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Abstract

The classification of the local Galois representations using (¢, I')-modules by
Fontaine has been generalized by Kisin and Ren over the Lubin-Tate extensions of
local fields using the theory of (¢4, I'r7)-modules. In this thesis, we extend the
work of (Fontaine) Herr by introducing a complex which allows us to compute co-
homology over the Lubin-Tate extensions and compare it with the Galois cohomol-
ogy groups. We further extend that complex to include certain non-abelian exten-
sions. We then deduce some relations of this cohomology with those arising from
(¢g, I'Lr)-modules. We also compute the Iwasawa cohomology over the Lubin-
Tate extensions in terms of 1,-operator acting on étale (¢, I'zr)-module attached
to the local Galois representation. Moreover, we generalize the notion of (¢,, ['zr)-
modules over the coefficient ring R and show that the equivalence given by Kisin
and Ren extends to the Galois representations over R. This equivalence allows us to

generalize our results to the case of coefficient rings.
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Chapter 1

Introduction

It is well-known that the field R of real numbers is a completion of Q. Besides this,
associated to each prime number p, there is a field QQ,, (the field of p-adic numbers),
which is the p-adic completion of Q. So along with the real world, there is a p-
adic world for each prime number p. Ostrowski’s theorem says that these are all the

possible worlds. But the way these fields interact with each other is very mysterious.

The p-adic Hodge theory entirely lies in the p-adic world. It has two aspects:
an arithmetic aspect to describe and classify the p-adic representations of the abso-
lute Galois group Gk for a finite extension K of @, and a geometrical aspect to

understand the p-adic representations of GG from geometry.

In 1990, Fontaine introduced the notion of (¢, I')-modules in [10]. These (¢, I')-
modules, which are utterly algebraic objects, give a remarkable and useful descrip-
tion of all the p-adic representations of GG in terms of semi-linear algebra, and it is
often easier to work in terms of semi-linear algebra than to work solely with Galois
representations. A ring, namely &, is the base of the theory of (i, I')-modules.
This theory is the most powerful tool, which is currently available to study the p-adic
representations of GG . For instance, in [14], Ghate-Kumar used a similar technique

to understand p-adic Galois representations.

Let K be a field complete with respect to a discrete valuation whose residue field

1



2 Chapter 1. Introduction

k is finite and of characteristic p, where p is a fixed prime number. In other words, K
is a local field, and we denote by G = Gal(K /K) the local Galois group. Recall
that a Z,-adic representation of G is a Z,-module of finite rank with a continuous
and linear action of Gx. For the Witt ring W (k), let O¢ be the p-adic completion
of W (k)((u)) with the field of fractions €. Here u = ¢ — 1 and ¢ = (g,)nen iS @
generator of the p-adic Tate-module of the multiplicative group G,,, i.e., £ = (€, )nen
such that eg = 1,6y # 1, and €, = &, (see [11, Chapter 4, Lemma 4.13]). Let
K, be the cyclotomic Z,-extension of K in K obtained by adjoining the p™-th roots
of unity to K, H = Gal(K /K.,.) and T' = Gx/H = Gal(K,./K). Then there is a

natural action of I" and a Frobenius ¢ on O¢.

Fontaine’s paper [10] mainly deals with the study of the Z,-adic representations
of the absolute Galois group of a local field K by studying the (¢, [')-module at-
tached to it. In the equal characteristic case ((p, p) case), he constructed a category
of étale p-modules over O¢ and proved that this category is equivalent to the cate-
gory of Z,-adic representations of G'x. Then using the theory of the field of norms
due to Fontaine and Wintenberger [36], he deduced the mixed characteristic case
((0, p) case) from the equal characteristic case. In this case, the category of Z,-adic

representations of G is equivalent to the category of étale (¢, I')-modules over Oe.

This equivalence is a deep result that allows the computation of Galois cohomol-
ogy. In [17], Herr gave a technique to calculate the Galois cohomology by intro-
ducing a complex, namely, the Herr complex. The Herr complex is defined on the
category of étale (o, ')-modules and the cohomology groups of this complex turn
out to match with the Galois cohomology groups on the category of Z,-adic repre-
sentations of G'i. The results of Fontaine, along with this complex, play a crucial
role in all the works pertaining to the computation of the Galois cohomology. In [34],
Floric further extended the Herr complex to the False-Tate type curve extensions to

include certain non-abelian extensions over the cyclotomic Z,-extension.

The well-known works of Colmez, Berger, Wach, and many others has centered
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on the case when K, is the cyclotomic Z,-extension of K. Note that the extension
K.y is obtained by adjoining the p"-th roots of unity to K, and they are the p"-
torsion points of the multiplicative Lubin-Tate formal group G,,, on Q,,, with respect
to the uniformizer p. Thus the cyclotomic Z,-extension is the same as the extension
associated by Lubin-Tate theory to the multiplicative Lubin-Tate formal group. It
is natural to try to carry out this theory for an arbitrary Lubin-Tate formal group F
defined over K. In this direction, there has been a lot of activity in recent years to
develop Fontaine theory for Lubin-Tate formal groups [20], [2], [12], [3], [29], [4],
and [5], where the base field is a finite extension K of QQ, with ring of integers O
and uniformizer .

In [20], Kisin-Ren classified the local Galois representations using the extensions
arising from division (torsion) points of the Lubin-Tate formal group over K. More
precisely, consider a Lubin-Tate formal group F over a finite extension //Q,, and
forn > 1, let K,, C K be the subfield generated by the 7"-torsion points of J, where
7 is a uniformizer of O. Define K, := U,>1 K, and I'f 7 := Gal(K/K). Then
they obtained a classification of G i -representations on finite O x-modules via étale
(g, I'r)-modules, where étale (p,, I'17)-modules are analogues of étale (¢, I)-

modules ( [20, Theorem 1.6]).

1.1 Main results

In this thesis, we compute the Galois cohomology of representations defined over
Ok, and the theorem of Kisin and Ren aids us in this computation. As a generaliza-
tion of the Herr complex, we define a complex, namely, the Lubin-Tate Herr complex
on the category of étale (¢,, 'rr)-modules over O¢ (Definition 5.4.1). Then using
the Lubin-Tate Herr complex, we compute the Galois cohomology groups of repre-

sentations defined over O .

Our work depends heavily on the classification of G/i-representations given by
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Kisin and Ren. First, we observe that Kisin-Ren theorem [20, Theorem 1.6] holds for

dis

0. _tor(G 1) the category of discrete w-primary abelian groups with a continuous

Rep
and linear action of Gg. It is crucial to work with this category as this category
has enough injectives, and this category is equivalent to the category of injective
limits of T-power torsion objects in the category of étale (¢, I, )-modules over O¢

(Proposition 5.1.1). Then we have the following result.

Theorem 1.1.1.(Theorem 5.5.2) For a discrete m-primary abelian group V with a

continuous and linear action of G i, we have a natural isomorphism

HY(Gg, V) =2 H(OTS (Dr(V))) fori>0.

The cohomology groups on the right hand side are the cohomology groups of the
Lubin-Tate Herr complex defined for étale (y,, ['rr)-module attached to V', while
the left hand side denotes the usual Galois cohomology groups of the representation

V.

Then we show that both the cohomology functors commute with the inverse limits
and deduce the above theorem for the case when V' is a representation defined over

Ok (Theorem 5.5.5).

We further extend the equivalence of categories of Kisin and Ren to include cer-
tain non-abelian extensions over the Lubin-Tate extension (Theorem 6.1.2) and show
that the construction of the Lubin-Tate Herr complex for (¢,, I'r7)-modules can be
generalized to (¢, I' L7 pr)-modules over non-abelian extensions, and we call it the
False-Tate type Herr complex (Definition 6.3.1). In this case, we establish the fol-

lowing theorem.

Theorem 1.1.2.(Theorem 6.4.1) Let V € Repl® , (Gx). Then we have

O —tor

H (Gg,V) = %i(qsz,FT(DLT,FT(V))) fori > 0.
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In other words, the False-Tate type Herr complex ®1'} 1. pr(Drr pr(V')) computes

the Galois cohomology of G i with coefficients in V.

Next, we define an operator 1, acting on étale (¢,, I',r)-modules, and then we

prove the following result.

Theorem 1.1.3.(Theorem 7.2.6) Let V € Rep%s , (Gr). Then we have a well-

O —tor

defined homomorphism
H(PTLr(Drr(V)) = H(PT 37 (Drr(V))  fori > 0.
Further, the homomorphism
H(PT 7 (Drr (V) = HO(WT 7 (Drr(V))
is injective.

In particular, if the action of 7; — d is bijective on Ker,, and M is a 7-
divisible module in the category lim Mod%f”’ét’tor of injective limits of 7-power
torsion étale (¢4, I'7)-modules over Og, then the co-chain complexes ®I' (M)
and WI'Y (M) are quasi-isomorphic (Remark 7.2.8). Moreover, we prove similar
result in the case of False-Tate type extensions (Theorem 7.2.11). Next, we describe

the Iwasawa cohomology in terms of the complex associated with 1),. We prove the

following theorem.

Theorem 1.1.4.(Theorem 8.2.3) For any V € Rep%® , (Gx), the complex

O —tor

WD (V (xhxer)) = 0 = Dor(V(xahxer)) 2% Drr(V(xohxir)) — 0,

where ) = Uy (y=ly, 4y COMpuUtes H} (Kw/K,V);>1 the Ivasawa cohomology

groups.
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Thereafter, we use our techniques to deal with the case of coefficient rings. A

coefficient ring is a complete local Noetherian ring with finite residue field.

In [9], Dee generalized Fontaine theory to the case of a general complete Noethe-
rian local ring R, whose residue field is a finite extension of I,. He extended
Fontaine’s [10] results to the category of R-modules of finite type with a continuous
R-linear action of G . He constructed a category of étale p-modules (resp., étale
(i, I')-modules) over K parameterized by R and proved that this category is equiva-
lent to the category of R-linear representations of Gk in the equal characteristic case
(resp., mixed characteristic case) ( [9, Theorem 2.1.27 and Theorem 2.2.1]). The
category of étale p-modules (resp., étale (¢, [')-modules) is defined to be a module
of finite type over the completed tensor product O¢ ®ZPR with an action of ¢ (resp.,
@ and I') as in the case of Fontaine. The core point of the proof is Lemma 2.1.5.
and Lemma 2.1.6. in [9]. Crucial in the proof of the equivalence of categories stated
above, he used the results of Fontaine [10] for the case when the representation V'

has finite length. Then the general case was deduced by taking the inverse limits.

We also extend a result of Kisin and Ren ( [20, Theorem 1.6]) to give a classifi-
cation of the category of R-representations of Gi. We consider the category of étale
(¢q4, Tr)-modules over the completed tensor product O := O &g, R, where the
ring O¢ is constructed using the periods of Tate-module of F. Then we prove that
this category is equivalent to the category of R-representations of G'x. In the equal

characteristic case, we show the following result.

Theorem 1.1.5.(Theorem 9.2.22) The functor V. — Dg(V) is an exact equiva-
lence of categories between Rep (G ) the category of R-representations of G

and Mod%’;t the category of étale p,-modules over O with quasi-inverse functor

Vhr.

In the case of mixed characteristic, we have the following theorem which gives

a classification of R-representations of the local Galois group in terms of étale
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(¢4, I'Lr)-modules over Op.

Theorem 1.1.6. (Theorem 9.2.25) The functor Dy is an equivalence of cate-
gories between Repr(G) the category of R-linear representations of Gy and
Mod%’;”’ét the category of étale (@q,I'pr)-modules over Og. The functor Vg

is a quasi-inverse of the functor Dp.

Then we generalize Theorem 1.1.1, Theorem 1.1.3 and Theorem 1.1.4 to the case
of coefficient rings. The generalization of Theorem 1.1.4 to the case of coefficient

rings allows us to generalize the dual exponential map
EXp* : H}w(Koo/Kv OK(chcXZYI“)) = DLT(OK)wDLT(OK):id

defined in [29] over coefficient rings (Corollary 10.2.2). It is possible that this leads
to the construction of Coates-Wiles homomorphisms for the Galois representations

defined over R.

1.2 Outline of the thesis

In Chapter 2 and Chapter 3, we recall some necessary background that will be used
in subsequent chapters. In Chapter 4, we give a sketch of the proof of the Kisin-Ren
theorem. In Chapter 5, we define the Lubin-Tate Herr complex and compute the
Galois cohomology groups of representations defined over Og. In the next chapter,
we extend the Lubin-Tate Herr complex to include certain non-abelian extensions
and show results in the computation of Galois cohomology. In Chapter 7, we define
an operator 1, acting on the category of étale (y,, I';7)-modules and prove some
results, which give a relationship between the cohomology groups of the Lubin-Tate
Herr complex for ¢, and 1,. We also present our results, which give a relationship
between the False-Tate type Herr complex for ¢, and 1,. In Chapter 8, we compute

Iwasawa cohomology in terms of the complex associated with 1),. Then in Chapter 9,
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we record some significant results on coefficient rings, and we generalize a theorem
of Kisin and Ren over coefficient rings, which in turn allows us to extend our results

over coefficient rings, and these results appear in Chapter 10.



Chapter 2

Some Homological Algebra

In this chapter, we introduce some basic notions of homological algebra to make the
thesis self-contained. In particular, we introduce the notion of double complex, total
complex, and the spectral sequence associated to a double complex. These notions
are very useful in studying the cohomology of the Galois groups. Most of these

notions can be found in [25], [27], and [35].

2.1 Complexes and cohomology

Definition 2.1.1. A co-chain complex (C*®,d*®) is a family {C" },,c7, of abelian groups
or modules together with the maps d" : C" — C™*! such that each composite map

A"l odr . C" — C™*2 is zero.

The maps d" are called the differentials of C*. The elements in the kernel
of d" are called n-cocycles, and the elements in the image of d"~! are called n-

coboundaries.
Definition 2.1.2. Let (C*,d*) be a co-chain complex. Then the n-th cohomology

group of C* is the group of cocycles modulo coboundaries in degree n, i.e.,

i - K,

9
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A co-chain complex (C*,d®) is called bounded if almost all the C™ are zero. A
co-chain complex (C*,d*) is called bounded above (resp., bounded below) if there
is a bound b (resp., a) such that C™* = 0 for all n > b (resp., n < a ). Clearly, a

complex is bounded if and only if the complex is both bounded above and below.

Definition 2.1.3. A co-chain complex map between co-chain complexes (C*®, d%*)
and (D*®,d"*) is a family u* = {u"},cz of homomorphisms u™ : C™ — D" such

that the diagram

dC,n—l dC,n

RN Cn—l on Cn+1 [

lunfl lun lu'nd»l

RN anl D" Dn+1 .
dD,n—l dD,n

commutes, i.e., d?™ o u™ = y™ o d¢™ for all n.

A co-chain complex map sends cycles to cycles and boundaries to boundaries,

and thus induces a map on cohomology groups
H*(u®) : H*(C*®,d%*) — H*(D*,d"*).

Remark 2.1.4. The co-chain complexes form an abelian category. The objects in
this category are, of course, co-chain complexes and the morphisms are given by the

co-chain complex maps.

Definition 2.1.5. A morphism u* : C** — D*® of co-chain complexes is called a
quasi-isomorphism if the map H"(u*) : H"(C*) — H"(D*) is an isomorphism for

eachn € Z.

Definition 2.1.6. A co-chain complex (C*,d*) is called acyclic if H"(C*) = 0 for

all n.

Example 2.1.7. An exact sequence is always acyclic. U
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2.2 -functor

Definition 2.2.1. Let A and B be two abelian categories. Then a (covariant) coho-
mological d-functor between A and B is a family 7" = {T™},,>, of additive functors

" : A — B together with the homomorphisms
§"T(C) = T A)

defined for each short exact sequence 0 - A — B — C' — 0 in A with the

following properties:

(1) ¢ is functorial, i.e., if

0 A B C 0
Ll
0 A B’ C’ 0

is a commutative diagram of short exact sequences in A, then

T™(C) —2 TH(A)

| |

m ! n+1 /

T (C") — T (A
is a commutative diagram in B.

(i) For each short exact sequence 0 - A — B — (' — 0 in A, there is a long

exact sequence
co o TM(A) = T™(B) — T"(C) &5 T (A) — -

in B.

Example 2.2.2. The cohomology functor (H™),>o is a cohomological J-functor

from the category of co-chain complexes to the category of abelian groups. 0

Let 7" and S be two covariant cohomological d-functors. Then a morphism F :

T — Sisafamily F™ : T™ — S™ of natural transformations such that for every
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short exact sequence

0—>A—-B—C—=0,
the diagram

O T(A) —— TY(B) —— TC) —2s TPH(A) —— -
lF"(A) JF"(B) lFﬂ(O) jF"H(A)

o SM(A) s §7(B) —— SU(C) g S(A) -

1S commutative.

Definition 2.2.3. A cohomological d-functor 7" is universal, if given a cohomological
d-functor S and F° : T° — S°, there exists a morphism F : T" — S of §-functors

extending F°.

Example 2.2.4. 1. The cohomology functors (H"),>( are universal J-functors

from the category of co-chain complexes to the category of abelian groups.

2. Let G be a pro-finite group. Then the cohomology functors (H" (G, —)),>o are
universal d-functors from the category of G-modules to the category of abelian

groups. U

2.3 Dimension shifting

Definition 2.3.1. Let A be an abelian category. An object I in A is injective if, for
every monomorphism f : X — Y and every morphism g : X — [, there exists a

morphism i : Y — [ such that the diagram

X#Y

gl
" h
%

I

commutes, i.e., g = ho f.
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Definition 2.3.2. An abelian category A is said to have enough injectives if, for every

object X of A, there exists an injective object / and a monomorphism X — .

Proposition 2.3.3. [27, Corollary 6.49] Let (1™),>¢ and (S™),>0 be families of ad-
ditive covariant functors between A and B, where A and B are abelian categories

and A has enough injectives. If

(i) for every short exact sequence 0 —- A — B — C — 0 in A, there are long

exact sequences
o TM(A) = T™(B) = T"(C) =5 T (A) — -+

and

oo SM(A) = SY(B) = SM(C) L5 §MTHA) = - -

in B with natural connecting homomorphisms,
(ii) TV is naturally isomorphic to S°,

(iii) T"(I) = 0 = S™(I) for all injective objects I and all n > 1,
then T™ is naturally isomorphic to S™ for all n > 0.

Remark 2.3.4. The technique of Proposition 2.3.3 is known as dimension shifting.

2.4 Total complex associated to double complex

In this section, we define the total complex associated to a double complex.

Definition 2.4.1. Let A be an abelian category. A double complex (C**,9°,0") (with
commuting differentials) is a family of objects {C?? € A | p,q € Z} together with
differentials: 9¥ : CP? — CP*+14 called the vertical differentials; and 9" : CP? —
CP4+1 called the horizontal differentials, satisfying 9* 0 ¥ = 0 = 9" o 9" and
oMo d¥ = 9v oM.
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We may picture a double complex C'** as a lattice, where each row C*? and each

column CP* is a co-chain complex (see Figure 2.1).

_9" . ov
6h

s C’p:
ah

- —_ Cp_ )

1,q—1

aU
8h 1 8h
ortla 9" om+
aU
" P4 o ol
6’(}
h h
", or-la 9, cp-
a’U

81}

h
Lg+1 _ 9" |
av

h
,q+1 L} .
61}

h
Lg+l _ 0"
8’(}

Figure 2.1: Double complex C*®

Definition 2.4.2. Let (C**, 9", 0") be a double complex. Then its associated fotal

complex, denoted by Tot(C**), is a single co-chain complex with n-th term

Tot(C**)"

@ P

p+q=n

and whose differential maps d" : Tot(C*®)" — Tot(C**)"*! are given by

=2 0+

pF+q=n

vertlcal degree ah

Proposition 2.4.3. Let (C** 0, 0") be a double complex. Then its associated total

complex (Tot(C**),d*) is a complex.

Proof. Itis easy to check, see [27, Lemma 10.5].

Example 2.4.4. Let (A®, d**) and (B*,d?*) be two co-chain complexes of abelian
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groups. Then their tensor product is the double complex
C*=A"®B*
with C??" = AP @ B p, q € Z, and with the following differentials:
¥ = d*" @ idps, O" = id @ dPH.

The associated total complex Tot(A® ® B*®) is usually called the tensor product of
A® and B°. O

2.5 Spectral sequence associated to double complex

Quite often, spectral sequences arise from double complexes. The spectral sequence
of a double complex is a tool for computing the cohomology of a total complex,

hence for computing the total cohomology of a double complex.

Definition 2.5.1. Let C'** be a double complex. Then we have the natural filtration
F? Tot(C**) of the total complex defined by

FP Tot(C**)" = @ Cn—

i>p

For a double complex (C**, 9V, 9"), assume that there are only finitely many non-
zero C™9 on the line p + ¢ = n for each n. Then the above filtration on Tot(C**)

induces a spectral sequence
EY! = HPT9(Tot(C**))

converging to the cohomology of Tot(C*®). The initial terms EY? are obtained by
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taking the cohomology in direction ¢, i.e.,
EPT = HI(CP*,9M).
The E; terms give a complex
HYC*y - L gaerty L ogeer) L goert) L
whose cohomology yields the Fs terms:
EY = HP(HY(C**)).
One often forgets the F/1-page and calls the spectral sequence

EY = HP(HI(C**)) = HP*9(Tot(C**))

the spectral sequence associated to the double complex C*®.



Chapter 3

Lubin-Tate Theory

This chapter is an elementary and, at the same time, an essential part of this thesis. In
this chapter, we provide an introduction to the theory of Lubin-Tate formal groups,

and we closely follow the exposition given in [6], [16] and [23].

3.1 Formal group laws

Formal groups arise in Number Theory, Algebraic Topology and Lie Theory. In fact,
their origin lies in the theory of Lie groups. In modern number theory, formal group
laws play a crucial role in the study of elliptic curves and the Dirichlet series of

L-functions.

Definition 3.1.1. Let O be a commutative ring. A one-dimensional formal group
law F over O is a formal power series F(X,Y) € O[[X,Y]] in two variables with

coefficients in O such that

(i) F(X,0)=Xand F(0,Y) =Y, ie., F(X,Y)= X + Y mod deg 2,
(i) F(X, F(Y, 2)) = FF(X,Y), 2).

Moreover, if F satisfies

F(X,Y) = TV, X)

17
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then & is said to be a commutative formal group law.

If O has no element which is both torsion and nilpotent, then every one-
dimensional formal group law over O is commutative [16, Chapter I, §6].

In this thesis, a formal group law always means a one-dimensional commutative

formal group law.

Example 3.1.2. Some natural examples of one-dimensional commutative formal

group laws are:

. G(X,)Y)=X+Y (the additive formal group law).

2. Gu(X,)Y)=X+4+Y 4+ XY (the multiplicative formal group law). 0

Example 3.1.3. (Formal group law of an elliptic curve) Let £ be an elliptic curve

given by the Weierstrass equation with coefficient in O, i.e.,
By +ayzy + asy = 2° + a2 + aur + ag
with a; € O. Then the power series

F(z1,20) =21+ 2+ 2—a12120 — CLQ(Z%ZQ + 21222)+

(2a3zf22 + (arag — 3a3)z%z§ + 2a3zlz§’) 4+ -

defines a formal group law on E. For the construction of the power series F'(z1, 22),

see [31, Chapter IV, §1]. O

Sometimes, formal group laws are also referred to as formal groups. A formal
group resembles a group operation, with no actual underlying group. A group, in
the usual sense, can be obtained from a formal group law by selecting a domain on

which the power series converges (see [23, Chapter III, §6]).
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Example 3.1.4. If O is a complete discrete valuation ring with maximal ideal m, then
x—ﬁty = F(z,y) forx,yem

defines a new abelian group structure on m. U

3.2 The logarithm

Definition 3.2.1. [23, p.56] A homomorphism h : F — G between two formal group

laws F and G is a formal power series h(Z) € O[[Z]] such that
h(0)=0 and A(F(X,Y))=G(h(X),h(Y)).
This condition means precisely that /& is a homomorphism between the groups
that one can induce from 5 and G.

Definition 3.2.2. A homomorphism h : F — G is said to be an isomorphism if there

exists a homomorphism A~ : G — F such that

h(h™(2)) = Z = h ' (h(Z)).

Example 3.2.3. Let J be a formal group law defined over O. We define the homo-
morphisms

m]: F—F

for all m € Z such that
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where i(Z) € O[[Z]] is the unique power series satisfying F(Z,i(Z)) = 0.

Then by using induction, it is easy to check that [m] is a homomorphism. This
homomorphism is called the multiplication-by-m map. Moreover, if m is a unit in O,
then

m]: F—F

is an isomorphism. This follows from [31, Chapter IV, Proposition 2.3] U

Example 3.2.4. Let K be a field of characteristic zero. Then the power series log(1+
Z) and exp(Z) — 1 define a mutually inverse isomorphism between G,,, and G, over

K. U

Moreover, we can define log and exp for any formal group law over a field of
characteristic zero. Let F be a formal group law over a field K of characteristic zero.

Then there exists a power series

log4+(Z) = Z mod deg 2

with coefficients in K such thatlogs : I — G, is a homomorphism of formal groups,
1.e.,

log(F(X,Y)) = logg(X) + logg(Y).

Since the linear term of logy(Z) is Z, so the inverse of logs(Z) exists and it is

denoted by exp4. The existence of such a power series follows from [24, Chapter V,

§41.

Proposition 3.2.5. [23, Chapter III, Proposition 6.3] The set Homy (F, G) of homo-

morphisms from F to G is an abelian group with respect to the addition

(P ps ho)(Z) = F(hi(2), ha(Z))

with zero element 0. The abelian group Endy(F) := Home(F,F) is a ring with
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respect to the multiplication
(hl.h2> (Z) = hl (hQ(Z))

with unit element Z.

3.3 Formal modules

Definition 3.3.1. A formal O-module is a formal group J over O together with a ring

homomorphism

O — Endo(F)

a— lal5(Z)
such that [a|5(Z) = aZ mod deg 2.

Definition 3.3.2. A homomorphism of formal O-modules is a homomorphism A :

F — G of formal groups such that
h(lal5(Z)) = [a]g(h(Z)) fora € O.

Example 3.3.3. The multiplicative formal group law G,,, is a formal Z,-module with

respect to the map

Zp — Endzp<Gm)
a —lalg,, (Z)

—(1+2)" -1

:Z:l (Z)Z" O
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3.4 Lubin-Tate modules

In 1965, Lubin and Tate introduced a group law, namely the Lubin-Tate formal group
law. A Lubin-Tate group law is a formal group over a local field of characteristic zero
with an endomorphism of a specific form. This group law plays an essential role in
constructing the totally ramified extensions of local fields.

Throughout this thesis, we fix a local field (X, |.|) of characteristic 0 with the ring
of integers Oy, maximal ideal my, and residue field % of characteristic p > 0. Let
7 be a prime element of O, card(k) = ¢ and ¢ = p" for some fixed r. Let Kbea

fixed algebraic closure of K with the ring of integers O ;- and maximal ideal m.

Definition 3.4.1. A Lubin-Tate module over O for the prime element 7 is a formal
O gr-module F such that
[7]4(Z) = Z9mod 7.

Example 3.4.2. The multiplicative group G,,, is a Lubin-Tate module for the prime
p, since

Ple..(Z) = (1+ Z)’ — 1= Z" modp. 0

Remark 3.4.3. Any two Lubin-Tate modules for one prime element 7 are isomorphic
over Ok. Also, two Lubin-Tate modules associated with two different primes 7; and
o can never be isomorphic over O. This follows from [23, Chapter 1II, Theorem

6.7].

We can obtain an O x-module, in the usual sense, from a formal O x-module by

choosing a domain on which power series converges.

Proposition 3.4.4. [23, Chapter III, Proposition 7.1] Let F be a formal O i -module.

Then the set mj together with the operations

x —;— y:=F(r,y) and a.x = als(x),
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where x,y € mg,a € Ok, is an Ox-module in the usual sense, which we denote by

F(mg).

Remark 3.4.5. If h : § — G is a homomorphism (resp., isomorphism) of formal

O -modules, then

is a homomorphism (resp., isomorphism) of O x-modules.

3.5 Tate-module of a Lubin-Tate module

Let 3 be a Lubin-Tate module for a prime element 7 of O .

Definition 3.5.1. The group of 7"-division points of F is defined as

F(n) = {\ € F(mg)|7"\ = 0}
= {A € F(mg)|[7"]z(A) = 0}

= Ker([7"]5).

Note that the group F(n) is an O g-submodule of F(my), and since it is annihi-
lated by 7" Ok, so it is an Ok /71" O g-module. Moreover, F(n) is a free O /7" O k-

module of rank 1 [23, Chapter III, Proposition 7.2].

Next, we define the Tate-module of a Lubin-Tate module F. Consider the exact

sequence

0= F(n) — F(mg) % Fmz) - o,
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where F(n) = Ker([7"]). Then the Tate-module of F is defined as the following

TF = @?(n),

neN

with the transition maps

F(n+1) = F(n)

a — [7]ga.

The Tate-module TF is a free O x-module of rank 1. Let v = (v,,),en be a generator

of TF. Then TF = Ok.v is equipped with the following O x-action

AV = (A Vn)nens An € O, A = A, mod 7" 0.

3.6 Lubin-Tate extensions

For a Lubin-Tate module J for a prime element 7 of O, we have

F1)CFQ2)C...Fn)C....

Then by adjoining these subsets to /&', we get a chain of algebraic extensions

KCK =K@F1)C...CK,=K(JFn)C...CKy:= GKngf(.

Definition 3.6.1. A Lubin-Tate extension of a local field K is an abelian extension
of K obtained by adjoining the group of m-division points of the Lubin-Tate module
to K.

Remark 3.6.2. The Lubin-Tate extensions depend only on the choice of the prime

element 7, not on the Lubin-Tate module J for 7. For more details see [23, Chapter
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III, §7].

Proposition 3.6.3. [23, Chapter III, Theorem 7.4] For all n > 1, the extension
K, /K is totally ramified abelian extension of degree (q — 1)q" 1 with the Galois

group
Gal(K,/K) = (O /7" 0k)™.
Moreover, this isomorphism fits into the following commutative diagram

Gal(Kp1/K) —— (O /7" Ok)*
restrictionJ{ Jprojection

Gal(Kn/K) e — (OK/WHOK)X.

o~

Since Gal(K,/K) = Jim Gal( K,/ K), therefore by passing to the projective limits,

n
we obtain the isomorphism

Gal(Ko/K) = O%.
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Chapter 4

Galois Representations

In this chapter, first, we give an overview of Fontaine’s theory of (¢, [')-modules.
Next, we prove a theorem, which is due to Kisin and Ren [20]. This theorem is a
generalization of Fontaine’s theory of (y, I')-modules.

Recall that K is a finite extension of QQ,, with its algebraic closure K. Let Gg :=

Gal(K /K) be the absolute Galois group of K.

4.1 Fontaine’s theory: an overview

The possibility of converting the study of the p-adic representations of G i into the
investigation of the (, I')-modules is the founding point of Fontaine’s theory. A p-
adic representation of Gk is a finite dimensional Q,-vector space with a continuous
and linear action of G .

In [10], Fontaine introduced a new technique to study the p-adic representations
of the absolute Galois group. He proved that these representations could be investi-
gated by the study of the étale (¢, I')-module, which is an algebraic object attached to
the representation. To achieve this, he decomposed the Galois group along a totally
ramified extension of K, by using the theory of the field of norms. This extension

was obtained by using the cyclotomic tower associated with the multiplicative group

27
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G-

Then he constructed a functor I from the category Repg, (Gk) of p-adic repre-
sentations of G i to the category Modfér’ét of étale (¢, I') modules over the discrete
valued field €. Recall that a ¢-module over € is an E-vector space M with a map
oy - M — M, which is semi-linear with respect to ¢. We say that M is étale if
dimg M < oo and if there exists an O¢-lattice M’ of M such that M’ is an étale
¢-module over O¢ and is stable under the action of . An étale (p, I')-module over
€ is an étale o-module over € together with a continuous and semi-linear action of

I', which commutes with the action of (. The functor D is defined as follows.

Let V' be a p-adic representation of G'i. Define
D(V) := (& @g, V)",

where Ev7 is the completion of the maximal unramified extension of €. The group H
is the kernel of the cyclotomic character Xc,. : Gx — Z,,i.e., H = Gal(K/ Keye),
where K., is the cyclotomic Z,-extension of /K obtained by adjoining all p"-th
roots of unity to /' and roots of unity to K. The group I' is the image of Xy,
ie., ' = Gx/H = Gal(K.,./K). The residue field £ of € is the same as the
field of norms of the extension K.,./K. There is an action of the group I" and the
Frobenius ¢ on &, and these actions commute with each other. Note that ¢ is a lift of
absolute Frobenius on £. Then he proved that this functor D gives an equivalence of
categories between the category of p-adic representations of Gx and the category of

étale (o, I')-modules over €.

4.2 The Kisin-Ren equivalence

For any n € N, the p"-th roots of unity are the p”-torsion points of the multiplicative
Lubin-Tate formal group G,,, on Q,, with respect to the uniformizer p. Therefore the

cyclotomic extension is the same as the extension associated with the multiplicative
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Lubin-Tate formal group G,,. It is natural to try to carry out this theory for an ar-
bitrary Lubin-Tate formal group defined over any finite extension K of Q,. In this
direction, Kisin and Ren established a significant result [20, Theorem 1.6], which is a
base of this thesis. For the convenience, we recall the construction of the equivalence
of categories proved by Kisin and Ren.

For a local field K of characteristic 0 with residue field k, let W = W (k) be the
ring of Witt vectors over k and K = W[%] be the field of fractions of W. Then K
is a maximal unramified extension of Q, contained in K. For an O, -algebra A, we
write A = A Roy, Ok.

Let J be the Lubin-Tate group over K corresponding to the uniformizer 7 of O .
As in [20], we fix a local co-ordinate Z on J such that the formal Hopf algebra O5
is identified with Ok [[Z]]. For any a € O, write [a]5(Z) € Ok[[Z]] = O for the
power series giving the endomorphism of J.

Let K, be the Lubin-Tate extension of K. Let Hx = Gal(K/K.,) and I'yr =
Gr/Hik = Gal(K4/K). Let TF be the p-adic Tate-module of F. Then TF is a free
O x-module of rank 1. The action of G on TJF factors through I';1 and induces an
isomorphism 7 : 'y — OF%. This follows from section 3.6.

Let R = @ O /PO, where the transition maps in the inverse limit are given
by the Frobenius . The ring R can also be identified with @ O /7m0, and the
transition maps being given by the ¢-Frobenius ¢, = ¢", where ¢ is the Frobenius
map and r = log, g, i.e., ¢ = p". The ring R is a complete valuation ring, and it is
perfect of characteristic p. The fraction field Fr(R) of R is a complete, algebraically
closed non-archimedean perfect field of characteristic p. Then we have a map ¢ :
TF — R, which is induced by the evaluation of Z at w-torsion points. Let v =
(Un)n>0 € TF with v, € F(n) and T.v,11 = vy, then L(v) = (VE(Z) + 7Ok )n>0-
Moreover, we have the following lemma, which follows from [7, Lemma 9.3]. More

details are given in [28, §2.1].

Lemma 4.2.1. [20, Lemma 1.2] There is a unique map {} : R — W(R)x such
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that {x} is a lifting of x and ¢,({z}) = [7]5(x). Moreover, {} respects the action of
Gk. In particular, if v € TF is an O k-generator, there is an embedding O i [[Z]] —
W(R) sending Z to {1(v)}, which identifies O[[Z]] with a G k-stable, p,-stable
subring of W (R) i such that {.(TF)} lies in the image of O|[[Z]].

Note that the G'x-action on O [[Z]] factors through I' 7, and we have ¢,(Z) =
(7)5(Z) and 04(Z) = [a]5(Z), where o, = x;r(a) for any a € O}, which is well-
defined as x 1 : ' — Of is an isomorphism. Now, fix an O x-generator v € TF
and by using Lemma 4.2.1, identify Ox[[Z]] with a subring of W (R) by sending Z
to {¢(v)}.

Let O¢ be the m-adic completion of O[[Z]][£]. Then O is a complete discrete
valuation ring with uniformizer 7 and the residue field k((Z)). Since W (R) is 7-

adically complete, we may view
O CW(R)xk C W(Fr(R)) k-

Let Ogur C W (Fr(R))x denote the maximal integral unramified extension of Og,
and O, the -adic completion of Og.r, which is again a subring of W (Fr(R))xk.

Let £, &Y and &u denote the field of fractions of O, Ogur and O, respectively.

These rings are all stable under the action of ¢, and G i. Also, the G g-action factors

thI’Ollgh I'ir.

Lemma 4.2.2. [20, Lemma 1.4] The residue field of O is a separable closure of

k((Z)), and there is a natural isomorphism
Gal(€" /&) = Gal(K/Ky).
Proof. Let F' be a finite extension of K. Define

X (F) = lim(F.K,),

n



4.2. The Kisin-Ren equivalence 31

where F.K, is the composite of F' and K, and the transition maps in the inverse
system are given by the norm maps. Then X (F') is a local field of characteristic p,

which is a finite separable extension of X (K') ( [36, Theorem 2.1.3]). Put

Xk (K)=UpXk(F),

where the union runs over all the finite extensions F' of K contained in K. Then

Xk (K) is a separable closure of Xy (K'), and the functor X, induces an isomor-

phism ( [36, Theorem 3.2.2])
Gal( Xk (K)/Xk(K)) = Gal(K/Ky).
Note that we have well-defined maps of rings

lim O, — lim O, /(v1) <= lim O /7O = R, 4.1)

where the transition maps in the first two inverse limits are given by the norm maps
and in the final inverse limit by x — x9. Thus the field X x (K) is naturally embedded
in Fr(R), i.e., Xx(K) < Fr(R). For more details, see [36, §4]. The image of (4.1)
is k[[Z]] € R thus k((Z)) C Fr(R). Now identify F := k((Z)) = O¢/mO¢ with
Xk (K), then it follows that E*P := Qgur /TOgur C Fr(R) is identified with X (K).

Therefore

Gal(E*?/E) = Gal(K /K).

Since £¥" is unramified extension of €, we have
Gal(E¥ /&) = Gal(E*?/E).
This completes the proof of the lemma. |

Next, the following lemma is an easy consequence of the definition of O ;.
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Lemma 4.2.3. Under the natural actions of Gg and ¢, on O ;, we have

Eur?

(i) (O -)6F = O,
(ii) (O — )P~ = O,

Proof. (i) Clearly, we have O¢ < (O;)“". Moreover, this is an inclusion of 7-
adically complete and separated local rings, so it is sufficient to prove surjectivity

modulo 7" for n > 1. We use induction on n. We have an exact sequence

0= (0gz) = (Og) = B =0

Eu’r‘)

of Og-modules, and by taking GG g-invariants, this induces an injection
(0g)% /() = (B*")°F = B

of O¢/(m) = E-modules. Since E is a field, so the inclusion map is a bijection, i.e.,

OE — (OA

Su'r)GE

is surjective modulo . Now assume that the map Og — (O @)GE

is surjective modulo 7"~ . Then we have the following commutative diagram

0 —— Og/m0g ———— O¢ /7" ———— O /7" 10 ——— 0

J | J

0 —— (OSM)GE/W — (OSM)GE/W — (OSM)GE/W" L0

with exact rows. By using the Five lemma ( [21, Chapter I1I]), it follows that the map

Q¢ — (OA

EM)GE is surjective modulo 7.

(i1) First, we show that the sequence

/70 2 O 70 — 0 4.2)

0—)OK/7T O — 0~ gar

Euv‘
is exact for n > 1. Since we have an exact sequence

id
0— k— EP 220, pser ),

r—xd—x
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1.e., the sequence (4.2) is exact for n = 1. Assume that the sequence given by (4.2)

is exact for n — 1. Now consider the following diagram.

0 0 0

0 Ox/10x ———— 0 /105 — " s 0z /10— 0

0 —— Ok /1" ———— O /7O — 20 O /70 7 ——— 0
Pq—id

0 — Og/m" 10 ——— O(@/W7”71(‘)Efw — O(@/F’L710§w — 0

This is a commutative diagram of abelian groups such that each column is exact.
Moreover, the top and the bottom rows are also exact by induction hypothesis. Since
w4(x) = z for x € Ok, then Ox /1O C Ker(p, — id), i.e., the middle row is a
complex. Then by using 3 x 3 lemma ( [35, §1.3]), we deduce that the middle row is
also exact. Therefore we have an exact sequence

0= O /7" 0k = O /707 2% 0 /70 — 0, forn > 1,

Since the projective system {O /7" Ok },>1 has surjective transition maps, passing
to the projective limit is exact and gives us an exact sequence

pq—id
0—>(‘)K—>O(@q—>(‘)5\w—>0.

Hence, (0 )%= = Ok. |

Remark 4.2.4. Since it follows from Lemma 4.2.2 that Gal(E**?/E) = H. Then
we have

(0g) K = Og.
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Definition 4.2.5. Let x be a field of characteristic p > 0. Then the Cohen ring C(k)
of x is the unique (up to isomorphism) absolutely unramified discrete valuation ring

of characteristic 0 with residue field x.

The subring O¢ C W (Fr(R)), which is constructed using the periods of TF, is
naturally a Cohen ring for £ = X (K). Moreover, by Lemma 4.2.2, we have

~

The G -action on R induces a G -action on W (Fr(R))x and the rings O¢, Ogur

and O oo are stable under the action of G . On the other hand, G acts on O e by

continuity and functoriality and these actions are compatible with the identification

of Galois groups Hy — Gp.

Definition 4.2.6. A p,-module over O¢ is an O¢-module M with amap ¢y, : M —

M, which is semi-linear with respect to g-Frobenius ¢,, i.e.,

om(r+y) = om(x) +omy),

par(Ar) = g (Ao (),

forall x,y € M and A € Og.

For a p,-module M over Og, let My, = M , ®, O¢ denote the base change of
M by O¢ via ¢,. Then a semi-linear map @y, : M — M is equivalent to an O¢-linear

map OY7 : M, — M.

Definition 4.2.7. A p,-module M over Og is étale if M is an Og-module of finite

type and the map @4 : M, — M is an isomorphism.

Let V be an O -module of finite rank with a continuous and linear action of G .

Then consider the ¢,-module:

Drr(V) := (0 Qo, V)75 = (0g5 Qo, V)97,
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The action of G on O aor Dok V induces a semi-linear action of G /Hx = T'pp =

GaI(KOO/K) on DLT(V)

Definition 4.2.8. A (yp,, I'Lr)-module M over O¢ is a ¢,-module over O¢ together
with a continuous and semi-linear action of I';7, which commutes with the endo-

morphism ¢, of M. We say that M is étale if it is étale as a ¢,-module.
Now we consider the following categories:

* Repy, (Gx) = the category of finitely generated free O i-modules with a con-
tinuous and linear action of G .

* Repy, 4, (Gk)=the category of finitely generated torsion O x-modules with
a continuous and linear action of G .

. Mod%f”’ét = the category of finitely generated free étale (¢,, I'7)-modules
over Og.

. Mod%’:”’ét’tor = the category of finitely generated torsion étale (¢ , I'r7)-
modules over Og.

Then Dy is a functor from Rep, (Gx) (resp., Repy,. ,.(Gk)) to Mod“fg’rLT’ét

(resp., Modfg’;”’ét’m), and this follows from [20]. Moreover, D, is an additive
functor and this follows from [10, A1, 1.2.2].

Let M € Mod%’f”’ét (resp., Mod%f”’ét’tm). Then consider the G-
representation:

Vir(M) = (05 ®o, M)#@en=id,

Here G acts on O zor a8 before and acts via ', on M. The diagonal action of G g

on O ®o, M is ¢, ® ppr-equivariant, which induces a G k-action on Vir(M).

Remark 4.2.9. Using similar proof as that in [10, A1, Proposition 1.2.4 and 1.2.6],

we have that the functors D and V1 are exact functors and the natural maps

Oé‘; ®o€ DLT(V) — Og/u\r ®OK ‘/,

OE/\“T Ko VLT(M) — OE/\’” ®o£ M
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are isomorphisms.

In particular, we have the following result, which is established in [20, Theorem

1.6].

Theorem 4.2.10 (Kisin-Ren). The functors
V= DLT(V) = (OE/\W ®OK V)HK and M — VLT(M) = (OS/“T” ®o€ ]\/[)‘pq@ﬂM:id

are quasi-inverse equivalence of categories between the category Repy, (Gk)

(resp., Repy,. _1,,(Gi)) and Mod%f”’ét(resp., Mod%’:”’ét’m).

Sketch of the Proof. Note that for any V' € Repy, (G ), we have
V = lim V/m"V.

Using this isomorphism, it is enough to show that the functors Dy, and V are
quasi-inverse equivalence of categories between the category Repy,. ;,,.(Gx) and
Mod%f"’ét’wr and then the general case follows by passing to the inverse limits.

Now let V' € Repgy, ,(Gk). Then by using Remark 4.2.9, we identify
O ®o, Drr(V) with O ®o, V. Then

Vir(Drr(V)) =0z ®op Dpp(V))$a29rir0) =4

g(ogﬁ ®OK V)t,oq®id:id

_(O@)‘Pq:id ®OK 1%

=0k Kok |4
=V,

Here the second isomorphism follows from the above identification and the fact that

g acts trivially on V. The fourth equality follows from part (i1) of Lemma 4.2.3.
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Tpr,éttor
d‘Pq7 &by
/O¢

Similarly, for any M € Mo , we have

Drr(Vir(M)) =0z ®o, Vir(M))™s

~ (0 ®o, M)"E

:Og ®o€ M

=M,

where the second isomorphism follows from Remark 4.2.9 and the fourth equality

comes from Remark 4.2.4. This proves the theorem. |

Remark 4.2.11. Instead of K if we choose any finite extension, say F’, of K then

we also have the above equivalence of categories for O p-modules.

Lemma 4.2.12. The category of finitely generated G -modules defined over O i has

no non-zero injectives.

Proof. Let I be an injective object in the category of finitely generated GG x-modules
over Og. Then I is a finitely generated O x-module with a continuous and linear ac-
tion of G ;. Now by structure theorem for finitely generated modules over a principal
ideal domain, we have

I120¥ aT,

where 7' is a finite torsion module over O x. Note that [ is injective as an O x-module.
Since O is a principal ideal domain, so [ is also 7m-divisible. Let 7¢ be an annihilator
of T'. Now consider the map

iy

Then this map sends 7' to zero. So multiplication by 7° map can not be surjective,
unless 7" = 0. Thus

=
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Again, multiplication by 7 map is not surjective on /, unless r = 0, as we know the
sequence

0—>OK1>OK—)OK/7TOK—>O

is exact. Therefore



Chapter 5

Galois Cohomology over the

Lubin-Tate Extensions

This chapter is a part of [1]. In this chapter, we define a complex, namely, the Lubin-
Tate Herr complex (Definition 5.4.1), and then using that complex, we compute the
Galois cohomology groups in terms of étale (¢,, ' r)-modules. To achieve this,
first, we decompose the Galois group GG along the Lubin-Tate extension of K, and
then we establish Proposition 5.2.5 and Proposition 5.3.7. These two results help us

to deduce our main result (Theorem 5.5.2) of this chapter.

Following the notations of Chapter 4, by Theorem 4.2.10, we know that the func-
tor Dy is an equivalence of categories between the category of finitely generated
Og-modules with a continuous and linear action of Gi and the category of étale
(g, I'r)-modules over Og. Since injective objects do not exist in the category
of finitely generated Ojx-modules with a continuous and linear action of Gk (see
Lemma 4.2.12). Thus the category Repy, (G ) does not have enough injectives.
Therefore we extend the functor D1 to a category that has enough injectives as we

are going to use injective objects to compute cohomology groups.

39
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5.1 Equivalence of categories

Let Rep?® , (Gk) be the category of discrete m-primary abelian groups with a

Ok —tor

continuous action of G'i. Then any object in this category is the filtered direct limit

of T-power torsion objects in Repg, _;,.(Gr). In fact, if V € Rep$?_,, (Gk),

O —tor

then
V = U V{r"™,

where V"] is the kernel of the multiplication by 7" map on V. Here each V"] is

dis
O g —tor

G k-stable. Since Gk is a pro-finite group, the category Rep (G k) has enough

injectives [25, Chapter II, Lemma 2.6.5].

Now we extend the functor Dy r to the category Repéizftm,(G k). Let V be a
discrete m-primary abelian group on which the Galois group G i acts continuously,
then we define

DLT<V) = (ngu\r ®OK V)HK

Since V is the filtered direct limit of 7-power torsion objects in Repg, _4,,(Gx) and
both the tensor product and taking H -invariants commute with the filtered direct

limits, so the functor D;+ commutes with the filtered direct limits. Therefore D+ is

wq,.I'L1,éttor

an exact functor into the category hg Mod 705 of injective limits of m-power

. . . (%2} ,FLT,ét . . %) ,FLT,ét,tO’!’
torsion objects in Mod 705 . Now for any object M € hﬂl\/[od 705 ,
define

VLT(M) = (Og/u\r Ko, M)‘Pq®90M:id‘

The functor V+ also commutes with the direct limits. Then we have the follow-
ing proposition, which shows that the equivalence of Theorem 4.2.10 extends to the
category of discrete 7-primary representations of G, and this is an important step

towards our main theorem.

Proposition 5.1.1. The functor D1 is a quasi-inverse equivalence of categories be-

tween Repd*® (Gk) and hg Mod%’:”’ét’tor with quasi-inverse V.

O —tor
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Proof. By Theorem 4.2.10, we know that the functors D, and V1 are quasi-inverse
equivalence of categories between Repy, _,,.(G) and Mod%’:”’ét’tor. Moreover

dis

OK—tor(GK), we have

for any V' € Rep
V= liﬂVn

with V,, € Repy,. 4, (Gx) for n > 1. Since the functor Dz commutes with the
direct limits, i.e.,

]D)LT(V) = @DLT(V»,J.

Moreover, the functor V; also commutes with the direct limits. Then the proposi-

tion follows from Theorem 4.2.10 by taking direct limits. |

5.2 The ¢°* complex

Let p an odd prime number. Define D*? := O, ®g, V. Since O Qo V =

Sur Euv‘
Oz ®o, Drr(V) (Remark 4.2.9). Thus D*P = Oz ®o, Drr(V).

Definition 5.2.1. Define the co-chain complex ®*(D*?) as follows:
(D) : 0 — D LEELT psen ),

where ©Yp = @DLT(V)'

Remark 5.2.2. Throughout this thesis, we assume that each complex has the first

term in degree —1 unless stated otherwise.

Lemma 5.2.3. For any V € Rep$?®_,,, (Gx), let V[0] be the complex with V in
degree 0 and 0 everywhere else. Then the augmentation map V[0] — ®*(D*P) is a

quasi-isomorphism of co-chain complexes.

Proof. By part (ii) of Lemma 4.2.3, we know that the complex ®°(E*?) is acyclic
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in non-zero degrees with O-th cohomology equal to k, the augmentation map
E[0] — ®°(E*P)

is a quasi-isomorphism. Next, observe that O /7™ is flat as an O /7"-module.
This follows as we know O@ is flat as an Og-module, and we also have a ring
homomorphism Ox — Ok /7™. Now by using [21, Chapter X VI, Proposition 4.2],
Ogm Qox Ok /7™ is flat as an O i /7"-module. By tensoring the short exact sequence
0= Ox ™ Ok = O /7" — 0 with O, we have O, ®o, O /7" 2= O /7"

Thus Og; /7" is flat as an O /7" -module. Then by dévissage (by using Five lemma

as explained in part (i) of Lemma 4.2.3), the augmentation map
Ok /7"[0] = ®*(O7./7") (5.1)

is also a quasi-isomorphism as each term in both complexes is a flat O /7"-module.
If V is a finite abelian w-group then it is killed by some power of 7, and we have
P*(D*P) = &*(Oyz /T") R0y fan V. Since V' is free O /7"-module, tensoring with

V' is an exact functor. Thus tensoring (5.1) with V', we get
V[0] — ®°*(D*P)

is a quasi-isomorphism. As the direct limit functor is exact, the general case follows

by taking direct limits. |

Lemma 5.2.4. H'(Hg,O0g; /7") =0 foralln > 1andi > 1.

Proof. Since we have an exact sequence

0= 0@ /100 = O /70 = O /7" 1O — 0.
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Then by dévissage (by the long exact cohomology sequence), we are reduced to the
case n = 1, i.e., we only need to prove that H'(Hg, E*%?) = ( for all ¢ > 1. But this

is a standard fact of Galois cohomology [25, Proposition 6.1.1]. |

Proposition 5.2.5. For any V € Rep{®_,, (Gk), we have H'(®*(Dyr(V))) =

Hi(Hg,V) as T pp-modules. In other words, the complex ®*(Dyr(V)) computes
the Hy-cohomology of V.

Proof. Assume that V' is finite. By definition,
DLT(V> = (Og/u\r R0y V)HK - (Dsep)HK.

So the complex ®*(D (V) is the H g-invariant part of ®*(D**P). Since V is finite,
the terms of ®*(D*?P) are of the form D**? = E*? @y Dy (V) and are acyclic
objects for the H i-cohomology by using Lemma 5.2.4. Then it follows from Lemma
5.2.3 that H'(®*(Drr(V))) = H'(Hg,V) as I'pp-modules. As both the functors
Hi(®*(Drr(—))) and H'(Hg, —) commute with the filtered direct limits, the general

case follows by taking the direct limits. |

Let A be the torsion subgroup of ', and Hj, the kernel of the quotient map
Gk —» I'pr - I'jp =T /A. Then A is isomorphic to yi,_;.

If the order of A is not prime to p, then we choose a finite p-extension F' of K
such that torsion part of Gal(K/F) is prime to p. In that case, Kisin-Ren theorem
allows us to compute G = Gal(K /F)-cohomology of V. Therefore, without any

loss of generality, we can assume that the order of A is prime to p.
Proposition 5.2.6. The complex ®*(Dyr(V)?) computes the H}.-cohomology of V.

Proof. Since the order of A is prime to p, the p-cohomological dimension of A is
zero. Moreover, the isomorphism Hj,/Hx = A gives the following short exact
sequence

0= Hxg — Hj; — A —0.
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Now the Hochschild-Serre spectral sequence gives an exact sequence
0— H'(A, V") —» H'(H},,V) — H' (Hg,V)® = H*(A, V%) — H*(Hy, V).

Since the p-cohomological dimension of A is zero, i.e., Hi(A, VHK) =0for: > 1.

Now the result follows from Proposition 5.2.5. |

5.3 The '}, complex

E3 ~Y

Note that I} ;- is torsion-free. Assume that I}, = @?_, Z, as a Z,-module, where

d is the degree of K over Q,. Let I'7 be topologically generated by the set X :=

(V1,725 - -5 Va)-

Definition 5.3.1. Let A be an abelian group with a continuous and linear action of

I} 7. Then we define I'} .(A) as follows:

(A 0-A-PA—-— H A—- =5 A=0,
11€X {Z'l ..... lr}e(f)

where (f) denotes choosing r-indices at a time from the set X, and for all 0 <
r < |X| — 1, the map dfll """ i1 . A — A from the component in the r-th term

..... i

corresponding to {iy,...,i.} to the component corresponding to the (r + 1)-tuple

{j1,--.,Jrs1} is given by

i _ ) 0 if i, ..y ink € {1y drin ks
o (=1)% (y; —id) if {j1, -, Jre1} = {i1, .- i U {5}

Here s, is the number of elements in the set {7y, ..., 4, }, which are smaller than j.

Remark 5.3.2. The above definition is motivated by the definition of Koszul com-

plex.
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Proposition 5.3.3. Let A be an arbitrary representation of the group 1'; . Then

'S 1 (A) is a complex.

Proof. Since A is a representation of '}, A is also an Og/[[['} ;]|]-module. Note
that A ®o s, Ox|[[['17]] = A. First, we show that I'7 7 (O [[[';7]]) is a com-
plex. Let @; cx Ox[[I';r]] be a free module with ordered basis {eq, e, ..., €4}
and @, ine( >OK[[FLT]] be a free module with basis {e;, A --- A e;. } with

11 < 1y < --+ < i,. Then the boundary maps are given by the following

d: @ Okt 7]l — @ Ok |[T7r]]

{i1,0eey lr}e(f) {j1,--- jr+1}6(7,§1)

dleg, N+ Nei) :z:dj1 """ jr“(e]1 Ao Nej Nejy)

1500y ir

=) (=1)%(y; —1)(es, A= Neg; Nej A= Ney,),

where s; is the number of elements in the set {iy,... 4.} smaller than j, and the

maps d """ ]T“ are as defined in Definition 5.3.1. Then

.....

d
(dod)(ejy N-+-Ney,) = (Z D% (v —1)(eiy, A= Neg, ANej A+ A e,ﬂ)

d d
=D (1" (e =)D (=1)% (5 — 1)(es, A+ Nes, Nej
7=1

t=1

/\~-~/\est/\6t/\---/\eir).

Here s; is the number of elements in the set {iy, ..., 4.}, which are smaller than t.
Note that in the above summation, each term appears twice, so each term has two
coefficients. Now for j < ¢, we compare the coefficients of the terme;; A--- Aeg, A
ej N+ Nes, Aeg A+ Ae;,. The coefficient is (—1)%+5+ (v, — id)(v; — id) if we

introduce e; first and e; second. Similarly, by introducing e, first and then e;, we get
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(—=1)*%i(y; — id)(y, — id) as the coefficient of the term e;; A--- Aeg, Aej A--- A
es, N e A\ --- N\ e; . Since ; commutes with 7, and the coefficients are of opposite
parity. Then it follows that d o d = 0, i.e., I'}; (Ok[[[}.1]]) is a complex.

Note that
I7r(A) =17 (Ok[[Tir]]) ®ok ey, A

Therefore, I'} (A) is also a complex. |

We write the complex I'Y .(A) for the case d = 2 and 3.

Example 5.3.4. Let d = 2. Then the complex I'$ - (A) is defined as follows:

TS0 (A):0— A% ggy g 220 4y

where

v1 —id
Ag = , AL = |:*(’72*’L'd) 'ylfid}- O
Y2 —id

Example 5.3.5. Let d = 3. Then the complex '} (A) looks like as the following

FiT<A) L0 — A Ao A@g r— AT A@g Aoz A 0,

where
Y1 —id —(y2 —id) Y1 —id 0
Ao = Y2 —id , AL = 0 7(’}/371'(1) o —id|
v3 —id —(v3 —id) 0 v —id
Az = {73 —id 1 —id  —(y2 — id)} : U

Lemma 5.3.6. The functor A — H'(T'%1(A))i>o0 is a cohomological d-functor.

Moreover, if A is a discrete representation of I, then H°(I'$ (A)) = AlLr,

Proof. Let
0—-A—B—~C—0 5.2)

be a short exact sequence of representations of 1';,. Then we have a short exact



5.3. The I'}; complex 47

sequence

0—=>T9.(A) =-T94(B) = T7,(C)—=0 (5.3)

of co-chain complexes. The long exact sequence of (5.3) gives maps
0" H(T7(C)) = HTHTLp(A)),

which are functorial in (5.2). Therefore A — H*(T'%(A)) is a cohomological d-
functor. The second part follows from the fact that the action of I'j, on A factors
through a finite quotient. Since the classes of the elements of v; (i € X) generate

finite quotients of I'} 7, A = M;cx Ker(y; — id) = HO(T34(A)). |

Proposition 5.3.7. Let A be a discrete m-primary representation of '} . Then
H(TS 4 (A)) =2 H (T4, A) fori > 0. In other words, the complex T'$.(A) computes

the '} p-cohomology of A.

Proof. We prove the proposition by using induction on the number of generators of
;. First, assume that I'; 1 is topologically generated by (v1,72). Let I'? denote
the subgroup of I'7 - generated by ~; and I}, the quotient of I'7 by I'”, . We denote

by I'%, (A) the co-chain complex
T2 (A):0— A2 40

Then the co-chain complex I'Y(A) is the total complex of the double complex
I, (2, (A)), and associated to the double complex I'?, (T3, (A)), there is a spectral

sequence

B3 = 31, (3 (I, (A))) = H™ (T (A)). (5.4)

Moreover, associated to the group I'7,, we have the Hochschild-Serre spectral se-
quence

Eym = H™(:,, HMI*  A)) = H™ (%, A). (5.5)

27 71’



48 Chapter 5. Galois Cohomology over the Lubin-Tate Extensions

Now assume that A is injective object in the category of discrete w-primary abelian
groups with a continuous action of I';;. Then the complex I'? (A) is acyclic in
non-zero degrees with 0-th cohomology isomorphic to H O(Fi’;l, A) = A" [27,
Corollary 6.41], i.e, the map A" [0] — I['? (A) is a quasi-isomorphism. But A
is an injective object in the category of discrete m-primary abelian groups with a
continuous action of I' . Now by using step 1 and step 2 of [26, Proposition 2.1.7],

the map A"ir[0] — T2, (A'1) is a quasi-isomorphism of co-chain complexes.

Note that H*(T'% -, —) is a universal d-functor, and H*(T'%(—)) is a cohomolog-
ical d-functor such that H°(T'% ., —) = H(I'$+(—)). Therefore, we have a natural
transformation H(T'; ., —) — H*(['$(—)) of §-functors. Then by using spectral

sequences (5.4) and (5.5), we have
H{(T% 5, A) =2 H(T50(A))  fori > 0.

Now the case for general A follows from Lemma 5.3.6 by using dimension shifting
(Proposition 2.3.3), i.e., the proposition holds when I'} ;- is topologically generated
by 1 and 2. Then by induction assume that the result is true when I'} ;- is topolog-
ically generated by (71,72, ...,74-1). Now we want to prove the proposition when

't has d generators, i.e., I'; ;- = (71,72, - - ., 74). Consider the complexes
. . Ya—id
[?(A):0>A—— A=,
and

(A0 A PA-- = P A=A,
iex’ {in,inte(Y)

where X' = {v,...,7-1},and forall 0 < r < |X'| — 1, the map dfll """ Z‘-j:“ A— A

,,,,,

from the component in the r-th term corresponding to {i1, . .., } to the component
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corresponding to the (r + 1)-tuple {j1,. .., j,+1} is given by the following

g |0 i (i i} & e},
<_1>Sj<’yj - Zd) if {.jh s 7jT+1} - {ila <o 7iT} U {]}7

1] yeeeyly

and s; is the number of elements in the set {7y, ..., .} smaller than j. Note that the
complex I'} (A) is the total complex of the double complex I'S, (I'7 7 (A)). Since
the result is true for I'7 -, (A) by using induction hypothesis. The proof follows by
using similar techniques as explained in the case when I'; . is generated by v, and

Y. u

For any representation A of '}, clearly, the complex I'},.(A) depends on the

1 k
choice of generators of I'7 .

Proposition 5.3.8. The Galois cohomology groups computed using the complex

1+ (A) are independent of the choice of generators of T' .

Proof. To prove this, we use induction on the number of generators of I'; .. Assume

that I'; - has only two generators 7, and 2. Let I';; = (7], 72) be another set of

generators. Define —2

(a) :== lim 37 , v](a) for a € A, where the series on the

id—y1
right hand side is convergent as ['; ;- acts continuously on A. Then % 1S unit in
Ok|[[I'5+]], and we have the following diagram
x—Agx o— Az
D97 n(A) 10 A AP A A 0
r—id . —id
sz l:i_id@ld Jzi—ld
FLTKYL"&(A) +0 A r— Al A A z—Alz A 0,
where
Ao = [Vl ’ 1 , A1 = [—(vz—zd) yl—zd} s
Y2 —id
/o d
Ay = l’h ' 1 AL = {—(m—id) 7 —id} .
Y2 —id
It is easy to check that the above diagram is commutative. Since 11:;3 1S unit
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in Og[[I;7]], then by passing to the cohomology, it induces a natural isomor-

phism of H*(T'%

1T (A)) on U—Ci(FzT’%m(A)). Similarly, it is easy to show that
J—C"(I“Eﬂ71 ~,(A)) is naturally isomorphic to 5{1'(1}@7“é (A)). Therefore there is a

natural isomorphism between H*(T'$ (4)) and H'(I'y 7., ., (A)). Now the gen-

LTy ,72

eral case follows by induction on the number of generators of I'] . |

5.4 Lubin-Tate Herr complex

Now we define a complex, namely, the Lubin-Tate Herr complex, which is a gener-

alization of the Herr complex [17].

Definition 5.4.1. Let M € hg Mod%f”’ét’m. Define the co-chain complex
®T'%(M) as the total complex of the double complex I'$.-(®*(M*)), and we call it
the Lubin-Tate Herr complex for M.

Explicitly for the cases d = 2 and 3, the Lubin-Tate Herr complex looks like as
in the following examples. Note that in the following examples M = M*“. We write

M only for the simplicity.

Example 5.4.2. Let d = 2. Then the Lubin-Tate Herr complex ®I' (M) is defined

as follows:
A0, T A1, 05T Az o, T
0—-M Ty M3 T M3 s M — 0,

where

pym —id —(m —id)  oum —id 0

Avpg = | 1 —id | ,ALpy = | —(y2 — id) 0 ey —id|
Y2 —id 0 —(y2—id) 1 —id
A2,¢q = |:’yg —id —('71 — id) M — id:| . O

Example 5.4.3. For d = 3, the complex ®I'} (M) is defined as follows:

T—A0,p0 T A1, T A2 o T T+ A3, T
— MO —— M0 = M* z

00— M > M — 0,
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where ) i
—(y1—id)  pm —id 0 0
oy —id 7(’*{2 — id) 0 ppm —id 0
7 —id —(v3 — id) 0 0 oM —id
AON’q 7A11(Pq = )
Y2 —id 0 —(y2 —id) 1 —id 0
3 —id 0 0 —(y3 —id) 2 —id
L 0 _('YB — Zd) 0 v1 —id ]
Y2 —id  —(y1 —id) 0 ey —id 0 0
0 v3 —id  —(y2 —id) 0 o —id 0
A2,<pq - ’
Y3 — id 0 —(71 —id) 0 0 oy —id
0 0 0 v3—id y1—id —(y2 —id)
Azpq = |—(3—id) —(m1—id) ~v2—id o — id} . O

Next, we compute the Galois cohomology groups using this Lubin-Tate Herr

complex.

5.5 Galois cohomology via Lubin-Tate Herr complex

Lemma 5.5.1. Let V € Repl® , (Gg). Then V = H{(OT$(Drr(V)))iso is a

O —tor

cohomological d-functor from the category of discrete w-primary representations of

Gk to the category of abelian groups. Moreover, we have
HO(OT 7 (Drr(V))) = VEX.

Proof. Let
0—-Vi—=Vo—=>Vs—=0 (5.6)

be a short exact sequence of discrete 7w-primary representations of G . Since the

functor D1 1s exact, we have a short exact sequence

0— DLT(‘/I) — DLT(%) — ]D)LT(VE’)) — 0

wq,U'Lr,éttor

in 113 Mod/oE . By using Acyclic Assembly Lemma [35, Lemma 2.7.3], we
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get a short exact sequence
0— O (Drr(V)) = O (Drr(V2)) — ST+ (Drr(V3)) — 0 5.7
of co-chain complexes. Then the long exact sequence of (5.7) gives maps
8 H'OLS 1 (Dpp(Vs)) = HTOT 1 (Dpr (1)),

which are functorial in (5.6). Therefore V +— H'®T'$ (D7 (V));>0 is a cohomolog-

dis
O g —tor

ical o-functor from the category Rep (Gk) to the category of abelian groups.

For the second part, we know that by definition
Drr(V) = (0 ®o, V)X,
Since ¢, acts trivially on V' and it commutes with the action of Gk, we have:

]DLT(V)‘PDLT(V):M = (((‘)E/u\r ®ox V)HK)"DDLT(V):M

= (07 @0, V)

= (UK ®o, V)"x

>~ VHx
where the third equality follows from Lemma 4.2.3. Therefore
Dy (V)eoerv)=idlir=id o2 (yHic\lur=id _ /G
On the other hand, by definition of the Lubin-Tate Herr complex, we have

HUPL (D (V) =(Dpp(V)2) o) =il Lr=id

:DLT(V)<PDLT(V) =id,l'pr=id
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Hence

HO(®LS (D (V) =2 VOE, [ |

Theorem 5.5.2. Let V' be a discrete m-primary abelian group with a continuous

action of G, i.e., V € Rep%? _, (G). Then

Hi(GKa V)= ﬂ-fi((DFzT(DLT(V)))

fori > 0. In other words, the Lubin-Tate Herr complex ®I'S (D1 (V') computes

the Galois cohomology of G i with coefficients in V.

Proof. Since (H' (G, —))i>o is a universal d-functor and (H*(PT$(Drr(—))))is0
is a cohomological §-functor such that H°(®T'% . (Drr(—))) & H(Ggk,—). Thus

we have a natural transformation
H' Gk, —) = H(PT 0 (Drr(-)))

of d-functors. First, assume that V' is an injective object in Rep{}® _,,.(Gf). Then

there is a spectral sequence
By = 5" (Dyp(H (@Y (Drr(V)2)))) = H™ (@5 (Drr(V)  (5.8)

associated to the double complex I'$ -(®* (D7 (V)%)), and associated to the group

Gk, we have the Hochschild-Serre spectral sequence
Ey™ = H™(Tp, H"(H}, V) = H™"(Gg, V). (5.9)
Since V' is injective, it follows from Proposition 5.2.6 that the augmentation map

VHR[0] = &*(Drp(V)?)
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. . . . * . . . . . .
is a quasi-isomorphism. Also, V*k is injective as a discrete representation of I’ ;..

Then by using Proposition 5.3.7, the map
VER[0] = Ty (V1i)

is also a quasi-isomorphism of co-chain complexes. Now the natural transformation
H(Gg,—) = H(PT%,(Drr(—))) and the spectral sequences (5.8) and (5.9) give

the following isomorphism

Hi(Gg, V) = H (T3 (Drr(V))) fori > 0.

dis

0. _tor(GK) has enough injectives, the general

As we know that the category Rep

case follows from Lemma 5.5.1 by using dimension shifting (Proposition 2.3.3). W

Remark 5.5.3. The cohomology groups, computed using the Lubin-Tate Herr com-
plex, do not depend on the generators of ['] ,, i.e., they are independent of the choice

of the generators of I'] .

Next, we show that the Lubin-Tate Herr complex computes the Galois cohomol-
ogy of objects in the category Repy, (Gx). Let V € Repy, (Gk). Then V' is a
finitely generated free O x-module with a continuous and linear action of GG and we

have

V = HHV ®OK OK/ﬂ'nOK
%JI'£1V/7T”V,

where each VV/7™V is w-power torsion and it is also discrete as V /7" V is finite. This
means that any object in Repy, (G ) is the inverse limit of objects in the category

Repj? (Grk).

O —tor

Lemma 5.54. Let V € Repy, (Gk). Then the functor H'(G g, —) commutes with
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the inverse limits, i.e., H'(Gg, V) = l'&lﬂi(GK, V/7a"V).

Proof. Since k is finite, the cohomology groups H (G, V/7"V) are finite for all n
([32, Theorem 2.1]). Now the result follows from [33, Corollary 2.2]. [ |

Theorem 5.5.5. For any V € Repy, (G k), we have
H' (G, V) 2 H(OT 7 (Drr(V))) fori > 0.

Proof. Firstly we show that the functor H'(®T%,(Dzr(—))) commutes with the
inverse limits. Since the transition maps are surjective in the projective system
(®T% (D7 (V/7™V))), of co-chain complexes of abelian groups, the first hyper-
cohomology spectral sequence degenerates at 5. Moreover, it follows from Lemma
5.5.4 that lim '3 (@I} (D7 (V/7"V))) = 0. Therefore the second hypercohomol-

ogy spectral sequence
"3 (BT (Dpr (V/7"V)) = 3 (257 (Dpr (V)
also degenerates at F5. Thus
T%HW@HT(DLT(V/W”V))) = H(OT7(Drr (V).
Now

Hi(Gg,V) = @Hi(GK, V/z"V)
= Jim 9€(@03 (i (V/7"V))
=~ H(OL} - (Drr(V))),

where the first isomorphism follows from Lemma 5.5.4 and the second is induced

from Theorem 5.5.2. |
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Corollary 5.5.6. Let V' be a finite free Ox-module with a continuous and linear

action of G. Then

H(OTS (D (V) =0 fori> 3,

although it is not obvious from the definition of the Lubin-Tate Herr complex.

Proof. Recall the classical result that the groups H : (Gk, V) are trivial for i > 3, [30,

Chapter II, Proposition 12]. Then it follows from the above theorem that

H (DTS (Drr(V)) =0 fori > 3.



Chapter 6

Galois Cohomology over the

False-Tate Type Extensions

This chapter is a part of [1]. In this chapter, first, we extend a result of Kisin and
Ren (Theorem 4.2.10) to certain non-abelian extensions, namely, the False-Tate type
extensions. Then we generalize the Lubin-Tate Herr complex defined in Chapter 5
over the False-Tate type extensions, which we call the False-Tate type Herr complex.
Further, we compute the Galois cohomology groups using the False-Tate type Herr

complex.

6.1 Equivalence of categories

Recall that K is a local field of characteristic 0 with the ring of integers O i, maximal
ideal my and the uniformizer 7. For any x € my\m?%, choose a system (z;);>; such
that [p)(x1) = x and [p](z;4,) = ; foralli > 1. Define K := K (;);>1, and then the
extension K /K is not Galois. Let L := K. K; then it is easy to see that the extension
L/K is a Galois extension. Moreover, L/ K is arithmetically pro-finite as Gal(L/K)
is a p-adic Lie group. As in [36], we consider the field of norms for this extension.

The fraction field Fr(R) contains the field of norms F; := Xg(L) of extension

57
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L/K in a natural way, and we have Gal(K /L) = Gal(E*?/E) ( [36, Corollary
3.2.3]). Recall from Chapter 4 that the ring O is a complete discrete valuation ring
with residue field £°? and is stable under the action of G'x and ¢,. Define O, :=
(O@)Gal(R/L). Since Gal(K /L) = Gal(E**?/EL), we have E, = (Es#)Gal(K/L)
and Og is a complete discrete valuation ring with residue field £. Moreover, the

ring O is stable under the action of G and ¢,. Define ', pr := Gal(L/K) and

Hj, = Gal(K/L). The following diagrams summarize the above notations.

K

IO\

K ot rr

N A

K

Figure 6.1: Field extensions of K

Fr(R)

Esep

Figure 6.2: Field extensions of £
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Now for any V' € Repy, (G ), define
Dirrr(V) = (O ®oy V)L,

Let Mod%f”’F ™% be the category of finite free étale (¢, I' L7, pr)-modules over
Og.  Then the modules Dyr pr(V) and Dpr(V) ®o, Og are in the category

Modfgf”’”’ét, and there is a natural map ¢ : D7(V) ®o, O¢ — Dy pr(V).

Proposition 6.1.1. The map ¢ is an isomorphism of étale (py, U L1 pr)-modules over

Og.
Proof. By Remark 4.2.9, we know that O ; ®o, Dpp(V) = O ®oy V as an étale
(¢g, I'r)-modules over O¢. Then

]D)LT(V) Ko, O, = DLT(V> R0, (O@)Gal(f(/L)

_ (DLT(V) ®O£ og\M)Gal(K/L)

~ (Og/u\r ®OK V)Gal(l_(/L)

- DLT,FT<V)7

where the second identity follows from the fact that Gal(K /L) C Gal(K/Ky).

Thus ¢ is an isomorphism of étale (y,, .7 pr)-modules. [ |

we, 'L, FT,€t

Similarly, for any M € Mod/g', , define
Virrr(M) = (O ®o, M)$1Eem=14,

Then we have the following theorem.

Theorem 6.1.2. The functor Dy pr is an exact equivalence of categories be-

tween the category Repy, (Gk) (resp., Repy, 4,.(Gk)) and Mod%f”’”’ét

d‘#’q»FLT,FTvétvtO"')
/0

(resp., Mo with a quasi-inverse functor V pr pr.



60 Chapter 6. Galois Cohomology over the False-Tate Type Extensions

Proof. Since the functor Dy pr is composite of the functor Dy with the scalar
extension ®o,Og. Now the proof follows from Proposition 6.1.1 and Theorem

4.2.10. |

Remark 6.1.3. The extension K is not the canonical one. We can also define K as

follows:

1. Define K., := K (jipn)ns1. Let Koy € Koo and K := K (77", r > 1), then
L = K, K is a Galois extension of K and Gal(L/K.,) = Z,. The case when
K.y = K has been considered in [34] and [18].

2. We can also define K := K (y;);>1, Where (y;);>, is a system satisfying
[7](y1) = y and [7](yiz1) = y; forall i > 1 and y € mg\m%. In this case,

Gal(L/K ) is isomorphic to an open subgroup of Z,,.

Then using similar methods, as explained in Chapter 5, we extend the functor
Dy pr to the category of discrete m-primary abelian groups with a continuous ac-

tion of Gx. Then the functor D;r rr is an exact equivalence of categories from

dis
O —tor

the category Rep (Gk) of discrete m-primary representations of Gk to the

category hﬂMod%’L LT ELOT o injective limits of m-power torsion objects in

Mod%f"f ™ e.. we have the following result.

Theorem 6.1.4. The functors Dy pr and V 1 pr are quasi-inverse equivalence of

dis wq, L' LT, FT,ét tor

categories between Repy” _,,.(Gr) and lim Mod 5,

Sketch of the proof. Let V € Repd® , (Gx). Then we have

O —tor
V= hgrl Vo,

where each V/, is an object in the category Repy,. _,,.(Gk). Since the functor Dz
commutes with direct limits, then it follows from Proposition 6.1.1 that the functor

Drr pr also commutes with direct limits. Now the result follows from Theorem 6.1.2
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by taking direct limits and noting that the functor V7 pr also commutes with direct

limits. |

6.2 The complex ['7 ;.

To generalize the Lubin-Tate Herr complex to the case of False-Tate type extensions;
first, we extend the complex ', defined in Chapter 5 over the False-Tate type ex-
tensions. We denote this complex as ' ;- ;- complex.

Recall that '} = (71,72, -..,7a4) as a Z,-module. Let 4 be a topological gen-
erator of Gal(L/K.,). We lift 71,72, ..., 74 to the elements of Gal(L/K). Then
I} pr is topologically generated by the set X = (71,7%,...,747) with the rela-
tions ;¥ = §*y; such that a; € Z, where a; = xrr(y) foralli = 1,...,d, and

X 1 the Lubin-Tate character.

Definition 6.2.1. Let A be an arbitrary representation of the group I'; 7 . Then we

define I'} . pp(A) as follows.

Dyrpr(A): 05 A PA—-- - PH A== A0,
iheX {h,...,z‘r}e(f)

where (f) denotes choosing r-indices at a time from the set % and for all 0 <
r < |X| — 1, the map d{;;;;;;ﬁ;ﬂ : A — A from the component in the r-th term
corresponding to {i,...,i,} to the component corresponding to the (r + 1)-tuple

{j1,--.,Jre1} is given by

0 if {in,.oovin} € {G1s - drs )
(_1)8j (’Yj - Zd) if {jl, s 7.7‘7>+1} = {7:17 s 77:7"} U {7}
dgfffff’f:“ _ ~ - and{4y, ..., 4, } doesn’t contain 7,
- (1) (= P ) W ek = {in i} U ()
and{4y,...,4,} contains 7,
yxer(@)-xerlin) — i if {51, ., jre1} = {i1, ..., i, } U {7},
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where s; is the number of elements in the set {71, . .., 4, }, which are smaller than j.

The above definition of I'7 ;. o (A) is inspired by the definition of the Koszul

complex.

Theorem 6.2.2. Let A be an arbitrary representation of the group Ut p pp. Then

Yr.pr(A) is a complex.

Proof. Since A is a representation of '} 1., A is also an Og[[I'}; pr]]-module.

Note that

A R0k OKHF*LT,FTH = A

LT, FT

First, we show that I'} 1 pp (O kl[Tir FT}]) is a complex.

Let @;,cx Ok |[[I'}1 7] be a free module with ordered basis {ey, e, . . .

= étand @, Linre(®) Ok |[[I'77 pr]] be a free module with basis {e;, A

with 7; < 79 < --- < 7,.. Then the boundary maps

d: EB ] Ok([TLrrrll — @ ) Ok [[Trrrll
{i1,mir}e() {rrdrinte(,3))

are given by the following

jl’ 7]7+1
dley, N---Nej,) Z di; i e, Ao Ney, ANejyy)
715 7]r+1
- Z d 6]1 ’ /\ ejT /\ 6jr+1)
Case I
]1 ,]'r+1
Z d ol e]l /\.../\ej'r Aejr'+1>
Case II
715 7]r+1
+ Z d 6]1 A iy N ejr+l)7
Case III

y €d, ed—l—l

VAN eir}

where the map dgi:::::{:*l is defined as in Definition 6.2.1 and the Case I, Case II, Case

III are as follows.

CaseL: {j1,...,jr41} = {i1,..., 4} U{y;} and {¢1, ..., 4.} does not contain 7.
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In this case,

d(en A elr Z dgll: :i:H e]l A €j, A ejr+1)
—Z —1)(es A-o-Neg, Aej Ao Ney, ),
where s; is the number of elements in the set {7y, ..., } smaller than j. Then

d
(dod)(ejy N-+-Nejy,) = (Z )% (y; — 1)(ei, A --/\65]./\6]'/\"'/\6“)>

d
=D (1" =)D (=1)% (5 — L)(es, A--- Nes, Nej
t=1 7=1

N Neg, Nep N+ Nejp ).

Here s; is the number of elements in the set {iy, ..., .}, which are smaller than t.
Note that each term appears twice in the above summation, so each term has two
coefficients. Now for j < ¢, we compare the coefficients of the term e;; A--- Aeg, A
ej N+ Nes, ANeg A+ Ae;. The coefficient is (—1)%+5+ (v, — id)(v; — id) if we
introduce e; first and e; second. Similarly, by introducing e, first and then e;, we get
(—=1)%*% (y; — id)(y, — id) as the coefficient of the term e;, A--- Aeg, Aej A=+ A

es, N ey A+ - - Ne;,.. Since y; commutes with ;. Thus, the coefficients are of opposite

parity.
CaseIL: {ji,...,jr41} = {t1,..., 0, } U{y;} and {4y, ...,4%,} contains 7.

Without loss of generality, we can assume that e;, = €. Then

d+1 ;?haj —id
dlei, N+ Nei  Neg, ) =D (—=1)%T (fyj — W) (e, N---Neg; Nej

= —id

Ao Ney),

where s; is the number of elements in the set {41, ...,%,} smaller than j and h =
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xrr(ei,) - xrr(e;,_,). Then we have

(dod)(enn---Nei)

= +1 At —id
=d Z(_l)Sj <’yj_’~}/h—id> (eil/\---/\esj/\ej/\---/\eir)

j=1
d+1 yhajar _ ;] d+1 sha; _ ;g

Syt (,yt - w) S (1)t (W - 7h@>
t=1 Y % —id j=1 vt = id

(e NooNegy Nej N Neg, Neg N+ Neg,).

Here s; is the number of elements in the set {iy,...,4.}, which are smaller than t.
Now for j < t, we compare the coefficients for the term e;; A--- Aeg, Aej A=+ A
es, N et N --- Ae;. If we introduce e; first and e, second then the coefficient is

(—1)stse+3 (% _ f;jftid) (’yj - &fm]’.id) Similarly, by introducing e; first and

A7 —id Fh—id

~hata; .
then e;, we get (—1)%t+i+2 <7j — V&hitj__i;d) (w 7 - ;d) as the coefficient of e;, A

Neg, Nej N Neg, Neg A -+ N e, Note that we have ;.7 = 7%~;. Then

B hajat — @d ha] —d
T ha] A ’y —Zd
_ (3" —id) — (3t —id)\ ((5" — Zd) (3" —id)
haa —id ’y —id
(30— = (e = id)\ (5 = — (5 = id)
h“] —d ’S/h —id
(o —id)u —id)) () — id)y i)
haj —d ”}/ —d

ha,ja,t —id)(y, — id) (¥ ha; _ id)~ ( haj _ id)(~y; — id)
(*yh —id)™!
:(;yhajat _ ‘d)(% — Zd)( — zd) (’y — Zd)

Similarly,

~hata; : ~ha :
A —qd A —ad haa; - . o o
(% T Fha —id ) (W T ) = ("% —id)(v; —id)(y — id) (3" — id) ™!
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Since ; commutes with ;. Thus, the coefficients of the term e;; A --- Aes, Aej A
-+ Nes, Neg N\ -+ N\ e, are of opposite signs.
Case III: {j17 ce. ajr-l—l} = {’il, NN ,ir} U {’7}

In this case, we have

d
ey Ao Aey) = (3 = id) (e Ave A Ay, A+ 30(=1)% (3 — id)(ei, A
Jj=1

o Neg Aej A Ae),

where s; is the number of elements in the set {i;,...,4,} smaller than j, and h =

xrr(ei) -+ xer(ei.). Then

(dod)(ei, A+ Aei,) =d((F" —id)(es Ao Aee Nei, AE) +

J

d
(=1)¥(y; — id)
=1
(€5, A Neg Aes AeeAe))
d

=3 (- L) i)+ e i)

< yh—id

M-

I
—

(—1)% (y; —id)(eiy A=+ A es; Nej N Nej NE),
j

Then we compare the coefficients of the term e;; A---Aeg, Nej A---Ae; ANé. We

get (—1)%+1 <yj — 7:::2‘1) (3" — id) as the coefficient if we introduce € first and
then e;. Similarly, the coefficient is (—1)% ("% — id)(vy; — id) if we introduce ¢;

first and ¢ after. Note that
A ~ha; - CN(xh i N—l(xh
% G g ) O T = —id)(y; —id) (7 —id) (3 — i)
(5 — id)(v; — id).

This implies that the coefficients of e;; A--- Aes, Aej A--- Ae;, A€ are of opposite

parity.

Now by combining all the three cases, notice that each term has coefficients with
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opposite parity. Then it follows that d o d = 0, i.e., T} 7 ppr (O KHF*LT,FTH) is a

complex. Since we have
.LT,FT(A) = iT,FT (OKH *LT,FTH) ®OKHF2T7FT]] A.
Hence '} o (A) is a complex. [ |
We explicitly write the complex I'7 - 1-(A) in the case of d = 2 and 3.

Example 6.2.3. Let d = 2. Then the complex I'} . - (A) is defined as follows:

A A A
Srpr(A) 0 — A TEE 4SS TIAE, 293 T 4 ),

where
v1 —id —(v2—id) 1 —id 0
. ~ . ;A1 g
Ao= |y —id| A1 = | 3% —id 0 - (71 - va—iéd) ’

. N . 502 _id

¥ —id 0 792 —4d  — ('yg — 'Y;/_ié )
- . 50102 _iq za1a2 ;4

Az =492 —id 72— GHarmg  — (71 e )] ’ =

Example 6.2.4. Let d = 3. Then I'7 ;- .-(A) is defined as the following:

A A A A
Ty pp(A) 00— A Z2505 AD4 22000, A6 ZUE0, 494 22000 A — 0

where
v1 —id
—id
Ay = 2 7
V3 —id
5 —id
[—(yo—id) 1 —id 0 0 ]
0 —(y3—1id) y2—id 0
—(v3 —id) 0 v —id 0
Al = ca . 591 _id )
391 — id 0 0 - (m-%=1Y)
- . 502 4
0 F%2 — id 0 - ('yg - 7&_1.; )
a3
i 0 0 493 —4d  — (73 — ini; )_
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3 —id m—id  —(y2 —id) 0 0 0
- ) 50182 _;q 50182 _;q
4 A9z —id 0 0 Y2 - La—g - (- s ) 0
2= 5a1a3 _;q 52143 ;4 ’
50143 __ 4 _ K] _ _ K
0 0 Y id 73 31 —id S . (’Yl Zaz_id )
5 k 1 39293 —id 59293 —4d
0 70203 _ jd 0 0 V3~ “Fez—iq . (’yg — Fas—a )
I . 5919243 _4q 5919243 ;g 59194243 _;q
Az = |:rya1a2a3 —id - (“/3 ~ TFataz —5q ) V2 T “Faiaz 34 ('71 - m) . O

Then the functor A — H*(I'}, pp(A))izo is a cohomological -functor. More-
over, for a discrete 7-primary abelian group A with continuous action of I'; . g7, the
complex I'} . o1-(A) computes the '], -p-cohomology of A and H®(I'} ., pr(A)) =

AlLr.rr_ The proof is similar to as that of Proposition 5.3.7.

6.3 False-Tate type Herr complex

Now we define a complex, namely, the False-Tate type Herr complex on the category

wq,L' LT, FT,€ttor

of m Mod 10 , which computes the Galois cohomology groups.

Definition 6.3.1. Let M € lim Mod/g!*""*"'". Then we define the co-chain
complex ®T'% ;. (M) as the total complex of the double complex I'S . o (P*(M2))

and call it the False-Tate type Herr complex for M.

In the case of d = 2 and 3, the False-Tate type Herr complex looks like as in the
following examples. Note that in the following examples M = M?“. We write M

only for the simplicity.

Example 6.3.2. In the case of d = 2, the False-Tate type Herr complex is defined as

follows:

T—A0,p4T T Al,pq T T A2 04T T A3 04T
_—

0— M M M6 M® M — 0,
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where
—(m —id) oM —id 0 0
Py —id —(v2 —id) 0 pyM —id 0
7 —id —(§ —id) 0 0 M —id
AO,«pq - 7A1,<pq = )
Y2 —id 0 —(v2 —id) v —id 0
- —a ) 31 —id
¥ —id 0 F941 —4d 0 7(717A/y7¢d)
[0 0 yo2 —id = (12— G|
2 —id —(m1 —id) 0 Py —id 0 0
s —(3 —id) 0 - L 0 o —id 0
2, = ~a . )
. 0 ~(72 —id) -T2 o 0 err —id
0 0 0 §192 —id 2 = Tt — (0~ Tmeay)
~aja . sa102 _; sa1a2 _; .
Az oy = |—(59192 —id) — ('yz - W:Y?,idd) 71— H M~ zd} .

Example 6.3.3. Let d = 3. Then the complex ®I'7 7. .-(M) is defined as the follow-

ing:

BTy oy (M) : 0 — M 220207, g T2Aea?, ypono T 2eat oo Aol s Al g
where
Py —id
v1 —id
Ao,pq = | 2 —id |,
v3 — id
F—id
[—(n1 —id)  onp —id 0 0 0 ]
—(72 —id) 0 oM —id 0 0
— (3 — id) 0 0 on —id 0
—(§ —id) 0 0 0 em —id
Ar o, = 0 —(y2 —id) v1 — id 0 0 7
0 0 —(y3—id) 2 —id 0
0 —(y3 —id) 0 1 —id 0
R I =
o o Amoid 0 - (w- i)
Lo 0 0w - (- 5]
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Y2 —id —(11 —id) 0 0 om —id 0
0 ~3 — id —(y2 —id) 0 0 o —id
3 — id 0 —(y1 — id) 0 0 0
—(3*1 —id) 0 0 - L 0 0
Anp, = 0 —(5%2 —id) 0 Yo — wz—dd 0 0
' 0 0 —(3 —id) v — 0 0
0 0 0 0 3 — id vy —id
0 0 0 0 Fe1az _ id 0
0 0 0 0 0 0
Lo 0 0 0 0 Fa2a3 _ i
0 0 0 0 i
0 0 0 0
on —td 0 0 0
0 o —id 0 0
0 0 o —id 0
0 0 0 o — id ’
(72 — id) 0 0 0
0 Y2 — % - (’Yl — %) 0
0 0 - L (- L)
—(v3 —id) —(y1 —id) v2 —id 0 0
—(31°2 —id) 0 0 ~ (- Temt) n - e
Agp, = 0 0 ~(F41%s —id)  — (ys — i) 0
0 (5729 — id) 0 0 — (v - Lara?)
0 0 0 0 0
0 o —id 0 0 0 |
0 0 o —id 0 0
- 0 0 onr —id 0 :
v2 — Lot 0 0 0 o —id
0 reaes —id — (- Tmmt) 2 Smar (- Smmeat) |
Asp, = |—(5919208 —id) yg — TPt — (qp - IRty oy TR0 o —id
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6.4 Galois cohomology via False-Tate type Herr com-
plex

Now by taking the cohomology of the complex ®I'} . pr(—), we have cohomolog-

d‘Pq ILT,FT ,€t,tor
/0

ical functors (H' (P}, pp(—)))izo from lim Mo to the category of

abelian groups. Then we have the following theorem.

dis
O —tor

Theorem 6.4.1. For any V € Rep (G k), we have a natural isomorphism

H (Gg,V) = J{i(@rzT,FT(DLT,FT(V))) fori > 0.

Proof. Since H'(®T'%; pr(Drr,pr(—)))izo is a cohomological d-functor such that
HPTY p pr(Drrpr(—))) = H°(Gk, —). Now the proof follows as in the proof of
Theorem 5.5.2. u

Theorem 6.4.2. Let V € Repy, (Gk). Then the False-Tate type Herr complex

computes the Galois cohomology of G i with coefficients in V.

Proof. The proof is similar to that of Theorem 5.5.5. |



Chapter 7

The Operator ¢

In the cyclotomic case, Herr defined an operator ¢ acting on the category of étale
(¢, T')-modules, and then he proved that the p-Herr complex and the ¢)-Herr complex
are quasi-isomorphic [17, Proposition 4.1]. Crucial in the proof of this fact is that
"~ — 1 acts bijectively on Ker )" [17, Theorem 3.8]. Then the Iwasawa cohomology

groups are computed in terms of the 1-Herr complex. Further, the isomorphism
Exp* : Hj,(Keye/ K, V) = D(V)¥="

is used to produce p-adic L-functions.

In this chapter, we define an integral operator ¢, following [29], which acts lin-
early on the étale (¢4, I'L7)-module. Then we show that under some conditions
on étale (p,, I'7)-module, the Lubin-Tate Herr complex for ¢, and v, are quasi-
isomorphic (see Theorem 7.2.6 and Remark 7.2.8). We also prove similar results for

the False-Tate type Herr complex.

7.1 Definition of ), and its properties

Recall that the residue field of O¢ is E' = k((Z)), which is not perfect, so ¢, is not

an automorphism but is injective. The field &, which is the fraction field of © Fars

71
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is an extension of degree ¢ of goq(@"). Put tr = tracegz; gy Define
q

wq:(@%@

such that

paltha(z)) = - ta(z).

T
The existence of such a map 1, follows from [29, Remark 3.1]. Since every element
a € E satisfies the purely inseparable polynomial (z — a)? = 29 — a? € p,(E)[z],
the residue extension E/p,(E) is totally inseparable. Similarly, the extension
E*P [p,(E*P) is totally inseparable. Thus the map ¢, maps O; to Og; and O
to O¢ [29, Remark 3.2], and the trace map defined by

tr(z) = trace@/@q(@,)(x) = tracewq(@)(y — zy)

is trivial for these extensions. Hence if x € O Far then tr(x) € 7O o Moreover,

tr(@q(*r)) = trace@-/goq({ﬁ)(@oq(x)) = q<:0q(x)

implies that
q
Yalea(@) = L(a).
Hence
Yy 0 P, = 94,
q q T

We may extend this map ¢, to O - ®o, V' by trivial action on V. Since ¢, commutes
with I'zp, goq(@”) is stable under I'z7. Thus vy o troy~! = tr for all ¥ € I'z7. This
ensures that ¢, commutes with I';7 and it is also stable under the action of I',r.

Then it induces an operator

Vpyr(vy : Drr(V) = Dpr(V)
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satisfying
q.
wDLT(V) O YD (V) = }ZdDLT(V)'

Remark 7.1.1. Similarly, we also have ¢p, ;. ...cv) : Doy, pr(V) = Drrpr(V) sat-

isfying the above properties as ¢, maps O to O, i.e., we have

q .
wDLT,FT(V) CPDLr pr(V) = ;'ZdDLT,FT(V)'

Next, we prove the following lemma, which we use to show the main result of

this chapter.

Lemma 7.1.2. Let A be an abelian group. Consider the following complexes ¢, 6>
and 63
€:05AS A0 fori=1,2
G0 A PAL ... P Al BAL
i1€Y {ir,ir}E(?)

where V) is a finite set and (2) denotes choosing r-indices at a time from the set v). Let
Tot(%:6;) be the total complex of the double complex €;€;. Then a morphism from
the complex €1 to 65, which commutes with ds, induces a natural homomorphism

between the cohomology groups

Proof. Given a morphism from %) to 65, we have the following commutative dia-

gram
% 0 A", 0

5{ lag
% 0 A—— A 0

This induces a morphism between the total complex Tot (%) %3) and Tot(%62%3) given
by the following
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(d1,d3

TOt(%)l%)s)i()*)A*{A@@A*)...*) ® Ad A d3—dy A 0

1€y {itsia1ye(,2y)
& 5, @6 I 82,81 5
€y {H)-“v"d—l)g(dzl)

Tot(6263):0 —— A —— A A —— -+ —— [a) APA —— A —— 0.
(dz2,d3) iren {ilwwid—l}e(d‘il) d3z—da

Since the morphism from %7 to %> commutes with ds, it is easy to see that each

square is commutative in the above diagram, and this induces a homomorphism

7.2 The complex U*

Recall that D*® = O ®o, V = O ®0, Drr(V). Define a complex W*(D*P)

as the following

Yq®Yp, 1 (v)— Ll

d
U (D5P) 1 0 — D*P y D% — ().

7.2.1 The case of Lubin-Tate extensions

Definition 7.2.1. Forany M € lim Mod%’;”’ét’tor, the co-chain complex UT'$ (M)
is defined as the total complex of the double complex I'$ -(U*(M2)). We call this

complex as the Lubin-Tate Herr complex corresponding to 1.

Note that in the following examples M = M*. We write M only for the sim-

plicity.
Example 7.2.2. Let d = 2. Then the complex WI'$ (M) is defined as follows

xHAO,wqx z»—)Alywqx xHAQ,wqx

0—-M M3 M3 M — 0,
where
Yar — Lid —(y1—1id) b — Lid 0
Aoy = | m—id | A9, = |—(y2 —id) 0 Yy — Lid|

Yo —id 0 —(2—id)  m—id
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Az g = |v2 —id  —(m —id) PYn — %id} . o

Example 7.2.3. For the case of d = 3, the complex VI'} (M) looks like as the

following
T Ag T T Al T Ay, T T A3 o T
0— M Ty MO T e T T A 0,
where
[—(y1 —id)  war — Lid 0 o ]
Yu — Zid —(72 — id) 0 Yu — Lid 0
M —id —(v3 —id) 0 0 Yar — Lid
onwq . ’A1v¢q = . . ’
Y2 —id 0 —(y2 —id) v1 — id 0
w3 —id 0 0 —(v3 —id)  y2—id
L 0 —(y3 —id) 0 7 —id |
v2 —id  —(m —id) 0 u — Lid 0 0
0 v3 —id  —(y2 —id) 0 Yu — Lid 0
Azlwq = . . . ’
v3 — id 0 —(y1 —id) 0 0 Y — %zd
0 0 0 Y3 — id v —id  —(vyz —id)
Asipy = [~ —id) —(n—id) m—id va— Lid]. .

Next, the following proposition is an easy consequence of Lemma 7.1.2.

Proposition 7.2.4. Let M € @Modfg’grLT’ét’tOT. Then the morphism ®*(M) —
U* (M), which is given by the following

oy —id

O*(M) : 0 M M 0
idl l—wM
(M) : 0 M M 0,
Ypu—2id

induces a morphism

T3 (M) — UL (M).

Proof. Since 1), commutes with the action of I'; ;. The proof follows from Lemma

7.1.2, by taking 6; = ®*(M*%), 6, = V(M%) and 63 = T (M2). |
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Example 7.2.5. Let d = 2. Then the morphism between ®I'} (M) and WI'S (M)

is given by the following:

Az#ﬂq

A A
O, (M):0 —— M S MoMaoM —% MoMoM —2% M —— 0

0,1q 1bq 2,1q

where

F (21, 29, 73) =(—pr(21), 72, T3),

ﬂ'(mwm r3) =(=Var(21), =P (22), x3),

and the maps A; ,, and A; ,_are the same as defined in Example 5.4.2 and Example
7.2.2. Note that in this example, we write M only for simplicity. Indeed, M =
MA. U

Theorem 7.2.6. Ler M € lim Modfgf”’ét’m. Then we have a well-defined homo-
morphism

H(PTS (M) — H (WIS (M) fori > 0.

Further, the homomorphism H®(®TS (M) — HO(UTS (M) is injective.

Proof. Since (=) (on — id) = (Y — Zid), and 15y commutes with I'z7. Then
we have a morphism ®I'} (M) — WI' (M) of co-chain complexes, which induces

a well-defined homomorphism
H(PTS (M) — H(WTS(M)) fori > 0.

For the second part, let K be the kernel and C be the co-kernel of the morphism

O (M) — WI'Y (M). Then the complex K and the complex € are given as the
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following:
X:0—=0—-Kervpy® 00— ---— &) Ker ¢y & 0 — Kerypr — 0,
i11€X ; i x
{Zl ..... del}e(d—l)
C:0—-0—cokeryyy;® 0 — -+ — a5 coker ¥y & 0 — coker ¢y — 0.

iex {i,iaye( X))
The morphisms of the complex K are the restrictions of that of the complex
®I'Y (M), and the morphisms of the complex C are induced from the complex

UT'Y »(M). Then we have the exact sequence
0—=>K—PI'S (M) = VI (M) = € — 0,
which gives us the following short exact sequences
0—=XK— o'y (M) —-1—0, (7.1)

01—Vl (M)—C—0, (7.2)

where T is the image of ®T'$ (M) — WIS, (M). Since H°(€) = 0, by taking the
long exact cohomology sequence of (7.2), we have H(I) = HO(UT'},(M)). Also,

we have a long exact sequence

0 — HOK) — HOUPIS (M) — HO(I)
— HY(K) — HH (DS, (M)) — FHD)
— HEK) — HA(PTS (M) — FHE(I) — H}(K) =0 — -

Since H°(I) = HO(UT$(M)) and H°(K) = 0, the homomorphism
HPT (M) — FO (WL (M)

is injective. u
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Remark 7.2.7. Let the action of 7; := ~; — id be bijective on Ker ¢y, then the
homomorphism HO(®T'S . (M)) — HO(WI'$,(M)) is an isomorphism. Moreover,
the homomorphism H*!(®T$ - (M)) — H' (VIS (M)) is an injection.

Proof. Consider the co-chain complexes

@, (M) :0— M -2 a0,

iy (M) 0=M—->PM—---- H M= M=0,
i1€X! {il

where X' = {7s,...,74}, and (f/) denotes choosing r-indices at a time from the set
X'. Forall 0 < r < |X'| — 1, the map df;;;;;;ﬁ;*l : M — M from the component

in the r-th term corresponding to {41, . .., .} to the component corresponding to the

(r 4+ 1)-tuple {J1, ..., jr+1} is given by the following

djl ~~~~~ Jrl 0 if {i17 s ,Z}} g— {jla cee 7j7“+1}7
(_1)Sj+1(7j - Zd) if {jb < 7j7”+1} = {ih ce 7ir} U {]}7

and s; is the number of elements in the set {7y, ..., .} smaller than j.

Then the complex K can be written as the total complex of the following double

complex
0 0 0 0
0 —— Keryppy —— @ Kertypyy —— -+ —— (&) Keryy —— -+ —— Keryppy —— 0
i1€X’ x/
{irseine(
—(q1—id) i) - —(q1—id)
0 —— Kervyyy —— P Kertppyy —— -+ —— (<) Kervpyy —— -+ —— Kerppyy —— 0
nex {itmirye(Y)
0 0 0 0

In other words, X is the total complex of I'} 1., (%, (Ker ¢y)), which is bounded

double complex with exact columns as 0 — Ker v, M Ker vy, — 0 1is exact.

Therefore X is acyclic [35, Ex. 1.2.5]. Then by taking the long exact cohomology
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sequence of (7.1), we have H'(PT'S - (M)) = H(T). Moreover, H°(€) = 0. Now the
result follows from the long exact cohomology sequence for the short exact sequence
(7.2). |
Remark 7.2.8. Let M be a n-divisible module in limy Mod g, " such that the

action of 7, := 7, — id is bijective on Ker ¢/5;. Then we have an isomorphism
in(Q)FiT(M)) = iHi(\I/FzT(M)) fori > 0.

Proof. Since M is 7-divisible and £ = 7"~ mod O, the map £ : M — M is
surjective. Also, ¥y 0 oy = %z’dM. Then vy, : M — M is surjective, and the
co-kernel complex C consists of zeros, i.e., € is a zero complex. Since the action of
71 := 71 — td is bijective on Ker v, it follows from Remark 7.2.7 that the complex

X is acyclic. Now by taking the cohomology of the following short exact sequence
0—X— OI't (M) — VI (M) — 0,

we get the desired result. |

7.2.2 The case of False-Tate type extensions

Definition 7.2.9. Let M € llgfl MOd%fLT’FT’ét’tOT. Then the False-Tate type Herr
complex WT'y 7 pr (M) corresponding to 1), is defined as the total complex of the

double complex I'} ;. o (°(M2)).

Example 7.2.10. Let d = 2. Then the complex WT'} . .-(M) is defined as follows:

z»—>A07¢qm x»—>A1’¢,qx m»—)Ag?qu :1:!—>A3’wqa:
e

0— M M M6 M M — 0,
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where M = M?%, and

—(m1 —id) Py — Lid 0 0
by — id ~(y2 — id) 0 U — Lid 0
71 —id _(ﬁ_id) 0 0 'll)]w — 4id
A0’¢q = . ’Al”% = . . T )
V2 —id 0 —(y2 —id) oy —id 0
O - . 501 _4id
s
Y2 —id —(m1 —id) 0 Yy — %id 0 0
- . a1 _; .
Agy, = — (71 —id) 0 y - Lo 0 bn — Lid o
o 0 —(5%2 —id) 2 — 7;_;5‘1 0 0 dar — Lid
oo 0 mw edmm (oS
~ . ~a1a2 _; Fa1a2 4 .
Asivg = [_(’yalaz —id) - (72 - ’yﬁﬂl—iazld) Y- 7&“2 —i(;d Y — %zd} : O

Let 61 = ®*(M*), %, = ¥*(M*) and 65 = T} pp(M*). Then by using

Lemma 7.1.2, we have a morphism
Oy pr(M) — VI o (M).

Next, we prove a result in the case of False-Tate type extensions, which is anal-

ogous to Theorem 7.2.6. Recall that I'7 ;. .- is topologically generated by X =

{7, 74,7} and a; = xor(v).

Theorem 7.2.11. Ler M € lim Mod%fLT’FT’ét’tOT. Then the morphism
STy pr(M) — W'Y pop (M)
induces a well-defined homomorphism ' (®T'} 1, o (M)) — H(UTy (M) for

i > 0. Moreover, we have H°(®T'} 1, (M) — HO (U o (M)).

Proof. Since (—ar)(0ar — id) = (¥ — Zid), and 1)y, commutes with the action

of 'y pr. Then we have a morphism @'} (M) — W7 (M) of co-chain
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complexes, which induces a well-defined homomorphism
j{i(q)FzT,FT(M» — :}Ci<‘I’F2T,FT(M>> fori > 0.

Let X be the kernel and € the co-kernel of the morphism ®I'7; pp(M) —

WT'7 7 pp(M). Then we have an exact sequence

0= XK — 'Yy pr(M) = VI g pr(M) — € — 0.

Now the result follows by using the same method as in Theorem 7.2.6. |

Remark 7.2.12. Let 7y := ~; — id act bijectively on Kery,, i.e., the complex

0 — Kervy, 17 Ker ¥y — 0 is exact. Then the homomorphism
j{O(qJFzT,FﬂM)) - fHO(\I]FE/T,FT(M))

is an isomorphism. Moreover, the map H* (T}, prr(M)) — H' (VTS pp(M)) is

injective.

Proof. Let ¥ = {7s,...,7a4,7}. Then consider the complex

CM):0>M— M- — ® M- —M—0,
i €X! {ir,rirye(Y)

where (f/) denotes choosing r-indices at a time from the set X! , and for all 0 <

r < |¥| — 1, the map dﬁ """ Jri1 . M — M from the component in the r-th term

..... i

corresponding to {i,...,4.} to the component corresponding to the (r + 1)-tuple
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{J1s- -, jrs1} is given by

0 if{ila"'viT}/q{.j17"'7jT+1}7
(*1)5-7+1(’Y]‘ — ’Ld) lf {jl, e 7j7“+1} = {il, N 7iT} U {]}
e and{4y,...,i,} doesn’t contain 7,
CES s XL DXLTOD-XLT () _id\ g . . . .
(1) (y — DU i) i GG} = {is i) U )
and{iy, ..., i, } contains 7,
— (yrerartin — i) i {1, deia} = {ins i} U A,

and s; is the number of elements in the set {7y, ...,%,} smaller than j. Let €,, (M)
denote the complex %' (M) with 4 replaced by 4**. Then the kernel complex K can

be written as the total complex of the following bounded double complex

0 0 0 0
Coy(Kerthpy) : 0 —— Kerypyy —— @ Kerypyy —— -+ —— ® Kertpy —— -+ —— Keryyy —— 0
hex {in,mirte(Y)
—(m—id)
C(Kery) : 0 —— Keryyy —— @ Kerthpyy —— -+ —— (&) Kervy —— -+ —— Kerpyy —— 0
i €X'’ {i1, .z,}e("w)

0 0 0 0

Cly--5Cr

where the vertical maps d;; """ : Ker ¢y — Ker ¢y, from the component in the r-th
term corresponding to {by,...,b,.} to the component corresponding to r-th compo-

nent {cy, ..., ¢} is given by the following

—(m —id) if {b1,...,b,} doesn’t contain any term
of the form (¥ — id),
O — sarxrr(d)-xrdr) _ 44 —id
Pt _(b — : )(% id) if {b1,...,b,} contains a term of the form
f‘}/XLT(bl)'“XLT(br) —id

(R/XLT(bl)'“XLT(br) _ Zd)

It is easy to see that each square is commutative in the above double complex. Since
f”}'/alXLT(bl)"'XLT(br) —id

Ao — id is aunitin Ok [[['}7 pr]], thus K is exact at every point. Now

the result follows by using the same technique as in Remark 7.2.7. |

Next, we give an illustration of the above remark by the following example.
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Example 7.2.13. Let d = 2. Then I'j;pr = (71,72,7), and the morphism
OI'yp pp (M) — WT' 7 (M) is given by the following

Ao, A A A
STy o (M) 2 0 M ova grea Avea g ree A2ea s ASea g, 0
idl a/’\J ,@’J ﬂj//J J*d«'jﬂ
° /] . /] D4 6 4 J
\IJFLT.’FT(]\[) 0 M AO.,"/fq M Al,w‘)q M Azw‘)q M AB‘,L/)q M 07
where

9(%@2,%3,%4) :(—¢M($1),$2,$3,$4),
9/(3517532,5763,%4@5,%6) :(—¢M(I1)a —¢M($2)7 —¢M($3)>$4,$5,$6)7

F (w1, 09, 73, 04) =(—Par(71), —Par(T2), —Par(23), T4),

and the maps A; ., and A; ,_are the same as defined in Example 6.3.2 and Example
7.2.10, respectively. Since v, commutes with the action of I'r7 pr, it is easy to see
that each square diagram is commutative. Thus we have a morphism of co-chain

complexes, which induces a well-defined homomorphism
J_Ci(q)riT,FT(M» - g{i<\11F2T,FT(M>> fori > 0.

The kernel X and the co-kernel € of the morphism &'} prr(M) — VI o (M)

are given by the following complexes:

K:0—0— Kerpy = @ Kerpyy — @ Kervpyy — Kerpy, — 0,

C:0— 0 — cokervy; — @ cokery, — @2 coker 1y — cokerpy; — 0.

The complex X is a sub-complex of ®I'7 . (M) and the morphisms are induced
from ®T'} 7 (M) by restriction, and C is a quotient of WI'7 . (M) and the mor-
phisms are induced from WI'7; o(M). Note that X can be written as the total

complex of the following double complex:
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z—0hx 0z
0 — Kervyyy N Ker vy @ Ker ¢y, i SN Kerypy — 0

—(y1—id) # H

0 — Keryyy P Ker iy & Kerppyy —— Keryyy —— 0

T 01T

0 0 0
where )
A _(72 _id) ! — | —(Fe1e2 _; _ 49192 —id
9y = _—(;/al—id)‘| ,01 = [ (¥ d) 2 Prr— },
8 = —(y2 — id) oy = [7(’7(12 Cid) Foz — id:| 7
—(5 —id) y—id
H(x1,x2) = (—(71 —id)zy, — (W) xz) ,
i (372 —id)(y1 —id)
A1) = ( T )
o gu—id  gme—id
Since and are units in O g || , the columns of the above
F— id Faz — id KH LT,FT]]

double complex are exact. Therefore X is acyclic. Since we have the exact sequence
0= X —= @I p pr(M) — VI g pp(M) = € — 0,

and 3'(X) = 0 for all i > 0. Also, H°(€) = 0. Now it is easy to see that

() H(RL g o (M) = HO(UT Y o (M),

(i) HY(PLYp pp(M)) = HY(UTS, pp(M)) is injective. O
Remark 7.2.14. Let M be a r-divisible module in lim Mod g *"**“"**" such that

71 = 1 — 1d acts bijectively on Ker ¢),. Then we have

~

f}fi(‘PFET,FT(M)) - in(‘PFET,FT(M)) fori > 0.

Proof. The proof is similar to Remark 7.2.8. |
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Iwasawa Cohomology over the

Lubin-Tate Extensions

In the previous chapter, we have defined an operator v, acting on the étale (¢,, ['zr)-
module over O¢. In this chapter, we define a complex, namely, ¥'* complex by using
the operator 1), and compute the Iwasawa cohomology for the Lubin-Tate extensions

in terms of this complex (Theorem 8.2.3).

8.1 The complex V*

pq, L' LT €t tor

For any M € hﬂ Mod T0r , define the complex W* (M) as follows:
W(M):0— M 224 A0,

Let M € Mod%’:”’ét’m, then 7" M = 0 for some n > 1. Define

MY :=Homy, (M, K/Ok),

which can be identified with Home, (M, O¢ /7" O¢(x1r)). For more details see (24)
in [29].

85
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Proposition 8.1.1. Let M ¢ Mod%’:”’ét’w. Then the pairing
H(P(MY)) x HH(W*(M)) — K/Ok

is perfect.

Proof. For an étale (yp,, [';r)-module M such that 7" M = 0 for some n > 1, we

have a ['; p-invariant continuous pairing defined by the following ( [29, Remark 4.7])

<','> ZMXMV—)K/OK

(m, F) — 7" Res(F(m)dlog,r(wrr)) mod O,

where Res is the residue map and wyr = {¢(v)}. For the definition of {¢(v)}, see

section 4.2). Moreover, this pairing satisfy the following properties:

(i) The operator vy is left adjoint to ;v under the pairing (-, -), i.e.,

(a(m), F) = (m, onv (F))

forallm € M and all F € MV,

(ii) The operator ), is left adjoint to 1,,v under the pairing (-, -), i.e.,
(oar(m), F) = (m, arv (F))
forallm € M and all F € M.
This induces a pairing
F(P*(MY)) x HTH (T (M) — K/Ok (8.1)

of Ox-modules. Note that the cohomology groups H'(®*(MY)) and FH'(¥*(M))
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are trivial for ¢« > 2 and for ¢ < 0, it is sufficient to check only for ¢ = 0 and 1. Now,

FHO(D*(MY))" = ((MY)#rv =)
= (M")"/(emv —id)" (MY)"
= M/ (¢ — id)M
= 51 (2 (M),

where the first and the last equality follows from the definition of ®*(M") and
W* (M), respectively. The third equality uses the property that 1), is left adjoint

to wv and )y is left adjoint to ¥,,v. Similarly,

H(@ (M) = (M) /(parv — id) M)

- ((MV)V)(sDMv:id)V

— MYm=id
= KO (M)).
Hence
FE(O*(MY))Y = FH(2(M))
for all 7. In other words, the pairing given by (8.1) is perfect. [

T'rr,éttor
d‘qu sELy
/0O¢

Remark 8.1.2. Since for any M € h%nl Mo , we have

M = lim M,

where M,, € Mod%f”’ét’tor. Also, the functors H!(®*(—)) and H(¥*(—)) com-
mute with direct limits. Then by taking direct limits in the above proposition, we

have

H(@(MY))Y = 3 (T (M)
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wq,L'LT,éttor
d/o

for any M € %ﬂMO
ligl\/[o

, 1.e., Proposition 8.1.1 holds for any M €

T'rr,éttor
d‘qu sELy
/0 :

8.2 Iwasawa cohomology

Next, we describe the Iwasawa cohomology in terms of ¥* complex.
Definition 8.2.1. Let V' € Repy, (G ), we define
L

where L varies over the finite Galois extensions of K contained in K., and the

projective limit is taken with respect to the cohomological corestriction maps.

Note that the functor (H:, (K. /K,V))i>o is a cohomological d-functor on the
category of finite free O x-modules with a continuous and linear action of G'i. This

follows from [29, Lemma 5.9].
Proposition 8.2.2. Let V € Repy, (Gk). Then H} (K« /K,V) = 0.

Proof. Since H? (K. /K,V) := lim HO(L,V) = lim VEr, where L varies over
the finite Galois extensions of K contained in K, and the transition maps are given
by the norm maps. Now if V is finite, then the vanishing of HY (K. /K, V) is obvi-
ous. Therefore, assume that V' is finitely generated free O x-module. Then consider

the exact sequence

0>V SV V/aV—0.

Since (H}, (Ko/K,V))i>o is a cohomological d-functor, we have an exact sequence

0— HY (Koo/K, V)5 H) (Koo /K, V) = HY (Koo /K, V/7V).
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Note that H? (K../K,V/7V) = 0as V/xV is finite. Then
0— H\(K/K, V)5 H) (Koo /K, V) — 0

is exact. This implies that 7H?, (K. /K,V) = H? (K./K,V). Moreover, the

identity H},,(Koo/K,V) = lim VEL implies that HY, (K../K,V) is a pro-finite
L

Ok-module. Now it follows from topological Nakayama’s Lemma [19, Lemma

3.2.6] that HY (K../K,V) = 0. m

Next, we prove the following theorem, which gives a description of Iwasawa
cohomology groups in terms of ¥* complex. Note that this theorem is already proved
in [29] as Theorem 5.13 by using Local Tate duality. We express the proof of this

theorem in terms of complexes.

Theorem 8.2.3. Let V € Repl® , (Gx). Then the complex

O g —tor
U (Dor(V(XgeXrr))) 2 0 = Drr(V (X eXrr)) Lo, Drr(V(Xgexer)) = 0,

where ) = wDLT(V(X;ychLT)) and X yc is the cyclotomic character, computes the Iwa-

sawa cohomology groups H: (Ko /K,V) fori > 1, i.e.,
Hi(Koo/ K, V) 2 38 (Drr(V(xgexor))))-

Proof. Since V' € Repg’;_tor(G k), 1.e., V is a discrete m-primary representation of

Gk, we have an isomorphism
Hip (Koo/ K, V) = H*(Gal(K /Ko ), VY (Xeye))

which is induced from the Local Tate duality. For more details see [29, Remark 5.11].
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Moreover,

H* ™ (Gal(K/Ku), VY (Xeye)) = HTHO* (D (VY (Xeye))))”

e

*(Drr(V(xepexer)¥))”

( (
~( (
= HH( (Drr (V)" (XzrXewe)))”
! (
T Drr(V (XeyeXzr)))-

Here the first equality follows from Proposition 5.2.5. The second and third equality
uses Remark 4.6 and Remark 5.6 of [29], respectively, while the last isomorphism

comes from Remark 8.1.2 . Hence

Hj,y (Koo K, V) 2 37T (Drr(V (Xepexer))).

This proves the theorem. |

Corollary 8.2.4. ForanyV € Rep, (Gx), we have

Hijy(Koo/ K, V) 2 57T (D7 (V (Xeyex21)))

foralli > 1.

Proof. Since the transition maps are surjective in (W* (D (V/7"V (x4ux11))))n1
the projective system of co-chain complexes of abelian groups, thus the first hyper-

cohomology spectral sequence degenerates at F». Moreover,

lim '3 (T (Drr (V/7"V (Xgpexrr)))) = 0.

n
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Then the second hyper-cohomology spectral sequence
Lim "3 (B (DL (V/7"V (Xeyexrr)))) = FO (L (Drr(V (XepeX L))
also degenerates at F5. Therefore
Lim (L (Do (V/7"V (Xeyexzr)))) = H (L (Drr(V (XapeXzr))-
Moreover,
i}, (Koo/ K, V) = lim H'(L, V')
L
= @@H%L, V/m"V)
L n
= @@H%L, V/m"V)
nooL
= @H}W(KM/K, V/ma"V).

Here the first and the last equality uses the definition of the Iwasawa cohomology.
The second isomorphism follows from Lemma 5.5.4.

Now the result follows from Theorem 8.2.3 by taking the inverse limits. |
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Chapter 9

An Equivalence of Categories over

the Coefficient Ring

Recall that the Theorem 4.2.10 gives a classification of the category of finitely gen-
erated O g -modules with a continuous and linear action of G in terms of étale
(¢g; I'Lr)-modules over O¢. In this chapter, we extend Theorem 4.2.10 to give an
understanding of the category of R-modules of finite type with a continuous and R-
linear action of G, where R is any complete Noetherian local ring whose residue
field is a finite extension of IF,,. We consider a category of étale (¢, I',7-)-modules
over the completed tensor product O¢&@p, R. Then we show that this category is
equivalent to the category of R-linear representations of GGx. Our method for prov-
ing this equivalence of categories is similar to as in [9]. The core point, which we

use in the main result, is Lemma 9.2.6.

We divide this chapter into two sections. In section 9.1, we collect some prelim-
inary results on coefficient rings. In section 9.2, we extend Theorem 4.2.10 to the

case of coefficient rings.

93
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9.1 Background on Coefficient Rings

In this section, we recall some significant results on coefficient rings, which we are

going to use in this chapter. Most of these results are given in [9], [11], and [22].

9.1.1 Basic definitions

Definition 9.1.1. [8, Chapter 1, Definition 2.1] A coefficient ring R is a complete
Noetherian local ring with finite residue field kr of characteristic p, i.e., kg is a finite

extension of [F,.

Example 9.1.2. Let QQ, be the field of p-adic numbers with ring of integers Z,,. Then
the ring Z, and the power series ring Z,[[ X ]] are coefficient rings. Moreover, for any
finite extension K of Q,, the ring O and O [[ X1, Xo, ..., X,,]] are also coefficient

rings. Here O denotes the ring of integers of K. U

The ring R has a natural pro-finite topology with a base of open ideals given by
the powers of its maximal ideal mp. In other words, R = @1 R/m%R.

A coefficient ring homomorphism is a continuous homgmorphism of coefficient
rings R — R such that the inverse image of the maximal ideal mp is the maximal

ideal mp: C R’ and the induced homomorphism on residue fields is an isomorphism.

Definition 9.1.3. For a fixed prime number p, a p-ring is a complete discrete valua-

tion ring whose valuation ideal is generated by a prime element.

Example 9.1.4. For a given field k of characteristic p, the ring W (k) is a p-ring.
Here W (k) denotes the ring of Witt vectors of k. In particular, the ring Z, of p-adic
integers is a p-ring. Moreover, for a finite extension K of Q,, the ring O is also a

p-ring. The valuation ideal of O is generated by a prime element 7 of O . U

Let R and S be two rings with ideals I/ C R and J C S. Assume that R and S

are both T’-algebras for some other ring 7.
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Definition 9.1.5. The completed tensor product R®+S is defined as the completion
of R ®7 S with respect to the (I ® S + R ® J)-adic topology.

9.1.2 Some preliminary results

Now we define the completed tensor product of a p-ring and a coefficient ring.
Let O be a p-ring and R be a coefficient ring. Let O be a finite extension of Z,,.
Assume that both O and R are O g-algebras, where the maps O — O and O — R

are local homomorphisms. Define
OR = O@oK R.

Then by [9, Proposition 1.2.3], O is a complete Noetherian semi-local ring. Note
that the residue field of O need not be finite as there is no restriction on the residue

field of O.

Proposition 9.1.6. Let A be a Noetherian semi-local commutative ring with unity
and my be the radical (intersection of all maximal ideals) of A. Then A/w’; is

Artinian for alln > 1.

Proof. We prove this by induction on n. Let n = 1. Then by using Chinese Remain-

der theorem, we have

Ajmy géfl/mi, 9.1)
i=1

where m; is a maximal ideal of A for 1 < ¢ < n, and the map is a natural projection
map. Note that each A/m; is Artinian being a field. Consequently, the right hand
side of (9.1) is Artinian as it is a finite direct sum of Artinian rings. Therefore A/m 4
1s Artinian, and the result is true for n = 1. Assume that the result is true for n — 1.

For general n, the result follows from the following short exact sequence

0—myt/my — A/m’ — A/my ! — 0.
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Now A/m’ ! is Artinian by induction hypothesis. Note that A is Noetherian. This
implies that m’; ! /m’} is a finitely generated module over A/m 4. Since every finitely
generated module over an Artinian ring is Artinian, m’ ! /m’} is Artinian. Hence

A/m’ is Artinian. [ |

Since O is a complete semi-local Noetherian ring with unity. Then we deduce

the following result from Proposition 9.1.6.
Corollary 9.1.7. Op/m}0p is Artinian for all n > 1.

Let R and S be two coefficient rings and O be a p-ring (or any local ring with
residue field of characteristic p). Let 6 : R — S be a coefficient ring homomorphism.
Then it induces a homomorphism 0 : O ®p,, R = O ®p,. S.

Assume that 6 is local. Then we have (O @mp+mp @ R) C O @ mg+my® S,
and 6 is continuous with respect to the obvious topologies. Therefore it induces a
semi-local homomorphism

QZOR—>05.

Proposition 9.1.8. [9, Proposition 1.2.6] Let 0 : O; — Oq be a local homomorphism
of p-rings and let R be a coefficient ring. If 0 is flat then it induces a faithfully flat
homomorphism

GR : Ol,R — 0273.

Proof. Note that

(mROi,R)" = m%@i,g, fori = 1, 2.

Now by using [22, Theorem 22.3], it is enough to check that Oy gp/m%0, f is flat

over Oy p/m%0; g. Moreover, it follows from [15, 0.19.7.1.2] that

i r/mME0; r = 0; ®o, R/mi.

Since 6 is flat and flatness is preserved under base extension ( [21, Chapter X VI,
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Proposition 4.2]). Thus Oy p/m}05 g is flat over Oy gr/m%04 g.
Next, in order to show faithful flatness we need to prove that every maximal ideal

of Oy p is in the image of the induced map
Spec(02,r) — Spec(Oy g).

For this, consider the following commutative diagram

O1,p ——— 02

| |

ko, @1 kr —— ko, O kg,

which we get by dividing the radicals of O; r and O, . Recall that the base change
preserves the faithful flatness. Since the lower horizontal map is the base change of

a field extension, so it is faithfully flat. Now it follows that 0 is faithfully flat. W

9.2 An equivalence over coefficient rings

In this section, we consider a category of étale p,-modules (resp., étale (p,, ['Lr)-
modules) over O¢®p,. R and prove that this category is equivalent to the category of
R-linear representations of GG in the equal characteristic case (resp., mixed charac-

teristic case).

9.2.1 The characteristic p case

Let E be a local field of characteristic p > 0. Then FE is a finite extension of F,((t)).
Assume that £ = k((t)) such that card(k) = ¢, where ¢ = p" for some fixed
r. Recall that the Cohen ring of F is the unique (up to isomorphism) absolutely
unramified discrete valuation ring of characteristic 0 with residue field £.

Let O¢ be the Cohen ring of £ with uniformizer 7. Let € be the field of fractions
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of O¢. Then

0c = im 02/ Oz, O0/n0; = F and ¢ = 0; m |
The field € is a complete discrete valued field of characteristic 0, whose residue field
is E. Moreover, if &’ is another field with the same property, then there is a continuous
homomorphism ¢ : &€ — &’ of valued fields inducing identity on F, and ¢ is always
an isomorphism. If E is perfect, then we may identify O, with the ring W (FE) of
Witt vectors with coefficients in £, and ¢ is unique. So, we have a p-ring O¢ of

characteristic zero with fraction field € and residue field E. We fix a choice of €.

Let f : E — F be a homomorphism of local fields of characteristic p. Then it
follows from [11, Theorem A.45] that there is a unique local homomorphism O —
Og, which induces f on the residue fields. Also, for any finite separable extension F’
of E, there is a unique unramified extension £z = Fr(O7) of & whose residue field

is F'. Moreover, if F'/E is Galois, then € /€ is also Galois with the Galois group
Gal(€r/&) = Gal(F/E).
Let £°°? be the separable closure of £. Then

Er = J F,
FeS

where S runs over the finite extensions of F contained in £, If [, ' € S and

F C F',then £ C &' Define

e = | &p.

FesS

Clearly, £"" is a Galois extension of £, and there is an identification of Galois groups

G = Gal(E*?/E) & Gal(£" /€).
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Let O¢ur be the ring of integers of £". Then Og¢ur is maximal unramified integral
extension of Qg with field of fractions £“", and O¢w has a valuation induced from
O¢. Moreover, the valuation ring O; in the completion gur of & is a p-ring with
residue field £*°°. The Galois group G'g acts continuously on gur,

For the rest of the thesis, I will always denote a coefficient ring, unless stated
otherwise. Also, we assume that R is always an O i-algebra such that the map O —

R is a local ring homomorphism. Here O is the ring of integers of a p-adic field K

with residue field & such that card(k) = q.

Now define the rings

OR = Og@@KR,

O = 0 Q0 R

Then it follows from Proposition 9.1.8 that 6}‘? is an O p-algebra and is faithfully flat
over Og. Since the Galois group G acts continuously on O¢ur, it induces an action
of Gg on Og;. Now by taking the trivial action of G on R, it induces a Galois

action on O For Qo R. Moreover, this action is continuous as G acts continuously
on €. Thus the action of G on O% is continuous with respect to the mzO% -adic

topology.

Remark 9.2.1. It follows from [9, Proposition 1.2.3] that Og and 6}% are Noethe-
rian semi-local rings, complete with respect to the mp-adic topology, and that mp

generates the radical of these rings.

Let o, := (z + z7) be the ¢-Frobenius on E. Choose a lift of ¢, on € such that

it maps O¢ to O¢. Then we have a ring homomorphism ¢, : O¢ — O such that

q

0,(r) =27 mod 7.
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Now assume that ¢, is flat. Then we have a R-linear homomorphism
Vg ‘= Pq ®ZdR : Og ®OK R — OE ®OK R.

Since the ideal mp, ® R+ Og @ mp in O¢ ®o, R is generated by mpg, it is clear that

g maps my, @ R+ Og ® mp to itself. Then we have the following lemma.

Lemma 9.2.2. The homomorphism
©q:0p — Op

is faithfully flat.

Proof. Since ¢, is flat, the proof follows from Proposition 9.1.8. |

Since the g-Frobenius ¢, on O¢ extends uniquely by functoriality and continuity

to a g-Frobenius on O .;, we also have a faithfully flat homomorphism from @E’ to

gur?
ur
OR'

Next, we define the category of R-representations of the Galois group G and
the category of ¢,-modules over Or. Then we construct a functor from the category

of R-representations of G'g to the category of ,-modules over Op.

Definition 9.2.3. An R-representation of the Galois group G is a finitely generated

R-module with a continuous and R-linear action of Gg.

Definition 9.2.4. A ¢ ,-module over Op is an Or-module M together with a map

opm M — M,
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which is semi-linear with respect to the g-Frobenius ¢, i.e.,

om(r+y) = om(x) +omy),

o (M) = pg(N)em(z),

forall z,y € M and A € Opg.

Remark 9.2.5. Let M be a p,-module over Og. Then a semi-linear map @y : M —

M is equivalent to an O -linear map
lin .
Oyf - My, — M,

where M, =M , ®g, Og is the base change of M by Or via ¢;.

Let Repyr(GEg) denote the category of R-linear representations of Gy and
Modng the category of ,-modules over O . The morphisms in ModfgR are Op-
linear homomorphisms commuting with ¢.

Let V be an R-representation of G . Define
Dg(V) = (0% @x V)C".

Here G acts diagonally. Moreover, the multiplication by O on (?)7;{ ®Qpr V is
G g-equivariant, thus Dp(V') is an Og-module. We extend the definition of the ¢-

Frobenius to 6%” ®pr V as follows:
0, A®v) =¢,N)®@v for)e Ow andv €V,

and then ¢, commutes with the action of G'z. It induces a Oz-module homomor-
phism
¢opv) : Dr(V) = Dr(V),

which is semi-linear with respect to the g-Frobenius ¢,.
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Therefore V' — Dy (V) is a functor from Rep,(Gg) to Modng. The following

lemma shows that the functor D commutes with restriction of scalars.

Lemma 9.2.6. Let V be an R-representation of Gy such that m'yV = 0 for some n.

Then we have

Drr(V) = Dg(V)
as an O g-module.

Proof. We use induction on n. First assume that mzpV = 0. Since V is an R-
representation of G, it is finitely generated as an R-module. Then mzV = 0 implies
that V' is also finitely generated as an R/mg-module. But we know that R/mp = kg
is the residue field of R and it is finite. Since R is an O-algebra, then it follows
that kg is a finite extension of £, where k is the residue field of Ox. Now by using
Nakayama’s lemma (for local rings), V' is finitely generated as an O x-module. Next,
suppose that the statement is true for n — 1, i.e., if m%’lw = 0 for any R-module
W, then W is finitely generated as an O x-module. Now let m%; 1V = 0. Consider the
exact sequence

0—=mp V=V V/mp'V—o.

Then by using induction hypothesis, m; 'V and V/m7% 'V are finitely generated as

Ox-modules. Thus, V is finitely generated as an O x-module. Hence
6—% ®rV = (ogﬁ@oKR)@RV = O@,@(‘)Kv = OE/H\T R0k V.

Here the first equality follows from the fact that 6%” is complete and V' is finitely
generated as an R-module. The last one uses that O is complete, and V' is finitely
generated as an Ox-module. Then taking G g-invariants, we get the desired result.

Next, we show that the functor Dy is an exact faithful functor, and it com-

mutes with the inverse limits. Let V' € Repp(Gg) and m%V be a submodule
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of V generated by elements of the form mv for m € m}j and v € V. Define

Vo =V/miV =V @ R/ml.

Proposition 9.2.7. Forany V € Repy(Gg), we have

Proof. Since 6}? is complete with respect to mR@ -adic topology and V is finitely
generated as an R-module. Therefore 6}%? ®p V 1s complete with respect to mp-adic

topology, and we have
0F @V = 1&1(@ ®rV)/mp
= lim(OF ®r (V/mpV))

= @1(6}? R Vn)>

n

where the second equality follows from the fact that the radical m R@" ®V + 6’% ®
mpV is generated by mp. Since taking (Gp-invariants commutes with the inverse

limits, the proposition follows by taking (G p-invariants. |

Lemma 9.2.8. The functor Dy, is an additive functor.

Proof. LetV and W be two R-representations of G'g. Then by Proposition 9.2.7, we

have

Dr(V e W) =limDr(V & W) ®r R/mp)
= lim Dp(V ©p R/mp @ W @ R/mp)

Since V,, and W, are of finite length, then by Lemma 9.2.6, we have Dg(V, ®W,,) =
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Drr(V,, & W,,). Moreover, it follows from [20] that the functor D is an additive
functor, i.e., D7 (V,, ® W,,) = Dpr(Vy,) @ Dpr(W,). Then

lim Dy (V, & W) = lim(Dir (V) & Drr(W,))
= 1im Dy (V) @ Lim Dy (W)
= lim Dg(V,) @ lim Dg(W,)
>~ Dr(V) @ Dg(W),

where the third isomorphism uses Lemma 9.2.6 and the fourth one follows from

Proposition 9.2.7. n

Proposition 9.2.9. The functor Dy is exact and faithful.

Proof. Let
0—+A—-B—-C—=0

be an exact sequence of R-representations of G . Since 6%” is flat as an R-module,

we have a short exact sequence
0%@®RA—>@‘®RB—>6%®RC—>O.
Taking G p-invariants, we have a long exact sequence
0 — Dr(A) = Dr(B) = Dg(C) — ---.

Thus the functor Dy, is left exact. Now if V' has finite length, then by Lemma 9.2.6,

we have

Drr(V) =Dg(V)

as an Ox-module. Moreover, it follows from [20] that the functor ID; 7 is an exact

functor. Hence for a short exact sequence 0 - A — B — C' — 0 of finite length
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representations, the sequence

0 — Dr(A) — Dgr(B) - Dgr(C) — 0

is exact. Now let

0A—-B—=C—=0

be a sequence of arbitrary R-representations of Gz. On tensoring it with R/m%,, we

haveznlexactsequence

A/m}, — B/m} — C/m} — 0. 9.2)

Note that the sequence (9.2) is an exact sequence of finite length representations and
using the exactness of the functor Dy for finite length representations, we get an

exact sequence

Dr(A/m%) — Dp(B/m%) = Dr(C/mk) =0 ¥V n> 1. (9.3)

Let K, be the kernel of the map

Dr(B/my) = Dp(C/my).

Since the sequence (9.3) is exact, we have a surjective homomorphism

Dr(A/mYp) — K,.

Then it follows from Lemma 9.2.6 that Dr(A/m}) is finitely generated over the
Artinian ring O g/m?. Thus the inverse system (Dg(A/m})),>1 satisfies the Mittag-

Leffler condition. Since the map

Dr(A/mYy) — K,
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is surjective, (K,),>1 also satisfies Mittag-Leffler condition. Also, the functor Dz
commutes with the inverse limits, thus by taking the inverse limits in (9.3), it follows
that the map

Dgr(B) — Dg(C)

is surjective. Hence the functor Dy, is an exact functor. Moreover, the functor Dy, is
an additive functor (Lemma 9.2.8). Then it follows from [13, Proposition 1.2.1] that
the functor Dy, is also faithful as D(V) # 0if V' % 0. [ |

As a consequence of the above lemma, we have the following proposition.

Proposition 9.2.10. Let V' be an R-representation of Gg. Then for an ideal I of R,

we have

(i) 1.DR(V) =Dg(1.V),
(ii) Dr(V)/I.Dg(V) = Dr(V/I.V).

Proof. Since R is Noetherian, the ideal [ is finitely generated. Assume that the ideal

I is generated by the set {x1, 2o, ..., z,}. Define the map
p: V"=V

n
(1)1, o ,Un) — Z$7'U’
=1

Clearly, 1.V is the image of p. Since the functor Dp, is exact, it follows that Dz (/.V)
is the image of Dg(p). Moreover, the Galois group G g acts R-equivariantly. Then

by identifying D (V™) with Dg(V)", the map
Dr(p) : Dr(V)" — Dr(V)

is given by

n

(dl, c.. ,dn) — szdz

=1
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Now, its image is I.Dg (V). Hence
I.DR(V) =Dg(1.V).
The second part follows by applying the functor D to the short exact sequence

0—=1V >V =V/IV—=D0. |

Proposition 9.2.11. Let V € Repy(Gg). Then

Dr(V) = lm(Dp(V)/mzDe(V)).

n

Proof. Since the functor D commutes with the inverse limits (Proposition 9.2.7).
Thus
Dp(V) = Im Dp(V,) = im Dg(V/mpEV). (9.4)

Moreover, m’; is an ideal of . Then by Proposition 9.2.10, we have
Dp(V)/mgDg(V) = Dr(V/mzV). 9.5)

Now by combining (9.4) and (9.5), we get the desired result. [

Proposition 9.2.12. Let V' be an R-representation of Gg. Then Dr(V') is a finitely

generated O gp-module.

Proof. By Proposition 9.2.11, we have
Da(V) = lim Dp(V) /mpDr(V)).

Therefore the module D (V') is separated with respect to the mg-adic topology. Re-
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call that V,, = V/m%V and mp, is an ideal of R, it follows that

Here the first equality comes from the Proposition 9.2.10. Now V} is killed by mp,

then by [9, Lemma 2.1.5], we have
Dg(V1) = Dy, (V1) (9.6)

as an Og-module. Note that D, (V1) is finitely generated as an Og-module. Then
it follows from (9.6) that Dg(V')/mgr.Dg(V) is also finitely generated as an Og-
module. Thus by using [22, Theorem 8.4], we deduce that Dg(V/) is finitely gener-

ated as an O g-module. |

Proposition 9.2.13. Let V be an R-representation of G . Then we have

O ®p, Dr(V) = 0¥ @5 V.

Proof. First assume that V' is killed by m% for some n. Then by Lemma 9.2.6, we

have D1 (V) = Dg(V) as an Ox-module. Now by using Remark 4.2.9, the map
0% ®p, Dr(V,) — O @5V,
is an isomorphism. Moreover,

lim OF ®o,, Dr(V,) =lim OF ®o, Dr(V/m}V)
~1im OF ®oy, Dr(V)/mzDp(V)
~lim(OF ®o, Dr(V))/m}
~0% ®o, Dr(V),
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where the second isomorphism uses Proposition 9.2.10, the third isomorphism comes
from the fact that mp generates the radical of 6}%? ®oy Dr(V). The last isomorphism
follows from Proposition 9.2.12 and the fact that @E’ is complete with respect to

m R@" -adic topology. On the other hand,

lim OF ®p V, =lim OF @5 V/mpV
=lim(OF @ V) /m;

>0y ®g V.

Hence for general V, the result follows by taking the inverse limits. |

Next, we define a full subcategory of Mod%R, which is an essential image of

the functor Dx.

Definition 9.2.14. A (,-module M over Op is said to be étale if ®L7 is an isomor-

phism, and M is finitely generated as an O zp-module.

Let Mod%ﬁt denote the category of étale ¢,-modules over O z. The morphisms
of étale ¢ ,-modules are the morphisms of underlying ,-modules. Since Mod%R
is an abelian category. It follows from [10] that the category Mod%’jt is also an
abelian category. Moreover, it is also stable under sub-objects, quotients and tensor

product.

Proposition 9.2.15. Let V € Repy(Gg). Then Dg(V') is an étale p,-module over
Og.

Proof. By Proposition 9.2.12, we know that D(V') is finitely generated as an O g-
module. Now we only need to show that the map @%;j (v 18 an isomorphism.
If m%V = 0 for some n, then by Lemma 9.2.6, we have D1(V) = Dg(V') as an

O x-module, and it follows from [20] that the map

(I)]lDéZ(Vn) : Dr(Va)e, = Dr(V2)
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is an isomorphism. Since the functor Dz commutes with the inverse limits, the result

follows for general V' by taking the inverse limits. ]

Next, we construct a functor V from the category of étale p,-modules over O
to the category of R-representations of GG and show that the functor Vp is a quasi-

inverse functor to Dg. The functor V, is defined in the following way.

Let M be an étale ¢,-module over Or. Then view @ ®oyp M as a p,-module
via

Piiao, (A @ M) = 94(X) @ ear(m)  for A € Of,m € M.

For simplicity, we write ¢, ® ¢y rather than ¢ D0 M
R R

The Galois group Gy acts on 6%" ®o, M via its action on 6%’ and the group

action commutes with the action of ¢, ® ¢s. Define
VR(M) = (OF ®o, M)#@#m="1,

which is a sub R-module stable under the action of G . Therefore M — V(M) is

quét

a functor from Mod/" " to Repy(GE).

Next, we show that the functor Vz commutes with the inverse limits and it is also

an exact functor. Let M,, = M /m’, M, where m’; M is sub-module of M.

Proposition 9.2.16. Let M be an étale p,-module over Og. Then

Va(M) = lim V(M,).

Proof. Since taking ¢, ® yys-invariant commutes with the inverse limits, it is suf-

ficient to prove that the tensor product with @" commutes with the inverse limits.
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But

lim(OF o, My) = lim(OF o, (M/m}M))

n

lﬂl(@ﬂ Qog M)/m?%

Note that 6}% is complete with respect to m 36’% -adic topology. Also, M is finitely
generated as an O p-module since M 1is étale. So @ ®o, M is complete with respect

to mp-adic topology. Hence

lim(0F o, M)/m} = OF @o, M

n

Now the proposition follows by taking ¢, ® ¢/-invariants. |

Lemma 9.2.17. Let V' be an R-representation of Gg. Then ¢, ® idy — id is a

surjective homomorphism of abelian groups acting on OF Qgr V.

Proof. Let mgpV = 0. Then the map
g —id 1 E%P — B

is surjective, since for all A € E*°P, the polynomial 7 — x — \ is separable. As kg is

a finite extension of [, and ¢, acts trivially on kg, the map
PYg — id : 5P ®Fp kR — FFP ®]Fp ]{?R
is also surjective. Moreover, ¢, — id is continuous, thus the map

pg —id : kg = E* P&, kp — E*P &g,k
R
is surjective. Note that V; = V/mzV is free over kg, and ¢, acts on ko/\w Ry Vi via
R

its action on ko/u\r, it follows that ¢, ® idy, — id is surjective on ko/u\r ®kp V1. Then
R R
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by dévissage (by using Five lemma as explained in part (i) of Lemma 4.2.3),
0q @ idy, —id : O jml, @ Vy, — OF /ml @5 V,

is surjective. Since @ /m’ is Artinian, and V,, has a finite length. Consequently, the
Mittag-Leffler condition holds for 6}%? /m}% &g V,,. Then by passage to the inverse

limits, the result holds for general V. |

Lemma 9.2.18. Let M be an étale p,-module over O g such that W'y M = 0 for some
n > 1. Then
Vir(M) =Vg(M),

as an O g-module.
Proof. The proof is similar to Lemma 9.2.6. ]

Proposition 9.2.19. Let M be an étale p,-module over O . Then the homomorphism

©q @ o — id is surjective on 6}7{ R0, M.

Proof. f m’, M = 0 for some n, then by Lemma 9.2.18, we have V(M) = Vi(M)

as an O x-module. Now by using Remark 4.2.9, it follows that the natural map
@ ®r Vr(M,) — 611% Qor Mn

is an isomorphism. Moreover, this isomorphism respects the action of ¢, ® @x.
Then by using Lemma 9.2.17, the map ¢, ® ¢ — id is surjective on 6%" Rop My,

and the general case follows by passing to the inverse limits. |
Proposition 9.2.20. The functor Vg is an exact functor.

Proof. Let
0—>M-—>M—-M'—0
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be a short exact sequence of étale p,-modules over Ox. Then we have the following

commutative diagram
0 — O ®o, M —— O ®o, M' —— O ®o, M" —— 0
Pqg®Pr —idJ{ PqRP st —idJ{ PqO@ 11 —idJ{
0 —— OF ®o, M —— OF ®o, M —— OF ®o, M" —— 0.

Now by applying the Snake lemma, we get an exact sequence
0 — Va(M) = Va(M') = Vi(M") = 0% @0, M/ (0 ® par —id) — - .

By Lemma 9.2.19, we know that the map ¢, ® ¢ —1d is a surjective homomorphism

acting on 6}‘? ®o, M, so the last term is zero, and the sequence
0— Vg(M) = Vg(M') = Vr(M") =0

is an exact sequence. Hence the functor Vp, is exact. |

Proposition 9.2.21. Let M be an étale @,-module over Og. Then V g(M) is finitely

generated as an R-module, and the homomorphism of 6}? -modules
@ ®pr Vr(M) — @ ®o, M

is an isomorphism.

Proof. Since by analogue of Proposition 9.2.11 for V, we have
V(M) = Jan(V (M) /¥ (M),

Then V(M) is separated with respect to the mg-adic topology. Moreover, by ana-

logue of Proposition 9.2.10 for Vy, we have

VR(M)/mRVR(M) = VR(M/mRM) = VR(Ml)
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As M, is killed by mg, then by [9, Lemma 2.1.5], we know Vz(M;) = V. (M) as
an O g-modules. Now note that V. (M) is finitely generated as an O¢-module, thus
Vr(M)/mgr.Vi(M) is also finitely generated as an Og-module. Then by theorem
[22, Theorem 8.4], it follows that V(M) is finitely generated as an O z-module.

For the second part, if M is killed by m’;, then by Lemma 9.2.18, V(M) =
Vgr(M) as an O g-module. Now by using Remark 4.2.9, the map

6}? ®pr Vr(M,) — 6}? ®o, M,

is an isomorphism, and the general case follows by taking the inverse limits as in

Proposition 9.2.13. |

Next, the following theorem gives an equivalence of categories between the cat-

egory Rep,(Gg) and Mod%ﬁt.

Theorem 9.2.22. The functor
Dg : Repyr(Gg) — Mod%’;t
is an equivalence of categories with quasi-inverse functor
Vg : Mod?3" — Repy(Gp).

Proof. Let V be an R-representation of G'r and M be an étale ¢,-module over Op.

Then to prove the theorem, it is enough to show
VeDr(V)) =V and Dg(Vg(M)) = M.
Since by Proposition 9.2.13, we have an isomorphism

0% @0, Dr(V) = 0% @z V
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of G'g-modules. Then by taking ¢, ® ¢j,-invariant, we get an isomorphism
Ve(Dg(V)) = (0% @5 V)re®eu=id,
Note that V" has trivial action of ¢, ® ¢/, so there is map
V = (0% @p V)ra@em=id

Now for finite length modules, the above map is an isomorphism by using Theorem
4.2.10. By taking the inverse limits, the map will be an isomorphism for the general
V. Hence

Vr(Dr(V)) = V.

Similarly, the map

M — (0F @0, M)°*
is an isomorphism. Moreover, by Proposition 9.2.21, we have an isomorphism
0% @ V(M) = 0% @0, M.
Then taking G'g-invariants, we have
Dr(Vr(M)) = (OF ©r Va(M))® = (OF @o, M)°F.

Therefore

is an isomorphism, and this proves the theorem. |
Remark 9.2.23. The functors Dy and Vy are compatible with the tensor product,

i.e., if V; and V; are R-representations of G, and M; and M, are étale ¢,-modules

over Og, then
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(i) The homomorphism D (V3)®,Dr(Va) — Dr(Vi®rV2) of étale ,-modules
1S an isomorphism.
(if) The natural homomorphism V(M;) @ Vr(Ms) — Vg(M; ®¢, M) of R-

representations of G is an isomorphism.

9.2.2 The characteristic zero case

Let K be a local field of characteristic 0. From chapter 4, recall that the ring O is
the m-adic completion of O k[[Z]] [%], and Ogur is the maximal integral unramified
extension of Og. The ring O is the m-adic completion of Ogur. Also, the Galois
group Hyx = Gal(K/K,,) is identified with G, where E is the field of norms of
the extension K,/ K and it is a field of characteristic p.

Let V be an R-representation of Gx. Then
Dr(V) = (0 @ V) s = (0F @ V)%*

is a ¢p,-module over Or. The G'i-action on O @i V induces a semi-linear action

of GK/HK = FLT = Gal(KOO/K) on DR(V)

Definition 9.2.24. A (¢, I'Lr)-module M over Op, is a p,-module over O equipped
with a continuous semi-linear action of I';r, which commutes with the endomor-
phism ¢y, of M, and a (¢4, I'rr)-module is étale if its underlying ¢,-module is

étale.

Let Mod%’;”’ét be the category of étale (¢ , I'7)-modules over Og. Then Dy
is a functor from the category Rep,(Gk) of R-linear representations of G to the
(pq,FLT,ét

category Mod/g. of étale (y,, I'r)-modules over Op.

If M is an étale (p,, I'Lr)-module over Op, then

Va(M) = (0 ®o, M)Pa@eu=i
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is an R-representation of G'x. The group G i acts on @ as before and acts via [';p
on M. The G action on 6}%? ®o, M is ¢, ® @p-equivariant, and this induces a G

action on Vg (M).

For any V' € Rep(Gf), there is a canonical R-linear homomorphism

of representations of GG . By Theorem 9.2.22, this is an isomorphism when restricted
to Hg, so it must be an isomorphism of G x-representations. Similarly, for an étale

(g, I'r)-module M, the canonical homomorphism of étale (¢, I'7)-modules

is an isomorphism. Moreover, by using Theorem 9.2.22, the underlying map of ¢,-

modules is an isomorphism, and this proves the following theorem.

Theorem 9.2.25. The functor Dy is an exact equivalence of categories between

wq,I'LT,€t

Rep,(G) the category of R-linear representations of G and Mod 0 the

category of étale (@4, I'r)-modules over O g with quasi-inverse functor V.

Next, we extend the functor Dy to the category Repy?®_,,.(Gx) of discrete

mp-primary abelian groups with a continuous and linear action of Gx. Any ob-
dis
mp—tor

Repy(Gk). Forany V € Rep® _, (G), define

mp—tor

ject in Rep (Gk) is the filtered direct limit of mg-power torsion objects in

Dr(V) = (OF @ V)5,

Note that the functor Dz commutes with the direct limits as the tensor product and

taking H j-invariants commute with the direct limits. Then Dg (1) is an object into

the category lim Mod%’;”’ét’tor of injective limits of mz-power torsion objects in
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Mod%’lf“’ét. For any M € lim Mod%’}f”’ét’w, put
Vr(M) = (OF @o, M)#==",

Then the functor V also commutes with the direct limits, and we have the following

result.

Proposition 9.2.26. The functor Dr and V p are quasi-inverse equivalences of cate-

dis wq,I'LT,éttor

gories between Repy,”_,,.(Gk) and lim Mod',

Proof. Since the functors Dy and Vz commute with the direct limits, the proposition

follows from Theorem 9.2.25 by taking the direct limits. |



Chapter 10

Galois Cohomology over the

Coefficient Ring

This chapter is a part of [1]. By Theorem 9.2.25, it is evident that given an object
in the category of R-representation of GG, one can give its description in terms of
the étale (p,, I'Lr)-module attached to it. In this chapter, we show that this is the
case for the continuous cohomology groups of an R-representation V' of G, i.e., we
describe the continuous cohomology groups of V' in terms of the corresponding étale
(g, I'Lr)-module. We give a generalization of most of our results to the case of the

coefficient ring.

10.1 Galois cohomology

In the previous chapter, we have shown that the functor Dy is a quasi-inverse equiva-

lence of categories between Rep(Gx) (resp., Rep® . (Gk)) and Mod%’;”’ét

mp—tor

(resp., lim Mod%’;”’ét’m). The following theorem is a generalization of Theorem

5.5.5 over the coefficient rings.

Theorem 10.1.1. Let V' be an R-representation of Gk. Then there is a natural

119
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isomorphism

H'(Gg,V) = H (OIS, (Dr(V))) fori > 0.

Proof. First assume that the representation V' has finite length, i.e., m3V = 0 for

some n€ N. Then by Lemma 9.2.6 and 5.5.5, we have
H'(Gg, V) = 3C(PT17(Dr(V))).

Next, it follows from [32, Theorem 2.1] and [33, Corollary 2.2] that the functor
H i(G K, —) commutes with the inverse limits. Moreover, by Proposition 9.2.7, we

have

Dr(V) = lim Dp(V,).

Observe that the modules Dg(V},) are finitely generated over the Artinian ring
Or/m}0g, so the inverse limit functor is an exact functor on the category of mpg-

power torsion étale (y,, I',7)-modules over O . Then we have
H(@Tr(Dr(V))) = lim H(OL (Dr(Va)))-
Hence the general case follows by passing to the inverse limits. ]

Next, in order to generalize the Theorem 7.2.6 over coefficient rings; first, we
extend the operator ¢ := Y, vy to Dr(V).
As ¢y maps O; to O;, we extend ¢, to Oz ®o, R by making it trivially act

on R. Moreover, it maps my_ ® R + O ® mp to itself, thus induces an R-linear
8”.147‘
map

by : OF — OF.
Since v, acts Galois equivariantly, so making it act on @" ®o, V by its action on

O, we have an operator Up vy on De(V).

Recall that Rep?® (Gg) is the category of discrete mp-primary abelian

mpr—tor
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groups with a continuous and linear action of G'x. Any object in Repﬁf;tor(G K)
is the filtered direct limit of mpg-power torsion objects in Rep (G ). Now we have

the following theorem.

Theorem 10.1.2. Let V € Rep® _, (Gr). Then we have a well-defined homo-

mp—tor

morphism
H QT (Dr(V))) — (VT (Dr(V)))  fori > 0.

Moreover, the homomorphism H°(®T'$(Dr(V))) — HO(VTS,(Dg(V)) is injec-

tive.

Proof. If V is a finite abelian mp, group, then the theorem follows from Lemma 9.2.6
and Theorem 7.2.6. Also, the functors H'(®I'$(Dr(—))) and H (VTS (Dr(—)))
commute with the inverse limits. Hence the result follows for general V' by passing

to the inverse limits. [ |

Next, we compute the Iwasawa cohomology groups of V' in terms of cohomology
groups of W*-complex. The following theorem is a generalization of [29, Theorem
5.13] to the case of coefficient rings. It is possible that this approach leads to the
construction of a Perrin-Riou homomorphism for Galois representation defined over

the coefficient ring R.

Theorem 10.1.3. Let V € Repy(Gg). Then we have
Hiy(Koo/ K, V) 2 30U (Dr(V (xghxer))) fori> 1.

Proof. Suppose that V' has a finite length. Then Dg(V) = Dyr(V) as an Og-
module. Thus vp, ) agrees with the p, (). Now by Corollary 8.2.4, we have

Hj, (Koo /K, V) 2 HH (B (DR(V (XeyeXrr))))  fori > 1.
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Moreover, it follows from Lemma 5.5.4 that the functor H? (K, /K, —) also com-
mutes with the inverse limits. Then by passing to the inverse limits, we deduce the

theorem for general V. |

Remark 10.1.4. It is possible to extend Theorem 6.1.2 to the case of the coefficient

ring, and using that we can prove that for any V' € Repp(G),
H Gk, V) =2 H(PIyp pr(DR(V))) fori > 0.

This gives a generalization of Theorem 6.4.1 over the coefficient rings. We can also

generalize Theorem 7.2.11 to the case of coefficient ring.

10.2 The dual exponential map

By Theorem 8.2.3, we have
H(Koo/ K, O (XeyeX 1)) = Drr(0x ) Per 0™,
The map
Exp” : Hr,(Kwo/K, Ok (XeyeX 1)) = Dy (O )Yorr©0=1

is called the dual exponential map. These dual exponential maps occur in the con-
struction of the Coates-Wiles homomorphisms. For more details about this dual ex-
ponential map, see [29]. We generalize the dual exponential map over the coefficient
ring to check if one can extend the Coates-Wiles homomorphisms to Galois repre-

sentations defined over R.

Theorem 10.2.1. Let V € Repy(Gg). Then we have the following commutative

diagram
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Hp (Koo /K, V) S j{i_1<g.(DR(V(Xc_ychLT))))

| |

Hpy(Koo/ K,V ®r Ox) —z— HH (L (Drr(V @r O (XgeXir))))-

Proof. Note that the ring homomorphism R — O induces a map from V' — V ®p

Ok. By [29, Lemma 5.8], we have
H}w(KOO/Kv V) = HZ(GKv RHFLT]] ®R V)7

Hi (Ko/K,V ®r 0k) = H(Gg, Og[[Trr]] ®o, (V @r Ok)).

Here the right hand side refers to cohomology with continuous co-chains. Therefore,

we have a well-defined map

Similarly, the map V' — V ®pr O defines a map from Dg(V) — Drr(V @ Ok),

and this induces a well-defined map

HHE DRV (Xeexrr)))) = HTHE (Drr(V ®r Ok (XoeXrT))))-

Now the result follows from Theorem 8.2.3 and Theorem 10.1.3. |

Next, we generalize the dual exponential map over coefficient rings.

Corollary 10.2.2. There is a dual exponential map
Expy : H}y(Koo/ K, R(XeyeX1m)) = Q4=
PR - Hpw\ oo/ I L XeyeX LT R

over R, and the diagram



124 Chapter 10. Galois Cohomology over the Coefficient Ring

Expg

H}w(KOO/K, R(XCyCX?ﬂl“)) —

| |

H}y(Ko/ K, Ok (XeyeX 7)) B oy~

wr=id
O}

where Yr = Yp,(r) and VY = Yp, . (0), is commutative.

Proof. Since R(XeyeXrr) is an R-representation of G, by Theorem 10.1.3, we have

Hllw(KOO/K’ R(chCXZ%)) = %U(E.(DR(R(XCZ/CXZY{)(Xc_ychLT)))

>~ QR
Also, by Theorem 8.2.3, we have

Hi(Koo/ K, R(XeyeX 1) @R Ok ) = Hp (Koo / K, Ok (XeyeX 1))
= 3°(2* (DLT<OK(chCXzilf)(ng/chLT)))

~ @Y=id
:(98 ! .

Now, the result follows from Theorem 10.2.1 by puttingi = 1 and V = R(XeyeX17)-
|
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