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Abstract

In this thesis, we show a compact single-lens interferometer enabling a real-time self-
calibrating picometer resolution on arbitrary surfaces. We demonstrate the performance of
our interference lens (iLens) by first obtaining high-contrast fringes from a wide variety
of common surfaces such as paper, cloth, cardboard, plastic, human skin, silk fiber, etc.,
and then we demonstrate a single-pixel based self-calibrated measurement of local surface
displacement with sub-20 pm precision induced by another pump laser, for example. We have
analyzed optimal design of our universal interferometer and show that it can be 3d printed
for stand-alone precision applications offering advantages over conventional interferometers.

Our compact iLens interferometer enables a new class of frugal optical devices matching
or outperforming their state-of-the-art counterparts. We demonstrate three examples: (i)
a paper-based picogram weighing balance which is 1000 times more precise and faster
compared to a seven digit advanced digital balance, (ii) a cloth or hair based broadband
acoustic sensor, and (iii) direct measurement of thermal diffusivity of various fragile biologi-
cal surfaces. Furthermore, the iLens interferometer allows probing nanosecond dynamics of
candle-flame plasma and micro-liter liquid droplets suggesting its wide applications in four
phases of matter.

Using structured light, in particular with light containing orbital angular momentum
(OAM) and a cylindrical iLens, we devise a compact tiwsted interferometer with picometer
scale. We exploited the phase-structure of OAM, a feasibility of real-time noise-compensation
is demonstrated with our interferometer. Besides, cylindrical lens We also show ultrafast
fabrication of large-area, high-fidelity surface nano-structuring of solid surfaces which could
serve as optical components in optical devices.

Finally, we discuss the future perspectives of our iLens probes as a generic ultra-sensitive
tool to investigate dynamics properties of solids surfaces, complex liquids and gel, as well as
precision fundamental physics experiments on nature of photons momentum in medium.
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Chapter 1

General Introduction

In 1717 Issac Newton first demonstrated interference pattern created by reflection of light
between two smooth surfaces, a spherical surface and an adjacent touching flat surface,
known as Newton’s rings. Around 1803, Thomas Young described his famous double-slit
experiment with white sun-light to show the wave properties of light. An arrangement similar
to Newton’s ring was proposed by Fizeau about 1862, that is still used today, to precisely
measure curvature of various surfaces. While these interferometers played a key role to
understand wave or corpuscular nature of light, in 1887, Michelson-Morley designed a new
interferometer and obtained the famous null result on the existence of ether [1]. These
examples led development of a wide variety of ultra-precise optical interferometers in the
19th century, such as Jamin interferometer (1856) [2], Mach-Zehnder interferometer (1890)
[3], and Fabry-Perot interferometer (1899) [4]. In addition, the invention of lasers around
the middle of 19th century made the interferometers as tools with unmatched precision for
various fundamental and technological applications [5–7], including detection of gravitational
waves with Michelson and Fabry-Perot interferometers [8, 9].

Modern interferometers exploit coherence of laser light to performs precision measure-
ments. In spite of their immensely distinct designs, the interferometers are commonly based
on the superposition of two or more beams. Generally, an incoming light is split into two
parts, viz. reference beam and object (or measurement) beam, and then recombined together
to produce the fringes. In order to obtain high-quality fringes, interferometers require multi-
ple high quality optical components, a beam splitter, series of mirrors, lenses, and a smooth
optical quality sample. In addition, a CCD camera, or a photo-detector is used to record and
analyze the fringes. Depending upon the design and the application these interferometers may
require additional optical components as well as sophisticated signal processing algorithms.
However, the necessary requirement of multiple optical components not only makes most
interferometers bulky devices but also make them sensitive to align and stabilize against the
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various non-fundamental mechanical and thermal noises [6, 10, 11]. Although monolithic
assembly of interferometer allowed miniaturization, it is challenging to devise a compact
interferometer capable of achieving real-time picometer scale precision.

Most existing interferometers rely upon the fringe formation from smooth optical quality
surfaces, such as of the reference mirror. If the smooth surface is replaced by a rough test
surface, in Michelson interferometer for example, no fringes are formed on the screen due to
several following reasons. The rough surface randomly scatters the light in all the possible
directions, i.e. a speckle field is formed on the screen. It then becomes difficult to collect light
to form high-contrast interference fringes. Additional components are required to collect
light, such as in Zygo’s equal path white-light interferometer with transmission sphere (a
combination of lenses), which leads to feeble fringes from rough surfaces [12]. Another
key problem in performing interferometry with arbitrary surfaces is how to calibrate the
fringes to achieve picometer precision, which is beyond the reliable displacements caused by
state-of-the-art piezo-stages.

Although several promising optical techniques have been devised to probe rough or nano-
patterned surfaces, for example, electronic speckle pattern interferometry[13–15], diffuse
optical tomography and imaging [16], interferometric scattering microscopy (iSCAT) [17–
19], two-wavelength heterodyne speckle interferometer [20], and holography [21]. The
vertical scanning white-light interferometry, based on Mirau or Zygo interferometers, has
been able to probe patterned surfaces by processing white-light fringes [6, 22]. Besides being
multi component systems most of these interferometric methods use optimized protocol,
whereby dynamic fringes are recorded with a camera, which are analysed frame by frame
using a dedicated processing toolkit to filter out the unwanted noises, thus, limiting the
detection speed. Moreover, the precision achieved by such approaches is limited by the pixel
size of the camera and its frames per second. One may wonder if it is possible to design
an interferometric technique to directly probe arbitrary rough surface with the picometer
precision in real-time.

On the other hand, the applications of universal interferometry to advance frugal science,
i.e., to realize low-cost devices analogous to foldscope or paper-fuge has remained elusive
[23–25]. Application of precision interferometers for arbitrary surfaces could open new path
in devising the ultra-precise frugal optical devices, using paper, cloth or hair etc. Furthermore,
such techniques can measure photo-mechanical dynamics on solid surfaces, candle flame
plasma, and liquid samples, in real time with picometer precision.

In this regard we focus on the following questions that we attempt to answer in this work:

• Despite the recent progress in the design of present day interferometers, there still
remain a few “stringent prerequisites” associated with obtaining interference fringes



3

which limit its potential. For instance, most interferometers require multiple high-
quality optical elements, which demand tedious alignment and stabilization against
various non-fundamental noises for precision measurements. We wonder if it is possible
to design an interferometer with just one component that would considerably simplify
alignment and robust stabilization. If such an interferometer could be designed, is
it possible to develop a simple analysis procedure for real-time detection of sample
displacement without the need of any external calibration standard.

• Most of the conventional interferometers work best with optical quality surface and
have difficulty with common rough surfaces such as paper, cloth, unpolished metal
surfaces, etc. Though there are many techniques to do precise measurements with
rough surfaces, they require additional optical attachments. Importantly, most of these
technique do not render interferometric precision on in situ rough surfaces. Thus,
one may ask, is it possible to design a universal interferometer which produces high
contrast fringes with arbitrary solid surfaces, including for plasma and liquids. A
related question would be then how to analyze the fringes obtained from common
surfaces for picometer resolved measurements.

• While advancement in modern interferometry has allowed unparalleled precision in
fundamental measurements and for various technical applications. Considerable efforts
have been invested in design and development of inexpensive frugal optical instru-
ments without compromising the precision can prove to be a boon. Several examples
exist such as a paper based foldable microscope (foldscope) or a paperfuge [23, 24].
However, it is still not possible to design ultra-sensitive frugal optical instruments using
optical interferometers. How can one design frugal optical instruments for different
applications, for example in weighing and force sensing using everyday items with
sensitivity matching with their commercial counterparts at low-cost.

• Most optical interferometers exploit a Gaussian laser beam. With the recent devel-
opment in capability to create structured light, such as light carrying orbital angular
momentum or light sheet, there is a great interest in exploiting structured light in an
interferometer. In this regard, one may wonder how can one design compact inter-
ferometers for twisted light. What are the advantages of such interferometers over
the ones that use the Gaussian beam? One may also wonder, if light-sheets offer any
capability in controlling light-matter interaction for nano-structuring solid surfaces.

To answer these questions we have chosen the following thesis plan:
In the second chapter, we unravel a universal single interference lens (iLens) interfer-

ometer. We first present the key idea that allows us to combine three different functions of an
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interferometer into a single-lens thus making the interferometer compact. We present theoret-
ical analysis on the formation of fringes and analyze the optical beam-splitting coating for
producing high-contrast fringes with various surfaces. We then experimentally demonstrate
our interferometer on a wide variety of common surfaces and establish a self-calibrating
picometer resolution in real-time. We also show that our interferometer can be 3D printed
for various stand alone applications.

The third chapter deals with various applications of iLens interferometer. We demon-
strate that iLens enables a new class of frugal optical devices that are fabricated with common
materials such as paper, cloth, human hair. Three illustrative examples of the device are
shown for measurement of weight, acoustic vibration, and force using paper, cloth and human
hair with matching or superior precision than the state of the art counterparts.

We also demonstrate applications of iLens interferometer in fundamental measurements.
For example, we show that iLens interferometer enables measurement of properties of candle
flame plasma with picometer precision and to probe intriguing phenomenon arising due to
the interaction of ns pump laser with candle flames. The applications of iLens in measuring
properties of fluids is also demonstrated.

The fourth chapter is aimed at exploring the potential of twisted light in the cylindrical
iLens interferometer. We theoretically design and demonstrate a cylindrical iLens that makes
a compact twisted iLens interferometer. The interferometer produces a daisy-flower pattern
and we show how this can be used for picometer resolved measurements. We also introduce a
concept of real-time differential noise-cancellation by exploiting the unique phase-structure of
the twisted light. We analysis different noises and also show that simultaneous multiple-point
measurement leads to real-time noise averaging. Finally, we discuss a related application
of ultrafast light-sheet produced by a cylindrical lens in large-area nano-patterning of solid
surfaces.

In the end of this thesis, in chapter five we present summary of our results and discuss
future directions in which this work can possibly be extended.



Chapter 2

A Universal Single-lens Interferometer

2.1 Introduction

Over the past centuries, a wide variety of ultra-precise optical interferometers have been
invented for various fundamental measurements and for a variety of technological applications
[1, 4, 5, 3, 6], including null-result on the presence of ether to recent detection of gravitational
waves with Michelson and Fabry-Perot interferometers [8, 9]. Modern interferometers are
sophisticated devices enabling ultrahigh precision in various applications such as surface
tomography, material properties, etc. The precision in these interferometers comes at a
cost of multiple high-quality components such as beam splitter, reference mirror, collimator
optics, and optical quality test-surfaces.

In addition, most interferometers demand tedious alignment and stabilization of its
multiple components against non-fundamental mechanical and thermal noises [6] to achieve
sub-nanometer resolution. However, common materials around us such as paper, cloth,
rubber, skin, etc., lack optical quality finish and therefore, cannot presumably be used directly
to build optical interferometers. In other words, the standard interferometry cannot be directly
applied to in situ common surfaces. It will be of broad interest if one can find new approach
to achieve interferometric precision with such common surfaces.

There are many challenges to extend applications of optical techniques to arbitrary
surfaces (paper, rubber, plastic, bio-materials viz. flower, leaf, skin, etc.). For example,
how to efficiently collect back-scattered light from the rough surface, how to calibrate
the interferometer, and how to develop simple computational strategies for analysis of
interference pattern in real-time without the requirement for sophisticated toolkit.

Although, several promising optical techniques have been devised to probe rough or nano-
patterned surfaces, for example, electronic speckle pattern interferometry [13], diffuse optical
tomography and imaging [16], interferometric scattering microscopy(iSCAT) [18, 19], and
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holography [21]. The vertical scanning white-light interferometry, based on Mirau or Zygo
interferometers, has been able to probe patterned surfaces by processing white-light fringes
[6, 22]. The multi-component geometry of these techniques makes them difficult to align and
stabilize them against various non-fundamental noises. Moreover, the precision and speed
in such techniques is limited by the pixel size of camera used to record the interferogram,
scanning speed of the sample or the signal-processing algorithms. In white-light Zygo
interferometer, a so-called transmission sphere [12] comprising of two or more lenses, is used
in conjunction with the interferometer to obtain interference fringes from rough surfaces.
One may wonder if it is possible to devise a compact interferometer capable of achieving
real-time picometer scale precision by direct interferometry on arbitrary surfaces without
requiring any sophisticated measurement toolkit.

In this chapter, we demonstrate the ultimate miniaturization of interferometers by integrat-
ing the three essential functions of an interferometer provided by a beam splitter, a reference
mirror, and light collection optics into a single interference-lens (iLens) enabling stable,
high-contrast fringes with various surfaces including paper, plastic, wood, metal, rubber,
human skin, hair, etc. The fringes obtained with these surfaces appear randomly oriented and
contain the information about the sample surface structure. We will validate our setup for
different rough samples from our day-to-day life including paper, rubber, plastic, hair, skin,
etc. Analyzing the high-contrast fringes from our universal interferometer one can achieve
a real-time precision of sub-20 pm (∼ λ/30000) with a simple detection of interference
intensity using a high-speed photodiode. The compactness of our iLens interferometer allows
us to further miniaturize the setup by 3-D printing for stand-alone portable applications.

2.2 Schematic of Experimental set-up

The key element of our compact interferometer is the iLens which when combined with a
sample surface forms a functional interferometer. The iLens is a bi-convex glass lens whose
one side is partially silver-coated (denoted by red-surface). iLens is a three-in-one component
which combines functions of three basic optical elements required in any interferometer, as
shown in Figure 2.1(a). (i) It acts like a beam-splitter, wherein, it splits the incoming light
beam into two beams, viz. reflected and transmitted beam. (ii) The partially coated side of
the lens also act as the reference mirror of the interferometer, hence the light reflected from
this surface is our reference beam. (iii) It collects a small portion of the back-scattered beam
from the sample, forming the object beam. Hence, the last function performed by the iLens
is of the light collector. In effect, the iLens with the sample surface becomes a compact
interferometer which can produce high contrast interference fringes with a wide variety of
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Incident Beam
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Beam

Object
Beam

(a)

(b)
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(c)

Back uncoated side

Fig. 2.1 Key components of single-lens interferometer. (a) The figure shows the interfer-
ence lens (iLens) which performs the functions of a beam splitter, reference mirror, and
light collector in the interferometer. This when combined with any rough sample forms an
interferometer. (b,c) the front coated and the back uncoated side of the iLens respectively.

surfaces. The real picture of the front coated and the back uncoated side of the iLens is
shown in Figure 2.1(b-c).

Figure 2.2 shows the schematic diagram of the iLens interferometer set-up. The iLens
was chosen such that its front surface was partially silver-coated. We used a low power
He-Ne laser as the light source. The incident He-Ne laser (10 mW , λ = 632 nm, and 1/e2 full
waist ≃ 1.0 mm) is partially reflected from the coated surface of the iLens (reference beam),
and the transmitted beam goes to the sample from where it is scattered in all the possible
directions (object beam). This beam is then collected by the iLens, where it is superimposed
collinearly with the reference beam to produce a high-contrast interference pattern on the
screen. In effect, the iLens with any test surface forms a single-lens interferometer.
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Fig. 2.2 Schematics of iLens interferometer. An iLens produces high-contrast structured
fringes from a surface using a low-power He-Ne probe laser (10 mW , λ = 632 nm). The
z-position of the sample from the iLens, d(t), is controlled by a piezo-positioner driven
by VPZT from a function generator (FG). The central intensity of fringes is detected with a
photodiode (PD).

The sample was mounted on a 3-axis nano-positioner piezo stage (Thorlabs) with 20 µm
travel range to introduce an optical path difference in the object arm of the interferometer.
An arbitrary function generator (Keysight 33500B) was used to drive the piezo stage with
a minimum possible signal amplitude of 1 mV . Application of a voltage to piezo-stage
changes the iLens to sample distance thus causing the interference fringes to evolve. Since,
we focus on using our common-path interferometer for measuring z-displacement (shown
in Figure 2.2) we moved the sample in this direction only by providing a voltage to the
z-axis of the piezo stage. The dynamic interference pattern was then recorded with a low-
cost webcam and a CCD camera at 30 fps. In addition, the fringe intensity was detected
using a photodiode (1 ns rise time, Thorlabs DET10A) through an iris and observed on an
oscilloscope (Tektronix). The intensity at a point on the evolving interference pattern follows
the Michelson-like dependence as will be derived theoretically in the next section.

In order to use iLens with different surfaces of varying reflectivity and color, we fabricated
many iLenses having different coating thickness in order to vary ratios of reflected to
transmitted intensity (50:50, 30:70, 20:80, 60:40), of diameters from 10−25.4 mm and of
focal lengths ( f = 12,25,50 mm). A detailed discussion on the optimal coating on the iLens,
in order to obtain high-contrast fringes depend upon the surface reflectivity will be discussed
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later. Besides, we will also validate our technique for various biological and non-bio samples
and will show the picometer resolved self-calibration of our iLens interferometric technique.

2.3 Theoretical analysis to show the formation of fringes

Before we show the experimental results, we perform an analysis on the formation of high-
contrast fringes from an arbitrary surface, in particular to highlight the self-calibration of
our interferometer for real-time displacement measurement. We would like to emphasize
that all the measurements of interference intensity is done through an iris and PD along
(central point (x0,y0)) the axis of the interferometer. The dimension of the iris opening was
sub-mm diameter and the PD sensor was around 0.8 mm2 which is chosen much smaller
than the typical fringe width to obtain high-contrast fringes in the detector plane. In this
situation, the curvature of the reference and sample wave fronts falling on the detector plane
(x,y) is too large and well approximated by a plane-wave near (x0,y0). As the iris opening is
much greater than the wavelength of the He-Ne Laser, there will not be a diffraction pattern
by the aperture. Also, as the iris is placed very close to the photo detector the effect of
the diffraction (if there is) will not be much. The simplified analysis below illustrates the
formation of randomly oriented fringes in our iLens interferometer.

The reference beam propagating along the z axis and produced by iLens on the detector
plane (x,y) is given as:

E⃗R = ER0(x,y)eι(kz1−ωt) (2.1)

where, k = 2π/λ . The diffuse reflection from the sample on the detector plane can be written
as [26],

E⃗S = ES0 (x,y)eι(kz2−ωt+ξ (x,y)), (2.2)

where z1 and z2 are optical path lengths from the iLens and the sample, respectively. ξ (x,y)
denotes a random phase difference between the two waves on the screen.

The total intensity I(x,y) is given by,

I(x,y)∼
∣∣∣E⃗R + E⃗S

∣∣∣2 (2.3)

Considering that the peak amplitudes of the reference and the scattered beams are identical,
on solving and rearranging the terms we get,

I(x,y) = I0 cos2
[

1
2
(
β (z1 − z2)+ξ (x,y)

)]
, (2.4)
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I R 0.3T2

T 0.3T
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T : R
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30% reflectivity

I=R+T

Fig. 2.3 Illustration of optimal iLens coating for a given sample. The parameters, T and
R, denotes the percentage of the incident light intensity transmitted and reflected from the
iLens, respectively. A lossless system has been assumed for this calculation.

with β = 4π/λ and I0 maximum intensity. The first term in the argument is deterministic,
whereas, the second one is a random term. The intensity measured by the photodiode is an
integral over a small area of the PD sensor (I(x0,y0) =

∫ ∫
I(x,y)dxdy). Since we experimen-

tally measure the central intensity through iris I(x0,y0) at (x0,y0) along the interferometer
axis the plane-wave approximation is well-justified and ξ (x0,y0), which defines the sam-
ple roughness, becomes a constant. The local intensity then follows the Michelson-like
dependence as [7, 27],

I (x0,y0, t)∼ cos2
(

1
2

βd (t)
)
, (2.5)

as d(t) = z1 − z2(t) is varied. After theoretically formalizing the iLens interferometer, we
have to validate the setup experimentally for different rough samples. The optical coating
thickness can be determined by the roughness of the sample surface. The optimal coating
required for different sample reflectivity is calculated in the next section.
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2.4 Optimal coating on iLens

Depending upon the reflectivity of the sample surface, the optimal beam-splitting coating on
the iLens can be calculated to obtain the high-contrast fringes. Figure 2.3 illustrates a simple
method for a general case of T:R coated iLens to estimate the percentage of the light intensity
obtained from the reference and the object arm at the screen. In Table 2.1 we have measured
the optimal coating required on the iLens surface to obtain high-contrast fringes from a given
sample. The parameters, T and R, denote intensity transmission and reflection coefficients in
percent, respectively. We have observed that the fringes can be obtained, even if the coating
is not optimum, by adjusting the working distance of the lens and sample suitably. This
suggests robustness and easy operation. Please note that for doing these calculations we
assumed a lossless system.

It is worth noting that one can obtain interference fringes from any surface by using
single iLens with specific ratio. In our experiments we have used the iLens with the ratio of
transmitted to reflected intensity of 60:40. The obtained interference contrast C = (Imax −
Imin)/(Imax + Imin), (Imax and Imin are maximum and minimum light intensity, respectively)
was 70− 95% for all the samples. The contrast can be further enhanced by using the
appropriate coating ratio described in the above Table 2.1. After selecting the iLens with
appropriate coating we will now obtain the interference fringes with various everyday
materials like paper, plastic, rubber, etc.

2.5 iLens interferometry on common material surfaces

To validate our setup we tested all the different everyday rough materials available to us. The
iLens interferometer produced high-contrast stable fringes from a wide variety of common
surfaces. We have broadly classified the samples into two categories viz. biological samples
and non-biological samples which include paper, plastic, metal screw, cloth, etc. Figure 2.4
shows representative examples of interference pattern from 9 biological samples including
human skin, human hair, insect wing, flower petal, leaf, etc. Even though some of these
samples, like insect wing, human hair, were very thin the iLens was still able to collect
the very small fraction of the light scattered from them to produce interference pattern.
Such sensitive samples are kept near the focus of the iLens for it to collect the maximum
intensity of the scattered beam to produce high-contrast fringes. Interference fringes from
other readily available materials and micro-objects (2−50 µm diameter) like cellulose paper,
quartz crystal, silicon rubber, wood, etc. is shown in Figure 2.5. The fringe shape in all
the cases was determined by sample properties such as surface roughness and curvature
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Leaf

Rose petal

Spider silk Human hair

Bird’s feather Feather end

Human hand skin Honeybee wing

Wood
100 µm

Fig. 2.4 Demonstration of interference pattern from 9 different biological surfaces. Typ-
ical interference fringes from the sample along with an image of the sample is shown in
the inset. The contrast of the patterns, C=0.7-0.95. These patterns were captured by a
camera/beam profiler using a 1-inch diameter iLens at d = 5 cm. The spot size of iLens was
about 1.22λ/NA ≈ 300 µm, where NA denotes numerical aperture.
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S.
No.

Reflectivity of
sample surface

(S) (in %)

Optimum coating
on iLens (T : R)

(in %)

Reference beam
from iLens (in %)

Object beam
from sample after

iLens (in %)
1 10 90:10 10 8.1

2 20 90:10 10 16.2

3 30 80:20 20 19.2

4 40 80:20 20 25.6

5 50 70:30 30 24.5

6 60 70:30 30 29.4

7 70 70:30 30 34.3

8 80 70:30 30 39.2
65 : 35 35 33.8

9 90 60:40 40 32.4
65:35 35 38.025

10 100 60:40 40 36
65:35 35 42.25

Table 2.1 Design of optimal beam-splitter coating on the iLens surface for obtaining high
contrast fringes from a given sample surface.

[26]. However, our precision is achieved for all the cases since, the interference contrast
C = (Imax − Imin)/(Imax + Imin) was 70−95% for all the samples. After validation, the next
step in any experimental setup is its calibration.

2.6 Picometer resolved self-calibration of the iLens inter-
ferometer

The interferometric self-calibration in our measurements allows relation between interference
intensity and the sample displacement without any requirement of external calibration stan-
dard. To measure self-calibrated picometer measurements, we record interference intensity
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15 µm

Ag wireQuartz crystal Si-rubber

Fig. 2.5 Demonstration of interference pattern from 15 different surfaces. Typical in-
terference fringes from the sample along with an image of the sample is shown in the
inset. The contrast of the patterns, C=0.7-0.95. These patterns were captured by a camer-
a/beam profiler using a 1-inch diameter iLens at d=5 cm. The spot size of iLens was about
1.22λ/NA ≈ 300µm, where NA denotes numerical aperture.
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Fig. 2.6 Illustration of self-calibrated picometer measurement using interference inten-
sity. Note that the interference intensity is independent of the time-axis hence latter axis
cannot be used for finding the resolution of intensity.

of the central fringe with an iris and PD. The iris opening was sub-mm diameter and the PD
sensor was 0.8 mm2 which are adjusted much smaller than typical fringe-size. We established
the self-calibration of our set-up for picometer measurements [28] by providing a linear input
displacement ∆d = d(t)−d(0) to the sample using a nano-positioner, causing oscillations in
the interference intensity, and compared the displacement measured from the PD signal. A
half-fringe collapse, i.e. from minima to maxima is shown schematically in Figure 2.6. One
should note that interference intensity is independent of the time-axis hence latter axis cannot
be used for finding the intensity resolution i.e. for a fixed d(t) the intensity is independent of
time, however, it varies if d(t) is time dependent as will be shown later in this thesis.

In our setup, we drive a piezo-stage with a ramp voltage (Figure 2.7) which causes
oscillations in the interference intensity. Due to the interference condition, half-fringe
collapse corresponds to a total displacement ∆d of the sample by λ/4 ≈ 158 nm. If we
further obtain N data points between maxima and minima, the measurement resolution would
simply be λ/4N. A pedagogical illustration in Figure 2.6, number of points, N, from minima
to maxima is given by, N = (Vmax −Vmin)/dV . Hence, Resolution = λ/4N. In Figure 2.7,
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Fig. 2.7 Self-calibration data on cardboard sample. Calibration curve: The nano-
positioner was given a known displacement (Blue Curve, ramp wave of 5V) with FG
(1 V ≈ 2.6 µm) and the corresponding change in the fringe intensity (Red Curve) was
recorded via PD (λ/4 ≈ 16 mV for cardboard). The two insets shows the displacement of
∼ 100 pm at two different point on the intensity curve. Then the nano-positioner was given a
square wave input with lower voltages (up to 1 mV, lower limit of FG) and the corresponding
change was observed in the fringe intensity.
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Fig. 2.8 Calibration data on four different samples. (a-d) Calibration curve showing input
sample displacement (blue square) with the one independently measured using PD (red
circle). The solid line is a linear fit. Error bars indicate experimental noise-floor.

there are N ∼ 2000 data points from minima to maxima, therefore, the resolution of iLens
interferometry is λ/4× 2000 = 80 pm. It is possible to record about 10,000 data points,
giving rise to λ/(4×10,000)≈ 15.8 pm. In our setup, we can drive piezo-positioner by a
minimum, VPZT = 1 mV driving amplitude (lowest limit of used function generator). This
puts a practical limit on demonstration of picometer calibration as in Figure 2.8(a-d).

The input and measured displacements agreed very well over the entire measurement
range covering three orders of magnitude as shown in Figure 2.8(a). Similar data validating
our calibration procedure on four different rough samples is shown in Figure 2.8. Moreover,
real-time detection of fringe-intensity and displacement is shown in Figures 2.9, 2.10 for
cardboard and speaker membrane sample respectively for different displacement amplitude.
The displacement of 260 pm was fully detectable. The actual resolution in our displacement
measurement is sub-20 pm, as we will show in Figure 2.9. However, lack of reliable method
for controlling displacement of rough-sample below 266 pm determined the lowest data point
in the calibration curves (Figure 2.8(a-d)). We emphasize that the self-calibration must rely
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on the interference condition, i.e., half-fringe collapse corresponds to ∆d = λ/4 ≈ 158 nm,
and it is independent of the time-scale of the fringe collapse. Also, one must be careful to
avoid transverse displacement of the sample, which may lead to error in actual z-displacement.
After calibrating the setup, in the next section, we will now study the surface dynamics in
real-time with picometer precision.

2.7 Real time picometer resolved surface dynamics

In Figure 2.9(a-d), we demonstrate the use of interference intensity for real-time sub-20 pm
precision in measuring dynamic displacement of arbitrary surface, such as a cardboard. The
sample was imparted a single input displacement-pulse (in blue) of different peak amplitudes
5.2 nm, 2.0 nm, 500 pm and 310 pm and resulting displacement was independently measured
(in red) with a PD and oscilloscope. The measured displacement ∆d agreed very-well with
the input. On the right-hand side of each curve, we show the histograms of noise showing a
standard deviation of about 270 pm, resulting from residual mechanical stress, beam pointing,
non-uniformity in air pressure, and detection electronics noises. The zooms near steps in the
insets of Figure 2.9(b,d), show our ability to resolve sub-20 pm displacements within 300 µs.
Similar data for other samples are presented in Figure 2.10 to prove repeatability in our
measurements. The dynamic range of displacement for our interferometer is 2ZR/∆d where
ZR is Rayleigh range of iLens and ∆d = 20 pm was around 109 for near focus operation.

It is worth mentioning that the demonstrated picolevel sensitivity was achieved with
simple real-time detection of interference intensity with a PD, without lock-in, heterodyne, or
noise-filtering techniques [8, 1]. Such advanced techniques may further enhance resolution
of our interferometer close to fundamental thermal-noise limit albeit for rough surfaces.

It is worth comparing our interferometer with the well established Michelson [1], Mi-
rau [5] or Fizeau interferometers [29] which essentially require precise stabilization and
alignment of its multiple components like beam-splitter, reference mirror and light collector.

No interferometer has been shown to work directly with rough surfaces and achieve pm
precision probably due to their multiple components. Although the Mirau interferometer is
compact [5], its reference mirror not only clips the incident beam but also require a fixed
working distance. In contrast, our interferometer design offers fully clear view, flexible
working distance within several times ZR. A detailed comparison of iLens interferometer
with the state-of-the art interferometers has been discussed in Appendix 1. Furthermore, we
verified its robustness by purposefully tilting the iLens (±10°) and yet retaining the fringes,
which could be used for further miniaturization. Importantly, the universal applicability
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Fig. 2.9 Real-time picometer resolved surface dynamics. (a-d) Measured displacement
and input displacement versus time for cardboard surface at different amplitudes (a) 5.2 nm,
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of our interferometer on any scrap material, ultra-affordability and easy operation with
self-calibrating pico-level precision makes it attractive for wide applications.

2.8 Conclusion

We demonstrate a new paradigm of universal interferometry with everyday materials en-
abling self-calibrated real-time measurements with picometer resolution. We integrated key
functions of beam splitter, reference mirror, and collection optics into a single interference
lens (iLens) which when combined with any everyday material, such as paper, wood, plastic,
rubber, unpolished metal, skin, etc., formed the compact and universal interferometer produc-
ing stable high-contrast fringes. We have demonstrated a real-time self-referencing precision
of ∼ 20 pm under ambient conditions without averaging.

3D printed iLens interferometer

BS

CCD

iLens

Laser

Sample

Fig. 2.11 Prototype of the compact iLens interferometer on 3D printed substrate. The
iLens with f = 12 mm, d = 12.7 mm and coating ratio of 30:70 is mounted on a 3D printed
substrate along with a Beam Splitter (BS), CCD camera, laser diode, and sample holder.

The sensitivity and speed of our current measurement can be further improved. The
precision of few hundred picometers of the current apparatus is only limited by the set-up
components. If frequency stabilized lasers and electronic signal processing is also used, one
can obtain thermal-noise limited precision similar to the sophisticated interferometers [7, 8].
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In addition, using high-speed avalanche detectors one should achieve sub-ns time-resolution.
In applications demanding compactness, one can design a micro-iLens with micro-lasers and
detectors on 3d printed substrate. A prototype of the compact iLens interferometer on a 3D
printed substrate is shown in Figure 2.11.

In Chapter 3, we will demonstrate various applications of iLens in fabrication of precision
frugal devices made with everyday materials yet matching or outperforming their state of
the art counterparts. The next chapter will also discuss application of iLens interferometer
in probing dynamics of candle flame plasma with sub-nanometer precision and the surface
deformation of complex fluids subjected to optical or electrical stimulation.



Chapter 3

Applications of iLens Interferometer

3.1 Introduction

With the advancement in science and technology, more and more scientists desire to achieve
unparalleled precision in measurement of time, displacement, force, material deformation,
etc. Generally, the high precision measurements of various physical quantities require
high-end sophisticated devices, which are expensive. Although the scientific knowledge is
priceless, gaining the knowledge should also be cost effective. While for some well equipped
universities the cost may not be an issue, in most developing nations, like India, access
to high-end expensive instruments for research and high-end teaching may not be easily
available.

Design and development of inexpensive frugal optical instruments without compromising
the precision can prove to be a boon. In this regard, the central question arises on how to
devise approaches to design high-end optical interferometers for precision measurements. Is
there a way that we could inculcate the frugal optical science, using everyday items, for our
obsession towards superlative precision?

In this Chapter we demonstrate two different kinds of applications of the iLens interfer-
ometer. First, we will demonstrate a couple of frugal photonic devices based on the iLens
whose precision matches or outperforms their commercial counterparts. Second, we will use
iLens to perform fundamental measurements of pump induced nano-mechanical dynamics
on solid surfaces and to resolve photo-dynamics of the candle flame plasma in real time with
picometer precision. These two applications suggest vast possibility of iLens interferometry.
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3.2 The concept of frugal optical devices

While the idea of frugal science is quite old, over the past decade many interesting frugal
devices have been invented. This was with an objective to impart affordable knowledge to
the society in resource-less settings in a cost-effective way and for low-cost technological
applications. For example, a paper based optical microscope, known as foldscope [23] was
designed and shown to have practical applications in disease identification. Similarly, a hand-
powered paperfuge [24], and microfluidic paper-based analytical devices [30, 25] are low-cost
alternative to pressing healthcare needs. However, design of frugal optical devices offering
high-precision is difficult because the route to direct interferometry with common items is
not known. This has constrained broad practical applications of interferometry for realizing
counter-intuitive idea of constructing super-precise optical devices from scrap materials. This
goal requires a unique approach to overcome difficulties in obtaining high-contrast fringes
directly with common surfaces, self-calibration with picometric precision, and universal
applicability for diverse materials. Our universal iLens interferometer opens path for a new
class of ultra-affordable photonic devices from scrap yet offering unprecedented precision
for diverse applications in science and education.

In the following, we will realize and establish three kinds of iLens based frugal photonic
devices from common materials such as, a paper-based picogram weighing balance, a
broadband and pico-level acoustic sensor using cloth/paper, human-hair based pN radiation
pressure sensor operating in air. Our frugal devices made from different common materials
are easy to operate and vastly outperform their high-end commercial counterparts.

3.2.1 Paper-based pico-balance

Precision weighing balances are used widely for scientific and commercial purposes in our
everyday life. The sensitivity of a weighing balance, i.e., its ability to resolve minimum
weight, is decided by the operating principle and design of its load-cell. A load-cell is a
transducer that produces some electrical signal in response to a weight force. For high-end
digital balances, a load-cell converts the weight force into electrical signal by electromagnetic
force (EMF) compensation mechanism [31]. The cost of the balance increases with the
accurate design of the EMF load cell. Such commercially available load cell can measure
few grams with a precision of micro-grams.

There are various solutions for precision weighing in femto-to-zepto grams range using
nano-mechanical resonators by measuring the load-induced shifts in its resonance frequency
[32]. Such nano-beams are carefully fabricated with dedicated nano-processing of SiN and
require high-vacuum and cryogenic conditions to achieve zepto gram precision. Various
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Fig. 3.1 Paper-based load cell design. (a-d) shows the top, bottom, front and side view of
the load cell designed for the paper-base balance respectively. The width of the paper-strip
was 4 mm.

inertial sensors based on micro-cantilevers have also been designed to weigh living cells,
tissues with femto-gram precision [33, 34]. Such setups are very sophisticated and require
specialized means to design the micro-cantilevers with dedicated readout mechanism.

Here, motivated by the paper origami [35], we designed and demonstrated a paper-based
load cell for precision weighing balance. The basic idea was to fold a strip of easily available
paper and read the load-induced displacement of the paper using our iLens. Since the iLens
enables picometer resolution in the displacement of paper, as demonstrated in the previous
chapter, we intend to achieve precision weighing.

3.2.1.1 Fabrication/Design of the paper load cell

We folded a strip of paper (80 µm thick, 4 mm wide, L=1.5 cm) in zigzag-pattern to design
an elastic load-cell [35]. Figure 3.1(a-d) shows the top, bottom, front, and the side view
of our designed load cell respectively. We measured the spring-constant of the paper-load
cell by pulling test which validated its Hookean response with k = 24 N/m (as shown in
Figure 3.2) upto a maximum load limit of about 0.6 mN. The load-cell is attached with
a heavy weight at it center. Then the load-cell is pulled up using a motorized translation
stage and attempts to lift a fixed heavy mass initially resting on the weighing pan of the
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Fig. 3.2 Measurement of force-displacement curve and spring constant of the paper
load cell. Inset shows the schematics of the setup. A tiny initial jump at first contact is
attributed to a sudden jerk in the pulling. The slope of the curve is the spring-constant,
k = ∆F/∆d, for our load cell was 24 N/m.

micro-balance. The change in mass read by the balance is used to compute the force by
multiplying it with local gravitational acceleration, while the displacement of the load-cell is
recorded from the position of the translation stage. The force-displacement curve follows
Hooke’s law up to 0.62 mN, beyond which the load-cell lifts the mass in air (zero-force). The
slope of the curve is the spring-constant, k = ∆F/∆d, for our load cell was 24 N/m. A tiny
initial jump at first contact is attributed to a sudden jerk in the pulling. One can also write,
k = 24 pN/pm, indicating that a displacement precision of picometer will lead to weight
precision in pico-gram.

We used the paper-load cell to fabricate a paper-based optical balance enabling rapid
picogram precision measurements.
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Fig. 3.3 Schematic of the paper-load cell based optical balance.
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Fig. 3.4 A labelled picture of the weighing set-up. The right side figure shows the top view
of our load cell with sample holder placed on it.
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ultra-micro balance (blue data). Zoom of the electronic balance data shows 100 ng resolution.
Zoom of the paper-balance shows about 100 pg with 1000 times faster readout. Error bars
are about the size of the data symbols.
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3.2.1.2 Set-up of iLens based paper-pico-balance

Figure 3.3 shows the schematic of our paper-based pico-balance. The paper load cell was
mounted firmly on a C-type holder. The vertical geometry of the iLens interferometer
was used to build the pico-balance. The low-power He-Ne laser was made incident on the
iLens from below to obtain interference fringes from the bottom side of the paper load cell.
The reference beam from the iLens is superimposed with the object beam scattered by the
paper-load cell to produce the randomly shaped fringes. A plastic sample holder was then
kept on top of the load cell and the whole setup was brought to equilibrium. The table-top
experimental setup is shown in Figure 3.4, the right side image shows the top view of the
load-cell with the sample holder placed on its top. When the sample is placed in the sample
holder, it causes the load cell to displace from its equilibrium position. This change in the
position of the load cell causes a shift in the interference fringe intensity which is recorded
using a photodiode through an iris. The paper optical balance was enclosed in a removable
plastic enclosure to minimize acoustic noise and air currents. To calibrate the pico-balance
we measured the change in mass of an evaporating water drop and was compared with a
commercial balance as discussed in the next section.

3.2.1.3 Performance comparison of Paper balance with 7-digit electronic balance

A weight force on the middle of the load-cell produced elastic deformation δy, that was
directly measured with pm precision with iLens to estimate unknown mass m = (k/g)δy,
where g is the acceleration due to gravity, and k is the spring-constant of the load-cell. The
weighing performance of our paper-balance was compared with a commercial electronic
ultra-microbalance, Mettler-Toledo, with a weighing precision of 0.1µg, which is based on
the electromagnetic force compensation technology [31]. We measured, for example, mass of
an evaporating water drop under identical conditions of temperature, humidity, volume and
surface area. As shown in Figure 3.5, the ultra-microbalance exhibited discrete weight-jumps
corresponding to 100 ng precision (one part in ten million) within tens of ms. In contrast, our
paper-balance is 1000 times more precise with sub-100 pg weighing accuracy. Moreover,
thanks to the direct optical measurement of the load-induced displacement, our device can
provide 1000 times faster measurements. Even though, our balance is compact, and easy to
fabricate and calibrate, it can achieve picogram precision in ambient conditions.

3.2.2 Cloth-based iLens acoustic sensor

In another application, we used cloth, paper or polymer membrane as an ultra-sensitive
acoustic sensor operating from 1 Hz to 200 kHz. We obtained interference pattern from such
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Fig. 3.6 Design of frugal optical acoustic sensors. Schematic of iLens acoustic sensor
made from cloth/paper/polymer.

diaphragms and used interference intensity, as described previously in Figure 2.7, to measure
its dynamic displacement in real-time. Three example devices were fabricated from the three
common materials, a cotton cloth (around 200 µm mesh size, diameter D = 12.5 mm), a
paper-load-cell, and a polymer diaphragm film. We validated our devices by subjecting it
with acoustic driving at different frequencies and different driving amplitudes, as shown
schematically in Figure 3.6.

3.2.2.1 Experimental set-up

The schematic of our custom built acoustic sensor is shown in Figure 3.6. Here, we used
the He-Ne laser to obtain the interference fringes from cloth, paper or polymer membrane,
which act as the diaphragms of the acoustic sensors. The acoustic signal kept at a distance
was used to drive these diaphragms and the corresponding shift in the fringe intensity was
recorded using the photodiode. For this, all the devices under test were kept at a fixed distance
(y = 5 cm) from an acoustic source, and their response to acoustic signal was detected from
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Fig. 3.7 Characterization of frugal optical acoustic sensors. Comparison of detection
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1 Hz to 200 kHz driving frequency. It is worth comparing the bandwidth and sensitivity of
our acoustic devices with easily available commercial sensors such as piezo-pickup and an
electromagnetic microphone.

3.2.2.2 Sensitivity and bandwidth of frugal acoustic sensors

Initially the sensors under test were driven by the acoustic signal of varying amplitude from
1 mV to 1 V at a frequency of 1 kHz. The sensitivity of our acoustic sensors made with cloth,
paper load cell (described in the previous section), and polymer membrane was compared
against the piezo pickup and electromagnetic sensors as shown in Figure 3.7. We found that
even at low input voltage of 1 mV our interferometer was able to detect the displacement
caused by the acoustic vibrations, whereas, the existing sensors started responding at a
minimum input amplitude of ∼ 10 mV . Thus, owing to our interferometric read-out our
sensors exhibited higher sensitivity (e.g., at 1 kHz) to weak driving amplitude of the source
(Figure 3.7).

Furthermore, our custom-built sensors exhibited broadband response from infra-sound to
near-ultrasound frequencies, while the piezo and electromagnetic sensors responded mostly
in the audible range as shown in Figure 3.8. For the bandwidth comparison the samples
were driven at an input voltage of 1 V with varying input frequency and the corresponding
change in the interference fringe intensity was recorded at the oscilloscope using a photo-
diode. All these sensors operated in the linear-regime for their comparison. We attribute
the maximum cut-off frequency of our devices to the inertia of the vibrating drum since we
drive them far beyond their natural resonance frequency [36]. In fact, when the vibrating
polymer diaphragm of a commercial headphone speaker was read with the iLens, instead of
electrically, we could achieve enhanced bandwidth as well as sensitivity (compare curves in
red and green in Figure 3.8). Our frugal acoustic devices present an attractive alternative for
various applications demanding low-cost precise displacement sensing, such as in medical
instruments [37, 38] and photo-acoustic spectroscopy for trace-gas detection [39].

3.2.3 Micro-fibre based nano-Newton force sensors

In an important advancement, in particular to study the microscale objects, we demonstrated
fringes from a single human hair strand (D ∼ 50 µm), Ag-wire (D = 15 µm), and remarkably
with a single spider dragline silk (D = 1−3 µm). Local dynamic deformation of these micro-
objects, in response to external optical, acoustic, and thermal excitations, has been measured
with the interferometric precision without any sample preparation such as metal coating.
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Fig. 3.9 Design of bio-fiber based optical force sensors.

Although the size of these objects was much smaller than the spot size (around 200 µm), the
collection of a fraction of back-scattered light was sufficient to obtain high-contrast fringes.

3.2.3.1 Experimental set-up

We demonstrated a direct detection of sub-nN optical force in air using human hair as an
actuator. Figure 3.9 shows one of our devices fabricated by freely suspended white human
hair (D ≈ 100 µm, length L = 1.2 cm). The spot size of the laser beam at the hair sample is
≈ 300 µm which is much lager than the sample size, therefore, the light scattered back in
the direction of the optical axis of the interferometer is very less. To avoid the light being
collected from the nearby substrate surfaces the micro-fiber sample under test is fixed at its
both ends to a hollow mount as shown in the schematic diagram. The maximum contrast of
the interference fringes was obtained for the sample kept within the Rayleigh length of the
iLens. The shape of the interference fringes obtained from the white human hair sample is
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Fig. 3.10 Ultra-sensitive bio-fiber force sensors. Maximum deflection of hair-fiber versus
laser power. Upper inset: experimental signals showing 11 nm deformation using a white
human hair (D ∼ 100µm, L = 12.5 mm). Both the ends of the sample were clamped and
the sample was excited in the middle by a pump laser. The oscillation in the I(t) shows a
background modulated signal that is used to find the direction of deflection.

shown in Figure 2.4. To study the time-resolved displacement the hair sample was excited
using a low-power cw pump laser (λ = 532 nm) with varying power. The pump and probe
beams overlap on the same point on the sample but from the opposite direction as shown in
Figure 3.9. In the next section we will study the deformations caused in the micro-sample
when exposed to pump laser.

3.2.3.2 Bio-fibre deflection with laser power

The time-resolved displacement of the hair following low-power pump-laser irradiation,
is shown in left-side inset of Figure 3.10. One can clearly distinguish a fully reversible
step-like nanometric displacement of the fiber during on and off of the pump beam. We
also observed a fully reversible slow-response due to weak laser heating which is related
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Fig. 3.11 Prototype ultra-sensitive force sensor with spider silk. The probe laser is used
to measure the time-resolved displacement of the silk. The pump and probe beams overlap
on the same point on silk. The diameter of the silk thread is approximately 1−3 micron and
its length is about 1.2 cm.

to thermal properties of the sample as detailed later. Considering about 80% reflectivity of
our sample & for 100 µW of total irradiated power, we obtained a spring constant of about
k = 50 N/m. This value was independently confirmed by measuring a force-displacement
curve of the same sample, analogous to the paper-load-cell case. Furthermore, the amplitude
of the deformation varied linearly with the pump laser power.

Detection of sub-nN radiation pressure effects is of great recent interest and most mea-
surements have been performed using SiN cantilevers at micro- and nanoscale [40, 38, 41].
To the best of our knowledge this is the first demonstration of radiation pressure effects on
everyday micro-objects.

The sensitivity of our device can be further enhanced, for example, by replacing the hair
with a spider silk (Figure 3.11) having much smaller diameter [42]. Recently, spider dragline
silk has been demonstrated as a broadband acoustic sensor (MHz), owing to its high elasticity
and sub-micron diameter. However, the response was detected using a doppler velocimetry
[43]. Our universal interferometry offers a paradigm shift by opening interferometric route
to silk-based nano-engineering devices on a chip that can potentially work in vacuum or in
cryogenic conditions [44–46].
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3.3 Universal iLens interferometer for photo-dynamics of
solid, flame plasma and for liquids

3.3.1 Picometer resolved photo-dynamics of solid surfaces

Precise mechanical characterization of various materials and devices has always been a basic
necessity for high-end technology. A sample exposed to electromagnetic radiation exhibits
thermal effects through non-radiative processes causing the sample to expand or contract or
to form a local bulge or dimple. Various physical quantities such as optical density, photo-
thermal and photo-elastic response of materials, thermal expansion coefficient, etc., rely on
measurement of such mechanical effects caused by external fields. Although many techniques
exist for surface-deformation analysis of materials, such as Scanning Electron Microscopy
(SEM) [47], X-Ray Diffraction [48], Photo-thermal deflection spectroscopy (PDS) [49],
Atomic Force Microscopy (AFM) [50], Raman Microscopy [51]. Optical techniques based
on Michelson [1] and Mirau [5] interferometers have also been demonstrated with advantages
of being contactless, non-invasive, free of sample preparation yet offering precision in the
nanometer or below.

In industries [52], interferometry is widely used, for example to measure crystal growth
[53, 1], metrology [54], surface topography and surface temperature measurements [55, 56].
Most existing precision interferometers require optical quality components (beam splitter,
mirrors, samples, etc.), which limits their application to smooth sample surfaces. A multi-
component interferometer requires careful alignment and stabilization of each component
against various noises. It is important and necessary to develop a minimal-component
interferometric technique which is compact, and highly-precise to quantitatively measure
deformations of smooth as well as rough surfaces in real-time.

Here, we use a robust single-lens interferometer and demonstrate its application in
measuring local deformation of three samples with about 100 pm precision without any need
for external calibration standard. We measured time-resolved photo-thermal mechanics of
solid surfaces illuminated by a focused low-power pump laser by measuring the interference
intensity through a photodiode and iris system. We demonstrate application of our setup
to measure deformation dynamics of two representative rough samples (graphene-oxide
and dried-blood) by obtaining interference pattern from their non-specular reflection. Such
deformation dynamics may enable measurement of real-time change in local temperature of
solid samples provided a prior knowledge of absorption coefficient and thermal expansion
coefficient. Our setup will find application in studying laser cooling of solids as well [57–59]
on sub-ns time-scales.



3.3 Application of iLens interferometer on solid, flame, and liquid 37

Probe beam

Sample

Pump beam

iLens

Fig. 3.12 Schematic of single-lens interferometer for probing solid samples. A low-
power He-Ne laser (10 mW, λ = 632 nm) is used as a probe to produce interference fringes
from the sample while another low-power green laser (λ = 532 nm) induces local deforma-
tion.

3.3.1.1 Experimental set-up

The schematic of our setup is shown in Figure 3.12. We used a collimated Gaussian beam
of He-Ne laser (10 mW , λ = 632 nm, 1/e2 full waist 2w0 = 1.0 mm) to obtain high-contrast
interference fringes from the sample surface using our versatile single-lens interferometer
[60]. Our interferometer consists of a single partially silver-coated convex lens, iLens, which
integrates the function of a beam splitter, a reference mirror and a light collector, which are
generally derived from three or more optical components of any interferometer. Briefly, the
incoming probe beam is divided into two beams, viz. reference beam and the object beam,
at the front surface of the iLens. The iLens then collects the back-scattered light from the
sample and project towards the screen where it combines with the reference beam to produce
high-contrast fringes.

We measure picomechanical dynamics on three different sample surfaces, a smooth
red-acrylic surface and two rough surfaces (producing non-specular reflection), namely, a
dried blood drop and a graphene oxide thin-film prepared by drop-casting corresponding
solution on a glass slide. We generated a reference modulation in the fringe-intensity by
vertically displacing the sample by a known amount using a piezo stage (with calibration of
7.5 V ≈ 2 µm). A half-fringe collapse in the signal corresponds to a sample displacement
of λ/4 which equals to 158 nm in our case. We further resolve intensity using the PD with
a resolution of dI, giving dI = (Imax − Imin)/N, where N denotes the number of data points.
The displacement resolution is then given by λ/4N as shown in the schematic illustration of



38 Applications of iLens Interferometer

Figure 2.6. For our case N ∼ 1000 leading to a precision of ∼ 150 pm. The intensity at the
center of the fringes obtained was recorded on an oscilloscope using a photo-diode and a pin
hole iris whose dimensions are chosen to obtain high-contrast in the interference oscillations.
To determine the direction of deformation, the piezo stage was electronically displaced such
that the length of the interferometric cavity was increasing relating a corresponding change
in the interference fringe intensity.

The sample was locally deformed by focusing a low-power CW pump laser (λ = 532 nm,
P = 6 mW ) for varying exposure times. The pump laser was spatially overlapped on the
probe beam on the sample and was made to incident obliquely as shown in Figure 3.12. The
spot size of both the pump and the probe beam on the sample were around 300 µm and
400 µm, respectively (measured with a CCD beam profiler from Thorlabs). Since the spot
size for probe was larger than the one of pump beam, the maximum deformation at the centre
of the pump was recorded. We used a 650 nm±40 nm band pass filter to block the unwanted
stray reflection of the pump laser.

3.3.1.2 Results

3.3.1.2.1 Pico-mechanical dynamics of smooth surfaces To measure photo-induced
deformation by mW -level pump beam, we biased the piezo-stage to be at the center of linear
regime, i.e., of the interference intensity (shaded region, in Figure 2.6). The direction of
deformation i.e. the formation of a bump or a dimple on the sample was a priory determined
by relating the change in the interference intensity (increase or decrease) by displacing the
sample in the known direction. With no pump exposure, a constant interference intensity was
observed. The pump-exposure and the interference intensity was simultaneously recorded on
the oscilloscope.

Figure 3.13(a) shows the deformation-dynamics of acrylic surface for P = 6 mW pump
beam exposed for 5 s duration. We clearly observe a bulge induced by local heating followed
by relaxation when the pump pulse was switched ’off’. During the heating period, the rate of
collapse of fringes tends to reduce and the sample deformation reaches a maximum value at
the end of pump-pulse (corresponding to maximum temperature) as shown in Figure 3.13(b).
After the pump exposure the sample relaxes back to its original state (corresponding to
cooling back to initial temperature). Note that for such low-power laser the deformation is
fully reversible without any permanent physical state change. The magnitude of deformation
in Figure 3.13(b) is calculated by extracting the phase corresponding to the recorded intensity
variation. The deformation in the sample was added successively after every half fringe
collapse corresponding to λ/4 ≈ 158 nm. The displacement resolution in our measurement
is sub-100 pm shown in the inset of Figure 3.13(b).
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grey). A shutter is used to control the pump exposure. Note the time-interval between
fringe-maximum varies. (b) The deformation of the sample surface with 150 pm precision.
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Fig. 3.16 Time-resolved laser induced deformation of rough samples. deformation of
graphene oxide film for P = 4.7 mW and 80 ms. The upper right inset shows the picture of
graphene oxide film drop casted on a glass slide.

The deformation dynamics of acrylic for different exposure times from 40 ms to 25 s is
shown in Figure 3.14. We observed that for a fixed pump power, a longer exposure time
produces a larger deformation as shown in Figure 3.14(a-e). The deformation in the sample
attains a maximum value (for ≈ 7.5 s exposure) and then remains at this value for longer
exposure times as shown in Figure 3.14(f). We attribute this behaviour to the fact that the
sample has attained its maximum temperature and reached thermal equilibrium. If higher
power laser is used a permanent damage to the sample can be observed.

3.3.1.2.2 Displacement of rough surfaces To measure the displacement of rough sam-
ple, we prepared two samples, namely a dried blood drop and a graphene oxide film on a
glass-slide by drop-casting method (see Figure 3.15, 3.16 for real-picture of the samples).
Remarkably, our single-lens interferometer was able to collect non-specular reflection from
these samples and obtained fringes. Using the above described approach of fringe analysis,
we observed displacements of 60 nm and 95 nm respectively with a real-time resolution of
200 pm for the two samples as shown in Figure 3.15, 3.16.

With these photo-induced mechanical deformation of various samples, our technique can
also be used to estimate the change in the local temperature of the sample. At mW -level laser
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Fig. 3.17 Measurement of thermal diffusivity. Thermal relaxation of four samples after
switching off the laser with corresponding exponential fits (solid lines). Inset shows typical
response for 80 ms pump exposure.

power the solid sample mostly expands locally due to the absorption of heat. The magnitude
of radiation pressure force is expected to be in pico-Newton (of the order of P/c, where
c is the speed of light), and the resulting mechanical deformation on solids is beyond the
detection sensitivity of our technique. In our experiments, absorption of laser causes sample
to heat locally and the induced thermal stress is balanced by the elasticity of the material.
Knowing the thermal expansion coefficient and elasticity modulus of the material, geometry
of sample and its optical absorption coefficient one can quantitatively estimate the local
temperature change in the sample [61, 62]. While a detailed modelling will be of interest,
our approach may help to isolate competing effects of radiation-pressure and heating towards
developing a better understanding of light-matter interaction in rough samples.

3.3.1.3 Measurement of thermal diffusivity

Furthermore, although the two fundamental effects of light-matter interaction, i.e., a me-
chanical transfer of optical momentum and optical heating are observed in all our samples
[63], our technique can be leveraged for isolating photothermal strains with picometric preci-
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S.
No.

Material t−1
c (s−1)

Exp. Diffusivity
Values (m2s−1)

Known Diffusivity
Values (m2s−1)

1 Si Rubber 7.59 1.82×10−7 (0.89−1.3)×10−7

[67]

2 Al filter 31.44 7.55×10−7 8.1×10−7 [68]

3 Cardboard 35.62 8.56×10−7 11.8×10−7 [69]

Table 3.1 Comparison of the thermal diffusivity of four samples used in our experiment
against their known values.

sion. Inset in Figure 3.17 shows typical thermal-response of a silicon rubber sample along
with the sub−mW level heating laser pulse (λ = 532 nm, spot diameter 2ω0 = 300 µm).
In Figure 3.17, we plot the post-pulse relaxation dynamics of four samples including the
human hair and a fragile 200 nm thickness freely suspended Al-film. Our data exhibited an
exponential relaxation, δh ∼ e−t/tc with a characteristic time constant tc. Using the standard
heat-diffusion model [64], the tc allowed us to determine the thermal diffusivity D of the
sample as D = ω2

0/4tc. The thermal diffusivity values for our samples agreed well with their
known values (Table 3.1) [65], showing that universal interferometry enables non-invasive
and precise measurement of physical properties of various rough or structured bio-materials,
which might not be possible with conventional optical techniques such as beam profilometry
or IR thermometry [66].

The photo-thermal properties of the solid sample (or micro fiber) can also be isolated in
the transverse plane by probing the sample using our iLens interferometer from two directions
of the plane as shown in Figure 3.18.

3.3.2 Study of candle flame plasma

3.3.2.1 Introduction

Plasma, the fourth state of matter, can be created in a wide variety of situations, for example,
from lightning in the atmosphere, high-voltage breakdown of materials, in intense laser-
matter interactions to a candle flame. Understanding various physical properties of plasma
is important to devise novel applications in material processing and biomedicine. A simple
example of a plasma medium, that is easily accessible to everyone, is a candle or a spirit lamp
flame. While flames have been an integral part of our lives and a subject of human curiosity
since ancient times, it was only in 1825 when Faraday performed inquisitive experiments
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Fig. 3.18 Schematic describing double-axis iLens interferometer to isolate the photo-
thermal properties of the sample in the transverse plane.

on candle flames that revealed different temperature and charge distribution in the flame
[70, 71]. His experiments offered qualitative insight into the properties of the flame plasma,
however, due to intrinsic dynamical character of the flame, a quantitative and non-invasive
measurement of its properties remained a challenge.

Previously, many invasive and non-invasive techniques have been performed to charac-
terize various regions of the flame. For example, a thermocouple has been used to directly
measure the change in flame temperature [72]. This single point measurement disturbs
the flow inside the flame, in addition, deposition of soot particles on the surface of ther-
mocouple also affect accuracy of the temperature measurement, and hence, contributing
to a major source of error. Non-intruding optical techniques for characterizing the flame
include interferometry [26, 73–77], holography [78–80], sspeckle techniques [81], Rayleigh
scattering [82], Coherent Anti Raman Scattering [83], color-ratio pyrometry using DSLR
camera [84]. The experiments performed with these methods are not only tedious but also
require a lot of sophisticated analysis to achieve precision measurements. Furthermore, most
measurements till date have been done at a single point (within a limited focal volume) in the
flame rendering a precision of sub-µm. Holography can simultaneously measure the entire
spatial profile of the flame, but the speed of measurement is limited by image acquisition and
processing. Flickering dynamics of flame due to different fuel types in different atmospheres
[85, 86], and under various gravity fields [87] have also been studied at various timescales.
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Fig. 3.19 Schematic describing idea of using iLens interferometer for probing plasma.

However, there is a lack of simple yet precise tool to measure the dynamical properties of
plasma in real time.

Although interferometers have been widely used to study the three states of matter viz.
solid, liquid, and gas but few have been used to study the fourth state of matter, i.e. plasma.
The laser interferometers are precision devices for various measurements; however, the setup
should be compact, and the noise-floor should be low to make a precision probing of plasma.
Standard interferometers are based on either amplitude division or phase division, such as
Michelson, Fabry-Perot, Mirau, Fizeau interferometer, etc. [1, 4–6]. Recently, we have
designed and demonstrated a compact single iLens interferometer [60, 88] that was shown to
produce fringes with most common (flat and rough) surfaces enabling tens of pm precision
in real-time. However, iLens interferometer has not been shown to work with any plasma
medium yet. Though there are many techniques to study the profile of the candle flame but
very few experiments have been performed to study the flame at atomic level. We know that
the excited atoms emits light during relaxation and it happens at a very fast time scale of
≈ ns. So, one may wonder if it is possible to use the unprecedented precision and speed
offered by interferometry to find the new insights of the flame at atomic level.

Here, we demonstrate our simple and compact iLens interferometer to study the photo-
mechanical dynamics of the full candle flame with pico-meter precision in the optical
path. A full 2D-profile of the candle flame was obtained from the phase information of the
interferometer. We also found the point-by-point refractive index and temperature profile
of the different regions inside the flame. Lastly, we studied the plasma formation inside
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Fig. 3.20 Schematics of the experimental set-up. A He-Ne laser (λ = 632 nm, 10 mW ) is
used to obtain the interference fringes from the mirror surface using the iLens interferometer.
A candle flame placed on a 2D translation stage in the interferometric cavity at the focal
point of the iLens. The upper right inset shows the real picture of the flame with the scan
direction.
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Fig. 3.21 Intensity and Phase plot of the flame at different heights. (a-d) shows the phase
change in and around the flame with the intensity profile at a height of 6 mm, 14 mm, 22 mm,
and 27 mm, respectively, from the wick of the lamp.

the flame by perturbing it with a high-power nano-second laser and observed an interesting
phenomena of locally extinguishing the flame above the plasma formation.

3.3.2.2 Experimental set-up

The basic idea for probing plasma medium with our interferometer is described in Figure
3.19. The compactness of our setup is rendered by iLens which combines three functions in
one element, generally accomplished by three or more separate components in a traditional
interferometer, namely beam splitter, reference mirror, and light collector. An incoming
Gaussian beam serves as a probe to produce high contrast fringes by overlapping a reference
beam, coming from iLens, and an object beam, from a flat mirror onto a photodiode. The
plasma medium is kept inside the iLens cavity at a suitable location and any change in its
properties imparts a further change in the optical path length of the interferometer producing
a change in the interference intensity.



48 Applications of iLens Interferometer

R
ef

ra
ct

iv
e

In
de

x
D

iff
er

en
ce

(x
10

-4
) 0

-0.5

-1.5

-2.0

-1.0

Width (mm)
-10 1050-5

Width (mm)
-10 1050-5

R
ef

ra
ct

iv
e

In
de

x
D

iff
er

en
ce

(x
10

-4
) 0

-0.5

-1.5

-2.0

-1.0

Width (mm)
-10 1050-5

R
ef

ra
ct

iv
e

In
de

x
D

iff
er

en
ce

(x
10

-4
) 0

-0.5

-1.5

-2.5

-2.0

-1.0

R
ef

ra
ct

iv
e

In
de

x
D

iff
er

en
ce

(x
10

-4
) 0

-0.5

-1.5

-2.0

-1.0

Width (mm)
-10 1050-5

(c) (d)

(b)(a)

Fig. 3.22 Change in the refractive index of flame. (a-d) shows the refractive index differ-
ence in and around the flame at a height of 6 mm, 14 mm, 22 mm, and 27 mm, respectively,
from the wick of the lamp.

The detailed setup for probing the flame plasma is described in Figure 3.20. The com-
mercial spirit lamp flame was placed inside a collinear interferometer cavity consisting of the
iLens and a mirror [60, 88]. Prior to placing the flame, the iLens interferometer was adjusted
to produce high-quality fringe from the mirror surface. In this experiment, we used a partially
coated (60 : 40) convex iLens along with a He-Ne laser beam (10 mW , λ = 632 nm, and 1/e2

full waist ≃ 1.0 mm). The high-contrast circular fringes were produced by superimposing the
reference beam (reflected from the coated side of the iLens) with the object beam (reflected
from the mirror). The ethanol flame mounted on a 2-D translation stage, with 50 mm scan
range, was kept in the interferometer cavity at the focal point of the probe laser. The flame
was scanned slowly by 2-D raster scanning along the measurement path (upper right inset
of Figure 3.20) at a speed of 1 mm/s. The presence of the flame plasma in the iLens cavity
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Fig. 3.23 Temperature profile of the flame at different heights. (a-d) shows the corre-
sponding temperature of the flame with respect to temperature of the air.

varied its optical path length and produced dynamic fringes. To measure the full 2-D profile
of the flame, we measured the central intensity of the interferogram with a fast photodiode
(rise time 1 ns) and an iris.

3.3.2.3 Theory

Since all the measurements of interference intensity is done through an iris and PD along
the axis of the interferometer. The dimension of the iris opening is around 0.8 mm2 which
is chosen much smaller than the typical fringe width to obtain high-contrast fringes in the
detector plane. In this situation, the curvature of the reference and sample wave fronts
falling on the detector plane (x,y) is too large and well approximated by a plane-wave near
(x0,y0). The length of the cavity d(t) varied due to the change in the density of ions in the
different regions in the flame. As discussed in the previous chapter the local intensity of the
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Fig. 3.24 Reconstruction of the flame. (a) 2D color plot of the flame. The color bar
represents the temperature (in K) of the flame. (b) Superposition of the real image and the
2-D color plot of the flame.

interference pattern follows the cosine square law, given as:

I = I0 cos2 (∆φ/2) (3.1)

where φ is the phase difference between the reference and the object beam. The relative
phase change in the two beams of the interferometer can then be extracted using the equation:

∆φ = 2cos−1
√
(I/I0), (3.2)

where I/I0 is the normalized fringe intensity. It should be noted that since flame is a
rarer medium than ambient room-temperature air, so, a subsequent 2π subtraction is done
while calculating the phase change. The red curve in Figure 3.21(a-d) shows the intensity
change recorded at the oscilloscope when the flame enters and exits the interferometric
cavity. The blue curve shows the phase extracted from the intensity curve at a height of 6 mm,
14 mm, 22 mm, and 27 mm respectively from the base of the flame. Please note that as the
flame enters the cavity from the left the initial fast oscillations is due to the change in the
temperature of the surrounding air. The almost constant intensity (slow change) at the center
of the graph is when the laser passes through the flame. Then again as the flame leaves the
cavity we could observe the fast oscillations in the intensity plot due to changing density of
the ambient air due to change in its temperature.
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The refractive index difference at every point inside the flame was then calculated using
the equation

∆η = η1 −η2 = (λ/2π)(∆φ/a), (3.3)

where η1,2 is the refractive index of flame and air respectively, λ is the wavelength of
the laser, ∆φ is the phase change and a is a geometric path length as described in detail in
[78]. Figure 3.22(a-d) shows the change in refractive index as the flame progresses in the
interferometric cavity at different heights of 6 mm, 14 mm, 22 mm, and 27 mm.

The temperature of the flame at each point at a particular height can then be calculated
using the following equation:

T =
T0(

∆η

ρ0β

)
+1

, (3.4)

where, T0 is the room temperature and the value of ρ0β for organic fuels is 0.28×10−3.
Figure 3.23(a-d) show the plots of the temperature of the flame at different heights of 6 mm,
14 mm, 22 mm, and 27 mm, respectively. The refractive index values and the temperature of
the flame are in agreement with the literature [89, 78, 80]

The temperature profile at all the heights was used to obtain the 2-D color plot of the
entire flame as shown in Figure 3.24(a). The color bar represents the temperature (in K)
of the flame. As the flame enters the interferometric cavity the temperature increases upto
1800 K, and it decreases as it leaves the cavity. In Figure 3.24(b) the real image of the flame
is superimposed with 2-D color plot of the flame region only. One can observe the one-to-one
correspondence between our quantitative measurement and the actual picture of the flame.

3.3.2.4 Study of Flame at nano-second time scale

In another demonstration we measured the pico-scale dynamics in the flame when excited
with a nano-second laser (λ = 532 nm, pulse width = 30 ns). The maximum average and
peak power of ns-laser was 1300 mW and ≈ 100 kW respectively at a frequency of 2600 Hz
and an input voltage of 8 V . As soon as the pump laser was made incident on the flame,
a plasma is formed along the pump laser path. The soot particles present inside the flame
breakdown/ionize at this high power to produce plasma inside the flame. The distinctive
plasma sound can be heard clearly when the pump laser interacts with it.

To further study the flame at nano-second time scale, we placed a shutter (Thorlabs SH05)
and a chopper (Thorlabs MC1F10HP) in front of the ns-laser. By varying the operational
frequency of shutter and chopper, we tried to separate out the response of the flame due to a
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Fig. 3.25 Schematics of experimental setup to probe the flame with nano-second laser.

single ns-pulse. A change of few nm was observed due to a single ns-pulse of peak power
100 kW in Figure 3.27. We also noted that as soon as the plasma is formed, a cut/slice (Figure
3.26) in the flame was observed all the way up to the height of the flame. The appearance of
dark-slit in the flame, above the laser interaction point, following interacting with high laser
power can be due to scattering of the soot particles on breakdown and hence, are not able to
escape just above the plasma formation. The appearance of the dark spot is robust and fully
reproducible. We speculate that this dark band could be a result of photo-de-excitation of the
excited molecules or it could also result from a fragmentation of the flame molecules by the
nanosecond laser pulses which could also suppress their photo emission properties. More
experiments and modelling is needed to fully understand this intriguing phenomenon.

3.3.3 Potential application of iLens to probe liquids

We have also designed set-ups to probe fluid surfaces and fluid volume with high precision
and with ease. Although, we do not show the detailed results in this thesis, we sketch the
possible setups and report preliminary results validating applications of iLens interferometry
for opto-fluidic experiments.
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Fig. 3.26 A picture of a vertical dark-band in the flame created by the ns-laser interaction
with pristine flame. Note that the flame is seen through a filter while the ns-pulses are
continuously exposed.
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Fig. 3.28 Schematics of the experimental set-up to probe liquid surface. A He-Ne laser
(λ = 632 nm, 10 mW ) is used to obtain the interference fringes from the surface of the liquid
drop sample using the iLens interferometer. This can be used to study the various properties
of liquid like evaporation rate, viscosity, etc.
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Fig. 3.29 Schematics of the experimental set-up to probe liquid sample. A He-Ne laser
(λ = 632 nm, 10 mW ) is used to obtain the interference fringes from the mirror surface using
the iLens interferometer. A cuvette with the liquid sample is then kept in the interferometric
cavity to study the volumetric changes in the sample.

We demonstrate two different setups for probing surface deformation and volume effects.
As shown in Figure 3.28, & 3.29, iLens interferometer forms high contrast interference fringe
from the curved surface of a fluid drop. The iLens produces high contrast Michelson-like
circular fringes from the drop surfaces. Such fringes have been previously obtained with
a liquid-drop interferometer (LDI), however, LDI works best with semi-transparent fluids
[90–92]. In the case of highly absorbing or turbid fluids, the LDI would not work well. Since
iLens uses the back-reflection from the fluid surface, it will offer advantage over LDI for
highly absorbing fluids, gels, and turbid fluids like milk. In addition, the iLens technique
can also be adapted for multi-point measurement by obtaining fringes from two spatially
separated points on the fluid surface. Such multi-point interferometer could find applications
to resolve surface dynamics (capillary waves, dispersion) of fluids subjected to optical or
electrical excitation.

The iLens can also be setup to probe volume effects such as change in the refractive index
of fluids by heating or resulting from chemical mixing. One can place the desired fluid inside
the iLens cavity and record changes in the optical thickness of the fluids using methods as
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discussed in Chapter 2 and 3. The above example highlight unique advantages of iLens for
precision measurements from solids to gaseous medium.

3.4 Conclusion

In this chapter, we have demonstrated two different kinds of applications of the iLens
interferometer. On the one hand, we exploited iLens to fabricate frugal optical devices with
ultrahigh sensitivity, including a paper based pico-balance, a cloth-based acoustic sensor and
a force sensor using human hair. We established a calibration procedure and also compared
them with the state-of-the art available commercial devices.

On the other hand, we demonstrated that iLens enables direct measurement of arbitrary
solid surfaces exposed to another laser with picometer precision in real time. The iLens
also enables probing a candle flame plasma with sub-nanometer precision that allowed us
to probe the dynamic properties of the flame. We observed a new phenomenon, whereby a
nanosecond laser causes the candle flame to quench, observed by a dark-band in the bright
flame. The iLens interferometer enables real-time probing of the local changes in the flame.
Although, the exact mechanism of this effect remains unknown and is under investigation.
Lastly, the iLens is a universal interferometer that also enables probing of absorbing liquid
surfaces and the volumetric changes in a liquid.

In the following chapter, we shall further develop the iLens interferometer to design
a compact picometer resolved interferometer with shaped light, in particular, using light
possessing orbital angular momentum.



Chapter 4

Twisted Cylindrical iLens Interferometer
and Application of light sheet

4.1 Introduction

We have established that the iLens interferometer with the Gaussian beam produces high-
contrast fringes and enables picometer resolution with not only for arbitrary solid surfaces but
also for candle plasma and fluids. The compactness and picometer real-time precision allowed
fabrication of a new class of frugal optical devices and also to probe various fundamental
light-matter interaction.

With the recent advances in producing structured light, such as in generation of light
possessing orbital angular momentum (OAM), it is natural to explore whether structured
light offers new feature in an interferometer which are generally not possible by conventional
Gaussian beams.

Many previous attempts have been made to design Michelson, Mach-Zhender, Young’s
double slit interferometers with the twisted light. These interferometric schemes allow direct
determination of topological charge in the beam. Michelson interferometer with twisted light
was shown to produce a daisy flower-like fringe pattern that rotated clockwise or counter-
clockwise direction when one arm of the beam was displaced forward or backwards. Naked
eye detection of picometer precision was proposed by looking at the angle of rotation of
the petal pattern [93, 94]. However, measurement of rotation angle, requires the image to
be recorded with a camera that make the measurement slow. In addition, the twisted light
interferometers have multi-components, that make such setups difficult to align and stabilize.
Our objective in this chapter is two-fold. First, we would like to design a compact cylindrical
iLens based interferometer with twisted light, and, second, we would like to propose a simple
detection scheme to measure the picometer displacement in real-time. Besides, we will
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show a unique advantage of the twisted light in noise self-cancellation of certain noises
present in an interferometer, which will facilitate detection of weak signals with twisted
iLens interferometer.

In the second part of this chapter, we will present an interesting application of cylindrical
lens, whereby we generated ultra-fast light sheet for large-area surface patterning of solid
surfaces. Such large-area surface patterns serve as reference surfaces for various applications,
including measurement of surface topography and optical components.

4.2 Noise self-compensating signal-amplifying twisted CiLens
interferometer

4.2.1 Introduction

Noise is a fundamental limitation in precision optical interferometers. Minimizing noises
has been a major challenge to boost the sensitivity of optical interferometers. Usually the
interferometer is set on the dark fringe in order to reduce the noise floor [11], which also
affects the detection of true signal. The coupling of laser and the thermal fluctuations in the
mirror has been reduced by using beams with larger spatial profiles, such as flat-top beams
[95] or higher order LG beams [96], thus reducing the noise by averaging it over a larger area
[97]. Other methods to reduce the effect of different noises include Fourier-filtering of known
noise frequency from the data [13, 98]. These techniques generally require the subtraction of
two or more images from the object taken at different time, thus requiring more memory and
analysis time. Injection of squeezed light in interferometer allows broadband noise reduction
[squeezed]. Owing to the multi-component systems, most techniques are tedious to align and
make the setup complex and bulky. Importantly, cancellation of noise in real-time has been a
challenge to detect picometer scale signals deeply submerged in noise.

Light possessing orbital angular momentum (OAM) has enabled extraordinary vast
applications such as in trapping and twisting tiny objects, optical communications and inter-
ferometry [99, 100]. The spiral interferometry overrides the basic problems of conventional
interferometry in that it allows to distinguish a bump or dimple in the phase sample by the
direction of spiral fringes [101–103]. The OAM light has been employed in interferometers,
such as in Michelson-type interferometer [93, 104–106, 94], for precision metrology as well
as to quantify the topological phase. Detection of linear displacement of one of the mirror
produces a screw-like rotation of the interference pattern, therefore, linear displacements have
been measured by detecting rotation angle of the interference pattern. However, measurement
of rotation angle demands measurement of petal-edge with image-analysis. Although, naked
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eye detection of rotation is simple but is limited by ms-scale persistence of vision. A simple
scheme leveraging real-time detection of picometer resolution with twisted light is missing.
Besides, most of the existing twisted interferometers are multi-component systems which
must be stabilized and carefully isolated from noises to render precision measurements.

Here, we introduce an ultra-compact twisted interferometer that self-compensates noise
in real-time while also amplifying signal by exploiting the spiral phase structure of twisted
light enabling detection of ultra-weak signal deeply buried in noise. We exploit nearly perfect
anti-correlation of a pixel-pair chosen on a petal of daisy flower-like interferogram to generate
an intensity noise-free linear regime where signal is also selectively doubled. Furthermore,
we construct 2pl independent number of such noise-free pairs on the twisted interferogram
to further reduce overall noise-floor by two orders of magnitude enabling detection of weak
displacements. We apply this unique approach to isolate a single-event of deformation
of solid deeply hidden in noise. Our simple, precise and scalable approach suggest wide
application in detection of signal from noise in remote sensing, precision metrology and
fundamental measurements of intra-cellular forces.

4.2.2 Theoretical analysis of twisted interferometer

We theoretically analyze our interferometric self-calibration and multi-pixel noise-cancellation.The
paraxial beam can be represented by the combination of the Laguerre-Gaussian (LG) modes.
Any paraxial beam can be represented by the combination of the Laguerre-Gaussian (LG)
modes. A generalized LG|l|

p beam can be described using Eq. (4.1).
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, and L|l|p (x) is the Laguerre polynomial with l and p as the azimuthal and radial

indices of the beam. ξ (t) is the additive noise in the laser intensity fluctuations. The above
equation can be written in a simplified form for p=0 as:



60 Twisted Cylindrical iLens Interferometer and Application of light sheet

E+l (r,φ ,z) =
(
E0 +ξ (t)

)
R1(r)eilφ (4.2)

where, Rl(r) is the radial dependence term of the electric field. The electric field of the
conjugate LG beam (measurement beam) with −l topological charge will include a minus
sign in the φ dependence term of Eq. (4.2). The electric field of the measurement with
additional path difference of ∆h is written as

E−l (r,φ ,z) =
(
E0 +ξ (t)

)
Rl(r)ei(−lφ+2k∆h) (4.3)

The superposition of these conjugate LG beams will result in the formation of daisy flower
like interference pattern with 2|l| number of petals. The net interference intensity at z due to
the superposition of the beams carrying +l and −l topological charge will then be given by:

I(r) =
∣∣E−l(r,φ)+E+l(r,φ)

∣∣2 (4.4)

I = 4E2
0
∣∣Rl(r)

∣∣2 cos2(lφ + k∆h)︸ ︷︷ ︸
Inter f erence Intensity

+4|ξ (t)|2
∣∣Rl(r)

∣∣2 cos2(lφ + k∆h)︸ ︷︷ ︸
Noise Term

(4.5)

From the above expression we notice an angular dependence in the intensity modulation of
the daisy flower pattern. Just like in Michelson interferometer, we also observed that the
interference intensity for the LG beam propagation follows the cos2 φ curve. The first term
in the above expression is the noise-free interference term and the second term is the noise
term. For the noise free measurements we have selectively chosen the pixel pair such that
they are out of phase with respect to each other at all times, i.e. ∆θ = π/2, where θ = lφ is
the net transverse phase difference of the interference pattern (as shown in Figure 4.1). The
interference intensity at detector 1 (ID1) is given by:

ID1|φ=0→π/2 = 4E2
0
∣∣Rl(r)

∣∣2 cos2(lφ + k∆h)

+4|ξ (t)|2
∣∣Rl(r)

∣∣2 cos2(lφ + k∆h) ∈ [1,0] (4.6)

The out of phase interference intensity at detector 2 (ID2) can then be written as:
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)
∈ [0,1] (4.7)
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Subtracting the intensities at both the detectors yields:

ID = ID1|φ=0→π/2 − ID2|φ=0→π/2 ∈ [−1,1] (4.8)

Note that the range in which the interference intensity now varies has doubled. The intensity
in the linear regime, i.e. at φ → π/4, at both directions will be similar in magnitude but in
opposite direction. The interference intensity at φ = π/4 at both the detectors will be given
by:

ID1|φ→ π

4
= 4E2

0
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∣∣2 cos2
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The subtracted intensity at this point is given by:

ID = ID1|π/4 − ID2|π/4 = 0 (4.11)

Thus, we have created (or shifted) a noise-free minima in the linear regime of the interferom-
eter. Now, at this point any external signal detected will be noise free and amplified as now
the net intensity can be given by:

ID = Inter f erence Intensity+ Noise + IS

ID|φ=π4
= ID1|π/4 − ID2|π/4

= IS1 − IS2

= 2IS1

(
∵ IS2|π/4 =− IS1|π/4

) (4.12)

This has been validated in the simulation and experiment as will be shown later. We will
now discuss our compact CiLens twisted interferometer and will demonstrate the noise
cancellation with signal amplification in real time.

4.2.3 Experimental set-up

Our compact twisted interferometer is based on the key idea of a cylindrical interference
lens (CiLens), as shown in Figure 4.1(a). The CiLens combines the multiple functions of a
beam-splitter, reference mirror, light collector, and parity invertor into a single lens in order
to produce a stable daisy flower-like interference pattern. The CiLens was fabricated by
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Fig. 4.1 Schematics of a single cylindrical iLens ultra stable twisted interferometer. (a)
Cylindrical iLens produces the flower-like interference pattern by combining the two beams
with opposite topological charges. (b) describes the algorithm to do noise-free measurements
by selecting anti-correlated pixel points (yellow squares) on the interferogram.

partially coating (40:60) the flat surface of the cylindrical lens. The incoming twisted light
of given topological charge +l, generated by a spatial light modulator (SLM), is partially
reflected from the flat surface and serves as a reference beam with state +l. The partially
transmitted twisted beam is retro-reflected from the mirror also its state is changed to -l. An
overlap of two twisted beams of opposite helicity interfere on the screen leading to a stable
daisy flower-like interference pattern as shown in Figure 4.1(b). To observe the good contrast
of the interferogram, the test mirror is adjusted near the focus of the CiLens. The number of
the petals in the interference pattern, are double of the topological charge 2|l|. When the test
mirror is displaced in the positive (negative) z-direction, the flower pattern rotates clockwise
(counter-clockwise) like a mechanical screw-like motion. Previously, such interference
pattern has been observed with Michelson interferometer, albeit a multi-component system,
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Fig. 4.2 Snapshots of daisy flower pattern. (a-b) Snapshots of simulated daisy flower pat-
tern. The color bar shows the normalized intensity value. (c,d) Corresponding experimentally
obtained pattern for l=5, 10.

by placing a cylindrical lens in one of the interferometer arm. Unlike the conventional
interferometers, our CiLens interferometer is compact and robust in producing stable high
contrast fringes.

Besides, we show that a single-pixel based intensity detection using a fast photodiode
allows an easy and precise self-calibration of the interferometer. In addition, we show that
a two-pixel or multi-pixel based detection exploits the spatial correlation in the phase of
the twisted beam to cancel noise in real-time and enable detection of picometer scale signal
deeply submerged in noise establishing the key advantages of twisted-interferometer over
the Gaussian beam interferometers. Figure 4.1(b) shows schematically the algorithm used
to do the noise-free measurements in real-time. A pixel-pair on the interferogram is chosen
such that the intensity at the two detectors are out of phase, i.e. (∆θ = π/2), at any time
while taking the measurements. The intensity difference at these two detector positions is
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Fig. 4.3 Calibration curve showing the measured mirror displacement with a photodiode
(red & orange circle) with the known input mirror displacement (blue square). The orange
and the red dots correspond to the single pixel displacement and anti-correlated pixel pair
displacement on the interferogram. The solid blue line is the linear fit. The experimental
noise floor is indicated by the error bars. The lower right inset shows the cosφ 2 dependence
of the interference intensity.

recorded using a photodiode (or webcam) on the oscilloscope to reduce the additive noises,
like laser intensity fluctuations, in the interferometer. Furthermore, we can construct 2pl
independent number of such noise-free pairs on the twisted interferogram to further reduce
overall noise-floor by two orders of magnitude enabling detection of weak displacements.

4.2.4 Picometer resolved self-calibration with single-pixel measurement

We validate our compact interferometer in Figure 4.2(a-d) by obtaining a stable daisy-flower
like interference pattern. The experimental interference pattern for two different values of l
is shown along with the corresponding simulated pattern. In the absence of modulation in
the mirror position, the interference pattern remains stable. In order to measure the direction
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and magnitude of the displacement of mirror, we detect single-pixel intensity (detector
area much smaller than typical petal width) and modulate the mirror by imparting a known
value of displacement. To establish the self-calibration of our setup [107] we gave an input
displacement δh = h(t)−h(0) to the mirror using the nano-positioner and compared it with
the corresponding shift in the interference intensity as shown in Figure 4.3. The interference
condition, i.e., half fringe collapse corresponds to δh = λ/4, governs the self-calibration
of our setup and is independent of time-scale of the interference fringes. As shown in the
inset (Figure 4.3), the I(x0,y0) follows a cosine square curve vs the mirror displacement. The
measured displacement of the the Mirror with laser intensity, using the interference condition,
agrees with the given displacement from the measured range covering from 100 nm to tens
of pm. Thus I allows to measure unknown displacement in real time, with self-calibration.

Single-Pixel detection is not only simple and fast, but also precise compared to rotation
angle based measurement approaches used previously because this requires detection of
edges of interference pattern. The self-calibration is robust in the sense that it is independent
of the position of the pixel on the petal.

4.2.5 Results

4.2.5.1 Set-up stabilization against various noises

We have exploited the symmetry in the daisy flower pattern to stabilize our setup against
various fundamental noises. It is well known that the interferometer is most sensitive to path
length change in the linear regime of the cos2 φ curve, so, there is a need to reduce the noise
floor in the linear regime. Here, we used the symmetrical flower pattern to track the intensity
change at two different points simultaneously. The points are chosen such that they are out of
phase, i.e. if one detector is at the maxima (minima) of the fringe then the other detector will
be at the minima (maxima). For example in Figure 4.4(a) we show the simulated effect of
intensity fluctuation noise in the laser and we notice that the effect of noise is more prominent
at the maxima and in the linear regime of the intensity curve. The noise affecting minima
the least is the reason why interferometers are set there. This would also imply that now the
interferometer is less sensitive towards capturing the change in the optical path length of the
beam. To solve this problem, we have exploited the anti-correlated points on the daisy flower
interferogram to self-cancel the additive noises. Such two-pixel detection allows significant
reduction of noise in the most sensitive linear regime of our interferometer as derived in the
equations 4.9-4.11 above. This has been validated in our numerical simulation as well as in
experiment of interference intensity in the presence of intensity noise, as shown in Figure
4.4. Due to the cos2 φ dependence, the noise amplitude modulates. Although, noise affecting
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Fig. 4.4 Differential noise cancellation, (a,b) The upper graphs shows the simulated random
noise and the experimental noise in the fringe pattern at two anti-correlated points. The lower
graphs shows the enhancement of the signal to noise ratio in the linear regime (in green color
band) by differential noise cancellation technique.

minima is the least, our interferometer is least sensitive towards capturing the displacement of
the mirror near the minimum. For all other positions, the noise is clearly visible in both pixels.
However, if we chose the location of pixels such that the intensity change is anti-correlated,
i.e., to be out of phase (∆θ = π/2), due to intrinsic anti-correlation in the intensity change,
produced by the rotation of the petal, the noise is cancelled significantly as shown in Figure
4.4(a,b).

We have demonstrated real-time noise self-cancellation by detection of a weak signal,
amid the large intensity noise produced by SLM. We show that a tiny step of few nm, which
is otherwise undetectable (see Figure 4.5) becomes visible in our experiment by two-pixel
detection. Using the approach derived in the above equations we have been able to detect
weak signal, i.e., the displacement of the mirror, reliably with a precision of sub-50 pm (4.5).
The above scheme is independent of the l, provided the correlated detection can be setup.
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Fig. 4.5 Real-time sub-50 pm resolved displacement measurement.. The mirror was
given a known displacement of 2 nm, and the corresponding change in the interference
intensity was recorded at two anti-correlated points.

For larger l-value, the petal width reduces. In this situation, it is possible to optically expand
the petal to allow double-pixel detection.

When the sample mirror is displaced, rotation of the petals induce a small change
occurs in the intensities of both the detectors (red and orange curve in Figure 4.5). For tiny
displacements, the corresponding small intensity change is masked by the laser intensity
noise and is hardly visible. Here, our interferometer (or detection scheme) provides the
advantage of real time differential noise cancellation. As the detected intensities are in
opposite phases, we do the real time subtraction where the laser noises in same phases
disappears and the required signal gets enhanced by a factor of two. Fig. 4.5 shows the
zoom of step response where the laser noise has been cancelled out and required response
becomes double. The generation of OAM with 288th order directly from the laser with
transmission-stability has been recently demonstrated, which suggests that a significant
(1/

√
N) reduction in the noise-floor of an interferometer can be achieved [108].
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Fig. 4.6 Photo-thermal dynamics of a semi-transparent solid material. The blue and the
orange curve shows the interference intensity at two detector positions. The red curve shows
the noise cancelled deformation in real-time. The violet curve is the pump laser signal. The
inset shows the schematic setup to measure the deformation on the red acrylic sheet kept
in the interferometric cavity. A low-power CW green laser was used to deform the sample
surface.

4.2.5.2 Isolating photo-dynamics submerged in noise

Finally, we demonstrate that the iLens cavity allows detection of photo-thermal dynamics of
a semi-transparent solid material, such as a sheet of red-acrylic, below the experimental noise
floor. High-contrast fringes were obtained when a red-acrylic (poly-methyl-methacrylate)
was inserted in the cavity (Figure 4.6). Upon irradiation of acrylic with a low-power green
laser pulse (500 ms,10 mW , 2ω0 = 400 µm), the deformation is hardly visible in ID1 or ID2.
We clearly resolved the reversible photo-thermal bump, which was few nm, in this case. The
direction of rotation of the pattern during the pump exposure tells about the formation of
a bump on the sample due to heating. The sensitivity and simplicity of our scheme allows
dynamic detection of small deformation below the noise level suggesting its wide application
potential for precision measurement on liquid, gas and plasma.
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4.2.6 Discussion

CiLens has a broad applicability for noise-free measurements on diverse solid surfaces.
CiLens allows obtaining twisted-fringes directly from highly absorbing to fully transparent
surfaces by appropriately tuning its beam-splitting coating. The CiLens and the solid surface
of interest makes an ultra-compact tool to probe dynamics of solids, for example across a
phase-transition, subjected to thermal, magnetic and acoustic perturbations. Besides, the
setup is versatile to probe liquid, gas or plasma state of the matter as well.

In contrast to conventional Gaussian beam interferometers, the noise-cancellation can
be scaled up using higher order twisted light. For example, for a twisted light of charge
l and radial quantum number p, the total petals in the interference pattern are 2l p, which
allows making a 2l p noise-cancelled pairs. For l = 300 and p = 30, which one can generate
experimentally, the residual random noise floor (acoustic, air-drag, thermal noise etc) can
be further reduced by (

√
2l p 100) fold. The ultimate noise reduction may be decided by

the pixel size of the detector chip (pixel density) and the size of the OAM beam which
increases with l. Our unique scheme allows exploiting full potential of spatial phase structure
of twisted light for noise-elimination.

It is possible to further miniaturize the entire setup on a chip. For example, one can
integrate a phase-plate and CiLens into one element along with a micro-laser producing
Gaussian mode for space-constrained applications. Besides, our CiLens can be directly
integrated with a laser cavity emitting twisted-light, such as l = 288 with stable propagation,
to make a compact twisted noise-compensated interferometer.

Furthermore, by employing balanced low-noise detector pairs, frequency stable-laser, and
cooling our ultracompact interferometer to cryogenic temperatures the noise can be further
improved, possibly reaching the femtometer regime in real-time.

In conclusion, we demonstrated a comprehensive approach for noise self-cancellation and
signal amplifying single-lens twisted interferometer. Besides, being ultra-stable and compact,
we show a single-pixel detection of daisy flower-like interference pattern to self-calibrate
the twisted interferometer with picometer resolution. The multiple degrees of freedom,
offered here in the form of identical fringe petal, allows us to simultaneous detect correlated
intensity change leading to real-time averaging based decrease in noise-floor. Remarkably, we
exploited the anti-correlation in the transverse phase front to achieve real-time cancellation
of intensity noise, allowing detection of signals buried in the large noise background for wide
variety of application.

We envision that our simultaneous multi-dimensional measurement would be useful for
many applications including precision metrology, remote sensing and fundamental measure-
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ments. It will be interesting to operate the interferometer in quantum noise regime with few
photons.

4.3 Large area processing with ultrafast light sheets

4.3.1 Introduction

The nanopatterning of solid surfaces with ultrashort laser pulses is a growing area with
many applications in modulating optical, material and surface properties. Since the first
observation of laser-induced periodic surface structures (LIPSS), also termed as ripples on
semiconductors by Birnbaum, LIPSS have been produced on most metallic and dielectric
surfaces [109, 110]. The generation of LIPSS upon irradiation of laser pulses below the
material’s damage threshold is a universal phenomenon [111]. Although their occurrence,
structural size and formation mechanism depend on the material and irradiation parameters.

The LIPSS have attracted remarkable interests over the past few decades due to their
large variety of applications such as in generation of super-hydrophobic surfaces [112], cell
culture substrates [113, 114] and in making of photonic devices [115–117]. Several attempts
have been made to produce variety of patterns by shaping the polarization of fs-pulse (linear,
circular or radial) or using beams carrying orbital angular momentum and multicolor pulses
[118–120]. This has allowed researchers to generate surfaces that mimic structures found on
insects, shark skin etc in order to imitate their remarkable optical, mechanical or self-cleaning
properties [121–125].

The standard technique to produce LIPSS is by 2D raster scanning of a focussed fs
pulse on a solid surface. The LIPSS are formed within the microspot of the laser beam.
The point-by-point illumination to cover LIPSS on a large surface area (say, 1 cm2) is a
time-consuming process [121, 126–128]. Furthermore, with this approach it is difficult to
produce homogeneous nano-patterns over the entire area because the laser parameters (pulse
energy, pointing stability, fluence) may fluctuate during the slow patterning. Cylindrical lens
with long focal length have also been used to produce nano-structures on extended area of
steel and TiO2 [129, 130]. However, the effect of shorter focal length of cylindrical lens
in combination with short 25 f s pulse has not been studied yet. One may wonder if these
improvements lead to high-fidelity, large area tunable nano-structures.

Here, we demonstrate an application of tightly focussed fs-light sheet to produce high-
fidelity LIPSS over a macroscopic surface area by a single one-dimensional scan. A short
focal length cylindrical lens is used to produce the line focus on the silicon surface and
by varying the scanning speed of the sample, we reliably produce different LIPSS. The
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Fig. 4.7 Schematics of the experimental set-up. (a) The fs-pulses (25 f s, 2 mJ, 1 kHz,
λ = 800 nm) are focused through an achromatic cylindrical lens made of fused silica (f =
8 mm). (b) Sample scanning in the light-sheet. (c) A typical beam profile at 1 mm away from
the focus of the cylindrical lens. The estimated spot size at the focus is about 7 µm.
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fundamental spatial frequency of LIPSS on a crystalline Si is about 660 nm. It’s second
order at 330 nm became dominant as the scan speed is increased. We also observed visible
structural colors on the silicon surface under white light illumination.
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Fig. 4.8 SEM images of laser induced periodic nano-structures on the crystalline silicon
surface at different scanning speeds. (a) 0.5 mm/s, (b) 0.7 mm/s, and (c) 1.0 mm/s. The
energy per pulse is 0.8 mJ for these cases. White arrow indicates the direction of linear
polarization of the incident pulse. The right side images are zooms of the dotted rectangles.
The horizontal arrows (black, red and blue) on the left indicate the direction of line profile.

4.3.2 Experimental set-up

The schematic of our experimental setup is shown in Figure 4.7(a). We used femtosecond
laser pulses of 25 f s pulse duration arriving with 1 kHz rep rate at central wavelength
of 800 nm. The femtosecond light sheet was produced from the input Gaussian beam
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(2ω0 ≃ 8 mm) by focusing it in one dimension using a cylindrical lens. The cross-section of
the cylindrical lens was 8 mm×8 mm with central thickness of 3 mm. The major axis of the
elliptical focus was about 8 mm and the minor focus was about 7 µm. A typical image of the
line focus (characterized using a He-Ne laser) is shown in Figure 4.7(c). The light sheet was
linearly polarized along the minor-axis.

The sample taken was a silicon wafer (Si 100) available from Sigma Aldrich. The sample
(typically 10× 30 mm2) was mounted on a computer controlled high-speed translational
stage (Thorlabs) and was adjusted in the focus of the fs-light sheet. The sample was scanned
in the focal plane with a controlled speed varying from 0.5 mm/s to 1 mm/s. The laser
power (energy per pulse) was controlled by a ND filter. The pulse duration in the line focus
was not measured. After processing, the silicon sample was cleaned in an ultrasonic bath
for 30 minutes. The sample surface, without any coating, was then imaged using electron
microscope and analyzed.

4.3.3 Results

4.3.3.1 Characterization of laser induced periodic nano-structures (LIPSS) on silicon
surface

The electron micrographs of the silicon surface processed at constant energy of 0.8 mJ per
pulse and at three different scanning speeds is shown in Figure 4.8(a)-(c). The interaction
of fs light-sheet decorated the Si surface with periodic nano-structures as shown in the
imaging area of about 50 µm×50 µm. The lines in the patterns were aligned perpendicular
to the direction of linear polarization (shown by white arrow in Figure 4.8(a)) [131]. As we
increased the scan speed from 0.5 mm/s to 1 mm/s (Figure 4.8(a)-(c)) the LIPSS became
more and more homogeneous [132]. Figure 4.9 shows the line profile of the image taken
along the direction marked by coloured arrows with average of 10 pixels in Figure 4.8(a)-(c)
indicating multiple spatial periods as the scan speed is increased.

Figure 4.10(a)-(c) shows 2D Fourier transform of the images shown in Figure 4.8(a)-(c),
respectively. The Fourier transforms show well defined peaks that correspond to an average
spatial period, Λ = 660 nm. This is close to Λ = 0.75λ which has been referred to as Low
spatial frequency LIPSS [133, 134]. The line profile of the Fourier transforms (right column,
Figure4.10) indicates that the fidelity, F, of the structure, defined as the inverse of full width at
half maximum, ∆K, of the peaks (marked 1, 2), i.e., F ∝ 1/∆K. We observed that F increases
with increase in the scanning speed. In addition, the 2D-FFT images illustrated that there
is no change in the spatial frequencies of LIPSS rather the intensity of second-order peak
increased. The deviation angle of the oriented nano-structures with respect to the normal of
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Fig. 4.9 Line profile of SEM images of Figure 4.8 along the direction of the correspond-
ing color arrow. (a)-(c) correspond to the SEM micrographs at different scanning speeds (a)
0.5 mm/s, (b) 0.7 mm/s, and (c) 1.0 mm/s.

the incident S-polarization decreased from 10◦ to 6◦, i.e., the perpendicularity of LIPSS was
higher [135].

A wide variety of periodic patterns has been reported in the literature, in particular,
low-frequency and high-frequency LIPSS [133]. In our case of normally incident fs-light
sheet, the observed sub-λ spatial periods were in the range (λ/2 ≤ Λ ≤ λ ).

Previous attempts to explain the large wavelength sized ripples were based on the inhomo-
geneous energy deposition due to interference between incident and scatterd wave [136, 137].
However, the scattering model could not explain the observed features of the sub-wavelength
ripples on dielectric and metallic surfaces. As reported in the literature, we attribute that
these nano-structures are generated by the excitation of Surface Plasmon Polaritons (SPP)
[138, 139]. A normally incident laser beam excites the SPP on a metal-dielectric interface
when specific conditions for the dielectric permittivity of laser-produced plasma and phase
matching between the plasmon surface wave and the incident photons is fulfilled, as detailed
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in [138–141]. In addition, these low-spatial frequency LIPSS run perpendicular to the laser
polarization. These observations suggest that the large area LIPSS are due to non-linear
interactions of the light sheet with the surface plasmons [136]. However, to get a deeper
insight into the exact mechanism a detailed theoretical model should be performed in future.
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Fig. 4.10 FFT of SEM micrographs and the corresponding intensity profile along the
x-axis. (a) 0.5 mm/s, (b) 0.7 mm/s, and (c) 1 mm/s. The cut profile of the images is shown
on the right.

4.3.3.2 Femto-second processing of large area surface

In Figure 4.11(a)-(d), we demonstrate a potential application of our large area LIPSS in
structurally coloring the silicon surface [142]. Upon white light irradiation the original
silicon sample appeared black (Figure 4.11(a)). However, we observed rainbow-like colors
due to diffraction of the incident white light by LIPSS (Figure 4.11(b)-(d)).

We show two examples of large area processing in Figure 4.12. We processed 95 mm
diameter magnetic disk platter (taken out from a computer hard disk) at scanning speed
of 1 mm/s at about 1.5 W average power. One can see that the processed area exhibits
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Fig. 4.11 Diffraction of white light on nano-structured crystalline silicon surface. (a)
Control (no laser), (b) 0.5 mm/s, (c) 0.7 mm/s, and (d) 1.0 mm/s.

visible colors due to diffraction under collimated sun light. Using the grating equation,
Λ(sinα ± sinβ ) = mλ , we observe that for normal incidence, α = 0◦ and for our spatial
period Λ = 0.66 µm, the visible colors appear in a range of β = 37◦ − 65◦ in the first
order. In another example we chose to process surface of a “butterfly" shaped Nickel-plated
Neodymium magnet from a hard disk drive bracket. The three different images of the
processed surface taken at different angles of observation shows the vivid colors. The total
processing time was about 60 and 10 minutes for the disk and magnet, respectively. These
processing speeds are comparable with the recent approaches using laser pulses having a
longer pulse duration [143].

One of the key advantages of using short fs light-sheet is in generating uniform nano-
patterns over a large area. In addition, 1D line scan is much faster compared to the traditional
point by point scanning. For example, with a beam size of 10 mm patterning a 1 cm2 area at
1 mm/s will take only 10 seconds. The reduction in the processing time makes it easier to
keep the laser parameters constant which further helps in getting better uniformity.
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50 mm

a b

95 mm
Control

Fig. 4.12 Examples of large area processing (a) A magnetic platter of the computer hard
disk (b) Nickel-plated Nd magnetic surface. The samples were scanned at 1.0mm/s for 1.5 W
average power. Different colors appear due to diffraction of the visible light by LIPSS. The
dark band at the centre of the magnetic surface is due to the deposition of the magnetic dust
during processing.

We would like to mention couple of remarks on future improvements of our technique. We
believe that the homogeneity of the nano-structures could be further increased by employing
a light sheet with flat top intensity profile. Our approach is scalable in the sense that one
can further expand the beam diameter in order to produce an elongated light sheet to further
increase the processing speed.

4.4 Conclusion

We have shown a compact iLens interferometer with twisted light that produces a daisy-flower
interference pattern and with single-pixel measurement it yields a self-calibrated picometer
displacement. In addition to being compact, the twisted light iLens interferometer enables an
interesting possibility to cancel various non-fundamental noises present in an interferometer
by multipoint detection. In addition, higher order twisted light enables a real-time averaging
of signals that suppresses noise, potentially leading to measurement of weak signals. We also
suggest a possible experimental setup to validate our theoretical analysis.

In the second part of the chapter, we demonstrate an application of cylindrical lens to
rapidly generate large area, homogeneous patterns on silicon surface. The shape of the nano-
structures was controlled by varying the scan speed of the sample. Analysis of SEM images
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indicated an emergence of second order spatial periodicity for faster scan speeds. The large
area homogeneous patterning may find many applications in designing functional interfaces,
optical devices and in tissue regeneration. We expect that tailoring polarization, orbital
angular momentum and spectrum of the light-sheet may lead to diverse nano-patterning of
solid surfaces. It will be worth attempting to also study the role of light sheets consisting of
few-cycle (sub-10 f s) pulses.



Chapter 5

General Conclusions and Perspectives

In this thesis, we have established and demonstrated a novel single-lens universal interferom-
eter capable of probing everyday materials including paper, wood, plastic, rubber, skin, hair,
etc., with picometer precision. The key idea was to integrate three different functions of the
beam splitter, reference mirror, and collection optics into single iLens which when combined
with any arbitrary surface produced high-contrast fringes. We demonstrated the iLens inter-
ferometer with 25 different materials and established a framework to make self-calibrating
picometer resolved measurement by detecting the interference intensity through an iris. The
interferometer was compact and enabled a real-time self-referencing precision of ∼ 20 pm
under ambient conditions without averaging. We also demonstrated that the interferometer
can be 3d-printed and can be made as a stand-alone device for precision measurement in
remote conditions.

The invention of iLens interferometer opened a new paradigm of universal interferometry
with everyday materials enabling fabrication of frugal optical devices with unmatched
precision. We have demonstrated three different kinds of optical devices, namely a paper-
based pico-balance, a cloth-based ultra-sensitive and broadband acoustic sensor, and a nano-
Newton resolved force sensor using bio-fibers. These frugal devices were compared with
their high-tech counterparts and were shown to match or outperform in terms of sensitivity
and speed.

Besides, the iLens interferometer enabled fundamental non-invasive measurement on the
dynamics of candle-flame plasma with picometer precision. By placing the flame inside the
iLens cavity, we scanned various regions of the flame and measured their optical properties
such as optical thickness, refractive index and flickering dynamics. We observed that when
the candle flame is locally subjected to a ns-green laser, a dark-band is created probably due
to flame quenching. We have used iLens to probe the single-shot dynamics of the dark-band
providing new insight into this intriguing phenomena. The iLens interferometer was also
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adapted for probing fluids, therefore, making our iLens as a preferred choice for probing
solids, liquids, or gases with ultrahigh precision in real-time.

In the fourth chapter, we have designed and analyzed a twisted iLens interferometer
based on cylindrical lens. The interferometer produces high-contrast daisy-flower pattern
fringes which rotate clock-wise or counter-clockwise when the sample surface is moved
forward or backward. The twisted iLens interferometer is not only compact and yields a
picometer resolution but exploits the phase-structure of twisted light for noise-cancellation
and real-time averaging rendering detection of weak signals in the noise-background. We
have presented a detailed analysis of various noises and also suggested an experimental
scheme to realize our noise-compensating compact twisted light interferometer. In another
line of work, we have exploited the cylindrical lens to generate a femtosecond light sheet
and demonstrated that it produced high-fidelity large area surface nanostructures for various
sensing and measurement applications.

It is worth comparing our interferometer with the well established Michelson [1], Mirau
[5] or Fizeau interferometers [29] which essentially require precise stabilization and align-
ment of its multiple components like beam-splitter, reference mirror and light collector. No
interferometer has been shown to work directly with rough surfaces and achieve pm precision
probably due to their multiple components. Although the Mirau interferometer is compact [5],
its reference mirror not only clips the incident beam but also require a fixed working distance.
In contrast, our interferometer design offers fully clear view, flexible working distance within
several times ZR. A detailed comparison of iLens interferometer with the state-of-the art
interferometers has been discussed in Appendix 1. Furthermore, we verified its robustness
by purposefully tilting the iLens (±10◦) and yet retaining the fringes, which could be used
for further miniaturization. Importantly, the universal applicability of our interferometer
on any scrap material, ultra-affordability and easy operation with self-calibrating pico-level
precision makes it attractive for wide variety of applications.

The sensitivity and speed of our current measurement can be further improved. The
precision of few hundred picometers of the current apparatus is only limited by the set-up
components. If frequency stabilized lasers and electronic signal processing is also used, one
can obtain thermal-noise limited precision similar to the sophisticated interferometers [7, 8].
In addition, using high-speed avalanche detectors one should achieve sub-ns time-resolution.
In applications demanding compactness, one can design a micro-iLens with micro-lasers and
detectors on 3d printed substrate.

We envision a broad variety of new applications of our technique. One can design variety
of frugal optical devices using iLens, the iLens can be used as an ultra-sensitive probe to
not only measure the properties of light but can also unravel nature of mechanical effects in
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light-matter interaction. We envision application of iLens in probing properties of complex
fluids, pristine bio-materials, and flame plasma with unprecedented precision.





Appendix A

Comparison of iLens interferometer with
the existing interferometers

A.1 Design comparison of iLens interferometer

The compactness in the design of the iLens interferometer can be compared with the existing
well known interferometers such as Mirau interferometer, Fizeau-type interferometer, Fizeau-
type equal path interferometer (EPI). These commercial interferometers require a special
optical element called Transmission sphere to test the various curved and rough surfaces.
Here, we also show a detailed comparison of our iLens with the transmission shpere and
describe the advantages of using iLens interferometers over its commercial counterparts.
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Fig. A.1 Design comparison of iLens interferometer setup with Fizeau-type interferom-
eter setup. a, iLens interferometer setup, b, Fizeau-interferometer setup. Dotted red box
encloses Collimator, Reference and the Beamsplitter which is functionally equivalent to
single iLens. In Fizeau setup Reference and Beamsplitter must be tilted, and sensed by Angle
sensor, to remove unwanted reflections by Aperture stop. Whereas, in iLens interferometry
no unwanted reflection is produced, besides, alignment and stabilization is simplified. Nano-
positioner is only used for initial validation of pm resolution and is not necessary. iLens can
work on any in situ surface of common materials.
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Fig. A.2 Comparison of optical assembly of iLens with Fizeau-type equal path interfer-
ometer (EPI). a, iLens interferometer b, Optical assembly of EPI (Ref. 1). Comparing the
two red boxes, the function of collimator, reference plate, and beam splitter in EPI has been
combined in one single iLens. The compact geometry makes iLens interferometer stable,
robust, and easy to align and enables direct interferometry on any sample.
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Fig. A.3 Comparison of our iLens with Transmission sphere. (a) Commercial laser
Fizeau interferometer for testing the deviation from spherical of a concave object (courtesy of
Zygo corporation) . (b) Geometry of commercial laser Fizeau interferometer. Inside optical
elements of the red box in a. (c) Optics required to make Transmission sphere . (d) iLens
interferometer.
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Equal Path Interferometer iLens Interferometer
1. Require 3 elements (Focusing lens,
Reference element, and Beam splitter) to
probe the sample surface.

Only one iLens is required to probe the
sample surface.

2. Reference element and the BS need to
be at a perfect angle to obscure the un-
wanted reflections.

No such particular requirement.

3. Used to evaluate the form and texture
of flat surfaces only.

All flats, curved or rough surfaces can be
probed.

4. Tedious alignment and requires to stabi-
lize more number of components.

Only one iLens needs to be aligned and
stabilize.

5. Not suitable for probing arbitrary sam-
ples.

Can probe any arbitrary surface of size
from sub-micron to cm.

Table A.1 Comparison of Equal path interferometer with iLens interferometer.
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Transmission Sphere (TS) iLens
1. Used in Conjunction with an interfer-
ometer such as Fizeau Interferometer.

It is in itself is an interferometer when
combined with a sample.

2. It’s a combination of lenses. Gener-
ally made up of more than three pieces of
lenses with spherical surfaces.

It’s just one single lens from which the
interference fringes are obtained.

3. Specially designed to test a concave or
convex spherical surface only..

Suitable to test any given arbitrary rough
surface.

4. The reflectivity of the surface has been
fixed to 4% only.

The reflectivity may vary according to the
sample under test. The various reference
reflectivity values are shown in Table A.1.

5. The interference pattern result when the
measurement wave front (reflected from
the test surface) passes through the TS and
into the interferometer where it interferes
with the reference beam.

The iLens splits the incoming beam into
two beams, reference beam and the object
beam. It then collects the object beam
reflected back from the sample surface,
which then interferes with the reference
beam to form interference fringes.

6. The sample size should be in between
the radius of the TS and its focal point.

No such limitation.

7. A zoom feature in the interferometer is
required for obtaining better results from
TS.

It does not require any such feature.

Table A.2 Comparison of Equal path interferometer with iLens interferometer.



Appendix B

Theoretical verification of iLens
interferometer

B.1 Theoretical verification of iLens interferometer

The Gaussian laser-beam interferometers are precision devices for various measurements. To
exploit their full potential and to understand their operating mechanism, a through design
analysis with Gaussian beam is necessary.

While standard interferometers design are based on either amplitude division or phase
division, such as Michelson [1], Fabry-Perot [4], Mirau [5], Fizeau interferometer [6], etc.
Some of these have been analyzed in detail with single or multiple Gaussian beams or with
structured light, in particular for analyzing fringe contrast, precision, and error analysis.

Recently, we have designed a single iLens interferometer [60] and that was shown to
produce universal fringes with most common (flat and rough) surfaces and offered a precision
of < 20pm in real time. However, a detailed analysis of iLens interferometer with Gaussian
beam to theoretically understand the working range, role of iLens-to-sample distance, and
fringe contrast was missing.

B.1.1 ABCD matrix method for paraxial beam propagation

A Gaussian beam propagating through different optical components can be analyzed us-
ing ABCD matrices. A linearly polarized Gaussian beam propagating along the z-axis is
expressed as [144, 145]:
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We will use the ABCD matrix formalism to describe the propagation of Gaussian beam
through optical elements of iLens interferometer where each optical element is represented
by a simple 2x2 ABCD matrix. The determinant of the matrix is unity, i.e. AD-BC=1, if the
input and the output plane are in the same optical medium. For a lossless system, the matrix
elements are real, but complex otherwise. The relation between the output (q2) and input
(q1) complex beam parameter is expressed as:(

q2

1

)
=

(
A B
C D

)(
q1

1

)
(B.3)

The output complex beam parameter is determined using the matrix formalism as [146,
147]:

q2 =
Aq1 +B
Cq1 +D

(B.4)

The complex radius of curvature of the Gaussian beam propagating through the ABCD
optical system transforms according to the ABCD law. However the product of the minimum
beam width (ω0) and the divergence of the beam (θ0) remains invariant throughout the beam
propagation given by

ω0θ0 =
λ

π

In this paper our objective is to analyze the Gaussian beam propagation in our single-lens
interferometer for detailed working for two cases of a flat sample surface and a rough sample
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Fig. B.1 ABCD analysis of iLens interferometer. (a) Gaussian beam propagation through
an optical system described by ABCD matrix. (b) schematics of iLens interferometer. (c)
Beam propagation in the reference arm of the interferometer. (d) Propagation of beam in the
object arm of the iLens interferometer.

surface using ABCD matrix formalism. An analysis of error and misalignment of sample tilt
will be presented. We will validate our theoretical prediction with the experimental data.

Figure B.1(a) shows the Gaussian beam propagation through an optical system described
by ABCD matrix. We consider the iLens of focal length f (radius of curvature R) and central
thickness L1 which is kept at a distance d1 from the beam splitter (BS) on the optical axis of
the system (see Figure B.1(b)). The rear surface of the iLens is coated with a beam splitter
coating having T:R intensity coefficient, where, T stands for Transmission coefficient and R
for Reflection coefficient. The plasma sample is placed at a distance d2 from the iLens. For
the analysis of our system we have used the thin lens approximation i.e. the iLens thickness
is much smaller than its focal length (L1 < < f ).

B.1.2 Equivalent schematic of iLens interferometer for the reference
and the object arm

The various optical elements used in our interferometer setup can be represented using ABCD
matrices (Figure B.1(b)). The propagation path of input Gaussian beam through the reference
and the object arms of the interferometer is shown in Figure B.1(c,d), respectively. The
ABCD matrix for the various optical components of iLens system are given by:
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Fig. B.2 Intensity and phase plots. (a,b) Intensity and phase plot of the reference beam
respectively, (c,d) Intensity and phase plot of the object beam respectively.

The free space propagation of the beam from BS to iLens is

M1 =

(
1 d1

0 1

)

The matrix for thin lens approximation of iLens is

M2 =

 1 0

−1
f

1


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Fig. B.3 Interference fringes from flat surface.

The matrix for the beam reflected from the partially coated rear surface of the iLens
(serving as a concave mirror) is:

M3 =

 1 0

− 2
R

1


The free space propagation of the beam between iLens and sample is:

M4 =

(
1 d2

0 1

)

The matrix M4 is applicable if the sample under test is a smooth surface or a mirror. For
a rough sample the matrix elements B&C will be complex numbers. The global matrix for
the reference and the object arm is then given by:

Mre f = M1 ×M3 ×M2 ×M1 (B.5)

Mob j = M1 ×M2 ×M4 ×M4 ×M2 ×M1 (B.6)

The order in which the matrices are multiplied, to obtain the global matrix for each arm, is
reversed when the Gaussian beam is propagated through the interferometer system. After the
Gaussian beam (T EM00 mode) propagation through the system, the electric field of the beam
from each arm is then superimposed to obtain fringes on the output plane. The electric field
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Fig. B.4 Calibration curve of sample displacement in the z-direction. The curve shows
the collapse (or evolving) of two fringes at the center of the pattern by displacing the sample
by one wavelength. The green shaded regions denote the linear regime of the interferometer.

of the reference arm Ere f (x,y) and the object arm Eob j(x,y) in the output plane (on screen)
can be obtained using the transfer matrices Eq. (B.5)-(B.6). The interference intensity is then
given by:

I =
∣∣Ere f +Eob j

∣∣2 (B.7)

B.1.3 Results

B.1.3.1 Electric field intensity and phase plots of the reference and the object beam

Figure B.2(a-d) shows the electric field intensity and the phase profile of the reference and
the object beam at the screen respectively. The interference pattern obtained from these two
beams consists of high contrast circular fringes as simulated in Figure B.3. We measure the
single pixel intensity using a photodiode at the centre of the interference pattern which shows
a cosine squared dependence shown in Figure B.4. The curve shows the collapse (or revival)
of two fringes at the centre of the pattern when displacing the sample by a distance equal to
one wavelength.

To establish the self-calibration of our setup [28] we gave an input displacement ∆h =

h(t)−h(0) to the mirror using a nano-positioner and compared it with the corresponding
shift in the interference intensity as shown in Figure B.4. The interference condition of half
fringe collapse corresponding to ∆h = λ/4, governs the self-calibration of our setup and is
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independent of time scale at which interference fringes evolve or collapse. The intensity can
be further resolved in sub-fringe regime to measure the nanometer resolved displacements
by taking N intensity points in between the minima and maxima of the central fringe which
elevates the precision of the interferometer to ∆h = λ/4N. For example, in Figure B.4,
N = 50 yields a precision as low as a few nm (3 nm). In an experiment, the actual resolution
is determined by the intensity resolution of photodiode and oscilloscope system, which for a
typical case of N = 1000, reaches picometer regime. The actual resolution of the device is
limited by the experimental noise floor.





Appendix C

Python Program for noise
self-compensating single-lens twisted
interferometer

def sub(list1,list2):

list3 = [x1-x2 for (x1,x2) in zip(list1,list2)]

return list3

z=0.5*1e9

w0=0.3*1e6

r = np.linspace(0.0,1500*1e3,500)

theta=np.linspace(0.0, 2*np.pi,361)

l=3*np.ones_like(r)

p=0*np.ones_like(r)

R,THETA=np.meshgrid(r,theta)

l1=l[0]

p1=p[0]

A = np.sqrt(2*math.factorial(p1)/(np.pi*math.factorial(np.abs(l1)+p1)))

lamda=632.0

k= 2*np.pi/lamda

zr=np.pi*w0**2/lamda

Rz = z*((zr/z)**2 +1)

wz= w0*np.sqrt(1+(z**2/zr**2))

phi = np.pi*R**2/(lamda*Rz) - (np.abs(l)+(2*p)+1)*np.arctan(z/zr)

L = scipy.special.eval_genlaguerre(p,l,2*R**2/wz**2)

Rl=(1/wz)*((np.sqrt(2)*R/wz)**np.abs(l))*np.exp(-R**2/wz**2)*np.exp(1j*phi)*L
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dh=0.0

dh2=0.0

N = 10

x_axis=[]

y_axis=[]

y_axis1=[]

h=0.0

h1 = 0.0

for i in range(0,N+1):

h1+=dh

h = h1

dh2 = dh2 + (dh)

x_axis.append(dh2)

E1=(Rl)*np.exp(1j*(l*THETA+k*h))

E2=(Rl)*np.exp(-1j*l*THETA)

I1 = np.abs((E1 + E2)**2)

I1 = I1/I1.max()

fig = plt.figure(figsize=(10,8))

ax = fig.add_subplot(111,polar=True)

cb = ax.scatter(THETA, R,c=I, alpha=1, s=3, vmin=I1.min(), vmax=I1.max())

xpix = I.shape[0]/361

ypix = 1000*I.shape[1]/1500

y_axis.append(I[90*xpix, ypix].mean())

y_axis1.append(I[297*xpix, ypix].mean())

diff = sub(y_axis,y_axis1)

fig3,ax3 = plt.subplots(1,1)

ax3.plot(x_axis,diff,linewidth=2.5,color=’b’)
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micro-and nano-structuring of a stainless steel surface using dual-wavelength double-
pulse picosecond laser irradiation. RSC Advances, 5(92):75075–75080, 2015.

[128] Anne-Marie Kietzig, Savvas G Hatzikiriakos, and Peter Englezos. Patterned superhy-
drophobic metallic surfaces. Langmuir, 25(8):4821–4827, 2009.

[129] Marcus Ardron, Nick Weston, and Duncan Hand. A practical technique for the
generation of highly uniform lipss. Applied surface science, 313:123–131, 2014.

[130] Susanta Kumar Das, Kiran Dasari, Arkadi Rosenfeld, and Ruediger Grunwald.
Extended-area nanostructuring of tio2 with femtosecond laser pulses at 400 nm using
a line focus. Nanotechnology, 21(15):155302, 2010.

[131] Sandra Höhm, Arkadi Rosenfeld, Jörg Krüger, and Jörn Bonse. Laser-induced periodic
surface structures on titanium upon single-and two-color femtosecond double-pulse
irradiation. Optics express, 23(20):25959–25971, 2015.



108 References

[132] Olga Varlamova, Christian Martens, Markus Ratzke, and Juergen Reif. Genesis of
femtosecond-induced nanostructures on solid surfaces. Applied optics, 53(31):I10–I15,
2014.

[133] Jörn Bonse, Sandra Höhm, Sabrina V Kirner, Arkadi Rosenfeld, and Jörg Krüger.
Laser-induced periodic surface structures—a scientific evergreen. IEEE Journal of
selected topics in quantum electronics, 23(3), 2016.

[134] Jürgen Reif, Florenta Costache, Matthias Henyk, and Stanislav V Pandelov. Ripples
revisited: non-classical morphology at the bottom of femtosecond laser ablation craters
in transparent dielectrics. Applied Surface Science, 197:891–895, 2002.

[135] Jörn Bonse and Jörg Krüger. Pulse number dependence of laser-induced periodic
surface structures for femtosecond laser irradiation of silicon. Journal of Applied
Physics, 108(3):034903, 2010.

[136] JE Sipe, Jeff F Young, JS Preston, and HM Van Driel. Laser-induced periodic surface
structure. i. theory. Physical Review B, 27(2):1141, 1983.

[137] Florence Garrelie, Jean-Philippe Colombier, Florent Pigeon, Svetlen Tonchev, Nico-
las Faure, Mourad Bounhalli, Stéphanie Reynaud, and Olivier Parriaux. Evidence
of surface plasmon resonance in ultrafast laser-induced ripples. Optics Express,
19(10):9035–9043, 2011.
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