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Chapter 1

Introduction

Since the dawn of the industrial revolution, heat engines played a crucial role in the development

and progress of the human civilization. In our everyday life, we are surrounded by heat engines

(automobiles), refrigerators and air conditioners, among other energy conversion devices. Ba-

sically, a heat engine is a device that converts heat into work, operating in a cyclic manner.

Historically, the study of heat engines gave birth to the science of Thermodynamics. Impressed

by the working of the steam engine and motivated to understand the basic physical principles

behind its working, Sadi Carnot, in 1824, introduced the concept of an idealized reversible heat

engine (See box 1.1), now known as Carnot engine, operating between two reservoirs at tem-

peratures Tc and Th (Tc < Th), and showed that the efficiency of such a reversible engine is

independent of the properties of working medium, and is given by ηC = 1 − Tc/Th [4]. This

is a remarkable result. Carnot efficiency, ηC , sets a theoretical upper bound on the efficiency of

all cyclic heat engines working between two heat reservoirs.

The seminal work of Carnot led Clausius [5] to formulate the second law of thermodynamics

which introduced the concept of entropy. Carnot’s work also motivated Lord Kelvin to intro-

duce the concept of an absolute scale of temperature that is independent of material properties.

Although, the abstract concept of reversible Carnot cycle has paramount theoretical importance,

it is horribly impractical to implement in real heat engines. The Carnot efficiency is attainable

only in reversible limit, whereby the processes occur so slowly that the resulting output power

1



Box 1.1 Carnot cycle: The Carnot cycle consists of four reversible steps: two isothermal

and two adiabatic. Isothermal steps are carried out at constant temperature. In adiabatic

steps, no heat exchange takes place between the system and the heat baths, and entropy

of the working fluid remains constant. The Carnot cycle for an ideal gas is explained

below:

(1) During the isothermal expansion, system absorbs an amount of heat Qh from the hot

reservoir at temperature Th.

(2) During the adiabatic expansion, gas is cooled downed to a lower temperature Tc.

(3) During the isothermal compression, system rejects an amount of heat Qc to the cold

reservoir at temperature Tc.

(4) Finally the system is brought back to the initial state by adiabatically compressing it.

Carnot cycle of an ideal gas

Total work done per cycle and efficiency of the Carnot engine are given by

W = Qh −Qc, η =
W

Qh

= 1− Qc

Qh

= 1− Tc
Th
.

is zero. But, real heat engines operate at finite rates and produce finite power per cycle. So

it is more useful and practical to optimize the power output of the heat engines by taking into
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account the intrinsic irreversibilitities of finite-rate processes. Such an approach was taken by

Reitlinger [6], Yvon [7], Chambadal [8], Novikov [9] and Curzon-Ahlbohn (CA) [10]. They

all derived the same expression for the efficiency at maximum power (EMP) of a so-called

endoreversible [11] heat engine. The form of Reitlinger-Yvon-Chambadal-Novikov-Curzon-

Ahlborn efficiency is given by

ηCA = 1−
√

1− ηC . (1.1)

This is a simple and elegant result as the form of CA efficiency depends upon the ratio of

reservoir temperatures only and independent of the properties of working material. Although the

formula in Eq. (1.1) was derived first [6] many years before the work of Curzon and Ahlborn,

in physics literature it is generally attributed to CA due to the strong impact of their work which

stimulated a large number of publications in the field of so-called finite-time thermodynamics.

1.1 Finite-time thermodynamics (FTT)

As mentioned earlier, motivated to find the realistic theoretical bounds on the efficiency of prac-

tical heat engines, Curzon and Ahlborn introduced the concept of endoreversible Carnot heat

engine and gave birth to FTT. In endoreversible models, the work extracting part of the cycle

is assumed to be internally reversible and there are no heak leaks between the reservoirs. The

irreversibility arises solely due to the finite rate of heat transfer between the working medium

and the external heat baths. Most of the initial papers in FTT analyzed the performance of

endoreversible heat engines and refrigerators with a number of different loss mechanisms and

various heat transfer laws between the working fluid and heat baths. The number of papers on

endoreversible models are so high that one might think that FTT is only about endoreversible

heat engines [12]. But it is not true. FTT covers all thermodynamic processes with one added

constraint: completion in a finite time. It is a branch of non-equilibrium thermodynamics de-

voted to explain more realistic irreversible processes happening in finite time. Armed with the

tools of optimal control theory, it becomes very powerful theory to study a wide range of physi-
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cal phenomena [13, 14]. However, in this thesis, we will focus our attention on the applications

of FTT to the optimization of energy conversion devices.

FTT can also be used to analyze the performance of continuous steady state heat engines,

coupled simultaneously to the hot and cold reservoirs, operating with finite non-vanishing rates.

Historically, Geva and Kosloff were first to apply the theory of FTT to study the performance of

a three-level laser heat engine operating in steady state [15, 16]. In 2001, Valesco and coauthors

investigated the optimal performance of another steady state continuous heat engine, Feynman’s

ratchet and pawl model, using the methods of FTT [17]. Since then, many researchers made

use of methods of FTT to study engines operating in steady state [18–22].

A brief history of FTT

The ground breaking work of Curzon and Ahlborn inspired many researchers to work along

their line. In the late 1970s, a group of scholars working in Chicago university, including

Stephen Berry, Bjarne Andresen and Peter Salamon, developed the formal theory of FTT in

three back to back publications [23–25]. Two of them were published in the same issue of

Physical Review A on 7 September, 1977 [23, 24]; the remaining one was published in Journal

of Chemical Physics on 8 September, 1977 [25]. In Ref. [[23]], introducing the concept of step-

Carnot cycle, the authors formulated a method to find bounds on process functions, such as heat

and work, for processes operating at finite rate in finite time, and then determined the optimal

time interval in which a process should be executed to optimize the power output or some

other index of optimality. In the second publication, they developed an algorithm to construct

thermodynamic potentials for finite-time processes [24]. In Ref. [[25]], focusing on processes

of energy conversation, the authors developed a general formalism to find the maxima of power

output and efficiency for realistic heat engines.

Another important contributor to the field of FTT is Alexis de Vos. In 1980s, the impact

of endoreversible models on FTT was so strong that de Vos termed it as endoreversible ther-

modynamics [12]. He considered the effect of various heat transfer laws on simple models of
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endoreversible engines and discovered various expressions for the EMP, including well known

CA efficiency and Cartan’s efficiency among others [26]. Orlov also performed same analysis

and found a different expression for the efficiency at optimal power of the engine [27]. Later,

Yan and Chen considered the same problem and by optimizing power output with the use of

Euler-Lagrange equations, they were able to re-derive the results obtained by de Vos and Orlov

as the special cases of their general result [28]. Yan and Chen also considered the effect of dif-

ferent heat transfer laws to analyze the optimal performance of a class of endoreversible Carnot

refrigerators [29]. In the same paper, they introduced the concept of a new figure of merit,

χ = εQ̇2, to study the optimal performance of Carnot refrigerator. Here, ε is coefficient of

performance (COP) of the refrigerator and Q̇2 is cooling rate. χ criterion is a suitable figure

of merit to study the performance of refrigerators as Agrawal and Menon showed that cool-

ing power cannot be optimized for an endoreversible Carnot refrigerator employing the same

technique used by Curzon and Ahlborn [30].

Another important step towards the study of general class of irreversible heat engines was

carried out by Gordon [31, 32]. He investigated the engines operating at maximum power (MP)

and undergoing non-isothermal transformations during the process of heat exchange with the

reservoirs, and derived the form of optimal driving function that maximizes power. Considering

finite-rate heat transfer and internal frictional losses as the only sources of irreversibilities, he

concluded that for engines with internal friction, it is better to dissipate frictional losses directly

to the environment than to permit dissipative frictional losses to heat the engine’s working fluid.

In 1992, for the very first time, Geva and Kosloff applied the theory of FTT to a quan-

tum heat engine whose working material consists of non-interacing spin-half particles [33].

They repeated their analysis by replacing ensemble of spin-half particles by ensemble of non-

interacting harmonic oscillators [34]. In both the cases, they were able to obtain the CA effi-

ciency in the high temperature regime. These two systems still maintain their reputation as the

standard working fluid to study quantum heat engines. In the spirit of FTT, Geva and Kosloff

also investigated the optimal performance of a steady state laser heat engine in the presence of
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strong and very fast rotating electromagnetic fields [15, 16]. In doing so, they incorporated the

effect of strong fields on the Lindblad dissipators, and for the very first time, derived second

law of the thermodynamics in the presence of strong fields. They continued to apply the theory

of FTT to quantum heat engines in many subsequent meaningful publications [35–38].

In 2010, a major breakthrough happened in the field of FTT when Esposito and coauthors

introduced low-dissipation (LD) model of heat engines [1]. In LD models, the system under-

goes a Carnot cycle and entropy production in the isothermal stages is assumed to be inversely

proportional to the time of contact of the system with the reservoirs during the heat transfer

process. For the extreme dissipative cases, i.e., when heat transfer process at one of the ends

(hot or cold) approaches reversible limit, they were able to derive lower and upper bounds on

the efficiency of the engine operating at MP. As the icing on the cake, they also derived CA

efficiency for the case of symmetric dissipation. The same authors also applied FTT to study a

nano-thermoelectric heat engine [39] and a quantum dot Carnot engine [40] in the LD regime.

1.2 Endoreversible heat engine: Curzon-Ahlborn model

In endoreversible models (See Figure 1.1), the internal work extracting part of the cycle is as-

sumed to be reversible. The irreversibility arises solely due to the finite rate of heat transfer

between the working medium and the external heat baths. The nature of heat conduction be-

tween the working medium and the heat baths is assumed to obey Fourier’s law of heat transfer.

Hence, the heat fluxes related to the hot and the cold baths are given by

dQh

dt
= αh(Th − ThW ),

dQc

dt
= αc(TcW − Tc), (1.2)

where αh and αc are heat transfer coefficients which depend upon thermal conductivity and ge-

ometry of the heat exchangers; ThW and TcW are the effective temperatures of the working fluid

during the isothermal expansion and isothermal compression stages respectively. It is assumed

that during the isothermal stages, the temperature of the working fluid remains constant. If th

6



 
 

 

 

 

 

 

 

𝛼1  𝑇1 − 𝑇1𝑊  

 

W 

𝑇1 𝑇1𝑊 𝑇2 

𝑄1 𝑄2 

𝑇2𝑊 

𝛼2  𝑇2𝑊 − 𝑇2  

Figure 1.1: Endoreversible heat engine

(tc) is the time required to transfer an amount Qh (Qc) of heat from (to) the hot (cold) reservoir,

then

Qh = αhth(Th − ThW )⇒ th =
Qh

αh(Th − ThW )
(1.3)

and

Qc = αctc(TcW − Tc)⇒ tc =
Qc

αc(TcW − Tc)
. (1.4)

Further, it is assumed that the time spent on adiabatic branches of the cycle is negligible as

compared to the time spent on isothermal branches. This can be justified if relaxation time of

the working fluid is fast enough as compared to the duration of the adiabatic branches. So, total

duration of the cycle is

tcycle ≈ th + tc. (1.5)

If W is the work done during one cycle, then power delivered by engine per cycle is given by

P =
W

tcycle

=
Qh −Qc

th + tc
=

Qh −Qc

Qh
αh(Th−ThW )

+ Qc
αc(TcW−Tc)

(1.6)

The assumption of endoreversibility (internally reversible) leads to the following equation

Qh

ThW
=

Qc

TcW
. (1.7)
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Using Eqs. (1.6) and (1.7), we have

P =
ThW − TcW

ThW
αh(Th−ThW )

+ TcW
αc(TcW−Tc)

. (1.8)

To optimize the power output of the heat engine, we define new variables, x1 = Th − ThW

and x2 = TcW − Tc, and then setting the conditions for extremum of power, ∂P/∂x1 = 0 and

∂P/∂x2 = 0, the final form of EMP is found to be

ηCA = 1−
√
Tc
Th

= 1−
√

1− ηC , (1.9)

which depends only on the ratio of bath temperatures. The expression for optimal power is

Pmax =
αhαc

(
√
αh +

√
αc)2

(
√
Th −

√
Tc). (1.10)

It is worth noting that CA efficiency is obtained for the specific form of heat transfer law,

in this case Newton’s law, between the working fluid and the heat reservoirs. Yan and Chen

studied endoreversible Carnot engine for phenomenological law of linear irreversible thermo-

dynamics [28], Q = σ(1/T − 1/T ′), where σ is coefficient of heat conductance and T and

T ′ are temperatures of working fluid and reservoir, respectively. They found lower and upper

bounds on the EMP as follows
ηC
2
≤ ηP ≤

ηC
2− ηC

. (1.11)

Additionally, they also found the expression for EMP when heat transfer coefficients of heat

exchangers at the hot and cold ends are equal. In this case, efficiency is given by

ηSS =
2ηC

4− ηC
. (1.12)

The above expression for efficiency was re-derived by Schmiedl and Seifert (SS) for a Brownian

heat engine undergoing Carnot cycle [41], and hence named after them.
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1.3 Steady-state heat engines

Besides cyclic classical heat engines, there is another class of heat engines which are simul-

taneously coupled to two heat reservoirs at different temperatures. These are continuous heat

engines and operate in steady-state. Feynman-Smoluchowski (FS) engine, three-level laser heat

engine and thermoelectric engines are most common examples of steady state heat engines.

They consider the fluxes of energy, matter and entropy in steady-state regime and thus these

quantities are time-independent. In order to understand the working of a generic model of

steady-state engine, we first introduce the framework of linear irreversible thermodynamics.

1.3.1 Linear Irreversible Thermodynamics

The theory of irreversible thermodynamics deals with the states and processes in out of equi-

librium systems. In the framework of irreversible thermodynamics, we need to define certain

quantities that can appropriately describe irreversible processes. In this regard, the notion of

generalized forces and their conjugate fluxes play a fundamental role in the description of ir-

reversible processes. Generalized forces, also known as affinities, drive irreversible processes

inside a system and the fluxes represent the response of the system to these forces.

It is very convenient to identify the generalized forces and fluxes in a particular type of

system by considering the rate of entropy production. Entropy production in a closed system

evolving from a non-equilibrium state can be described by

dS

dt
=
∑
k

∂S

∂ξk

∂ξk
∂t
≡
∑
k

XkJk, (1.13)

where the Xk = ∂S/∂ξk are the thermodynamic forces and Jk = ∂ξk/∂t are the conjugate

thermodynamic fluxes of the extensive variables ξk.

Since the fluxes Jk vanish if the generalized forces vanish, in the linear response regime

close to equilibrium, Jk can be represented in terms of generalized forces by the following
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equation:

Jk =
∑
j

LkjXj, (1.14)

where Lkj = ∂Jk/∂Xj are called kinetic coefficients. Substituting Eq. (1.14) in Eq. (1.13),

rate of entropy production can be written in bilinear form

dS

dt
=
∑
kj

LkjXkXj. (1.15)

Since dS/dt ≥ 0, the kinetic coefficients satify Lkk ≥ 0 and LjjLkk ≥ (Ljk + Lkj)/4. Further

based on time reversal symmetry , Onsager proved that Ljk = Lkj .

1.3.2 Linear irreversible heat engine

Van den Broeck [42] studied a generic model of linear irreversible heat engine operating be-

tween two reservoirs at temperatures Tc and Th (Tc < Th). The work is extracted from a heat

flux Q̇h leaving the hot reservoir. The engine is assumed to be operating in the linear response

regime, which implies that Tc ≈ Th ≈ T , and ∆T = Th − Tc is small as compared to T . The

work done against the fixed external force F is W = −Fx, where x is the conjugate variable

of F . Then the power is written as P ≡ Ẇ = −Fẋ, where the dot denotes the time derivative.

A couple of flux-force pairs are identified as follows:

J1 = ẋ, X1 =
F

T
, (1.16)

J2 = Q̇h, X2 =
1

Tc
− 1

Th
≈ ∆T

T 2
. (1.17)

Following Eq. (1.14), we can write each flux as linear combination of available generalized

forces

J1 = L11X1 + L12X2, (1.18)

J2 = L21X1 + L22X2, (1.19)
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where Lkj are kinetic coefficients, satisfying Onsager’s reciprocity relation, L12 = L21. Then,

the expression for power becomes

P = −TJ1X1 = −T (L11X1 + L12X2)X1. (1.20)

For a given X2, optimization of power with respect to X1 yields X∗1 = −L12X2/2L11. Then

the efficiency η = P/Q̇h at MP is evaluated to be

ηP =
∆T

2T

q2

2− q2
, (1.21)

where, q = L12/
√
L11L22, represents the coupling strength between the fluxes, and lies in the

range [-1,1]. Tight-coupling condition, q2 = 1, implies that EMP is given as ηP = ∆T/2T =

ηC/2, which is the upper bound to EMP within the linear irreversible framework.

1.4 Different optimization functions

One of the main goals of FTT is the optimization of energy conversion devices: heat engines,

refrigerators and heat pumps. Maximization of power is the most studied criterion to analyze

the performance of irreversible heat engines operating in finite time. But, heat engines oper-

ating at MP are not the most efficient one and, hence, are not very economical. Also, from

an environmental point of view, to be ecologically sensitive demands that we should also care

about the extent of entropy production which ultimately pollute the environment. In this regard,

it has been noted that real thermal plants and practical heat engines should not operate at MP,

but in a regime with slightly smaller power output and appreciable larger efficiency [12, 43]. In

recent years, a few such alternate measures of performance have been studied. The optimiza-

tion of ecological function (E) [44, 45] or Omega function (Ω) [46] and efficient power (EP)

function (Pη) [47, 48] fall within such a regime, as they pay equal attention to both power and

efficiency [49]. Due to contemporary growing need of saving energy resources, relevance of
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such optimization criteria deserves serious discussion.

1.4.1 Ecological function (E)

The concept of ecological function (EF) was first proposed by Angulo-Brown in the literature

of FTT in order to find the best mode of operation of an endoreversible heat engine [44]. It is

defined as follows

E = P − TcṠtot, (1.22)

where P is power output, Tc is the temperature of the cold reservoir and Ṡtot is the rate of

entropy production. The optimization of the EF represents a compromise between the power

output P and the loss of power, TcṠtot, due to the entropy production. In a later publication, Yan

modified the definition of EF by replacing the temperature of cold reservoir by the temperature

of the environment [50]. The ecological optimization of a large class of different models of heat

conversion devices has been studied in the literature of FTT and linear irreversible thermody-

namics [46, 49, 51, 52].

One of the advantages of EF is that it can be applied to study optimal performance of refrig-

erators too. The EF for the optimization of refrigerators can be written as [53]

E = Q̇c − ζCT0Ṡtot, (1.23)

where Q̇c is rate of refrigeration, ζC is the Carnot COP of the refrigerator, and T0 is temperature

of the environment.

1.4.2 Unified trade-off function (Ω)

The Ω function represents a compromise between energy benefit and losses for a specific job

[51]. It is easy to implement in both heat engines and refrigerators, without the requirement

of calculation of entropy production and is independent of environment parameters. For heat
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engines, Ω function is defined as [46]

Ω = (2η − ηmax)
P

η
, (1.24)

where ηmax is maximum possible efficiency. For the tight coupling heat engines (no heat leaks

between the reservoirs), ηmax is equal to Carnot efficiency ηC , Ω function is equivalent toE[54].

1.4.3 Efficient power (Pη)

EP criterion Pη = ηP represents a trade-off between the efficiency and power output of a heat

engine. It was introduced by Stucki in the context of linear irreversible thermodynamics while

studying the mitochondrial energetic processes [47]. Later the idea was extended to the regime

of FTT by Yan and Chen [55] and given the so-called name ”efficient power” by Yilmaz [48].

It is also shown that the EP criterion is well suited to study the optimization of steady and

non-steady electric energy converters [56], thermionic generator [57] and biological systems

[47, 58, 59] and LD heat engines [60].

1.5 Universal nature of efficiency

Recently, study of universal nature of efficiency attracted a lot of interest [19, 41, 61]. The rel-

evance of the study lies in the observation that it establishes a connection between macroscopic

and microscopic models of heat engines [62]. Cleuren et al. [62] investigated the EMP in a gen-

eral setting for energy conversion machines and demonstrated how symmetries and constraints

at the microscopic level, combined with the fluctuation theorems, emerge at macroscopic level

via the expression for the EMP. Apart from power optimization, the universal nature of effi-

ciency has been confirmed in the study of some other power-efficiency trade-off optimization

criteria [45, 54, 63].
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1.5.1 Universality of efficiency at maximum power

Although CA efficiency has paramount importance in the literature of FTT, it is not as universal

as Carnot efficiency. It is neither an upper bound nor a lower bound. Efficiencies at MP, not

only below but also above CA efficiency, have been reported. However, in many models of heat

engines, such as FS engine [19] and Brownian Carnot engine [41], EMP agrees with ηCA upto

quadratic order in Carnot efficiency as can be seen from the Taylor series expansions of the

EMP, near equilibrium:

ηCA =
ηC
2

+
η2
C

8
+

6η3
C

96
+O(η4

C), (1.25)

ηFS =
ηC
2

+
η2
C

8
+

7η3
C

96
+O(η4

C), (1.26)

ηSS =
ηC
2

+
η2
C

8
+

3η3
C

96
+O(η4

C). (1.27)

Clearly the first two terms in the above three expressions for EMP are same. The model de-

pendent differences manifest in the third term only. Using the framework of linear irreversible

thermodynamics, Van den Broeck proved that universal EMP for heat engines obeying tight

coupling condition is equal to ηC/2 [42]. The universal nature of second term η2
C/8 can be ex-

plained by further assuming the presence of some kind of of left-right symmetry in the system

in addition to the condition of strongly coupled fluxes [61]. Apart from the above mentioned

three models of heat engines, universal nature of EMP also holds true for nano-thermal quantum

dot heat engine [39], LD heat engine [1], minimally nonlinear irreversible (MNI) heat engine

[64], among other models of heat engines [65].

The universal features of efficiency at the maximum work output, instead of MP, has also

been studied for some models of quantum and classical heat engines [66, 67]. Again for the

optimization of work, the first two universal terms of efficiency are ηC/2 and η2
C/8.

However it is found that the condition of left-right symmetry in the system is sufficient

but not necessary condition for the EMP to show universal behavior [68]. Endoreversible heat

engine and FS engine both show universal features of EMP in the lack of any kind of left-right
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symmetry in the system. It is ironical that these two heat engines stimulated the discussions

about universal nature of EMP. This paradox was resolved by Sheng and Tu by constructing a

general constitutive relation in the nonlinear response regime accurate upto the quadratic order

for tight coupling heat engines [68]. They showed that in the absence of any kind of left-right

symmetry in the system, the EMP shows universal features if the elementary thermal energy

flowing through the engine matches the characteristic energy of the engine (energy matching

condition). The endoreversible heat engine and FS engine lie in this category and hence recover

second order universal term η2
C/8 regardless of any symmetry.

1.5.2 Universality of efficiency in the optimization of ecological (or Ω) and

efficient power function

The universal features of efficiency are not exclusive to the engines operating at MP; the engines

operating at maximum EF, or Ω function and EP function also show same kind of universality

[54, 63]. For engines operating at maximum Ω function (or EF) and maximum EP, Taylor’s

series expansions of the efficiency for the respective functions are given by

ηΩ =
3ηC
4

+
η2
C

32
+O(η3

C), (1.28)

and

ηPη =
2ηC
3

+
2η2

C

27
+O(η3

C). (1.29)

Again for both the functions, the first term is universal for the tight coupling heat engines and

second term is universal in the presence of an additional left-right symmetry in the system

[1, 54, 61, 63]. For the optimization of Ω or E function, the first two terms of Eq. (1.28) have

been obtained for various models of heat engines such as LD engines [52], MNI engines [69],

FS engines [45] and non-isothermal Carnot engines [70]. However, for engines operating at

maximum EP, such universality has been shown only in the case of LD heat engine [60] and FS

engine.
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1.5.3 Lower and upper bounds on efficiency

Apart from showing universality in efficiency, the abovementioned tight-coupling engines op-

erating at MP (or some other target function), also share common lower and upper bounds on

efficiency. For many models of heat engines operating at MP [1, 28, 41], following formula of

EMP has been obtained

ηP =
ηC

2− γ′ηC
, (1.30)

where γ′ is a real parameter and depends upon the details of the particular model and lies in the

range 0 ≤ γ′ ≤ 1. The above expression yields ηC/2 as the lower bound and ηC/(2 − ηC) as

the upper bound [See Eq. (1.11)]. For LD models, γ′LD = 1/(1 +
√
TcΣc/ThΣh), where Σc and

Σh are the dissipation coefficients at the cold and hot ends, respectively [1]. For endoreversible

engines, γ′endo = 1/(1 +
√
αc/αh), where αh and αc represent the heat transfer coefficients

between the working fluid and the hot or the cold baths, respectively [28]. For a stochastic

Carnot engine, γ′SS = 1/(1 +
√
A3/A1), where A1 and A3 are known as irreversible ”actions”

of isothermal processes in contact with the hot and cold baths [41].

For the optimization of Ω function or EP function, no such general expressions analogous

to Eq. (1.30) are known, still we can find the corresponding common lower and upperr bounds

for various models of heat engines [52, 60, 69–71], and they are given by following equations,

respectively
3ηC
4
≤ ηΩ ≤

3− 2ηC
4− 3ηC

ηC , (1.31)

and
2ηC
3
≤ ηPη ≤

1

2
(3−

√
9− 8ηC). (1.32)

1.6 Thermodynamics, Information and Inference

The relation between thermodynamics and information is subtle. Remarkably, Gibbs expres-

sion for thermodynamic entropy and Shannon’s information theoretic entropy both have same
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form apart from a multiplicative constant. This gives us a useful perspective on the nature of

the thermodynamic entropy and forces us to believe that there is a deep connection between

thermodynamics and information. In the words of Brillouin ”Entropy measures the lack of in-

formation about the exact state of a system.” To look more into the relation of information with

the second law of thermodynamics, we discuss the illustrative example of Maxwell’s demon

[72].

1.6.1 Maxwell’s demon and its exorcism

The story begins with Maxwell who came up with an interesting puzzle via a thought exper-

iment. He considered a hypothetical tiny intelligent being, later dubbed as ”Maxwell’s de-

mon” by lord Kelvin, guarding a trap door fixed in the middle of a container filled with gas

molecules at certain temperature T . The demon has the ability to determine the speed of in-

dividual molecules of the gas and is able to watch the molecules bouncing around close to the

trap door. The demon separates the faster molecules to one side (say A) of the compartment

and slower molecules to the other side (say B) by selectively allowing the molecules to pass

through the trap door. This reduces the temperature of side B and increases the temperature of

the side A. The overall entropy of the gas decreases, and work can now be extracted from the

two compartments because of the temperature gradient. This is in direct contradiction with the

second law of thermodynamics. What is the catch to save second law? The answer is hidden in

the identification of the information as a physical quantity [73, 74].

Although many distinguished researchers have addressed this problem [72], the issue was fi-

nally settled by Bennett [74] who used Landaur’s principle of erasure of information to solve the

problem of Maxwell’s demon. According to Landauer’s principle [73], erasure of information

is a logically irreversible process. Thus entropy production is inevitable in information eraser

process. While making the measurements, the demon must store the results in its memory. And

since memory cannot be infinite, the demon must erase the acquired information in order to

make room for new measurement results. This erasure of information increases the entropy of
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the whole system at least as much as the entropy decreased by the action of the demon. Hence

the second law of thermodynamics still holds true.

1.6.2 Bayesian inference

Bayesian inference methods are widely used in physics [75, 76]. Recent applications of

Bayesian approach in various fields include human cognition [77], economics [78], cosmology

[79], quantum theory [80, 81] and quantum thermodynamics [82, 83]. In Bayesian approach to

probability, prior probability distribution, or, simply called a prior, plays a crucial role. Prior

is assigned based on the prior information before acquiring the experimental data [84]. After

acquiring the new data (D), the prior P (A) is updated to posterior P (D|A) using Bayes theorem

[85], given as

P (A|D) =
P (D|A)P (A)

P (D)
, (1.33)

where P (D|A) is the probability of observing D given A, and is called the likelihood; P (D) =∫
P (D|A)P (A)dA is the normalization constant, sometimes named as marginal likelihood.

The choice of prior in Bayesian inference is a crucial step as it incorporates the available partial

information as well as uncertainty underlying the problem to be studied. However, choice of

an appropriate prior by quantifying the prior information is a subtle issue [84]. The prior is

chosen based on certain arguments such as maximum entropy principle [86, 87] or requirement

of invariance [84]. The assignment of prior is not based on any frequencies. It is therefore

’subjective’ in the sense that it represents the state of knowledge of the observer [84, 88].

1.6.3 Heat engines and prior information approach

It has been shown that using prior probabilities or prior information approach, the optimal

characteristics of certain constrained thermodynamic processes can be estimated by inference

[82, 89]. In prior information approach to study heat engines, one has only limited or partial

information about the control parameters of the system under consideration and a prior proba-

18



bility distribution quantifies the uncertainty in these parameters. The approach is subjective in

the sense that the chosen prior expresses the degree of one’s belief in the values taken by the

uncertain parameter.

The basic idea of estimating the performance benchmarks of thermal machines, was first

proposed in Ref. [82], in the context of a two level quantum heat engine. Later, the idea was

extended to treat uncertainty in other thermodynamic processes [20, 45, 83, 89]. To study the

optimal performance of thermal machines with prior information approach, a suitable prior is

chosen (Jeffreys prior) over the given range of an uncertain control parameter of the system.

Then an averaging procedure is performed on the chosen target function (such as power output

or EF) using this prior distribution so as to eliminate the uncertain parameter. Following this

approach, CA efficiency for engine as well as COP of the refrigerator have been reproduced [20,

90]. In particular, for the problem of maximum work extraction from finite source and sink, the

behavior of efficiency at maximum estimate of work shows universal features near equilibrium

[89]. Similarly, other expressions for EMP such as in irreversible models of stochastic engines,

which obey a different universality near equilibrium, can also be reproduced from the inference

based approach [91].

1.7 Thesis layout

In Chapter 2, we optimize the power output of the ratchet engine operating in the high temper-

ature regime, and derive the universality of EMP upto second order, using a non-linear approx-

imation. On the other hand, linear model may be optimized by constraining the internal energy

scales in different ways. It is shown that simple constraints lead to well known expressions of

thermal efficiency in FTT. Then, by identifying the effective temperatures and coefficients of

thermal conductance, we are able to map each case to an effective endoreversible model.

In Chapter 3, we study the optimal performance of Feynmans ratchet and pawl model us-

ing two different trade-off objective functions: EF and EP function. We study the model for
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both engine and refrigerator modes. The analysis is performed by two different methods: i)

a two-parameter optimization over internal energy scales and ii) a one-parameter optimization

of the estimate for the objective function, after averaging over the prior probability distribution

(Jeffreys prior) for one of the uncertain internal energy scales. We derive expressions for the

efficiency/COP at maximum EF. These expressions from the two methods are found to agree

in close to equilibrium situations, and show universal features of efficiency at maximum EF.

Further, the expressions obtained by the second method (with estimation) agree with the ex-

pressions obtained in finite-time thermodynamic models.

Then we repeat our analysis for the optimization of EP function. To study the refrigerator

mode, we optimize χ-criterion, which represents a compromise between the cooling load and

COP of the refrigerator. First, we perform a two-parameter optimization over the energy scales

for the general case and show the universal nature of efficiency at maximum MP. Then exact

one parameter optimization is carried out for the linear model of the engine working in high

temperature regime by constraining one of the energy scales and well known forms of efficiency

are obtained. Further, by using prior information approach, we derive the expression for the

efficiency of the engine which concurs with the efficiency of an endoreversible engine. Then

prior information analysis is performed in the high temperature limit and we are able to obtain

the same forms of efficiency as obtained by exact optimization method. The same analysis is

repeated for the optimization of the refrigerator.

In Chapter 4, we study the optimal performance of Carnot-like heat engines working in LD

regime using the EP criterion as our objective function. We find lower and upper bounds on the

efficiency in case of extreme asymmetric dissipation when the ratio of dissipation coefficients at

the cold and the hot contacts approaches, respectively, zero or infinity. In addition, we obtain the

form of efficiency for the case of symmetric dissipation. We also discuss the universal features

of EMEP and derive the bounds on the efficiency using global linear-irreversible framework

introduced recently in Ref. [92]. Finally, we compare the rates of dissipation for LD heat

engines under optimal working conditions for power output, Ω function (or EF) and EP function
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and show that unlike power output or Ω function, the ratio of rates of dissipation at the hot and

cold ends for EP function depends upon the efficiency of the engine.

In Chapter 5, we study a three-level laser quantum heat engine operating at maximum EF.

We derive analytic expressions for efficiency under the assumptions of strong matter-field cou-

pling and high bath temperatures. Upper and lower bounds on the efficiency exist in case of

extreme asymmetric dissipation when the ratio of system-bath coupling constants at the hot

and the cold contacts respectively approaches, zero or infinity. These bounds have been estab-

lished previously for various classical models of Carnot-like engines. We conclude that while

the engine produces at least 75% of the power output as compared with the MP conditions, the

fractional loss of power is appreciably low in case of the engine operating at maximum EF, thus

making this objective function relevant from an environmental point of view.

Chapter 6 is devoted to summarizing the content of this thesis and possible extensions of

our research work.
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Chapter 2

Feynman-Smoluchowski Engine at High

Temperatures and the Role of Constraints

2.1 Introduction

In order to shed some light on the nature of second law of thermodynamics, Feynman, in his

famous Lectures on Physics, proposed a simple mechanical device that can rectify thermal

fluctuations to extract work from a setup of two reservoirs at different temperatures. Feynman’s

model was inspired by the work of Smoluchowski on Maxwell’s demon. Hence we name this

device after Feynman-Smoluchowski (FS). The device consists of an axle coupled on one side

to a vane (paddles) immersed in a gas at a fixed temperature T1 while the other end is coupled

to a ratchet wheel, with asymmetric teeth profile, immersed in a gas kept at temperature T2.

In the center of the axle, there is a wheel from which a small weight is hanged. Feynman

first considered the case when both the thermal baths have same temperature, that is, T1 = T2.

Because of the collisions of gas molecules, the vane is subjected to Brownian fluctuations.

But the ratchet is restricted to rotate in one direction only due to the pawl which in turn is

connected to a spring. This breaks the rotational symmetry and the wheel will turn slowly and

in doing so might even lift some weight (say a fly). This is a direct violation of the second
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law of thermodynamics. However, Feynman showed that it is not possible as the pawl is also

subjected to the Brownian fluctuations. This releases the pawl and the wheel is free to rotate

in the backward direction too. Feynman showed that the probability of the backward motion

is equal to the probability of the forward motion, thus no net motion of the wheel is possible,

which in turn implies that no net work can be extracted from a single heat reservoir using the

ratchet and pawl mechanism. This saves the second law.

However, Feynman also showed that ratchet and pawl system can operate as a heat engine

as well as a refrigerator if the reservoirs are at different temperatures. In FS engine, processes of

heat and work transfer are assumed to occur at finite rates, thus generating a finite output power.

Feynman’s analysis [93] concluded that the device could operate with reversible efficiency in

the quasi-static limit which implies a vanishing output power. Based on this analysis, we shall

also assume a strong coupling between the fluxes, i.e., there is no heat leakage between the heat

baths (see [94–96] for contrasting views).

In this chapter, we focus on the performance of FS ratchet at MP in the regime where

thermal energy of a bath is much higher than the internal energy scale excited by the bath. We

highlight new features of the device in this regime, not discussed earlier in literature. We note

that it is not possible to optimize power—simultaneously over both internal scales—within the

linear regime. However, a two-parameter optimization is possible if one extends the operational

domain to non-linear approximation. Interestingly, one is able to then recover EMP that retains

the same universality up to second order as for the EMP of the original problem, Eq. (2.10)

below. We then impose some simple constraints over the internal energy scales, such that the

optimization of power over a single parameter can be performed using the linear model. These

constrained optimization problems yield some well-known forms of EMP found in other finite-

time models. Moreover, under each of these constraints, it is possible to give an effective

finite-time thermodynamic model for the FS engine.

The plan of the chapter is as follows. In Section 2.2, we briefly describe the model of

FS engine and discuss its optimal performance. In Section 2.3, two-parameter optimization of
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ratchet engine in high temperatures limit is discussed. Section 2.4 is devoted to optimization

of the ratchet in linear regime, subject to constraints. In Section 2.5, FS engine is mapped

to effective thermodynamic models depending on the constraints used in the previous section.

Section 2.6 is devoted to a discussion of the results, with concluding remarks.

2.2 Feynman’s ratchet and pawl model as a heat engine

Let ε2 be the amount of energy required to overcome the elastic energy of the spring. Let in each

step, the wheel rotate an angle φ and the torque induced by the weight be Z. Then the system

requires a minimum of ε1 = ε2 +Zφ energy to lift the weight hanging from the axle. Hence the

rate of forward jumps of the ratchet is given as RF = r0e
−ε1/kBT1 , where r0 is a rate constant

and kB is Boltzmann’s constant, which we set equal to unity. In other words, temperature has

the dimensions of energy. A part of the energy ε1 is converted into work Zφ, and other is

transferred as heat ε2 to the cold thermal bath through the interaction between the ratchet and

the pawl. Similarly, the rate of the backward jumps is RB = r0e
−ε2/T2 . One may regard Zφ and

−Zφ as the work done by and on the system, respectively. If RF > RB, this system works as

two-reservoir heat engine. Then, the rates of heat related to the hot and the cold reservoirs, are

given as

Q̇1 = r0ε1
(
e−ε1/T1 − e−ε2/T2

)
> 0, (2.1)

Q̇2 = r0ε2
(
e−ε1/T1 − e−ε2/T2

)
> 0. (2.2)

According to the model, ε1 > ε2, and so positivity of the fluxes implies: ε2/T2 > ε1/T1. The

power output, P = Q̇1 − Q̇2, is given by:

P = r0(ε1 − ε2)
(
e−ε1/T1 − e−ε2/T2

)
. (2.3)
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2.2.1 Performance of the engine in the presence of heat leaks

Velasco and co-workers made a careful study of FS engine working in the MP and maximum

efficiency regime with heat leakage using the methods of FTT [17]. The form of heat leaks

between the reservoirs is assumed to obey Fourier’s law:

Q̇L = σ(Th − Tc), (2.4)

Where σ is the thermal conductance. In the presence of the heat leaks, the efficiency of the

engine is given by

η =
P

Q̇1 + Q̇L

. (2.5)

For different values of σ, they plotted power versus efficiency curves and and obtained the

closed loop curves, typical of real irreversible heat engines operating in finite-time. Further

assuming the high temperature regime and optimizing power output over the single parameter

ε1, they obtained EMP as η′FS = ηC/(2− ηC).

2.2.2 Ratchet engine at maximum power

Going one step further, Tu carried out a two parameter optimization of the power output of

the engine over the internal energy scales ε1 and ε2 in the absence of heat leaks. In this case,

efficiency of the engine is given by

η =
P

Q̇1

= 1− ε2
ε1
≤ ηC . (2.6)

For given bath temperatures, optimization of the power output with respect to ε1 and ε2, yields

the following solution [19]

ε∗1 = T1η
−1
C [ηC − (1− ηC) log(1− ηC)] , (2.7)

ε∗2 = T1η
−1
C (1− ηC)(ηC − log(1− ηC)), (2.8)
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with the expressions for the optimal power and EMP [19] as given by

P ∗ = roe
−1T1η

2
C(1− ηC)(1−ηC)/ηC , (2.9)

ηFS =
η2
C

ηC − (1− ηC) ln (1− ηC)
. (2.10)

Notably, ηFS depends only on the ratio of the reservoir temperatures. Further, the above expres-

sion of efficiency also holds for EMPs of a two-level atomic system [97] and a simple model

of classical particle transport [98]. ηFS can be expanded in Taylor’s series, near equilibrium, to

give

ηFS =
ηC
2

+
η2
C

8
+

7η3
C

96
+O(η4

C). (2.11)

Clearly, the EMP of the ratchet engine shows universal features of efficiency upto second order

term in ηC [61]. In the next section, we will show that this universality of efficiency also appears

in case of optimization of FS engine in the high temperature regime.

2.3 Ratchet in high temperatures regime

In the following, we are interested in the regime, where the energies associated with forward

and backward jumps are very small compared to the temperatures of reservoirs. Therefore, we

can expand e−ε1/T1(e−ε2/T2) as Taylor series, say, up to first or second order. First, we look for a

possible two-parameter power optimization in this regime. Keeping terms up to the first order,

we have the approximate expression for power as

P = r0(ε1 − ε2)

(
ε2
T2

− ε1
T1

)
. (2.12)

We address the above approximation as the linear model [17]. Similarities between the above

model and a thermoelectric generator were recently discussed in Ref. [95].

Now, a two-parameter optimization of the above expression, over ε1 and ε2, yields the trivial

solution ε1 = 0 and ε2 = 0, which is clearly not a meaningful result. Therefore, we go a step
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further and retain terms up to second order in the exponentials, then power is given by

P = r0(ε1 − ε2)

(
ε2
T2

− ε1
T1

+
ε21

2T 2
1

− ε22
2T 2

2

)
. (2.13)

Now, optimizing the above expression over ε1 and ε2, we get following solution (see Appendix

A)

ε∗1hot = T1
(4− 3ηC)

3(2− ηC)
, ε∗2hot = T1

(1− ηC)(4− ηC)

3(2− ηC)
. (2.14)

It is clear that the expression for efficiency remains as in Eq. (2.6). Thus, we obtain the expres-

sions for optimal power and EMP in the high temperatures regime

P ∗hot =
2roT1η

2
C

27(2− ηC)
, (2.15)

η∗hot =
2− ηC
4− 3ηC

ηC . (2.16)

If we expand η∗hot in Taylor series near equilibrium, we obtain

η∗hot =
ηC
2

+
η2
C

8
+

9η3
C

96
+O(η4

C). (2.17)

The above series shows that the universality of EMP up to second order [19, 61] survives in the

high temperatures limit, using a non-linear approximation in the power output. The above form

of efficiency is compared with Eq. (2.10) in Figure 2.1, where we also compare the optimal

power, Eq. (2.9), with the optimal power in high temperatures non-linear regime, Eq. (2.15).

It is to be noted that whereas the latter approximation overestimates EMP, the power output is

underestimated as compared to optimal power.
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Figure 2.1: The efficiency of FS ratchet plotted against ηC . Dashed curve and upper solid curves
correspond to equations (2.10) and (2.16) respectively, with the corresponding optimal power
versus ηC , using ro = 1 and T1 = 600.

2.4 Linear regime with constraints

In this section, we impose simple constraints on the energy scales of the ratchet system in the

linear regime. This allows us to define a single-parameter optimization problem for power

output, Eq. (2.12). These constraints may be interpreted as a form of control on the design of

the device. We are interested in the form of EMP under the following constraints [66].

(a) ε1 = k1 > 0. Then optimizing power (Eq. (2.12)) with respect to ε2, we get ε∗2 =

k1(2− ηC)/2 and EMP as

ηε1 =
ηC
2
, (2.18)

a universal expression independent of the chosen k1 value.

(b) On the other hand, consider setting ε2 = k2 > 0. On optimization of power, we obtain

ε∗1 = k2(2− ηC)/(2− 2ηC), and EMP as

ηε2 =
ηC

2− ηC
, (2.19)

which is again a universal formula depending only on the ratio of bath temperatures, but inde-

pendent of the chosen constant k2. Of course, the expressions for optimal power do depend on
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the chosen constant.

(c) A more general constraint γε1 + (1 − γ)ε2 = k3 where 0 ≤ γ ≤ 1. Here, the constraint

involves two fixed parameters. Optimization of power subject to this constraint, leads to the

following optimal values:

ε∗1 =
k3(2− (1− γ)ηC)

2(1− (1− γ)ηC)
, ε∗2 =

k3(2− (2− γ)ηC)

2(1− (1− γ)ηC)
(2.20)

and the EMP is Schmiedl-Seifert (SS) efficiency [41]

ηSS =
ηC

2− (1− γ)ηC
. (2.21)

Clearly, (a) and (b) are special cases, with γ = 1 and γ = 0, respectively. Here, EMP is

independent of k3, but depends on γ. The above form has been obtained in Refs. [1, 41, 67, 99–

101], where the parameter γ may be defined, for example, in terms of the ratio of the dissipation

constants or thermal conductivities of the thermal contacts [1, 99].

(d) If the constraint ε1ε2 = k4 is imposed, the optimal power is obtained at CA efficiency [10]:

ηCA = 1−
√

1− ηC , (2.22)

at optimal values of ε1 and ε2:

ε∗1 =
√
k4(1− ηC)1/4, ε∗2 =

√
k4

(1− ηC)1/4
. (2.23)

2.5 Mapping to effective thermodynamic model

The expressions for EMP, obtained in the above, are also encountered in many thermodynamic

models based on different assumptions [1, 41, 99–101]. They are obtained in finite-time as well

as quasi-static models [67, 102] of heat engines. Thus, it is natural to enquire about the ther-

modynamic underpinning of the constrained FS model. In this section, we show that FS engine
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in the linear regime can be mapped to a specific endoreversible model, under the constraints

described above. In the endoreversible approximation [10, 26, 103], the work-extracting part of

the engine operates in a reversible way, and any irreversibility in the cycle is attributed solely to

thermal contacts with the reservoirs due to finite conductance of the heat exchangers.
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Figure 2.2: Effective models of FS engine. Here α, β and δ are coefficients of heat conductance.
(a) Engine with resistance to incoming heat flux only; (b) Engine with resistance to outgoing
heat flux only; (c) Two coupled reversible engines where the heat flow between the engines
experiences resistance.

(a) In the linear regime, the heat flux entering from the hot reservoir Q̇1, Eq. (3.1), is given by

Q̇1 = r0ε1

(
ε2
T2

− ε1
T1

)
. (2.24)

≡ r0ε
2
1

(
1− η
T2

− 1

T1

)
. (2.25)

Here, we identify T ′1 = T2/(1 − η) as an effective temperature, satisfying T2 < T ′1 < T1.

Therefore, when we impose ε1 = constant, the heat flux satisfies Q̇1 ∝ (1/T ′1 − 1/T1), i.e.

the flux is proportional to thermodynamic force as in linear irreversible thermodynamics (see

Figure 2.2(a)). Then, it is assumed that the power is extracted between the temperatures T ′1 and
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T2, with reversible efficiency given by η = 1− T2/T
′
1. Therefore,

P = ηQ̇1 = r0ηε
2
1

(
1− η
T2

− 1

T1

)
. (2.26)

Optimizing power with respect to η (∂P/∂η = 0), we can obtain EMP as in Eq. (3.53).

(b) Similarly, in terms of ε2, the heat flux into the cold bath can be written as

Q̇2 = r0ε
2
2

(
1

T2

− 1

T1(1− η)

)
≡ r0ε

2
2

(
1

T2

− 1

T ′2

)
,

where T ′2 = T1(1 − η) is an effective temperature, lying between values T1 and T2. Thus, for

a fixed value of ε2, the heat flux Q̇2 is proportional to (1/T2 − 1/T ′2), which plays the role of

thermodynamic force (see Figure 2.2(b)). In this case, power is extracted at Carnot efficiency

between T1 and T ′2: η = 1− T ′2/T1. Therefore,

P =
η

1− η
Q̇2 = r0ε

2
2

η

1− η

(
1

T2

− 1

T1(1− η)

)
. (2.27)

Optimizing the above equation with respect to η, we obtain Eq. (3.54).

(c) For the linear constraint γε1 + (1 − γ)ε2 = k3, the effective thermodynamic model is

more interesting. In terms of η, this constraint equation can be written as

ε1 =
k3

γ + (1− γ)(1− η)
≡ k3

A
. (2.28)

Then the expression for power becomes

P = r0k
2
3

η

A2

(
1− η
T2

− 1

T1

)
, (2.29)
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which can be rewritten as follows:

P = r0k
2
3

η

A

(
1

T̃2

− 1

T̃1

)
, (2.30)

where the effective temperatures are defined as

T̃1 = T1A, T̃2 =
T2A

1− η
. (2.31)

Now we show that FS system in the linear regime, and under the general constraint, is

equivalent to a system of two coupled Carnot engines in which heat flux leaving the first engine

(q̇1), serves as input heat flux for the second engine, through a finite heat conductance (see

Figure 2.2(c)). Thus consider the power output from the first engine:

P1 =
η1

1− η1

q̇1, (2.32)

where η1 is the reversible efficiency of engine 1 working between T1 and T̃1:

η1 = 1− T̃1

T1

= 1− A, (2.33)

and

q̇1 = r0k
2
3

(
1

T̃2

− 1

T̃1

)
, (2.34)

is the heat flux leaving engine 1. Thus r0k
2
3 ≡ δ is the heat transfer coefficient of the heat

exchanger connecting engines 1 and 2. So, we can rewrite Eq. (5.5) as

P1 = r0k
2
3

1− A
A

(
1

T̃2

− 1

T̃1

)
. (2.35)
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Now, engine 2 operates at Carnot efficiency η2 between temperatures T̃2 and T2:

η2 = 1− T2

T̃2

= 1− 1− η
A

, (2.36)

with the input heat flux as q̇1. Hence, power of engine 2, P2 = η2q̇1 can be written as

P2 = r0k
2
3

(
1− 1− η

A

)(
1

T̃2

− 1

T̃1

)
. (2.37)

Adding equations (2.35) and (2.37), we get

P1 + P2 = P, (2.38)

which is the total power, Eq. (2.30). Alternately, we can write P1 = (1 − γ)P and P2 = γP .

Optimizing P with respect to η, we obtain Eq. (2.21). It is clear that the maximum of P1 and

P2 is also reached at the same value of η as of P . Thus optimality of P for the overall engine

implies optimal power output of the sub-engines.

Now, the values γ = 0 and γ = 1 correspond to the special cases (a) and (b), respectively.

Using A = γ + (1− γ)(1− η), we can write

η1 = (1− γ)η, η2 =
γη

1− η + ηγ
. (2.39)

Also, the manner in which the two sub-engines are coupled, implies that the efficiencies of the

sub-engines are related to the overall efficiency as: η = 1− (1− η1)(1− η2).

Finally, using Eq. (2.21), the EMPs for engine 1 and 2 are given by

η∗1 =
(1− γ)ηC

2− (1− γ)ηC
, η∗2 =

γηC
2− 2(1− γ)ηC

. (2.40)

34



(d) For the constraint ε1ε2 = k4, Eq. (2.12) for power becomes simplified as

P = r0k4η

(
1

T2

− 1

T1(1− η)

)
. (2.41)

≡ r0k4
η√

1− η

(
1

T̄2

− 1

T̄1

)
, (2.42)

where we have defined

T̄1 = T1

√
1− η, T̄2 =

T2√
1− η

, (2.43)

as the effective temperatures. Further, it is useful to decompose η/
√

1− η as follows:

η√
1− η

=
1− (1− η)√

1− η
=

1√
1− η

−
√

1− η. (2.44)

Thus, we can express Eq. (2.42) in the following form

P = r0k4

(
1√

1− η
− 1

)(
1

T̄2

− 1

T̄1

)
+ r0k4(1−

√
1− η)

(
1

T̄2

− 1

T̄1

)
, (2.45)

which can be rewritten as

P =
η′1

1− η′1
q̇′1 + η′2 q̇

′
1 ≡ P1 + P2, (2.46)

where η′1(η′2) is Carnot efficiency of engine 1(2) operating between the temperatures T1(T̄2) and

T̄1(T2), defined as

η′1 = 1− T̄1

T1

= 1−
√

1− η, (2.47)

η′2 = 1− T2

T̄2

= 1−
√

1− η, (2.48)

and

q̇′1 = r0k4

(
1

T̄2

− 1

T̄1

)
(2.49)
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is the heat flux leaving engine 1 and entering engine 2 (see Figure 2.3(a)). Here r0k4 is heat

transfer coefficient of the heat exchanger connecting engines 1 and 2. We note that engine 1

and engine 2 deliver power at same efficiency. Then, the expressions for η′1 and η′2, at optimal

power, are given by:

η′∗1 = η′∗2 = 1− (1− ηC)1/4. (2.50)
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Figure 2.3: Two different thermodynamic models of FS ratchet for the constraint ε1ε2 = k4. (a)
Two Carnot engines connected by thermal conductance δ′ = r0k4. (b) Carnot engine subjected
to finite thermal conductance β′ for the outgoing heat flux obeying Newton’s law.

2.6 Discussion and Summary

Our choice of constraints is motivated by the fact that both ε1 and ε2 are the control parameters

of the ratchet system. It is possible to tune either of them to obtain a desired performance of

the engine. In other words, energy constraints can be imposed by setting a design goal. On the

other hand, it is not straightforward to appreciate the nature of control with the general linear

constraint (c), though one can consider the equivalent thermodynamic model with effective

temperatures as in Eq. (2.31). For a given value of γ, we can tune these temperatures and thus

the efficiencies of engines 1 and 2. For η = 0, we have T̃1 = T1 and T̃2 = T2. In the reversible

limit, when η = ηC , we have T̃1 = T̃2 = γT1 + (1− γ)T2, see Figure 2.4. From Eqs. (2.35) and

(2.37), it is also clear that the power vanishes as T̃1 → T̃2. Similar considerations can be made
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Figure 2.4: Effective temperatures T̃1(T̃2) with constraint (c), as plotted against the efficiency
of the ratchet engine. Here T1 = 10, T2 = 4 and ηC = 0.6. The upper curve represents the
effective temperature of engine 1 and the lower curve represents the effective temperature of
engine 2.

regarding the control of the effective temperatures in the case of constraint (d).

However, note that the proposed thermodynamic model for the constrained FS system may

not be unique. This may be shown by considering the case (d). We have mapped this model

to two coupled reversible engines connected by a heat flow with an inverse-temperature law. It

has been shown that the EMP in this model is CA-efficiency. Usually, CA-value is associated

with EMP for endoreversible models with Newtonian heat flows, i.e. heat flux is proportional

to the difference of temperatures between which the heat flow takes place [10, 26]. In fact, it is

possible to imagine an alternate model as follows (see Figure 2.3(b)). By rewriting the power

output, we get

P =
r0k4

T1T2

η

1− η
(T1(1− η)− T2)

≡ k′
η

1− η
(T̄ ′2 − T2), (2.51)

where we define T̄ ′2 = T1(1 − η) as the effective temperature and k′ = r0k4/T1T2 as the

coefficient of the exiting heat flux Q̇2 = k′(T̄ ′2 − T2), between temperatures T̄ ′2 and T2.

Concluding, we have considered the optimization of output power in FS ratchet in the high
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temperatures regime, when the internal energy scales are much smaller in comparison to bath

temperatures. A two-parameter optimization is possible if one includes the quadratic terms in

the expansion of the exponentials. For the linear model, we have considered simple constraints

on the internal scales, and obtained some well-known forms of EMP, such as SS-efficiency and

CA-efficiency. The reason for these similarities is appreciated by showing that the constrained

FS system can be mapped to a finite-time endoreversible model with appropriately defined heat

flows, using effective temperatures. Finally, due to a formal analogy between FS system in the

linear regime and thermoelectric models [95], and also specific types of quantum heat engines

in the hot temperatures regime [66], the present analysis can provide a useful perspective on a

broader class of energy conversion systems.
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Chapter 3

Optimization of Feynman’s model with

two different trade-off objective functions

and estimation with prior information

3.1 Introduction

A standard method of optimization assumes a complete knowledge of the model, in the sense

that the variables over which optimization is performed, such as intrinsic energy scales [17, 19],

or the intermediate temperatures of the working medium [104], or the times spent on the ther-

mal contacts with the reservoirs [1], take on definite values; one just has to tune them to specific

value(s) in order to optimize the objective function. Recently, one of the authors and coworkers

[82, 83, 89, 91], introduced a novel method of optimization, by which some variables can be

assigned values, only in a probabilistic sense. This approach is based on interpreting the lim-

ited prior information about the system in the sense of subjective probability [84, 105], and a

prior distribution quantifies the uncertainty in these parameters. Then an averaging procedure

is performed on the target function using this probability distribution so as to eliminate these

parameters. Following this approach, CA-efficiency for engine as well as COP of the refrig-
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erator [20, 90], have been reproduced. Using the inference based prior information approach,

many other significant results of FTT have been reproduced and universal nature of efficiency

has also been addressed using this approach.

Thus, the latter approach provides an effective way of analyzing the performance of energy

conversion systems. Here, the limited information can be interpreted in the sense of a limited

control of the observer over the system. So, this approach also points towards an entirely dif-

ferent origin of the figures of merit at optimal performance, which are usually obtained by an

exact tuning of the variable parameters.

In this chapter, we apply and compare the above mentioned two approaches for opti-

mization: the standard one-parameter or two-parameter optimization, and the alternate, one-

parameter optimization which also involves estimation based on prior information. We use

Feynman’s ratchet model [93, 94] as the paradigmatic example for our investigation. We study

the model for both engine and refrigerator modes.

For the heat engine mode, we use two different trade-off objective functions:EF [44] and

EP function (Pη) [47, 48].EF can also be used to analyze the performance of Feynman’s model

operating as a refrigerator. Complimentary to EP function, we also use χ function to study the

refrigerator mode. It is defined as: χ = ζQ̇2, where ζ is COP of the refrigerator and Q̇2 is the

rate of refrigeration. Optimization of χ-criterion represents a compromise between the COP

and rate of refrigeration of the refrigerator.

The chapter is organized as follows. In Section 3.2, we describe the model of Feynman’s

ratchet as heat engine and discuss its optimal performance with ecological criterion. In Sub-

section 3.2.1, two parameter optimization of the ratchet is carried out. In Subsection 3.2.2, the

approach based on prior information is applied to the case when the efficiency of the engine is

fixed, but one of the internal energy scales is uncertain. The analysis is extended to the refrigera-

tor mode in Section 3.3 where we discuss performance based on two-parameter optimization of

ecological criterion as well as the estimation based on prior information. In Section 3.4, we op-

timize the performance of the engine operating at maximum EP, by carrying out two parameter
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optimization for the general case as well as one parameter optimization in the high temperature

limit. Section 3.5 is devoted to the prior information analysis in which we reproduce the results

obtained in the last section. In Section 3.6, we repeat the analysis performed in Sections 3.4

and 3.5, to study the refrigerator mode operating at maximum χ function. The final Section 3.7

is devoted to results and conclusions.

3.2 Optimal performance of the heat engine

The model of Feynman’s ratchet [93] consists of a vane, immersed in a hot reservoir at temper-

ature T1, and connected through an axle with a ratchet in contact with a cold reservoir at T2.

The ratchet is restricted to rotate in one direction due to a pawl which in turn is connected to a

spring. Let ε2 be the amount of energy to overcome the elastic energy of the spring. Let in each

step, the wheel rotate an angle δ and the torque induced by the weight be Z. Then the system

requires a minimum of ε1 = ε2 + Zδ energy to lift the weight hanging from the axle. Hence

the rate of forward jumps of the ratchet is given as RF = r0e
−ε1/T1 , where r0 is a rate constant

and we have set Boltzmann’s constant kB = 1. In other words, temperature has the dimensions

of energy. Similarly, the rate of the backward jumps is RB = r0e
−ε2/T2 . One may regard Zδ

and −Zδ as the work done by and on the system, respectively. Then, the rates of heat absorbed

from the hot and the cold reservoirs, are given as

Q̇1 = r0ε1
(
e−ε1/T1 − e−ε2/T2

)
, (3.1)

Q̇2 = r0ε2
(
e−ε1/T1 − e−ε2/T2

)
. (3.2)

The power output and efficiency of the engine are given by following two equations, respec-

tively

P = Q̇1 − Q̇2 = r0(ε1 − ε2)
(
e−ε1/T1 − e−ε2/T2

)
, (3.3)

η =
P

Q̇1

= 1− ε2
ε1
. (3.4)
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The rate of total entropy production in this energy conversion is:

Ṡtot = −Q̇1

T1

+
Q̇2

T2

. (3.5)

Then the ecological criterion has been defined as [44]:

E = P − T2Ṡtot. (3.6)

3.2.1 Two parameter ecological optimization of heat engine

Using Eqs. (3.1)-(3.6), the EF E can be written as:

E = 2P − ηCQ̇1 = ro
(
e−ε1/T1 − e−ε2/T2

)
[2(ε1 − ε2)− ηCε1]. (3.7)

On optimizing E with respect to ε1 and ε2, i.e., setting ∂E/∂ε1 = 0 and ∂E/∂ε2 = 0, we get

the following two equations respectively,

T1(2− ηC)
(
e−ε1/T1 − e−ε2/T2

)
= e−ε1/T1 [2(ε1 − ε2)− ηCε1], (3.8)

2T2

(
e−ε1/T1 − e−ε2/T2

)
= e−ε2/T2 [2(ε1 − ε2)− ηCε1]. (3.9)

Upon dividing Eq. (3.8) by Eq. (3.9), we can obtain

ε2
T2

− ε1
T1

= ln

[
(2− ηC)

2(1− ηC)

]
≡ k. (3.10)

Eliminating eε2/T2−ε1/T1 from Eq. (3.9) by using Eq. (3.10), we get

T2ηC = (1− ηC)[2(ε1 − ε2)− ηCε1]. (3.11)
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The solution of Eqs. (3.10) and (3.11) is

ε∗1 =
T2[ηC + 2k(1− ηC)]

ηC(1− ηC)
, ε∗2 =

T2[ηC + (2− ηC)k]

ηC
. (3.12)

Substituting from Eq. (3.12) into Eq. (3.4), we obtain the efficiency at maximum ecological

function (EMEF)

η∗ =
ηC + (1− ηC)k

ηC + 2(1− ηC)k
ηC . (3.13)

Close to equilibrium (small values of ηC), η∗ behaves as follows

η∗ =
3ηC
4

+
η2
C

32
+

19η3
C

768
+O(η4

C). (3.14)

Note that the above value of efficiency depends only on ηC , or the ratio of the reservoir temper-

atures. The behavior of η∗ close to equilibrium, will be discussed below. Eq. (3.13) is plotted

in Figure 3.1. Similarly, from Eq. (3.7), we obtain the maximum value of the EF

E∗ =
roT1η

2
C [2(1− ηC)]2(1−ηC)/ηC

e(2− ηC)(2−ηC)/ηC
. (3.15)

3.2.2 Prior information and estimation for heat engine

Now we consider a situation where the efficiency of the engine has some pre-specified value η,

but the energy scales (ε1, ε2) are not given to us in a priori information. Since η is known, the

problem is reduced to a single uncertain parameter, due to Eq. (3.4). One can cast the problem

either in terms of ε1 or ε2. In terms of the latter, we can write EF as

E(η, ε2) =
r0ε2

(1− η)
(2η − ηC)

(
e−ε2/(1−η)T1 − e−ε2/T2

)
. (3.16)

Based on the notion of prior information in Bayesian statistics, we assign a prior probability

distribution for ε2 in some arbitrary, but a finite range of positive values: [εmin, εmax]. Later

we consider an asymptotic range in which the analysis becomes simplified and we observe
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universal features.

Now consider two observers A and B who respectively assign a prior for ε1 and ε2. Taking

the simplifying assumption that each observer is in an equivalent state of knowledge, we can

write [20, 84, 89]

Π(ε1) = Π(ε2)

∣∣∣∣dε2dε1

∣∣∣∣ , (3.17)

where Π is the prior distribution function, taken to be of the same form for each observer. At

a fixed known value of efficiency, it implies that Π(ε2) ∝ 1/ε2. This is also well-known as

Jeffreys prior for a one-dimensional scale parameter [84, 105].

Now, we define the expected value of function E, over this prior, as

E(η) =

∫ εmax

εmin

E(η, ε2)Π(ε2)dε2

=
C

(1− η)
(2η − ηC)

∫ εmax

εmin

(
e−ε2/(1−η)T1 − e−ε2/T2

)
dε2, (3.18)

where

C = r0

[
ln

(
εmax

εmin

)]−1

. (3.19)

Upon performing the integration, we get

E(η) = CT1(2η−ηC)
(
e−εmin/(1−η)T1 − e−εmax/(1−η)T1

)
+
CT2(2η − ηC)

(1− η)

(
e−εmax/T2 − e−εmin/T2

)
.

(3.20)

We are interested in the value of the efficiency at maximum of E. Hence, on optimizing E(η)

with respect to η, we get

∂E

∂η
≡ 2T1

(
e−εmin/(1−η)T1 − e−εmax/(1−η)T1

)
+
T2(2− ηC)

(1− η)2

(
e−εmax/T2 − e−εmin/T2

)
−2η − ηC

(1− η)2

(
εmine

−εmin/(1−η)T1 − εmaxe
−εmax/(1−η)T1

)
= 0. (3.21)

Now, we consider the asymptotic limit [20, 82], in which the maximal allowed range for ε2 is

considered. In particular, we require εmax >> T1 and εmin << T2. In this limit, Eq. (3.21)
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reduces to:

2T1 −
2T2

(1− η)2
+

T2ηC
(1− η)2

= 0. (3.22)

Putting T2/T1 = 1− ηC and solving Eq. (3.22) for η, we get

η̃ = 1−
√

(1− ηC)(2− ηC)

2
. (3.23)

The above expression is identical to the one obtained by Angulo-Brown for the ecological op-

timization of an endoreversible engine [44]. Although the above expression for η̃ is different
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Figure 3.1: The EMEF obtained from two different methods, is plotted versus ηC . The dashed
curve represents the efficiency obtained from two-parameter optimization [Eq. (3.13)]. The
solid curve is the corresponding efficiency when prior information approach is used [Eq. (3.23)].
The bottom straight line is 3ηC/4. See also Eq. (3.24).

from the one obtained via the two-parameter optimization [Eq. (3.13)], we note that, near equi-

librium, i.e., ηC close to zero,

η̃ =
3ηC
4

+
η2
C

32
+

3η3
C

128
+O(η4

C), (3.24)

which shows the same universality upto second order in ηC [51, 54], as Eq.(3.14). The in-

terpretation of this result viz-a-viz the result from exact optimization is the following. If the

experimentalist is unable to tune an internal parameter, or has a limited control over it, then it

makes sense to consider an expected value of E, suitably averaged over the uncertain parame-
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ter. Then it has been observed in the above that this average value, E, takes its maximum value

at a certain efficiency η̃, which is also the one obtained in purely thermodynamic models. We

observe that the behavior of η̃ is very similar to η∗, as a function of ηC close to equilibrium.

3.3 Optimal performance as a refrigerator

Ratchet and pawl system can also be operated as a refrigerator [20, 45, 106, 107]. It is analogous

to Büttiker-Landauer model of particle transport [108, 109]. In this section, we consider the

function of Feynman’s ratchet as a refrigerator [20, 106]. We will optimize the corresponding

ecological criterion [53]:

E = Q̇2 − ζCT1Ṡtot. (3.25)

where Ṡtot is the rate of entropy production and ζC = T2/(T1 − T2) is Carnot COP. The rate of

refrigeration and rate of heat added to the hot reservoir are given respectively as:

Q̇2 = r0ε2
(
e−ε2/T2 − e−ε1/T1

)
, (3.26)

Q̇1 = r0ε1
(
e−ε2/T2 − e−ε1/T1

)
. (3.27)

Further, for refrigerator, rate of entropy production and COP are given by:

Ṡtot =
Q̇1

T1

− Q̇2

T2

, (3.28)

ζ =
Q̇2

Q̇1 − Q̇2

=
ε2

ε1 − ε2
. (3.29)

3.3.1 Two parameter ecological optimization for the refrigerator

Using Eqs. (3.26)-(3.28), the EF in Eq. (3.25) can be written as

E = ro
(
e−ε2/T2 − e−ε1/T1

)
[(2 + ζC)ε2 − ζCε1]. (3.30)

46



On optimizing E with respect to ε1 and ε2, that is, setting ∂E/∂ε1 = 0 and ∂E/∂ε2 = 0, we get

following two equations respectively,

T1ζC
(
e−ε2/T2 − e−ε1/T1

)
= e−ε1/T1 [(2 + ζC)ε2 − ζCε1], (3.31)

T2(2 + ζC)
(
e−ε2/T2 − e−ε1/T1

)
= e−ε2/T2 [(2 + ζC)ε2 − ζCε1]. (3.32)

Comparing Eqs. (3.31) and (3.32), we can obtain

ε2
T2

− ε1
T1

= ln

(
1 + ζC
2 + ζC

)
≡ k′. (3.33)

Using Eqs. (3.32) and (3.33), we get

(2 + ζC)ε2 − ζCε1 = T2. (3.34)

Finally, solving the Eqs. (3.33) and (3.34), we obtain optimal values of ε∗1 and ε∗2:

ε∗1 =
(1 + ζC)(1− (2 + ζC)k′)

ζC
; ε∗2 = T2[1− (1 + ζC)k′]. (3.35)

Using Eq. (3.35) in (3.29), we derive COP at the maximum EF

ζ∗ =
1− (1 + ζC)k′

1− 2(1 + ζC)k′
ζC . (3.36)

We can write series expansion of ζ∗ with respect to ζC as follows

ζ∗

ζC
=

2

3
+

1

18ζC
− 2

27ζ2
C

+O

(
1

ζC

)3

. (3.37)

Substituting Eq. (3.35) in (3.30), we get the maximum EF

E =
roT2(1 + ζC)1+ζC

e(2 + ζC)2+ζC
. (3.38)
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3.3.2 Prior information and estimation for refrigerator

Similar to the case of heat engine, we now obtain, using the prior based approach, the COP at

optimal performance of Feynman’s ratchet as refrigerator. Again, we suppose that the figure of

merit ζ is fixed at some value and ε2 is uncertain, within the range [εmin, εmax]. Then Jeffreys

prior for ε2 can be argued, similar to Eq. (3.17). In terms of ζ and one of the scales say, ε2, the

ecological-criterion E = Q̇2(2 + ζC)− ζCQ̇1, is given by

E = r0

(
2− ζC

ζ

)
ε2
(
e−ε2/T2 − e−ε2(1+ζ)/ζT1

)
. (3.39)

Then, we define the expected value of E as

E(ζ) =

∫ εmax

εmin

E(ζ, ε2)Π(ε2)dε2 (3.40)

= C

(
2− ζC

ζ

)∫ εmax

εmin

(
e−ε2/T2 − e−ε2(1+ζ)/ζT1

)
dε2, (3.41)

where C is given by Eq. (3.19). Upon integrating the above equation, we get

E(ζ) = CT2

(
2− ζC

ζ

)(
e−εmin/T2 − e−εmax/T2

)
+CT1

(
2− ζC

ζ

)
ζ

(1 + ζ)

(
e−εmax(1+ζ)/ζT1 − e−εmin(1+ζ)/ζT1

)
. (3.42)

Then the maximum of E with respect to ζ , is evaluated as

∂E
∂ζ

≡ ζCT2

ζ2

(
e−εmin/T2 − e−εmax/T2

)
+

(2 + ζC)T1

(1 + ζ)2

(
e−εmax(1+ζ)/ζT1 − e−εmin(1+ζ)/ζT1

)
+

2ζ − ζC
ζ2(1 + ζ)

(
εmaxe

−εmax(1+ζ)/ζT1 − εmine
−εmin(1+ζ)/ζT1

)
= 0 (3.43)

In the asymptotic limit mentioned earlier, the above equation reduces to

ζCT2

ζ2
=

(2 + ζC)T1

(1 + ζ)2
. (3.44)
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Figure 3.2: The COP (relative to ζC) at maximum EF, obtained from two different methods,
is plotted versus 1/ζC . The dashed curve represents the COP obtained from two parameter
optimization [Eq. (3.36)]. The solid curve is the corresponding COP when prior information
approach is used [Eq. (3.45)].

Putting T1/T2 = (1 + ζC)/ζC and solving for ζ , we get

ζ̃ =

(
1 + ζC
ζC

√
2 + ζC
1 + ζC

− 1

)−1

. (3.45)

This is the same equation as obtained by Yan [53] when we take the environment temperature

equal to the temperature of the hot reservoir. In near-equilibrium regime, the Carnot COP ζC ,

as well as ζ∗ become large in magnitude. One can then write the series expansion for ζ∗ relative

to ζC as follows:
ζ∗

ζC
=

2

3
+

1

18ζC
− 17

216ζ2
C

+O
(

1

ζC

)3

, (3.46)

which is similar to the Eq. (3.37) upto first two terms. In Figure 3.2, we compare the expressions

from Eqs. (3.36) and (3.45). Before closing, we point out that upon performing the same

analysis in terms of ε1 as the uncertain scale, we obtain a similar behavior in the asymptotic

range of values, and the same figures of merit, as η̃ and ζ̃ , are obtained with the choice of

Jeffreys’ prior.

49



3.4 Ratchet engine at maximum efficient power

3.4.1 Two parameter optimization

In this section, we study the optimization of EP function which is product of efficiency (η) and

power (P ) of the heat engine. Using Eqs. (3.3) and (3.4), it can be written as

Pη = ηP =
(ε1 − ε2)2

ε1

(
e−ε1/T1 − e−ε2/T2

)
. (3.47)

Optimizing Eq. (3.47) with respect to ε1 and ε2, we get following equations:

eε1/T1−ε2/T2 = 1− ε1(ε1 − ε2)

T1(ε1 + ε2)
, (3.48)

eε1/T1−ε2/T2 =
2T2

ε1 − ε2 + 2T2

. (3.49)

These two equations cannot be solved analytically for ε1 and ε2. However combining Eqs. (3.4),

(3.48) and (3.49), we can obtain following transcendental equation,

(2ηC − η)(η − ηC)

η(1− ηC)
= ln

[
2(1− ηC)

2− η

]
, (3.50)

from which it is clear that efficiency is independent of system parameters and depends on ηC

only. Eq. (3.50) is plotted in Figure 3.3 (dashed curve). Since an analytic solution of this

equation is not possible, we first look for perturbative solutions for ηC near equilibrium, by

substituting η = a1ηC + a2η
2
C + a3η

3
C + O(η4

C) in Eq. (3.50) and expanding the resulting

equation in ηC . The coefficients a1, a2 and a3 are found recursively by solving order by order in

ηC . We find the first order term as a1 = 2/3. At second order and third order, we find a2 = 2/27

and a3 = 11/243, respectively. So near equilibrium, EMEP behaves as follows

η′∗ =
2ηC
3

+
2η2

C

27
+

11η3
C

243
+O(η4

C). (3.51)
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The first two terms in the above equation were also derived for the EMEP of a LD heat engine

[60] and a nonlinear irreversible heat engine [63], both working in strong-coupling limit under

the condition of symmetric dissipation. This confirms the assertion of Esposito and co-authors

that for a strong-coupling system, first two terms in ηC are of universal nature and third term is

model dependent [61, 63].
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Figure 3.3: The EMEP obtained under two different optimization schemes, is plotted versus ηC .
The dashed (upper) and solid (lower) curves represent Eqs. (3.50) and (3.60), respectively.

3.4.2 One parameter optimization in high temperature limit

In order to get analytical expressions for EMEP, we will study Feynman ratchet in high tem-

perature regime [17, 110]. In this regime, energies associated with forward and backward

jumps are very small compared to the temperatures of reservoirs. Therefore we can expand

e−ε1/T1(e−ε2/T2) upto first order in temperature only. Then the form of the EP is

Pη =
(ε1 − ε2)2

ε1

(
ε2
T2

− ε1
T1

)
(3.52)
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Optimization of Pη with respect to ε1 and ε2 yields the solution ε1 = 0 and ε2 = 0, which is

clearly not a useful result. Therefore, we impose some simple constraints on the internal energy

scales of the system to define a one parameter optimization problem for linear model of ratchet

and pawl system. We will consider following two cases:

(a) ε1 = k1 > 0. Then optimizing EP with respect to ε2, we get

ηε1 =
2

3
ηC , (3.53)

which is the lower limit on efficiency for the LD heat engines operating at MEP [60, 71].

(b) On the other hand by fixing ε2 = k2, we obtain

ηε2 =
1

2
(3−

√
9− 8ηC), (3.54)

which is the upper limit on efficiency for the LD heat engines operating at MEP [60, 71].

3.5 Prior information approach

3.5.1 Engine at maximum efficient power

Now, we estimate the performance of FS engine using the prior information approach. As men-

tioned earlier, in this approach, we only have limited information about the control parameters

(here ε1 and ε2) of the system. First, we treat ε2 as the uncertain variable. Using Eq. (3.4), we

eliminate ε1 from Eq. (3.47) and recast it in terms of η and ε2.

Pη(η, ε2) =
r0ε2η

2

1− η
(
e−ε2/(1−η)T1 − e−ε2/T2

)
. (3.55)
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Jeffreys prior on ε2 : Assigning Jeffreys prior, Π(ε2) ∝ 1/ε2 , to uncertain variable ε2 and

taking average over the prior distribution, the expected value of EP is given by

Pη(η) =

∫ εmax

εmin

Pη(η, ε2)Π(ε2)dε2

=
Cη2

1− η

∫ εmax

εmin

(
e−ε2/(1−η)T1 − e−ε2/T2

)
dε2. (3.56)

Upon performing the integration, we get

Pη(η) = CT1η
2
(
e−εmin/(1−η)T1 − e−εmax/(1−η)T1

)
+
CT2η

2

1− η
(
e−εmax/T2 − e−εmin/T2

)
. (3.57)

Now, to show that the averaged models behave in thermodynamic fashion, we maximize Pη(η)

with respect to η to get following equation:

∂P

∂η
≡ 2ηT1

(
e−εmin/(1−η)T1 − e−εmax/(1−η)T1

)
− η2

(1− η)2

(
εmine

−εmin/(1−η)T1 − εmaxe
−εmax/(1−η)T1

)
−T2

(
e−εmin/T2 − e−εmax/T2

)( 2η

1− η
+

η2

(1− η)2

)
= 0. (3.58)

Now, we consider the so-called asymptotic limit as defined in Refs. [20, 82]. In this limit,

εmax >> T1 and εmin << T2. Hence Eq. (3.58) reduces to:

2ηT1 −
T2(2η − η2)

(1− η)2
= 0 (3.59)

Solving this equation in terms of ηC = 1− T2/T1, we have

η∗ = 1− 1

4
(1− ηC)

(
1 +

√
1 +

8

1− ηC

)
, (3.60)
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which can be expanded in power series in ηC to reveal universality of the first two terms in the

series,

η∗ =
2ηC
3

+
2η2

C

27
+

9η3
C

243
+O(η4

C). (3.61)

The same expression also holds for the efficiency of a LD heat engine operating at MEP under

the conditions of tight system-bath coupling and symmetric dissipation at the hot and the cold

baths. The result also holds for the EMEP of an endoreversible heat engine [48].

Alternatively, we may also treat ε1 as the uncertain parameter. Again in this case, we derive

Eq. (3.60) in the asymptotic limit.

Uniform Prior: On the other hand, when we have maximal ignorance about the likely

values of a parameter, a uniform prior density, Πu = 1/(εmax − εmin), may be assigned to the

uncertain parameter. By considering the uniform prior over the energy ε2 and repeating the

steps of above analysis, we obtain the following form of efficiency in the asymptotic limit:

ηuε2 =
1

9

(
8− 21/3K(

M +
√
M2 − 4K3

)1/3
−
(
M +

√
M2 − 4K3

)1/3

21/3

)
, (3.62)

where K = 9η2
C − 18ηC + 10 and M = 270η2

C − 540ηC + 272.

Alternatively, we may consider the uniform prior over the energy scale ε1 and in this case,

the form of efficiency is found to be

ηuε1 = 1− (1− ηC)2/3, (3.63)

Eqs. (3.62) and (3.63) can be expanded in Taylor’s series near equilibrium and we have

following two equations:

ηuε2 =
2ηC
3

+
η2
C

27
+

4η3
C

243
+O

(
η4
C

)
, (3.64)

ηuε1 =
2ηC
3

+
η2
C

9
+

4η3
C

81
+O

(
η4
C

)
. (3.65)
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Clearly the above equations contains first universal term 2ηC/3 only. Hence we conclude that

2ηC/3 term in the series expansion of EMEP can be faithfully reproduced by the expected EP

irrespective of the chosen prior. However, the second order term 2η2
C/27 follows from the use

of Jeffreys prior.

3.5.2 Prior information analysis in the high temperature regime

In this section, we use the prior information approach to study FS in the high temperature limit

and re-derive Eqs. (3.53) and (3.54).

Jeffreys prior on ε2: In Subsection 3.5.1, we derived Eq. (3.60) by averaging the EP

function over the Jeffreys prior on ε2 and then optimizing the averaged EP with respect to given

efficiency. Here, in order to derive the form of optimal efficiency, we consider high temperature

limit instead of considering asymptotic limit. In high temperature limit, εmin/T2 << 1. We

put εmax = εmin + ∆, where ∆ is considered to be a small parameter. As εmin/T2 << 1,

in Eq. (3.58), we can ignore terms containing εmin/T2 and approximate terms e−εmin/T2 and

e−εmin/(1−η)T2 as unity. The resulting equation is

η2

(1− η)2

[
∆e−∆/(1−η)T1 − T2

(
1− e−∆/T2

)]
+2ηT1

(
1− e−∆/(1−η)T1

)
− 2ηT2

1− η
(
1− e−∆/T2

)
= 0. (3.66)

Since ∆ is small, we expand the above equation upto second order in ∆ to get

(
2− η
2T2

− 1

(1− η)T1

)
∆2 = 0. (3.67)

Solving the above equation for η, we have

η+ =
1

2
(3−

√
9− 8ηC), (3.68)

which is the same efficiency as obtained in Eq. (3.54).
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Figure 3.4: The efficiency at maximum expected EP is plotted versus M (M is scaled εmax:
M = εmax/T1), for given m = εmin/T1 = 0.01, and ηC = 0.75. The upper (blue) curve is
obtained with ε2 as the uncertain variable. For small values of M , the efficiency approaches the
upper bound η+ = (3 −

√
9− 8ηC)/2. The lower (red) curve implies that ε1 is the uncertain

variable, and the efficiency approaches the lower bound 2ηC/3. For largeM values, both curves
approach η∗ = 1− (1− ηC)(1 +

√
1 + 8/(1− ηC))/4.

Jeffreys prior on ε1: In this case, the EP function can be written in terms of η and ε1 as

follows

Pη = η2ε1
(
e−ε1/T1 − e−ε1(1−η)/T1

)
. (3.69)

Integration of the above equation with respect to Jeffreys prior yields

Pη(η) = η2T1

(
e−εmin/T1 − e−εmax/T2

)
− η2T2

1− η
(
e−εmin(1−η)/T2 − e−εmax(1−η)/T2

)
(3.70)

Optimizing the above equation with respect to η, i.e. setting ∂Pη/∂η = 0, we have

∂Pη
∂η

= 2ηT1

(
e−εmin/T1 − e−εmax/T1

)
− η2

1− η
(
εmine

−εmin(1−η)/T2 − εmaxe
−εmax(1−η)/T2

)
−
(
e−εmin(1−η)/T2 − e−εmax(1−η)/T2

)
T2

(
2η

1− η
+

η2

(1− η)2

)
= 0. (3.71)
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In high temperature limit, εmin/T2 << 1, above equation reduces to

2ηT1

(
1− e−∆/T1

)
+

η2∆

1− η
e−∆(1−η)/T2

−
(
1− e−∆(1−η)/T2

)
T2

(
2η

1− η
+

η2

(1− η)2

)
= 0. (3.72)

Expanding the above equation upto second order term in ∆, we have

η(3ηT1 + 2T2 − 2T1)∆2 = 0, (3.73)

which can be solved to give

η− =
2ηC
3
. (3.74)

Again, using the prior information approach, we are able to reproduce the same form of effi-

ciency as obtained in Eq. (3.53) using the one parameter optimization of constrained FS model.

It is worth noting that the expressions η− = 2ηC/3 and η+ = (3 −
√

9− 8ηC)/2 can also

be obtained using the uniform prior over ε1 and ε2, respectively.

The above analysis is valid in the high temperature regime. To understand the general

behavior of efficiency, we numerically plot Eqs. (3.58) and (3.71) between efficiency (η) and

M ≡ εmax/T1, for a fixed small value of m ≡ εmin/T1 at given ηC (see Figure 3.4). In Figure

3.4, blue curve represents Eq. (3.58) when ε2 is uncertain parameter, and red curve represents

Eq. (3.71) for uncertain parameter ε1. At large values ofM , both curves (red and blue) approach

η∗ = 1− (1− ηC)(1 +
√

1 + 8/(1− ηC))/4.

3.6 Refrigerator at maximum χ function

3.6.1 Two parameter optimization

In section 3.3, we have studied ecological optimization of FS refrigerator. Here, we choose to

optimize the function χ = ζQ̇2, known as χ-criterion [29]. Using Eqs. (3.26) and (3.29), χ
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Figure 3.5: The COP at maximum χ function, obtained under two different optimization
schemes, is plotted versus ζC . The dashed and solid curves represent Eqs. (3.78) and (3.82),
respectively.

function can be expressed as

χ =
ε22

ε1 − ε2
(
e−ε2/T2 − e−ε1/T1

)
. (3.75)

From ∂χ/∂ε1 = 0 and ∂χ/∂ε2 = 0, we have following two equations

eε1/T1−ε2/T2 = 1 +
ε2ζC

T2ζ(1 + ζC)
, (3.76)

eε1/T1−ε2/T2 =
T2(2 + ζ)

T2(2 + ζ)− ε2
. (3.77)

Combining Eqs. (3.29), (3.76) and (3.77), we get following transcendental equation [106],

(ζC − ζ)(2ζC − ζ)

ζC(1 + ζC)ζ
= ln

[
ζC(2 + ζ)

(1 + ζC)ζ

]
, (3.78)
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which cannot be solved analytically. Eq. (3.78) is plotted in Figure 3.5 (dashed curve). The

solution can be approximated by an interpolation formula [106]

ζ̄ =
√
ζC + (0.954)2 − 0.954. (3.79)

Similar to the case of heat engine, we analyze the performance of refrigerator in the high

temperature regime to get the analytical solution.

3.6.2 One parameter optimization in high temperature regime

Analogous to the case of engine, we will carry out one parameter optimization of the linear

model of FS refrigerator, for which χ function is approximated as

χ =
ε22

ε1 − ε2

(
ε1
T1

− ε2
T2

)
. (3.80)

We consider following two cases:

(a) ε2 = k3, optimization of χ function with respect to ε1 fails to provide us optimal value of ε1

rather it implies ε2 = k3 = 0, which further implies that ζ− = 0.

(b) ε1 = k4, optimizing χ with respect to ε2, that is, setting ∂χ/∂ε2 = 0, the COP at maximum

χ function is given by

ζ+ =
1

2
(
√

9 + 8ζC − 3), (3.81)

which serves as an upper bound for the LD refrigerators [111], MNI refrigerators [112]. The

same bound can be derived for a two-level system working as a refrigerator in the high temper-

ature regime [113].
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3.6.3 Prior information approach

For refrigerator mode of FS model operating at maximum χ function, the prior information

study has already been carried out in the Ref. [20], and COP at optimal χ is found to be:

ζ∗ = ζCA =
√

1 + ζC − 1, (3.82)

which is considered to be equivalent to CA efficiency, applicable to the case of refrigerators.

Notably, ζCA =
√

1 + ζC − 1, can also be derived in the optimization of endoreversible [114],

symmetric LD [111] and MNI models of refrigerator [112].

Jeffreys prior on ε2: To estimate the performance of the refrigerator in high temperature regime

using prior information approach, we express χ in terms of ε2 and average over Jeffreys prior

for the given range [εmin, εmax] of ε2. So we have following equations for χ and average value

of χ:

χ(ζ, ε2) = r0ζε2
(
e−ε2/T2 − e−ε2(1+ζ)/ζT1

)
(3.83)

and

χ̄(ζ) =

∫ εmax

εmin

χ(ζ, ε2)Π(ε2)dε2 = C

∫ εmax

εmin

ζ
(
e−ε2/T2 − e−ε2(1+ζ)/ζT1

)
, (3.84)

Upon integrating the above equation, we get

χ̄(ζ) = CT1

[ ζT2

T1

(
e−εmin/T2 − e−εmax/T2

)
+

ζ2

(1 + ζ)

(
e−εmax(1+ζ)/ζT1 − e−εmin(1+ζ)/ζT1

) ]
(3.85)
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In the following, we focus on COP at maximal χ̄ in the high temperature limit. So the maximum

of χ̄with respect to ζ is evaluated as ∂χ̄/∂ζ = 0,

T2

T1

(
e−εmin/T2 − e−εmax/T2

)
+
ζ(ζ + 2)

(1 + ζ)2

(
e−εmax(1+ζ)/ζT1 − e−εmin(1+ζ)/ζT1

)
+

1

T1(1 + ζ)

(
εmaxe

−εmax(1+ζ)/ζT1 − εmine
−εmin(1+ζ)/ζT1

)
= 0. (3.86)

Following the same procedure as for the engine, it is not possible to find analytical expression

for COP in the high temperature limit. However, we can still guess the behavior of COP by

numerically plotting Eq. (3.86) for COP (ζ) versus M ≡ εmax/T1, by considering small value

of m ≡ εmin/T1 for a fixed ζC (see Figure 3.6). It is clear from blue curve in Figure 3.6 that for

small values of M , COP approaches lower bound ζ− = 0. Similar graph (red curve in Figure

3.6) can be plotted by treating ε1 as the uncertain variable [see Eq. (3.88)].

Jeffreys prior on ε1: The second method considers ε1 as the uncertain variable and defines

ζ+
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ζCA
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Figure 3.6: The COP at maximum expected χ function is plotted versus M for given m = 0.01,
and ζC = 1/3. The lower (blue) curve is obtained with ε2 as the uncertain variable. For small
values of M , the COP approaches the lower bound ζ− = 0. The upper (red) curve implies that
ε1 is the uncertain variable, and the COP approaches the upper bound ζ+ = (

√
9 + 8ζC)/2. For

large M values, both curves approach CA value, ζCA =
√

1 + ζC − 1 = 0.155.
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χ̄(ζ) =

∫ εmax

εmin

χ(ζ, ε1)Π(ε1)dε1. (3.87)

So the maximum of χ̄(ζ, ε1) with respect to ζ , is evaluated as ∂χ̄/∂ζ = 0,

ζ(2 + ζ)

1 + ζ

(
e−εmin/T1 − e−εmax/T1

)
− T2

T1

(
e−εminζ/(1+ζ)T2 − e−εmaxζ/(1+ζ)T2

)
− ζ

T1(1 + ζ)2

(
εmine

−εminζ/(1+ζ)T2 − εmaxe
−εmaxζ/(1+ζ)T2

)
= 0. (3.88)

Again following the approach applied in the last paragraph, upper bound on COP can be ob-

tained as,

ζ+ =
1

2
(
√

9 + 8ζC − 3), (3.89)

which we have already obtained from the exact analysis in Subsection 3.6.2.

3.7 Conclusions

We have studied optimal of performance of FS engine using the ecological criterion and effi-

cient power criterion. Our choice of the objective functions is motivated by the fact that they

represent a compromise between the power output and efficiency of the engine. We have per-

formed our analysis by recourse to two methods: i) the standard approach of two-parameter op-

timization over the two internal energy scales. We derive explicit expressions for the efficiency

and coefficient of performance at the maximum of EF. ii) We also perform an estimation over

one uncertain energy scale followed by a single-parameter optimization. The latter approach is

based on the quantification of (limited) prior information as in the Bayesian probability theory.

Here also, we are able to find exact expressions for efficiency, in some well-defined asymptotic

limit. Remarkably, we obtain the well-known expressions of FTT models where EF is opti-

mized. Further, we observe that the behavior of efficiency as predicted in the two methods are

quite similar. In fact, close to equilibrium, the corresponding expressions match upto the second

term.
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The analysis is repeated for the optimization of EP function. First, we perform a two-

parameter optimization for the general case and show that analytical solution is not possible

for this case. However, we are able to find a transcendental equation, which shows that EMEP

depends upon Carnot efficiency only. By employing perturbative solution close to equilibrium,

we confirm the presence of the first two universal terms of EMEP. Although we are not able to

obtain analytical expression for efficiency for exact two parameter optimization; by using prior

information approach, we derive the expression for the efficiency of the engine which concurs

with the efficiency of an endoreversible engine. We also carry out one parameter optimization

for the engine working in high temperature regime by constraining one of the energy scales and

obtain well known forms of efficiency. Again, by performing prior information analysis in the

high temperature limit, we are able to obtain the same forms of efficiency as obtained by exact

optimization method. The same analysis is repeated for the optimization of the refrigerator. To

this end, we want to emphasize one point. We optimize χ function to study FS refrigerator, since

two-parameter optimization of the cooling power Q̇2 is not possible in this case. Further, prior

information analysis also fails to estimate the performance of refrigerator when optimization of

average cooling power is carried out. Thus χ function is suitable figure of merit to analyze the

optimal performance of FS refrigerator.

Since, the presence of limited information may also be interpreted in the sense of limited

control over the system, the agreement of figures of merit by the two methods, suggests that an

exact knowledge of the variable parameters is not essential to infer the optimal behavior. Thus,

the present results provide a further evidence that the estimation based approach can provide

a robust and effective method to indicate the figures of merit at optimal performance of heat

devices.
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Chapter 4

Low-Dissipation Carnot-Like Heat

Engines at Maximum Efficient Power

4.1 Introduction

In 2010, complementary to Curzon-Ahlborn’s endoreversible model, a new heat engine model,

known as LD model, was proposed by Esposito and coworkers. It consists of a Carnot-like

engine with small deviation from the reversible Carnot cycle through dissipations at isothermal

branches which occur at finite time. The nature of the dissipation is incorporated in some

generic dissipative coefficients and dissipation is assumed to be proportional to the time duration

of the isotherms. For LD heat engines, they derived upper and lower bounds for the EMP of

Carnot-like heat engines. In addition, for the symmetric dissipation, they were able to reproduce

the CA result. The LD models [1, 2, 41, 52, 71, 111, 115–122] have some advantages over

the endoreversible models. It does not make use of any specific heat transfer law and also

valid beyond the linear-response regime. A good comparison of LD models and endoreversible

models is given in the Refs. [101, 123–125]. LD models are also closely related to irreversible

heat engines [64, 126]. Izumida and Okuda investigated the optimal performance of MNI heat

engines and showed that LD models can be described by MNI heat engines [64]. Going one step
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further, Sheng and Tu constructed a generic model of engine under the tight-coupling conditions

abiding by a linear constitutive relation between the generalized thermodynamic forces and

fluxes [126]. They showed that their model is equivalent to LD heat engines and obtained same

lower and upper bounds on EMP as obtained for LD engines. Further, LD models were used to

investigate the optimal performance of Carnot-like refrigerators [111, 116, 122], quantum heat

engines [40, 120, 121, 127] and for the optimization of target functions other than power output

[2, 52, 71]. Guo et. al. investigated the optimal performance of LD heat engines for different

types of heat cycles other than Carnot cycle [117].

As mentioned earlier, in order to achieve the optimal performance of an energy converter,

an appropriate objective function (or target function) must be introduced and optimized. EP

function, Pη = ηP , is such a function, which represents a trade-off between the power and

efficiency of a heat engine. In this chapter, we analyze the optimal performance of general class

of LD Carnot-like heat engines using EP function as the objective function. In Section 4.2, we

discuss model of LD heat engine undergoing Carnot cycle. In Section 4.3, we find the general

expression for EMEP and obtain lower and upper bound on the efficiency. We also discuss

universal features of EMEP in this section. Section 4.4 is devoted to the comparison of rates of

dissipation at hot and cold contacts for three different objective functions. In Section 4.5, using

a different optimization scheme, we obtain the same bounds on the EMEP as obtained for LD

heat engines. We conclude in Section 4.6 by highlighting the key results.

4.2 Model of low-dissipation Carnot engine

As in the case of usual Carnot cycle, heat cycle in our case consists of two adiabatic and two

isothermal steps. Adiabatic steps are assumed to be instantaneous and there is no entropy pro-

duction along these branches [11]. Let th and tc be the time durations of the isothermal branches

during which the system remains in contact with the hot and cold reservoirs respectively. Dur-

ing the heat exchange process with the hot (cold) bath, the change in entropy of the system can
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be split into two parts as follows [101, 115]

∆Sj = ∆Sex
j + ∆Sir

j , j = h, c (4.1)

where ∆Sex
j is change in entropy of the system due to heat exchange and ∆Sir

j accounts for

irreversible entropy production during the process. The first term isQh/Th for the heat absorbed

from the hot reservoir at temperature Th and Qc/Tc for the heat transferred to cold reservoir at

temperature Tc. In LD limit, it is assumed that irreversible entropy production ∆Sir
j during the

heat transfer step is inversely proportional to the time duration for which the system remains in

contact with the bath. Hence entropy production along the isothermal branch is given by ∆Sir
j =

Σj/tj , (j = h, c). Here Σh and Σc are dissipation coefficients, containing the information about

the irreversibilities induced in the model as we deviate away from the reversible limit. It is self

evident that the cycle approaches reversible limit as th → ∞ and tc → ∞. Thus, at hot and

cold contacts, we have respectively [52, 115]

∆Sh =
Qh

Th
+

Σh

th
, (4.2)

∆Sc = −Qc

Tc
+

Σc

tc
, (4.3)

where Qh, Qc > 0. Since after undergoing the full cycle, the system returns to its initial state,

the total entropy change of the working substance in the whole cycle is zero: ∆Sh + ∆Sc = 0.

Therefore we have ∆Sh = −∆Sc = ∆S > 0. Then the amount of heat exchanged with each

reservoir can be written as

Qh = Th

(
∆S − Σh

th

)
≡ Th(∆S − xhΣh), (4.4)

Qc = Tc

(
∆S +

Σc

tc

)
≡ Tc(∆S + xcΣc), (4.5)

where we have used xh ≡ 1/th and xc ≡ 1/tc for our convenience. The work extracted in a

cycle with time period t = tc + th is W = Qh − Qc. So the efficiency η and average output
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power P per cycle is defined as

η =
W

Qh

= 1− Qc

Qh

= 1− Tc(∆S + xcΣc)

Th(∆S − xhΣh

, (4.6)

P =
Qh −Qc

th + tc
≡ (Qh −Qc)xhxc

xc + xh
. (4.7)

Low-dissipation heat engine at maximum power

By optimizing power in Eq. (4.7) over contact times tc and th, Esposito and coauthors derived

the following form of efficiency for the LD engines operating in the MP regime [1]:

ηP =
ηC(1 +

√
γ(1− ηC))

(1 +
√
γ(1− ηC))2 + (1− ηC)(1− γ)

. (4.8)

where γ = Σc/Σh. For the limiting cases γ → 0 and γ → ∞, EMP converges to the upper

bound ηP+ = ηC/(2− ηC) and to the lower bound ηP− = ηC/2, respectively. Hence EMP lies in

the range:
ηC
2
≤ ηP ≤ ηC

2− ηC
. (4.9)

4.3 Efficient power in low-dissipation regime

To study the optimal performance of a LD Carnot engine, we will use EP Pη = ηP as the target

function. Here, the EP represents the compromise between the efficiency and average power of

the engine. Using Eqs. (4.6) and (4.7) in the expression for Pη, we have

Pη = ηP =
(Qh −Qc)

2

Qh

xcxh
xc + xh

. (4.10)

In order to optimize the EP function Pη, we first substitute Eqs. (5.6) and (5.9) in Eq. (4.10) and

then set the partial derivatives of Pη with respect to xc and xh equal to zero. Then rearranging

the terms and writing left hand side of both equations again in terms of (Qh − Qc)
2/Qh, we
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obtain following two equation:

(Qh −Qc)
2

Qh

xh = 2TcΣc(xc + xh)xc

[
1− Tc(∆S + xcΣc)

Th(∆S − xhΣh)

]
, (4.11)

and
(Qh −Qc)

2

Qh

xc = ThΣh(xc + xh)xh

[
1− T 2

c

T 2
h

(∆S + xcΣc)
2

(∆S − xhΣh)2

]
. (4.12)

Using Eqs. (5.6) and (5.9) in Eqs. (4.11) and (4.12), we solve for xh and get the following

expression (see Appendix B.1) for xh

xh = −∆S

Σh

[
N

8B
+

1

2

√
K +

1

2

√
K ′ − G

4
√
K

]
(4.13)

where we used the following notation

K =
N2

16B2
− M

6B
+

(A+
√
A2 − 4A′3)1/3

12× 21/3B
+

F

6× 22/3B(A+
√
A2 − 4A′3)1/3

,

K ′ =
N2

8B2
− M

3B
− (A+

√
A2 − 4A′3)1/3

12× 21/3B
− F

6× 22/3B(A+
√
A2 − 4A′3)1/3

,

G =
12ηC

B
− N3

8B3
+
MN

2B2
,

N = (1− ηC)(6− ηC)γ − 6,

B = −(1− ηC)γ + 1,

M = −3(1− ηC)(3− ηC)γ + (4ηC + 9),

F = 9(1− ηC)2(3− ηC)2γ2 − 6(1− ηC)(3− 2ηC)(9− 5ηC)γ + (9− 8ηC)2,

A = 2M3 + 108ηCMN + 108η2
CN

2 + 3888η2
CB − 288η2

CMB,

A′ = M2 + 36ηCN + 48η2
CB. (4.14)

Now we seek the form of EMEP η∗ = W/Qh, which is found to be (see Appendix B.2)

η∗ =
2ηC

3− 2xhΣh/∆S
. (4.15)
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Using Eqs. (4.13) and (4.14) in Eq. (4.15), we can obtain a closed-form expression for EMEP.

The resulting form is too lengthy to be reproduced here. However, a couple of points about this

expression need to be noted. Firstly, it depends only upon Carnot efficiency ηC and parameter γ.

For some limiting cases, it reduces to well known forms for the efficiency obtained in literature

(see Appendix B.3). In the extreme asymmetric limit γ → 0, the EMEP converges to the upper

bound η+ = (3 −
√

9− 8ηC)/2, while for γ → ∞, it reduces to the lower bound η− = 2ηC/3

(See Figure 4.1). Thus

η− ≡
2

3
ηC ≤ η∗ ≤ 1

2
(3−

√
9− 8ηC) ≡ η+. (4.16)

These upper and lower bounds on the efficiency were previously obtained by Holubec and

Ryabov [2] for the case of overdamped brownian particle undergoing a Carnot-like cycle using

the framework of stochastic thermodynamics [41].

We pay special attention to the case of symmetric dissipation in which Σc = Σh, or γ = 1.

Under this condition, Eq. (4.15) reduces to

ηsym = 1− 1

4
(1− ηC)

(
1 +

√
1 +

8

1− ηC

)
. (4.17)

The same result was obtained in Refs. [48, 55] for the endoreversible model of Carnot heat

engine operating at MEP, under the tight-coupling condition. We expand Eq. (4.17) in Taylor’s

series near equilibrium to reveal universal features of the EMEP.

ηsym =
2

3
ηC +

2

27
η2

C +O(η3
C). (4.18)

The first two terms in the above equation were also derived for the EMEP of a nonlinear

irreversible heat engine [63] working in strong coupling limit under the symmetric condition

by using master equation model [54, 61]. In Ref. [63], it is also shown that EMEP is given

by 2ηC/3 in linear response regime. Hence, we confirm that universal features of efficiency
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Figure 4.1: Comparison of the bounds on efficiency with observed data. Red curves show the
bounds for the EMEP. Gray lines represents the same for the EMP [1]. Brown circles represent
the observed efficiencies of various power plants as analyzed in Refs. [1–3]. Dashed and dotted
lines stand for ηCA and ηsym respectively.

[54, 61, 110] are not exclusive to the conditions of MP and MOF but also extend to the engines

operating in MEP regime.

4.4 Rates of dissipation

Now we compare the average rates of dissipation for LD heat engines under optimal working

conditions for power output, EP function and Omega (Ω) function. In general, the average rates

of dissipation for the LD model, at hot and cold contacts are given by [101]:

D(f)
h =

ThΣh

t2h
≡ ThΣhx

2
h, (4.19)

D(f)
c =

TcΣc

t2c
≡ TcΣcx

2
c , (4.20)

where f(≡ P, Pη, Ω) is the function being optimized. In case of LD engines operating at MP,

the relation between xh and xc is given by [1]

xc
xh

=

√
ThΣh

TcΣc

, (4.21)
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from which it follows that the average rates of dissipation at two thermal contacts are equal:

D(P )
c = D(P )

h . (4.22)

Similarly for the case of maximum Ω function, which represents a trade-off between the useful

energy and the lost energy of heat engines, we have [52]

xc
xh

=

√
Σh(2− ηC)

2Σc(1− ηC)
. (4.23)

So, we obtain

D(Ω)
c = D(Ω)

h

(
1− ηC

2

)
. (4.24)

Since the factor (1 − ηC/2) is always smaller than 1, the rate of dissipation is higher at the

hot contact. Now we find the relation between rates of dissipation for the case of LD engines

operating at MEP. From Eqs. (B.4) and (B.7), we have

xc
xh

=

√
Σh(2− η∗)
2Σc(1− ηC)

, (4.25)

which can be solved to give

D(Pη)
c = D(Pη)

h

(
1− η∗

2

)
. (4.26)

Comparing Eqs. (4.22), (4.24) and (4.26), it is clear that ratio of cold to hot dissipation is

smallest in the case of Omega function:

D(Ω)
c

D(Ω)
h

<
D(Pη)
c

D(Pη)
h

<
D(P )
c

D(P )
h

= 1. (4.27)

Here, we emphasize that as the ratio of the rates of dissipation at the cold and the hot ends

decreases, the efficiency of the engine increases, which is clear from the fact that in strong

coupling limit, engines operating at MOF are the most efficient ones and the engines working

in the MP regime are the least efficient [49]. We also note that in the cases of MP and MOF,
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the ratio of rates of dissipation is independent of dissipation constants Σc and Σh, whereas for

MEP it depends upon γ as the general form of EMEP is a function of γ (See Figure 4.2).
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Figure 4.2: Solid lines MP and MOF represent the ratio of the rates of dissipation at cold and
hot contacts of the indicated functions. Solid line MEP represents the same for MEP under
symmetric dissipation, γ = 1. Dashed upper and lower curves represent the ratio D(Pη)

c /D(Pη)
h

for the extreme asymmetric dissipation γ →∞ and γ → 0, respectively.

4.5 Global linear-irreversible principle

We noted in the above that the bounds on EMEP have also been obtained with other models

such as the endoreversible model. The similarities and differences between endoreversible and

LD models have been discussed recently [101, 123–125]. While different such models assume

a particular functional form or a mechanism for irreversible entropy generation, we discuss in

the following a different formulation that has been recently proposed in Ref. [92] and show that

the same lower and upper bounds as obtained in Eq. (4.16) and (4.17) can be obtained using a

different optimization scheme. In this so-called global linear-irreversible principle framework,

we do not assume stepwise details of the cycle. Rather, the validity of LIT is assumed globally,

i.e., for the complete cycle. Here, the thermal machine is considered as an irreversible channel

with an effective heat conductivity λ, with an associated passage of a mean heat Q̄ from hot to

cold reservoir in the total cycle time τ . Thereby, the relation between total cycle time τ and Q̄
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is given by [92]

τ =
Q̄2

λ∆Stot

, (4.28)

where ∆Stot = Qc/Tc − Qh/Th, is the total entropy generated per cycle, which is non-zero.

Using the basic definitions and Eq. (4.28), the average EP is given by

Pη = η
W

τ
=
λ(Qh −Qc)

2

QhQ̄2
∆Stot =

λ(Qh −Qc)
2

QhQ̄2

(
Qc

Tc
− Qh

Th

)
. (4.29)

Defining ν = Qc/Qh, we can rewrite Eq. (4.29) in terms of ηC and ν:

Pη =
λ

Tc
(1− ν)(ν + ηC − 1)

Q2
h

Q̄2
. (4.30)

Now, in order to optimize the above objective function, we have to specify the form of Q̄

which is assumed to be a mean value lying in the range Qc ≤ Q̄ ≤ Qh. We will discuss here

only the extreme cases. Substituting Q̄ = Qh in Eq. (4.30) and optimizing with respect to

ν, EMEP comes out to be η− = 2ηC/3. Similarly, for Q̄ = Qc, the form of EMEP is η+ =

(3 −
√

9− 8ηC)/2. Alternately, if we use the geometric mean Q̄ =
√
QcQh, the optimization

of Eq. (4.30) yields the EMEP as in Eq. (4.17).

4.6 Conclusions

We have discussed the efficiency of a LD heat engine operating at MEP. In the limit of extremely

asymmetric dissipation, we are able to obtain the lower and upper bounds on the efficiency of

the engine, as well as the expression ηsym for the symmetric case. The universal features of

EMEP are highlighted. We also note that ratio of average dissipation rates at cold and hot

contacts depends upon γ, see Eq. (4.26), whereas in the case of MP and MOF, the same ratio is

independent of γ, see Eqs. (4.22) and (4.24). The derivation of forms of EMEP, similar to those

obtained for LD Carnot-like engines, using the global principle of LIT, confirms the validity of

our analysis.
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Although the real power plants do not operate in a Carnot cycle, and the assumption of

LD may not be valid for them, it is compelling to compare the upper and lower bounds with

the observed efficiencies. In Figure 4.1, we have compared the observed data with the bounds

obtained for LD engines operating at MP and MEP. Although not shown in Figure 4.1, it is

important to know that the area between the lower and upper bounds of MOF does not contain

any observed data points [2], whereas five and eight data points respectively lie within the

areas bounded by the lower and upper bounds of EMEP and EMP. However, it is interesting to

observe that the density of points (number of data points per unit area between the upper and

lower bounds for the respective objective function shown in Figure 4.1), is higher in the case of

MEP criterion than for MP.
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Chapter 5

Three-level laser heat engine at optimal

performance with ecological function

5.1 Introduction

The study of quantum heat engines (QHEs) started with the seminal work of Scovil and Schulz-

Dubois (SSD) [128]. In their work, they investigated the thermodynamics of three-level maser

and showed its equivalence to classical Carnot engine. Three level laser heat engine [128] is

one of the simplest steady-state heat engine. It converts the incoherent thermal energy of heat

reservoirs to a coherent laser output. It has been studied extensively in the literature. Three-

level systems are also employed to study quantum absorption refrigerators [129–132]. The

model proposed by Scovil and DuBois was further analyzed by Geva and Kosloff [15, 16] in the

spirit of FTT. In the presence of strong time dependent external fields, they optimized the power

output of the amplifier with respect to different control parameters. In their model, the second

law of thermodynamics is generally satisfied if one incorporates the effect of external field on

the dissipative superoperator. In a series of papers [133–135], Boukobza and Tannor formulated

a new way to partition energy into heat and work. They applied their analysis to a three level

amplifier continuously coupled to two reservoirs and to a classical single mode field [135].
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Their formulation is quite general and one does not need to incorporate the effect of external

field on the dissipative term of the Liouvillian, and yet the second law of thermodynamics is

always satisfied at steady state. In this work, we use the formalism of [135] to study the optimal

performance of a three-level QHE operating in high temperature regime.

It has been 60 years since the first paper appeared in the field of quantum thermodynam-

ics and QHEs. Since then, there has been a lot of progress in this field on the theoretical as

well as experimental front. Various models of QHEs have been proposed employing a quantum

mechanical system as the working fluid, such as spin systems [33–35, 136–141], harmonic os-

cillators [34, 38, 142–144], two-level or multilevel systems [15, 16, 145–154], single ion or two

ion systems [155–157], cavity quantum electrodynamics systems [158–162], optomechanical

cavities [163–165] etc.

On the other hand, rising concerns about the harmful effects of human activity towards

the environment and ecology make it pertinent to enquire if the new technologies are better

from ecological point of view. Most comparisons that are usually studied between quantum

[138–142, 144, 145, 149, 150, 156, 158, 166] and classical macroscopic models of heat engines

[1, 10, 64], focus on the optimization of power output [1, 22, 40, 155, 167]. However, to be

ecologically sensitive demands that we also care about the extent of entropy production these

machines inevitably lead to and which ultimately impacts the environment.

In this regard, we study the optimization of EF. We analyze the performance of a three-level

steady state laser heat engine operating at maximum EF. In the context of classical models,

this function suggests optimal working conditions which lead to a drop of about 20% in power

output (compared to MP output), but on the other hand, reduce the entropy generation by about

70% [44].

Our second motivation for this analysis is to study the correspondence between classical

and quantum heat engines. In most of the studies done so far, QHEs can show exotic behavior

only when we use additional resources such as quantum coherence [22, 168–170], quantum

entanglement [171–174] and squeezed baths [143, 160, 175]. In many cases, when QHEs do not
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Figure 5.1: Model of three-level laser heat engine continuously coupled to two reservoirs of
temperatures Th and Tc having coupling constants Γh and Γc, respectively. The system is inter-
acting with a classical single mode field. λ represents the strength of matter-field coupling.

employ additional resources mentioned above, they show remarkable similarity to macroscopic

heat engines. In such cases, the Carnot efficiency provides an upper bound on the efficiencies

of QHEs operating between two heat reservoirs. For the optimal performance of many models

of classical and quantum heat engines operating at finite power, the form of efficiency comes

out to be similar for both types of engines. The irreversible operation of quantum engines with

finite power output has many similarities to macroscopic endoreversible engines. In the LD

regime [1], the behavior of quantum and classical heat engines are quite similar [40]. Also in

high temperature limit, QHEs are expected to behave like classical heat engines [33, 34].

The chapter is organised as follows. In Section 5.2, we discuss the model of three-level laser

quantum heat engine. In Section 5.3, we obtain the general expression for the efficiency of the

engine operating at maximum EF and find lower and upper bounds on the efficiency for two

different optimization schemes. In Sections 5.4 and 5.5, we compare the performance of heat

engine operating at maximum EF to the engine operating at MP. We conclude in Section 5.6 by

highlighting the key results.
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5.2 Model of Three Level Quantum Laser Heat Engine

The model consists of a three level system continuously coupled to two thermal reservoirs and

to a single mode classical field (See Figure 5.1). A hot reservoir at temperature Th drives the

transition between the ground level |g〉 and top level |1〉, whereas the transition between the

intermediate level |0〉 and ground level |g〉 is constantly de-excited by a cold reservoir at tem-

perature Tc. The power output mechanism is modeled by coupling the levels |0〉 and |1〉 to a

classical single mode field. The Hamiltonian of the system is given by: H0 = ~
∑
ωk|k〉〈k|

where the summation runs over all three states and ωk represents the relevant atomic frequency.

The interaction with the single mode lasing field of frequency ω, under the rotating wave ap-

proximation, is described by the semiclassical hamiltonian: V (t) = ~λ(eiωt|1〉〈0|+e−iωt|0〉〈1|);

λ is the field-matter coupling constant. The time evolution of the system is described by the fol-

lowing master equation (Appendix C):

ρ̇ = − i
~

[H0 + V (t), ρ] + Lh[ρ] + Lc[ρ], (5.1)

where Lh(c) represents the dissipative Lindblad superoperator describing the system-bath inter-

action with the hot (cold) reservoir:

Lh[ρ] = Γh(nh + 1)(2|g〉〈g|ρ11 − |1〉〈1|ρ− ρ|1〉〈1|)

+Γhnh(2|1〉〈1|ρgg − |g〉〈g|ρ− ρ|g〉〈g|), (5.2)

Lc[ρ] = Γc(nc + 1)(2|g〉〈g|ρ00 − |0〉〈0|ρ− ρ|0〉〈0|)

+Γcnc(2|0〉〈0|ρgg − |g〉〈g|ρ− ρ|g〉〈g|). (5.3)

Here Γh and Γc are the Weisskopf-Wigner decay constants, and

nh(c) = 1/(exp[~ωh(c)/kBTh(c)] − 1) is average occupation number of photons in hot (cold)

reservoir satisfying the relations ωc = ω0 − ωg, ωh = ω1 − ωg.
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In our model, it is possible to find a rotating frame in which the steady-state density matrix

ρR is time independent [135]. Defining H̄ = ~(ωg|g〉〈g| + ω
2
|1〉〈1| − ω

2
|0〉〈0|), an arbitrary

operator A in the rotating frame is given by AR = eiH̄t/~Ae−iH̄t/~. It can be seen that Lh[ρ] and

Lc[ρ] remain unchanged under this transformation. Time evolution of the system density matrix

in the rotating frame can be written as

ρ̇R = − i
~

[H0 − H̄ + VR, ρR] + Lh[ρR] + Lc[ρR] (5.4)

where VR = ~λ(|1〉〈0|+ |0〉〈1|).

For a weak system-bath coupling, the output power, heat flux and efficiency of the engine

can be defined, using the formalism of Ref. [135], as follows:

P =
i

~
Tr([H0, VR]ρR), (5.5)

Q̇h = Tr(Lh[ρR]H0), (5.6)

η =
P

Q̇h

. (5.7)

Plugging the values of H0, VR and Lh[ρR], and calculating the traces (Appendix D.1) appearing

in right hand side of the Eqs. (5.5) and (5.6), the power and heat flux can be written as:

P = i~λ(ω1 − ω0)(ρ01 − ρ10) = i~λ(ωh − ωc)(ρ01 − ρ10), (5.8)

Q̇h = i~λωh(ρ01 − ρ10), (5.9)

where ρ01 = 〈0|ρR|1〉 and ρ10 = 〈1|ρR|0〉. Then, the efficiency is given by

η = 1− ωc
ωh
. (5.10)

From Eq.(D.17), the positive power production condition implies that ωc/ωh ≥ Tc/Th. Hence

η ≤ ηC .
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5.3 Optimization of Ecological Function

In this work, we choose to optimize the EF which represents a trade-off between power output

and loss of power in the system. The optimal performance of SSD engine at MP has already

been studied recently [22]. According to our sign convention, EF is defined as

E = P − TcṠtot, (5.11)

where

Ṡtot =
Q̇c

Tc
− Q̇h

Th
, (5.12)

is the total rate of entropy production in the reservoirs. In the steady state, the entropy of the

system remains constant. Substituting Eq. (5.12) in Eq. (5.11) and writing in terms of ratio of

temperatures of hot and cold reservoirs (τ = Tc/Th), the EF can be written as

E = 2P − (1− τ)Q̇h. (5.13)

Using Eqs. (5.8) and (5.9), we recast Eq. (5.13) as follows

E = i~λ(ρ01 − ρ10)[2(ωh − ωc)− (1− τ)ωh] (5.14)

Now we optimize E w.r.t. the transition frequencies ωh and ωc, and then calculate the cor-

responding EMEF. In order to obtain analytic expressions in a closed form for the EMEF, we

will work in the high temperature regime and assume that matter-field coupling is very strong

as compare to the system-bath coupling (λ >> Γh,c). In the high temperature limit, we set

nh ' kBTh/~ωh and nc ' kBTh/~ωc. In high temperature regime, E can be written in the

following form (Appendix D.2)

E ' 2~Γh(ωc − τωh)[2(ωh − ωc)− (1− τ)ωh]

3(ωcγ + τωh)
. (5.15)
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Figure 5.2: Efficiency ηE versus the Carnot efficiency ηC for the SSD engine. ηAB serves as
upper bound for fixed ωh and lower bound for fixed ωc.

Here we choose frequencies ωh and ωc as control parameters. It is important to note that it is not

possible to optimize E given in Eq. (5.15) with respect to ωc and ωh simultaneously. Such two

parameter optimization scheme yields the trivial solution, ωc = ωh = 0, which is clearly not a

useful result. Therefore we will perform optimization with respect to one parameter only while

keeping the other one fixed at some constant value. First we keep ωh fixed, then optimizing EF

[Eq.(5.15)] w.r.t. ωc, i.e., setting ∂E/∂ωc = 0, we evaluate EMEF as

ηEωh = 1 +
τ

γ
−
√

(1 + γ)τ [γ + (2 + γ)τ ]√
2γ

, (5.16)

where γ = Γh/Γc. We note that ηEωh is monotonic increasing function of γ. Therefore we

can calculate lower and upper bounds on EMEF by putting γ → 0 and γ → ∞, respectively.

Further, writing in terms of ηC = 1− τ , we have (see Figure 5.2)

3

4
ηC ≤ ηEωh ≤ 1−

√
(1− ηC)(2− ηC)

2
. (5.17)

Lower bound 3ηC/4 obtained here also serves as the lower bound for the LD heat engines [52]

and MNI heat engines [69]. Upper bound
√

(1− ηC)(2− ηC)/2 obtained here was first derived

by Angulo-Brown for a classical endoreversible heat engine [44]. Henceforth we call it Angulo-
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Brown (AB) efficiency ηAB. Under the conditions of tight-coupling and symmetric dissipation,

ηAB can also be obtained for the LD heat engines [52] and MNI heat engines [69].

Alternately, we may fix the value of ωc and optimize EF w.r.t ωh, thus obtaining EMEF in

the following form

ηEωc =
γ(1− τ 2) + 2(1 + γ)τ −

√
(1 + γ)τ 2(1 + τ)[γ + (2 + γ)τ ]

γ + 2τ + 3γτ
. (5.18)

Again ηEωc is monotonic increasing functions of γ. So we obtain lower and upper bounds on

EMEF in the limiting cases γ → 0 and γ → ∞, respectively. In terms of ηC , we have (see

Figure 5.2)

ηAB ≤ ηEωc ≤
3− 2ηC
4− 3ηC

ηC . (5.19)

Under the conditions of extreme dissipation, upper bound (3−2ηC)ηC/(4−3ηC) reported here,

also serves as the upper bound for the LD [1] and MNI [69] heat engines.

5.4 Fractional loss of power at maximum ecological function

and maximum power output

In this section, we compare the performance of three level heat engine operating at maximum

EF to the engine operating at MP. We derive the expressions for the loss of power in both cases.

It can be done by using the very definition of EF E = P − T2Ṡtot, where T2Ṡtot represents the

loss of power. So we write the EF as E = P − Plost and after rearranging terms, we can write

R′ ≡ Plost

P
= 1− E

P
≡ 1−R. (5.20)

We calculate the ratio of power lost to power gain for four different cases discussed in Appendix

D.3. All the relevant quantities are derived there. For the optimization of EF wrt ωc keeping ωh

fixed, the ratio of optimal EF, E∗(ωh)
eco , to power at maximum EF, P ∗(ωh)

eco , is given in Eq. (D.23).
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Figure 5.3: Comparison of the ratios of power lost to power gained for the optimization of two
different target functions - EF and power output (see Figure 5.3). The lower lying curves [Eqs.
(5.21) and (5.22)] represent the case when EF is optimized whereas the upper lying curves [Eqs.
(5.23) and (5.24)] represent the case for the optimization of power output. The dashed curves
implies that rate of power dissipation is independent of ηC .

We will discuss only the limiting cases γ → 0 and γ → ∞, for which respective equations for

R′ can be derived using Eqs. (5.20) and (D.24):

R′ωheco(0) =
1

3
, R′ωheco(∞) =

√
τ

√
τ +

√
2(1 + τ)

(5.21)

Similar equations for the optimization of E wrt ωh, while keeping ωc fixed, are given by

R′ωceco(0) =

√
τ

√
τ +

√
2(1 + τ)

, R′ωceco(∞) =
τ

1 + 2τ
(5.22)

Next we calculate the ratio of power loss to power gain in the cases when we optimize power

output. First we discuss the case when optimization is performed over ωc. As seen from Eq.

(D.33), Rωh
pow(0) = 0, which indicates that corresponding EF is zero in this case, which in turn

implies that loss of power is equal to gain of power. The ratios R′ for the extreme cases γ → 0

and γ →∞ are given by

R′ωhpow(0) = 1, R′ωhpow(∞) =
√
τ (5.23)
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Figure 5.4: Comparison of the ratios of power output at maximum EF and optimal power [Eqs.
(5.25) and (5.26)].

The corresponding expressions the optimization of power wrt ωh are given by

R′ωcpow(0) =
√
τ , R′ωcpow(∞) = τ. (5.24)

5.5 Ratio of power at maximum ecological function to maxi-

mum power

Figure 5.3 clearly indicates that the fractional loss of power is larger when our three level laser

heat engine operates at MP as compared to the engine operating at maximum EF. So, it is useful

to evaluate the ratio of power at maximum EF to optimal power. Dividing P ∗(ωh)
eco by P ∗(ωh)

pow

(see Eqs. (D.22) and (D.30)), and by taking limits γ → 0 and γ → ∞, we have following two

equations, respectively

R̄ωh
0 =

1 + 3τ − τ(3+5τ)√
1+3τ

1 + 3τ − 2
√

2τ(1 + τ)
, R̄ωh
∞ =

1 + τ − τ(3+τ)√
2τ(1+τ)

(1−
√
τ)2

(5.25)

Similar equations can be obtained for fixed ωc by dividing P ∗(ωc)eco with P ∗(ωc)pow (see Eqs. (D.26)
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Figure 5.5: 3D-plot of EF [Eq. (D.14]) in terms of control frequencies ωc and ωh for ~ =
1, kB = 1,Γh = Γc = 1, λ = 1, Th = 20, Tc = 5.

and (D.35)) and repeating the above mentioned step. Thus we have

R̄ωc
0 =

1 + τ − τ(3+τ)√
2τ(1+τ)

(1−
√
τ)2

, R̄ωc
∞ =

1 + 2τ

(1 + τ)2
. (5.26)

Note that R̄ωh
∞ = R̄ωc

0 . Plotting the Eqs. (5.25) and (5.26) in Figure 5.4, we observe that at

least 75 percentage of the optimal power is produced in maximum EF regime. The ratio Peco/P

increases with increasing ηC and approaches 1 for ηC = 1. This is expected as with increasing

ηC , the efficiency of the engine also increases while dissipation decreases.

5.6 Concluding Remarks

We have analyzed and optimized the thermodynamic performance of SSD heat engine with EF.

Here we performed one parameter optimization of EF alternatively with respect to ωc (ωh fixed)

and ωh (ωc fixed) and obtained the general expression for the EMEF. In the limit of extremely

asymmetric dissipation, lower and upper bounds on the efficiency are obtained. ηAB serves as

the upper bound in the former case and lower bound in the later case, thus separating the entire

parameter regime of ηE into two parts. To this end, we want to emphasize one point. Although
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for the strong matter-field coupling (λ >> Γh,c) in the high temperature limit, global maximum

of EF does not exist for two parameter optimization scheme; for the general case when λ is

comparable to Γh,c, global maximum of EF exists (See Figure 5.5). But it is not possible to find

the analytic expression for EMEF in this case. We have plotted the 3D-graph of EF [Eq. (D.14)]

in Figure 5.5.

Next we have compared the performance of SSD engine operating at maximum EF to the

engine operating at MP. It is clear from Figures 5.3 and 5.4 that fraction of power lost is appre-

ciably low in case of engine operating at MF. At the same time, engine at maximum EF produce

at least 75% of the power produced by the engine working in MP regime. The same analysis

also holds true for the for the optimal performance of a classical endoreversible heat engine

operating in the ecological regime [44]. Hence we conclude that classical as well as quantum

heat engines operating at maximum EF are much more efficient and environment friendly than

the engines operating at MP. Therefore it is more reasonable to design real heat engines along

the lines of maximizing EF for economical and ecological purposes.
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Chapter 6

Conclusions and future outlook

The main motivation of this thesis was to study the optimal performance of different classes

of heat engines, including classical, mesoscopic and quantum heat engines, using different ob-

jective functions such as power output, ecological function, Omega (Ω) function and efficient

power function. In particular, we have focused on the optimization of ecological and efficient

power functions which represent a trade-off between the power output and efficiency of a heat

engine. We have paid special attention to the universal nature of efficiency at optimal perfor-

mance of abovementioned objective functions.

In chapter 2, we studied Feynman’s ratchet and pawl model, a simple mechanical device

of mesoscopic size that can rectify thermal fluctuations to extract work from a setup of two

reservoirs at different temperatures using a ratchet and pawl mechanism. We optimized the

power output of the ratchet engine operating in the high temperature regime using a non-linear

approximation and derived the expression for efficiency at maximum power, which shows the

universal nature of efficiency upto second order in ηC . We also optimized the linear model of

ratchet engine by constraining the internal energy scales in different ways and obtained well

known expressions of thermal efficiency in finite-time thermodynamics. We discussed four

cases and by identifying the effective temperatures and coefficients of thermal conductance, we

were able to map each case to an effective endoreversible model.

However, we mapped only linear model of the engine to effective endoreversible models.
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It is an interesting problem to explore whether the non-linear model can be mapped to effec-

tive endoreversible models. A possible mapping beyond the assumptions of linear irreversible

thermodynamics (linear flux-force formalism) may be attempted. It may shed light on general

connection between various finite-time models beyond the linear response regime.

In Chapter 3, we studied the optimal performance of Feynman’s model for both engine and

refrigerator modes. For engine mode, we optimized two different objective functions: eco-

logical function and efficient power function. Similarly, for refrigerator mode, we optimized

ecological function and χ function. We employed two different optimization methods to carry

out our study: the first one involves the standard technique of two parameter optimization over

the energy scales of the engine and the second one uses prior information analysis based on

Bayesian approach to estimate the expected performance of the engine. Based on a few sim-

ple assumptions, the prior probability distribution was found to be of the form Π(εk) = 1/εk,

known as Jeffreys prior, where εk is assumed to take values in the range [εmin, εmax]. The de-

rived expressions for the efficiency/coefficient of performance (COP) at maximum ecological

function from the abovementioned two methods were found to agree with each other close to

equilibrium.

The analysis was repeated for the optimization of efficient power function and χ function.

In addition, we also studied one parameter optimization of the engine and refrigerator modes in

the high temperature limit. Again the results obtained from two different optimization schemes

(exact approach and prior information approach) were found to agree close to equilibrium.

Moreover, the forms of efficiency obtained from exact one parameter optimization of efficient

power function and χ function were re-derived using the prior information approach.

While addressing the problem using prior information approach, we assumed that one of

the energy scales is fixed and considered prior distribution over the remaining energy scale.

By doing so, we were able to recast the problem in terms of one uncertain variable only. It is

remaining to explore the problem in terms of two uncertain variables (energy scales here). It is

a nontrivial problem since assignment of prior probability distribution is not straight forward in
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this case.

In Chapter 4, we studied the optimization of a low-dissipation Carnot like heat engine op-

erating in the maximum efficient power regime. We derived the expression for efficiency at

maximum efficient power in a closed form and were able to obtain the lower and upper bounds

on efficiency in the case of extreme asymmetric dissipation when the ratio of dissipation con-

stants (coefficients) at the hot and cold reservoirs approaches zero or infinity respectively. In

addition, for the symmetric dissipation, we obtained expression for the efficiency which concurs

with the efficiency of an endoreversible heat engine. We confirmed the universality of the first

two terms of the efficiency at maximum efficient power by expanding it in Taylor’s series near

equilibrium. We also compared the ratio of average dissipations at the cold and hot contacts for

three different objective functions: power output, Ω function and efficient power functions.

Interestingly enough, whereas in case of power and Ω function, the ratio is independent

of efficiency of the engine, it depends upon efficiency for the optimization of efficient power

function. It hints that efficient power function belongs to different class of functions than power

output and Ω function. In our future work, we would like to work along this direction and try to

find common or dissimilar features among these objective functions.

In Chapter 5, we optimized the performance of a three-level lase heat engine operating at

maximum ecological function. Under the assumptions of strong matter-field coupling and high

bath temperatures, we derived analytic expressions for efficiency for two different optimization

schemes. In both cases, upper and lower bounds on efficiency were obtained in the case of

extreme asymmetric dissipation when the ratio of system-bath coupling constants at the hot and

cold reservoirs approaches zero and infinity respectively. Then we compared the performance

of the engine operating at maximum ecological function to the engine operating at maximum

power. Our analysis showed that engines operating at maximum ecological function are much

more efficient than those operating at maximum power, thus making them more suitable for eco-

nomical and environmental considerations. Our analysis also sheds light on the correspondence

between quantum and classical heat engines, and the classical features observed in quantum
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machines. This work can be extended to study the optimal performance of a three-level system

operating as a refrigerator.
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Appendix A

Feynman-Smoluchowski engine at high

temperatures

In Chapter 2, we have optimized the power output of non-linear model model of FS engine. The

optimal values of ε1 and ε2 at maximum power are given by

ε∗1hot = T1
(4− 3ηC)

3(2− ηC)
, ε∗2hot = T1

(1− ηC)(4− ηC)

3(2− ηC)
. (A.1)

Evaluating the second order derivatives of P with respect to ε1 and ε2 at optimal values, we have

A ≡ ∂2P

∂ε21
=

3ε1 − ε2 − 2T1

T 2
1

= −T1(4− 2ηC + η2
C)

3(2− ηC)T 2
1

< 0, (A.2)

B ≡ ∂2P

∂ε22
=

3ε2 − ε1 − 2T2

T 2
2

= −T1(4− 6ηC + 3η2
C)

3(2− ηC)T 2
2

< 0, (A.3)

C ≡ ∂2P

∂ε1∂ε2
=

T1 − ε1
T 2

1

− T2 − ε2
T 2

2

=
16T 2

1 (1− ηC)2

9(2− ηC)2T 2
1 T

2
2

(A.4)

We plot D ≡ AB/C2 versus ηC in Figure A.1, from which it is clear that D > 1. Thus, we

have a maximum in this case.
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Appendix B

Low-dissipation heat engine

B.1 Derivation of xc and xh

Substituting the values of Qh and Qc from Eqs. (5.6) and (5.9) into the Eqs. (4.11) and (4.12)

and then adding, we have

Th(∆S − xhΣh)− 2Tc(∆S + xcΣc)− 2TcxcΣc

[
1− Tc(∆S + xcΣc)

Th(∆S − xhΣh)

]
+Th

[
1− T 2

c (∆S + xcΣc)
2

T 2
h (∆S − xhΣh)

]
− xhΣhTh

[
1− T 2

c (∆S + xcΣc)
2

T 2
h (∆S − xhΣh)2

]
= 0. (B.1)

Further writing the above equation in terms of ηC = 1− Tc/Th, we have

∆S −2xhΣh − 4(1− ηC)xcΣc − 2(1− ηC)∆S

+2(1− ηC)2xcΣc
∆S + xcΣc

∆S − xhΣh

+ ∆S(1− ηC)2 (∆S + xcΣc)
2

(∆S − xhΣh)2
= 0. (B.2)

Solving Eq. (B.2) for xc, we have

xc =
1

Σc(1− ηC)

[
∆S2ηC

3∆S − 2xhΣh

− xhΣh

]
. (B.3)
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Dividing Eqs. (4.11) and (4.12) and writing in terms of ηC, we get

x2
c

x2
h

=
Σh

2Σc

[
∆S + xcΣc

∆S − xhΣh

+
1

1− ηC

]
. (B.4)

Again solving Eq. (B.4) for xc and writing in terms of γ, we have

xc =
1

4(1− ηC)Σc(∆S − xhΣh)

[
γx2

hΣ
2
h(1− ηC)− xhΣh

√
γ(1− ηC)

×
√

8∆S2(2− ηC)− 8∆SxhΣh(3− ηC) + γx2
hΣ

2
h(1− ηC) + 8x2

hΣ
2
h

]
(B.5)

Comparing Eqs. (B.3) and (B.5), we have the final expression for xh as given by Eq. (4.13).

B.2 Derivation of Eq. (4.15)

Efficiency of the engine is given by:

η =
W

Qh

= 1− Qc

Qh

. (B.6)

Using Eq. (5.6) and (5.9) and writing in terms of ηC, the expression for efficiency becomes

η = 1− (1− ηC)
∆S + xcΣc

∆S − xhΣh

. (B.7)

Rearranging the terms in Eq. (B.3), we obtain under conditions of MEP

(∆S + xcΣc)(1− ηC) =
∆S2ηC

3∆S − 2xhΣh

+ ∆S − xhΣh −∆SηC. (B.8)

Substituting Eq. (B.8) in Eq. (B.7), we obtain following form of efficiency

η∗ =
2ηC

3− 2xhΣh/∆S
. (B.9)
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.

B.3 Derivation of η−, η+ and ηsym

Upper bound: For γ → 0, using Eq. (4.14), K = 9/4 − 2ηC, K ′ = 0, G = 0. Substituting

these values in Eq. (4.13), we obtain xh = (3 −
√

9− 8ηC)∆S/4Σh. Then using Eq. (4.15),

we obtain the upper bound on efficiency η+ = 1(3−
√

9− 8ηC)/2.

EMEP for symmetric dissipation (γ = 1): In this case, K = (1 + ηC)2/16, K ′ = (1 −

ηC)(9− ηC)/8, G = −(9− ηC)(1− η2
C)/8 (See Eq. (4.14)). Putting these values in Eq. (4.13),

we have xh = (3−ηC−
√

(1− ηC)(9− ηC))∆S/4Σh. Substitution of xh in Eq. (12) will yield

ηsym = 1− (1− ηC)
(

1 +
√

1 + 8/(1− ηC)
)
/4.

Lower bound: We first calculate K, K ′ and G by pulling out γ from the numerator and

denominator of each term and then taking the limit γ →∞. Thus we have K = (6− ηC)2/16,

K ′ = η2
C/8 and G = (6− ηC)η2

C/8. Repeating the steps used to derive η+ and ηsym, we obtain

xh = 0 and η− = 2ηC/3.
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Appendix C

Dynamics of open quantum systems

In order to understand the dynamics of open quantum systems, we first introduce the dynamics

of closed systems.

C.1 Dynamics of closed quantum systems

In non-relativistic quantum mechanics, state of a quantum system is represented by a state ket

|ψ〉 in the Hilbert space H. The time evolution of the closed quantum system is described by

the Schrodinger equation:

H(t) |ψ(t)〉 = i~
d |ψ(t)〉
dt

, (C.1)

where H(t) is the Hamiltonian of the system. The formal solution of Schrodinger equation is

given by

|ψ(t)〉 = U(t, t0) |ψ(to)〉 , (C.2)

where U(t, t0) is unitary time evolution operator satisfying the relation U(t, t0)†U(t, t0) =

U(t, t0)U(t, t0)† = I , and |ψ(to)〉 is state of the system at some initial time t0.

Substitution of Eq. (C.2) in Eq. (C.1) leads to an operator equation for U(t, t0):

H(t)U(t, t0) = i~
∂U(t, t0)

∂t
, (C.3)
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subjected to the initial condition U(t0, t0) = I . For a closed and isolated quantum system,

Hamiltonian is time independent and Eq. (C.3) is integrated to yield the following solution:

U(t, t0) = e−iH(t−t0)/~. (C.4)

However, in many physical situations, the system under consideration is driven by external time

dependent forces such as time dependent electromagnetic fields. In such cases, the dynamics

of the system is formulated in terms of a time dependent Hamiltonian H(t), and the solution of

Eq. (C.3) is represented by a time-ordered exponential,

U(t, t0) = T←e
− i

~
∫ t
t0
dsH(s) (C.5)

More generally, for a mixed state, state of the system is characterized by a density matrix ρ.

Suppose at some inititial time t0, the state of the system is represented by the density matrix

ρ(t0) =
∑
k

Pk |ψk(t0)〉 〈ψk(t0)| , (C.6)

where Pk are positive weights and |ψk(t0)〉 are state kets, evolving in time according to

Schrodinger equation (C.1). Therefore, at time t, the state of the system is given by

ρ(t) =
∑
k

PkU(t, t0) |ψk(t0)〉 〈ψk(t0)|U(t, t0)†, (C.7)

which can be written as

ρ(t) = U(t, t0)ρ(t0)U(t, t0)†. (C.8)

Differentiating this equation with respect to time and simplifying a bit, we get the following

equation of motion for the density matrix,

dρ(t)

dt
= −i~[H(t), ρ(t)]. (C.9)
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Eq. (C.9) is known as Liouville-von Neumann equation and often written in a form analogous

to classical Liouville equation
dρ(t)

dt
= L(t)ρ(t), (C.10)

where L is the Liouville super-operator, defined through the condition

L(t)ρ(t) = −i~[H(t), ρ(t)]. (C.11)

In close analogy with Eq. (C.5), the formal solution of Eq. (C.10) is given by

ρ(t) = T←e
∫ t
t0
dsL(s)

ρ(t0). (C.12)

For a time independent Hamiltonian, L(t) is also time independent and thus we have

ρ(t) = eL(t−t0)ρ(t0). (C.13)

C.2 Dynamics of open quantum systems

An open quantum system is a system S coupled to another quantum system B, usually very

large as compared to system S, called environment. The total system S + B is assumed to

be closed and evolves according to unitary Hamiltonian dynamics. However, the dynamics

of subsystem S cannot be represented in terms of unitary Hamiltonian dynamics due to its

interaction with the environment.

Denoting Hilbert space of the system S and Hilbert space of the environment B by HS

and HB respectively, the Hilbert space of the total system is given by the tensor product space

H = HS ⊗HB. The total system+environment Hamiltonian H(t) may be written as

H(t) = HS ⊗ IB + IS ⊗HB +HI(t), (C.14)
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where HS is self-Hamiltonian of the system S, HB is the free-Hamiltonian of the environment

B. and HI(t) is the Hamiltonian of system-environment interaction. Often in many physical

situations, we need to solve the dynamics of the system S only. This can be done by tracing out

the degrees of freedom of the environment by employing various analytical as well as numerical

methods. If ρ(t) represents the state of the combined total system, reduced density matrix ρS of

the open quantum system is given by

ρS = TrB[ρ], (C.15)

where TrB represents the partial trace over the degrees of freedom of the environment.

At time t, the reduce density matrix ρS(t) of the open quantum system is obtained from the

density matrix ρ(t) of the total system by partially tracing out the degrees of freedom of the

environment. Since ρ(t) evolves unitarily, we have

ρS(t) = TrB[U(t, t0)ρ(t0)U(t, t0)†], (C.16)

where ρ(t0) is density operator of the total system at some initial time t0 and U(t, t0) is the

time-evolution operator of the total system. Similarly, by taking the partial trace over the en-

vironmental degrees of freedom on both sides of the Liouville-von Neumann equation for the

total system, we may obtain equation of motion for the reduced density matrix ρS ,

dρS(t)

dt
= −i~[H(t), ρ(t)]. (C.17)

C.3 Quantum dynamical semigroups

In general, it is very difficult to solve the dynamics of the reduced system described by Eq.

(C.17). However, when environmental correlation times are short-lived, we may apply Marko-

vian approximation to neglect memory effects and formulate the dynamics of reduced system
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in terms of a quantum dynamical semigroup [176, 177].

We are interested in the case when the environment is in the equilibrium state. Suppose that

at initial time t = 0, state of the total system S + B is prepared in an uncorrelated product

state ρ(0) = ρS(0) ⊗ ρB, where ρS and ρB represent initial state of the reduced system S and

equilibrium state of the bath B, respectively. Then, there exists a quantum dynamical map Λ(t),

describing the evolution of reduced system S from the initial time t = 0 to some other time

t > 0, such that

ρS(t) = Λ(t)ρS(0) ≡ TrB
[
U(t, 0)(ρS(0)⊗ ρB)U(t, 0)†

]
. (C.18)

It can be shown that Λ(t) is a convex-linear, completely positive and trace-preserving quantum

operation.

As mentioned earlier, when the reservoir correlation times are much shorter as compared

to the characteristic time scale of the system evolution, we may neglect the memory effects

(Markovian approximation) in the reduced system dynamics. Under this approximation, the

quantum dynamical map Λ(t) satisfies the following semigroup property:

Λ(t1)Λ(t2) = Λ(t1 + t2), t1, t2 ≥ 0. (C.19)

A quantum dynamic semigroup is a continuous, one-parameter family {Λ(t) | t > 0} of dynam-

ical maps (Λ(0) = I), satisfying the relation given in Eq. (C.19).

Given a quantum dynamical semigroup, there exists a time independent linear map L′, the

generator of the semigroup, which allows us to represent the semigroup in exponential form:

Λ(t) = eL
′t. (C.20)

This representation yields a first-order differential equation [see Eq. (C.18)] for the reduced
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density matrix ρS(t),
dρS(t)

dt
= L′ρS(t). (C.21)

This equation is known as Markovian quantum master equation. The generator L′ represents

a super-operator, and may be considered as the generalization of the Liouville super-operator

introduced in section 1.1.

C.4 Lindblad quantum master equation

Lindblad [176] and separately Gorini, Kossakowski and Sudarshan [177] proved that the most

general form of the generator L′ of the quantum dynamical semigroup is given by

dρS(t)

dt
= L′ρS = −i~ [H, ρS] +

∑
k

γk

(
AkρSA

†
k −

1

2
A†kAkρS −

1

2
ρSA

†
kAk

)
, (C.22)

≡ −i~ [H, ρS] + LDρS. (C.23)

The above quantum master equation is known as the LGKS equation or Lindblad equation.

Here γk’s are positive relaxation constants, Ak are called Lindblad operators, H is effective

Hamiltonian of the system. The first term of the generator represents the unitary part of the

dynamics generated by the Hamiltonian H . LD is known as the dissipator and represents the

effect of the environment on dynamics of the reduced system. Generally, it induces non-unitary,

dissipative dynamics.
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Appendix D

Three-level laser heat engine

D.1 Steady state solution of density matrix equations

Here, we solve the equations for density matrix in the steady state. Substituting the expressions

for H0, H̄ , V0, and using Eqs. (5.2) and (5.3) in Eq. (5.4), the time evolution of the elements of

the density matrix are given by following equations:

ρ̇11 = iλ(ρ10 − ρ01)− 2Γh[(nh + 1)ρ11 − nhρgg], (D.1)

ρ̇00 = −iλ(ρ10 − ρ01)− 2Γc[(nc + 1)ρ00 − ncρgg], (D.2)

ρ̇10 = −[Γh(nh + 1) + Γc(nc + 1)]ρ10 + iλ(ρ11 − ρ00),

(D.3)

ρ11 = 1− ρ00 − ρgg, (D.4)

ρ̇01 = ρ̇∗10. (D.5)

Solving Eqs. (D.1) - (D.5) in the steady state by setting ρ̇mn = 0 (m,n = 0, 1), we obtain

ρ10 =
iλ(nh − nc)ΓcΓh

λ2[(1 + 3nh)Γh + (1 + 3nc)Γc] + ΓcΓh[1 + 2nh + nc(2 + 3nh)][(1 + nc)Γc + (1 + nh)Γh]
,

(D.6)
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and

ρ01 = ρ∗10. (D.7)

Calculating the trace in Eq. (5.5), the output power is given by

P = i~λ(ωh − ωc)(ρ10 − ρ01), (D.8)

Similarly evaluating the trace in Eq. (5.6), heat flux Q̇h can be written as

Q̇h = −~ωh(2Γh[(nh + 1)ρ11 − nhρgg]). (D.9)

Using the steady state condition ρ̇11 = 0 (see Eq. (D.1)), Eq. (D.9) becomes

Q̇h = −i~λωh(ρ10 − ρ01). (D.10)

Now EF is given by

E = 2P − (1− τ)Q̇h. (D.11)

Using Eqs. (D.8) and (D.9), we recast Eq. (D.11) as follows

E = i~λ(ρ01 − ρ10)[2(ωh − ωc)− (1− τ)ωh] (D.12)

Substituting Eqs. (D.6) and (D.7) in Eqs. (D.8) and (D.12), we have

P =
2~λ2ΓcΓh(nh − nc)(ωh − ωc)

λ2[(1 + 3nh)Γh + (1 + 3nc)Γc] + ΓcΓh[1 + 2nh + nc(2 + 3nh)][(1 + nc)Γc + (1 + nh)Γh]
,

(D.13)

E =
2~λ2ΓcΓh(nh − nc)[2(ωh − ωc)− ηCωh]

λ2[(1 + 3nh)Γh + (1 + 3nc)Γc] + ΓcΓh[1 + 2nh + nc(2 + 3nh)][(1 + nc)Γc + (1 + nh)Γh]
.

(D.14)
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D.2 Optimization in high temperature limit

In order to obtain the analytic expressions of interest, we optimize power output and the EF

given in Eq. (D.14) in the high temperatures limit, assuming the strong matter-field coupling

λ >> Γh, c. In the said limit, nh and nc can be approximated as

nh =
1

e~ωh/kBTh − 1
' kBTh

~ωh
, (D.15)

nc =
1

e~ωc/kBTc − 1
' kBTc

~ωc
. (D.16)

Using Eqs. (D.15) and (D.16) in Eq. (D.14) and ignoring the terms containing Γh,c in com-

parison to λ, we can write P and E in terms of τ = Tc/Th and γ = Γh/Γc in the following

form

P ' 2~Γh(ωh − ωc)(ωc − τωh)
3(ωcγ + τωh)

, (D.17)

E ' 2~Γh(ωc − τωh)[2(ωh − ωc)− (1− τ)ωh]

3(ωcγ + τωh)
. (D.18)

One parameter optimization of ecological function

We optimizeE w.r.t to one parameter only while keeping the other fixed. Optimizing Eq. (D.14)

wrt ωc, for a fixed ωh, and solving for ωc, we obtain

ω∗c =
ωh
2γ

(√
2τ(1 + γ)[γ + (2 + γ)τ ]− 2τ

)
. (D.19)

Using Eq. (D.19) in Eq. (5.10), EMEF is evaluated as given in Eq. (15).

Optimizing Eq. (D.18) wrt ωh, we have

ω∗h = ωc

√
(1 + γ)(1 + τ)[γ + 2(1 + γ)τ ]− γ(1 + τ)

τ(1 + τ)
. (D.20)

Again using Eqs. (D.20) and (5.10), EMEF is derived as given in Eq. (16).
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D.3 Ratio E/P for two different target functions

Here, we derive the expressions for the ratios of EF (E) and power (P ) for the following four

cases.

Optimal E for a fixed ωh

The optimal value of the EF, E∗(ωh)
eco , can be evaluated by substituting Eq. (D.19) into Eq.

(D.18). Similarly, substituting Eq. (D.19) into Eq. (D.17), we obtain the expression for power

at maximum EF, P ∗(ωh)
eco . Therefore, we have

E∗(ωh)
eco =

2~ωhΓh
3γ2

(
γ + 4τ + 3γτ − 2A

)
, (D.21)

P ∗(ωh)
eco =

~ωhΓh
3γ2A

(A− 2(γ + τ))(A− 2(1 + γ)τ), (D.22)

where A =
√

2(1 + γ)τ [γ + (2 + τ)γ]. The ratio of E∗(ωh)
eco and P ∗(ωh)

eco is evaluated to be

Rωh
eco =

√
2(1 + γ)τ [γ + (2 + τ)γ]

(1 + γ)τ +
√

2(1 + γ)τ [γ + (2 + τ)γ]
. (D.23)

Now, consider γ → 0 and γ →∞. For these limiting cases, the above equation reduces to:

Rωh
eco(0) =

2

3
, Rωh

eco(∞) =

√
2(1 + τ)

√
τ +

√
2(1 + τ)

. (D.24)

Optimal E for a fixed ωc

In this case, the expression for optimal EF and corresponding power output can be obtained by

using Eqs. (D.20) and (D.18), and Eqs. (D.20) and (D.17), respectively.

E∗(ωc)eco =
2~ωcΓh

(
1 + 3τ + 2γ(1 + τ)− 2B

)
3τ

, (D.25)

P ∗(ωc)eco =
2~ωcΓh

(
(1 + γ)(1 + τ) +B

)(
(τ + γ)(1 + τ) +B

)
3τ(1 + τ)B

, (D.26)
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where B =
√

(1 + γ)(1 + τ)[γ + (2 + τ)γ]. We evaluate the ratio of E∗(ωc)eco and P
∗(ωc)
eco as

follows

Rωc
eco =

√
(1 + γ)(1 + τ)[γ + (2 + τ)γ]

(1 + γ)τ +
√

(1 + γ)(1 + τ)[γ + (2 + τ)γ]
. (D.27)

Again the limiting cases γ → 0 and γ →∞ yield the following two equations

Rωc
eco(0) =

√
2(1 + τ)

√
τ +

√
2(1 + τ)

, Rωc
eco(∞) =

1 + τ

1 + 2τ
. (D.28)

Optimal power with a fixed ωh

The optimization of power wrt ωc (ωh fixed) or ωh (ωc fixed) is perfomed in the Ref. [22]. For

the former case, the expressions for ωP∗c is given by

ωP∗c = γ−1[τ +
√
τ(1 + γ)(τ + γ)]ωh. (D.29)

Again, the expressions for optimal power and for the EF at optimal power can be evaluated, and

are given by.

P ∗(ωh)
pow =

2~ωhΓh(γ + 2τ + γτ − 2C)

3γ2
, (D.30)

E∗(ωh)
pow =

2~ωhΓh(C − (1 + γ)τ)(C − 2τ − (1 + τ)γ)

γ2C
,

(D.31)

where C =
√
τ(1 + γ)(τ + γ). The required ratio is calculated to be

Rωh
pow = 1−

√
τ(1 + γ)(τ + γ)

τ + γ
. (D.32)

The cases of our interest are γ → 0 and γ →∞. By evaluating Rωh
pow for the extreme values of

γ, we get

Rωh
pow(0) = 0, Rωh

pow(∞) = 1−
√
τ . (D.33)
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Optimal power with a fixed ωc

For this case, the expressions for ωP∗h is given by [22]

ωP∗h = τ−1[−γ +
√

(1 + γ)(τ + γ)]ωc. (D.34)

In this case, P ∗(ωc)pow and E∗(ωc)pow are given by, respectively,

P ∗(ωc)pow =
2~ωcΓh

(
1 + τ + 2γ − 2D

)
3τ

, (D.35)

E∗(ωc)pow =

(
D − (1 + γ)

)(
(1 + τ)D − 2τ − γ(1 + τ)

)
(2~ωcΓh)−13τ

√
(1 + γ)(τ + γ)

,

(D.36)

where D =
√

(1 + τ)(τ + γ). The ratio of E∗(ωc)pow and P ∗(ωc)pow is given by

Rωc
pow = 1− (1 + γ)τ√

(1 + γ)(τ + γ)
. (D.37)

Evaluating the limit of Rωc
pow at γ → 0 and γ →∞, we obtain, respectively

Rωc
pow(0) = 1−

√
τ , Rωc

pow(∞) = 1− τ. (D.38)
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[4] S. Carnot, “Réflexions sur la puissance motrice du feu et sur les machines propres à
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[153] D. Gelbwaser-Klimovsky, R. Alicki, and G. Kurizki, Phys. Rev. E 87, 012140 (2013).

[154] Gelbwaser-Klimovsky, W. Niedenzu, P. Brumer, and G. Kurizki, Sci. Rep. 5, 14413

(2015).

[155] O. Abah, J. Roßnagel, G. Jacob, S. Deffner, F. Schmidt-Kaler, K. Singer, and E. Lutz,

Phys. Rev. Lett. 109, 203006 (2012).

[156] S. Chand and A. Biswas, Phys. Rev. E 95, 032111 (2017).

119



[157] S. Chand and A. Biswas, Europhys. Lett. 118, 60003 (2017).

[158] M. O. Scully, Phys. Rev. Lett. 87, 220601 (2001).

[159] M. O. Scully, Phys. Rev. Lett. 104, 207701 (2010).

[160] X. L. Huang, T. Wang, and X. X. Yi, Phys. Rev. E 86, 051105 (2012).

[161] S. Rahav, U. Harbola, and S. Mukamel, Phys. Rev. A 86, 043843 (2012).

[162] H. P. Goswami and U. Harbola, Phys. Rev. A 88, 013842 (2013).

[163] K. Zhang, F. Bariani, and P. Meystre, Phys. Rev. Lett. 112, 150602 (2014).

[164] K. Zhang, F. Bariani, and P. Meystre, Phys. Rev. A 90, 023819 (2014).

[165] A. Dechant, N. Kiesel, and E. Lutz, Phys. Rev. Lett. 114, 183602 (2015).

[166] B. K. Agarwalla, J.-H. Jiang, and D. Segal, Phys. Rev. B 96, 104304 (2017).

[167] R. Wang, J. Wang, J. He, and Y. Ma, Phys. Rev. E 87, 042119 (2013).
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