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Abstract
Primarily, in this thesis, the focus has been to study superconductivity in certain topologi-

cally non-trivial materials using scanning tunneling microscopy and spectroscopy (STM/STS).
Scanning Tunneling Spectroscopy (STS) is a powerful tool to probe the quasi-particle density
of states in a conducting solid. A spectral gap, if any, can thus be directly probed by this tech-
nique. We have used an ultra-low temperature (down to 300 mK) and ultra-high vacuum (10-11
mbar) STM to study the nature of pairing in some of the candidate exotic superconductors. The
major results, procured in this work are highlighted below.

Multiband superconductor Mo8Ga41: Mo8Ga41 is a compound of endohedral gallide
family and the compound of the highest critical temperature in the family. The highest critical
temperature in this compound is a consequence of the competition between valence electron
counts and the lattice structure variation. The high Tc of Mo8Ga41 is, in fact, a deviation from
the rules proposed by Mathias in terms of electron counts. We found clear and direct evidence
of two gap superconductivity in Mo8Ga41. The electron-phonon coupling in this system is
found to be weak.

The type II Dirac semimetal PdTe2: PdTe2 is known to be a material where topologi-
cally non-trivial bands and superconductivity co-exist. The recent observation of type II Dirac
fermions in PdTe2 indicates the possibility of non-trivial Cooper-pairing when this compound
undergoes superconducting transition below 1.75 K. We have shown that despite such unique
coexistence, the superconducting phase is, in fact, conventional BCS type in nature [Ref.
Shekhar Das et al., Phys. Rev. B 97, 014523 (2018)]. The superconducting phase in PdTe2 is
further interesting because it also displays the distribution of critical fields on the surface where
we observed domains of type I and type II superconductivity in the presence of magnetic fields.
We show that such inhomogeneity in the superconducting phase is related to the electronic
inhomogeneity in the normal state.

A candidate topological superconductor Nbx-Bi2Se3: Bi2Se3 is a famous topological in-
sulator. When Bi2Se3 is intercalated with elemental metals (e.g. Cu, Sr, and Nb) the resulting
compound becomes superconductor with the critical temperatures of 3 K. Among all, Nbx-
Bi2Se3 (x = 0.25) is a stronger possible candidate for topological superconductivity. Here,
through STM spectroscopy we show that the tunneling spectra deviate from a BCS-like behav-
ior, and the tunneling conductance at low bias is large. Our results are in good agreement with
the idea of topological superconductivity in Nbx-Bi2Se3.

Tip-induced superconductivity in silicon: Surprisingly, when the STM tip makes metal-
lic contact with the highly doped silicon crystal, a unique superconducting phase appears un-
derneath the tip. The critical temperature of this phase was significantly higher ( 11 K). We
employed Point-Contact Andreev Reflection (PCAR) spectroscopy for further investigation of
superconducting phase in silicon and found that the superconductivity is conventional in nature

x



which thoroughly follows BCS theory.

To justify the above works, we have chosen the following thesis plan:

Chapter I is an introduction to the work presented in this thesis. This thesis deals with
the superconducting phase of topologically trivial as well as non-trivial systems. This chapter
highlights the main key points of BCS theory of superconductors for conventional supercon-
ductors and the discussion of topological insulators, Dirac and Weyl semimetals.

Chapter II describes the details of the experimental methods used to probe the supercon-
ducting phase of materials. The Scanning Tunneling Microscope (STM) is extensively used
in most of the experiments in the work presented in this thesis. The experiments are carried
out down to 300 mK temperatures with up to 11 T magnetic field. The sample preparation
is done in-situ. Point Contact Andreev Reflection Spectroscopy (PCAR) is also employed in
some of the experiments. All the experiments are carried out using a home-built point-contact
probe down to 400 mK temperatures. A theoretical analysis part is also included in this chapter.

The main experimental observations of my research work as discussed above have been
included as a chapter III, IV, V and VI respectively. At the end of this thesis, I will be discussing
some of the important works carried out by me and included in the appendices (A and B).
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Chapter 1
Overview of superconductivity and
topological materials

1.1 Introduction

Since the last century, superconductivity has been the most fascinating area of fundamental re-
search in condensed matter Physics. Superconductivity in materials leads to the flow of current
without any resistance. After the discovery of superconductivity, it was thought and exper-
imentally realized that some of the elemental metals can become superconductor when they
cooled below a certain temperature. Superconductivity in materials is governed by a complex
quantum process. In most of the elemental superconductors and their alloys superconductivity
is well understood within the framework of mean field theory that was developed by Bardeen,
Cooper, and Schrieffer (BCS) in 1952. [1] Within this theory, the electrons form Cooper pairs
and superconductivity happens when all the Cooper pairs in a material condense into a single
quantum ground state where the phase of all the Cooper pairs become identical and a gap is cre-
ated between the condensate and the single quasi-particle states. One of the basic assumptions
involved in this theory is that the gap function in the quasiparticle density of states is isotropic
in the momentum space. This theory has been very successful and most of the superconductors
with low critical temperatures have been described well within this theory. Such superconduc-
tors are generally known as conventional superconductors. [2] There are many other classes of
superconductors where Cooper-pairing is not accomplished by the interaction of charge carri-
ers with the crystal lattice like in the high Tc superconductors. Because of the unconventional
Cooper pairing the superconducting gap function found to be anisotropic. The quantum mech-
anism of Cooper-pairing in such materials is not explained within the BCS theory. [1]

Moreover, the extensive research in superconductivity has been triggered by following the
discovery of topological materials such as topological insulators [3], Dirac and Weyl semimet-
als. The topological materials host relativistic Dirac fermions as a quasi-particle excitation on
their surface/edges [4]. It is believed that the emergence of superconductivity in topologically
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non-trivial materials leads to the existence of highly searched relativistic particle Majorana
fermions. In fact, in the past attempts were made to realize such topological superconducting
phases in topological insulators and semimetals. For example, by doping or applying pressure
on topological materials, fabricating heterostructures of topological material and superconduc-
tors to induce proximity effect [5] and by making point-contacts on a topological crystalline
insulator, Dirac or Weyl semimetals. However, in such systems, while a superconducting phase
could be achieved and there are some shreds of evidence also which claim the existence of Ma-
jorana fermions [6] but still a clear manifestation of topological superconductivity remained an
unobtainable goal. More scientific efforts are required in this direction of research as the exotic
excitations that emerge in topological superconductors are most important and interesting for
future applications such as in fault-tolerant quantum computing. [7]

First I will begin with the introduction of superconductivity and discuss briefly by consid-
ering the main assumptions of BCS theory.
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1.2 Basics of Superconductivity

Zero resistance and complete expulsion of the magnetic flux from the interior of the materials
are the trademarks of the superconductivity. Kammerlingh Onnes discovered a sudden drop
to zero in the resistivity of Mercury (Hg) at 4.2 K. [8] This was the first experiment to realize
a superconducting phase and was awarded by a Nobel prize. The temperature at which the
materials go to zero resistance state is called the critical temperature (TC). Subsequently, this
phenomenon was observed in a number of elemental metals and alloys. A microscopic theory
explaining the complex quantum process which leads to the superconducting state is proposed
by Bardeen, Cooper, and Schrieffer in 1957 known as BCS theory of superconductivity. [1]

1.2.1 Zero resistance

In 1911, Heike Kamerlingh Onnes discovered an absolute zero resistance state of Mercury
(Hg). [8] This is one of the most important signatures of a superconductor which is shown in
figure 1.1.

Figure 1.1: First material (Mercury) which shows superconducting transition at 4.2 K in R-T
curve. (Image credit: Wikipedia)

1.2.2 Meissner effect

Another hallmark of superconductors is the perfect diamagnetism below their critical temper-
atures. When a material is placed in a small magnetic field below its critical temperature it
expels all the magnetic flux from its interior. This phenomenon is called the Meissner effect
first observed by W. Meissner and R. Ochsenfeld [9].

When a material goes through the superconducting transition in the presence of a weak
magnetic field, it expels all the magnetic flux from the inside of the superconductor by intro-
ducing surface current. This effect is a unique property of a superconductor, which cannot be
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Figure 1.2: A picture showing the exclusion of magnetic field (Meissner effect) in the super-
conducting state under weak magnetic field. (Image credit: Wikipedia)

described by considering only a perfect conductor with zero resistivity. The electrical conduc-
tivity of a superconductor is infinite, which leads to a dissipationless current to flow forever.

1.2.3 Conventional superconductors

First successful microscopic mean field theory of superconductivity was proposed by Bardeen,
Cooper, and Schrieffer (BCS) in 1957. Within this theory, in superconductors, electrons of op-
posite momentum form Cooper pairs and condense into a single ground state. In order to make
Cooper pair, there should be something which can make two electrons attract each other. Ac-
cording to BCS theory, electron-lattice-electron interaction leads to an attractive force between
two electrons. The indirect interaction builds up when one electron deforms the lattice by inter-
acting it, the other electron takes this advantage and adjust itself to minimize the energy of the
system which causes a correlation between these two electrons and leads to a weak attractive
force between the two. Therefore, el-ph interaction is the main cause of superconductivity in
conventional superconductors.

After the discovery of various superconductors like elemental metals and alloys it has been
seen that the superconducting critical temperature depends on the different isotopes of the same
material such as Hg (Mercury) has many isotopes and the critical temperature for all the iso-
topes is different. [10] The dependence of critical temperature on the isotopes of material con-
firms that the electron-phonon coupling is responsible to the superconducting mechanism. The
second-order correction in the total Hamiltonian including a weak electron-phonon interaction
provides a negative correction to the energy. [11] The total Hamiltonian can be written as

H = Hel + Hph + Hel´ph

The Hamiltonian for electron-phonon interaction is

Hel´ph = Σk,q Mq a:k`q ak (bq + b:´q)
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where, a:k, ak are the creation and annihilation operators and a:k`q is the creation operator of

electrons after emitting a phonon of momentum q. bq and b:´q are the phonon absorption and
emission operators. Mq is the electron-phonon coupling coefficient. After the correction the
effective Hamiltonian becomes

He f f = Ho + Σk,q |Mq|2 a:k`q a:k1´qak1 ak [ h̄ωq
pεk1´εk1´qq

2´ph̄ωqq
2 ]

ωq is the phonon frequency. Now, the second term of the effective Hamiltonian will be
negative if pεk1´ εk1´qq ă ph̄ωqq and the electrons experience a net attractive force. In general,
εk1 and εk1´q vastly exceed h̄ωq. This k-space attraction allow electrons to attach together
with the energy less than their non-interacting counterparts. This attraction is the basis of
superconductivity.

V pk1,qq “
|Mq|

2h̄ωq

pεk1´ εk1´qq
2´ph̄ωqq2

(1.1)

where, q “ k´ k1, and phonon frequency ωq is proportional to q. Therefore, for h̄ωq to be
maximum q should be large enough. The maximum value q can have is 2k when k1 “´k. This
indicates that the coupling of momentum k with -k will be much favorable to get the strong
attractive interaction between electrons and to condense in to the minimum energy state.

In BCS theory, the ground state wave function of cooper-pairs is given by

|ψBCS ą“Π~kpuk` vk c:kÒ c:
´kÓq|0ą (1.2)

where |0y is the vacuum state and c:kÒ, c:
´kÓ are the single electron operators which create

an electron with momentum k and ´k, while v2
k is the probability of pair occupancy and u2

k =
1- v2

k is the probability of pair vacancy.
Since the electrons form Cooper-pairs, an energy gap is formed between the ground state of

the superconductor and the energy of the quasi-particle excitation. This energy gap is known
as the superconducting energy gap of a superconductor. At temperature T = 0, the function of
the superconducting energy gap in terms of momentum k is given as,

∆~k “´
1
N

ÿ

k1
V~k~k1 ă c:kÒ c:

´kÓ ą (1.3)
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Where Vkk1 is the electron-electron attractive interaction energy.

The elementary excitations in a superconductor are not electrons or holes as in a normal
metal but more complicated objects known as Bogoliubons. For these excitations, Bogoliubov
defined a creation operator in terms of electron creation and annihilation operators [12] as

γ~kÒ “ u~kckÒ´ v~kc:
´kÓ (1.4)

γ
:

~́kÓ
“ u˚~kc:

´kÓ` v˚~kckÒ (1.5)

γ~kÒ destroy an electron with~k Ò and creates one with ~́k Ó, similarly γ
:

~́kÓ
creates an elec-

tron with ~́k Ó and destroys one with~k Ò. In the normal state, creating a bogoliubon excitation
corresponds to creating one electron and one hole. In the superconducting state, a bogoliubon
becomes superposition of both electron and hole state. The BCS ground state therefore cor-
responds to the vacuum of Bogoliubons γkσ |ψBCSy = 0. These excitations follow Fermi-Dirac
distribution

ă γ
:

k1Òγk1Ò ą“ă γ
:

´k1Óγ´k1Ó ą“
1

eβEk1`1

uk and vk are

|uk|
2 “ 1

2r1`
εk?

εk
2`|∆k|

2
s

and

|vk|
2 “ 1

2r1´
εk?

εk
2`|∆k|

2
s

by putting uk and vk and using Bogoliubons transformation and Fermi-Dirac statistics the
expression of the superconducting energy gap can be obtained

∆0 “ 2 h̄ωD e´
1

V0ρF (1.6)

and expression for critical temperature of superconductors can be obtained for which ∆‰ 0
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Tc “ 1.14
εD

kB
e´

1
V0ρF (1.7)

Since, we know the ∆0 and Tc, ∆0{kBTc ratio can be calculated as

∆0
kBTc

“ 1.76

this ratio is true for most of the conventional superconductors called the BCS limit of con-
ventional superconductors. For weak coupling superconductors, this ratio falls between 1.5 to
2.25. Most of the elemental materials or alloys in which the order parameter is well defined
within the BCS theory are known as conventional superconductors. Generally, low-temperature
superconductors are conventional in nature.

1.2.4 Characteristic length scales of superconductors

In 1935, after the discovery of superconductivity, London brothers F. and H. London proposed
a simpler theory to explain the Meissner effect. [12] They introduced two basic electrodynamic
equations as

E “
4πλ 2

L
c2

BJs

Bt
(1.8)

H “´
4πλ 2

L
c2 p∇ˆ Jsq (1.9)

where, ns is considered as the number density of superconducting electrons and λL is the
penetration depth. When the second London’s equation combined with the Maxwell equation
∇ˆH “ 4πJ{c, the resultant equation ∇2H “ H{λ 2 implies that the magnetic field decays
exponentially with the penetration depth inside a superconductor. This is how, it explains the
Meissner effect. The empirical temperature dependence of λ pT q is described by

λ pT q “ λ p0qr1´pT{Tcq
4s´1{2

The penetration depth is the characteristic length of a superconductor

λLp0q “ p
mc2

4πnse2 q
1
2 (1.10)
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λLp0q is an ideal theoretical limit as T Ñ 0. Experimental observations of penetration depth
reveals that the actual measured penetration depth is always larger than λLp0q. The quantitative
explanation of this larger penetration depth is given by Pippard by the introduction of Pippard’s
coherence length ξo. By considering the uncertainty principle argument that "Only electrons
within « kTc of the Fermi-energy can play an important role in superconductivity" and these
electrons have a momentum range ∆p« kTc{v f . Thus

∆xě h̄{∆p« h̄v f {kTc

Now, the Pippard’s coherence length is given by

ξo “ a
h̄v f

kTc
(1.11)

where v f is the Fermi velocity and a is a numerical constant. xio is analogous to the mean
free path l in the non-local electrodynamics of metals. In 1950, Ginzburg and Landau advanced
a microscopic theory of superconductivity in terms of an order parameter. The Ginzburg and
Landau (GL) theory concentrate completely on the superconducting electrons rather than the
normal excitations. [12] The GL theory also introduces a characteristic length scale known as
GL coherence length

ξ pT q “
h̄

|2m˚αpT q|1{2
(1.12)

where m˚ “ 2m and αpT q is the expansion coefficient and vanishes as pT ´ Tcq. Far be-
low Tc, GL coherence length ξ pT q « ξo; the Pippard’s coherence length. However, these two
quantities are different. The GL parameter can be defined by the ratio of the two characteristic
lengths

κ “
λ

ξ
(1.13)

Since, λ and ξ both diverges as pTc´T q´1{2 near Tc, this dimensionless ratio κ is approxi-
mately independent of temperature. Typically κ ăă 1 implies that ξ ą λ .

1.2.5 Type II superconductors

In 1957, Abrikosov investigated the case when κ is larger instead of small i.e. what would
happen if ξ ă λ instead of ξ ą λ . [13] He found a different superconducting phase known as
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type II superconductor where magnetic flux can penetrate through the superconductor in the
form of a regular array of flux tubes. Each flux tubes carry the quantum of flux Φo “ hc{2e.
Abrikosov showed the exact boundary of two phases at κ “ 1{

?
2. He described the type I and

type II superconductors as

κ “ λ

ξ
ă 1?

2
Ñ type I superconductors

κ “ λ

ξ
ą 1?

2
Ñ type II superconductors

Type I 
Type II 

0 < λ /ξ  < 1/˩2 λ /ξ  > 1/˩2 

-M -M 

H H Hc Hc1 Hc2 Hc 

(a) (b) 

Figure 1.3: M vs. H plot for a (a) type I superconductor and (b) type II superconductor.
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1.2.6 Unconventional superconductors

The superconductors which do not have a well-defined order parameter within the BCS theory
are generally known as unconventional superconductors. Basically, the high-temperature su-
perconductors are unconventional superconductors where the origin of superconducting state
is not clear and still elusive with some exceptions like MgB2. [14] These unconventional su-
perconducting compounds challenge our theoretical understanding of the origin and nature of
superconductivity. Experimental observations strongly indicate that there are a lot of funda-
mental differences between the physical properties of the conventional superconductors and
high-temperature unconventional superconductors. The most significant difference is in the
symmetry of their order parameters. In conventional superconductors, the order parameter is
isotropic in the momentum space which means that the superconducting energy gap is sym-
metric (s-wave) which implies isotropic interaction between electrons in all spatial directions.
However, in unconventional superconductors, the scenario is completely different and appear
to be much more complex. The superconducting gap here is anisotropic. The unknown exotic
phenomenon responsible for superconductivity in these materials leads to the anisotropy in the
order parameter.

Apart from the high-temperature superconductors, there are many other classes of super-
conductors where unconventional superconductivity occurs from the number of microscopical
phenomena. One of the main example is of topological superconductors. I will give a brief idea
about the topological superconductivity in the next section after the introduction of topological
materials (see section 1.4).

10



1.3 Topological non-trivial systems

This section briefly summarize the recent research developments in the direction of topological
materials. Topologically non-trivial systems such as the topological insulators have emerged
as the new quantum states of matter. [15] Their unique properties, such as the manifestation
of time reversal symmetry and protected edge states have attracted the significant attention of
the contemporary condensed matter physics community for fundamental studies as well as for
potential applications in spintronics and fault-tolerant quantum computing. Therefore, studying
their quantum novel properties under extremely special conditions is of foremost importance.

1.3.1 Historical perspective

In condensed matter physics, within the description of Landau’s theory, phases of matter are
often characterized by a very well-defined order parameter and by the symmetries they sponta-
neously break. For example, ferromagnets break rotational symmetry along with time reversal
symmetry. The discovery of quantum Hall effect in a 2-D electron gas showed that there are
phases of matter for which an order parameter cannot be defined and no spontaneous breaking
of symmetry can be identified. Such phases are not understood within the frameworks of con-
ventional theories. Unlike in classical Hall Effect, Hall conductance is quantized in quantum
Hall Effect and the quantized Hall conductivity is surprisingly robust against external pertur-
bations/disorders. [16, 17] Within the framework of the Nobel Prize-winning theory proposed
by Thouless, Kohmoto, Nightingale, and den Njis (TKNN), the quantum Hall phase was un-
derstood to be a new topological phase of matter where remarkable robustness of the quantized
Hall conductance is due to a topological invariant known as the Chern number. [18] More
recently even more exotic states of matter were realized where topological invariants play a
crucial role in determining the physical properties. One such example is the quantum spin Hall
states. A special case of these states is termed as topological insulators, which are character-
ized by an energy gap in the bulk, like an ordinary band insulator, but conducting states on
the surface. Spin-orbit coupling (SOC) causes opposite spin electrons at the edges to move in
opposite directions even in the absence of an external magnetic field. These ’chiral’ edge states
are robust to impurities or magnetic defects as there are no states available for backscattering.
Spin and momentum of the surface charge carriers are locked. These states were theoretically
predicted to exist in (Hg, Cd)Te quantum well structures by Bernevig, Hughes, and Zhang and
were experimentally observed in 2007. [3] Alloy BixSb1´x was the first 3D topological insulator
discovered by ARPES (Angle-Resolved Photoemission Spectroscopy) experiments. [19]
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1.3.2 Theoretical and experimental background of topological materials

This section will provide an overview of materials which host Dirac fermions in condensed
matter systems. Dirac fermions are the particles that obey the Dirac Hamiltonian instead of
Schrodinger Hamiltonian. The excitations in the normal metals and doped semiconductors can
be described well by the Schrodinger equation

ih̄
B

Bt
|ψptq ą“ Hs|ψptq ą (1.14)

The Schrodinger Hamiltonian is given as Hs“ p2{2m˚, where h̄ is the reduced Planck’s con-
stant, m˚ is the effective mass and p is the momentum. Schrodinger fermions are accompanied
by a parabolic dispersion relation E9p2. However, recent discoveries showed that there are
some materials that host relativistic excitations, the most famous one is called Dirac fermions.
These relativistic excitations cannot be described by conventional Schrodinger Hamiltonian but
can be described by Dirac Hamiltonian [20]

H “ cσ .p`mc2
σz (1.15)

σ “ pσx,σyq & σz are the Pauli matrices and c is the speed of light, c is replaced by vF , the
Fermi velocity in condensed matter systems. Dirac fermions show a linear energy dispersion.
If the mass vanishes in equation 1.15 then there will be no possibility of opening a gap at Dirac
point because this is the only perturbation term in the Dirac Hamiltonian. [21, 22] This will be
useful in case of Weyl semimetals (WSM) which I will discuss in the next section. The Dirac
Hamiltonian leads to an interconnection of conduction band and valence band even in case of
non zero Dirac mass.

More generally the Dirac equation [21] can be written as

ih̄
B

Bt
|ψptq ą“ pcα.p`βmc2

q|ψptq ą (1.16)

In the relativistic regime, when cpąąmc2, the chirality σ .p{p defines whether the spin and
momentum of a (quasi) particle are aligned parallel or antiparallel. Thus the chirality can have
the values +1 or -1 for parallel or antiparallel alignment. For massless particles the chirality
is similar to the helicity. [23] One more important dynamics of the particles arises due to the
chirality of the particles. If the momentum of the particles changed from p to -p it also needs
to flip the spin σ to ´σ . This process of backscattering is suppressed without spin-flip.
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The most famous Dirac material is graphene; a monolayer of graphite. [24] The band struc-
ture of a monolayer of carbon host Dirac like touching point (Dirac cone) and show linear
dispersion above and below these points. In particular, the important 2D Dirac system is the
3D topological insulator. [25] In topological insulators, the bulk is insulating like an ordinary
band insulator while the surface is conducting. [26] Commonly, these conducting states arise
from the linear band crossing leads to the Dirac like dispersion. The origin of these surface
states is of topological character. [27] The insulating bulk of TI hosts inverted bands; the va-
lence band goes above the conduction band and conduction band drops below the valence band
this is how they reverse the role. Spin-orbit coupling causes an insulating material to acquire
protected surface states in topological insulators. The first generation of topological insulator
found in Bi1´xSbx. More famous and extensively investigated generation of the topological
insulator is Bi compounds such as Bi2Se3 and Bi2Te3. [26]

trivial 
band gap 

Critical 
point 

Inverted 
band gap 

(a) (b) (c) 

Figure 1.4: (a) Showing the band gap in a normal band insulator (b) Critical point where
valence band and conduction band touches at a single point (c) Inverted bands: a case of topo-
logical insulator. [28]

In figure 1.4, we show how trivial band insulator can become the topological insulator (TI)
by tuning the external parameter. The external parameter here is the Spin-Orbit Coupling.
Spin-Orbit Coupling plays an important role in topological materials. The inverted bands are
responsible for the conducting surface states in TIs. At the critical point, valence band and
conduction band touch at a single point called the Dirac-point. This phase is known as Dirac
semi-metal (DSM).
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1.3.3 Dirac and Weyl semimetals

Before discussing the Dirac semimetals (DSM), let us first discuss Weyl semimetals (WSM).
Since Dirac semimetals are the special case of Weyl semimetals from the point of view of
symmetry. In 1929, Weyl simplified the Dirac Hamiltonian and proposed Weyl Hamiltonian by
considering the zero mass of the particles. [22]

HW “˘cpσx px`σy py`σz pzq (1.17)

Equation 1.17 shows the topologically protected chiral charge. [29] It can also be seen as
a pseudo-magnetic monopole in the momentum space. [30, 31] Mathematical description of
the monopole needs the introduction of Berry curvature which can be understood as the in-
duced flux by the monopole. Integration over a small surface including one Weyl node adds
˘2π to the flux. [32] The sign indicates the chirality of the Weyl node. Integration over the
whole Brillouin zone should give zero because Weyl nodes appear in pairs with opposite chi-
rality. Since, Dirac point is protected by time reversal and inversion symmetry, in case of Weyl
semi-metals either time reversal or inversion symmetry needs to be broken. Time reversal sym-
metry requires a particle to move in the opposite momentum direction with the opposite spin
i.e. Epk,Òq “ Ep´k,Óq [33] and inversion symmetry imposes a condition that a particle should
move in opposite momentum direction with same spin i.e. Epk,Òq “ Ep´k,Òq. According
to the broken symmetry, the degeneracy of the Dirac point will be lifted and will leave two
Weyl points behind with double degeneracy. When One chiral Weyl node connects with the
other with opposite chirality it gives rise to the more exotic states called Fermi arc. [29] Chiral
anomaly is also an exotic phenomenon which appears only in case of Weyl semimetals when
Weyl points are separated in momentum space. [31] The experimental observation of chiral
anomaly needs application of magnetic field which itself breaks the time reversal symmetry,
therefore, this effect can also be seen in Dirac semimetals. In the presence of magnetic field
Dirac point splits into two Weyl points leads to the chiral anomaly in the experimental mea-
surements. The famous Weyl semimetals are TaAs, TaP, NbAs and NbP. All of these belongs
to the same family. [34–37]

DSMs can be understood in two ways; 1) 3D Dirac semimetals can be similar to the 2D
graphene with the linear dispersion in all three momentum directions. 2) Dirac semimetals
can be the special case of Weyl semimetals. In DSM, two Weyl nodes with opposite chirality
overlap without annihilating each other, since it is known that two Weyl nodes of opposite
chirality will annihilate each other if they come closer. However, interestingly, in case of Dirac
semimetals, some symmetries block this annihilation and protect them. [20] In addition to the
time reversal and inversion symmetry crystalline rotational symmetry also protect the Dirac
point in DSMs and make this phase to occur with stability. Therefore, two Weyl nodes with
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Figure 1.5: (a) Single Dirac cone which splits in to two Weyl nodes with opposite chirality
by breaking either inversion or time-reversal symmetry. (b, c) Represent two Weyl nodes with
opposite chirality. (Image credit: (b) and (c) are from Wikipedia.

opposite chirality can exist at the same momentum and lead to the Dirac node and symmetries
play a crucial role in the existence of DSMs. Thus, the Dirac point holds four-fold degeneracy.
[20]

(a) (b) (c) 

Ef 

Figure 1.6: (a) A Dirac cone symmetric about the touching point, known as type I Dirac cone.
(b) A tilted Dirac-cone but still touching point is a single point. (c) A tilted Dirac-cone up to
the limit where conduction and valence band are crossing the Fermi-level. Image is taken from
ref [38] and edited.

All the cases discussed above were of an ideal type of Dirac/Weyl cones where cones are
symmetric above and below the touching points. However, in real crystals, the scenario is
different not that much ideal. In real materials, the effect of finite temperature and scattering
comes into the picture. Mass-induced energy gaps also play an effective role in determining
the band structure. These factors can give rise to the asymmetries resulting in tilted Dirac/Weyl
cone. [39] In figure 1.6, two types of tilted Dirac cones are shown, the first one is not so special
because still conduction band is above the Dirac point and valence band is below the Dirac
point. The Fermi level is crossing only at a point as it was in the ideal case. Therefore, the
basic properties remain similar as of untilted case. In the second figure 1.6 (c), Dirac/Weyl
cone is tilted at higher degree leads to a situation where the Fermi energy crosses the bulk
conduction and valence bands, consequently, the density of states at the Fermi level is non-zero
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even if the Fermi level is situated at the touching point (DP/WP). [40] This is the scenario
in type II semimetals which consequently exhibits an open Fermi surface leading to the more
exotic electronic properties. [41]

1.3.4 Concept of topological equivalence

First, we will understand the concept of topology in quantum mechanical wavefunctions. Topol-
ogy is a mathematical concept to classify shapes or geometries. If any object can be contin-
uously transformed into other by bending or stretching then all the geometries one can make
out of the given geometry will be topologically equivalent. For example, a doughnut and a
coffee cup belong to the same topological class as both the shapes can be characterized by the
single hole in the shapes. Similarly by squeezing the sphere it can be transformed into the bowl
without creating or closing any hole, therefore, the sphere and a bowl belong to the same topo-
logical class. It can be better understood by the mathematical interpretation of Gauss-Bonnet
theorem where Gaussian curvature of the surface of an object can be evaluated by counting the
number of holes in a given object.

ş

O kdA“ 4πp1´gq

Here, k is the Gaussian curvature of the object O. This statement tells that the integration of
Gaussian curvature all over the surface is equal to 4πp1´ gq, here g represents the number of
holes in the given object. Small deformations on the surface can modify the curvature locally
but the integral all over the surface will still be equal to 4πp1´gq. Therefore, g is a topological
invariant which is not going to change by the small deformations on the given surface.

g = 0 g = 1 

Figure 1.7: Topological equivalence of geometrical objects where a sphere and a bowl are
equivalent and a doughnut and a coffee mug are equivalent topologically. (Image credit:
Wikipedia)

In condensed matter physics, it has recently been discovered that certain quantum phases
of matter display unique physical properties that can be understood only by the quantities anal-
ogous to the topological invariant g. Quantum phases with an energy gap (e.g. Band insulator,
semiconductor) are topologically equivalent if they can be smoothly deformed into one another
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without closing the gap. Two quantum mechanical wavefunctions can be in the same topo-
logical class if they are connected adiabatically into each other. A normal band insulator is
characterized by the finite gap at the Fermi-level. The transition from normal band insulator
into the topological insulator needs to close the gap somewhere in between at the critical point
where valence band touches the conduction band at a single point. Therefore, these phases
are in different topological class. Such phases can be described well within the framework of
topological band theory. Thouless, Kohmoto, Nightingale, and den Njis (TKNN) defined the
topological phases by introducing topological invariants. [18]

Topological invariants of phases of matter can be calculated by the Berry phase. Therefore,
before introducing the topological invariants we give a brief review of Berry phase.

1.3.5 Berry phase

In classical and Quantum mechanics, the Berry phase arises in a cyclic adiabatic process. When
a system is subjected to cyclic adiabatic processes, it acquires some geometrical properties of
the parameter space of the Hamiltonian that relates directly to the Berry phase. These concepts
were first introduced by S. Pancharatanam [42] in 1956 and by H. C. Longuet Higgins [43] in
1958 and completely generalized by Michael [44] Berry in 1984. This phase is also known as
Pancharatanam phase or Berry phase. The Berry phase can be observed experimentally in the
Aharonov-Bohm effect. Where, the wave function of a charged particle passing around a long
solenoid experiences a phase shift as a result of the enclosed magnetic field, this phase shift is
analogous to the Berry phase. [45] The adiabatic parameter in the case of the Aharonov-Bohm
effect is the magnetic field enclosed by two interference paths.

Let us take a general Hamiltonian HpRq that depends on a certain set of parameters say
R “ pR1,R2,R3, .....q and |npRq ą is the initial eigenstate. The eigenstates are defined in the
corresponding parameter space. The wavefunctions may have a non-trivial topological char-
acter. The Berry phase characterizes such a non-trivial topology in the parameter space. The
eigenstates are given by the solution of time-independent Schrodinger equation

HpRq|npRq ą“ EnpRq|npRq ą (1.18)

Now, we are interested in the adiabatic time evolution of the state |npRqą along some closed
path C. The system is initially prepared in the state |npRpt “ 0qq ą. In Quantum mechanics,
the adiabatic theorem can be applied to a system whose Hamiltonian slowly varies with time.
According to the Adiabatic theorem, the system will always remain in its instantaneous eigen-
state at any time t. It implies that the time evolved state |npRptqq ą will be the instantaneous
eigenstate of HpRptqq for slowly varying R. The time evolved state at time t can be written as
|ψptq ą“ e´iθptq|npRptqq ą and the time-dependent Schrodinger equation can be written as
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HpRptqq|ψptq ą“ ih̄
d
dt
|ψptq ą (1.19)

after putting the |ψptq ą it becomes

EnpRptqq|npRptqq ą“ h̄p
d
dt

θ ptqq|npRptqq ą `ih̄
d
dt
|npRptqq ą (1.20)

scalar product with <n(R(t))| gives

EnpRptqq´ ih̄ă npRptqq|
d
dt
|npRptqq ą“ h̄p

d
dt

θ ptqq (1.21)

from here θ ptq can be written as

θ ptq “
1
h̄

ż t

0
EnpRpt 1qqdt 1´ i

ż t

0
ă npRpt 1qq|

d
dt 1
|npRpt 1qq ą dt 1 (1.22)

In equation 1.17 the first term is the dynamical phase and the second term is corresponding
to the geometrical phase which is also known as the Berry phase that arises due to the time
evolution of the Hamiltonian. It indicates that the time evolved state has picked some phase
that depends on the trajectory in the parameter space.

Berry phase

γn “ i
ż t

0
ă npRpt 1qq|

d
dt 1
|npRpt 1qq ą dt (1.23)

and Berry potential can be described as

AnpRq “ iă npRpt 1qq|
d

dt 1
|npRpt 1qq ą (1.24)

In the next section we will use equation 1.24 (Berry potential) to calculate the topological
invariants.

18



1.3.6 Topological invariants

In condensed matter, if we take a Hamiltonian which can be described by the Bloch state upkq,
k is the crystal momentum then Berry potential can be described as

Anpkq “ iă upkq|∇k|upkq ą (1.25)

The curl of Berry potential will give the Berry flux equivalent to the magnetic field obtained
from Maxwell’s equation (~B“ ~∇ˆ~A)

Fpkq “ ∇kˆAnpkq (1.26)

Now, Chern number n will be

n“
1

2π

¿

BZ

Fpkq.dSpkq (1.27)

That is how the Chern number (n) identify the topologically trivial and non-trivial phase. If
the value of n is zero it will correspond to a topological trivial phase while the non-zero value
will be corresponding to the non-trivial phase of matter.

1.4 Topological superconductors

Topological classifications are not limited to the insulators and semimetals but also conducted
for the superconductors based on the symmetry properties. In 2000, topologically nontrivial
superconductors were discussed in a 2D model by Green and in a 1D model by Kitaev. [48,49]
For the superconducting state, both the models consider spinless, time-reversal-breaking and
p-wave pairing which leads to the existence of exciting particles known as Majorana particles
in the vortex core in case of 2D and at the edges in case of 1D. Majorana particle is its own an-
tiparticle. Ettore Majorana modified Dirac equation in 1937 using real numbers and described
Majorana particle that was its own antiparticle. [7, 15, 46, 47] Initially, the neutrino has been
considered as Majorana particle but after the discovery of a non-vanishing mass of the neu-
trino, there is no fundamental particle to be considered as Majorana particle. However, such
particles are predicted to exist in some of the condensed matter systems like in topological su-
perconductors. Sato proposed a model in 2D to realize Majorana zero modes even in case of
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s-wave superconducting pairing in 2003. [50] The ideas of realizing topological superconduc-
tors emerged only after the successful discovery of the topological insulators, which provides
an appropriate platform for spinless superconductivity.

Experimental realization of such a superconducting phase in topological insulators de-
mands intercalation of elemental metals in these materials or application of extremely high
pressure. [51–54] There have been a lot of efforts to induce superconductivity in topological
insulators. The heterostructures of superconductors and the interfaces of topological insulators
and superconductors have been rigorously studied and there are some shreds of evidence exist
of the presence Majorana states in such structures. [5, 6]

The primary goal of this thesis is to use scanning tunneling microscopy and spectroscopy
(STM/STS) to study the superconducting phases in topologically non-trivial materials. Our re-
sults, together with the other emerging discoveries in the respective field, may help to untangle
the fundamental physics.

20



Bibliography

[1] J. Bardeen, L. N. Cooper, J. R. Schrieffer, Phys. Rev. 106, 162 (1957).

[2] M. Tinkham, Introduction to Superconductivity (McGraw-Hill, Singapore, 1996).

[3] M. Konig, S. Wiedmann, C. Brüne, A. Roth, H. Buhmann, L. W. Molenkamp, X. -L. Qi,
S. -C. Zhang, Science 318, 766 (2007).

[4] X. -L. Qi and S. -C. Zhang, Rev. Mod. Phys. 83, 1057 (2011).

[5] M. X. Wang et. al., Science 336, 52 (2012).

[6] V. Mourik, K. Zuo, S. M. Frolov, S. R. Plissard, E. P. A. M. Bakkers, L. P. Kouwenhoven,
Science 336, 1003 (2012).

[7] M. Sato and Y. Ando, Rep. Prog. Phys. 80, 076501 (2017).

[8] H. Kamerlingh Onnes, Leiden Comm. 120b, 122b, 124c (1911).

[9] W. Meissner, R. Ochsenfeld, Naturwissenschaften 21, 787 (1933).

[10] C. A. Reynolds, B. Serin, and L. B. Nesbitt, Phys. Rev. 84, 691 (1951).

[11] P. Phillips, Advanced Solid State Physics, second edition, Cambridge University Press,
Pp. 402. (2012).

[12] G. E Blonder, M. Tinkham,and T.M. Klapwijk, Phy. Rev. B (1982).

[13] A. A. Abrikosov, Journal of Physics and Chemistry of Solids, 2 199–208 (1957).

[14] J. A. Silva-Guillen, Y. Noat, T. Cren, W. Sacks, E. Canadell, and P. Ordejon, Phys. Rev.
B 92, 064514 (2015).

[15] C. L. Kane, and E. J. Mele, Phys. Rev. Lett. 95, 146802 (2005).

[16] C.L. Kane and E.J. Mele Phys. Rev. Lett. 95, 226801 (2005).

21



[17] B. A. Bernevig, T. Hughes and S.C. Zhang, Science 314, 1757 (2006).

[18] D. J. Thouless, M. Kohmoto, M. P. Nightingale, and M. den Nijs Phys. Rev. Lett. 49,
405 (1982).

[19] D. Hsieh, D. Qian, L. Wray, Y. Xia, Y. Hor, R.J. Cava and M.Z. Hasan, Nature 452, 970
(2008).

[20] P. A. M. Dirac, Proc. of the Royal Soc. of London A, 117, 610–624 (1928).

[21] T. O. Wehling, A. M. Black-Schaer, and A. V. Balatsky, Advances in Physics 63, 1–76
(2014).

[22] H. Weyl, Zeitschrift fur Physik 56, 330–352 (1929).

[23] C. G. Bohmer and L. Corpe, Jour. of Phys. A 45, 205206 (2012).

[24] A. H. C. Neto, F. Guinea, N. M. R. Peres, K. S. Novoselov, and A. K. Geim, Rev. of
Mod. Phys. 81, 109 (2009).

[25] M. B. Schilling, A. Lohle, D. Neubauer, C. Shekhar, C. Felser, M. Dressel, and A. V.
Pronin, Phys. Rev. B 95, 155201 (2017).

[26] M. Z. Hasan and C. L. Kane, Rev. of Mod. Phys. 82, 3045–3067 (2010).

[27] M. Z. Hasan and J. E. Moore, Ann. Rev. of Cond. Matt. Phys. 2, 55–78 (2011).

[28] A. Bansil, H. Lin, and T. Das, Colloquium: Topological Band Theory,
arxiv:1603.1603.03576.

[29] S. Jia, S. Y. Xu, and M. Z. Hasan, Nature Materials 15, 1140–1144 (2016).

[30] X. Wan, A. M. Turner, A. Vishwanath, and S. Y. Savrasov, Phys. Rev. B 83, 205101
(2011).

[31] M. Z. Hasan, S.-Y. Xu, I. Belopolski, and S.-M. Huang, Ann. Rev. of Cond. Matt. Phys.
8, 289–309 (2017).

[32] A. M. Turner and A. Vishwanath, Contemporary Concepts of Cond. Matt. Sci. 6, 293-
324 (2013).

[33] J. S. Lamb and J. A. Roberts, Physica D: Nonlinear Phenomena 112, 1–39 (1998).

[34] S. Y. Xu, et. al., Science 349, 613–617 (2015).

[35] X. Huang, et. al., Phys. Rev. X 5, 031023 (2015).

[36] N. Xu., et. al., Nature Communications 7, 11006 (2016).

22



[37] C. L. Zhang, et. al., Nature Communications 7, 10735 (2016).

[38] M. Yan et. al., Nature Comm. 8, 257 (2017).

[39] M. N. Ali, J. Xiong, S. Flynn, J. Tao, Q. D. Gibson, L. M. Schoop, T. Liang, N.
Haldolaarachchige, M. Hirschberger, N. P. Ong, and R. J. Cava, Nature 514, 205–208
(2014).

[40] A. A. Soluyanov, D. Gresch, Z. Wang, Q. Wu, M. Troyer, X. Dai, and B. A. Bernevig,
Nature 527, 495–498 (2015).

[41] S. -Y. Xu, et. al., Science 347, 294–299 (2015).

[42] S. Pacharatanam, Proc. Indian Acd. Sci. A. 44, 247-262 (1956).

[43] H. C. L. Higgins, Proc. R. Soc. A. 244, 1-16 (1958).

[44] M. V. Berry, Proc. Royal Soc. A. 392, 45-57 (1984).

[45] Y. Aharonov and D. Bohm, Phys. Rev. 115, 485 (1959).

[46] C. W. J. Beenakker, Annu. Rev. Condens. Matter Phys. 4, 113–136 (2013).

[47] M. Sato, and S. Fujimoto, J. Phys. Soc. Jpn. 85, 072001 (2016).

[48] N. Read and D. Green, Phys. Rev. B 61, 10267–10297 (2000).

[49] A. Y. Kitaev, Physics-Uspekhi 44, 131 (2001).

[50] M. Sato, Phys. Lett. B 575, 126–130 (2003).

[51] Y. S. Hor, A. J. Williams, J. G. Checkelsky, P. Roushan, J. Seo, Q. Xu, H. W. Zandbergen,
A. Yazdani, N. P. Ong, and R. J. Cava, Phys. Rev. Lett. 104, 057001 (2010).

[52] M. Kriener, K. Segawa, Z. Ren, S. Sasaki, and Y. Ando, Phys. Rev. Lett. 106, 127004
(2011).

[53] Shruti, V. K. Maurya, P. Neha, P. Srivastava, and S. Patnaik, Phys. Rev. B 92, 020506(R)
(2015).

[54] C. Q. Han, et. al., App. Phys. Lett. 107, 171602 (2015).

23



Chapter 2
Experimental Techniques

This chapters introduces the experimental techniques that has been used in this thesis namely
the Scanning Tunneling Microscope (STM) and Point-Contact Andreev Reflection Spectroscopy
(PCAR). STM is a most powerful technique to study the physics of low energy excitations in the
condensed matter systems. Firstly, I will briefly go through the detailed description and basic
concepts of Scanning Tunneling Microscope (STM) and then briefly explain the Point-Contact
Andreev Reflection Spectroscopy (PCAR).

2.1 Scanning Tunneling Microscope (STM)

The Scanning Tunneling Microscope was invented for the first time by G. Binning and H.
Rohrer in 1981. [1] Few years later, they were awarded by the Nobel prize in Physics. This in-
vention changed the standard of research completely in experimental condensed matter physics.
STM provides the ability to see the topographic features of materials at angstrom level and the
ability to resolve the electronic information at µeV level. Basically, the STM works on the
basic principle of quantum tunneling. In the next section the brief introduction to the working
principle and the components of STM will be explained. The discussion of tunneling theory is
also included.

2.1.1 Working principle

The STM works on the quantum tunneling process correlated with the wave nature of electrons
in quantum mechanics. A schematic presented in figure 2.1 shows a sample and a conducting
tip connected through the current amplifier. The conducting tips usually made of metallic wires
(see section 2.2.3) is positioned close to the sample using the feedback loop. The distance be-
tween the two (tip and the sample) is maintained so that the tunneling current can be measured
from the tip after applying the appropriate voltage bias to the sample or one can do the reverse
process. The vacuum or oxide act as a potential barrier between these two. The tunneling gap
typically is of the order of several angstroms between tip and sample. This process enables us
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to scan over the surface of the sample as shown in figure 2.1. Imaging of the surface can be
done in two ways 1) in constant current mode 2) in constant height mode.

To get high resolution image (atomic scale) of sample surface we need to have a clean
surface, clean environment around. Therefore, to keep sample surface clean vacuum is the best
option. At higher temperatures thermal vibrations (e.g., lattice vibrations) appear in the sample.
Therefore, to avoid these lattice vibrations for the accuracy of measurement low temperature is
required. The value of tunneling current is the order of pico amperes. To measure it accurately
we have to decrease the mechanical vibrations of the system as much as possible.

Sample 

Metallic Tip 

Figure 2.1: The schematic of Sccaning Tunneling Spectroscopy.

2.1.2 Theoretical description of quantum tunneling current

In classical mechanics, particles can pass through a barrier only when the energy of the parti-
cles exceeds the barrier height (E > V). However, in Quantum mechanics due to the wave-like
nature of particles, there is always some probabilities for crossing the barrier even for E < V
and this process is known as quantum tunneling. The tunneling current between two metals first
measured by Giaever [2, 3] and then most interesting results were obtained by Nicol, Shapiro,
and Smith [4, 5] in metal/superconductor and superconductor/superconductor junctions. They
find direct evidence for a gap in the quasi-particle spectrum of the superconductor. The tunnel-
ing current depends upon the barrier width and decays exponentially by the relation, I9e´2kd ,
where d is the barrier width.

In 1961, J. Bardeen proposed a general formalism to describe electron tunneling between
two electrodes and for complex geometries which also accounts for the existence of multiple
conduction channels. Within the Bardeen’s model, the equation of tunneling current is de-
rived by the approach of Fermi’s golden rule using time-dependent perturbation theory. The
tunneling current between a normal metal and a superconductor junction can be given as
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I “´
4πe

h̄

ż 0

´ev
|M|2NnpεqNspε` eV qr f pεq´ f pε` eV qsdε (2.1)

Where, h̄ is the reduced Planck’s constant, M is the tunneling matrix, Nnpεq are the density
of states of a normal metal, Nspε ` eV q are the density of states of a superconductor and f pεq

is the Fermi-function

f pεq “ 1
1`eε{kBT

If one electrode is a metal and another is a superconductor then density of states of a metal
can be taken as flat (constant) near the Fermi-energy (within the order of magnitude of meV).
Tunneling matrix M can be approximated as the exponential function 9e´2kd as M is the ex-
pectation value of the single particle transition probability across the barrier. At sufficiently low
temperatures, the Fermi-function shows a sharp cut off at Fermi-energy. [6] Thus, the tunneling
current is proportional to the integral of the density of states of the superconducting electrode.

I “
´4πe

h̄
e´2kdNnpεq

ż 0

´ev
Nspε` eV qdε (2.2)

The equation 2.2 reflects an approximation at approximately zero temperatures and for
small potential difference.

2.1.3 Scanning Tunneling Spectroscopy (STS)

Topographic mode

In STM feedback loop enables imaging of surface in two different modes which can reveal the
topographic features.

1) Constant current mode: In this mode, current is kept at particular value and the height
of the tip changes according to the height/DOS profile of the surface. The variation in height is
measured as a function of position which reflects the topographic/electronic features.

2) Constant height mode: In this mode, tip height from the surface is kept at constant
value and the current varies according to the height/DOS profile. The variation in current as a
function of position reveals the topographic/electronic features.
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20nm x 20nm 20nm x 20nm 

(a) (b) 

Figure 2.2: Topographic image of silicon 7ˆ7 reconstruction by applying (a) positive bias and
(b) negative bias voltage to the sample.

Constant current mode is used to image the topography of the samples and constant height
mode is used to map the conductance in the measurements. In figure 2.2 we have shown the
topographic image of 7ˆ7 reconstruction of silicon surface. Both the images (a & b) have been
measured on same area in constant current mode. However, the difference in both the images
is the polarity of the applied bias voltage, in (a) sample has been kept at positive bias while in
case of (b) the sample has been kept at negative bias. The density of states at the Fermi level
will be different as the applied voltage is different. Therefore, it is clear from here that the STM
measures the local electronic structure of the conducting samples.

Tunneling Spectroscopy:

There are several methods to study the superconducting phases and to measure the super-
conducting energy gap like Penetration depth measurement, Specific heat measurement, Point-
Contact Spectroscopy (PCS) and Scanning Tunneling Spectroscopy (STS) etc. STS and PCS
are the direct and more accurate methods to measure the superconducting energy gap. It can be
obtained by measuring the tunneling conductance.

The tunneling conductance can be obtained by differentiating the tunneling current with
respect to applied voltage

dI
dV

“
´4πe

h̄
e´2kdNnpεq

d
dV

ˆ
ż 0

´ev
Nspε` eV qdε

˙

(2.3)

The superconducting density of states can be described as
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NspEq “
´

E?
E2´∆2

¯

∆ is the superconducting energy gap of the superconducting electrode. By fitting the exper-
imental data using tunneling equation (equation 2.3) superconducting gap can be evaluated.To
take care of the broadening of the BCS [7] density of states of a superconductor possibly due to
finite life time of quasiparticles Dyne included an effective broadening parameter to the density
of states [8]

NspEq “ Re
ˆ

pE´iΓq?
pE´iΓq2´∆2

˙

We have used Dyne’s equation [8] of tunneling conductance to fit the experimental data in
our analysis.
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Figure 2.3: Tunneling spectrum measured on superconducting Pb using PtIr tip.

In figure 2.3, we have shown a representative spectrum obtained on superconducting Lead
(Pb) sample using PtIr tip at 300 mK temperatures. A fully formed superconducting gap can be
seen clearly which confirms the ability of the instrument used in this work. The typical value
of parameters are I “ 1nA and V “ 500mV .
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2.2 Overview of Scanning Tunneling Microscope

2.2.1 STM system and its components

Our STM system works down to 300 mK and is integrated with an 11 Tesla superconduct-
ing magnet. The system is integrated with a number of UHV growth, characterization and
preparation tools e.g., RHEED, LEED, K-Shell evaporators and an in-situ cleaver. All the
specifications I will discuss in detail below. I have also used a home-built point contact spec-
troscopy probe to investigate the superconducting phases of a number of systems. The lowest
temperature achieved in this case is 1.4 K and this system is equipped with a vector magnet (6
T in Z-direction, 1-1 T in X and Y directions).

STM unit 

LHe4 

Magnet 

He3 pot 

1K pot 

Inlet port 

Needle valve 

Sorb pump 

Needle valve control 

Thermal isolation 
chamber (TIC) 

Pumping channel for 
sorb pump 

Pumping channel for 
1K pot 

Pumping channel for 
TIC 

Cooling channel for 
He-3 pot 

Scroll 
pump 

He-3 
gas 

Dump 

TMP 

Scroll 
pump 

Figure 2.4: The overview of Observation chamber components

An overview of STM system used in this study is shown in figure 2.4. This figure is adopted
from the manual of our STM. All the main components are shown by the dashed lines and
explained within the figure.
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2.2.2 STM head/unit

In this instrument, the scanning process is performed by the single tube-type piezo driver which
can be driven by 6 electrodes (as shown in Fig.2.5), that is, 5 outer electrodes; +X, -X, +Y, -Y,
Feedback Z (scan Z), and one inner electrode: offset Z. The Z Scan range is extended by the
negative voltage, on the other hand, the offset Z is extended with the positive voltage. This
figure is adopted from the manual of our STM.

Figure 2.5: The features of scanning tube-type piezo driver.

The tube-type piezo is located in an approach stage which is supported by an inertial piezo
slider (I.P.S.) devices within the approach stage holder. I.P.S device is driven by the combi-
nation of friction and inertial movement controlling motion. Each step which driven by I.P.S.
device is approximately 1 µm at RT with 120 V. The working distance of the approaching stage
is approximately 5mm in Z direction. The working distance (X and Y direction) of the sample
stage are (0.5 mm). The maximum scan area by the scanning tube-type piezo is approximately
2.3 µm in length at RT.

2.2.3 Electrochemical etching of metallic tip

STM is used for surface analysis. We are able to obtain the physical properties of samples like
electronic state and atomic structure from the tunneling current arise by having very sharp tip
close to the sample surface. Sharpness of the STM tip is very important for good image since
the tip has to detect the tunneling current from one individual atom which constructs the surface
of the sample, therefore, resolution of the STM image is greatly affected by the sharpness of the
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tip. We made very sharp STM tips by electrochemical etching. A tungsten wire and Platinum
ring submerged into Potassium Hydroxide solution (KOH) and a voltage is applied between
the tungsten wire and Platinum ring. The submerged section near by meniscus is most ablated
since the tungsten wire is very close to meniscus. The constriction point made by this erosive
process gradually becomes thin. Finally, the area under the constriction point fall off and the
edge of tungsten wire become very sharp. one of the tip apex made by this method is shown in
figure 2.7.

Figure 2.6: Tip etching system.
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The shape of the tip depends on various conditions, temperature, amount of the solution,
vibration of the liquid surface, etc. However, for reproducible high quality tip, using the con-
dition: 1.2N-KOH (aq) and a voltage of 7 V, stop current of 2 mA is most favorable. A high
concentration of potassium hydroxide and high voltage results in a thick and short tip with a
large radius of curvature. Conversely, a low potassium hydroxide concentration and low volt-
age results in a sharp and long tip which tends to break during the rinsing procedure.

Figure 2.7: Scanning Electron Microscopic (SEM) image of resulting tip apex.
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Cleaning of tip

The tip may become oxidized or contaminated in air for an extended period of time. To avoid
this, after inserting the tip in the preparation chamber, the tip apex is cleaned in ultra-high
vacuum environment just before the experimental measurements by heating the tip apex by
electron bombardment. A schematic of tip cleaning assembly is shown in figure 2.8. A high
voltage is applied to heat the filament and an accelerating voltage is applied between the tip
and filament so that tip apex can be heated by electron bombardment.

Filament cover 

Aperture 

Filament 1-2mm 

Figure 2.8: Schematic of tip cleaning assembly.
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Cleaving of single crystals

To avoid the oxidation and surface contamination the single crystals were cleaved in ultra-high
vacuum environment before starting the experiments. First, we fix a wire/bar on the cleaving
surface using silver epoxy and then insert the sample holder with sample in the preparation
chamber. Using liquid nitrogen, we cool the samples down to 77 K and cleave the surface by
hitting that wire using a manipulator. A picture of such an arrangement is shown in figure 2.9.
Right after the cleaving we insert the sample directly to the STM head and start the cooling
process down to milli-Kelvin temperatures.

Sample 

Sample holder 

Wire 

Manipulator 

Figure 2.9: A picture of sample cleaving arrangement.
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2.3 Point-contact spectroscopy technique

I have also used Point-Contact Andreev Reflection (PCAR) Spectroscopy [9,10] in some of the
transport measurements. Here, I will discuss briefly the main aspects of this technique.

2.3.1 Point-Contact Andreev Reflection Spectroscopy (PCAR):

This technique is conventionally similar to the tunneling spectroscopy except that in PCAR
spectroscopy tip touches the sample physically and there is no tunneling gap between the tip
and the sample. The technique simply shows scattering mechanism at the normal metal and
superconductor (NS) junction. A schematic describing the point-contact between tip and the
sample is shown in figure 2.10. Point-contact spectroscopy is a powerful technique to extract
the energy and momentum resolved information of the materials. It can be used to measure the
superconducting energy gap and the symmetry properties of the gap (isotropic or anisotropic
gap), [11, 12] spin-polarization of ferromagnets and information about the phonon spectra of
the materials. If the diameter of the contact is of the order of characteristic length scales (like
the elastic and inelastic mean-free path of the electrons) of the materials then this contact is
called point-contact. Figure 2.10 defines that there are two contacts attached to the tip and
another two are attached to the sample. Across the point-contact we measure the voltage drop
using a lock-in amplifier at a particular frequency by sending a small amount of modulated
current (Idc + Iacsinωt) using Keithley current source and lock-in amplifier.

I+ 

I- 

V+ 

V- 

Metallic Tip 

Point-Contact 

Figure 2.10: The Schematic of Point-Contact Spectroscopy.

The resistance of such a point-contact is given by Wexler’s formula [13] Rpc “
p2h{e2q

pakF q2
`

Γpl{aqρpT q
2a . Where h is the Planck’s constant, a is the diameter of point-contact, ρ is the bulk

resistivity of the material. The spectroscopy is performed in different regimes of point-contact
called ballistic, thermal and intermediate regimes. Different regimes of point-contact depend
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upon the diameter of contact of tip and sample relative to the mean free path of the excitations.
The superconducting gap can be measured from dV/dI vs V spectrum (taken in ballistic regime
of the point-contact) after fitting it with BTK theoretical equation. Blonder-Tinkham- Klapwijk
(BTK) [14] have given the theoretical understanding of PCAR Spectroscopy.

2.3.2 Electronic transport in different regimes

Transport spectroscopy can be performed in different regimes of point-contacts by comparing
the mean free path (l) of the electrons and the contact diameter (a).

Thermal regime

In thermal regime, the contact diameter is much greater as compare to the elastic and inelas-
tic mean free path (a ąą l) then the electrons undergo scattering (both elastic and inelastic)
within the contact region. In such contacts, the spectroscopy is dominated by bulk transport
properties. Maxwell has given the formula for resistance known as Maxwell’s resistance of
such contacts by solving the Poisson equation with relevant boundary conditions. Maxwell’s
formula for resistance is following

RM “
ρpT q

2a
where, ρ is the resistivity of the material.

In this regime, during the transport, electrons dissipate energy within the contact region
leading to the joule heating consequently increase the local temperature of the contact with
respect to the bath temperature (Tbath). The effective temperature (Te f f ) increases with ap-
plied voltage (V) due to which the energy resolved information can not be obtained in thermal
regime. [15]

Ballistic regime

When the contact diameter is much smaller than the elastic mean free path of the electrons (l
» a) then the contact behaves like ballistic contact and electrons do no undergo any scatter-
ing within the contact region. In such contact, energy does not dissipate and electrons gain
energy and move ballistically within the contact region when a voltage is applied. In 1965,
Sharvin [16] derived an expression by solving the problem of dilute gas through a small hole
following the Knudsen’s scheme. This expression defines the contact resistance in the ballistic
regime and known as the Sharvin’s Resistance. The formula for Sharvin’s resistance is given
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as follows

RS “
2h

e2pakFq2

where, kF is the Fermi wave vector and e represent the charge of the electron.

In this regime of contact, electrons gain enough energy and excite the elementary excitations
like phonon and magnons which gives rise to non-linearity in the I-V characteristics. That is
how energy resolved spectroscopy is performed in the ballistic regime.

Intermediate regime

In intermediate regime, the contact diameter is approximately equal to the mean free path of
the electrons (a « l). The contact resistance in this regime can be defined by including both
the Maxwell’s resistance part and the Sharvin’s resistance part. The following is the Wexler’s
formula, which was obtained in 1966 by G. Wexler. [13]

R“ RS`Γpl{aqRM

where, Γpl{aq is a slowly varying function of the order of unity [17].

2.3.3 Transport phenomena at the interface

The transport phenomena of electrons at the interface of a normal metal and a superconductor
can be understood by following the figure 2.11. At the left side density of states of a normal
metal are shown, on the other side, the density of states of a superconductor are shown. When
a voltage is applied across the interface, electrons gain energy and try to go to the other side.
If the energy given to the electron is E1 higher than the superconducting energy gap ∆ then the
electron will find state to the other side and transmitted through the interface. However, if the
electronic energy is E2 less than the superconducting energy gap ∆, the electron will not find
the states on the other side and will undergo reflection. Electron can reflect back in two ways
1) it can reflect back as it is i.e. as a electron with same spin known as normal reflection or 2) it
can reflect back as a hole with opposite spin and subsequently there will be formation of cooper
pair in the superconducting side at the Fermi-level leading to the conservation of momentum
and spin, this reflection is known as Andreev reflection.

This phenomenon of Andreev reflection [18] and can be analyzed by normalized differential
conductance GpV q

Gn
vs. V where G(V) = dI

dV and V is the applied dc voltage. This dI
dV and V spec-
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Figure 2.11: The Schematic of Point-Contact Andreev Reflection Spectroscopy showing the
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trum can be analyzed within the framework of Blonder-Tinkham-Klapwijk (BTK) theory. [14]
Within the BTK theory, the interface of normal metal and superconductor is given by the delta
function H1 = V0 δ pxq, where x is perpendicular to the interface and x = 0 represent the interface.

The strength of the barrier potential is characterized by a dimension less parameter Z = V0
h̄vF

(where V0 is the potential , h̄ is the planck’s constant and vF is the Fermi velocity). This pa-
rameter z depends on two factors: (i) non-vanishing potential barrier at the interface of normal-
metal and superconductor and (ii) the mismatch of Fermi velocities, vF is different for different
materials. Therefore, the barrier potential strength can never be zero. Hence, electrons will
always have some finite probability of normal reflection. If A(E) and B(E) are the probabilities
of Andreev reflection and normal reflection, then, the current through the interface of normal
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metal and superconductor can be described as

IN{S9Np0qvF

ż 8

´8

r f0pE´ eV q´ f0pEqsr1`ApEq´BpEqsdE (2.4)

where, N (0) is the density of states at the Fermi level and vF is the Fermi velocity. The co-
efficient of A(E) and B(E) can be calculated by applying the appropriate boundary conditions
for delta function and Bogoliubov-deGennes equation.

The values of A(E) = a˚a and B(E) = b˚b are shown in the following table.

Coefficient E ă ∆ E ą ∆

A(E)
p∆

E q
2

1´ εp1`2Z2q2

puvq2

γ2

B(E) 1´ApEq ru2´ v2s2Z2r1`Z2s

γ2

Table 2.1: Probabilities of Andreev reflection and normal reflection with different energies.
In the above table, γ2 = [(u2 - v2 )Z2 + u2]2 and ε = E2´∆2

E2 . Using equation 2.4, the ex-
perimental data can be fitted and the information about the superconducting energy gap can be
obtained.
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2.3.4 Measurement of transport spin polarization

Degree of spin-polarization can be measured by point-contact spectroscopy by replacing a nor-
mal metal to a ferromagnet. The Fermi-level of ferromagnet is spin-polarized i.e. total number
of spin up and spin down channels are not equal. If ferromagnet is 100% polarized then there
will be only one type of spin channel available. This difference can be probed by spin-polarized
point-contact spectroscopy. A schematic in figure 2.12 showing the interface of 100% polar-
ized ferromagnet and a superconductor. As it is clear from the picture shown in figure 2.12, the
spin down states are not available for an electron to reflect back as a hole with opposite spin,
thus, the Andreev reflection will be suppressed. The degree suppression can be evaluated by
including some other parameters in the current equation.

Superconductor Ferromagnet 

Fermi-level 

e- 
2Δ 

Figure 2.12: The schematic of Spin-Polarized Point-Contact Andreev Reflection Spectroscopy
showing the interface of a ferromagnet and a superconductor.

As per BTK theory [14, 19] the current between a ferromagnet and a superconductor is
given by

Imod “ p1´PtqIu`PtIp

Iu represents the unpolarized current, Ip represents the polarized current and Pt represents
the degree of transport spin-polarization. After calculating the Iu and Ip we have simply written
the total modified current including the transport spin polarization Pt . This equation is used to
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fit the experimental dI{dV curves to determine the transport spin polarization Pt . [20] Now the
fitting parameters are ∆, Z, Pt and γ . The magnitude of spin-polarization (Pt) thus determined,
it may decrease monotonically by increase in barrier strength (Z). Such a dependence is seen
in spin polarization measurements using Andreev reflection spectroscopy and attributed to the
process of spin-flip scattering which increases with the barrier strength. [21, 22] However, for
certain materials, where spin dependent scattering are not present, any dependence of Pt on Z

may not be observed.
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Figure 2.13: Simulated spectra for different degree of spin polarization of the transport current
flowing through the point contacts using the modified BTK theory (as discussed in the text).

In figure 2.13, simulated spectra for different degree of transport spin-polarization is shown.
Here we have used modified BTK theory to fit the spectra. [14]

41



2.3.5 PCAR Spectroscopy measurement system

A home built probe is used in PCAR experiments where measurement temperature down to
300mK can be obtained using a cryostat equipped with He4 bath and He3 pot. This system
also dressed with vector magnet, 6 Tesla in z-direction and 1-1 Tesla in x, y direction. Here tip
approaches the sample by piezo-walker.

Figure 2.14: A picture of PCAR system showing an arrangement of piezo-walker and sample
holder.

A picture of point-contact spectroscopy head is shown in figure 2.14. The left side picture
is the solid works image and other two are the photographs of the existing head. Tip and
sample are mounted between the sample plate and piezo walker. The tip can move in all three
directions, thus, the contact region can also be changed without taking it out. A temperature
sensor is mounted very close to the sample, the sample plate is made of cooper which has a
higher thermal conductivity.
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2.4 Comparison between STS and PCAR Spectroscopy

Scanning Tunneling Spectroscopy and Point Contact Andreev Reflection Spectroscopy are
powerful and unique techniques by their own to probe the physics of electronic excitations
in the condensed matter systems. There are few comparisons between these two techniques:

STM/STS Spectroscopy PCAR Spectroscopy

Surface sensitive technique
Also extract bulk properties such as transport spin-
polarization

Spatial resolution is good Energy and momentum resolved technique

Tunneling gap of finite width between tip
and sample (see Fig.2.1)

Tip touches the sample physically (see Fig.2.10)

Transport takes place through tunneling
barrier

Transport takes place through nano constriction
formed at interface and can be controlled by the con-
tact diameter

I9
ż 8

´8

Nspε` eV qr f pεq´ f pε` eV qsdε I9
ż 8

´8

r f0pE´ eV q´ f0pEqsr1`ApEq´BpEqsdE

Works only in tunneling regime
Works in three regimes of transport: 1) Ballis-
tic regime, 2) Thermal regime and 3) Intermediate
regime

STM can produce atomically resolved
images of samples also

PCAR only gives spectroscopic information

Table 2.2: Comparison between STS and PCAR Spectroscopy.
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2.5 Conclusions

In this chapter, I have described the experimental techniques including Scanning Tunneling Mi-
croscopy and Spectroscopy (STM/STS) and Point-Contact Andreev Reflection (PCAR) Spec-
troscopy. A complete description and working principle of Scanning Tunneling Microscope
is discussed. I have also explained how to measure the transport spin-polarization by PCAR
spectroscopy. These techniques are used in the experimental work which is presented in this
desertion.
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Chapter 3
STM studies on gallide compound
Mo8Ga41

In this chapter, the nature of superconductivity is investigated in the compound of gallide family
Mo8Ga41. A clear evidence of multiband superconductivity is observed from the direct mea-
surement of superconducting gap in tunneling experiments. The work presented in this chapter
is already published in ref [1].

3.1 Introduction

In the past few decades, the objective to investigate the superconductors was either to find su-
perconductors with high critical temperatures or to find unconventional superconductors that
deviates from the BCS model. Several Mo-based compounds attract attention considering both
the objectives. Mo-based carbides manifest relatively higher critical temperatures e.g. γ-MoC
68 (9.3 K) [2] and Mo3Al2C (9.05 K) [3]. Among the Mo-based compounds, the complex
low-temperature behavior in Mo3Sb7 is attributed to the coexistence of superconductivity and
spin fluctuations, [4, 5] thus resembling the superconductivity with strong electronic correla-
tions. Like many other families of Mo-based superconductors, the superconductivity in gallium
cluster compounds might also emerge through complex pairing mechanism and host unconven-
tional physics. Indication of such complex pairing has already been obtained in PuCoGa5 where
it was argued that the antiferromagnetic fluctuations lead to the superconducting pairing [6–8].
Matthias rule predicts higher critical temperatures, [9] based on the higher density of states at
the Fermi-level is partly followed by the endohedral gallide cluster compounds for lower va-
lence counts. For higher valence counts, the architecture of the cluster packing plays a dominant
role which decides the Tc. As the density of states goes up the Tc goes down. This competi-
tion makes Mo8Ga41, the highest critical temperature superconductor in the family. [10, 11]
Based on a number of experiments that were employed to analyze the superconducting phase
of Mo8Ga41, it was shown that this compound manifests surprisingly high electron-phonon
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coupling resulting in a large ∆{kBTc ratio [12]. Additionally, an indication of multiband super-
conductivity was also found in µSR experiments [12, 13].

3.2 Experimental details

3.2.1 Sample Details

All the samples of Mo8Ga41 were synthesized by solid-state reaction method. The constituent
elements of Mo (99.999%) powder and Ga (99.999%) pieces were mixed in a stoichiometric
ratio in a quartz ampoule. First, the quartz ampoule was evacuated down to 10´4 mbar and
heated up to 850oC and then cooled down to room temperature very slowly. The resulted
samples appeared shiny grey. The formation of Mo8Ga41 in single phase was confirmed by
powder X-ray diffraction and analyzed by Rietveld fitting. A superconducting transition at Tc„

10 K was found from both temperature dependent resistivity and magnetization measurements.

Crystal Structure of Mo8Ga41

In figure 3.1 we show a theoretically obtained crystal structure of Mo8Ga41. The crystal struc-
ture of Mo8Ga41 is rhombohedral with the space group of R3̄ (# 148). The relaxed lattice
parameters are a “ b “ c “ 9.5788 and α “ β “ γ “ 94.974o, which are in good agreement
with the experimental values reported before [11]. In the crystal structure of Mo8Ga41 Ga
atoms are forming polyhedron by surrounding one Mo atom as shown in figure 3.1 [10].

Figure 3.1: Crystal structure of Mo8Ga41.

3.2.2 Measurement Details

All the measurements were carried out by Scanning Tunneling Microscope (STM) in an ultra-
high vacuum (UHV) cryostat at temperatures down to 300 mK. The STM is equipped with a
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sample preparation chamber which is maintained in UHV conditions. In the preparation cham-
ber, few layers of the sample were first removed by mild argon ion sputtering just before the
STM/STS experiments. This ensured that the surface of the sample is clean and we probed the
pristine surface of Mo8Ga41.

3.3 STM/STS measurements on Mo8Ga41

Figure 3.2 (a) displays a topographic image (20 nm x 20 nm) of the surface of Mo8Ga41 mea-
sured in constant current mode with I “ 150 pA and V “ 1.1V . The topographic image showing
distinctly visible grains with average grain size of „ 5 nm. To extract the spectroscopic infor-
mations, the STM tip is brought close to the grains and recorded the dI{dV vs. V spectra. One
such representative tunneling spectrum is shown in figure 3.2 (b) with two coherence peaks
symmetric about V “ 0mV. The tunneling spectrum confirms the formation of superconducting
energy gap. Further, we measured a large number of spectra all over the crystal surface and fit-
ted by the theoretical equation of tunneling current to calculate the superconducting energy gap.

In figure 3.3 we show two representative spectra with Dyne’s fits [14]. First we used single
superconducting gap to fit the spectra. As it is clear from the figure 3.3 that fitting deviates from
the experimental spectra significantly, while, these are the best-fitted spectrum using a single
gap. To fit these spectra accurately we used a tunneling current equation within the two band
model [16,17]. We show such spectra with both single and double gap fitting in figure 3.3. The
green line is a theoretical fit using single gap while black solid line shows fit using two gaps.

Within the two band model, the tunneling current will have contributions from both the
bands. Therefore, the total tunneling current Itotal “ αIpV,∆1,Γ1q` β IpV,∆2,Γ2q, where ∆1

and ∆2 are the gaps formed in the two different bands and Γ1 and Γ2 are the corresponding
effective broadening parameters. Γ1 and Γ2 also include the effective inter-band scattering, if
any. α and β represent the relative contribution from the two superconducting bands to the
total tunneling current. Physically, α and β could be associated with the crystal facet that the
tip predominantly probes and how the crystallographic axis of a particular grain is oriented
with respect to the direction of tunneling current. α and β might vary significantly when tip
moves from one particular orientation of grain to the other. As it is seen in the figure 3.3, the
theoretically generated spectra within the simplistic two band model fit remarkably well with
the experimentally obtained spectra revealing the existence of two gaps with the magnitude of
∆1 „ 1.6 meV and ∆2 „ 0.9 meV respectively.

In order to confirm further the two band nature, we explored a large number of tunnel-
ing spectra on different regions and grains. For certain grains, we were able to observe the

49



-4 -2 0 2 4

0.0

0.5

1.0

1.5

2.0

 

 

 

 

(d
I/

d
V

) N

 

V (mV)

(a) (b) 

Figure 3.2: Topography of Mo8Ga41 (a) STM topographic image of the surface of Mo8Ga41
showing distinctly visible grains. (b) Tunneling spectrum (dI{dV vs V plot) taken on one of
the grains clearly shows the formation of superconducting energy gap.
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Figure 3.3: (a, b) Two representative tunneling spectra with Dyne’s fitting. The green solid
line is a fit within the single band model while the black solid line is a fit within the two band
model. Red dots are the experimental data. The contributions (α and β ) of both the gaps (∆1
and ∆2) are given in the respective insets.
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Figure 3.4: (a, b) Two representative tunneling spectra demonstrating two clear gaps. The
black solid line is a theoretical fit within the two band model using Dyne’s formula. The
contributions (α and β ) of both the gaps (∆1 and ∆2) are given in the respective insets.

“two-gap" feature in a single tunneling spectrum. Two such representative spectra along with
two-gap fits are shown in figure 3.4. The gap amplitude for the smaller gap and the larger gap
remained approximately same as before. For these spectra, the contribution of α turned out to
be smaller than β . These observations are consistent with the understanding that the two-gap
feature can be seen in a single spectrum when the band corresponding to the smaller gap has a
larger contribution to the tunneling current. These two gap features are strikingly similar to the
two band superconductor MgB2 [18–25].

3.3.1 Magnetic field dependence of dI{dV vs. dV spectrum

To understand the effect of the magnetic field, we now focus on the magnetic field dependence
of the superconducting energy gap measured on Mo8Ga41. We have used the same formula
that was used to fit the zero-field spectra and extracted the values of the superconducting en-
ergy gaps. The field dependence of the spectra with fittings is shown in Figure 3.5 (a). The
extracted gap values are plotted as a function of magnetic field and shown in Figure 3.5 (b).

The larger gap (∆1) decreases slowly with magnetic field and attains 53% of its zero field
value at a magnetic field of 6 Tesla. Beyond 6 Tesla magnetic field, the reasonable estimate
of the gap was not possible. On the other hand, the smaller gap (∆2) decreases rapidly with
increasing magnetic field. At a field of 6 Tesla, the gap ∆2 becomes 0.15 meV which is only
less than 15% of the gap at zero field. This variation of the two gaps in Mo8Ga41 is similar
to the variation of the two gaps with magnetic field in MgB2. The small gap in MgB2 is seen
to almost disappear at a magnetic field of approximately 1 Tesla while the large gap remains
almost unaffected in this range of magnetic field [22]. Furthermore, this observation is also
consistent with the theoretical calculations of the vortex state of a multi-band superconductor
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Figure 3.5: (a) Magnetic field dependence of dI{dV vs. dV spectrum with theoretical fittings
within the two band model. (b) Extracted values of ∆1 and ∆2 are plotted as a function of H.
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Figure 3.6: (a)Temperature dependence of dI{dV vs. dV spectrum with theoretical fittings
within the two band model. (b) Extracted values of ∆1 and ∆2 are plotted as a function of T .
The black solid lines in panel (b) are the theoretical temperature dependence as per BCS theory.
The red and blue dots are the experimental data corresponding to ∆1 and ∆2 respectively.

with weak interband scattering [26, 27]. The estimated value of 2∆1{kBTc for the larger gap of
Mo8Ga41 is found to be 3.5 which is close to the expected value for a BCS superconductor in
a weak-coupling limit [15]. This suggests that the critical temperature Tc in Mo8Ga41 is gov-
erned by the larger gap (∆1). This is similar to MgB2 and YNi2B2C, where interband scattering
is weak [28]. These observations are again consistent with the theoretical expectation for a
multiband superconductor with weak interband scattering [26, 27].

3.3.2 Temperature dependence of dI{dV vs. dV spectrum

In Figure 3.6 (a), we show the temperature dependence of one representative spectrum. The
colored dots represent the experimentally obtained spectra. Both the gaps gradually decrease
with increasing temperature and the features associated with superconductivity disappear com-
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pletely above 9 K. The values of α and β remained fixed for the entire range of temperature.
The two gaps are extracted (red and blue dots) and plotted as a function of temperature in Fig-
ure 3.6 (b). The black solid lines show the theoretical temperature dependence expected as per
BCS theory [15] for both the individual gaps with same Tc. It is clear from the figure 3.6 (b)
that the larger gap (∆1) follows BCS temperature dependence whereas the smaller gap remains
almost constant up to 4 K and then starts decreasing gradually. It disappears at « 9 K and
showing a slight deviation from the BCS temperature dependence (black solid line) [15]. Since
both the gaps are disappearing at the approximately same temperature, therefore it excludes the
possibility of stoichiometric disorder in the grains of the crystal.
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3.4 Theoretical findings

In order to understand the origin of multiband superconductivity in Mo8Ga41, we investi-
gated the theoretical band structure calculations. The first-principle calculations are performed
within the framework of density functional theory (DFT) [29, 30] using generalized gradient
approximation (GGA) [31] of the Perdew-Burke-Ernzerhof (PBE) [31] form for the exchange-
correlation functional as implemented in the Vinea Ab-initio Simulation Package (VASP). In
figure 3.7, we present the main theoretical results. We evaluated the site and orbital resolved
density of states Nσ p0q at the Fermi level and compared them in Figure 3.7 (b). It is noticeable
in figure 3.7 (b) that only Mo1 and Mo2 sites contribute strongly to the Fermi surface. Among
all the d-orbitals of the Mo atoms, dxz{dyz, and dx2´y2 orbitals have strongest contributions,
while the other orbitals and Mo atoms have significantly lower contributions to the low-energy
states at the Fermi-level.

In figure 3.7 (a), we show the band dispersion of the paramagnetic phase along the high-
symmetric momenta directions. There are four bands which are crossing the Fermi level with
considerable three-dimensionality. The corresponding 3D views of the Fermi surfaces are
shown in figure 3.8 with Fermi velocities plotted as a color map. There are two concentric
hole pockets around the Γ-point and one tiny electron pocket around the Brillouin zone corner.
In addition, we also find a large and strongly anisotropic Fermi surface all over the Brillouin
zone, a typical feature in this class of materials. In superconducting iron-pnictide family, the
multiple superconducting gaps originate due to the multiband Fermi surface topology [32]. By
projecting the orbital weights of iron atoms onto the Fermi surface topology, recent reports
found an exotic orbital selective behavior of the superconducting order parameter. This or-
bital selective characteristic provide important clues of the superconducting pairing interaction
mediated by orbital fluctuations (or entangled spin-orbital fluctuation owing to strong Hund’s
coupling in iron-pnictides). On the same footing, our observation of site-selective behavior
on the low-energy electronic structure paves the way for a new mechanism of site-fluctuations
induced pairing interaction responsible for superconductivity in Mo8Ga41.

In figure 3.8, the distribution of Fermi velocity in different bands is shown as color maps
on the four Fermi surfaces. We observe that the average velocity on the two pockets around
the Γ-point is significantly larger than that around the other pockets. From the qualitative un-
derstanding of the phonon mediated pairing, it can be rationalized in such a way that for two
different bands taking part in superconductivity, when the average Fermi velocity in a band is
significantly larger than that in the other band, the superconducting gap forming on the band
with higher average Fermi velocity should be lower than that forming in the other band. The
band with relatively slower electrons form a stronger superconducting energy gap. A similar
observation was made in case of the multiband superconductor YNi2B2C [28].
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(a) (b) 

Figure 3.7: (a) Computed band structure of the paramagnetic phase along the high-symmetric
momenta directions. (b) The contributions of Mo atoms and different orbitals to the total den-
sity of states at the Fermi-surface. It shows that superconductivity is site selective.

(a) 

(d) (c) 

(b) 

Figure 3.8: (a-d) 3D Fermi-surface with Fermi velocities plotted as a color map.
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Hence, based on these theoretical analysis, it can be said that the smaller gap is forming
in the bands shown in figure 3.8 (a or b) while the larger gap is forming in the bands shown
in figure 3.8 (c or d). It is also noticed that the Mo1 and Mo2 sites contributes equally to the
density of states at the Fermi-level. Therefore, the difference in the superconducting gaps is
originating due to the difference in the Fermi velocities in the respective bands.
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3.5 Summary

We have provided the direct spectroscopic evidence of multiband superconductivity in the en-
dohedral gallide compound Mo8Ga41 with the theoretical first-principle band structure calcu-
lations. The conclusions are based on the direct spectroscopic measurements of the supercon-
ducting energy gaps and the observation of multiband superconductivity is consistent with the
conclusions drawn from the µSR and specific heat measurements [12, 13]. The main findings
are summarized below:

• We found two clear superconducting energy gap in the tunneling spectra which provides
the direct evidence of multiband superconductivity in Mo8Ga41.

• Analysis of the temperature dependent data reveals that both the gaps follow temperature
dependence as per BCS theory.

• The theoretical calculations revealed a unique site-selective characteristic that facilitates
the observed multiband superconductivity in Mo8Ga41.
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Chapter 4
Nature of superconductivity in PdTe2

In this chapter, we present the rigorous study of superconducting phase appearing in Dirac
semimetal PdTe2. The observations presented in this chapter are significant in understanding
the non trivial band structure of this material. The results discussed in this chapter are already
published in ref [1].

4.1 Introduction

Superconductivity in PdTe2 has been known since 1978 [2–5] but did not receive much atten-
tion from the research community because of its very low superconducting transition tem-
perature („ 1.7 K). The recent discovery of type II Dirac fermions in the normal state of
PdTe2 [6–8] attracted a lot of attention and made this material interesting to explore the su-
perconducting phase with the existence of topological character. More recently, scanning tun-
neling spectroscopy (STS) experiments displayed a conventional superconducting gap which
follows BCS-like nature [9] in PdTe2 [10]. Further experimental evidence including STM/STS
measurements by another group, [11] specific heat measurements [12] and penetration depth
measurements, [13, 14] confirmed the conventional phase of superconductivity. However, it
was also seen that the upper critical field has a distribution on the surface of the cleaved PdTe2

crystals and this distribution varied from 220 Gauss to 4 Tesla. In order to understand the origin
of the distribution of Hc in PdTe2 further investigations are required.

In this chapter, we present a detailed study of the superconducting energy gap by STM/STS
experiments at multiple points on the pristine surface of single crystals of PdTe2 in the presence
of the magnetic field. All the experimental results are shown in the next section.
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(a) (b) 

Figure 4.1: (a) shows LEED pattern of single crystalline PdTe2 (b) The atomic resolution image
of cleaved PdTe2 crystal with surface defects shown as bright spots recorded at T = 385 mK.
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Figure 4.2: (a) A representative conductance spectrum with fit using Dyne’s tunneling equation
showing superconducting energy gap of 289 µeV. (b) Temperature dependence of the spectrum
(as shown in (a)). The spectra at different temperatures in (b) have been vertically shifted for
visual clarity.

4.2 Experimental details and results

On high-quality single crystals of PdTe2 all experiments were performed in an UHV-STM
that works down to the temperature of T = 300 mK . The crystals were cleaved at 77 K using
the in´ situ cleaver. The quality of the pristine surface of PdTe2 is confirmed by the LEED
measurements (see figure 4.1 (a)) and quantum oscillation measurements performed in PPMS
(Physical Properties Measurement System). [10] The unit cell of PdTe2 is hexagonal same as
in CdI2 (space group P3m1). [15] The atomically resolved image captured at 385 mK is shown
in figure 4.1 (b) which shows the hexagonal topographic structure of PdTe2. The bright spots
are the defects on the surface of the crystal.

Figure 4.2 (a) demonstrates a tunneling conductance spectrum measured at 380 mK show-
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Figure 4.3: Magnetic field dependence of a spectrum (a) showing type II behaviour with Hc =
400 G, and (b) showing type I behaviour with Hc = 220 G. The spectra at different magnetic
fields in (a, b) panels have been shifted vertically for visual clarity. (c), (d) ∆ - H plots extracted
from (a), (b) respectively.

ing two symmetric coherence peaks that occur at the superconducting energy gap. The typical
value of the superconducting gap has been found to be ∆ = 289 eV . We have used the same tun-
neling conductance formula that has been used in the previous chapter to fit the experimental
data. [16] The temperature dependence of the spectrum is shown in figure 4.2 (b). The spectrum
evolves smoothly with increasing temperature and disappears at the superconducting transition
temperature of PdTe2.

4.2.1 Investigation of superconducting phase in magnetic fields

Here, we focus on the behavior of the superconducting gap ∆ in the presence of applied mag-
netic fields. A representative spectrum and its magnetic field dependence is shown in figure
4.3 (a) showing the critical field of 400 G. In the panel (b) another spectrum shows the critical
field of 220 G. It can be seen that the spectra in panel (a) evolves smoothly while in panel (b)
gap closes abruptly. Extracted ∆ from (a) and (b) are plotted in panel (c) and (d) respectively.
Both the spectra are acquired at different spatial local points on the surface of the sample. The
smooth variation in figure (c) reflects the type II-like behavior of ∆, on the other hand, the
sudden disappearance of ∆ deliberates the type I like behavior of superconductivity. Statistical
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Figure 4.4: Four representative spectra showing low critical magnetic fields. These spectra also
show a distribution of critical magnetic fields ranging between 220-300G.

observation of sudden disappearance of ∆ at a large number of points shows the critical mag-
netic field in the range of 200 G to 300G. For all the spectra of critical magnetic field larger
than 300 G shows type II behavior. Figure 4.4 shows four representative spectra where sudden
disappearance is observed.

4.2.2 Conductance mapping above the critical temperature

It should be noted that such first order like transition of superconductivity is previously ob-
served in point-contact experiments on some elemental superconductors. [17] Therefore, our
observation of the mixed type of superconductivity and critical field inhomogeneity demands
investigation in much more details. In order to understand the origin of such inhomogeneities
in PdTe2, we have investigated the normal state by the local density of states (LDOS) map-
ping above the critical temperature (T > Tc). In figure 4.5 (a), we show a large area topograph
captured at 3.5 K, where a large number of defects can be seen. In figure 4.5 (b) dI{dV vs
V spectra are shown and corresponding map sliced at 1.5 eV is shown in figure 4.5 (c). A
visual inspection of the topograph (a) and corresponding LDOS map in (c) reveals that there
is an additional contrast emerging in the background which is not due to the presence of de-
fects. Such a background may originate from the intrinsic electronic inhomogeneity. To resolve
clearly the contribution of the background signal alone, We have used Fourier filtering of the
conductance maps. The maps of the extracted signals (figure 4.5 (d) and figure 4.5 (f)) clearly
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Figure 4.5: (a) Large area topograph of cleaved surface of PdTe2 crystal captured at 3.5 K (I =
200 pA) mode (70nm x 70nm). (b) Some representative conductance spectra over the same area
as shown in panel (a). (c) and (e) shows conductance maps at 1.5V and 450mV respectively
measured on the same area as shown in (a). (d) and (f) shows the variation of the Fourier filtered
local density of states representing the intrinsic electronic inhomogeneities in PdTe2.
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show inhomogeneities of the local density of states at surface. As shown in the figure 4.5, a
visual inspection of the conductance maps at different energies (1.5 eV in figure 4.5 (d) and
450 meV in figure 4.5 (f)) reveal that the inhomogeneity of the local density of states in the
background also changes with energy. This electronic inhomogeneity might be originated be-
cause of puddles of electrons and holes rich areas. Earlier Such inhomogeneity was observed
in certain 2-Dimensional systems [18, 19] and in topological insulators [20, 21] where Dirac
point lies close to the chemical potential.

4.2.3 Conductance mapping in presence of magnetic field

A sudden disappearance of gap ∆ may also occur if there is a vortex formation underneath the
tip in presence of a magnetic field. In order to rule out this possibility we have measured the
conductance maps in presence of magnetic field of more than 300 G which can derive the type I
region in to the normal state. For this purpose, we applied magnetic field of 400 G and captured
conductance map of 30 nmˆ 30 nm area. The conductance map with the spectral features have
been shown in figure 4.6 (a) and (b) respectively. It can be seen in the figure 4.6 (b) that we
have obtained three different spectral features depending on the position of the tip. (1) One
type of spectra demonstrate no spectral features, these are corresponding to those points where
superconductivity is destroyed due to type I nature. Such points are corresponding to the dark
regions in the image of panel (a). (2) Second type of spectra show conductance dips at zero
bias with two coherence peaks, these spectra are coming from the region where the type II
superconductivity is still survive, but vortices have not formed at this field. Those regions are
corresponding to the brightest spots in the conductance image (due to the presence of coher-
ence peak). (3) Third type of spectra show shallow high-bias dips and a pronounced central
peak. These along with those shown in (1) appear as relatively darker regions in the figure 4.6
(a). The variation in the normal state (high-bias) conductance is coming due to the variation
of the local density of states in the distinct regions. The spectra of type (1) and (3) do not
appear at zero field. Hence, it is clear that the regions where the superconductivity is suddenly
destroyed (type-I regions) by applying the magnetic field, are different from the regions where
clear vortex-like spectra are obtained.

In this context, we find that the surface of PdTe2 is intrinsically inhomogeneous to the
extent that it inherits puddles of both type-I and type-II superconducting regions, whereas the
type-I behavior dominates in the bulk properties (as the bulk critical field is comparable to
300 G). More interestingly, in both regions, the superconducting gap amplitude (∆p0q) remain
characteristically similar (0.25 - 0.28 meV).
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Figure 4.6: (a) Conductance map measured at 310 mK with a tip-bias of -400 µV in the pres-
ence of a magnetic field of 400 G. (b) Some of the representative dI{dV vs. V spectra corre-
sponding to the different points (pixels) in (a).

4.2.4 Theoretical results

In order to understand such inhomogeneous nature of superconductivity in greater detail the-
oretically, we have studied the Ginzburgh-Landau (GL) theory. The Ginzburgh-Landau (GL)
theory extended by Abrikosov and Gorkov (AG) includes the effects of the finite coherence
length ξ of a superconductor [22, 23]. More advanced treatment to the coherence length in-
cludes the effects of finite mean-free path (l) of the normal electrons given as 1{ξ “ 1{ξ0`1{l,
where ξ0 is the intrinsic coherence length at zero temperature within the description of BCS
theory [24].

As per the experimental results, the mean free path of the electrons may be inhomogeneous
in the normal state of PdTe2 which influence the superconducting state resulting in the inhomo-
geneous modulation of the GLAG parameter κ . From the GLAG theory, the relation between
the mean free path l and the GL parameter κ can be given as [26]

κplq “ κp8q
7ζ p3q
8S21

, (4.1)

where

S21 “

8
ÿ

n“0

1
2n`1

1

2n`1`0.88ξ p0q
l

, (4.2)

κp8q is its value for pure case where l Ñ 8; κp8q “ 0.96λLp0q
ξ p0q . Quantum oscillation

measurements estimated the Fermi velocity vF „ 5.6ˆ 105m/s. Using the experimental esti-
mates [13, 25] of ξ p0q „ 1.8µm, we evaluate κ as a function of l, and these results are shown
in figure 4.7 for different values of κp8q.
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Figure 4.7: The GLAG parameter plot with respect to inverse mean-free path l´1 for various
computed values of the κp8q [13]. The horizontal dashed black line represent the critical value
of κc “ 1{

?
2, which separates between the type-I and type-II superconducting regions.

From the figure 4.7 it is clear that the GLAG parameter κ increases almost linearly with
1{l. We indeed find each relatives, in this range of experimental values, one starts with κp8q „

0.2´0.4 in the type-I region and turns into type-II superconductor with decreasing l. We also
determine the critical mean-free path (corresponding to κc “ 1{

?
2 line) of 1500 nm, which

is higher than average value of l “ 531nm obtained in bulk experimental measurements [13].
These results clearly indicate that PdTe2 resides near the critical point between its type-I and
type-II phases. Therefore, the regions with comparatively shorter mean-free path l ă lc exhibit
type-II superconductivity, while domains with larger mean-free path l show type I nature of
superconductivity in PdTe2. This analysis also indicates that the normal state of PdTe2 should
also be electronically inhomogeneous.
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4.3 Summary

In summary, we have found

• the direct observation of mixed type I and type II superconducting phase.

• the surface of the PdTe2 crystals host electronic inhomogeneity in the normal state.

• the distribution of superconducting properties such as critical magnetic field, supercon-
ducting gap ∆ and coherence length ξ .

• the spectral features of vortex but not the individual vortices

The STM studies presented here shows a distribution of critical fields on the surface of
PdTe2 which varies in a range starting from 200 G to 4 Tesla. The points where the critical
field is low (200 G to 400 G) actually show type I like of behavior, on the other hand, the point
where the critical field is larger (> 400 G) show type II-like behavior. We also observe an indi-
cation of electronically inhomogeneous surface above the critical temperature of PdTe2.

In conclusion, we have shown that the surface of the single crystals of PdTe2 host electronic
inhomogeneities in the normal state. It might be possible that when the system undergoes
superconducting transition, the inhomogeneous density of states give rise to a spatially varying
superfluid density leading to variation of the coherence length ξ . The variation of the superfluid
density on the surface is confirmed by the observation of a distribution of the superconducting
energy gap (∆). Since the (upper) critical field is directly related to ξ , the distribution also
causes a spatial distribution of the critical magnetic fields. Thereby, giving rise to the mixed
nature of superconductivity.
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Chapter 5
Unconventional superconductivity in
NbxBi2Se3

In this chapter, the qualitative study of superconducting spectra reveals the presence of low-
energy excitations at sufficiently low temperatures in an intercalated topological insulator. The
results discussed in this chapter are already published in ref [1].

5.1 Introduction

In reality, it is known that the intercalation of elemental metals between the interleaved planes
of a topological insulator Bi2Se3 [2, 3] leads to the superconducting phase in the resulting
system. Intercalation of elemental metals like Cu and Sr intercalated in Bi2Se3 reveals the
superconducting phase below 3 K [4–7]. Naturally, the appearance of topological supercon-
ductivity was suggested and explored in these systems. However, In cases of Cux-Bi2Se3 and
Srx-Bi2Se3 the scanning tunneling spectroscopy experiments revealed no signature of mid gap
states at low temperatures and the realization of topological superconductivity in those systems
is still in doubt [5, 8, 9]. Theoretical and experimental results on these compounds have also
been conflicting [10–13]. Recently, the third candidate of this family Nbx-Bi2Se3 (x = 0.25)
was recognized as a superconductor with critical temperature of 3.5 K. Based on number of ex-
periments, it has been realized that Nbx-Bi2Se3 preserved the topological non-trivial properties
even below its superconducting transition temperature [14].

Here, we present our observations of emergence of unconventional superconducting state in
Nbx-Bi2Se3 through STM/STS experiments. We show that the spectra deviate from a BCS-like
prediction and the tunneling conductance at low-bias is quite large. Our observations of finite
conductance at zero bias are consistent with the idea of nodal order parameter in Nbx-Bi2Se3.
Proceeding to the next section We show our experimental results [1].

72



0 3 6 9 12 15 18

-0.06

-0.05

-0.04

-0.03

-0.02

-0.01

0.00

0.01

 

 

M
 (

e
m

u
/g

m
)

T (K)

FC

ZFC

H = 5G 

(b) (a) 

Top view 

Figure 5.1: (a) Crystal structure of NbxBi2Se3 adopted from the ref [15]. (b) M vs. T plot ZFC
(Green curve) and FC (Red curve) showing superconducting transition at 3.5 K. ZFC and FC
data are corresponding to zero field cooled and field cooled data.

5.2 Experimental details and results

5.2.1 Sample details

High quality single crystals of Nbx-Bi2Se3 used for the measurements were grown by a modi-
fied Bridgman technique. The crystals were characterized by structural and magnetic measure-
ments and as shown in the magnetization vs. temperature data in Figure 5.1 (b), a supercon-
ducting transition at 3.5 K was observed. In figure 5.1 (a) we have shown the crystal structure
of Nbx-Bi2Se3 adopted from the ref [15]. The crystal structure shows that the Nb atoms are
intercalated between the quintuple layers of Bi and Se. Nbx-Bi2Se3 crystallizes into the same
crystal structure as of Bi2Se3. Due to the additional Nb ions between the adjacent Bi2Se3

quintuple layers the c-axis is slightly extended.

5.2.2 STM/STS results

All the experiments were performed in an ultra-high-vacuum (UHV) Scanning Tunneling Mi-
croscope (STM) which works down to 300 mK on single crystals of Nbx-Bi2Se3. The crystals
were cleaved at 77 K in UHV (10´11mbar) using the in´ situ cleaver. After cleaving, the
crystal was immediately transferred into the scanning stage at low-temperature. This process
minimized the possibility of contamination of the pristine surface.

In figure 5.2 we show topography of Nbx-Bi2Se3. We show an atomically resolved image
of an area of 10 nm x 10nm in figure 5.2 (a). In the image (figure 5.2 (b)) we observe disc-
shaped bright objects with a flat background. These bright objects are the defect states due to
Nb atoms/clusters [14]. These clusters are randomly distributed over the surface with a dif-
ferent concentration in different regions of the crystal. In Figure 5.2 (c) we show a different
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(b) (a) 
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Figure 5.2: (a) STM Topographic image of an area (10 nm x 10 nm) with atomically resolved
background and Nb clusters captured at 2 K (Vb = 10 mV, It = 1.2 pA). Topographic images of
25 nm x 25 nm area showing Nb clusters with (b) lower density and (c) higher density captured
at 18 K (Vb = 1 V, It = 110 pA). (d) Topographic image of a cluster-free region showing atoms
with an underlying bright/dark contrast captured at 400 m K (Vb = 10 mV, It = 5 pA).

area where we observe the considerably large density of the Nb clusters. We also found large
areas where the Nb clusters are not resolved. Such an image we show in figure 5.2 (d) of a 25
nm x 25 nm area, where the disc-shaped clusters are not seen. Under this condition, the atoms
on the surface of the crystal become clearly visible. This atomically resolved image reveals
alternate bright and dark regions in the background. A comparison with the image shown in
panel (a) reveals that this contrast in the background displays no correlation with the position
of the clusters. Therefore, this contrast might originate from an intrinsic property of the crystal.
A qualitative comparison of these features with that obtained on the compensated topological
insulator BiSbTeSe2, [16] suggests that this contrast might originate due to puddles of electron
rich and hole rich areas on the surface.

STS spectra measured at 4 K at different points on the surface reveal a “Dirac cone" like fea-
ture with the possible Dirac point at„ 130 meV below the Fermi energy. One of such spectrum
is shown in figure 5.3. Existence of the Dirac point so close to the Fermi energy indicates that
the Dirac dispersion character may extend beyond the Fermi energy thereby supporting the idea
of charge puddles. It also indicates that the Dirac surface states may participate in supercon-
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Figure 5.3: Tunneling spectrum recorded at 4 K in Nbx-Bi2Se3.

ducting pairing below 3.5 K, accomplishing the requirement of topological superconductivity
here.

5.2.3 Tunneling Spectroscopy results

The tunneling spectroscopy on the surface of Nbx-Bi2Se3 below the Tc shown in figure 5.4.
In Figure 5.4 (a) we show a typical STS spectrum measured at 400 mK. Two coherence peaks
followed by a low-bias conductance dip indicates the formation of a superconducting gap in
the spectrum. However, unlike a typical spectrum with a fully formed BCS gap, [17] in this
case, the low-bias quasiparticle density of states are large between the coherence peaks. We
reproducibly observed such spectral features without a fully formed gap at large number of
points on the surface. It should be noted that in cases of CuxBi2Se3 [8] and SrxBi2Se3, [9] a
fully formed superconducting gap with dI{dV = 0 at zero bias was seen. To confirm this, we
obtained a large number of spectra at different points along the green line shown in figure 5.2
(d) and plotted in figure 5.4 (b). Along this line that cuts through dark, bright and very bright
regions, as it is clear from the image (figure 5.2 (d)), the coherence peaks appeared at the same
energy. It indicates the insensitivity of the superconducting phase to the intrinsic modulation
of the local density of states.

Furthermore, to confirm such unusual robustness of the superconductivity, we selected an
area (figure 5.4 (c)) where the Nb clusters and the dark-bright contrast with an atomically
resolved background are clearly resolved. At 2 K, very close to the Tc, we performed local
tunneling spectroscopy at some special points (points 1, 2 and 3, for example). In Figure 5.4
(d) we show the spectra obtained at points 1, 2 and 3 which did not reveal any qualitative dif-
ference. It is also interesting to note that at all these points, the spectral features related to
superconductivity at a temperature close to Tc not only exist but also show striking similarities
with each other. This indicates that the superconducting features as well as Tc are uniform all
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Figure 5.4: (a) A representative tunneling spectrum recorded at 400 mK temperature showing
two coherence peaks corresponding to superconducting energy gap. (b) The spectra at multiple
points along the green line shown in figure 5.3 (d) recorded at 400 mK. The black line is the
average of all the spectra. (c) Topographic image of a 12 nm x 12 nm area showing atoms,
background dark/bright contrast and Nb clusters (bright circular spots). (d) Tunneling spectra
recorded at 2 K at three points “1”, “2”, “3” as shown in the panel (c).
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Figure 5.5: (a, b, c, d) Four representative spectra measured at 400 mK with fittings using
Dyne’s formula (an extended BCS theory).

over the crystal surface, despite the presence of the dark/bright contrast. Within the regions that
we have explored on the surface of the crystals we did not observed any significant difference.

In Figure 5.5 (a, b, c, d) we show four representative tunneling spectra (red lines) with best
possible theoretical fits (black lines) using Dyne’s formalism [18]. The experimental spectral
features show a shallow dip just above the coherence peak. Therefore, it is clear from the
data shown in figure 5.5, that except the large density of states at low-energy, the experimental
data deviate from the theoretical fits more dramatically just above the coherence peaks. These
features are too common and reproducible in this system which cannot be ignored as a moderate
deviation from the theoretical fit.

5.2.4 Temperature and magnetic field dependence

In figure 5.6, we show the evolution of spectral features with increasing temperature and mag-
netic fields. The spectrum obtained at 400 m K evolves smoothly with increasing magnetic field
and all spectral features disappear at critical field of 3 Tesla as shown in figure 5.6 (b). In order
to further investigate the nature of superconductivity, we performed temperature dependence
of the spectral features. The spectral features decrease gradually with increasing temperature
and disappear around 3 K slightly below the global Tc. We have plotted ∆ extracted from the
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Figure 5.6: (a, b) Temperature and magnetic field dependence of a typical spectrum respec-
tively. (c) Extracted ∆ from panel (a) and (b) are plotted with respect to temperature (blue)
and magnetic filed (red). The solid black line is corresponding to the BCS predictions of the
temperature dependence of ∆ for Tc =3.5 K and the dotted line is for Tc = 3 K.

best possible fitting for the spectra at different temperatures (figure 5.6 (c)). In the same panel
we have also shown the expected behavior within BCS theory for Tc = 3.5 K (black solid line)
and for Tc = 3 K (dotted line) [17]. The experimental data follows the BCS-like dependence
at very low temperatures but deviates slightly from that at higher temperatures. It should be
noted, since the experimental spectral features do not match with the conventional BCS theory
that we have used to fit them, evaluation of the exact temperature dependence of the gap (∆) is
non-trivial.
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Figure 5.7: (a) A spectrum showing prominent dips above coherence peaks (as compare to the
other spectra shown before). (b, c) Tunneling spectra showing multiple coherence peaks. (d) A
spectrum showing a small zero-bias conductance peaks.

Majority of the conductance spectra obtained on Nbx-Bi2Se3 showed deviation from the
theoretical fits, other spectral features were also often obtained. We show such four spectra in
figure 5.7 obtained at certain points on the surface. These spectra deviates more significantly
from the theoretical fit. It should be noted that all the spectra presented in figure 5.5 deviate
from the theoretical fits due to the formation of shallow dips just above the coherence peaks.
Such features are predicted to appear in the tunneling spectrum between a normal metal and
a superconductor where superconducting oder parameter is defined by chiral pairing [19, 20].
Hence, in this case as well, an s` ip symmetry of the superconducting order parameter might
be possible. An s` ip symmetry of the superconducting order parameter is again consistent
with earlier observations of nodal order parameter symmetry in Nbx-Bi2Se3 [15].
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5.3 Summary

The above discussed experimental results reveal that the superconducting phase realized in Nb
intercalated Bi2Se3 below 3.5 K does not described well within the BCS theory for conven-
tional superconductors. The pristine surface of the single crystal of Nbx-Bi2Se3 shows charge
puddles which is an indication of the existence of topological dispersion in the energy scale of
superconductivity. In fact, the underlying compound unlike the other compounds of its family
shows finite mid-gap states in the tunneling spectra. In addition, the spectral features show de-
viation from the theoretical fittings using Dyne’s equation . Therefore, we attribute the above
shown results of the appearance of low-energy excitations in the superconducting regime and
the non-BCS nature of energy gap to the existence of unconventional/topological order of su-
perconductivity in Nbx-Bi2Se3.
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Chapter 6
Tip-induced superconductivity in silicon

In this chapter, we present the emergence of an unexpected superconducting phase in silicon at
mesoscopic length scales. The superconducting phase emerged under point-contacts of silicon
and a metallic tip, such phase is known as Tip-induced superconducting (TISC) phase and has
been previously reported in topologically non-trivial materials. The silicon crystals and metallic
tip both are topologically trivial materials, therefore, the presented results are of significant
interest. Some of the experimental results presented in this chapter are already published in
ref [1].

6.1 Introduction

Silicon is the most inexpensive and extensively used material in the semiconductor indus-
try. [2–8] The ability of inducing novel electronic properties in silicon made this a material
of choice for technological purpose. [5, 7] Possibility of superconductivity in this material nat-
urally attracts significant attention of scientific and technological community. In the past, the-
oretical investigations revealed the possibility of superconductivity in doped semiconductors
like silicon [9–11] and germanium. [11] Some of the experimental observations showed su-
perconductivity in certain phases of semiconductors depending on external applied forces and
special conditions. [12, 13] It was found that the application of extremely large pressure drives
the β -Sn and hexagonal (sh) metallic phases of silicon in to the superconducting phase. [14,15]
More recently, superconductivity was observed in thin layer of cubic silicon below 0.35 K only
when it was doped heavily. Such superconducting phases of silicon were used to fabricate the
nano-devices [8] functional only at low temperatures. However, observation of the supercon-
ducting phase in moderately-doped bulk silicon remained an unattained goal. Motivated by
the recent discoveries of TISC superconducting phase in non-trivial materials [16–18] we have
chosen semiconducting silicon for point-contact experiments and observed a superconducting
phase which appears in moderately doped bulk silicon.
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Figure 6.1: (a), (b) Atomic resolution images of silicon surface which shows 7x7 reconstruction
of Arsenic-doped Silicon(111) captured at 1.6 K with positive and negative bias respectively.
(c) Tunneling I´V characteristics on the same and its magnetic field dependence. (d) Temper-
ature dependence of I´V . dI{dV vs. V data are also shown in the insets of (c) and (d).

6.2 Experimental details and results

6.2.1 Sample details

We have used commercially available silicon crystals for the experiments. The type and level of
doping were confirmed by in-house Hall measurements in a physical properties measurements
system (PPMS) at low temperatures. The surface of the single crystals were investigated by
STM and the semiconducting nature of all the crystals were further confirmed by scanning tun-
neling spectroscopy down to 1.6 K. In figure 6.1 (a, b) we show atomic resolution images of the
7x7 reconstruction of an As-doped silicon. We also show the I´V and dI{dV characteristics
in the tunneling regime and their temperature (figure 6.1 (d)) and magnetic field (figure 6.1 (c))
dependence. From the data presented in figure 6.1, it is clear that the crystals are semiconduct-
ing in nature and no signature of superconductivity is observed in the bulk crystals.
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Figure 6.2: (a) Magnetic field dependence of R´T showing the critical temperature of« 11 K,
the value of current sent to measure R´T is 0.33 mA in silicon point-contact. (b) R´T of
Pb point-contact. R´T data shows striking similarity with the data taken on silicon shown in
panel (a).

6.2.2 Point-contact spectroscopy

The point contacts were made on silicon crystals using a sharp metallic tungsten (W) tip by
the mechanism of an STM-like coarse approach at low temperature. When the point contact
is away from the ballistic regime, contact resistance is given by the Wexler’s formula [19]
R “ 2h{e2

pakF q2
`

ρpT q
2a as discussed in chapter 2. As shown in figure 6.2 (a), a resistive transition

is observed in R vs. T data which shows striking similarity with the data that is observed on
superconducting Pb under point-contacts (see figure 6.2 (b)). The R vs. T data for silicon
point-contact evolves systematically with the increasing magnetic field as expected for a super-
conducting transition. It must be noted that the resistance in the superconducting state does not
go to zero value for point-contacts, the emerging superconducting phase needs to be confirmed
by transport spectroscopic measurements. [1, 16–18]

Spectroscopic results are shown in Figure 6.3. Here, we have shown representative point
contact spectra obtained from different regimes of mesoscopic transport on As-doped Si(111).
In the dI{dV vs. V spectra shown in Figure 6.3 (a), a double-peak structure appear in dI{dV

that is known to originate from a ballistic superconducting point contact. Such a symmetric
double-peak features are known to be trademark signatures of Andreev reflection [20] in su-
perconducting point contacts. In the past, such structures were seen in ballistic limit [21] data
obtained on the Weyl semimetal TaAs [17] and the 3-D Dirac semimetal Cd3As2. [16] Where
these features were attributed to the phenomenon of tip-induced superconductivity. However,
the observation of a double-peak structure in dI{dV alone does not confirm the observation
of TISC. In order to further confirm the TISC phase, we show a spectrum measured in inter-

85



-12 -8 -4 0 4 8 12

0.93

0.96

0.99

1.02

1.05

1.08

 

 

 

 

(d
I/
d

V
) N

V
dc

 (mV)
-15 -10 -5 0 5 10 15

0.85

0.90

0.95

1.00

1.05

 

 

 

 

(d
I/

d
V

) N

V
dc

 (mV)

-15 -10 -5 0 5 10 15

0.60

0.65

0.70

0.75

0.80

0.85

 

 

 

 

(d
I/
d

V
) N

V
dc

 (mV)

-30 -20 -10 0 10 20 30

0.96

1.04

1.12

1.20

 

 

(d
I/

d
V

) N

V
dc

 (mV)

Ballistic  
Regime Intermediate  

Regime 

Thermal  
Regime 

Thermal  
Regime 

(d) 

(a) (b) 

(c) 

Figure 6.3: Point contact spectra close to the (a) ballistic regime (b) intermediate regime and
(c) thermal regime on As-doped Si(111) using W tip. (e) A spectrum showing multiple critical
current peaks recorded in thermal regime. All the spectra were measured at 1.5 K.

mediate regime of transport where distinct conductance dips along with a suppressed Andreev
reflection dominated double-peak structure are observed and in figure 6.3 (c) we show a spec-
trum which displays only conductance dips, such a dip structure is attributed to the critical
current dominated dips in superconducting point-contacts. [22] By slightly changing the point
contact of thermal regime, it was also possible to observe multiple conductance dips (figure
2(d)). Multiple conductance dips are expected for superconducting point contacts which com-
prise of multiple micro-constrictions, where each micro-constriction showing unique critical
current dips originating from its unique geometry.

To note that the conductance spectra recorded in different regimes of mesoscopic point-
contacts on superconducting Pb also shows striking similarities with the data observed on sili-
con (see figure 6.4 (a, b, c)). [23]

Therefore, the spectroscopic data shown above confirm the appearance of a tip-induced
superconducting (TISC) phase in silicon. The maximum recorded Tc was „ 11 K, which is
remarkably high. These observations of TISC phase are further supported by magneto-transport
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Figure 6.4: Point contact spectra recorded in (a) ballistic (b) intermediate and (c) thermal
regime of transport in Pb using silver (Ag) tip.

and rigorous temperature and magnetic field dependent spectroscopic experiments as discussed
below.

6.2.3 Evolution of spectral features with temperature & magnetic field

In order to further understand the superconducting phase emerging on silicon, we have in-
vestigated temperature and magnetic field evolution of the spectroscopic data obtained in the
ballistic regime of transport. We show 3D color plots of magnetic field and temperature de-
pendence of point contact spectra obtained on an As-doped Si(111) crystal in figure 6.5 (a)
and (b) and corresponding 2D plots are shown in figure 6.5 (c) and (d) respectively. It is clear
from the data shown in figure 6.5 that the superconducting energy gap closes systematically
with increasing temperature and magnetic fields. We also show the theoretical fits within a
modified-BTK (Blonder-Tinkham-Klapwijk) theory. [24] The low-bias parts of the experimen-
tally obtained spectra show remarkable fits with the theoretical spectra. It indicates that the
existence of an s-wave order parameter may be possible in this case, however, the possibility of
a more complex order parameter cannot be ruled out based on this data alone. The temperature
dependence of the superconducting energy gap amplitudes obtained from such fitting remain
close to the dashed line which shows the expected temperature dependence for conventional
superconductors within BCS theory (see figure 6.5 (e)). [25]
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Figure 6.6: (a) - (e) Five representative spectra recorded in ballistic regime of point-contacts
on Arsenic-doped Silicon (111). All the spectra are fitted using Modified BTK theory shown as
solid lines. (f) Variation of transport spin-polarization Pt with barrier strength Z. The red line
shows a linear fit of data points and it is extrapolated to Z “ 0 to extracted the exact value of
spin-polarization.

6.2.4 Observation of transport spin-polarization

In the analysis of superconducting phase in silicon, we have observed the suppression of An-
dreev reflection in the measured spectra. This suppression of Andreev reflection is measured
by modified BTK theory using an additional parameter which plays the same role as transport
spin-polarization (Pt) in case of TaAs [17] and CuFeSb. [26] Therefore, it might be possible that
silicon acquires a finite spin-polarized character under point-contacts. To measure the degree of
such spin-polarization, [27] we acquired a large number of spectra with varying barrier strength
(z) and analyzed using modified BTK theory [24]. Five such representative spectra are shown
in figure 6.6 (a - e). The fitting parameters are listed in the inset of figure 6.6. (a, b, c, d, e). We
have plotted Pt as a function of Z as shown in figure 6.6 (f). [17, 26] An extrapolation of the
linear fit of the data points (Pt´Z dependence) to Z “ 0 gives exact value of “intrinsic transport
spin polarization" which is approaching 60% (see figure 6.6 (f)). In the past, spin polarization
in silicon was attempted to induce to make silicon useful for the purpose of spintronics de-
vices. [28, 29]

6.2.5 Other possibilities of superconducting phase

It may also be possible that tungsten (W) is becoming superconducting under some special
conditions. In order to rule out such possibilities, the experiments were repeated for W/W and
W/Pt point contacts at low temperatures. we did not observed any superconducting feature in
such point-contacts.
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Superconductivity in silicon is reported in the past under certain special conditions like in
amorphous silicon. The critical temperature up to 3 K was observed in amorphous silicon under
25 GPa pressure which is extremely high beyond that much pressure the critical temperature
started decreasing. [30] However, it is non-trivial to realize such a high pressure underneath a
metallic tip without bending it. If tip bends then it is impossible to obtain a ballistic regime
spectra. Moreover, the critical temperature of the TISC phase in silicon is more than 3 times
than the superconducting phase under high pressure. Hence, the TISC phase in crystalline sili-
con presented here does not emerge due to pressure alone.

Such superconducting phase has also been observed in all crystal facets of silicon with both
p-type and n-type dopings. Some of the data obtained on other crystal facets with different
dopings is included in the next section.
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6.3 Facet and carrier dependence of superconductivity in sil-
icon

Here we present the realization of TISC in commercially available Si(100) factes with As dop-
ing, Si(100) facets with boron (B)-doping and Si(111) facets with As doping. In figure 6.7 (a)
we show resistance vs. temperature data at different magnetic fields for a point contact made
on the (100) surface of arsenic (As)-doped silicon. At zero field a resistive transition is seen
and the transition temperature is seen to decrease systematically with increasing magnetic field.
A similar transition is also seen (figure 6.7 (b)) for point contacts made on the (100) facets of
boron (B)-doped silicon. The corresponding H´T phase diagrams for As-doped and B-doped
Si(100) are shown in figure 6.7 (c) and (d) respectively. Dotted lines indicate the empirically
expected H ´ T phase separation lines for a BCS superconductor. [20] The deviation of the
experimentally measured data points from the dotted lines might be due to effects of disorder
under the point contacts.
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6.3.1 Point contact spectroscopy on As-doped Si(100)

In figure 6.8 (a) we show a ballistic regime normalized spectrum on As-doped Si(100). The
conductance peaks symmetric about V =0 indicate Andreev reflection. The spectrum is also
fitted with the modified-BTK theory [24]. The analysis revealed a superconducting energy
gap of 2.6 meV. In the intermediate regime, as expected for superconducting point contacts,
two dip-structures in conductance also appear which indicate the coexistence of critical current
dominated transport along with Andreev reflection (figure 6.8 (b)). The spectroscopic features
in the ballistic regime get monotonically suppressed as an externally applied magnetic field is
increased (figure 6.8 (d, e)) and the spectral features completely disappear at a magnetic field of
25 kG. The suppression of the features associated with superconductivity is also observed with
increasing temperature and the spectrum becomes featureless above the critical temperature of
the point contact, which is seen to be 9.5 K.
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6.3.2 Point contact spectroscopy on B-doped Si(100)

When the experiments were performed on B-doped Si(100), spectroscopic signatures of super-
conductivity were obtained again confirming the existence of TISC. [1] Though the signature
of Andreev reflection appeared in the form of two conductance peaks symmetric about V “ 0
(figure 6.9 (a)), a clean ballistic regime spectrum could not be obtained. This limited us from
exact determination of superconducting energy gap using modified BTK theory. [24] Based on
an approximate fitting, the estimated energy gap was found to be 1.7 meV which is relatively
small considering a critical temperature„ 8 K. The critical current dominated conductance dips
evolved systematically with increasing magnetic field (figure 6.9 (b)) and temperature (figure
6.9 (c)). The spectral features disappeared at 13 kG (at 1.4 K) and at 8.1 K (at zero field) re-
spectively. In the ballistic regime, the contact size is smaller. Consequently, while the critical
temperature remained to be „ 8.4 K (figure 6.9 (d, e)), the critical field increased up to 20 kG
(figure 6.9 (f, g)).
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While the existence of superconductivity is clear from the field dependent R´T measure-
ments along with spectroscopic signatures in different regimes of mesoscopic transport, it is
also possible to directly demonstrate the existence of a dissipationless critical current in the
point contacts. [16] We have done this exercise on the point contacts made on B-doped Si(100).
For that, we first obtained the I´V characteristics at different magnetic fields on a point contact
in the thermal regime of transport. Then we estimated the expected I´V corresponding to the
ballistic (Sharvin’s) component [19] using BTK theory. [19, 24] After that we subtracted the
calculated I´V from the total I´V measured experimentally in the thermal regime of trans-
port. The resultant I´V characteristics and their magnetic field dependence are shown in figure
6.10. The magnetic field dependence of the I´V characteristics thus obtained is consistent with
the field-dependent behavior of a critical current dominated I´V of a superconductor. [16]

Estimation of transport spin polarization

As it was discussed before, the spectra in the ballistic regime were analyzed using a modified
BTK theory. A large number of spectra were analyzed with varying strength of the interfa-
cial barrier (Z in BTK theory) and plotted Pt as a function of Z for B-doped Si(100)/W point
contacts. The variation of ballistic regime spectra with magnetic field and temperature for such
point contacts are shown in figure 6.11 (a) and (b). Few representative spectra with correspond-
ing theoretical fits and fitting parameters are also listed in figure 6.11 (d). An extrapolation of
the Pt ´Z dependence to Z “ 0 gives a high value of “intrinsic transport spin polarization" ap-
proaching 78% (figure 6.11 (c)).
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6.3.3 TISC on Silicon with other metallic tips

The tip induced superconducting phase also emerged with other elemental metal like Cobalt
and alloy Pt-Ir tips. The similar experiments were performed on As-doped Si(111)/Co and
As-doped Si(111)/Pt-Ir point contacts. The spectroscopic signatures along with the resistive
transition show superconductivity in silicon induced by cobalt tip. Ballistic regime spectra
with the Andreev reflection peaks and intermediate regime spectra with Andreev reflection
peaks as well as critical current dips are shown in figure 6.12 (a) and (b) respectively. R´T

data, in figure 6.12 (c) show systematic evolution of the critical temperature with magnetic
field, as expected for a superconducting point contact. The detailed temperature and magnetic
field dependence of the point contact spectra at different regimes of transport are presented in
figure 6.13. The critical temperatures for this tip-sample combination varied between (Tc „

8K and 10K). As shown in figure 6.14, similar observations were also made with Pt-Ir tips. In
case of Pt-Ir tips, the critical temperature was found to be Tc „ 8 K.
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diate regime spectra measured using Cobalt tip respectively.
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Figure 6.14: Point-contact spectra measured using Pt-Ir tip in the (a) ballistic regime and
(b) intermediate regime of transport. (c) Magnetic field evolution of (c) R-T and (d) ballistic
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6.4 Summary

In summary, we have discovered a tip-induced superconducting phase in moderately doped sil-
icon with the critical temperature of „ 11 K which is found to be remarkably high. Detailed
analysis of temperature and magnetic field dependence of the spectra revealed a strong possi-
bility of a conventional order parameter in the superconducting phase observed in silicon under
point-contacts. These observations are expected to stimulate theoretical studies for understand-
ing this surprisingly high temperature superconducting phase realized on silicon. We have also
observed finite transport spin-polarization in silicon under point-contacts. The ballistic regime
point-contact spectra can be fitted well with modified BTK theory with finite transport spin
polarization Pt .

In this chapter, we have also shown that a TISC phase can be realized on all the facets of
commercially available single crystals of silicon with different types of doping. No systematic
dependence of the critical temperature was observed either on the type of carrier or on the sur-
face on which the point contacts are made. We have also shown that the TISC phase can also
be realized using tips of other metals like Pt-Ir and ferromagnetic cobalt.

Our claim of TISC phase in moderately doped silicon is based on a large amount of data
which we have obtained on all crystal facets of silicon including <111>, <110> and <100> with
both arsenic and boron dopings.
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Appendix A
Indication of unconventional
superconducting pairing in Pb nano-islands

Here, we present the observation of unconventional superconducting pairing in Pb nano-islands
under mesoscopic point-contacts. The work presented here is published in Nanotechnology. [1]

A.1 Introduction

Nano-structures of some of the elemental superconductors show significantly different super-
conducting properties from the bulk [2, 3] like superconductivity in Nb nano-particles disap-
pears below certain critical particle diameter. Such observations were attributed to the change
in the electronic structure with change in the particle diameter and to the modified electron-
phonon coupling strength. In fact, there are systems where superconducting properties are
affected by the fundamental interaction terms like spin-orbit coupling. Superconductivity in
materials with strong spin-orbit coupling is receiving renewed interest following the discovery
of superconductivity in some of the topologically non-trivial materials including the topologi-
cal insulators [4] and the topological Dirac semi-metals. [5–7] Elemental Pb is the unique and
simplest superconducting system among those with strong spin-orbit coupling [8]. Elemental
bulk Pb is a type I conventional superconductor with the critical temperature (Tc) of 7.2 K and
the critical magnetic field (Hc) of approximately 800 Oe. The Cooper pairing in Pb is thought
to be mediated by electron-phonon interactions [8–10]. Furthermore, experiments on Pb nano-
particles and nanowires have shown non-type I nature of superconductivity where the critical
field is enhanced by several orders of magnitude [11–13]. Here we present the trapping of
nano-droplets of Pb under a mesoscopic point contact with silver (Ag) tip and show that the
superconducting properties of such confined nano-islands are significantly different from bulk
Pb and is strongly affected by the high spin-orbit coupling of Pb. We have also observed a clear
indication of an unconventional pairing.
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Figure A.1: (a) A dV{dI vs. V spectrum obtained in the ballistic regime showing two sym-
metric dips about V =0 due to Andreev reflection. (b) A spectrum obtained in an intermediate
regime where the peaks due to critical current and dips due to Andreev reflection in dV{dI vs.
V are present. (c) A spectrum in the thermal regime with sharp critical current peaks.

A.2 Experimental details and results

The qualitative spectral features of point-contacts depend on the regime of mesoscopic trans-
port as decided by the size of the point-contacts relative to the elastic and inelastic mean free
paths [14, 15]. All such features associated with superconductivity of the point-contacts are
shown in figure A.1. The spectral features associated with superconductivity also show sys-
tematic evolution with temperature and magnetic field. From our experiments, we show that
the mesoscopic point-contacts involving Pb couple non-trivially with magnetic field.

In figure A.1 (c) we show a Pb-Ag point-contact spectra at zero magnetic field in the ther-
mal regime where two strong critical current driven peaks in dV{dI symmetric about V “ 0
are observed. As shown in figure A.2 (a), when a magnetic field of 1.6 kG is applied parallel
to the direction of current flow, the height of the dV{dI peaks obtained in the thermal regime
point-contact (figure A.1 (c)) becomes asymmetric – the peak height for positive bias is higher
than that for the negative bias. When the magnetic field direction is reversed, the asymmetry in
peak height also gets switched (figure A.2 (b)). This behaviour has been observed consistently
and reproducibly for more than 50 point-contacts in the thermal regime.

In figure A.3 (a) we show a 3D plot of the magnetic field dependence of dV{dI for the same
point-contact discussed above. Surprisingly, the asymmetry in peak height is seen to oscillate
until all the features associated with superconductivity disappear at 1.6 T. We have also per-
formed the experiment with the magnetic field applied in a direction antiparallel to the direction
of current flow and the critical field and other associated superconducting properties (like, co-
herence length) was found to be same as when the field was applied parallel to the direction of
current. In figure A.3 (b) we show how the ratio of the differential resistance corresponding to
the smaller peak (Rs) and the larger peak (RL) oscillates with magnetic field. The oscillation of
Rs alone is shown in figure A.3 (c).
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Figure A.2: A spectrum in the thermal regime with a magnetic field of 1.6 kG applied (a) par-
allel and (b) anti-parallel to the direction of current in a point-contact. The spectrum becomes
asymmetric and switches this asymmetry with reversing the direction of magnetic field.

The superconducting transition at 7.2 K of a thermal regime point-contact (as shown in
figure A.1 (c)) is clearly seen in the resistance (R) vs. temperature (T ) plot at zero-bias (see
figure A.4 (a)). The transition temperature is seen to systematically decrease with increasing
the strength of a magnetic field applied parallel to the direction of current flow. The H ´ T

phase diagram shown in figure A.4 (b) has been extracted from the magnetic field dependent
R´T data. It is clear that the critical magnetic field up to which superconductivity survives in
this point-contact is 1.6 T which is significantly higher than the bulk critical field of Pb (800
Oe). Therefore, when a magnetic field of strength between 800 Oe and 1.6 T is applied on
this point-contact, the superconductivity of the bulk is destroyed and only a small mesoscopic
region under the point-contact remains superconducting. In figure A.4 (b) we also show the
empirically expected plot of the phase diagram for a conventional superconductor as a dotted
line. At temperatures closer to Tc it is observed that the experimentally obtained H´T curve
deviates slightly from the empirical curve and shows a concave curvature instead of convex.
This might be due to the presence of an unconventional superconducting component in the
point-contact. [5]

The magnetic field driven anisotropy of the dV{dI spectra with the sign of applied bias in
the thermal regime could be understood if the effective spin-orbit coupling of Pb is modified
depending on the direction of the applied magnetic field with respect to the applied electric
field (bias). [16] From the data it appears that when the magnetic field is parallel to the electric
field, the effective spin-orbit coupling is suppressed and when the magnetic field is anti-parallel
to the electric field, the effective spin-orbit coupling is enhanced thereby leading to the asym-
metric dV{dI. The absolute values of Rs and RL give an estimate of how fast or slow does the
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superconducting point-contact achieve its normal state resistance when the current through the
point-contact is gradually increased. These values oscillate while the absolute value of the crit-
ical current as determined by the position of the peaks in the dV{dI spectra does not oscillate
with magnetic field. At present we cannot provide a theoretical understanding of this intriguing
observation, but we believe that such non-trivial coupling of the point-contact with magnetic
field could be related to the high spin-orbit coupling of Pb based on direct comparison of re-
sults on high spin-orbit coupling Pb point contacts with very low spin-orbit coupling Nb point
contacts. The thermal limit spectra at different magnetic fields on Nb point contacts are shown
in figure A.5. It is seen that while the sharp conductance peaks driven by critical current get
suppressed, no magnetic field dependent asymmetry is observed up to a magnetic field of 5 kG.

At the surface of Pb where the point-contacts are formed, the inversion symmetry is broken
and the system in principle is allowed to mix in a triplet component [17, 18], possibly with
breaking time reversal symmetry (s` ip). Such a state could, in principle, couple with magnetic
field in a non-trivial manner. The idea of the emergence of a spin triplet component in the
order parameter here is further supported by earlier experimental observations where it was
shown that lattice dislocation might enhance superconductivity in a spin triplet superconductor.
[19] In the present case, the point contact could act like a local defect and as per the work
mentioned above, the observed enhancement of the superconductivity at the mesoscopic Pb
point contact might indicate the existence of a spin-triplet component in the order parameter
of the superconductor forming the point contact. The spin triplet component in mesoscopic Pb
which is a conventional superconductor in the bulk could be, as discussed before, due to the
known high spin orbit coupling in Pb.
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Figure A.5: Point contact spectrum obtained in the thermal regime showing critical current
peaks symmetric about V =0 in magnetic fields, corresponding magnetic field values are given
in the respective insets. The spectrum is symmetric and there is no change with reversing the
direction of magnetic field.
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A.3 Conclusions

In conclusion, from the detailed magnetic field dependent studies of the transport properties of
mesoscopic point-contacts formed between superconducting Pb and Ag we have shown that in
mesoscopic dimensions, magnetic field induced asymmetric spectral features are observed. We
surmise that such asymmetric properties can be understood if the strong spin-orbit coupling of
Pb is considered. We have also discussed the possibility of an unconventional component of
the order parameter for mesoscopic Pb.
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Appendix B
High spin-polarization in CuFeSb

Here, we present the observation of high spin-polarization and unique ferromagnetic ground
state in CuFeSb. The spin-polarization is measured by transport measurements of point-contacts
made between CuFeSb and a superconductor (Nb and Pb). The work presented in this appendix
is published in Applied Physics Letters. [1]

B.1 Introduction

CuFeSb is isostructural to the ferro-pnictide and chalcogenide superconductors. Usually the
parent compounds of the pnictide and the chalcogenide superconductors are known to be anti-
ferromagnetic where the antiferromagnetism is thought to be promoted by spin density waves
(SDW) associated with Fermi surface nesting [2–4]. More recently it has been shown that
CuFeSb, which is isostructural to the iron-based layered superconductors e.g., Li(Na)FeAs [5],
has a ferromagnetic ground state [6]. A close relative of this compound CuFeAs stabilizes in
an antiferromagnetic ground state with a Neel temperature of 9 K [7]. The ferromagnetic order
in CuFeSb is thought to originate from the large height of Sb from the Fe plane. This fact also
supports the hypothesis that the competing magnetic interactions in ferro-pnictide supercon-
ductors is decided by the anion height i.e., there is a gradual change in the magnetic properties
from superconductivity to antiferromagnetism to ferromagnetism on moving in the increasing
order of anion height from LiFeAs to CuFeAs to CuFeSb [6–8]. CuFeSb is known to be one
of the very few materials in the FeAs or FeSb family that shows a ferromagnetic ground state.
Therefore it is most important to understand the Fermi surface properties of this unique system
by spectroscopic measurements – particularly, the nature of the Fermi surface spin polarization
and the degree of spin fluctuations.

Here, we have employed spin-resolved Andreev reflection spectroscopy using conventional
superconducting tips to measure the spin polarization at the Fermi level of CuFeSb [9]. From
the analysis of the Andreev reflection data between the superconductor and the ferromagnet, we
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found the evidence of a high degree of transport spin polarization approaching 47% in CuFeSb.

B.2 Experimental results

In figure B.1 (a - h) we show eight representative Andreev reflection spectra between a Nb/Pb-
tip and CuFeSb. The spectra clearly show the double-peak structure symmetric about V “ 0,
which is the hallmark of Andreev reflection. For low values of Z, these peaks appear close to
the energy gap of the superconductor. The solid lines show the theoretical fits as per the model
described in chapter 2. The superconducting energy gap of niobium is found to vary from con-
tact to contact and fall approximately between 0.8meV and 0.9meV for all the point-contacts
that we have analyzed, indicating that the proximity of the ferromagnet suppresses the super-
conductivity of the point-contacts slightly. The value of Γ remained zero for all the spectra,
which means the broadening due to finite quasi-particle lifetime is absent at the point-contact.
This fact also indicates that the spin-fluctuation in the system is not significant as strong spin-
fluctuations is also known to give rise to large Γ [10]. Therefore, the theoretical fits are obtained
by essentially tuning two parameters namely Z and Pt , this makes the fit accurate and the fitting
parameters unique. It is found that the raw data deviate slightly from the fit at certain points
(notice the dip structures in dI{dV ). Such deviation is known to originate from the critical
current of the superconductor when a small part of the Maxwell’s resistance is also measured
along with the Sharvin resistance in the point-contacts close to the ballistic regime. [11]

The experiments were repeated with superconducting Pb-tips to confirm the reproducibility
(figure B.1 (a - d)). It is seen that the theoretical fitting to the experimentally obtained spectra
obtained with Pb tips is very good and the critical current driven dips are absent. This is due
to the existence of a thick oxide layer on the surface of Pb that is broken by the application
of mechanical pressure for the formation of point contacts thereby leading to extremely small
diameter contacts where ballistic transport dominates. The value of Γ remained almost zero for
all the fittings and the superconducting energy gap was found to vary approximately between
0.8meV and 1.2meV which is consistent with the superconducting energy gap of bulk Pb.

The dependence of Pt on Z for both Nb and Pb based point-contacts is shown in figure
B.2. For most of the Nb/CuFeSb point-contacts, the value of Z was found to be small (ă 0.2)
For such point-contacts, the maximum measured value of Pt is found to be 47%. For both the
Nb/CuFeSb and the Pb/CuFeSb point contacts Pt did not change noticeably with Z. The con-
ventional way of finding the intrinsic transport spin polarization is to extrapolate the Pt vs. Z

curve to Z “ 0. By doing this extrapolation, the intrinsic Pt is found to be approximately 47%
which is nearly equal to the value measured with the Nb tip.
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Figure B.1: Representative point-contact spectra in the ballistic regime between superconduct-
ing (a-d) Pb/CuFeSb and (e-h) Nb/CuFeSb point-contact. The fitting parameters are listed in
the insets respectively.
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Figure B.2: The transport spin-polarization Pt vs. Z plot for point-contacts on CuFeSb with
Nb and Pb tips.

B.3 Theoretical calculations

In order to understand the unique ferromagnetic ground state of CuFeSb and the origin of the
observed high spin polarization, we have performed spin-polarized band structure calculation of
CuFeSb. The first-principles calculations were performed within spin-polarized density func-
tional theory using projector augmented wave formalism. [12, 13] The structural parameters of
the optimized tetragonal [P4{nmm, shown in figure B.3 (a)] CuFeSb are in excellent agreement
with the current and previous [14] experimental measurements (see table B.1). The CuFeSb
crystal structure is analogous to other iron pnictides and chalcogenides, though there are some
striking differences from the superconducting ones. For example, while compared with the
superconducting LiFeAs, (a) the Sb–Fe–Sb angles are substantially different than As–Fe–As
angles, and (b) the Fe–Sb bond length is significantly larger as shown in table B.1. Thus, the
height of Sb (As) from the Fe plane is strikingly different for CuFeSb [zSb=1.89 Å (DFT-PBE),
and 1.87 Å (experiment)] and LiFeAs (zAs=1.51 Å), [5] and this zanion is predicted to play an
important role in determining the electronic structure. [15] Further calculations shows that for
CuFeSb the narrow d band near the Fermi level and very high NpEFq the magnetic Stoner insta-
bility takes over, and the Fe-layer becomes ferromagnetic similar to the case of ferromagnetic
MgFeGe.

Next we calculate the transport spin polarization Pt . Within classical Bloch-Boltzmann
transport theory, Pt can be defined in terms of spin-dependent current densities, and in gen-
eral, [?]

Pn
t “

xNpEFqvn
FyÒ´xNpEFqvn

FyÓ

xNpEFqvn
FyÒ`xNpEFqvn

FyÓ
,

where vF is the spin polarized Fermi velocity of electrons. Thus by definition Pn
t is connected

to the the spin polarization measured in various experiments, spin resolved photo-emission
(n “ 0) and point-contact spectroscopy in ballistic (n “ 1) and diffusive (n “ 2) regimes. In
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Table B.1: Refined structural parameters for CuFeSb obtained at 300K, which is below the
ferromagnetic transition temperature. The number in the square bracket indicates the number
of symmetric bond lengths.

P4{nmm: a“ b“ 3.9117(3) Å, c“ 6.2619(4) Å (300K)

a“ b“ 3.9347(2) Å, c“ 6.2515(4) Å (400K)

a“ b“ 3.91 Å, c“ 6.32 Å (DFT-PBE)

x y z B (Å2) Wyckoff positions

Atomic coordicates Cu 0.25 0.25 0.7127(3) 1.68(6) 2c
Fe 0.75 0.25 0 1.69(1) 2b
Sb 0.25 0.25 0.2981(1) 1.19(4) 2c

Bond lengths (Å) Sb–Fe–Sb angles (˝)
Fe–Sb [4] Fe–Fe [4] Cu–Sb [1] Cu–Sb [4] α β

Experiment 2.704(1) 2.766(1) 2.596(3) 2.767(2) 92.68(2) 118.47(2)
Ref. [ [?]] 2.693(1) 2.782(2) 2.660(3) 2.784(2) 93.86(5) 117.80(3)
DFT-PBE 2.72 2.77 2.69 2.77 91.98 118.86

the present experimental setup, Pt has been measured in the ballistic regime. We calculated
the spin-polarized DOS, which is shown in figure B.3 (c), along with the spin-polarized Fermi
surface [figure B.3 (d) and (e)]. Similar to the non-magnetic case, the conduction electrons at
the Fermi level have Fe-d character. Further, NÒpEFq is found to be 12.6% larger than NÓpEFq

for ferromagnetic CuFeSb. In addition to this imbalance in Nσ pEFq, the average Fermi velocity
xvFyσ contribute to Pt in the ballistic regime. We find xvFyÒ ą xvFyÓ, and the calculated average
Fermi velocity for the up and down channel is 6.44 ˆ 105 and 2.68 ˆ 105 m/s, respectively.
These result into a transport spin polarization, Pt = 46%, which is in excellent agreement with
the present Andreev reflection spectroscopy measurement.
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Figure B.3: (a) The crystal structure of CuFeSb showing tetragonal symmetry. (b) Calculated
spin polarized band structure where black color indicates the bands corresponding to the up
channel and red bands are corresponding to the spin-down channels. (c) The nonmagnetic
(green line) and ferromagnetic DOS for CuFeSb. The spin-polarized Fermi surfaces are shown
in (d) for up spin electrons and (e) for down spin electrons.
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B.4 Conclusions

In conclusion, we have measured the transport spin polarization of ferromagnetic CuFeSb.
From the analysis of the Andreev reflection spectra we obtain a spin polarization of approx-
imately 47%. The first principles calculations show that the spin polarization in the Fermi
surface is approximately 12.5%. However, when the transport spin polarization is calculated
including the role of significantly different Fermi velocities for the up and down spin bands
respectively, the ballistic transport spin polarization is found to be 46% which is in excellent
agreement with the experimental results. Furthermore, the band structure calculations shed
light on the origin of a unique ferromagnetic ground state in CuFeSb as compared to the other
compounds in the same family majority of which stabilize either in an antiferromagnetic or a
superconducting ground state.
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