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Abstract

We consider the Lie groups SU(n, 1) and Sp(n, 1) that act as isometries of the complex
and the quaternionic hyperbolic spaces respectively. We classify pairs of semisimple el-
ements in Sp(n, 1) and SU(n, 1) up to conjugacy. This gives local parametrization of the
representations ρ in Hom(F2, G)/G such that both ρ(x) and ρ(y) are semisimple elements
in G, where F2 = 〈x, y〉, G = Sp(n, 1) or SU(n, 1). We use the PSp(n, 1)-configuration
space M(n, i,m − i) of ordered m-tuples of distinct points in Hn

H, where the first i points
in an m-tuple are boundary points, to classify the semisimple pairs.

Further, we also classify points on M(n, i,m − i). Particularly interesting coordinates
occur for lower values of n. The conjugacy classification of pairs is then applied geomet-
rically to obtain Quaternionic hyperbolic Fenchel-Nielsen type parameters for generic
representations of surface groups into Sp(2, 1) and Sp(1, 1).
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CHAPTER 1

Summary of the thesis

A problem of potential interest is to understand the geometry and topology of the

deformation space, or the conjugation orbit space D(Γ, G) = Hom(Γ, G)/G, where Γ =

π1(Σg) and G is the isometry group of a rank one symmetric space of non-compact type.

Here G acts on Hom(Γ, G) by conjugation via inner automorphisms, Σg denotes a closed

connected orientable surface of genus g ≥ 2 and π1(Σg), or simply π1, denotes the funda-

mental group of Σg. It is well known that the rank one symmetric spaces of non-compact

types are the real, complex, quaternionic hyperbolic spaces and the Cayley plane. The

respective isometry groups in the first three types are given by SO(n, 1), SU(n, 1) and

Sp(n, 1) respectively. The deformation space is geometrically interesting when G is one of

these groups.

When G = SL(2,R), it acts on the two-dimensional real hyperbolic space by real

Möbius transformations. The space D(π1(Σg), SL(2,R)) contains the classical Teichmüller

space as one of its components, and has been studied widely in the literature, though

not completely understood even today, for example see the survey [Gol06] or the recent

work [MW16]. When G = SL(2,C), the deformation space contains the so called quasi-

Fuchsian space that is related to Thurston’s program on three-manifolds and Kleinian

groups, see Marden [Mar16]. In the case ofG = SL(2,R), this leads to the Fenchel-Nielsen

coordinates on the Teichmüller space, see [Wol82]. This was generalized by Kourounitis

[Kou94] and Tan [Tan94] for G = SL(2,C).

A starting point in all these works is the problem of classifying pairs of hyperbolic

elements up to conjugacy. For G = SL(2,R) or SL(2,C), it is well-known from the work of

Fricke and Vogt that the group generated by a pair of elements is completely classified up

to conjugacy by the traces of the generators and the trace of their product, see [Gol09]. It is

not an easy problem to generalize the work of Fricke and Vogt to higher dimensions, or in

other rank one isometry groups. There can be two approaches to handle the problem. In
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the first approach one uses algebraic invariant theory, and in the other geometric methods

driven by underlying geometric structures.

Using invariant theory, there are attempts to classify conjugation orbits of pairs of el-

ements in SL(n,C) using polynomials involving traces. The work of Procesi [Pro76] has

given a set of trace coordinates for classifying conjugation orbits of free group represen-

tations into GL(n,C). Procesi’s coordinate system can be restricted to SL(n,C), but a min-

imal family of such coordinates is known only for lower values of n, see [Law07, Law08,

Dok07]. Since SU(n, 1) is a real form of SL(n + 1,C), the pairs of elements in SU(n, 1)

may be associated to certain trace parameters, though may not be minimal. Using the

work of Lawton [Law07], Will [Wil09] has obtained a set of minimal trace parameters to

classify conjugation orbits of F2 representations in SU(2, 1), also see Parker [Par12]. In an

attempt to generalize this work, Gongopadhyay and Lawton [GL17] have classified the

polystable pairs (that is, the pairs whose conjugation orbits are closed) in SU(3, 1) using

39 real parameters. At the same time, it has been shown that the real dimension of the

smallest possible system of such real parameters to determine any polystable pair is 30.

As evident from [GL17], the complexity of the trace parameters increases with n. An

explicit set of trace parameters for pairs in SU(n, 1), n ≥ 4, is still missing in the literature.

Using geometric methods, there are attempts to classify ‘geometric’ pairs in rank one

isometry groups, mostly SU(n, 1). Recall that an isometry of the complex or the quater-

nionic hyperbolic space is called hyperbolic if it fixes exactly two points on the boundary.

Parker and Platis [PP08], Falbel [Fal07] and Cunha and Gusevskii [CG10], independently

obtained classifications of the hyperbolic pairs in SU(2, 1). A common idea in these works

is to associate the congruence classes of fixed points of the hyperbolic pairs to a topolog-

ical space. It follows from these works that the traces of the hyperbolic elements along

with a point on the respective topological spaces classify the hyperbolic pairs. Parker and

Platis applied their result to construct Fenchel-Nielsen parameters on the complex hyper-

bolic quasi-Fuchsian space. Falbel and Platis [FP08] obtained geometric structures of the

space constructed by Falbel. In [GP17], Gongopadhyay and Parsad have generalized the

work of Parker and Platis to classify generic hyperbolic pairs in SU(3, 1), and then to ob-

tain Fenchel-Nielsen type coordinates on a special component of the SU(3, 1) deformation

space of surface group representations. Recently, Gongopadhyay and Parsad have given
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a geometric classification of the conjugation orbits of the hyperbolic pairs in SU(n, 1). An

advantage of the approach in [GP18a] is that the complexity for larger n can be handled

successfully to provide a classification in arbitrary dimension.

In this thesis, we have classified pairs of semisimple elements in Sp(n, 1), up to con-

jugacy. In other words, we want to classify elements in the space Xss(F2, Sp(n, 1)). Here

Xss(F2, Sp(n, 1)) is the subset of deformation space D(F2, Sp(n, 1)) consisting of represen-

tations ρ such that ρ(x) and ρ(y) are semisimple. Not much is known about the local struc-

ture of this space. A key obstruction in generalizing the above mentioned works to pairs

in Sp(n, 1) is the lack of conjugacy invariants due to the non-commutativity of the quater-

nions. Because of this, neither the classical invariant theoretic approach nor the geometric

approach has a straight-forward generalization for elements in Xss(F2, Sp(n, 1)). We have

resolved this difficulty by associating certain spatial invariants, along with the linear al-

gebraic invariants available in this setup. This has given us a local parametrization of

the space Xss(F2, Sp(n, 1)). As a byproduct, we have classified points in Xss(F2, SU(n, 1)).

These classifications give us a system of local parameters to points in Xss(F2, G), where

G = Sp(n, 1) or SU(n, 1). Particularly interesting coordinates occur for lower values of

n. The conjugacy classification of pairs is then applied geometrically to obtain Fenchel-

Nielsen type parameters for generic representations of surface groups into Sp(2, 1) and

Sp(1, 1). We briefly summarize the thesis in the following sections.

1. Moduli of ordered tuples of distinct points on HH
n

In our understanding of the conjugation orbits of the semisimple pairs, the moduli

space of PSp(n, 1)-congruence classes of ordered m-tuples of distinct points on HH
n
, m ≥

4, is used. We project a pair of isometries onto this space to associate the spatial invariants.

We classified points on this space that provides some understanding of its topology. The

problem to obtain configuration space of ordered tuples of points on a topological space

is a problem of independent interest. The general problem may be stated as follows:

Let X be a topological space and G be a group acting diagonally on the ordered m-

tuples of points on X : for p = (p1, . . . , pm) in Xm, g in G,

(g, p) 7→ (gp1, gp2, . . . , gpm).
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In general, this is a difficult problem to understand the orbit space X/G under this action.

However, there are cases when this can be done using the underlying structure of X . A

basic example is a case when X is the circle σ1 and one considers ordered quadruple of

points on σ1 under the action of the group SL(2,R) that acts by the Möbius transforma-

tions on the circle. In this case, the cross ratios of four points essentially determine the

orbit space. When X is the Riemann sphere and G is the group SL(2,C) of the Möbius

transformations, a similar result also happens.

Let Hn
C denote the n-dimensional complex hyperbolic space and ∂Hn

C be its boundary.

In this case, X = Hn
C ∪ ∂Hn

C and G = SU(n, 1). For k = 3, this problem is related to

the classification of the congruence classes of triangles, and it was solved by Cartan, e.g.

[Gol99]. The Cartan’s angular invariants determine these classes completely. Another

work along this direction was given by Brehm [Bre90] who associated shape invariants

to such triples. The SU(n, 1)-congruence classes of ordered tuples of points on Hn
C ∪ ∂Hn

C

was obtained by Hakim and Sandler [HS03], also see, Brehm and Et-Taoui [BE98]. How-

ever, neither of these works gave a complete picture of the moduli space. Cunha and Gu-

sevskii completely solved this problem for SU(n, 1)-congruence classes of points on ∂Hn
C

and obtained a clear description of the moduli space in [CG12b]. Gusevskii et. al. also ob-

tained the moduli space of SU(n, 1)-congruence classes of points on Hn
C and on the polar

space, see [CDG12], [Gus10]. There are several works on classifications of the SU(2, 1)-

congruence classes of quadruples of distinct points on ∂H2
C, see [Fal07], [CG10], [PP08].

All these works are independent of each other and have used different approaches.

The above works motivate the same problem when X = Hn
H ∪ ∂Hn

H and G = Sp(n, 1).

Here Hn
H denote the n-dimensional quaternionic hyperbolic space and ∂Hn

H be its bound-

ary. The case k = 3, in this case, follow from the work of Apanasov and Kim [AK07],

who used angular invariants similarly as in the complex hyperbolic case. Recently, the

Sp(2, 1)-congruence classes of quadruples of points on ∂Hn
H has been classified by Cao

[Cao16]. This classification has been applied by us in [GK18]. There have been several re-

cent works to obtain the moduli space of Sp(n, 1)-congruence classes of ordered k-tuples

on ∂Hn
H, see [Cao17], [GJ17].
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We generalized the above works to classify points on M(n, i,m− i). Here M(n, i,m− i)
is the space of PSp(n, 1)-congruence classes of orderedm-tuples of distinct points on HH

n
,

where the first i elements in the m-tuples belong to ∂Hn
H, and the remaining others are

from Hn
H. We use the same framework following the work of Brehm and Et-Taoui in

[BET01], or Höfer [Höf99], using Gram matrices. Let p = (p1, p2, . . . , pm) be an ordered

m-tuple of distinct points in Hn
H. The Gram matrix associated to p is the matrix G =

(gij), denoted by G(p), where gij = 〈pj,pi〉 with p = (p1,p2, . . . ,pm) is a chosen lift of

p. The Gram matrix associated to p depends on the chosen lift of p. We associate certain

numerical invariants to the congruent classes of gram matrices in order to describe the

points on M(n, i,m− i). Let p = (p1, . . . , pm) be an ordered m-tuple of points on Hn
H such

that first i elements are from ∂Hn
H and the remaining ones from Hn

H. Let G(p) = (gij) be

the Gram matrix associated to p. We associate the following invariants to p.

Cross-ratios: Given an ordered quadruple of pairwise distinct points (z1, z2, z3, z4) on

Hn
H ∪ ∂Hn

H, their Korányi-Reimann quaternionic cross ratio is defined by

X(z1, z2, z3, z4) = [z1, z2, z3, z4] = 〈z3, z1〉〈z3, z2〉−1〈z4, z2〉〈z4, z1〉−1,

where, for i = 1, 2, 3, 4, zi is a lift of zi. We associate cross ratios to p = (p1, . . . , pm) as

follows:

X1r = X(p2, p1, p3, pr), X2s = X(p1, p2, p3, ps),

X3s = X(p1, p3, p2, ps), Xks = X(p1, pk, p2, ps),

for (i+ 1) ≤ r ≤ m, 4 ≤ s ≤ m, 4 ≤ k ≤ i, k < s.

A simple count shows that there are a total d number of cross ratios in the above list,

where d = i(i−3)
2

+ i(m − i) with i is the number of null points in p. For simplicity of

notation, we shall denote them by (X1, . . . ,Xd) unless otherwise required.

Distance Invariants: Let pi and pj be two distinct negative points in Hn
H. We define

distance invariant dij by: dij =
〈pj,pi〉〈pi,pj〉
〈pj,pj〉〈pi,pi〉

. The quantity dij is PSp(n, 1) invariant and

it is independent of the chosen lifts of the points.
5



Angular invariants: The quaternionic Cartan’s angular invariant associated to a triple

(z1, z2, z3) on Hn
H ∪ ∂Hn

H is given by the following, see [AK07], [Cao16],[Cao17],

A(z1, z2, z3) = arccos
<(−〈z1, z2, z3〉)
|〈z1, z2, z3〉|

.

where 〈z1, z2, z3〉 = 〈z1, z2〉〈z2, z3〉〈z3, z1〉. We associate angular invariants to p as: Aij =

A(p1,pi,pj).

Rotation invariants: If Aij is non-zero, we further associate a numerical invariant uij
given by: uij =

=(gij)

|=(gij)| . If Aij is zero, then we shall assume uij = 0. The Sp(1)-conjugacy

class of uij is called a rotation invariant of p. Here Sp(1) is the unit sphere of quater-

nions and isomorphic to SU(2). For simplicity of notation, we shall denote them as

u0, u1, u2, . . . , ut, with the understanding that ui denotes only non-zero rotation invariant

for 1 ≤ i ≤ t and u0 = u23.

With the above notions, we have the following.

THEOREM 1.1. [GK19, Theorem 1.4] A point [p] in M(n, i,m − i), p = (p1, . . . , pm), is

determined by the Sp(1) congruence class of the (d+ t+ 1)-tuple

W = (u0, u1, . . . , ut,X1, . . . ,Xd), d =
i(i− 3)

2
+ i(m− i), m ≥ 4, t =

(m− i)2 − (m− i)
2

− l,

the angular invariants A23, Ai1j1 and the distance invariants di1j1 , for i < i1, j1 ≤ m, where l is

the number of zero valued rotation invariants uij .

We have rotation invariants of the cross ratios

ηi =
=(Xi)

|=(Xi)|
.

If Xi is a real number for some i, we assume ηi = 0.

Let p = (p1, . . . , pm) be such that A(p1, p2, p3) 6= 0. Note that the Sp(1)-congruence class

of the ordered tuple F = (u0, u1, . . . , ut,X1, . . . ,Xd) is associated to the Sp(1)-congruence

class of the ordered tuple n = (u0, u1, . . . , ut, η1, . . . , ηk) of points on σ2, where k is the

number of non-real cross ratios. Hence the above theorem can be restated in the following

form.
6



COROLLARY 1.2. [GK19, Corollary 1.5] A point [p] in M(n, i,m− i), p = (p1, . . . , pm), is

determined by the angular invariants, the distance invariants, and a point on the Sp(1) configura-

tion space of ordered (k+ t+1) tuple of points on σ2, where k is the number of non-real (similarity

classes of) cross ratios, and t+ 1 is the number of non-zero angular invariants.

The description of the Sp(1)-configuration space of ordered tuples of points can be

obtained from the work [BET01]. Restricting to the special cases of the boundary points

and the points on Hn
H respectively, the above theorem gives the following.

COROLLARY 1.3. [GK19, Corollary 1.6] A point [p] in M(n,m, 0) , p = (p1, . . . , pm), is

determined by the Sp(1) congruence class of the (d + 1)-tuple F = (u0,X1,X2, . . . ,Xd), d =
m(m−3)

2
, m ≥ 4, and the angular invariant A23.

COROLLARY 1.4. [GK19, Corollary 1.7] A point [p] in M(n, 0,m) , p = (p1, . . . , pm), is

determined by the angular invariants, distance invariants and Sp(1) congruence class of the unit

pure quaternions associated to p.

Let Mc(n, i,m− i) denote the SU(n, 1)-configuration space of ordered tuples of points

on HC
n
. As an application of the above theorem, we obtain a classification of points on

Mc(n, i,m − i). Over the complex numbers, conjugacy invariants like the traces and the

cross ratios are well-defined. Accordingly, it is much simpler to classify the points on the

space Mc(n, i,m− i). The following corollary is an extension of Theorem 3.1 of Cunha and

Gusevskii in [CG12b].

COROLLARY 1.5. [GK19, Corollary 1.8] A point [p] in Mc(n, i,m − i), p = (p1, . . . , pm),

is determined by the complex cross ratios X1, . . . ,Xd, d = i(i−3)
2

+ i(m− i), m ≥ 4, the angular

invariants A23, Ai1j1 , and the distance invariants di1j1 , for i < i1, j1 ≤ m.

Using these results, it is not hard to obtain an explicit description of M(n, i,m− i) fol-

lowing similar arguments as in [CG12b] for the complex case and [Cao17] in the quater-

nion case, also see [GJ17].
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2. Conjugation orbits of semisimple pairs in rank one

The group Sp(n, 1) acts on the n-dimensional quaternionic hyperbolic space Hn
H by

isometries. Elements of Sp(n, 1) are (n + 1) × (n + 1) matrices over the division ring H
of quaternions preserving a quaternionic Hermitian form of signature (n, 1). Given an

element g in Sp(n, 1), it has a representation gC in GL(2n + 2,C). The coefficients of the

characteristic polynomials of gC are certain conjugacy invariants of g and the collection

of such coefficients is called the real trace of g. The real traces serve as a set of conjugacy

invariants that may be associated to a pair.

Along with these real traces, another idea in our approach is to associate tuple of

points on HH
n

= Hn
H∪∂Hn

H to a semisimple pair (ρ(x), ρ(y)), and then project the Sp(n, 1)-

conjugation orbit of the pair to the moduli space M(n, i,m− i). Intuitively, the semisimple

pairs are seen here as equivalence classes of ‘moving frames’. To each pair, we associate

points coming from the closure of the totally geodesic quaternionic lines given by these

‘frames’. This association is not well-defined. However, given a semisimple pair, the orbit

of such points under the group action induced by the change of eigenframes gives a well-

defined association, and we denote the space of such orbits byQLn. A point on this space

that corresponds to a given semisimple pair is called the canonical orbit of the pair. This

space has a topological structure that comes from the topological structure of the moduli

space M(n, i,m− i).

However, the canonical orbits along with the real traces do not give the complete set

of invariants that classify the pairs. To complete the classification, we associate certain

spatial invariants to the semisimple pairs and is a crucial ingredient in the classification.

Let T be a semisimple element in Sp(n, 1). Let λ ∈ H \ R be a chosen eigenvalue repre-

sentative in the similarity class of eigenvalues [λ] of T with multiplicity m, m ≤ n, that

is, the eigenspace of [λ] can be identified with Hm. The [λ]-eigenspace decomposes into

a space of the complex m-dimensional subspaces of Hm, that may be identified with the

complex Grassmannian manifold Gm,2m. We call it the eigenvalue Grassmannian of T corre-

sponding to the eigenvalue class [λ]. Each point on this Grassmannian corresponds to an

‘eigenset’ of [λ]. If m = 1, a point on eigenvalue Grassmannian is called a projective point

of T corresponding to the eigenvalue class [λ].
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With the above notions, one of the main results of thesis is the following.

THEOREM 1.6. [GK19, Theorem 1.3] Let (A,B) be a semisimple pair in Sp(n, 1) such that

A and B do not have a common fixed point. Then (A,B) is determined up to conjugation in

Sp(n, 1), by the real traces trR(A), trR(B), the canonical orbit of (A,B) on QLn, and a point on

each of the eigenvalue Grassmannians of A and B.

An immediate corollary is the following.

COROLLARY 1.7. [GK19, Corollary 1.2] Let ρ be an element in Xss(F2, Sp(n, 1)), F2 =

〈x, y〉. Then ρ is determined uniquely by trR(ρ(x)), trR(ρ(y)), the canonical orbit of (ρ(x), ρ(y))

on QLn, and a point on each of the eigenvalue Grassmannians of ρ(x) and ρ(y).

The methods that we have followed to establish the above results, also carry over to

the case of a pair of semisimple elements in SU(n, 1). For elements of SU(n, 1), the un-

derlying hyperbolic space is defined over the complex numbers, and hence there is no

ambiguity regarding the conjugacy invariants. The coefficients of the characteristic poly-

nomials serve as well-defined conjugacy invariants for individual elements. Geometric

invariants like the cross-ratios are also well-defined. Accordingly, we have the following

special case of Theorem 4.11. This was proved for the hyperbolic pairs in [GP17]. The

following is an extension of [GP17, Theorem 1.1] to semisimple pairs. Here Tr(A) denote

the usual trace of a complex matrix.

COROLLARY 1.8. [GK19, Corollary 1.3] Let ρ be an element in Xss(F2, SU(n, 1)), F2 =

〈x, y〉. Then ρ is determined uniquely by Tr(ρ(x)i), Tr(ρ(y)i), 1 ≤ i ≤ b(n + 1)/2c, and the

canonical orbit of (ρ(x), ρ(y)).

For lower values of n, we can get a much better co-ordinate system that is minimal

and the degrees of freedom adds up to the dimension of the group. We summarize these

coordinates in the following sections.
9



3. Pairs of hyperbolic elements in Sp(2, 1)

A hyperbolic element A in Sp(2, 1) will be called loxodromic if the similarity classes of

eigenvalues of A have representatives in the set H \ R. If all the eigenvalues of A are real

numbers, it is called strictly hyperbolic.

One of the main results of this thesis is a classification of pairs of hyperbolic elements

in Sp(2, 1). A pair (A,B) in Sp(2, 1) is called totally loxodromic if both A and B are loxo-

dromic. It is called strictly hyperbolic if both A and B are strictly hyperbolic. Recall that a

pair (A,B) of Sp(2, 1) is irreducible if it neither fixes a point nor preserves a proper totally

geodesic subspace of H2
H. The subset of D(F2, Sp(2, 1)) consisting of irreducible represen-

tations ρ such that both ρ(x) and ρ(y) are loxodromic, is denoted by DLo(F2, Sp(2, 1)).

Let (A,B) be a pair in Sp(2, 1) such that both A and B are hyperbolic elements. For

a hyperbolic element A in Sp(2, 1), its fixed points are denoted by aA and rA. There is a

point p = (aA, rA, aB, rB) associated to (A,B) in the space M(2, 4, 0). There are numerical

invariants like the quaternionic cross ratios and the angular invariants associated to this

point p. These invariants are defined as follows.

Let A and B be two loxodromic elements in Sp(2, 1). The fixed points of A and B on

HP2 \ (H2
H ∪ ∂H2

H) are denoted by xA and xB respectively. Let aA, rA, xA denote the lifts

of aA, rA, xA. For the pair (A,B) we define the following invariants.

The cross ratios of (A,B).

X1(A,B) = X(aA, rA, aB, rB), X2(A,B) = X(aA, rB, aB, rA),

X3(A,B) = X(rA, rB, aB, aA).

The angular invariants of (A,B).

A1(A,B) = A(aA, rA, aB), A2(A,B) = A(aA, rA, rB), A3(A,B) = A(rA, aB, rB).

Recently, Cao has proved in [Cao16] that these invariants completely determined the

Sp(2, 1)-congruence class. Cao has also obtained a topological description of the space

M(2, 4, 0) in [Cao16]. The space M(2, 4, 0) is locally parametrized by seven real parameters
10



consisting of a point on the four (real) dimensional ‘cross ratio variety’ and three real

angular invariants.

However, the real traces of A and B, along with the cross ratios and angular invari-

ants of p, are not enough to classify the pair (A,B) up to conjugacy by Sp(2, 1). A main

challenge in the quaternionic set up is to look for the ‘missing’ invariants to classify a pair.

Here, we associate certain spatial invariants, called the projective points of an isometry, to

determine the Sp(2, 1) conjugation orbit of (A,B). These invariants arise naturally from

an understanding of the eigenvalue classes of an isometry. It is not needed to associate

projective point to a real eigenvalue of a hyperbolic element. A choice of projective points,

along with ‘attracting’ and ‘repelling’ fixed points, and real trace, determine a hyperbolic

element in Sp(2, 1). We prove the following.

THEOREM 1.9. [GK18, Theorem 1.1] Let (A,B) be a totally loxodromic pair in Sp(2, 1).

Then (A,B) is determined up to conjugation by the following parameters: trR(A), trR(B), the

similarity classes of cross ratios of (A,B) or, a point on the four-dimensional cross ratio variety,

the three angular invariants of (A,B), and the projective points (p1(A), p2(A)), (p1(B), p2(B)).

Alternatively, associate to (A,B) an ordered quadruple of its fixed points. This gives

us the following version of the above theorem.

THEOREM 1.10. [GK18, Theorem 1.2] Let (A,B) be a totally loxodromic pair in Sp(2, 1).

Then (A,B) is uniquely determined up to conjugation by the following parameters: trR(A),

trR(B), a point on M(2, 4, 0) corresponding to (aA, rA, aB, rB) and the projective points corre-

spoding to A and B, i.e., (p1(A), p2(A)), (p1(B), p2(B)).

We note that the above theorems are true for any pairs of loxodromics in Sp(2, 1).

However, when the pair (A,B) is irreducible and totally loxodromic, the degrees of free-

dom of the parameters add up to 21 (for each real traces 3 contributing 2 × 3 = 6, for the

point on the cross ratio variety 4, for three angular invariants 3 and for the four projective

points 8 = 2 × (4 projective points)), which is the same as the dimension of the group

Sp(2, 1). When the pair (A,B) is reducible, the parameter system will not be minimal and

the degrees of freedom will be lesser than 21.
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There are four types of hyperbolic elements in Sp(2, 1), which depends on a number

of real eigenvalues. Depending on the types of A and B, there are ten types of mixed

hyperbolic pairs. Except for the totally loxodromic pairs, the degrees of freedom of the

parameter systems of the other types, are always strictly lesser than 21, even if the pair

is irreducible. A reason for these lesser degrees of freedom is the presence of real eigen-

values that commute with every other quaternionic number. Accordingly, we would not

require projective points for the real eigenvalues present in the mixed pair. For each of

these cases, the parameter system can be seen using similar arguments used in the proof

of the above theorem. We only mention the following two cases.

COROLLARY 1.11. [GK18, Corollary 1.3] Let (A,B) be a mixed hyperbolic pair with A

is loxodromic and B is strictly hyperbolic in Sp(2, 1). Then (A,B) is uniquely determined up to

conjugation by the parameters: trR(A), trR(B), a point on the cross ratio variety, the three angular

invariants and projective points p1(A), p2(A).

Noting that for a strictly hyperbolic element A in Sp(2, 1), trR(A) belongs to a one real

parameter family, the degrees of freedom of the associated parameters for an irreducible

pair (A,B) in the above corollary is 15, and in the following case, it is 9.

COROLLARY 1.12. [GK18, Corollary 1.4] Let (A,B) be a strictly hyperbolic pair in Sp(2, 1).

Then (A,B) is uniquely determined up to conjugation by the parameters: trR(A), trR(B), a point

on the cross ratio variety and three angular invariants.

As an application of Theorem 5.6, we have a parametric description of the subset

DLo(F2, Sp(2, 1)) of the deformation space consisting of irreducible totally loxodromic

representations.

COROLLARY 1.13. [GK18, Corollary 1.5] The space DLo(F2, Sp(2, 1)) is parametrized by a

(CP1)4 bundle over the topological space D2×D2×M(2) where, for G = 27(c− a)− 9ab+ 2a3,

H = 3(b− 3)− a2,

D2 = {(a, b, c) ∈ R3 | G2 + 4H3 > 0, |2a+ c| 6= |2b+ 2|},

and M(2) is the orbit space of the natural S4 action on the configuration space of Sp(2, 1)-

congruence classes of ordered quadruples of distinct points on ∂H2
H.
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3.1. Quaternionic hyperbolic Fenchel-Nielsen coordinates. Another application of

Theorem 5.6 gives us local parametrization of generic elements in D(π1(Σg), Sp(2, 1)). Let

Σg be a closed, connected, orientable surface of genus g ≥ 2. Let π1(Σg) be the funda-

mental group of Σg. Specify a curve system C of 3g − 3 closed curves γj on Σg. The

complement of such curve system decomposes the surface into 2g−2 three-holed spheres

Pi. Let ρ : π1(Σg) → Sp(2, 1) be a discrete, faithful representation such that the image of

each γj is loxodromic. For each i, the fundamental group of Pi gives a representation ϕi

in DL(F2, Sp(2, 1)), induced by ρ, such that the image of ϕi is a (0, 3) subgroup of Sp(2, 1).

If each of these representations ϕi is irreducible, we call the representation ρ as geometric.

We recall that a (0, 3) subgroup represents the fundamental group of a three-holed sphere,

where the generators and their product correspond to the three boundary curves. With

this terminology, we have the following.

THEOREM 1.14. [GK18, Theorem 1.6] Let Σg be a closed surface of genus g with a curve

system C = {γj}, j = 1, . . . , 3g − 3. Let ρ : π1(Σg) → Sp(2, 1) be a geometric representation of

the surface group π1(Σg). Then we need 42g−42 real parameters to determine ρ in the deformation

space D(π1(Σg), Sp(2, 1))/Sp(2, 1).

The parameters in the above theorem may be thought of as ‘Fenchel-Nielsen coordi-

nates’ in this setup. Locally this gives us the degrees of freedom that a geometric represen-

tation can move. But the complete structure of this space is still not clear to us. It would

be interesting to obtain an embedding of the geometric representations into a topological

space.

3.2. Reducible pairs. Now, we briefly mention the case when the pair of hyperbolic

elements (A,B) is reducible. In this case, the parameters obtained in Theorem 5.6 or the

subsequent corollaries, would not be minimal. As in the complex case, e.g. see [GL17,

Section 4.1], it is possible to further reduce the degrees of freedom. If a hyperbolic pair

(A,B) is reducible, it follows from [CG74, Proposition 4.2] that the group G generated

by A, B, is a product of the form A × B, where several possibilities of A and B are listed

in [CG74, p.77]. When the G-invariant totally geodesic subspace is a copy of the real or

complex hyperbolic space, parameters to determine them can be obtained easily from the
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classical Fenchel-Nielsen coordinates, and by the work of Parker and Platis [PP08]. Es-

sentially, conjugacy classification of hyperbolic pairs in Sp(1, 1) remains the only case in

order to have an understanding of the reducible pairs. For this reason, instead of address-

ing the reducible cases in detail, we have focused only on the irreducible hyperbolic pairs

in Sp(1, 1).

4. Pairs of loxodromic elements in Sp(1, 1)

Let M(1, 4, 0) denote the configuration space of Sp(1, 1)-congruence classes of ordered

quadruples of points on ∂H1
H. We prove the following.

THEOREM 1.15. [GK18, Theorem 1.7] Let (A,B) be an irreducible totally loxodromic pair

in Sp(1, 1). Then (A,B) is determined up to conjugation by the following parameters: trR(A),

trR(B), a point on M(1, 4, 0) corresponding to (aA, rA, aB, rB), and two projective points p1(A),

p1(B).

The above theorem shows that the degrees of freedom of the coordinates required for

a irreducible pair add up to 10 (for each real traces 2 contributing 2× 2 = 4, for the point

on the cross ratio variety 2 and for the two projective points 2+2, thus totaling 4+2+4=10,

which is the same as the dimension of the Lie group Sp(1, 1).

Further note that, irreducibility is not necessary for the above theorem. But if (A,B) is

reducible, the parameter system above is not minimal and the degrees of freedom can be

reduced further.

The following corollaries follow immediately from the above theorem.

COROLLARY 1.16. [GK18, Corollary 1.8] Let A be a loxodromic and B be a strictly hy-

perbolic element in Sp(1, 1). Let (A,B) be irreducible. Then (A,B) is determined up to con-

jugation by the following parameters: trR(A), trR(B), a point on M(1, 4, 0) corresponding to

(aA, rA, aB, rB), and a projective point p1(A).

COROLLARY 1.17. [GK18, Corollary 1.9] LetA, B be strictly hyperbolic elements in Sp(1, 1).

Let (A,B) be irreducible. Then (A,B) is determined up to conjugation by the following parame-

ters: trR(A), trR(B), and a point on M(1, 4, 0) corresponding to (aA, rA, aB, rB).
14



The group Sp(1, 1) may also be viewed as the isometry group of the real hyperbolic

4-space H4
R. The space DLo(F2, Sp(1, 1)) is of importance to understand four-dimensional

real hyperbolic geometry as well. In [TWZ12], Tan et. al. proved a counterpart of the clas-

sical Delambre-Gauss formula for right-angled hexagons in the real hyperbolic 4-space

keeping this deformation space in mind. In this paper we show that DLo(F2, Sp(1, 1)) is

a CP1 × CP1 bundle over a topological space that is locally embedded in R6. As a conse-

quence of this description, it follows that a geometric representation in D(π1(Σg), Sp(1, 1))

is determined by 20g − 20 real parameters.
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CHAPTER 2

Preliminaries

1. The quaternions

Let H denote the division ring of quaternions. Any q ∈ H can be uniquely written

as q = r0 + r1i + r2j + r3k, where r0, r1, r2, r3 ∈ R, and i, j, k satisfy relations: i2 = j2 =

k2 = ijk = −1. The real number r0 is called the real part of q and we denote it by

<(q). The imaginary part of q is =(q) = r1i + r2j + r3k. The conjugate of q is defined

as q = r0 − r1i − r2j − r3k. The norm of q is |q| =
√
r2

0 + r2
1 + r2

2 + r2
3. We identify the

sub-algebra R + Ri with the standard complex plane C.

Two quaternions q1, q2 are said to be similar if there exists a non-zero quaternion z such

that q2 = z−1q1z and we write it as q1 v q2. It is easy to verify that q1 v q2 if and only if

<(q1) = <(q2) and |q1| = |q2|. Thus the similarity class of a quaternion q contains a pair of

complex conjugates with absolute-value |q| and real part equal to<(q). The multiplicative

group H \ 0 is denoted by H∗.

LEMMA 2.1. Every quaternionic element has a polar coordinate representation.

PROOF. Let a = a0 +a1i+a2j+a3k be a quaternion as above. We want to write its polar

form. We can have a = a0 + v where v = a1i+a2j+a3k. Now observe that |a|2 =a0
2+|v|2,

where |v| =
√
a1

2 + a2
2 + a3

2. So if a 6= 0 we get 1 =
(
a0
|a|

)2
+
( |v|
|a|

)2. Now put a0
|a| = cos(θ)

and |v|
|a| = sin(θ) where θ ∈ [0, π]. If v 6= 0 then we have a = a0 + v = |a|

(
a0
|a| + |v|

|a|
v
|v|

)
. Thus

we get a = |a|(cos(θ) + ηsin(θ)) where η = v
|v| and θ ∈ [0, π]. If v = 0 then θ = 0. �

REMARK 2.2. In Lemma 2.1, x = cos(θ) + ηsin(θ) is a unitary quaternion number. Since

xx = 1 = xx.

Commuting quaternions. Two non-real quaternions commute if and only if their imag-

inary parts are scaled by a real number, see [CG74, Lemma 1.2.2] for a proof. Let Z(q)
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denotes the centralizer of q ∈ H \ R. Then Z(q) = R + Rq. For some non-zero α ∈ H,

Z(q) = αCα−1, where C = Z(reiθ), r = |q|, <(q) = r cos θ. Given a quaternion q ∈ H \ R,

we call Z(q) the complex line passing through q. Note that if q ∈ H\R, then Z(q−1) = Z(q).

1.1. Matrices over quaternions. Let V be a right vector space over H. Let T be a right

linear map on V. After choosing a basis of V, such a linear map can be represented by an

n × n matrix MT over H, where n = dim V. Thus, one may identify the right linear maps

on V with n× n quaternionic matrices. Here the quaternionic matrices act on V from the

left. The map T is invertible if and only if MT is invertible. The group of all invertible

(right) linear maps on V is denoted by GL(n,H).

Suppose λ ∈ H∗ is a (right) eigenvalue of T , i.e. there exists v ∈ V such that T (v) = vλ.

Observe that for µ ∈ H∗,

T (vµ) = T (v)µ = (vλ)µ = (vµ)µ−1λµ.

This shows that the eigenvalues of T occur in similarity classes and if v is a λ-eigenvector,

then vµ ∈ vH is a µ−1λµ-eigenvector. Thus the eigenvalues are no more conjugacy in-

variants of T , but the similarity classes of eigenvalues are conjugacy invariants. Note that

each similarity class of eigenvalues contains a unique pair of complex conjugate numbers.

We shall choose one of these complex eigenvalues reiθ, θ ∈ [0, π], to be the representative

of its similarity class. Often we shall refer them as ‘eigenvalues’, though it should be

understood that our reference is towards their similarity classes. In places, where we

need to distinguish between the similarity class and a representative, we shall denote the

similarity class of an eigenvalue representative λ by [λ].

For more information on quaternionic linear algebra, we refer to the book [Rod14].

2. Quaternionic hyperbolic space

Let V = Hn,1 be the n dimensional right vector over H equipped with the Hermitian

form of signature (n, 1) given by

〈z,w〉 = w∗Hz = w̄n+1z1 + w̄2z2 + · · ·+ w̄nzn + w̄1zn+1,

where ∗ denotes conjugate transpose. The matrix of the Hermitian form is given by
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H =

 0 0 1
0 In−1 0
1 0 0

 ,
where In−1 is the identity matrix of rank n − 1. We consider the following subspaces of

Hn,1 :

V− = {z ∈ Hn,1 : 〈z, z〉 < 0}, V+ = {z ∈ Hn,1 : 〈z, z〉 > 0},

V0 = {z− {0} ∈ Hn,1 : 〈z, z〉 = 0}.

A nonzero vector z in Hn,1 is called positive, negative or null depending on whether z

belongs to V+, V− or V0. Let P : Hn,1 − {0} −→ HPn be the right projection onto the

quaternionic projective space. Image of a vector z will be denoted by z. The quaternionic

hyperbolic space Hn
H is defined to be PV−. The ideal boundary ∂Hn

H is defined to be PV0.

So we can write Hn
H = P(V−) as

Hn
H = {(w1, . . . , wn) ∈ Hn : 2<(w1) + |w2|2 + · · ·+ |wn|2 < 0},

where for a point z =
[
z1 z2 . . . zn+1

]T ∈ V− ∪ V0, wi = ziz
−1
n+1 for i = 1, . . . , n. This

is the Siegel domain model of Hn
H. Similarly one can define the ball model by replacing

H with an equivalent Hermitian form given by the diagonal matrix having one diagonal

entry −1 and the other entries 1. We shall mostly use the Siegel domain model here.

There are two distinguished points in V0 which we denote by o and∞, given by

o =


0
0
...
1

 , ∞ =


1
0
...
0

 .

Then we can write ∂Hn
H = P(V0) as

∂Hn
H −∞ = {(z1, . . . , zn) ∈ Hn : 2<(z1) + |z2|2 + · · ·+ |zn|2 = 0}.

Note that Hn
H = Hn

H ∪ ∂Hn
H.
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Given a point z of Hn
H − {∞} ⊂ HPn we may lift z = (z1, . . . , zn) to a point z in V,

called the standard lift of z. It is represented in projective coordinates by

z =


z1
...
zn
1

 .
The Bergman metric in Hn

H is defined in terms of the Hermitian form given by:

ds2 = − 4

〈z, z〉2
det

[
〈z, z〉 〈dz, z〉
〈z, dz〉 〈dz, dz〉

]
.

If z and w in Hn
H correspond to vectors z and w in V−, then the Bergman metric is also

given by the distance ρ:

cosh2
(ρ(z, w)

2

)
=
〈z,w〉〈w, z〉
〈z, z〉〈w,w〉

.

More information on the basic formalism of the quaternionic hyperbolic space may be

found in [CG74], [KP03].

3. Isometries

Let Sp(n, 1) be the isometry group of the Hermitian form 〈., .〉. Each matrix A in

Sp(n, 1) satisfies the relation A−1 = H−1A∗H , where A∗ is the conjugate transpose of A.

The isometry group of Hn
H is PSp(n, 1) = Sp(n, 1)/{±I}. However, we shall mostly deal

with Sp(n, 1).

Based on their fixed points, isometries of Hn
H are classified as follows:

(1) An isometry is elliptic if it fixes a point on Hn
H.

(2) An isometry is parabolic if it fixes exactly one point on ∂Hn
H.

(3) An isometry is hyperbolic if it fixes exactly two points on ∂Hn
H.

The elliptic and hyperbolic isometries are semisimple. Now we define the following ter-

minology for describing conjugacy classification of semisimple isometries. Let g be a

semisimple element in Sp(n, 1). Let λ be an eigenvalue of g, counted without multiplici-

ties. Then λ is called negative, resp. null, resp. positive if the corresponding λ-eigenvector
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is negative, resp. null, resp. positive. Accordingly a similarity class of eigenvalues is neg-

ative, null or positive according as its representative is negative, null or positive. For de-

tails about conjugacy classification of the isometries we refer to Chen-Greenberg [CG74].

We note the following fact that is useful for our purposes.

LEMMA 2.3. (Chen-Greenberg )[CG74]

(1) Two elliptic elements in Sp(n, 1) are conjugate if and only if they have the same negative

class of eigenvalues, and the same positive classes of eigenvalues.

(2) Two hyperbolic elements in Sp(n, 1) are conjugate if and only if they have the same simi-

larity classes of eigenvalues.

LEMMA 2.4. The group Sp(n, 1) can be embedded in the group GL(2n+ 2,C).

PROOF. Write H = C ⊕ jC. For A ∈ Sp(n, 1), express A = A1 + jA2, where A1, A2 ∈
Mn+1(C). This gives an embedding A 7→ AC of Sp(n, 1) into GL(2n+ 2,C), where

(3.1) AC =

(
A1 −A2

A2 A1

)
.

�

The following lemma follows from the above.

PROPOSITION 2.5. Let A be an element in Sp(n, 1). Let AC be the corresponding element in

GL(2n+ 2,C). The characteristic polynomial of AC is of the form

χA(x) =
2n+2∑
j=0

ajx
2(n+1)−j,

where a0 = 1 = a2n+2 and for 1 ≤ j ≤ n + 1, aj = a2(n+1)−j . If A is hyperbolic, then the

conjugacy class of A is determined by the real numbers aj , 1 ≤ j ≤ n + 1. If A is elliptic then

the conjugacy class of A is determined by the real numbers aj , 1 ≤ j ≤ n + 1, along with the

negative-type eigenvalue of A.

In the special case of Sp(1, 1), counterparts of the above theorem may be obtained from

the works [GP13] or [CPW04], also see [GPP15, Section 5.3].

DEFINITION 2.6. Let A be semisimple element in Sp(n, 1). The real n-tuple (a1, . . . , an)

as in Proposition 2.5 will be called the real trace of A and we shall denote it by trR(A).
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4. The cross ratios

Given an ordered quadruple of pairwise distinct points (z1, z2, z3, z4) on Hn
H, their

Korányi-Reimann (quaternionic) cross ratio is defined by

X(z1, z2, z3, z4) = [z1, z2, z3, z4] = 〈z3, z1〉〈z3, z2〉−1〈z4, z2〉〈z4, z1〉−1,

where, for i = 1, 2, 3, 4, zi, are lifts of zi. Unlike the complex case, quaternionic cross ratios

are not independent of the chosen lifts. However, similarity classes of the cross ratios

are independent of the chosen lifts. In other words, the conjugacy invariants obtained

from the cross ratios are <(X) and |X|. Under the action of the symmetric group S4 on

a tuple, there are exactly three orbits, see [Pla14, Prop 3.1]. For a given quadruple of

distinct points in ∂Hn
H, the moduli and the real parts of all 24 quaternionic cross ratios are

real analytic functions of the moduli and the real parts respectively of the following three

cross ratios:

X1(z1, z2, z3, z4) = X(z1, z2, z3, z4) = [z1, z2, z3, z4],

X2(z1, z2, z3, z4) = X(z1, z4, z3, z2) = [z1, z4, z3, z2],

X3(z1, z2, z3, z4) = X(z2, z4, z3, z1) = [z2, z4, z3, z1].

Usually, cross ratios are defined for boundary points but we can generalize it for Hn
H and

we will use it in chapter 3. Platis defined cross ratios for boundary points and proved that

these cross ratios satisfy the following real relations:

|X2| = |X1||X3|, and, 2|X1|<(X3) ≥ |X1|2 + |X2|2 − 2<(X1)− 2<(X2) + 1,

with equality holds if and only if certain conditions hold, see [Pla14, Proposition 3.4].

Furthermore, in the case n = 2, Platis proved that these cross ratios satisfy the follow-

ing real relations:

|X2| = |X1||X3|, and, 2|X1|<(X3) = |X1|2 + |X2|2 − 2<(X1)− 2<(X2) + 1.

For a given quadruple (z1, z2, z3, z4) of ∂H2
H, the triple of cross ratios (X1,X2,X3) corre-

sponds to a point on the four dimensional real variety R6 subject to the above two real

equations. This is called the cross ratio variety.

However, unlike the complex case, a point on the quaternionic cross ratio variety does

not determine the Sp(2, 1)-congruence classes of ordered quadruples of points on ∂H2
H.
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This has been proven by Cao in [Cao16]. We shall recall Cao’s result in Theorem 2.8

below.

W. Cao also defined it for Hn
H, for more details, see [Cao16, Section 3].

5. Cartan’s angular invariant

Let z1, z2, z3 be three distinct points of Hn
H = Hn

H ∪ ∂Hn
H, with lifts z1, z2 and z3 re-

spectively. The quaternionic Cartan’s angular invariant associated to the triple (z1, z2, z3)

was defined by Apanasov and Kim in [AK07] and is given by the following:

A(z1, z2, z3) = arccos
<(−〈z1, z2, z3〉)
|〈z1, z2, z3〉|

.

The angular invariant is an element in [0, π
2
]. It is independent of the chosen lifts and also

Sp(n, 1)-invariant. The following proposition shows that this invariant determines any

triple of distinct points on ∂Hn
H up to Sp(n, 1)-equivalence. For a proof see [AK07].

PROPOSITION 2.7. [AK07] Let z1, z2, z3 and z′1, z′2, z′3 be triples of distinct points of ∂Hn
H.

Then A(z1, z2, z3) = A(z′1, z
′
2, z

′
3) if and only if there exist A ∈ Sp(n, 1) so that A(zj) = z′j for

j = 1, 2, 3.

Further, it is proved in [AK07] that (z1, z2, z3) lies on the boundary of an H-line, resp.

a totally real subspace, if and only if A = π
2
, resp. A = 0.

5.1. Sp(2, 1)-congruence classes of ordered quadruples of points on ∂H2
H. We shall

use the following result by Cao that determines ordered quadruples of points on ∂H2
H,

see [Cao16].

THEOREM 2.8. [Cao16] Let Z = (z1, z2, z3, z4) and W = (w1, w2, w3, w4) be two ordered

quadruples of pairwise distinct points in ∂H2
H. Then there exists an isometry h ∈ Sp(2, 1) such

that h(zi) = wi, i = 1, 2, 3, 4, if and only if the following conditions hold:

(1) For j = 1, 2, 3, Xj(z1, z2, z3, z4) and Xj(w1, w2, w3, w4) belong to the same similarity

class.

(2) A(z1, z2, z3) = A(w1, w2, w3), A(z1, z2, z4) = A(w1, w2, w4),

A(z2, z3, z4) = A(w2, w3, w4).
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Cao has described the moduli of Sp(2, 1)-congruence classes of ordered quadruples of

distinct points on ∂H2
H. We recall his result here.

THEOREM 2.9. [Cao16] Let M(2, 4, 0) be the configuration space of ordered quadruples of

distinct points on ∂H2
H. Then M(2, 4, 0) is homeomorphic to the semi-analytic subspace of C3 ×

[0,∞)× [0, π
2
] given by points (c1, c2, c3, t,A) subject to the relations

<(c1c̄2) + t<(c3) ≤ 0, <(c2) ≤ 0, |c1|2 + t2 6= 0, |c2|2 + |c3|2 6= 0,

1 + |c1|2 + |c2|2 + |c3|2 + t2 − 2<(c1) + 2<(c2e
−iA) + 2<((c̄1c2 + tc3)eiA) = 0.

Note that there is a natural action of the symmetric group S4 on M(2, 4, 0), coming

from the S4 action on an ordered tuple:

g.[(p1, p2, p3, p4)] = [(pg(1), pg(2), pg(3), pg(4))].

The orbit space of M(2, 4, 0) under this action will be denoted byM(2).
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CHAPTER 3

Moduli space of PSp(n, 1) congruence classes of points

In this chapter, we investigate about the Moduli space of PSp(n, 1) congruence classes

of distinct points from Hn
H.

1. The Gram matrix

A common feature in the works [CG12b], [Cao17], and the one formulated in this

section is the use of the Gram matrices. This is motivated by the ideas of Brehm and

Et-Taoui in [BET01] and Höfer in [Höf99].

In this section, without loss of generality, we will assume that first i elements from

p = (p1, p2, . . . , pm) are null and the remaining other elements are negative, for 3 ≤ i ≤ m.

The following proposition is in [Cao16, Prop.1.1].

PROPOSITION 3.1. If z,w ∈ Hn,1−{0} with 〈z, z〉 ≤ 0 and 〈w,w〉 = 0 then either w = zλ

for some λ ∈ H or 〈z,w〉 6= 0.

From this Proposition 3.1 we can see that 〈z,w〉 6= 0, for z ∈ ∂Hn
H and w ∈ Hn

H. Also

we will have 〈z,w〉 6= 0, for z 6= w together with the condition that either z, w ∈ ∂Hn
H or

z, w ∈ Hn
H.

DEFINITION 3.2. We say that two Hermitian m ×m matrices G and K are equivalent

if there exist non-singular diagonal matrix D such that G = D∗KD.

Now by using these observations together with an appropriate chosen lift of p =

(p1, p2, . . . , pm), the following lemma follows using a similar argument as in [CG12b].

LEMMA 3.3. Let p = (p1, p2, . . . , pm) be a m-tuple of distinct points in Hn
H. Then the equiv-

alence class of Gram matrices associated to p contains a matrix G = (gkj) with gkk = 0 for
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k = 1, 2, . . . , i, |g23| = 1, g1j = 1 for j = 2, 3, . . . , i, gkk = −1 for k = i + 1, i + 2, . . . ,m, and

g1k = r1k for k = i+ 1, i+ 2, . . . ,m, where r1k are real positive numbers.

PROOF. Let p = (p1,p2, . . . ,pm) be a lift of p. We want to choose a lift of p such that

it will satisfy required conditions of the lemma. As pi’s are distinct points in Hn
H, we get

〈pk,pk〉 = gkk = rk, where rk = 0 for k = 1, 2, . . . , i and rk is a negative real number for

k = i + 1, i + 2, . . . ,m. Now we can find out scalars λk such that 〈pkλk,pkλk〉 = 0 for

k = 1, 2, . . . , i and 〈pkλk,pkλk〉 = −1 for k = i + 1, i + 2, . . . ,m. In particular we can take

λk = 1 for k = 1, 2, . . . , i and λk =
√
−rk −1 for k = i+ 1, i+ 2, . . . ,m.

Now again rescale p by β1 = 1, βk = 〈p1λ1,pkλk〉 −1 for k = 2, 3, . . . , i and βk = x1k for

k = i + 1, i + 2, . . . ,m, where x1k is unitary part of 〈p1λ1,pkλk〉. Thus we get conditions

g1j = 1 for j = 2, 3, . . . , i and g1j = r1k for k = i+ 1, i+ 2, . . . ,m, where r1k = |〈p1λ1,pkλk〉|
are real positive numbers. Finally for getting condition |g23| = 1 we will further rescale

p by γ1 =
√
r23, γk = 1√

r23
for k = 2, 3, . . . , i and γk = 1 for k = i + 1, i + 2, . . . ,m, where

r23 = |〈p2λ2β2,p3λ3β3〉|. So appropriate lift p = (p1λ1β1γ1,p2λ2β2γ2, . . . ,pmλmβmγm) of p

proves the lemma. �

REMARK 3.4. The Gram matrix G(p) = (gkj) in the above lemma 3.3 has the form

G(p) =



0 1 1 · · · 1
1 0 g23 · · · g2i

1 g23 0 · · · g3i G∗

...
...

... . . . ...
1 g2i g3i · · · 0

G
∗

A


,(1.1)

where |g23| = 1 , G∗ is i× (m− i)−matrix with each entry nonzero together with having

first row contains real positive number and A is (m− i)× (m− i)−matrix with the form,

A =


−1 g(i+1)(i+2) g(i+1)(i+3) · · · g(i+1)m

g(i+1)(i+2) −1 g(i+2)(i+3) · · · g(i+2)m
...

...
... . . . ...

g(i+1)(m) g(i+2)m g(i+3)m · · · −1

 .
Now observe that the spanning set of p = (p1,p2, . . . ,pm) contains at least one nega-

tive point even ifm-tuple contains all null points. So the spanning set of p = (p1,p2, . . . ,pm)

is non-degenerate.
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The following proposition follows using similar arguments as in the proof of [Höf99,

Theorem 1]. It is essentially a consequence of the Witt’s extension theorem.

DEFINITION 3.5. Let p = (p1, p2, . . . , pm) and q = (q1, q2, . . . , qm) be two ordered m-

tuples of distinct points in Hn
H. Then p and q are congruent in PSp(n, 1) if there exist

h ∈ PSp(n, 1) such that h(pi) = qi for i = 1, 2, . . . ,m.

Here, we will recall Witt’s theorem.

THEOREM 3.6 (Witt’s theorem). Any linear injective isometry φ : V → W , where V and

W are linear subspaces of Hn,1 can be extended to isometry of Hn,1.

PROPOSITION 3.7. Let p = (p1, p2, . . . , pm) and q = (q1, q2, . . . , qm) be two orderedm-tuples

of distinct points in Hn
H. Then p and q are congruent in PSp(n, 1) if and only if their associated

Gram matrices are equivalent.

PROOF. Suppose p and q are congruent in PSp(n, 1). Let G(p) and G(q) are Gram

matrices associated to p and q with respect to lift p and q respectively. Since there exist

h ∈ PSp(n, 1) such that h(pi) = qi for i = 1, 2, . . . ,m, gives that h(pi) = qiλi for all

i = 1, 2, . . . ,m. So we have G(p) = D∗G(q)D with D = diag(λ1, λ2, . . . , λm), that is G(p)

and G(q) are equivalent.

Conversely, suppose that G(p) and G(q) are equivalent. So there exist non-singular

diagonal matrix D such that G(p) = D∗G(q)D. Thus we have 〈pj,pi〉 = 〈qjλj,piλi〉. Now

suppose that V and W be subspaces of Hn,1 spanned by m-tuples (p1,p2, . . . ,pm) and

(q1λ1,q2λ2, . . . ,qmλm) respectively. Let φ : V −→ W be such that φ(pi) = qiλi. Now

we will prove proposition by using Witt’s theorem. As V and W are non degenerate

subspaces of Hn,1, we can see that φ is linear injective isometry. Thus φ can be extended

to linear isometry φ̃ of Hn,1, by Witt’s theorem. So φ̃(pi) = qi for i = 1, 2, . . . ,m, that is p

and q are congruent in PSp(n, 1). �

2. Semi-normalised Gram matrix

DEFINITION 3.8. We will call the matrix in lemma 3.3 as semi-normalised Gram matrix

with respect to lift p = (p1,p2, . . . ,pm) of p.
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The following Lemma shows that semi-normalised Gram matrix is just an equivalence

class.

LEMMA 3.9. Suppose that the Gram matrix G(p) is semi-normalised Gram matrix for p with

respect to lift p = (p1,p2, . . . ,pm). Then G(p′) is still a semi-normalised Gram matrix with

p′ = (p1λ1, . . . ,pmλm) if and only if λ1 = λ2 = . . . = λm and λi ∈ Sp(1).

PROOF. It follows from 〈p1λ1,pkλk〉 = 1 that λkλ1 = 1, for k = 2, 3, . . . , i as 〈p1,pk〉 =

1, and from |〈p2λ2,p3λ3〉| = 1 that |λ3||λ2| = 1 as |〈p2,p3〉| = 1. Thus we have |λ1| = 1 so

λ1 ∈ Sp(1). So by λkλ1 = 1 for k = 2, 3, . . . , i we have λ1 = λ2 = . . . = λi and λi ∈ Sp(1).

Also we can see that 〈pkλk,pkλk〉 = −1, for k = i+ 1, i + 2, . . . ,m gives that |λk| = 1

for k = i+ 1, i+ 2, . . . ,m. Since 〈p1λ1,pjλj〉 = r′1j , where r′1j are positive real numbers for

j = i + 1, i + 2, . . . ,m. Thus we have λj r1j λ1 = r′1j , where 〈p1,pj〉 = r1j . By using the

fact |λi| = 1 implies r′1j = r1j for j = i+ 1, i+ 2, . . . ,m. As we can commute real numbers

with quaternions we get λjλ1 = 1 for j = i + 1, i + 2, . . . ,m. Thus we have λj = λ1 for

j = i+ 1, i+ 2, . . . ,m with |λ1| = 1 i.e., λ1 ∈ Sp(1).

Conversely, we can verify that if p′ = (p1λ1,p2λ1, . . . ,pmλ1) with |λ1| = 1, then G(p′)

is matrix of the form (1.1). �

REMARK 3.10. We can represent semi-normalised Gram matrix G(p) = (gkj) by

VG = (r1(i+1), r1(i+2), . . . , r1m, g23, g24, . . . , g2m, g34, . . . , g3m, . . . , gm−1m) in Ht, where |g23| = 1

and t = (m2−m−2i+2)
2

. Action of Sp(1)/{1,−1} on Ht by (µ, VG) → µVGµ gives the orbit

OVG = {µVGµ : ∀µ ∈ Sp(1)}.

LEMMA 3.11. Let G1 and G2 be two semi-normalised Gram matrices represented by VG1 and

VG2 resp. Then G1 and G2 are equivalent if and only if OVG1
= OVG2

.

PROOF. Let G1 and G2 be two semi-normalised Gram matrices of p and q respectively,

where p and q are m-tuples of distinct points in Hn
H with lifts p = (p1,p2, . . . ,pm) and

q = (q1,q2, . . . ,qm) respectively. The equivalence of G1 and G2 implies that there exist

non-singular diagonal matrix D such that G1 = D∗G2D where D = diag(λ1, . . . , λm). So

we have

(2.1) G1 = (gij) = (〈pj,pi〉) = (λi〈qj,qi〉λj) = (λigij
′λj) = (〈qjλj,qiλi〉).
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Lemma 3.9 above gives now λ1 = λ2 = . . . = λm = µ and µ ∈ Sp(1). So from equation 2,

gij = µgij
′µ, where µ ∈ Sp(1). So we get OVG1

= OVG2
.

Conversely, if OVG1
= OVG2

, we want to find non-singular diagonal matrix D such that

G1 = D∗G2D, where D = diag(λ1, λ2, λ3, . . . , λm). As VG1 lies in OVG1
, VG1 = µVG2µ for

some µ ∈ Sp(1) and gij = µgij
′µ. Thus we get D = (µ, µ, . . . , µ), where µ ∈ Sp(1). �

LEMMA 3.12. Let p and q be m-tuples of distinct points in Hn
H. Then p and q are congruent

in PSp(n, 1) if and only if OVG1
= OVG2

, where VG1 and VG2 are represented by semi-normalised

Gram matrices associated to p and q respectively.

PROOF. By Proposition 3.7, p and q are congruent in PSp(n, 1) if and only if their as-

sociated Gram matrices are equivalent. Let G1 and G2 be the two semi-normalised Gram

matrices associated to p and q respectively. We represent them by VG1 and VG2 respectively.

Now by using 3.11, we get the result OVG1
= OVG2

. �

3. Configuration space of ordered tuples of points

Note that X1j = g23r1jg2j
−1, X2j = g23g2jr

−1
1j , X3j = g23

−1g3jr
−1
1j , Xkj = g2k

−1gkjr
−1
1j ,

where r1j = 1 if 2 ≤ j ≤ i. Hence the Gram matrix G(p) = (gij) can be read off from these

invariants.

Let p1, pi, pj be three distinct points of Hn
H = Hn

H ∪ ∂Hn
H, with lifts p1, pi and pj , re-

spectively. We can write 〈p1,pj,pi〉 = |〈p1,pj,pi〉|(cosθij + uij sinθij) = |〈p1,pj,pi〉|euijθij ,
where uij ∈ σ2 is a unit pure quaternion. If 〈p1,pj,pi〉 is a real number then uij is unde-

fined, and we shall assume in such cases thatuij = 0. Note that

A(p1, pi, pj) = arg(〈p1,pj,pi〉) = arg(r1jgijr1i) = arg(gij) = θij.

It follows from Remark 3.10 that the Sp(1)-conjugacy class of uij (where it is non-zero) is

an invariant of the orbit OVG .

THEOREM 3.13. [GK19, Theorem 1.4] A point [p] in M(n, i,m − i), p = (p1, . . . , pm), is

determined by the Sp(1) congruence class of the (d+ t+ 1)-tuple

W = (u0, u1, . . . , ut,X1, . . . ,Xd), d =
i(i− 3)

2
+ i(m− i), m ≥ 4, t =

(m− i)2 − (m− i)
2

− l,
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the angular invariants A23, Ai1j1 and the distance invariants di1j1 , for i < i1, j1 ≤ m, where l is

the number of zero valued rotation invariants uij .

PROOF. Observe that each orbitOVG is determined up to Sp(1) conjugation of the semi-

normalised Gram matrix represented by VG.

Let G = (gij) be a semi-normalised Gram matrix represented by VG corresponding to

a chosen lift p = (p1,p2, . . . ,pm) of p. We have the following equations:

A23 = A(p1, p2, p3) = arccos
<(−〈p1,p3,p2〉)
|〈p1,p3,p2〉|

= arccos
<(−g23)

|g23|
= arccos<(−g23),

X1j′ = g23r1j′g2j′
−1,X2j = g23g2jr

−1
1j ,X3j = g23

−1g3jr
−1
1j ,Xkj = g2k

−1gkjr
−1
1j , u0 =

=(g23)

|=(g23)|
,

for (i+ 1) ≤ j′ ≤ m, 4 ≤ j ≤ m, 4 ≤ k ≤ i, k < j.

Also for the negative points, we have the following equations:

di1j1 = gi1j1gj1i1 = |gi1j1 |2,Ai1j1 = arg(gi1j1), ui1j1 =
=(gi1j1)

|=(gi1j1)|
.

So, given the Gram matrix G, we can determine u0, A23, Ai1j1 , Xij , di1j1 , and ui1j1 by the

above equations. Using Lemma 3.9 and the fact that the angular invariants Aij , distance

invariants dij are independent of choices of the lifts, it determines A23, Ai1j1 , di1j1 and the

Sp(1) congruence class of F = (u0, . . . , ut,X1, . . . ,Xd).

It is known that each nonzero quaternion q has the unique polar form q = |q|euθ.Thus,

if we know |q|, θ and u then we will get quaternion number q uniquely. By the definition

of di1j1 we have |gi1j1| =
√
di1j1 . Also by the definition of the angular invariant we get

Ai1j1 = arg(gi1j1). Thus we can determine the matrix A = (gi1j1) for negative points by

di1j1 , Ai1j1 and ui1j1 .

Conversely, let x = (µu0µ̄, . . . , µutµ̄, µX1µ̄, . . . , µXdµ̄) be an element from the Sp(1) con-

gruence class of F for some µ ∈ Sp(1) with respect to some lift p. By the above equations

we have µg23µ̄ = cosA23 + µu0µ̄ sinA23 with u0 = =(g23)
|=(g23)| . Also,

µg2jµ̄ = µg23µ̄ µX2jµ̄, µg3jµ̄ = µ̄ µg23µ̄ µX3j,

µgkjµ̄ = µg2kµ̄ µXkjµ̄ = µX2kµ̄ µg23µ̄ µXkjµ̄,

µgi1j1µ̄ = |gi1j1|eµui1j1 µ̄Ai1j1 =
√
di1j1e

µui1j1 µ̄Ai1j1 ,
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where gi1j1 are the entries of sub-matrix A of matrix G(p) in 1.1. So we have element

VG = (µg23µ̄, µg24µ̄, . . . , µg2mµ̄, µg34µ̄, . . . , µg3mµ̄, . . . , µgm−1mµ̄) with |µg23µ̄| = 1. Now us-

ing Lemma 3.12, we can determine the PSp(n, 1) congruence class of p. �
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CHAPTER 4

Classification of pairs of semisimple isometries in Sp(n, 1)

1. Projective points and eigenvalue Grassmannians

In this section, we introduce the notion of projective points and Eigenvalue Grassman-

nians of an eigenvalue. This is a crucial notion for our understanding of the pairs of

semisimple elements.

1.1. Eigenvalue Grassmannians. Let T be an invertible semisimple matrix over H
of rank n. Let λ ∈ H − R be a chosen eigenvalue of T in the similarity class [λ] with

multiplicity m, m ≤ n. Thus, the eigenspace of [λ] can be identified with Hm. Let λ

be a representative of [λ]. Consider the λ-eigenset: Sλ = {x ∈ Hn | Tx = xλ}. Note

that this set can be identified with the subspace Z(λ)m in Hm. Thus each eigenset of a

[λ]-representative is a copy of Cm in Hm. So, the set of eigensets in the [λ]-eigenspace

can be identified with the set of m dimensional complex subspaces of Hm. Identifying

Hm with C2m, this gives us the set of [λ]-eigensets as the space complex m-dimensional

subspaces of C2m, which is the complex Grassmannian manifold Gm,2m, or simply Gm.

This is a compact connected smooth complex manifold of complex dimension m2. We

call it the eigenvalue Grassmannian of T corresponding to the eigenvalue [λ], or simply [λ]-

Grassmannian. Each point on this Grassmannian corresponds to an eigenset of [λ]. The

[λ]-eigenvalue Grassmannian is a conjugacy invariant of T but individual points are not.

They help us to distinguish individual isometries in the same conjugacy class.

1.2. Projective points. Whenm = 1, the eigenvalue Grassmannian is simply CP1, and

a point on such CP1 has been termed as a projective point.
33



Identify H with C2. Two non-zero quaternions q1 and q2 are equivalent if q2 = q1c,

c ∈ C \ 0. This equivalence relation projects H to the one dimensional complex projective

space CP1.

Let v be a λ-eigenvector of T . Then vH is the quaternionic line spanned by v. Now,

we identify vH with H. Then for each point on CP1, there is a choice of the lift v of v that

spans a complex line in vH. The point on CP1 that corresponds to a specified choice of v

is called a projective point of T corresponding to the eigenvalue λ ∈ H \R. A [λ]-projective

point of T corresponds to an eigenset of an eigenvalue representative λ, equivalently, to

the centralizer Z(λ). The CP1 obtained as above from the eigenspace vH is called a [λ]-

eigensphere of T . Since [λ] is a conjugacy invariant of T , so is the [λ]-eigensphere CP1.

To see the projective points from another viewpoint, we note the following. Consider

the action of Sp(1) on H∗ by conjugation. The similarity class of an eigenvalue [λ] repre-

sents an orbit under this action. The stabilizer of a point under this action is SU(1). Hence

[λ] is identified with CP1 that is the orbit space Sp(1)/SU(1). The choice of λ on this CP1

is a [λ]-projective point of T .

If λ ∈ R \ {0}, then it commutes with every quaternion, and hence Z(λ) = H. Con-

sequently, there is only one eigenset of λ that equals the eigenspace. We may assume the

λ-eigensphere to be a single point in this case.

2. Semisimple isometries in Sp(n, 1)

In Sp(n, 1), the semisimple isometries are classified as hyperbolic and elliptic.

2.1. Elliptic isometries. Let A be an elliptic element in Sp(n, 1). Recall that an eigen-

value of an elliptic element A always has norm 1. Let λ be an eigenvalue from the similar-

ity class of eigenvalues [λ] of A. Let x be a λ-eigenvector. Then x defines a point x on HPn,

that is either a point on Hn
H or a point in P(V+). The lift of x in Hn,1 is the quaternionic

line xH. We call x as projective fixed point of A corresponding to [λ].

Let the eigenvalues of A be the n + 1 unit complex numbers eiθ1 , . . . , eiθn+1 , where eiθ1

is negative and eiθk , k = 2, . . . , n+ 1, positive. Up to conjugacy, A is of the form:
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(2.1) EA(θ1, θ2, . . . , θn+1) =


eiθ1 0 0 . . . 0 0
0 eiθ2 0 . . . 0 0

. . .
0 0 0 . . . eiθn 0
0 0 0 . . . 0 eiθn+1

 .

Let CA =
[
x1,A x2,A . . . xn+1,A

]
be the matrix corresponding to the eigenvectors

of the above eigenvalue representatives. We can choose CA to be an element of Sp(n, 1)

by normalizing the eigenvectors:

〈x1,A,x1,A〉 = −1, 〈xj,A,xj,A〉 = 1, j 6= 1.

Then A = CAEAC
−1
A .

2.2. Eigenspace decomposition of an elliptic element. Suppose A is an elliptic el-

ement in Sp(n, 1). Let the eigenvalue classes of A be represented by eiθ1 , eiθ2 , . . . , eiθk ,

ordered so that eiθ1 is the negative eigenvalue. Let Vθi be the eigenspace to the eigenvalue

class of eiθi . Let mi = dim Vθi . We call (m1, . . . ,mk) the multiplicity of A. The space Hn,1

has the following orthogonal decomposition into eigenspaces (here⊕ denotes orthogonal

sum):

(2.2) Hn,1 = Vθ1 ⊕ . . .⊕ Vθk ,

Change of eigenbasis amounts to conjugation by an element C, and CAC−1 = A if and

only if C ∈ Z(A). So, a normalised eigenbasis of A is determined up to conjugation action

of Z(A) =
∏k

i=1 Z(A|Vθi ) on each of the summands.

For description of the centralizers, see [G13]. Let eiθj represent an eigenvalue ofAwith

multiplicity mj . It follows from [G13] that Z(A|Vθj ) can be identified with U(mj − 1, 1) if

the eigenvalue is negative, and with U(mj) otherwise. So, if A does not have eigenvalues

1 or −1, given the multiplicity (m1, . . . ,mk), Z(A) may be identified to the group

Z(A) = U(m1 − 1, 1)× U(m2)× . . .U(mk).

When A has an eigenvalue 1 or −1, one of the factors in the above product is replaced by

Sp(m1 − 1, 1) or Sp(mi) depending upon the eigenvalue is negative or positive.
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2.3. Hyperbolic isometries. Let A be a hyperbolic element in Sp(n, 1). Let λ be an

eigenvalue from the similarity class of eigenvalues [λ] of A. Let x be a λ-eigenvector.

Then x defines a point x on HPn, that is either a point on ∂Hn
H or a point in P(V+). The

lift of x in Hn,1 is the quaternionic line xH. Then x is a projective fixed point of A. The

quaternionic line xH is the eigenline spanned by the eigenvector x.

There are two eigenvalue classes of null-type and the respective eigenlines correspond

to attracting and repelling fixed points. Let rA ∈ ∂Hn
H be the repelling fixed point of A that

corresponds to the eigenvalue reiθ and let aA be the attracting fixed point corresponding

to the eigenvalue r−1eiθ. Let rA and aA lift to eigenvectors rA and aA respectively. Let

xj,A be an eigenvector corresponding to eiφj . We may further assume that θ, φj are in

[0, π]. The point xj,A on P(V+) is the polar-point of A. For (r, θ, φ1, . . . , φn−1) as above, let

EA(r, θ, φ1, . . . , φn−1), or simply EA be the matrix:

(2.3) EA(r, θ, φ1, . . . , φn−1) =


reiθ 0 0 . . . 0 0
0 eiφ1 0 . . . 0 0

. . .
0 0 0 . . . eiφn−1 0
0 0 0 . . . 0 r−1eiθ

 .
Let CA =

[
aA x1,A . . . xn−1,A rA

]
be the matrix corresponding to the eigenvectors

of the above eigenvalue representatives. We can choose CA to be an element of Sp(n, 1)

by normalizing the eigenvectors:

〈aA, rA〉 = 1, 〈xj,A,xj,A〉 = 1.

Then A = CAEAC
−1
A .

2.4. Eigenspace decomposition of a hyperbolic element. Suppose A is a hyperbolic

element in Sp(n, 1). Suppose also that the eigenvalue classes are represented by reiθ,

r−1eiθ, r > 1, and eiφ1 , . . . , eiφk . Let mi = dim Vφi . We call m = (m1, . . . ,mk) the multi-

plicity of A. Then Hn,1 has the following orthogonal decomposition into eigenspaces (here

⊕ denotes orthogonal sum):

(2.4) Hn,1 = Łr ⊕ Vφ1 ⊕ . . .⊕ Vφk ,
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where Łr is the (1, 1) (right) subspace of Hn,1 spanned by aA, rA. As in the elliptic case,

change of normalised eigenbasis of A is determined up to the conjugation action of Z(A).

2.5. Determination of the semisimple elements. In the following, we determine the

semisimple isometries. We shall associate certain spatial parameters to an isometry that

would determine it completely. Lemma 4.3 below will be crucial for classification of the

conjugation orbits of semisimple pairs.

DEFINITION 4.1. Let A and A′ be two semisimple elements with the same set of eigen-

value classes. We shall say that A and A′ have the same projective fixed points if for each

non-real class [λ] they have the same projective fixed point xλ.

DEFINITION 4.2. LetA andA′ be two semisimple elements having a common non-real

eigenvalue class [λ]. We shall say that A and A′ have the same point on the [λ]-eigenvalue

Grassmannian if they have the same point on the eigenvalue Grassmannian with respect

to the representative λ of [λ].

LEMMA 4.3. Let A and A′ be two semisimple elements in Sp(n, 1). Then A = A′ if and only

if they have the same real trace, the same projective fixed points and the same point on each of the

eigenvalue Grassmannians.

PROOF. If A = A′, then the statement is clear. For the converse, let A and A′ be two

semisimple elements of Sp(n, 1). Since they have the same real traces, they have the same

eigenvalue classes. Further, A and A′ have the same projective fixed points, hence xj,A′ =

xj,Aqj for 1 ≤ j ≤ n+ 1, and qj ∈ H∗. Hence,

A = CAEAC
−1
A , and A′ = CA′EAC

−1
A′ .

Let

D =


q1 0 0 . . . 0
0 q3 0 . . . 0

. . .
0 0 . . . qn−1 0
0 0 . . . 0 q2

 .
Then A = CAEAC

−1
A and, A′ = CADEAD

−1C−1
A . Thus A = A′ if and only if D commutes

with EA, which is equivalent to the condition of having the same point on each of the

eigenvalue Grassmannians. �
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In linear algebraic terms, the above lemma may be re-stated as follows.

COROLLARY 4.4. Let A and A′ be two semisimple elements in Sp(n, 1). Then A = A′ if and

only if the following holds.

(1) A and A′ have the same similarity classes of eigenvalues.

(2) To each eigenvalue class [λ], A and A′ have the same eigenspace, and

(3) to each representative λ′ of [λ], A and A′ have the same eigensets.

3. Associated points of an isometry

3.1. Associated points of a hyperbolic element.

DEFINITION 4.5. Suppose A is a hyperbolic element in Sp(n, 1). Consider an ordered

set of eigenbasis BA = {aA,x1,A, . . . ,xn−1,A, rA} corresponding to A, that is normalised so

that for 1 ≤ l ≤ n− 1,

(3.1) 〈aA, rA〉 = 〈xl,A,xl,A〉 = 1, 〈xl,A,xm,A〉 = 0, l 6= m.

Define a set of n+ 1 boundary points associated to A as follows:

(3.2) p1,A = aA, p2,A = rA, pl,A = (aA − rA)/
√

2 + xl−2,A, 3 ≤ l ≤ n+ 1.

The set pA =
{
p1,A, . . . , pn+1,A

}
is called a set of associated points of A.

LEMMA 4.6. Let A be a hyperbolic element of Sp(n, 1). Let Z(A) denote the centralizer of A

in Sp(n, 1). Then the associated points of A is well-defined up to an orbit of the subgroup Z(A).

PROOF. Let A be a hyperbolic element in Sp(n, 1). Let p = (p1.A, . . . , pn+1,A) be a tu-

ple of associated points of A given by an eigenbasis BA as above. If we choose another

normalised eigenbasis B′A of A, we get another set of associated points p′. The map M

changing BA to B′A satisfies MAM−1 = A. Thus, M belongs to Z(A), and M(p) = p′. �

3.2. Associated points of an elliptic element.

DEFINITION 4.7. Let A be an elliptic element in Sp(n, 1). Let BA = {x1,A, . . . ,xn+1,A}
be a set of eigenvectors of A chosen so that for 1 ≤ l ≤ n+ 1,

(3.3) 〈x1,A,x1,A〉 = −1, 〈xj,A,xj,A〉 = 1, j 6= 1, 〈xl,A,xm,A〉 = 0, l 6= m.
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Define a set of n+ 1 points on Hn
H as follows:

(3.4) p1,A = x1,A, pl,A = x1,A

√
2 + xj,A, 2 ≤ j ≤ n+ 1.

The set pA =
{
p1,A, . . . , pn+1,A

}
is called a set of associated points to A.

LEMMA 4.8. Let A be an elliptic element of Sp(n, 1). Let Z(A) denote the centralizer of A in

Sp(n, 1). Then the associated points of A is well-defined up to an orbit of the subgroup Z(A).

The proof of the above lemma is similar to the proof of Lemma 4.6.

DEFINITION 4.9. Given a semisimple element A in Sp(n, 1), a set of eigenbasis of the

type BA as given above, will be called an eigenframe of A.

A set of n+ 1 vectors of Hn,1 alike an eigenframe will be called an orthonormal frame.

3.2.1. Change of associated points amounts to a change of eigenbases. The following lemma

is easy to prove and it shows that the change of associated points amount change of

eigenbases.

LEMMA 4.10. Let A, A′ be semisimple elements in Sp(n, 1) with chosen eigenframes. Let

pA =
{
p1,A, . . . , pn+1,A

}
and pA′ =

{
p1,A′ , . . . , pn+1,A′

}
be sets of associated points to A and A′,

respectively. Suppose that there exists C ∈ Sp(n, 1) such that C(pl,A) = pl,A′ , 1 ≤ l ≤ n. Then

C(xj,A) = xj,A′ for all j.

PROOF. We prove our claim for hyperbolic isometries. The elliptic case is similar.

Let C(pl,A) = pl,A′αl for 1 ≤ l ≤ n. Observe that 〈p1,A,pl,A〉 = −1/
√

2 = 〈p1,A′ ,pl,A′〉
and 〈p2,A,pl,A〉 = 1/

√
2 = 〈p2,A′ ,pl,A′〉 for 3 ≤ l ≤ n. Since C ∈ Sp(n, 1) preserve the form

〈., .〉, from these relations we have αi = ᾱ−1
1 = ᾱ−1

2 for 3 ≤ i ≤ n. Now, 〈p1,A,p2,A〉 = 1

gives |α1| = 1. Hence, C(xi−2,A) = xi−2,A′ for 3 ≤ i ≤ n. This implies C(xn−1,A) =

xn−1,A′ . �

4. Canonical orbit of a pair

4.1. Canonical orbit of a pair of hyperbolics.
39



4.1.1. Moduli of normalised boundary points. Consider the set E of ordered tuples of

boundary and polar points on (∂Hn
H)4×P(V+)2(n−1) given by a pair of orthonormal frames

(F1, F2):

p = (q1, q2, r1, r2, . . . , rn−1, qn+1, qn+2, rn+1, . . . , r2n−1).

This corresponds to pair of orthonormal frames of Hn,1:

p̂ = (q1,q2, r1, r2, . . . , rn−1,qn+1,qn+2, rn+1, . . . , r2n−1),

where {q1,q2} ∩ {qn+1,qn+2} = ∅, 〈qi,qi〉 = 0 = 〈qn+i,qn+i〉 for i = 1, 2, 〈rj, rj〉 =

〈rn+j, rn+j〉 = 1 for all j = 1, . . . , n − 1, 〈q1,q2〉 = 〈qn+1,qn+2〉 = 〈q1,qn+2〉 = 1, 〈qi, rj〉 =

0 = 〈qn+i, rn+j〉, for i = 1, 2, j = 1, . . . , n− 1.

To each such point, we have an ordered tuple of boundary points, not necessarily

distinct, (p1, . . . , p2n+2) satisfying the conditions:

(4.1) 〈p1,p2〉 = 〈pn+2,pn+3〉 = 〈p1,pn+2〉 = 1,

(4.2) 〈pi,pj〉 = −1 = 〈pn+i,pn+j〉, i 6= j, i, j = 3, . . . , n− 1;

(4.3) 〈p1,pi〉 = − 1√
2

= 〈pn+2,pn+i〉, i = 3, . . . , n− 1;

(4.4) 〈p2,pk〉 =
1√
2

= 〈pn+2,pn+k〉, k = 3, . . . , n− 1,

where pi denotes the standard lift of pi for each i. Note that pi,pn+i, i = 3, . . . , n, may

not be distinct. In this case, we relabel them and write them as a ordered tuple of distinct

boundary points p̂ = (p1, p2, . . . , pt), n + 3 ≤ t ≤ 2n + 2, so that they correspond to the

original ordering of p.

Let Lt be the section of M(n, t, 0) defined by the equations (4.1)– (4.4), and the ordering

as described above. Let L be the disjoint union L =
⋃2n+2
t=n+3 Lt.
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4.1.2. Canonical orbit of a hyperbolic pair. Let (A,B) be a hyperbolic pair in Sp(n, 1).

Given the pair (A,B), consider the ordered set of eigenvectors of A,B given by the tuple

e = (aA, rA,x1,A, . . . ,xn−1,A, aB, rB,x1,B, . . . ,xn−1,B),

with normalization as follows:

(4.5) 〈aA, rA〉 = 〈xi,A,xi,A〉 = 1, 〈xi,A,xj,A〉 = 0, i 6= j.

(4.6) 〈aB, rB〉 = 〈xi,B,xi,B〉 = 1, 〈xi,B,xj,B〉 = 0, i 6= j.

(4.7) 〈rA, aB〉 = 1.

Assign the associated boundary points to e defined by (3.2):

(4.8) p = (aA, rA, q1,A, . . . , qn−1,A, aB, rB, q1,B, . . . , qn−1,B).

If we change e to another pair of eigenframes e′ of (A,B), say

e′ = (C(aA), C(rA), C(x1,A), . . . , C(xn−1,A), D(aB), D(rB), D(x1,B), . . . , D(xn−1,B)),

then since we are not changing (A,B), must have C ∈ Z(A) and D ∈ Z(B). Accordingly,

there is an action of Z(A)×Z(B) by the change of eigenframes, and the point p changes to

a point p′ on some M(n, t, 0), where n+ 3 ≤ t ≤ 2n+ 2. Thus, e, and hence p is determined

by (A,B) up to the above action of the group Z(A)× Z(B) on p.

The Z(A) × Z(B) action on p above defines a set of points on L. We shall call this set

as a Z(A) × Z(B) orbit on L and denote it by [p]. We call [p] the canonical orbit of (A,B).

The association of the canonical orbit [p] to the conjugacy class of (A,B) is well-defined.

It follows from the description of centralizers in [G13] that for all pairs of hyperbolic

elements (A,B) with multiplicities (a1, . . . , ak; b1, . . . , bl), and without an eigenvalue 1 or

−1, we can identify their centralizers. This induces an action of Z(A) × Z(B) on L by

the above construction. The orbit space on L under this Z(A) × Z(B) action is denoted

by QLn(a1, . . . , ak; b1, . . . , bl). If either of the hyperbolic elements in the pair has an eigen-

value 1 or −1, then the group Z(A) × Z(B) changes, but the same construction goes

through. Taking disjoint union of all such orbit spaces, we get a space QLn. Each point

on QLn corresponds to a conjugacy class of a hyperbolic pair (A,B).

4.2. Canonical orbit of a pair of elliptics.
41



4.2.1. Moduli of normalised points. Consider the set E of ordered tuples of points on

(Hn
H)2 ∪ P(V+)2n given by a pair of orthonormal frames (F1, F2):

p = (x1, . . . , xn+1, xn+2, . . . , x2n+2).

To each such point, we have an ordered tuple of negative points, not necessarily dis-

tinct, (p1, . . . , p2n+2) satisfying the conditions:

(4.9) 〈p1,A,p1,A〉 = −1 = 〈pn+2,pn+2〉

(4.10) 〈pj,A,pj,A〉 = −1 = 〈pj,A′ ,pj,A′〉

(4.11) 〈ps,A,pt,A〉 = 0 = 〈ps,A′ ,pt,A′〉, s 6= t, 1 ≤ s, t ≤ n+ 1,

(4.12) 〈p1,A,pj,A〉 = −
√

2 = 〈p1,A′ ,pj,A′〉, j 6= 1,

(4.13) 〈pl,A,pm,A〉 = −2 = 〈pl,A′ ,pm,A′〉, l,m 6= 1,

where pi denotes the standard lift of pi for each i. Note that pi,pn+i, i = 3, . . . , n, may not

be distinct. If they are not distinct, we relabel them and write them as an ordered tuple of

distinct negative points p̂ = (p1, p2, . . . , pt), n+ 3 ≤ t ≤ 2n+ 2, so that they correspond to

the original ordering of p.

Let Lt be the section of M(n, 0, t) defined by the equations (4.9)– (4.13), and let also the

ordering as described above. Let L be the disjoint union L =
⋃2n+2
t=n+3 Lt.

4.2.2. Canonical orbit of an elliptic pair. Let A and B are elliptic elements in Sp(n, 1)

without a common fixed point. Given the pair (A,B), fix eigenframes of A and B so that

〈x1,A,x1,A〉 = −1 = 〈x1,B,x1,B〉, 〈xi,A,xi,A〉 = 〈xi,B,xi,B〉 = 1 = 〈x1,A,x1,B〉, 1 ≤ i ≤ n+ 1.

Consider the ordered tuple of eigenvectors B = (x1,A, . . . ,xn+1,A,x1,B, . . . ,xn+1,B). This

gives an ordered tuple of points in Hn
H given by

p = (p1,A, . . . , pn+1,A, p1,B, . . . , pn+1,B),

where pi,A, pi,B are defined by (3.4).
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The tuple p is determined by (A,B) up to the above action of the group G = Z(A) ×
Z(B) on p. So, to each pair (A,B), we have a Z(A)× Z(B) orbit of associated points. The

Z(A)×Z(B) action on p defines a set of points on L. We shall call this set as a Z(A)×Z(B)

orbit on L and denote it by [p]. We call [p] the canonical orbit of (A,B). The canonical orbit

[p] corresponds uniquely to the conjugacy class of (A,B).

The above action of Z(A)×Z(B) on p induces an action of Z(A)×Z(B) on L similarly

as described in the previous section. This gives a Z(A)×Z(B) orbit [p] in L and we call it

the canonical orbit of (A,B). The orbit space onL under the aboveG-action will be denoted

by the same symbol as in the previous section, QLn(a1, . . . , ak; b1, . . . , bl). Taking disjoint

union of all such orbit spaces, we get a space QLn. Each point on QLn corresponds to a

conjugacy class of an elliptic pair (A,B).

4.3. Canonical orbit of a mixed pair. In this case, the construction is very similar to

the elliptic and hyperbolic case. Let A be hyperbolic and B be elliptic in Sp(n, 1). Given

the pair (A,B), fix a pair of associated orthonormal frames B = (BA,BB) so that the

eigenvectors are normalised as in Section 3.1 and Section 3.2. Next we choose an ordering

as in the previous section and associate an ordered tuple of points p on M(n, n+ 1, n+ 1).

The Z(A) × Z(B) action gives a orbit [p] on M(n, n + 1, n + 1) as earlier. Taking disjoint

union of all such orbits, we get a space, still denoted by QLn as in the previous section.

Each point on QLn corresponds to a conjugacy class of a mixed pair (A,B).

5. Classification of semisimple pairs in Sp(n, 1)

THEOREM 4.11. [GK19, Theorem 1.3] Let (A,B) be a semisimple pair in Sp(n, 1) such that

A and B do not have a common fixed point. Then (A,B) is determined up to conjugation in

Sp(n, 1), by the real traces trR(A), trR(B), the canonical orbit of (A,B) on QLn, and a point on

each of the eigenvalue Grassmannians of A and B.

PROOF. For simplicity, we shall assume that neither A nor B has an eigenvalue 1 or

−1. The proof is just similar in these omitted cases.
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Suppose that (A,B) and (A′, B′) are hyperbolic pairs having equal real trace and the

same canonical orbit. Equality of real traces implies that they have the same multi-

plicities, say (a1, . . . , ak, b1, . . . , bl). Following the notation in Section 2, we may assume

A = CAEAC
−1
A , B = CBEBC

−1
B and similarly for A′ and B′. In this case, CA is an element

in the subgroup Sp(1, 1)× Sp(a1)× . . .× Sp(ak):

CA =
[
aA L1 . . . Lk rA

]
,

where Li =
[
xti,A . . . xti+ai−1,A

]
, EA is the diagonal matrix

EA =


reiθ 0 . . .
0 Ia1λ1 0 0 . . . 0

. . .
0 0 0 Iakλk 0
0 0 0 0 r−1eiθ

 ,

where Is denotes the identity matrix of rank s. Similarly EB is a diagonal matrix

EB =


seiα 0 . . .

0 Ib1µ1 0 0 . . . 0
. . .

0 0 0 Iblµl 0
0 0 0 0 s−1eiα

 ,
and,

CB =
[
aB K1 . . . Kl rB

]
,

where Ki =
[
xtj ,B . . . xtj+bj−1,B

]
. In the above notation, ti =

∑i
p=1 ap−1, sj =

∑j
p=1 bp−1,

a0 = b0 = 1.

Since the canonical orbits are equal, by Lemma 4.10 it follows that there exists a C ∈
Sp(n, 1) such that C(aA) = aA′ , C(rA) = rA′ , C(aB) = aB′ , C(rB) = rB, and for 1 ≤ i ≤ k,

1 ≤ j ≤ l,

C(xti,A, . . . ,xti+ai−1,A) = M(xti,A′ , . . . ,xti+ai−1,A′),

C(xtj ,B, . . . ,xtj+bj−1,B) = N(xtj ,B′ , . . . ,xtj+bj−1,B′),

where M ∈ Z(A′), N ∈ Z(B′). Since A′ commutes with M , A′M(xti,A′) = MA′(xti,A′) =

M(xti,A′)λi. From the above, we also haveM(xti,A′) = C(xti,A), which implies that CAC−1

and A′ have the same projective fixed point given by M(xti,A′) = C(xti,A).
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Thus CAC−1 and A′ have the same projective fixed points. Since A and A′ define the

same point on each of the eigenvalue Grassmannians and have the same real traces, by

Lemma 4.3, CAC−1 = A′. Similarly, B′ = CBC−1.

Suppose (A,B) and (A′, B′) are elliptic pairs with the same real traces and the same

canonical orbit. Since they have the same traces, their multiplicities are also the same, say

(a1, . . . , ak, b1, . . . , bl). In this case, CA is an element in the subgroup Sp(a1−1, 1)×Sp(a2)×
. . .× Sp(ak):

CA =
[
E1 E2 . . . Ek

]
,

where Ei =
[
xti,A . . . xti+ai−1,A

]
, and EA is the diagonal matrix

EA =

λ1Ia1
. . .

λkIak

 ,
where Is denotes the identity matrix of rank s. Similarly for CB, let

EB =

µ1Ia1
. . .

µkIak

 ,
and

CB =
[
E ′1 E ′2 . . . E ′k

]
,

where E ′i =
[
xti,B′ . . . xti+ai−1,B′

]
.

Since the canonical orbits are equal, by Lemma 4.10 it follows that there exists a C ∈
Sp(n, 1) such that for 1 ≤ i ≤ k, 1 ≤ j ≤ l,

C(xti,A, . . . ,xti+ai−1,A) = M(xti,A′ , . . . ,xti+ai−1,A′),

C(xtj ,B, . . . ,xtj+bj−1,B) = N(xtj ,B′ , . . . ,xtj+ai−1,B′),

where M ∈ Z(A′), N ∈ Z(B′). Now, using arguments as in the hyperbolic case, it follows

that CAC−1 andA′ have the same projective fixed points. Hence by Lemma 5.2, CAC−1 =

A′. Similarly, CBC−1 = B′.

Suppose (A,B) and (A′, B′) are mixed pairs such that A, A′ are hyperbolic and B, B′

are elliptic. For the mixed pairs case the argument is similar. This completes the proof. �
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CHAPTER 5

Quaternionic hyperbolic Fenchel-Neilsen coordinates in Sp(2, 1)

In this chapter, Section 1 and Section 2 are really special cases of the work in the pre-

ceding chapter.

1. Hyperbolic isometries

Let A be a hyperbolic element in Sp(2, 1). Let λ represents an eigenvalue from the

similarity class of eigenvalues [λ] of A. Let x be a λ-eigenvector. Then x defines a point

x on HP2 that is either a point on ∂H2
H or, a point in P(V+). The lift of x in H2,1 is the

quaternionic line xH. We call x as eigen-point of A corresponding to [λ]. Note that x is a

fixed point of A in HP2 \ (H2
H ∪ ∂H2

H).

Let A be a hyperbolic element then it has similarity classes of eigenvalues [λ], [λ]−1

and [µ], where |λ| < 1, |µ| = 1. Thus we can choose eigenvalue representatives to be the

complex numbers reiθ, r−1eiθ, eiφ, θ, φ ∈ [0, π], 0 < r < 1.

Let aA ∈ ∂H2
H be the attracting fixed point of A that corresponds to the eigenvalue reiθ

and let rA ∈ ∂H2
H be the repelling fixed point corresponding to the eigenvalue r−1eiθ. Let aA

and rA lift to eigenvectors aA and rA respectively. Let xA be an eigenvector corresponding

to eiφ. The point xA on P(V+) is the polar-point ofA. For (r, θ, φ) as above, defineEA(r, θ, φ)

as

(1.1) EA(r, θ, φ) =

 reiθ 0 0
0 eiφ 0
0 0 r−1eiθ

 .
Let CA =

[
aA xA rA

]
be the 3 × 3 matrix corresponding to the eigenvectors. We can

choose CA to be an element of Sp(2, 1) by normalizing the eigenvectors:

〈aA, rA〉 = 1, 〈xA,xA〉 = 1.
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Then A = CAEA(r, θ, φ)C−1
A . So, every hyperbolic element A in Sp(2, 1) is conjugate to a

matrix of the form EA(r, θ, φ).

2. Classification of hyperbolic elements in Sp(2, 1).

For clarity, first we define the following notion.

DEFINITION 5.1. Let A and A′ be two hyperbolic elements having a common eigen-

value [α], α ∈ H \ R. Then A and A′ are said to have the same [α]-projective point if they

have the same projective point with respect to a representative α of [α].

Suppose A and A′ are two hyperbolic elements having the same [α]-projective point.

If A and A′ have the same eigenset with respect to a chosen representative α, then they

have the same eigensets with respect to all other representatives. In this case A and A′

define the same projective point for all representatives of [α].

Now, we have the following lemma that determines hyperbolic elements in Sp(2, 1).

LEMMA 5.2. Let A and A′ be hyperbolic elements in Sp(2, 1). Then A = A′ if and only if

they have the same attracting fixed point, the same repelling fixed point, the same real trace, and

the same projective points.

PROOF. If A = A′, then the statement is clear. We prove the converse. Without loss

of generality, we can assume A and A′ to be loxodromic elements. The other cases are

similar.

Let A and A′ be two loxodromic elements of Sp(2, 1). Since they have the same real

traces, let the eigenvalue representatives of A and A′ be reiθ, r−1eiθ and eiφ, where 0 < r <

1, θ, φ ∈ (0, π). Then

A = CAEA(r, θ, φ)C−1
A , and A′ = CA′EA(r, θ, φ)C−1

A′ .

Since A and A′ have the same fixed-points, hence aA′ = aAq1, rA′ = rAq2, and xA′ = xAq3,

where qj ∈ H \ 0. Let

D =

q1 0 0
0 q3 0
0 0 q2

 .
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Then A = CAEA(r, θ, φ)C−1
A and, A′ = CADEA(r, θ, φ)D−1C−1

A . Now D commutes with

EA(r, θ, φ) if and only if q1, q2, q3 are complex numbers. This is equivalent to the condition

of having the same projective points. Thus, it follows that A = A′. �

2.1. Projective parameters of a loxodromic. Suppose A is a loxodromic element in

Sp(2, 1). If aA and rA are the fixed-points of A, then they are joined by a complex line

aAZ(λ) + rAZ(λ),

and hence (aA, rA) is determined by a single projective point on CP1 that corresponds to

Z(λ). Here we have used the fact that Z(λ) = Z(λ̄−1). Similarly, the projective point of xA
corresponds to the centralizer of Z(µ).

Thus given a triple (aA, rA, xA) ∈ ∂H2
H × ∂H2

H × P(V+), and real number r, there is a

two complex parameter family Hr of loxodromic elements having the same real trace r

and fixing points (aA, rA, xA). This two complex family of parameters correspond to the

projective points ofA on CP1×CP1. ThusHr is parametrized by CP1×CP1. GivenA ∈ Hr,

the space CP1 × CP1 corresponds to the conjugacy class of A in the stabilizer subgroup

Sp(2, 1)(aA,rA).

2.2. Parametrization of conjugacy classes of loxodromics in Sp(2, 1). When A is a

loxodromic element in Sp(2, 1), it follows that trR(A) belongs to an open subspace D2 of

R3. Using Proposition 2.5 we deduce the following lemma that provides a description of

D2. We recall that A is loxodromic if none of the eigenvalues are real.

LEMMA 5.3. Let A be hyperbolic in Sp(2, 1) and let AC be its complex representative. The

characteristic polynomial of AC is of the form

χA(x) = x6 − ax5 + bx4 − cx3 + bx2 − ax+ 1,

where a, b, c are real numbers. Define

G = 27(a− c) + 9ab− 2a3,

H = 3(b− 3)− a2,

∆ = G2 + 4H3.

Then A is loxodromic if and only if ∆ > 0, |2a+ c| 6= |2b+ 2|.
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PROOF. Since A is hyperbolic, it has eigenvalue representatives of the form reiθ, r−1eiθ

and eiφ, where r > 0, r 6= 1 and θ, φ ∈ [0, π]. Further note that if α is a root of χA(x), then

α + α−1 is a root of gA(t). Thus we obtain

(2.1) gA(t) = t3 − at2 + (b− 3)t− (c− 2a),

where

a = 2
(
r +

1

r

)
cos θ + 2 cosφ,

b = 4
(
r +

1

r

)
cos θ cosφ+ 4 cos2 θ + r2 +

1

r2
+ 1,

c = 4
(
r +

1

r

)
cos θ + 2

(
r2 +

1

r2
+ 4 cos2 θ

)
cosφ.

Now to detect the nature of roots of the cubic equation, we look at the discriminant se-

quence (G,H,∆) of gA(t). The multiplicity of a root of gA(t) is determined by the resultant

R(g, g′′) of gA(t) and its second derivative g′′A(t) = 6t− 2a. Note that

R(g, g′′) = −8[27(a− c) + 9ab− 2a3] = −8G.

When A is loxodromic, gA(t) has the following roots:

t1 = reiθ + r−1e−iθ, t2 = r−1eiθ + re−iθ, t3 = 2 cosφ.

Thus in this case ∆ > 0 and gA(±2) 6= 0. In all other cases, either, ∆ > 0 and gA(±2) = 0,

or, ∆ = 0. This proves the lemma. �

For G = 27(c− a)− 9ab+ 2a3, H = 3(b− 3)− a2,

D2 = {(a, b, c) ∈ R3 | G2 + 4H3 > 0, |2a+ c| 6= |2b+ 2|}.

For each loxodromic A, trR(A) is an element of D2. Conversely, given an element (a, b, c)

from the set D2, we have a conjugacy class of loxodromics A with trR(A) = (a, b, c). Thus

we have the following consequence of the above lemma.

COROLLARY 5.4. The set of conjugacy classes of loxodromic elements in Sp(2, 1) can be iden-

tified with D2.

REMARK 5.5. Other than loxodromics, there are three more types of hyperbolic ele-

ments in Sp(2, 1). These types correspond to the cases:

(i) ∆ > 0, |2a+ c| = |2b+ 2|, and
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(ii) ∆ = 0, |2a+ c| 6= |2b+ 2|.

(iii) ∆ = 0, |2a+ c| = |2b+ 2|.

In the case (i), the hyperbolic element has only one real eigenvalue, in the case (ii),

there are only two real eigenvalues, and in case (iii), all the eigenvalues are real numbers,

i.e. the element is strictly hyperbolic. For hyperbolic elements of types (i) and (ii), the real

traces are parametrized by a two real parameter family.

3. Classification of pair of loxodromics in Sp(2, 1)

THEOREM 5.6. [GK18, Theorem 1.1] Let (A,B) be a totally loxodromic pair in Sp(2, 1).

Then (A,B) is determined up to conjugation by the following parameters: trR(A), trR(B), the

similarity classes of cross ratios of (A,B) or, a point on the four-dimensional cross ratio variety,

the three angular invariants of (A,B), and the projective points (p1(A), p2(A)), (p1(B), p2(B)).

PROOF. Suppose (A,B) and (A′, B′) be pairs of loxodromics such that tr(A) = tr(A′),

tr(B) = tr(B′), for i = 1, 2, 3, [Xi(A,B)] = [Xi(A
′, B′)], Ai(A,B) = Ai(A

′, B′). Since the

cross ratios and angular invariants are equal, by Theorem 2.8, there is an element C in

Sp(2, 1) such that C(aA) = aA′ , C(rA) = rA′ , C(aB) = aB′ and C(rB) = rB′ . Therefore A′

and CAC−1 have the same fixed points. Since they also have the same real traces, and the

same projective points, we have by Lemma 5.2 that CAC−1 = A′. Similarly, CBC−1 = B′.

This completes the proof. �

COROLLARY 5.7. [GK18, Corollary 1.3] Let (A,B) be a mixed hyperbolic pair with A is

loxodromic and B is strictly hyperbolic in Sp(2, 1). Then (A,B) is uniquely determined up to

conjugation by the parameters: trR(A), trR(B), a point on the cross ratio variety, the three angular

invariants and projective points p1(A), p2(A).

PROOF. In this case A is loxodromic and B is strictly hyperbolic. The same proof

as above works noting that for B we do not require any projective points, as the real

eigenvalues are elements of centralizers in H. �

Similarly, Corollary 1.12 follows, and also similar results can be deduced for other

types of mixed hyperbolic pairs.
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COROLLARY 5.8. [GK18, Corollary 1.5] The space DLo(F2, Sp(2, 1)) is parametrized by a

(CP1)4 bundle over the topological space D2×D2×M(2) where, for G = 27(c− a)− 9ab+ 2a3,

H = 3(b− 3)− a2,

D2 = {(a, b, c) ∈ R3 | G2 + 4H3 > 0, |2a+ c| 6= |2b+ 2|},

and M(2) is the orbit space of the natural S4 action on the configuration space of Sp(2, 1)-

congruence classes of ordered quadruples of distinct points on ∂H2
H.

PROOF. Let F2 = 〈x, y〉. Given a representation ρ, we have the following correspon-

dence from DLo(F2, Sp(2, 1)) onto D2 ×D2 ×M(2):

f : [ρ] 7→ (trR(ρ(x)), trR(ρ(y)), [(aρ(x), rρ(x), aρ(y), rρ(y))]).

Given a point on D2 × D2 ×M(2), it follows from Lemma 5.2 that the inverse-image of

the point under f is (CP1 × CP1)× (CP1 × CP1) corresponding to the projective points of

(ρ(x), ρ(y)). This completes the proof. �

4. Quaternionic hyperbolic Fenchel-Nielsen coordinates

To prove the theorem, we need to determine the parameters that are needed while at-

taching two (0, 3) groups, or ‘closing a handle’. To obtain Fenchel-Nielsen coordinates on

the representation variety, we may need to attach two (0, 3) groups to yield an (1, 1) group.

Here an (1, 1) group is a subgroup of Sp(2, 1) generated by two loxodromic elements and

their commutator. For this reason, we need to define the twist-bend parameters while at-

taching (0, 3) groups. We follow similar ideas as noted in the paper of Parker and Platis

[PP08], and will also use the same terminologies given there. For detailed information

about the terminologies and ideas inbuilt in the process, we refer to [PP08] and [Wol82].

We shall only sketch those parts from the scheme of attaching two (0, 3) groups that are

not apparent in the Sp(2, 1) setting, and deserves mention for clarity of the exposition. In

the following all the (0, 3) groups will be assumed to be irreducible.

4.1. Twist-bend parameters. Let 〈A,B〉 and 〈C,D〉 be two (0, 3) groups such that their

boundaries are compatible, that is, A = D−1. A quaternionic hyperbolic twist-bend corresponds

to an element K in Sp(2, 1) that commutes with A and conjugate 〈C,D〉. Up to conjugacy
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assumeA fixes 0,∞ and it is of the formEA(r, θ, φ). SinceK commutes withA, it is also of

the form EK(s, ψ, ξ), s ≥ 1, ψ, ξ ∈ [0, π]. If s 6= 1, from Lemma 5.2, it follows that there is a

total of seven real parameters associated to K, the real trace (s, ψ, ξ), along with four real

parameters associated to the projective points. If s = 1, then K is a boundary elliptic and

the eigenvalue [eiψ] has multiplicity 2. But, we can still define the projective points for

these eigenvalues. There are exactly one negative-type and one positive-type eigenvalues

of K in this case. Since K commutes with A, the projective points of K is determined by

the projective points of A. Hence, there are two projective points of K to determine it.

Consequently, we shall have seven parameters associated to a twist-bend K. We denote

these parameters by κ = (s, ψ, ξ, k1, k2), where k1 = p1(K), k2 = p2(K) are the projective

points of the similarity classes of eigenvalues of K.

We further fix the convention of choosing the twist-bend parameters such that it is

oriented consistently with A, i.e. if A = QEA(r, θ, φ)Q−1, then K = QEK(s, ψ, ξ)Q−1. Since

〈A,B〉 and 〈C,A−1〉 are considered irreducible, without loss of generality we assume that

aB, rC do not lie on a boundary of totally geodesic subspace joining aA and rA. To ob-

tain conjugacy invariants to measure the twist-bend parameter we define the following

quantities.

X̃1(κ) = X1(aA, rA, K(rC), aB), X̃2(κ) = X2(aA, rA, K(rC), aB),

Ã1(κ) = A(aA, rA, K(rC)), Ã3(κ) = A(rA, K(rC), aB).

LEMMA 5.9. LetA,B, C be loxodromic transformations of H2
H such that 〈A,B〉 and 〈A−1, C〉

are irreducible (0, 3) subgroups of Sp(2, 1). Suppose that K = EK(s, ψ, ξ, k1, k2) and K ′ =

EK′(s
′, ψ′, ξ′, k′1, k

′
2) represents twist-bend parameters that are oriented consistently with A. If

[X̃1(κ)] = [X̃1(κ′)], [X̃2(κ)] = [X̃2(κ′)], and Ã1(κ) = Ã1(κ′), Ã3(κ) = Ã3(κ′), and k1 = k′1,

k2 = k′2, then K = K ′.

PROOF. Without loss of generality we assume aA = o, rA = ∞. In view of the condi-

tions

[X̃1(κ)] = [X̃1(κ′)], [X̃2(κ)] = [X̃2(κ′)], and

Ã1(κ) = Ã1(κ′), Ã3(κ) = Ã3(κ′).
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and by using real relations of cross ratio, we get [X̃3(κ)] = [X̃3(κ′)]. The quantities Ã2(κ)

and Ã2(κ′) are trivially equal. Now, following similar arguments as in the proof of [Cao16,

Theorem 5.2], we have f in Sp(2, 1) such that f(aA) = aA, f(rA) = rA, f(aB) = aB and

f(EK(rC)) = EK′(rC). Further, since it fixes three points on the boundary, it must be of

the form

f =

µ 0 0
0 µ 0
0 0 ψ

 .
Since aB does not lie on a totally geodesic subspace joining aA and rA, we must have µ =

±1 = ψ. Thus, it follows that EK(rC) = EK′(rC). Now by using the fact that EKEK′−1 has

the three fixed points aA = o, rA =∞ and rC together with the condition that rC does not

lie on a totally geodesic subspace joining aA and rA, we have EK(s, ψ, ξ) = EK′(s
′, ψ′, ξ′)

i.e, s = s′, ψ = ψ′, ξ = ξ′.

Hence,K andK ′ are conjugate with the same attracting and the same repelling points.

So, by Lemma 5.2,K = K ′ if and only if they have the same projective points and the same

fixed points. This completes the proof. �

In view of Theorem 5.6 and Lemma 5.9, we shall now proceed to prove Theorem 5.14.

The strategy of the proof is similar to the proofs given by Parker and Platis in [PP08,

Section 8], or Gongopadhyay and Parsad in [GP17, Section 6]. The main challenge in

the quaternionic set up was the derivations of Theorem 5.6 and Lemma 5.9. After those

are in place, the rest follows mimicking arguments of Parker and Platis with appropriate

modifications in the quaternionic set up. These arguments are mostly group theoretic and

does not involve arithmetic of the underlying quaternionic algebra. We will only mention

the key points of the attaching process. For detailed ideas behind them, we refer to the

original article of Parker and Platis [PP08].

4.1.1. Attaching two (0,3) subgroups. A (0, 4) subgroup of Sp(2, 1) is a group with four

loxodromic generators such that their product is identity. These four loxodromic maps

correspond to the boundary curves of the four-holed spheres and are called peripheral.

Thus a (0, 4) group is freely generated by any of these three loxodromic elements. Let

〈A,B〉 and 〈C,D〉 be two (0, 3) groups with A−1 = D. Algebraically, a (0, 4) group is

constructed by the amalgamated free product of these groups with amalgamation along
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the common cyclic subgroup 〈A〉. Conjugating 〈C,D〉 by the twist-bend K yields a new

(0, 4) subgroup that is depended on K. Varying this K gives the twist-bend deformation.

The following lemma goes the same way as Lemma 8.3 in [PP08, p.131].

LEMMA 5.10. Suppose Γ1 = 〈A,B〉 and Γ2 = 〈C,D〉 are two irreducible (0, 3) groups

with peripheral elements A, B, B−1A−1 and C, D, D−1C−1 respectively. Moreover suppose

that A = D−1. Let K be any element of Sp(2, 1) that commutes with A = D−1. The the

group 〈A,B,KCK−1〉 is a (0, 4) group with peripheral elements B, B−1A−1, KCK−1 and

KD−1C−1K−1.

PROPOSITION 5.11. Suppose that 〈A,B〉 and 〈C,A−1〉 are two irreducible (0, 3) subgroups

of Sp(2, 1). Let κ = (s, ψ, ξ, k1, k2) be a twist-bend parameter oriented consistently with A and let

〈A,B,KCK−1〉 be the corresponding (0, 4) group. Then 〈A,B,KCK−1〉 is uniquely determined

up to conjugation in Sp(2, 1) by the Fenchel-Nielsen coordinates:

the real traces: trR(A), trR(B), trR(C);

the cross ratios: [Xk(A, B)], [Xk(A,C)], k = 1, 2;

the angular invariants: Aj(A,B), Aj(A,C), j = 1, 2, 3;

six projective points: pi(A), pi(B), pi(C), i = 1, 2;

and the twist bend κ = (s, ψ, ξ, k1, k2).

Thus we need a total of 42 real parameters to specify 〈A,B,KCK−1〉 uniquely up to conjugacy.

In the parameter space associated to 〈A,B,KCK−1〉, the parameters corresponding

to the traces have real dimension 6, the cross ratios and angular invariants add up to 16

degrees of freedom, six projective points add up to 12 degrees of freedom and the twist

parameter has 7 degrees of freedom adding to a total of: (3×3)+(2×4)+(1×6)+(2×6)+7 =

42 degrees of freedom.

PROOF. Suppose, 〈A,B,KCK−1〉 and 〈A′, B′, K ′C ′K ′−1〉 are two (0, 4) subgroups hav-

ing the same Fenchel-Nielsen coordinates. Let the given relations hold. Using these re-

lations, it follows from Theorem 5.6 that there exist C1 and C2 in Sp(2, 1) that conjugate

〈A,B〉 and 〈C,A−1〉 respectively to 〈A′, B′〉 and 〈C ′, A′−1〉.
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Now the twist-bends are defined with respect to the same initial group 〈A,B,C〉 that

we fix at the beginning before attaching the two (0, 3) groups. So, without loss of general-

ity, we may assume that A = A′, B = B′, C = C ′, and thus, C1 = C2. Now with respect to

the same initial group 〈A,B,C〉, by Lemma 5.9 it follows that K = K ′. This implies that

〈A,B,KCK−1〉 is determined uniquely up to conjugacy.

Conversely, suppose that 〈A,B,KCK−1〉 and 〈A′, B′, K ′C ′K ′−1〉 are conjugate, and

having the same projective points. Then clearly, the traces and angular invariants are

equal and, the cross ratios are similar. The only thing remains to show is the equality of

the twist-bends. Now by the invariance of the cross ratios it follows that

[X̃1(κ)] = [X̃1(κ′)], [X̃2(κ)] = [X̃2(κ′)], Ã1(κ) = Ã1(κ′), Ã3(κ) = Ã3(κ′).

and hence by Lemma 5.9, κ = κ′. �

4.2. Closing a handle. The next step is to obtain a one-holed torus by attaching two

holes of the same three-holed sphere in the quaternionic hyperbolic plane. The process

of attaching these two holes is called closing a handle. Geometrically, it corresponds to

attach two boundary components of the same three-holed sphere. From a group theo-

retic viewpoint, closing a handle is the same as taking the HNN-extension of the (0, 3)

group 〈A,BA−1B−1〉 by adjoining the element B to form a (1, 1) group. When we take the

HNN-extension, the map B is not unique. If K is any element in Sp(2, 1) that commutes

with A, then 〈A,BK〉 gives another (1, 1) group. Varying K corresponds to a twist-bend

coordinate as above.

If A = QE(s, ψ, ξ)Q−1 for (s, ψ, ξ), just as before, we define the twist-bend parameter κ

by K = QE(s, ψ, ξ, k1, k2)Q−1, and we say, κ = (s, ψ, ξ, k1, k2) is oriented consistently with

A. In this case also κ is defined relative to a reference group that we fix at the beginning

of the attaching procedure.

LEMMA 5.12. Let 〈A,BA−1B−1〉 be a irreducible (0, 3) group. Let B be a fixed choice

of an element in Sp(2, 1) conjugating A−1 to BA−1B−1. Let κ = (s, ψ, ξ, k1, k2) and κ′ =

(s′, ψ′, ξ′, k1, k
′
2) be twist-bend parameters oriented consistently with A. Then 〈A,BK〉 is con-

jugate to 〈A,BK ′〉 if and only if κ = κ′.

PROOF. If κ = κ′, then clearly K = K ′ and hence the groups are equal.
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Conversely, suppose 〈A,BK〉 is conjugate to 〈A,BK ′〉. The element D that conjugates

these groups, must commutes with A. Hence,

D(aA) = aA, D(rA) = rA.

Since BA−1B−1 has been fixed at the beginning, we have

BA−1B−1 = (BK ′)A−1(BK ′)−1 = D(BA−1B−1)D−1.

Thus D commutes with BA−1B−1 and fixes aBA−1B−1 = B(rA), rBA−1B−1 = B(aA). Since

the fixed points are distinct,D is either the identity or, the fixed points aA, rA, B(aA), B(rA)

belong to the boundary of the same totally geodesic subspace fixed by D. But the later is

not possible by the irreducibility of the (0, 3) group. So,D must be the identity,BK ′ = BK

and hence, K = K ′, i.e., κ = κ′. �

PROPOSITION 5.13. Let 〈A,BK〉 be a (1, 1) group obtained from the irreducible (0, 3) group

〈A,BA−1B−1〉 by closing a handle with associated twist-bend parameter κ. Then 〈A,BK〉 is

determined up to conjugation by its Fenchel-Nielsen coordinates

trR(A), [Xj(A,BA
−1B−1)], Aj(A,BA

−1B−1), j = 1, 2, 3, p1(A), p2(A),

and the twist-bend parameter κ = (s, ψ, ξ, k1, k2).

Thus, we need 21 real parameters to specify 〈A,BK〉 up to conjugacy.

PROOF. Let 〈A,BK〉 and 〈A,B′K ′〉 be two (1, 1) groups with the same Fenchel-Nielsen

coordinates. In particular tr(A) = tr(A′) and hence

tr(BA−1B−1) = tr(A) = tr(A′) = tr(B′A′−1B−1).

Further using the following relations

[Xk(A,BA
−1B−1)] = [Xk(A

′, B′A′−1B′−1)],

[Xk(A,BA
−1B−1)] = [Xk(A

′, B′A′−1B′−1)], k = 1, 2, 3,

we see by Theorem 5.6 that the (0, 3) groups 〈A,BA−1B−1〉 and 〈A′, B′A′−1B′−1〉 are deter-

mined by the projective points ofA. Thus we can assumeA = A′, BA−1B−1 = B′A′−1B′−1.

Now using the above lemma, we see that κ = κ′. HenceK = K ′. Thus, the group 〈A,BK〉
is determined uniquely up to conjugation.
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Conversely, suppose 〈A,BK〉 and 〈A′, B′K ′〉 are conjugate, then it is clear that the

unique conjugacy class is determined by the given invariants. �

Here, we will recall definition of geometric representation. Let Σg be a closed, con-

nected, orientable surface of genus g ≥ 2. Let π1(Σg) be the fundamental group of Σg.

Specify a curve system C of 3g − 3 closed curves γj on Σg. The complement of such curve

system decomposes the surface into 2g−2 three-holed spheres Pi. Let ρ : π1(Σg)→ Sp(2, 1)

be a discrete, faithful representation such that the image of each γj is loxodromic. For each

i, the fundamental group of Pi gives a representation ϕi in DL(F2, Sp(2, 1)), induced by ρ,

such that the image of ϕi is a (0, 3) subgroup of Sp(2, 1). If each of these representations

ϕi is irreducible, we call the representation ρ as geometric.

THEOREM 5.14. [GK18, Theorem 1.6] Let Σg be a closed surface of genus g with a curve

system C = {γj}, j = 1, . . . , 3g − 3. Let ρ : π1(Σg) → Sp(2, 1) be a geometric representation of

the surface group π1(Σg). Then we need 42g−42 real parameters to determine ρ in the deformation

space D(π1(Σg), Sp(2, 1))/Sp(2, 1).

PROOF. Let Σg \ C be the complement of the curve system C in Σg. This is a disjoint

union of 2g − 2 three holed spheres. Each such three-holed sphere in Σg \ C corresponds

to an irreducible (0, 3) subgroup of Sp(2, 1). By Theorem 5.6, a (0, 3) subgroup 〈A,B〉 is

determined up to conjugacy by the 21 real parameters given there. While attaching two

three-holed spheres, we attach two (0, 3) groups subject to the compatibility condition

that a peripheral element in one group is conjugate to the inverse of a peripheral element

in the other group. This gives a (0, 4) group that is specified up to conjugacy by the

42 real parameters described in Proposition 5.11. Proceeding this way, attaching 2g − 2

of the above (0, 3) groups, we get a surface with 2g handles, and it is determined by

21(2g − 2) = 42g − 42 real parameters obtained from the attaching process. The handles

correspond to the g curves that in turn correspond to the two boundary components of

the three-holed spheres.

Now, there are g quaternionic constraints that are imposed to close these handles: one

of the peripheral elements of each of these (0, 3) groups must be conjugate to the inverse of

the other peripheral element. Note that, corresponding to each peripheral element there

are 7 natural real parameters: the real trace and two projective points. So, the number of
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real parameters reduces to 42g−42−7g = 35g−42. But there are g twist-bend parameters

κi = (si, ψi, ξi, k1i, k2i), one for each handle, and each contributes 7 real parameters. Thus,

we need 35g − 30 + 7g = 42g − 42 real parameters to specify ρ up to conjugacy.

If two representations have the same coordinates, then the coordinates of the (0, 3)

groups are the same and so they are conjugate. Further, it follows from Proposition 5.11

and Proposition 5.13 that the (0, 4) groups and the (1, 1) groups are also determined

uniquely up to conjugacy while attaching the (0, 3) groups. Hence, representations with

the same parameters are conjugate. Conversely, if two representations are conjugate, then

clearly they have the same coordinates.

This proves the theorem. �
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CHAPTER 6

Quaternionic hyperbolic Fenchel-Neilsen coordinates in Sp(1, 1) and
GL(2,H)

1. Hyperbolic pairs in Sp(1, 1)

The group Sp(1, 1) acts by isometries of the quaternionic hyperbolic line H1
H. Note

that PSp(1, 1) is isomorphic to the isometry group PO(4, 1) of the real hyperbolic 4 space.

In this isomorphism, the group Sp(1, 1) acts on the quaternionic model of H4
R by linear

fractional transformations. This provides a quaternionic analogue of the classical Möbius

transformations of the Riemann sphere. We refer to the book [Par08] for more details on

this action.

Here, we view Sp(1, 1) as a subgroup of Sp(2, 1) that preserves a one-dimensional

totally geodesic quaternionic subspace, a copy of H1
H, in H2

H. From this viewpoint, we

shall follow the framework of the previous sections and will look at the linear action of

Sp(1, 1) on H1
H.

1.1. Real trace. The following is a special case of [GP13, Theorem 3.1].

PROPOSITION 6.1. Let A be an element in Sp(1, 1). Let AC be the corresponding element in

GL(4,C). The characteristic polynomials of AC is of the form

χA(x) = x4 − ax3 + bx2 − ax+ 1 = x2g(x+ x−1),

where a, b ∈ R. Let ∆ be the negative of the discriminant of the polynomial gA(t) = g(x + x−1).

Then the conjugacy class of A is determined by the real numbers a and b. Further, A is loxodromic

if and only if ∆ > 0.

This gives us the following definition.

DEFINITION 6.2. Let g be a hyperbolic isometry of H1
H. The real tuple (a, b) in Propo-

sition 6.1 is called the real trace of g and shall be denoted by trR(g).
61



Thus the real trace of a hyperbolic element g of Sp(1, 1) corresponds to a point on R2.

When g is strictly hyperbolic, then 4b = a2 + 8. In this case, the real trace is determined by

a parameter on R.

The real traces of loxodromic elements in Sp(1, 1) are given by the following subset of

R2:

D1 = {(a, b) ∈ R2 | b2 > 4a}.

The following result follow similarly as Lemma 5.2.

LEMMA 6.3. Let A, A′ be hyperbolic elements in Sp(1, 1). Then A = A′ if and only if they

have the same attracting (or repelling) fixed point, the same real trace and the same projective

point.

1.2. Quadruple of boundary points. Next we observe the following analogue of Cao’s

theorem. Cao proved Theorem 2.8 assuming n ≥ 2. However, the same proof boils down

to a much simpler form when n = 1. A version of this theorem follows from the work

in [GL12], however there the authors have defined cross ratios using quaternionic arith-

metic by the identification of Sp(1, 1) with the quaternionic linear fractional transforma-

tions. We can prove the following lemma by using similar ideas in proof of Theorem 2.8

of Cao.

Given an ordered quadruple of pairwise distinct points (z1, z2, z3, z4) on ∂H2
H, their

Korányi-Reimann quaternionic cross ratio is defined by

X(z1, z2, z3, z4) = [z1, z2, z3, z4] = 〈z3, z1〉〈z3, z2〉−1〈z4, z2〉〈z4, z1〉−1.

For a pair of hyperbolic elements (A,B) of Sp(1, 1), define

X(A,B) = X(aA, rA, aB, rB).

LEMMA 6.4. Let Z = (z1, z2, z3, z4) and W = (w1, w2, w3, w4) be two quadruple of pairwise

distinct points in ∂H1
H. Then there exists an isometry h ∈ Sp(1, 1) such that h(zi) = wi, i =

1, 2, 3, 4, if and only if

<(X(z1, z2, z3, z4)) = <(X(w1, w2, w3, w4)) and

|X(z1, z2, z3, z4)| = |X(w1, w2, w3, w4)|.
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PROOF. Suppose that <(X(z1, z2, z3, z4)) = <(X(w1, w2, w3, w4)) , |X(z1, z2, z3, z4)| =

|X(w1, w2, w3, w4)|. We want to find h ∈ Sp(1, 1) such that h(zi) = wi, i = 1, 2, 3, 4. Without

loss of generality assume that z1 = w1 = o and z2 = w2 = ∞. By the given hypothesis,

|X(o,∞, z3, z4)| = |X(o,∞, w3, w4)| implies that
|z3|
|w3|

=
|z4|
|w4|

. Now, by using the fact that

all zi, wi has zero real part together with condition <(X(o,∞, z3, z4)) = <(X(o,∞, w3, w4))

gives equality of the pairs of angles between the vectors =
( z3

|z3|
)
, =
( z4

|z4|
)
, and =

( w3

|w3|
)
,

=
( w4

|w4|
)
. So there exist ψ ∈ Sp(1) such that z3 = tψ̄w3ψ and z4 = tψ̄w4ψ, where t =

|z3|
|w3|

=

|z4|
|w4|

. Thus, we get the required isometry

h =

 ψ√
t

0

0
√
tψ

 ,
in Sp(1, 1) such that h(o) = o, h(∞) =∞, h(z3) = w3 and h(z4) = w4. �

Thus in this case the moduli of ordered quadruple of points up to Sp(1, 1) congruence

is determined by the tuple (<(X(p)), |X(p)|). We denote it by M(1, 4, 0). An explicit de-

scription of this space may be obtained from the work of [GL12]. From [GL12, Proposition

10], it follows that M(1, 4, 0) is embedded in R4.

THEOREM 6.5. [GK18, Theorem 1.7] Let (A,B) be an irreducible totally loxodromic pair

in Sp(1, 1). Then (A,B) is determined up to conjugation by the following parameters: trR(A),

trR(B), a point on M(1, 4, 0) corresponding to (aA, rA, aB, rB), and two projective points p1(A),

p1(B).

PROOF. Suppose (A,B) and (A′, B′) be pairs of loxodromics such that trR(A) = trR(A′),

trR(B) = trR(B′), <(X(A,B)) = <(X(A′, B′)) and |X(A,B)| = |X(A′, B′)|. By Lemma 6.4,

there is an element C in Sp(1, 1) such that C(aA) = aA′ , C(rA) = rA′ , C(aB) = aB′ and

C(rB) = rB′ . Therefore A′ and CAC−1 have the same attracting and the same repelling

fixed points. Since they also have the same real trace and the same projective point, by

Lemma 6.3, CAC−1 = A′. Similarly, CBC−1 = B′. This completes the proof. �

Given a representation ρ in DLo(F2, Sp(1, 1)), we associate the following tuple to it:

(trR(ρ(x)), trR(ρ(y)),<(X(A,B)), |X(A,B)|).
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LetM(1) denote the orbit space of M(1, 4, 0) under the natural S4 action on the quadru-

ples. This gives the following.

COROLLARY 6.6. DLo(F2, Sp(1, 1)) is parametrized by a CP1 × CP1 bundle over the topo-

logical space D1 ×D1 ×M(1).

This implies the following theorem that follows similarly as mentioned in the previous

section. A twist-bend EK(s, ψ, k) in this case would corresponds to four real degrees of

freedom given by the real trace (s, ψ) and a projective point k. The rest follows similarly

as in the previous chapter. Since the arguments are very similar, we omit the details.

THEOREM 6.7. Let Σg be a closed surface of genus g with a curve system C = {γj}, j =

1, . . . , 3g−3. Let ρ : π1(Σg)→ Sp(1, 1) be a geometric representation of the surface group π1(Σg)

into Sp(1, 1). Then we need 20g − 20 real parameters to determine ρ in the deformation space

D(π1(Σg), Sp(1, 1))/Sp(1, 1).

2. Hyperbolic pairs in GL(2,H)

The group GL(2,H) acts on ∂H5
R = Ĥ = H ∪ {∞} by linear fractional transformations:[

a b
c d

]
: z 7→ (az + b)(cz + d)−1,

and this action is extended over the hyperbolic space by Poincaré extensions. This action

identifies the projective general linear group PGL(2,H) = GL(2,H)/Z(GL(2,H)) to the

group PO(5, 1), see [Par08] or [Gon10] for more details. Note that Z(GL(2,H)) is isomor-

phic to the multiplicative group R∗ = R \ 0.

2.0.1. 3-Simple loxodromics. Let g be a 3-simple loxodromic element in GL(2,H). Up to

conjugacy, it is of the form

Er,s,θ,φ =

[
reiθ 0
0 seiφ

]
, r > 0, s > 0, θ, φ ∈ (0, π).

As above, using the embedding of GL(2,H) into GL(4,C) one can define real trace of a 3-

simple loxodromic in GL(2,H). It follows from the work in [Gon10] or [PS09] that the real

traces of 3-simple loxodromic elements of GL(2,H) correspond to a three real parameter

family (a, b, c), a 6= c, that forms an open subset of R3. We denote this open subset by D3.

This can be seen using ideas similar to the proof of Lemma 5.3.
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2.0.2. Cross ratios. As mentioned in the previous case, in this case Gwynne and Libine,

[GL12] has defined cross ratio of four boundary points analogous to the cross ratio of four

points on the Riemann sphere. Gwynne and Libine have used them to obtain configura-

tion of GL(2,H)-congruence classes of quadruples of pairwise distinct points on Ĥ. Let C4

denote the space of quadruples of points on ∂H5
R up to GL(2,H) congruence. It follows

from the work [GL12] that the subspace of C4 consisting of quadruples of pairwise dis-

tinct points on Ĥ in general position (i.e. the four points do not belong to a circle), is a real

two-dimensional subspace of R4. Let C4 denote the orbit space of C4 under the natural S4

action on the tuples.

2.0.3. The deformation space. Let DL∗(F2,GL(2,H)) denote the subset of the deforma-

tion space DLo(F2,GL(2,H)) consisting of elements ρ such that both ρ(x) and ρ(y) are 3-

simple loxodromics. The following is evident using similar arguments as in the previous

sections.

THEOREM 6.8. The set DL∗(F2,GL(2,H)) is a (CP1)4 bundle over the topological space D3×
D3 × C4.

Thus we need a total of 16 degrees of freedom to specify an element uniquely in

DL∗(F2,GL(2,H)). Note that the real dimension of the group GL(2,H) is also 16. However

the group PGL(2,H) has 15 real dimension. The group GL(2,H) is fibered over PGL(2,H)

by the punctured real line. This fibration induces a fibration of DL∗(F2,GL(2,H) over

DL∗(F2,PGL(2,H) by the punctured real line, and thus we need 15 real parameters to de-

termine a irreducible point on DL∗(F2,PGL(2,H)). The following theorem can be proved

following similar arguments as earlier.

THEOREM 6.9. Let Σg be a closed surface of genus g with a curve system C = {γj}, j =

1, . . . , 3g − 3. Let ρ : π1(Σg) → PGL(2,H) be a geometric representation of the surface group

π1(Σg) into PGL(2,H). Then we need 30g− 30 real parameters to determine ρ in the deformation

space D(π1(Σg),PGL(2,H))/PGL(2,H).
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CHAPTER 7

Future research directions

We recall that the group PGL(2,H) is isomorphic to PO(5, 1) and acts on the real hy-

perbolic 5-space H5
R by isometries. The group PSp(1, 1) is isomorphic to a subgroup of

PGL(2,H) that preserves a copy of H4
R inside H5

R. Using the approaches taken in this pa-

per, it is also possible to state similar results for pairs of hyperbolic elements in GL(2,H).

Algebraic and dynamical classification of elements in GL(2,H) are available in [Gon10],

[PS09]. There are three types of hyperbolic elements in GL(2,H) depending upon the

number of ‘rotation angles’. Two of these types come from Sp(1, 1), and the third type

called 2-rotatory hyperbolic in [Gon10] or 3-simple loxodromic in [Par08], does not have rep-

resentatives in Sp(1, 1). Though we shall address pairs of this type briefly, and will de-

termine them up to conjugacy in GL(2,H), they deserve separate attention. This space

may be thought of as the quaternionic analogue of the complex Teichmüller space and it

certainly deserves a more thorough treatment.

As it is clearly visible in all the statements above, the notion of projective points is

crucial for the development in this thesis. The lack of numerical invariants over the

quaternions has been supplemented by the use of these spatial invariants. We believe

that there should be a classification of hyperbolic pairs in Sp(2, 1) using purely numerical

invariants. We hope that a counterpart of [Par12, Theorem 4.8] will be available for the

group generated by pairs in Sp(2, 1). We expect that the real traces of A, B, and several

of their compositions like Procesi [Pro76], should be sufficient to classify the pair itself. A

starting point in this direction could be the work of D̄oković and Smith in [̄DoS], where

a set of minimal real trace coordinates is available for Sp(2) conjugation orbits in M2(H).

It might be possible to extend the invariant theoretic methods in [̄DoS] to classify conju-

gacy classes in Sp(2, 1), and also to classify the conjugation orbits of pairs of elements in

Sp(2, 1).
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Also, it is interesting problem to study change of coordinates on the same three-holed

sphere and ‘trace’ coordinates. From a group theoretic viewpoint, a three-holed sphere

corresponds to a subgroup generated by two hyperbolic elements A and B whose prod-

uct AB is also loxodromic. The three boundary curves corresponds to the loxodromic

elements A, B and B−1A−1 respectively. A group generated by such hyperbolic elements

is called a (0, 3) subgroup. The classical Fenchel-Nielsen coordinates are obtained by ‘glu-

ing’ such (0, 3) subgroups, and the coordinates are given by several parameters associated

to these subgroups and the gluing process.

There is a natural three-fold symmetry associated to a (0, 3) subgroup. This is re-

spected in the classical Fenchel-Nielsen coordinates of the Teichmüller or quasi-Fuchsian

space. For example, if we change the coordinates associated to 〈A,B〉 to 〈A,B−1A−1〉, then

the Fenchel-Nielsen coordinates remain unchanged in the classical set up. This is clearly

not the case in our set up, neither it was in the set up of Parker and Platis in the com-

plex hyperbolic set up, see [PP08, Section 7.2]. However, Parker and Platis rectified this

problem partially by relating the traces of A, B and several of their compositions with the

cross ratios, and thus by giving a real analytic change of coordinates between two (0, 3)

groups coming from the same three-holed sphere. Following the work of Will [Wil09],

Parker resolved this problem by using trace parameters to determine an irreducible (0, 3)

subgroup of SU(2, 1) in [Par12].

We do not know how to resolve this issue in the Sp(2, 1) set up. We expect that by

computations it should be possible to relate the real traces and the points on M(2) of two

(0, 3) subgroups coming from the same three-holed sphere. The computations to do that

are too involved, and we are unable to resolve the difficulty here. It is also not clear to us

that how the projective points change when we have a change of the (0, 3) subgroups.

As mentioned in the Introduction, innovation of a set of ‘real trace coordinates’ using

classical invariant theory might also be helpful to resolve the above problem concerning

the three-fold symmetry of a three-holed sphere.
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Volume 2.

[Par12] John R. Parker, Traces in complex hyperbolic geometry, Geometry, Topology and Dynamics of Char-
acter Varieties. Lecture Notes Series 23, Institute for Mathematical Sciences, National University
of Singapore, World Scientific Publishing Co (2012), 191–245.

[Pla14] Ioannis D. Platis. cross ratios and the Ptolemaean inequality in boundaries of symmetric spaces
of rank 1. Geom. Dedicata, 169:187–208, 2014.

[PP08] John R. Parker and Ioannis D. Platis. Complex hyperbolic Fenchel-Nielsen coordinates. Topology,
47(2):101–135, 2008.

[PP10] John R. Parker and Ioannis D. Platis. Complex hyperbolic quasi-Fuchsian groups. In Geometry of
Riemann surfaces, volume 368 of London Math. Soc. Lecture Note Ser., pages 309–355. Cambridge
Univ. Press, Cambridge, 2010.

[Pro76] C. Procesi. The invariant theory of n× n matrices. Advances in Math., 19(3):306–381, 1976.

[PS09] John R. Parker and Ian Short. Conjugacy classification of quaternionic Möbius transformations.
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