coupling between the oscillators switches be-

tween the similar and dissimilar (or conjugate) variables. We consider two types of

switching, one where the coupling function changes periodically and one where it changes

probabilistically. When the oscillators change their coupling form periodically, they are

coupled via similar variables for fraction fsim of the cycle, followed by coupling to dissimi-

lar variables for the remaining part. In the case of probabilistic switching, the probability

for the oscillators to be coupled via similar variables is psim, and the probability of cou-

pling mediated via dissimilar variables is (1− psim).

We find that time-varying coupling forms suppress oscillations in a window of cou-

pling strengths, with the window increasing with the frequency of switching. That is,

more rapid changes in coupling form leads to large windows of oscillation suppression,

with the window of amplitude death saturating after a high enough switching frequency.

Interestingly, for low fsim (psim), the oscillations are revived again beyond this window.

That is, too low or too high coupling strengths yield oscillations, while coupling strengths

in-between suppress oscillations.

Also interestingly, the width of the coupling strength window supporting oscilla-

tion suppression is non-monotonic with respect to fsim(psim), and has a maximum at

fsim(psim) ∼ 0.58. Namely, the largest window of fixed point dynamics arises where there

is balance in the probability of occurrence of the coupling forms.

Focusing on the dependence of the window of oscillation suppression, at fixed coupling

strengths and varying predominance of coupling forms, we observe the following: for

rapidly switched coupling forms, at large coupling strengths, the oscillation suppression

occurs at an intermediate value of fsim (psim). Namely, as the dominance of similar-

variable coupling increases the oscillations are first suppressed, and then after a point the

oscillations are revived again. The fixed point window shifts towards a higher probability

of similar-variable coupling, as coupling strength increases. This is counter-intuitive,

as purely similar-variable coupling yields oscillatory behaviour, while dissimilar-variable

coupling supports oscillation suppression.
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Lastly, we have suggested an effective dynamics that successfully yields the observed

behaviour for rapidly switched coupling forms, including an accurate estimate of the

fixed point window through stability analysis. Thus our results will enhance the broad

understanding of coupled systems with time-varying connections, and may have potential

applications in certain natural and human engineered systems.
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Chapter 6

Summary and future directions

In this thesis, we have focussed on the effect of external systems on a group of chaotic

oscillators, symmetry breaking of oscillation death states in the presence of an external

environment and revival of oscillations via time-varying interactions in oscillators that

are in the oscillation death state. So the main focus of my thesis is on mechanisms that

suppress oscillations or control chaotic oscillations, as well as revive oscillations in the

oscillation death region.

In the first problem of the thesis, we have explored the dynamics of an ensemble of

uncoupled chaotic oscillators where the group is coupled bi-directionally to an external

system. So the oscillators in the ensemble are not directly connected to each other, but

information transfer of their states is mediated by the external oscillator. The model

is reminiscent of a pacemaker controlling the dynamics of a group of oscillators. We

consider the case where the external system is similar to those in the group, as well as

the case where it is dissimilar to the group. The question we focus is the following:

can a single external system control a large number of chaotic oscillators onto regular

dynamical states? In our work, we have considered Rössler oscillators in the group and

varied the external system. First we considered the external system to be similar to

the group, namely the external system was also a Rössler oscillator. We found that

at low coupling strength, all the oscillators were desynchronized. As coupling strength

was increased, after a critical coupling strength, all the oscillators in the group and the

external oscillator, were in complete synchronization. (Note that we considered coupling

strength in the range [0, 1]). So except for the transition to synchronization, no other

significant phenomena emerged for the case of similar external systems.

We then changed the external system to a Lorenz oscillator, i.e. the external system
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was now dissimilar to the oscillator group, and now the results were significantly different.

At low coupling strength, all systems were desynchronized. On increasing the coupling

strength, at some critical value, all the oscillators in the group synchronized, except the

external system. This is not surprising, as the intrinsic dynamics of the external system

is completely different. However the surprising part is that, even though there is no direct

connection between the oscillators in the group, they synchronize while sustaining their

chaotic dynamics. As coupling strength was further increased an interesting phenomenon

emerged: there exists a second critical coupling strength beyond which all chaotic oscilla-

tors in the system went to a suppressed state, i.e. they were all controlled to fixed points.

In this oscillation-suppression regime, the oscillators in the ensemble evolved to one fixed

point, while the external dissimilar system evolved to a different fixed point. The value of

the second critical coupling strength is dependent upon the initial state of the oscillators

and the external system. If the initial conditions are very close to the fixed points, very

low coupling strength is required to suppress the oscillations. As the initial state moves

away from the fixed points, higher coupling strength is required for suppression. But the

important point is that the chaos was suppressed to fixed point dynamics in all cases at

sufficiently high coupling strengths. Since the Lorenz system supports two stable fixed

points, there is bi-stability in the coupled system as well, with two sets of fixed points

arising in the oscillation-suppressed external system depending upon the initial condi-

tions. We have also analysed the system, by calculating the maximum eigenvalue of the

Jacobian of a system consisting of a Lorenz oscillator as the external system, and two

Rössler oscillators in the group. We have shown that the fixed points become stable at

higher coupling strengths, as the maximum eigenvalue becomes negative after a certain

critical coupling strength. This analysis is consistent with the numerical simulations.

For the generality of the work, we have also considered the external system to be a

hyper-chaotic oscillator, namely a system with more than one positive Lyapunov expo-

nent. Now the external system is not only different in dynamical equations, but different

in dimensionality as well. We again found that the chaotic oscillations were suppressed

at sufficiently high coupling strengths. The results shown are independent of system size,

i.e. any number of oscillators can be controlled by this method. So this suggests that our

work is quite general and can be applied to different fields where obtaining a steady state

is important, like in laser systems. Also vice-versa, in some cases suppression of oscilla-

tion is not desired, like in Alzheimer and Parkinson disease, and here too it is important

to find underlying mechanisms that may give rise to oscillation suppression in order to

maintain the oscillatory dynamics.

The second problem is an extension of the idea of controlling chaotic oscillation via
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a single external system. After finding that just one dissimilar external system man-

ages to suppress the oscillations of all oscillators in the group, we then wanted to focus

on the more general problem: What if, instead of the star-like network above, we con-

sider hierarchical networks – would chaos suppression still emerge? Hierarchical networks

combine properties of scale-free topology and high clustering of the nodes and describe

connections characteristic of many real-life networks ranging from metabolic networks to

webpage and social networks. There are different levels in such networks and an element

at a level is connected to those in the level above and in the level below it in the network.

We consider the external system to be at the zeroth level (i.e. “top”) of the hierarchy.

We first considered an external system similar to the rest of the oscillators in the network,

i.e. an external Rössler oscillator. We found that in the coupling range [0, 1], an external

system that is dynamically similar to those in the rest of the hierarchical network does

not suppress the oscillations of any oscillators in the network. It takes coupling strengths

higher than 1.0 to suppress the chaotic oscillations in such a network. We then con-

sider a dissimilar chaotic system as the external system, specifically the Lorenz oscillator.

Remarkably, we now find that the chaotic oscillations are suppressed beyond a critical

coupling strength (< 1.). Interestingly, all the oscillators at all levels get suppressed at

the same critical coupling strength, and oscillators in a level attain the same fixed point,

with the emergent fixed points being different at different levels in the hierarchy. Linear

stability analysis of the system reveals that the oscillations are suppressed and the fixed

point stabilized when the maximum eigenvalue of the relevant Jacobian becomes negative.

To ascertain the generality of our results, we have also considered the external system to

be hyper-chaotic systems, limit cycle oscillators and linear oscillators. We observe that

suppression of chaos occurs for all these external systems. The critical coupling strength

beyond which chaos is controlled depends upon the initial conditions and the nature of

the external oscillator. So in summary, in this chapter we have investigated the behaviour

of hierarchical networks of chaotic oscillators, where at the zeroth level of the hierarchy

we have a single external system that is dissimilar to the rest of the oscillators in the

network. Remarkably, this external system managed to successfully steer the chaotic

oscillators at all levels of the hierarchy onto steady states, at sufficiently high coupling

strengths. So this suggests a potent method to efficiently control chaotic dynamics in a

hierarchical network to stable steady states, by simply coupling to an external chaotic

system. Hierarchical networks are more general than star networks, but the same ques-

tion can be investigated in even more general classes of networks, like random scale-free

networks which are widely applicable models of human-engineered and naturally occur-

ring networks. So a natural extension of the ideas in the first two chapters of this thesis

is to explore the possibility of chaos suppression through a single dissimilar system in
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other broad network classes.

An extension of this work can be made to networks of other topologies, such as a

random scale-free network or a random network. It would be very interesting to ascertain

the nature of the nodes where a dissimilar system can be placed for most effect on the

dynamics of the full system. In the context of control, it would be valuable to find

out what property of the dissimilar node is most influential for suppression of chaos in

different network classes.

In the next problem of the thesis, we have explored another aspect of oscillation

suppression: Oscillation Death (OD) states. Oscillation death is quite interesting in

itself because a system can attain different fixed points. So if we have an ensemble of

oscillators, statistically half of them go to one fixed point and half to the other fixed point,

i.e. the sizes of the basins of attraction for the fixed points of the OD state are equal.

Here we have considered Stuart-Landau oscillators coupled via mean field interaction,

with parameters chosen such that the oscillators are in the Oscillation Death state. We

denote the fixed point of the OD state with positive x-value as the “positive state” and

the other fixed point with negative x-value to be the “negative state”.

The question we wanted to focus on was the following: can the symmetry of the

basin stability of the oscillation death states be broken in the presence of an environment?

As a test-bed of our investigation we have considered a simple exponentially decaying

environment, i.e. if the environment receives no feedback from the oscillators, it will

decay to zero. We have coupled this environment to the group of oscillators in OD

states, and varied the coupling strength and environmental damping constant. For a fixed

value of damping constant, when we increase the coupling strength, the oscillators evolve

preferentially to the negative state from generic random initial conditions. Increasing the

coupling strength further, we find that the basin stability of the negative state jumps

to almost 1 (and the basin stability of the positive state shows a sudden transition to

nearly zero). So the symmetry of the basin stability of the oscillation death states is

significantly broken. The same phenomenon is observed for fixed coupling strength and

varying damping constant. For low damping constant, the symmetry is significantly

broken, and there is a sharp transition from the asymmetric to the symmetric state as

the value of damping constant increases. We have also empirically found an analytic

expression to describe the asymmetry-symmetry transition curve in the parameter space

of environment-oscillator coupling strength and environmental damping constant.

Next, we have focussed on the links between the oscillators and the environment.
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Specifically, we investigate the effect of blinking links or completely disconnected links.

For the scenario of blinking links, we have one more significant parameter to consider:

the fraction of blinking connections. We fix the coupling strength and damping constant

near the transition curve, in the asymmetric region, and increase the fraction of blinking

connections. We find that there is a sharp transition from the asymmetric state to the

symmetric state on increasing the fraction of blinking links, i.e. the fraction of oscillators

in the positive state boosts up to nearly half when the number of blinking connections is

sufficiently high. We have calculated the fraction of oscillators in the positive state in the

parameter space of environment-oscillator coupling strength and environmental damping

constant for a different fractions of blinking connections. It is evident that the transition

curve shifts monotonically in such a way that the symmetric region increases and the

asymmetric region decreases. But this monotonicity is lost, if the links are permanently

broken or disconnected, rather than blinking. When very few oscillators are connected

to the environment, the OD states are almost symmetrically distributed. On the other

hand, when a large fraction of oscillators are coupled to the environment, the symmetry is

broken to a very great extent, for high environment-oscillator coupling strengths and low

environmental damping constants. Interestingly, when half the environment-oscillator

links are disconnected, the symmetry is restored, independent of the damping constant

of the environment and the environment-oscillator coupling strength. In fact, in this case,

exactly half of the oscillators attain positive OD states and the other half attain negative

OD states.

In the last section of this chapter, we have changed the environment. The expo-

nentially decaying environment mimics a situation where the external environment is a

small bath, and so the dynamics of the oscillator group affects the dynamics of the com-

mon environment. Now we have considered a common external environmental system

mimicking a large bath, where the external environment does not get affected by the

oscillator group, rather it acts as a constant drive. Here we also found marked breaking

of symmetry in the basin stability of oscillator death states. When the constant drive is

large, the asymmetry in the OD-states is very large as well, and the transition between

the symmetric and asymmetric state, with increasing oscillator-environment coupling, is

sharp. So this work suggests easy controllability of the basin stability of oscillation death

states and a mechanism to obtain certain states preferentially.

In the last problem of the thesis, we have focussed on the dynamics of two Stuart-

Landau oscillators, interacting with time-varying coupling forms. We have considered two

types of coupling forms: diffusive coupling (coupling in similar variable) and conjugate

coupling (coupling in dissimilar variable). The diffusive coupling form leads to synchro-
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nized oscillations, while conjugate coupling form leads to oscillation suppression. While

time-varying links have been investigated in recent times, time-varying coupling forms

have not been in focus. We considered two different mechanisms of switching coupling

forms, namely, periodic switching and probabilistic switching. We find that time-varying

coupling forms suppress oscillations in a window of coupling strengths, with the win-

dow increasing with the frequency of switching. That is, more rapid changes in coupling

form leads to large windows of oscillation suppression, with the window of amplitude

death saturating after a high enough switching frequency. Interestingly, the oscillations

are revived again beyond this window. That is, too low or too high coupling strengths

yield oscillations while coupling strengths in-between suppress oscillations. Also inter-

estingly, the width of the coupling strength window supporting oscillation suppression is

non-monotonic, and the largest window of fixed point dynamics arises where there is a

balance in the probability of occurrence of the coupling forms. Further, we have analyzed

an effective dynamics of the oscillators under time-varying coupling forms that success-

fully yields the observed behaviour for rapidly switched coupling forms. Our analysis also

provides an accurate estimate of the fixed point window through linear stability analysis.

Thus our results will enhance the broad understanding of coupled systems with time-

varying connections and may have potential applications in certain natural and human

engineered systems.

For future work, one can explore the revival of oscillations in other dynamical systems,

such as a group of neurons, which may be inactive or active. For instance, one can

investigate if a group of inactive neurons that are not bursting, can be revived through

coupling to a small set of active neurons. The significant parameters in such a scenario

would be connection density and the balance of intra-group and inter-group coupling

strengths. We anticipate that our results above will provide the base and intuition for

addressing this class of problems.

In summary, we have explored a broad range of problems concerning the control of

networks of chaotic oscillators including hierarchical networks. Further we have explored

the suppression and revival of oscillations, as well as the phenomena of symmetry breaking

in the basin stability of oscillation death states in coupled nonlinear oscillators. So our

results shed light on the emergent collective dynamics of interactive nonlinear systems,

thus serving to enhance the general understanding of such complex systems.
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[96] Juliette Stehlé, Alain Barrat, and Ginestra Bianconi. Dynamical and bursty inter-

actions in social networks. Physical review E, 81(3):035101, 2010.

[97] F De Vico Fallani, Vito Latora, Laura Astolfi, Febo Cincotti, Donatella Mattia,

Maria Grazia Marciani, Serenella Salinari, Alfredo Colosimo, and Fabrizio Babiloni.

Persistent patterns of interconnection in time-varying cortical networks estimated

from high-resolution eeg recordings in humans during a simple motor act. Journal

of Physics A: Mathematical and Theoretical, 41(22):224014, 2008.

[98] Miguel Valencia, J Martinerie, S Dupont, and M Chavez. Dynamic small-world be-

havior in functional brain networks unveiled by an event-related networks approach.

Physical Review E, 77(5):050905, 2008.

[99] Amr Ahmed and Eric P Xing. Recovering time-varying networks of dependencies

in social and biological studies. Proceedings of the National Academy of Sciences,

106(29):11878–11883, 2009.

[100] Arturo Buscarino, Mattia Frasca, Marco Branciforte, Luigi Fortuna, and

Julien Clinton Sprott. Synchronization of two rössler systems with switching cou-
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