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Preface

The central theme of this thesis is the study of bistable dynamical systems in the

presence of noise and the subsequent use of this understanding to implement highly

reliable logic gates that work in the presence of noise. Specifically, we identify the various

regimes of behaviours that arise when bistable systems interact with noise and use this

understanding to construct logic gates and identify the parameter ranges where reliable

operation is achieved.

In the first part of this thesis, we explore the behaviour of two coupled bistable

systems that are subject to noises from two independent uncorrelated noise sources. The

influence of the uncorrelated noise sources hinder the onset of synchronization, whereas

the coupling between the two systems aids it. The noise in the two systems promote the

random escapes from the locally stable states, while the coupling between the systems

pulls them towards the same wells. This interaction of mutually opposing trends may

give rise to counter intuitive behaviours in such systems. Thus the central question we

raise is the following: When do the random hopping events induced by noise, become

synchronous in coupled bistable systems? To answer this question we study a variety of

bistable systems subject to different kinds of noises over an entire range of coupling and

noise strengths.

We observe that depending on the coupling and noise strength four different regimes

of behaviours emerge: (a) no synchrony and no hopping, (b) unsynchronized hopping, (c)

synchronized hopping and (d) synchrony without hopping. We quantify these qualitative

behaviours and characterize the newly observed phenomenon of synchronized random

hopping, using the two measures synchronization error and probability of hopping. We

identify that the phenomenon of synchronized hopping is non-trivial as the dependence

of both synchronization error and hopping probability is non-monotonic with respect to

coupling and noise strengths. We demarcate these different regimes of behaviour in a

parameter space of coupling and noise strengths by introducing thresholds on the two

measures to quantify reasonable synchrony and sufficiently frequent switching.

In order to establish the generality of these results we study same results in a bistable

synthetic gene network model and a piece-wise linear bistable circuit model. We also

investigate the behaviour of the above system in the presence of uncorrelated uniform

noises instead of Gaussian noises. In all these cases we observe the results are completely

consistent with the main observations. To establish the real world prevalence of the

phenomenon we also construct and couple two of the piece-wise linear circuits mentioned
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above. We clearly observe the four different regimes of behaviour in the oscilloscope

traces of state variables of the circuit. Thus we study, characterize and experimentally

verify the four behavioural regimes including synchronized random hopping that arise in

coupled bistable systems that are subject to uncorrelated noises.

The understanding of coupled bistable systems subject to uncorrelated noises lead to

the question of using such systems as a natural progression from single bistable elements

to perform Logical Stochastic Resonance (LSR). The clear advantage of such a system

being employed in the generation of reliable logic is that the two inputs can be fed to the

two bistable subsystems in completely different noise environments. Thus the second part

of this thesis demonstrates the use of coupled bistable systems to produce reliable logic

operations in spite of the presence of two uncorrelated noise floors in the two subsystems.

Logical Stochastic Resonance (LSR) is a phenomenon that has been demonstrated

in previous works, where a single bistable system produces reliable logic outputs when

driven by a sum of the two input signals in the presence of a moderate noise floor. In this

work, we go beyond a single bistable system and demonstrate that when we have two

coupled bistable sub-systems each individually driven by an input signal, the coupled

system yields outputs that can be mapped to specific 2-input logic gate operations in

a robust manner, in an optimal window of noise strength. It is to be noted here that

the individual signals are fed separately into each subsystem rather than being added as

in the previous implementations of LSR. The collective response of the system due to

coupling, in the presence of the noise floor leads to reliable logic operations. We term

this phenomena coupling induced Logical Stochastic Resonance (cLSR).

We simulate the stochastic differential equations governing the above system using

the Euler-Maruyama method. We observe that consistent logic operation is obtained

neither at low nor high noise strengths but only in a moderate window in between. It

is important to note that the robust operation of such a system is possible only if the

coupling and noise strengths in the system are tuned to be in the ’synchrony without

hopping’ regime from the first part of this thesis. If either of the two subsystems begin

to hop as in the other regimes demonstrated in part one, consistent logic wouldn’t be

possible. This highlights the crucial bearing that the study in part one has on the useful

practical implementation in this work.

To clearly quantify this range of coupling and noise strengths where robust logic

outputs are obtained we plot the probability of reliable logic versus noise strengths for

various values of coupling constants. This provides the exact window of noise where ro-
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bust operations occur. We see broad window of noise strengths where this probability

approaches 1, thus demonstrating the reliability of this method under varying noise con-

ditions. Moreover, we see larger coupling yields larger windows of consistent operation,

underscoring the crucial importance of coupling in this phenomenon. Additionally, we

show the system can effectively switch the logic response by adjusting a bias parameter.

Thus the bias acts as a morphing control to robustly implement different logic gates using

the same physical system.

We go further and build a proof of principle physical implementation of the above sys-

tem using two bistable piece-wise linear circuits coupled via a resistor. We see through the

oscilloscope traces of the system output that reliable logic operations are indeed obtained

in the moderate noise window. Thus in the second part of this thesis we demonstrate

how the constructive interplay between noise-floor, coupling and nonlinearlity can be

exploited to obtain extremely reliable logic gate output from coupled bistable systems.

In part three of this thesis, we demonstrate the implementation of a noise-aided logic

gate using LSR in a second order autonomous memristive circuit. Memristors are re-

sistors with memory which have been considered promising candidates to implement

neuromorphic computing architectures. In this work we construct, simulate and mea-

sure the reliability of operation of an LSR based logic gate in a memristive circuit. We

demonstrate that in an optimal window of noise the memristive circuit produces a very

reliable logic output. Further we show that due to the inherent symmetry in this system,

complementary logic outputs are obtained in parallel from the response of the second

state variable. We also show the output can be morphed into different logic functions by

a simple switch of the constant bias. Lastly, we investigate two coupled memristive cir-

cuits and demonstrate the occurrence of coupling induced Logical Stochastic Resonance

(cLSR) that was explored in the second part of this thesis. Thus we show an LSR based

memristive logic gate that could further expand the scope of memcomputing.

In conclusion, in this thesis we explore and quantify the behaviour of nonlinear bistable

systems interacting with noise and use the understanding to physically implement robust

noise-aided logic gates using both simple piece-wise linear elements and memristors which

will further the future forms of computing. So our results help propel the idea of noise-

aided design using richer dynamics of nonlinear systems.
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Chapter 1

Introduction

”Begin at the beginning...”

- Lewis Carroll, Alice in Wonderland.
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Everything changes with time.

Everything, from colliding galaxies to organized life, are all processes that evolve in time.

1.1 Dynamical Systems

Dynamics, is the study of this time evolution. To quantitatively study the changes

that constitute such evolution, we first describe the system we’re studying using a set

of variables that uniquely describe the current state X of the system, where X =

(x1, x2, ..., xn)T ∈ Rn, is an n-dimensional vector. This set of state variables uniquely

correspond to a point in an abstract state space (or phase space). The time evolution

of our system can then be seen as a trajectory in this state space. Such a space of state

variables and the rule for time evolution of those state variables, together constitute a

dynamical system.

1.1.1 Types of Dynamical Systems

A dynamical system is deterministic if there is a unique consequent state to every state

or stochastic if the consequent state is determined by a probability distribution of conse-

quent states. The time evolution of a dynamical system can happen in discrete time or

continuous time. A deterministic dynamical system with discrete time can be defined by

a map,

X1 = F (X0) (1.1)

where F is a set of functions that gives the set of state variables X1 arising from the

initial state X0 at the next time value. After arbitrary n-steps the map is given as,

Xn = Fn(X0) (1.2)

where Fn is the n-th iterate of the function F . This an be alternatively written as,

Xn = F (Xn−1) (1.3)

A deterministic system evolving in continuous time are given by flows. A smooth flow

can be differentiated through out the state space and hence the rules of time evolution

here can be represented as a set of first order differential equations. If X represents the
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state of the system, rules for time evolution are given by the vector equation,

Ẋ = F (X) (1.4)

where, Ẋ represents the time derivative of X. Expressed in terms of the constituent state

variables,

ẋ1 = F1(x1, x2, ..., xn)

ẋ2 = F2(x1, x2, ..., xn)

...

...

ẋn = Fn(x1, x2, ..., xn)

(1.5)

A dynamical system is said to be linear, only when, the relationship given in Eq. 1.4

can be written as,

Ẋ(t) = A ·X(t) (1.6)

where, A is a constant matrix, i.e. all the time derivatives of the state variables depend

simply on a linear combination of the state variables. Thus methods like normal modes,

fourier analysis, superposition arguments, etc., can be used effectively to solve complex

linear problems [1].

All other dynamical systems (which are not of the form given by Eq. 1.6) are nonlinear.

1.2 Nonlinear Dynamical Systems

Nonlinear dynamical systems are those in which the functions determining the time evo-

lution of the state variable are nonlinear. Thus, the various components of the system

cannot be separated in any sense and the principle of superposition fails in these systems.

Also, nonlinear dynamical systems rarely have closed form solutions and are mostly solved

using computational methods. Nonlinear systems, in different parameter regimes, exhibit

a wide variety of dynamic behavior like, equilibrium points, limit cycles and a sensitive

dependence to initial conditions - termed as chaos.

One simple example of a nonlinear system that exhibits all such behaviour is a Chua’s

circuit. The non-dimensional equations governing the evolution of a Chua’s circuit are

the following,
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Figure 1.1: Simulation of a Chua’s circuit equations given by Eqns. 1.7 and 1.8, depicting
a chaotic ”double-scroll” attractor. The parameter values used here are, α = 15.6,
β = 28.0, m0 = −0.714 and m1 = −1.143.

ẋ = α(y − x− g(x))

ẏ = x− y + z

ż = −βy

(1.7)

where, α and β are tunable parameters and g(x) is the simple piece-wise linear function

with three line segments. m0 is the slope of the two outer line segments and m1 is the

slope of the inner line segment. So g(x) takes the form,

g(x) = m0x+m0 −m1, if x < −1

= m1x, if − 1 ≤ x ≤ +1

= m0x−m0 +m1 if x > +1

(1.8)
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Figure 1.1 shows the simulation of a double scroll attractor obtained in the chaotic

regime of a Chua’s circuit.

1.2.1 Nonlinear Circuits

Even though the detailed dynamics of a nonlinear system can be obtained through nu-

merical simulations of the system. The computational power and time required may

be very large to explore large parameters spaces. An extremely useful tool to identify

and explore nonlinear phenomena within systems with more than one parameters, is an

analogue nonlinear circuit [2]. These circuits can be built to represent any nonlinear

system under consideration and may help explore behaviour in such systems with no

computational requirement. Nonlinear circuits are also a subject of study in their own

right as applications of nonlinear dynamics are being increasingly applied in current tech-

nology and rich dynamics available in nonlinear systems may provide different ways of

overcoming challenges in modern electronics.

In a general sense, a nonlinear circuit is an electronic circuit with one or more nonlin-

ear elements, i.e. circuit components whose characteristic curves are nonlinear. A simple

example of a nonlinear resistor is a Chua’s diode, whose characteristic curve is piecewise

linear. A more complex, but very important nonlinear circuit element with major current

technological relevance is a memristor, which will be discussed in detail in section 1.5.

The simplest autonomous chaotic circuit constructed using a Chua’s diode is the Chua’s

circuit. The schematic representaion of the Chua’s circuit is shown in figure 1.2. Fig-

ure 1.3 shows the wide range of dynamics that is seen in nonlinear systems, obtained

experimentally from the oscilloscope traces of a Chua’s circuit.

Electronic analogue simulations of nonlinear equations are of particular interest as

they can mimic the behaviour of any given dynamical system. The measurable quan-

tities of such an electronic circuit are designed to obey the same mathematical rules as

the governing equations. All basic mathematical operations that occur in a differential

equation such as summing, multiplication, sign inversion and integration can be achieved

by active networks involving operational amplifiers (or op-amp). Thus a network of these

elements can be used to experimentally simulate any mathematical equation. In this

thesis we show analogue electronic circuits (c.f. Figures 4.1 and 3.14) constructed for

certain governing equations (c.f. Equations 2.7 and 3.2). Experiments performed using

those analogues are used to confirm results obtained from numerical simulations.

5



Figure 1.2: The schematic of the Chua’s circuit. The component NR depicted here is
a nonlinear resistance called Chua’s diode, which has a piece-wise linear V-I character-
istic curve.(Source: https://commons.wikimedia.org/wiki/File:Chua%27s_circuit_
with_Chua_diode.svg)

Figure 1.3: Oscilloscope traces of the voltages across capacitor C1 and C2, obtained from
the circuit implementation of Chua’s circuit shown in Fig. 1.2. The images depict a
period doubling route to chaos with (top-left) a fixed point solution, (top-right) a period-
2 limit cycle, (bottom left) a period-4 limit cycle and (bottom right) chaotic double-scroll
attractor.
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It is important to note that we use electronic circuit implementation as a proof of

principle and test of robustness of a computational result, because all electronic im-

plementations are limited by the component tolerances. As the absolute values of the

components used (resistors, capacitors, diodes, etc.) and hence the intended parameter

values in the governing equation are subject to variation. Thus, when computational

results are reproduced in an electronic implementation, we infer that the results are ro-

bust to operational fluctuations and realizable in other experimental systems. For all

circuits described and implemented in this thesis, we have used resistors and diodes with

a tolerance rating of ±5% and capacitors with a tolerance rating of ±10%.

For the entirety of this thesis, all electronic circuit experiments presented, have been

performed using Agilent or Keysight 33522A, Function/Arbitrary Waveform Generator,

as a source for reliable signal generation and production of noise signals with specific

characteristics. Agilent or Keysight DSOX2012A oscilloscopes have been used to obtain

all measurements and waveform traces.

1.2.2 Bistable Systems

A class of nonlinear systems, the real world application of which is the prime focus of this

thesis, is the bistable system. A bistable system is a dynamical system which has two

equilibrium states that are stable for a given set of parameter values. A simple example of

a bistable mechanical device is an electrical switch, which can stay in either ON or OFF

position. The core idea involved in this thesis to use bistable systems as logic gates, also

relies on the mapping of the two stable equilibriums in a bistable system to the ON(1)

and OFF(0) states of digital signals.

One of the simplest bistable systems that has been used extensively in this thesis is

the following,

ẋ = f(x) = a(x− bx3) + c (1.9)

Here the term c represents a constant bias to the system. When the bias is zero the two

wells are symmetric. The bias term can be used to tilt the potential wells in one direction

or the other and hence to externally drive the bistable system. Figure 1.4 shows f(x)

and the potential surface (integral of f(x)) for specific a, b and c values (from [3]).

Bistable systems, have been crucial to our understanding of a wide range of phenom-
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Figure 1.4: The functional form f(x) (left) and the effective potential (right) are plotted
from Eq. 1.9 for parameter values a = 4, b = 5, c = 0 (red solid) and c = 0.5 (blue
dotted). (Figure used from [3]).

ena in various disciplines. For example, in electronic systems they’re used to encode

one bit of data, in biological systems to model decision making processes in a cell, in

chemical systems to study relaxation kinetics and non-equilibrium thermodynamics and

in mechanical systems to model multi-stable devices like rachet-and-pawl. The results

obtained in this thesis also has this wide scale of applicability across disciplines.

1.3 Noise and Nonlinearity

The influence of noise on nonlinear systems is an important area of active research as

every real system, physical to physiological, evolve in the presence of noisy driving forces.

Though noise in linear systems may simply have a blurring effect on the resulting dynam-

ics, interaction of dynamic noise (noisy driving forces) with nonlinear systems produce

effects which do not have a deterministic counterpart. For instance, noise can make

finding bifurcation points of nonlinear systems very difficult even for the simplest of bi-

furcations and may cause noise induced transitions [4]. Another direction of enquiry is,

can one use these counter-intuitive interactions between noise and nonlinearity for en-

gineering applications. One such interesting outcome of this interplay is a phenomenon

called stochastic resonance which has found wide applications and interest across disci-

plines. It occurs in bistable systems where noise facilitates the transition between the

two stable states even when driven by a sub-threshold signal [5].

While modelling dynamical systems with noise in them, it is important to note that
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there are different kinds of noise that can be found in real systems. Based on the frequency

distribution and the source, noises have been classified into several kinds. Thermal noise

that is found in any real system with temperatures above absolute zero, shot noise in

electronic devices when charge carriers traverse a gap, 1/f noise or flicker noise widely

found across real systems, the exact source of which is still debated, and more. For the

purpose of this thesis we mostly concentrate on Gaussian white noise. This is because

most work covered in this thesis is focused on modelling and utilizing the natural noise

found in electronic circuits. Thermal noise of an ideal resistor is usually modelled as white

noise, i.e. the power spectral density is constant across the frequency spectrum and when

the bandwidth is finite, white noise has an almost Gaussian amplitude distribution.

1.4 Logical Stochastic Resonance

Stochastic resonance (SR), was the counter intuitive phenomenon where dynamic noise

in a bistable system amplifies the subthreshold signal driving the system, thus causing

a sharp increase in the signal-to-noise ratio (SNR) when the noise is within an optimal

window of noise strengths [5]. Going beyond just detection of subthreshold signals, in

2009, Murali et al. demonstrated that when such a bistable system is driven by the

sum of two input signals (encoded in two square waves), in the presence of a constant

bias, the output response of the bistable system reliably mapped to 2-input logic. This

robustly occurred in a wide window of moderate noise strength [6, 7]. This phenomenon

was named Logical Stochastic Resonance (LSR) [8].

One of the main focuses of this thesis is the extension of this LSR to coupled bistable

systems. Hence, let’s look at this phenomenon in further detail. The general model

considered is the following,

ẋ = F (x) +Dη(t) + I (1.10)

here, F(x) can be any function that gives rise to a bistable potential. η is zero mean

Gaussian noise with unit variance, I is a low amplitude signal which is the sum of two

aperiodic pulses, I1 +I2. The schematic representation of the system is shown in Fig. 1.5.

This scheme was experimentally implemented in [7] and the experimental circuit results

are shown in Fig. 1.6. It is clear from the figure that Logical Stochastic Resonance (LSR)

enables the implementation of robust flexible logic gates using the interplay of noise and

nonlinearity.

Since its implementation in 2009, LSR has garnered wide-ranging research interest
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Figure 1.5: Schematic of Logical Stochastic Resonance showing system being driven by
input signal I = I1 + I2 + b and noise. Output of the system x(t) reliably maps to two
input logic NOR/NAND depending on the value of the bias strength b. (Figure used
from [7]).

Figure 1.6: Experimental circuit results. From top to bottom: panels 1 and 2 show
streams of inputs I1 and I2, which take value 0.2 V when logic input is 0 and value 0.2 V
when logic input is 1. Panel 3 shows the constant bias signal varying from 0.2V (0–5 ms)
to −0.2V (5–10 ms). Panels 4, 5, and 6 show the waveforms obtained from the circuit
implementation of LSR under noise levels D: (i) 0.4 V, (ii) 1 V, and (iii) 2 V. When the
noise levels is in an optimal band, D=1 V, the desired NOR logic output (when b=0.2
V) or NAND logic output (when b=0.2 V), while for small or larger noise, one does not
obtain the necessary response. (Figure used from [7]).
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Figure 1.7: Conceptual symmetries of resistor, capacitor, inductor and memristor. Using
this symmetry arguement L. O. Chua proposed the exixtence of a memristor linking
charge and flux in a ciruit. (Source: https://commons.wikimedia.org/wiki/File:

Two-terminal_non-linear_circuit_elements.svg)

[9–18]. Over the years it has been successfully realized in systems ranging from electronic

circuits [3, 7, 19] and coulomb-coupled quantum dots [20] to synthetic genetic networks

[18,21–26], optical systems [27–29] and nanomechanical devices [30].

In Chapter 2 and 3 of this thesis, we shall focus on what are the challenges that

need to be dealt with and improvements in terms of implementation can be obtained

by introducing coupling in such systems. How the interplay of noise, nonlinearity and

coupling could give rise to a new paradigm of coupled bistable elements performing logic

operations.

1.5 Memristors

Finally, to make apparent the importance and the current relevance of the work done

in chapter 4 of this thesis, we introduce the memristor, a nonlinear circuit element with

peculiar properties that was envisioned by L. O. Chua in 1971. This has sparked interests

again after 40 years when it was physically realized for the first time by HP labs in 2008.
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In 1971, Leon O. Chua extrapolated the conceptual symmetry between the nonlinear

resistor, nonlinear capacitor and nonlinear inductor (see Fig. 1.7). He argued the possi-

bility a fourth passive fundamental circuit element called memristor (a portmanreau of

memory resistor) linking flux and charge [31]. This passive two terminal circuit element

maintains a functional relationship between time integral of current (charge) and time

integral of voltage (flux). This idea has been further expanded to include any class of

two terminal devices called memristive systems by Di Ventra et al. in [32]. The general

form of an n-th order voltage controlled memristive system is given by the relations,

I(t) =G(x, V, t)V (t)

(̇x) =f(x, V, t)
(1.11)

where, x denotes the n state variables that describe the internal state of the system, V

and I are the current and voltage across the device and G denotes the memductance of

the device.

There’s renewed interest and active research in the area since Hewlett Packard (HP)

labs published their serendipitous discovery of the missing memristor, implemented using

a thin film of titanium oxide [33]. Memristors are now seen as prime candidates for

neuromorphic computing [34]. Thus, the relevance of the memristor emerges from the fact

that passive elements that store information will represent a paradigm shift in electronics.

Given that the values stored are actually continuous in nature, this may help analogue

computation take over its digital counterpart. Our efforts in chapter 4 of this thesis are

towards using this passive memory element to construct a very simple autonomous circuit

that can robustly perform logic operations, in the presence of noise.

1.6 Outline of the Thesis

Now that the concepts necessary to fully understand the contents of this thesis have been

introduced, we present a broad overview of this thesis. The core work presented in this

thesis is divided among three chapters.

In chapter 2 of this thesis we study in detail the range of emergent behaviors that

arise when, two simple bistable systems with independent uncorrelated Gaussian noise

floors, are diffusively coupled to one another. We show that four qualitative regimes of

behaviours emerge in such cases and those regimes of behavior are quantitatively char-

acterized using the two simple, potent measures of synchronization error and probability

12



of hopping (between the two stable wells). We note the presence of one regime where the

random hopping event induces by noise in the two system synchronize because of strong

coupling in the system. We identify this behaviour as synchronized hopping. We use the

quantitative measures to demarcate the regimes of behaviour in a parameter space of

coupling strength and noise strength, thereby identifying the exact region of parameter

space where this synchronized hopping occurs. We establish prevalence of our results

for the case of uniform noise floors. Further we exhibit the generality of our result by

demonstrating the same results in two other well known bistable systems. Finally we

establish the robustness of our findings by experimentally coupling two bistable circuits

and demonstrating all the four regimes of behaviours.

In chapter 3 of this thesis, we use our understanding of coupled noisy bistable systems

to implement an alternate way of performing Logical Stochastic Resonance using coupled

systems. The major difference here, is that the two streams of input are separately fed

into different bistable subsystems and the logical operation occurs purely due to coupling.

Hence, we show that this is a new paradigm in noise aided logic. We show that, when two

coupled bistable subsystems are each driven by a sub-threshold signal, in the presence

of moderate noise, the output of both subsystems robustly map to 2-input logic of the

input streams. Also, the bias of the two bistable systems can act as a morphing control to

change between different possible logic gates. We call this phenomenon coupling induced

Logical Stochastic Resonance. We further demonstrate this phenomena experimentally

and establish the real world prevalence of this possibility.

In chapter 4 we suggest a new possibility for the real world implementation of both

LSR and cLSR. We demonstrate that robust noise aided logic using both methods can

be obtained using a simple autonomous memristive circuit. We demonstrate this result

both using numerical simulations of the circuit equation and proof of principle circuit

implementations of both these cases. We find that extremely reliable logic operations are

achieved in wide windows of moderate noise for both cases. Further we use a rigorous

quantitative measure to demarcate the regions of the complete parameter space where

reliable logic operations are achieved. Hence, we have opened up a brand new use case

for memristors in computation.

Thus, in this thesis we will present in detail the three sections of work, all of which

further our understanding of the interaction between noise and nonlinearity and also

present possible use cases of this interaction in noise aided and dynamics based design.
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Chapter 2

Synchronized Hopping in Coupled

Bistable Systems

Adapted from the work published in [35] :

Manaoj Aravind V, K. Murali and Sudeshna Sinha,

”Synchronized Hopping Induced by Interplay of Coupling and Noise”,

Lacarbonara W., Balachandran B., Ma J., Tenreiro Machado J., Stepan G. (eds)

Nonlinear Dynamics and Control pp 325-334, Springer, Cham (2020)
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2.1 Introduction

Synchronization has emerged as a very significant phenomenon in fields as diverse as

electronic circuits and biological systems. The key element in synchronization is the

coupling. It has been observed in a large class of systems that, increasing the coupling

strength induces the onset of synchronization [36].

In another direction, the phenomenon of escape from locally stable states induced

by noise has seen long-standing attention. It has crucial bearing on fields ranging from

chemical kinetics to diffusion in solids.

The central focus of this work is to combine these two important threads: first, noise

induces hopping in bi-stable systems and the second is the onset of synchronization in the

presence of sufficient coupling. The question we investigate is the following: when does

the random hopping events induced by noise become synchronous in coupled bi-stable

systems? Importantly, the systems here are subject to independent random influences.

This uncorrelated noise is expected to hinder synchronization, as it does not provide a

common drive to the sub-systems. On the other hand, noise will aid frequent switches

between the locally stable wells. A balance of these two opposing trends may yield

synchronized switching of states. The aim of this work is to explore this possibility in a

range of bi-stable systems, under different kinds of noise.

Note that the phenomenon we are exploring is distinct from the phenomenon of

stochastic resonance, and also distinct from the phenomenon of synchronization aided

by common noise. In stochastic resonance, the effect of increasing noise on a bi-stable

system has revealed counter-intuitive phenomena: it has been found that noise can en-

hance the response of the bi-stable system to weak sub-threshold signals, periodic driving

or wide-band input signals. This phenomenon, known as stochastic resonance [5], has

been demonstrated in many natural and engineered systems, and has also been utilized

to increase reliability of computations [6] [37]. However, here we have no external signal

driving the coupled bi-stable systems, and so if synchronized hopping emerges in our

system, its origin cannot be understood in terms of an external drive.

The phenomenon here is also distinct from noise-aided synchronization, which arises in

systems experiencing common noise or the parameters of the system experience common

random fluctuations [38]. Here on the other hand the noise on the two sub-systems is

uncorrelated, and is therefore expected to inhibit synchronization.
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2.2 Model

Consider a system of coupled bi-stable systems whose dynamical equations have the

general form:

ẋ1 = F (x1) + c(x2 − x1) +D η1(t) (2.1)

ẋ2 = F (x2) + c(x1 − x2) +D η2(t)

where F is a nonlinear function that gives rise to a bi-stable potential, and the coupling

is linear and bidirectional.

We consider the additive noise η1(t) and η2(t) in the two sub-systems to be independent

and uncorrelated, and we have considered both (a) uniform noise drawn from a uniform

distribution in the range [−1 : 1], and (b) zero mean Gaussian noise with variance 1, with

the parameter D indicating the noise strength, with D ∈ [0 : 1].

We start with the illustrative example where F in Eq. 1 is a simple nonlinear function

of the form

F (xi) = a1(xi − a2x3i ) (2.2)

Specifically, with no loss of generality, we choose the values a1 = 4 and a2 = 5. This

system gives rise to two stable fixed points x+ > 0 and x− < 0, separated by an unstable

fixed point (the “barrier”) at zero. We denote the state characterized by positive-valued

state variables as the “positive well”, and the state characterized by negative-valued state

variables as the “negative well”.

We focus on two features of the dynamical patterns of the state variables x and y of

the two sub-systems. First is the propensity of the sub-systems to jump between the two

wells, i.e. the probability of hopping. The second feature of significance is synchrony.

Note that synchrony here does not imply complete synchronization, where x1(t) = x2(t)

for all t after transient time. Rather it implies that the two sub-systems are confined

to the same well, with both x1 and x2 being in the neighbourhood of the same fixed

point, i.e both sub-systems are in the basin of attraction of x+, or both are in the basin

of x−. The combination of these two features dictates the different classes of dynamical

patterns.
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Our central observation in this system is the following:

Depending on the noise strength and coupling strength four behavioural regimes

emerge.

(i) The first regime occurs when both coupling and noise are low, and is characterized

by no hops at all during the time of observation (which was very long) and additionally

there was no synchrony either.

(ii) The second type of behaviour arises for low coupling strengths and high noise

strengths, and is characterized by the sub-systems switching between the wells. However

this hopping is not synchronized. So when one sub-system is in the positive well, the

other subsystem may be in the negative well.

(iii) Thirdly, for strong coupling and weak noise one finds that the two sub-systems

are synchronized and remain confined to the same well during the entirety of the long

run-time, i.e. there is synchrony without hopping.

(iv) Lastly, for a specific range of noise strength D and coupling constant c, the system

exhibits random hopping between the two wells in a synchronous manner. That is, the

two sub-systems jump together from one well to another. We label this special dynamical

pattern as synchronized hopping.

Fig 2.1 displays these different behaviors, observed in different ranges of coupling c

and noise strength D. In this work we explore the the range c ∈ [0, 6] and D ∈ [0, 1].

Note that an early result on coupled bistable systems driven by independent noise

sources [39] had indicated that the stochastic processes in the subsystems become coherent

when the strength of coupling achieves a critical value (namely, the dynamical pattern iv).

However, the full implications of the interplay of coupling strength and noise strength on

the emergence of synchronized hopping was not explored. Also, the dynamical patterns

in the regions outside synchronized hopping, in the extended parameter space of coupling

strength and noise strength, were not obtained. In this work we will address these open

questions. We will also obtain an understanding of the range of coupling, as well the

range of noise, that yields synchronized hopping, and the relationship between them.

This will allow us to judge the prevalence of the phenomena. Lastly, we will verify our

results in electronic circuit experiments.
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Figure 2.1: Timeseries of the two state variables x1(blue) and x2(green) of the two sub-
systems, for four illustrative values of noise stength D and coupling strength c, displaying
different dynamical patterns: (a) no synchronization and no hopping, when D = 0.2,
c = 0.1 (b) unsynchronized hopping, when D = 0.3, c = 0.2 (c) synchronized hopping,
when D = 0.32, c = 1 (d) synchrony without hopping, when D = 0.1, c = 1.
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2.3 Characterization

Now we will attempt to quantify the qualitative behaviour observed above, using a mea-

sure analogous to synchronization error, along with an estimate of the probability of

hopping. The aim here was to precisely characterize the observed synchronized hopping

in the system by finding the window of coupling strengths and noise strengths where

there is a concurrence of reasonable synchrony and sufficiently frequent switching.

First we introduce a variant of synchronization error Z, defined as the probability

of the states of the two systems to be in different wells. This is estimated by following

the states of the two systems over long times, and finding the fraction of time the two

systems reside in different wells.

When Z = 0, the states of the two systems are always in the basin of attraction of the

same fixed point, namely the states of the systems are on the same side of the barrier,

i.e. both states are in the “positive well” or both in the “negative well”. Note that

our measure of synchronization error is not the usual measure reflecting deviation from

complete synchronization. Rather it reflects the degree to which the two multi-stable

systems reside in the same well. Note that when the systems are in the same well (i.e.

either both are positive, or both negative) the sign of the product of the state variables of

the two sub-systems x1 and x2 at a given instant of time is positive. On the other hand,

if the systems are in different wells, the sign of the product of the state variables of the

two sub-systems at a given instant of time is negative. So our synchronization error Z is

easily defined mathematically as,

Z =
1

N

N∑
i=1

H(x1[i]× x2[i]) (2.3)

This quantity then serves as an order parameter that can reflect the transition from the

case where both systems are in the same well at all times, to the case where they inhabit

different wells for significant amounts of time.

The second important quantity is the probability of hopping h, which is estimated

through the number of jumps between the two wells, in either system, over a prescribed

very long (though necessarily finite) period of time. The key feature to note when the

systems switch between positive and negative wells is that the sign of the product of the

state variables just before the hop and just after the hop is negative. So the hopping
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probability can be estimated readily by:

h =
1

N − 1

N∑
i=1

H(x1[i]× x1[i− 1]) (2.4)

where N is the total number of timesteps in the observed timeseries, with N being very

large, and H given as:

H(xi) =

{
1 xi < 0

0 xi ≥ 0

Both Z and h are averaged over a large sample of initial conditions, chosen randomly

from the interval [−1, 1].

Fig. 2.2a-b shows the dependence of the synchronization error on coupling and noise

strengths. It is clear that for low coupling and low noise, the states of the sub-systems

are almost uncorrelated. Since the synchronization order parameter is averaged over

a sample of initial conditions uniformly distributed across the two wells, the two sub-

systems maybe in the same well, or in different wells, with equal probability. So Z is

close to 0.5 when c and D are very small. As coupling strength increases (cf. Fig. 2.2a),

synchronization between the sub-systems is induced. It is also evident from Fig. 2.2b

that for high coupling strengths the synchronization error increases monotonically after

a minimum noise threshold. However, interestingly, for low coupling strengths the degree

of synchronization varies non-monotonically with noise strength. For low noise strengths

the system is largely unsynchronized, after which there is a window of moderate noise

where the synchronization error is very low, i.e. we observe noise induced synchronization

in a window of intermediate noise strength. For noise strengths beyond this window the

synchronization error again rises, as is intuitively expected.

The second measure, the probability of switches, simply reflects how often the sub-

systems switch between the two wells. This gives a measure of the average amount of

time spent in a particular well, under varying D and c. As clearly evident from Figs. 2.4,

2.5, 2.6 and 2.7 that the hopping probability varies non-monotonically with increasing

coupling strengths. That is, there exists an optimal value of coupling strength c for which

the probability of switches in maximised. The value of the optimal coupling strength is

dependent on noise strength D. This can be rationalized by noting that coupling has

two distinct effects. It can aid hopping as a coupled system can be dragged out of a

well due to coupling to a sub-system that is pushed to another well under a stochastic

kick, thereby increasing its probability to hop. However, when coupling is larger than

a critical amount it can inhibit hopping, as the pull of coupling prevents a sub-system
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Figure 2.2: Dependence of the Synchronization Error Z on (top) coupling strength c, and
(bottom) noise strength D.
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from escaping to the other well under a stochastic push. At the cross-over of these two

contrasting behaviour lies the critical value of coupling where the probability of hopping

is most favoured. It is also expected then that the balance of the push due to noise in

comparison with the pull due to coupling determines the critical coupling strength where

the probability of hopping is maximised. Hence the dependence of the peak in Figs 2.5-

2.7 on noise strength. It is also expected that the optimal coupling should increase with

noise strength as stronger coupling is needed to counter the larger stochastic kicks. This

is indeed the observed trend in Figs 2.5- 2.7.

The switching is significant only after a minimum noise threshold as observed in

Fig. 2.3. This is expected, since a minimum strength of noise is needed in order to drive

a system to cross the barrier to the other well. So there is a monotonous increase in the

probability of hopping with increasing noise strength D. The threshold of noise strength

D, after which synchronization error Z and probability of hopping assume significant

finite values is the same (within statistical error)(cf. Fig. 2.8).

Figure 2.3: Dependance of probability of hopping h on the noise strength D for various
values of coupling strengths c.

So, for sufficiently large noise strengths, the noise can push the sub-systems to hop
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Figure 2.4: Dependence of the probability of hopping on coupling constant c, for noise
strengths D = 0.2.

Figure 2.5: Dependence of the probability of hopping on coupling constant c, for noise
strengths D = 0.3.
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Figure 2.6: Dependence of the probability of hopping on coupling constant c, for noise
strengths D = 0.5.

Figure 2.7: Dependence of the probability of hopping on coupling constant c, for noise
strengths D = 0.7.
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Figure 2.8: Comparison of minimum thresholds of noise strength D after which synchro-
nization error Z and probability of hopping h assume finite values. The threshold for
both is at (D ≈ 0.28).
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between the two wells. At these high noise strengths, if the coupling is also sufficiently

high, the sub-systems switch between wells in synchrony: namely, we observe synchro-

nized random hops. Such a phenomena will be seen only if the system lies in the window

of noise where synchronization error is small and the probability of hopping is sufficiently

large, provided these two windows have a reasonable overlap. Further the system has

to simultaneously lie in the window of coupling strengths that is sufficiently high to in-

duce approximate synchronization between the sub-systems, and the window of coupling

where the probability of hopping is sufficiently large. Again if this intersection of param-

eter regions is a null set, we will not obtain the synchronized hopping phenomena. Note

that the synchronized hopping phenomena is also non-trivial as the dependence of both

synchronization and the hopping probability is non-monotonic with respect to coupling

and noise strength. In general, the synchronized hopping phase lies on the boundary

of the the dynamical phase of unsynchronized hopping and synchrony with (almost) no

hopping.

To quantitatively demarcate the different behaviours in parameter space, we first in-

troduce a threshold for both synchrony and hopping probability. We consider the follow-

ing: if synchronization error Z < 0.01 then the two systems are considered synchronised,

and if the probability of switching h > 5× 10−5 then we consider the system to be “hop-

ping”. Using these conditions the various behaviours in parameter space are shown in

Fig. 2.9(c). We see synchronized hopping occurs in a somewhat narrow region of param-

eter space (marked by orange). The exact boundaries of the region is dependent of the

synchronization and hopping probability threshold chosen to describe the phase. How-

ever, qualitatively the phenomena emerges independent of the exact thresholds employed

in the definition of the dynamical phase.

We have checked the generality of the observations above for the case of uniformly

distributed noise. The synchronized hopping again occurs in a region of moderate noise

and sufficiently high coupling, as evident from the results displayed in Fig. 2.10.

2.4 Generality of the phenomenon

To firmly establish the robustness, generality and wide prevalence of our observations,

we study the dynamics of two other bi-stable systems. First we consider a single gene

synthetic genetic network model developed in [40]. It describes the regulation of the

operator region of a λ phage, whose promoter region consists of three operator sites.
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(a) Synchronization error Z (b) Frequency of hopping h

(c) Dynamical phases

Figure 2.9: (a) Dependence of the Synchronization Error Z on coupling strength c and
noise strengthD. (b) Dependence of the Probability of hopping h on the coupling strength
c and noise strength D. (c) Different dynamical behaviour in the parameter space of
coupling strength and noise strength. The colors indicate the following: BLACK - No
synchrony, and extremely low probability of hopping; RED - No synchrony, with rea-
sonable probability of hopping; ORANGE - Synchronized hopping, namely where there
is reasonable synchronization as well as reasonable probability of hopping; WHITE -
Synchronized sub-systems with extremely low probability of hopping.
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(a) Synchronization Error Z (b) Probability of Hopping h

(c) Dynamical Phases

Figure 2.10: Characterization of system behaviour under uniform noise in the parameter
space of noise strength D and coupling strength c. (a) Dependence of the Synchronization
Error Z on coupling strength c and noise strength D. (b) Dependence of the Probability
of hopping h on the coupling strength c and noise strength D. (c) Different dynamical
behaviour in the parameter space of coupling strength and noise strength. The colors
scheme is the same as indicated in Fig 2.9(c).
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With suitable rescaling and considering the total concentration of DNA promoter sites

to be constant, the reactions describing this network attain the form,

ẋ =
m(1 + x2 + ασ1x

4)

1 + x2 + σ1x4 + σ1σ2x6
= F (x) (2.5)

where, x is the concentration of the repressor. σ1 = 2, σ2 = 0.08 and α = 11 for the

operator region of the λ phage and number of plasmids m = 1.

This biological model exhibits bi-stability and given that biological systems are in-

trinsically noisy, it is of considerable interest to see if synchronized hopping emerges here

as well.

We further investigate another coupled system, relevant for electronic circuits (Eq. 2.7).

It is clearly evident from Figs. 2.11-2.12, that our results hold for these bi-stable systems

as well. This suggests that the phenomenon of synchronized hopping is quite general and

occurs whenever coupling is sufficiently high and the noise is in a moderate window.

2.5 Experimental Implementation

In order to establish the robustness of the observed phenomena we constructed two simple

bistable piecewise linear circuits and coupled them via a resistor. Fig. 2.13 shows the

schematic representation of the constructed circuit. The non-dimensionalised equation

governing the circuit is as follows,

ẋ1 = F (x1) + c(x2 − x1) +D η1(t) (2.6)

ẋ2 = F (x2) + c(x1 − x2) +D η2(t)

where F is a piecewise linear function given by,

F (xi) =


−(xi + 1) xi < −0.5

xi −0.5 ≤ xi ≤ 0.5

−(xi − 1) xi > 0.5

The time trails of the two capacitor voltages for various values coupling and noise

strength are also shown in Fig. 2.14. The four dynamical regimes of behavior are clearly

evident, thus establishing the wide real world prevalence of the phenomenon.
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(a) Synchronization Error Z (b) Probability of Hopping h

(c) Dynamical Phases

Figure 2.11: Characterization of the synthetic genetic network model given by Eq. 2.5 in
the parameter space of noise strength D and coupling strength c. (a) Dependence of the
Synchronization Error Z on coupling strength c and noise strength D. (b) Dependence
of the Probability of hopping h on the coupling strength c and noise strength D. (c)
Different dynamical behaviour in the parameter space of coupling strength and noise
strength. The colors scheme is the same as indicated in Fig 2.9(c).
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(a) Synchronization Error Z (b) Probability of Hopping h

(c) Dynamical Phases

Figure 2.12: Characterization of the piece-wise linear circuit model given by Eq. 2.7 in
the parameter space of noise strength D and coupling strength c. (a) Dependence of the
Synchronization Error Z on coupling strength c and noise strength D. (b) Dependence
of the Probability of hopping h on the coupling strength c and noise strength D. (c)
Different dynamical behaviour in the parameter space of coupling strength and noise
strength. The colors scheme is the same as indicated in Fig 2.9(c).
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Figure 2.13: Schematic representation of the circuit. Here, resistances R1, R5 = 70Ω, R2,
R3, R4, R6, R7, R8 = 10kΩ and capacitances C1, C2 = 470µF.

2.6 Conclusions

In summary, we explored the behavior of coupled bistable systems subject to noise from

two independent noise sources, over a range of coupling and noise strengths. We found

that the interplay of coupling and noise lead to the emergence of four behavioral regimes:

no synchrony and no hopping; unsynchronized hopping; synchronized hopping; synchrony

without hopping. We demonstrated the occurrence of this phenomenon in a variety

of bistable systems, in the presence of both uniform and Gaussian noise. Further, we

experimentally verified the different regimes of behaviour in coupled bistable electronic

circuits, thus establishing its robustness. Different theoretical approaches to analyze

the phenomena is an open problem. Information theoretic measures to characterize the

observed phenomena and solving the relevant Fokker-Plank equations [41] would be useful

directions for future work.
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(a) No synchrony and no hopping (b) Unsynchronized hopping

(c) Syncronized hopping (d) Synchrony without hopping

Figure 2.14: Experimental observation of the four different behavioural patterns, in-
cluding synchronized hopping, for different values of coupling resistance Rc and noise
amplitude D. (a) Rc = 1kΩ, D = 450mV (b) Rc = 9.15kΩ, D = 950mV (c) Rc = 180Ω,
D = 1.30V (d) Rc = 180Ω, D = 700mV .
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Chapter 3

Coupling induced Logical Stochastic

Resonance

Adapted from the work published in [37] :

Manaoj Aravind V, K. Murali and Sudeshna Sinha,

Physics Letters A, 382(24), 1581-1585, 2018.

35



3.1 Introduction

As discussed in section 1.4 a single bistable system, when driven by the sum of two

external signals, can consistently work as a logic gate in a window of moderate noise. This

phenomenon, termed Logical Stochastic Resonance, has drawn wide research interest.

In this chapter, we will go beyond a single bistable system, and demonstrate the

following result: when we have two coupled bistable sub-systems, with each driven sep-

arately by an input signal, the coupled system yields outputs that can be mapped to

specific 2-input logic gate operations in a robust manner, in an optimal window of noise.

So the interplay of coupling and noise allows the system to operate as flexible logic gates.

Importantly, the two external input signals are not added into a single input signal to

drive the bistable system, as in previous work on Logical Stochastic Resonance. Rather

they are given separately to each sub-system, without necessitating addition of signals.

The collective response of the system, due to the coupling, in the presence of a noise

floor, maps consistently to that of a logic operation. We term this phenomenon coupling

induced Logical Stochastic Resonance.

3.2 Model

We first test our idea through numerical simulations of a representative system comprised

of two first order sub-systems, which are coupled linearly and bidirectionally, given by

the following equations,

ẋ = a1(x− a2x3) + b+ c(y − x) + I1 +D η1(t),

ẏ = a1(y − a2y3) + b+ c(x− y) + I2 +D η2(t). (3.1)

Specifically, we consider parameter values a1 = 4 and a2 = 5, where each sub-system is

bistable with two potential wells at x+ > 0 and x− < 0. Here c is the coupling strength,

b is a bias provided to both the sub-systems, and η1(t) and η2(t) are additive zero mean

Gaussian noise with variance 1 and noise strength D. The external drive I1 and I2 are

low-amplitude input signals encoding the two binary inputs. In particular, we consider

(with no loss of generality) logic input 0 to be encoded by −0.8 and logic input 1 to be

encoded by 0.8.

36



The output of the system is determined by the state of the system. If x or y is

negative, Logic Output is 0, and if x or y is positive, Logic Output is 1. Namely, when

the sub-system is in the positive well the output is taken to be 1, and when the system

is in the other well the output is 0.

Figure 3.1: Schematic representation of coupling induced Logical Stochastic Resonance

So I1 and I2 are two external uncorrelated signals that drive the two sub-systems, and

we need to have a consistent correspondence between these separate streams of inputs

and the output of the coupled system. Notice that coupling is crucial here, as a 2-input
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logic operation needs information from both inputs, and these are provided separately

to two bistable sub-systems. So the inherent coupling of the sub-systems is the only

mechanism by which the system can yield an emergent response that is in accordance

with the truth tables of fundamental 2-input logic operations [42], such as AND or OR.

3.3 Results

We first display results from numerical simulations of the stochastic differential equa-

tion describing the coupled bi-stable systems (cf. Eqn. 3.1), using the Euler-Maruyama

method. In Figs. 3.2 and 3.3 the states x and y of the two sub-systems are shown in blue

and orange respectively. As defined earlier, the state corresponds to the output. It is

clear that the state switches (from the positive well to the negative well, and vice versa)

in response to the inputs, in a manner that mirrors the input-output correspondence of

the fundamental AND and OR logic operations. Importantly, by changing the bias b, one

can switch the type of logic operation obtained, and so the system behaves as a flexible

logic gate. For instance, when bias is negative the coupled system behaves as an AND

gate and when the bias is positive it behaves as an OR gate. Also it is clear that the

states of the two sub-systems is largely synchronized. So one can map either x or y to

obtain a consistent logic output.

A quantitative measure of how reliably this system performs logical operations is ob-

tained by comparing the output of the system with the expected logical output, by driving

the system with a stream consisting of a large number of (I1 - I2) sets, namely the system

is subject to many different random combinations of I1 and I2 over time and its response

to this random stream of inputs is explored. The fraction of time where one obtains

the desired logic output successfully, gives a measure of the probability of obtaining that

specific logic, denoted as P(OR) or P(AND). When this measure approaches 1 we have

completely reliable logic outputs. Specifically, in this work we sample 500 randomly cho-

sen input sets. Further, we do not remove transience, and so this measure also reflects

latency in the system, and is therefore a stringent measure of the efficacy of the logic

operation.

In Figs. 3.4, 3.5, 3.6, 3.7, 3.8, 3.9, 3.10 and 3.11 we show the dependence of this

measure, P(AND) and P(OR), on noise strength D. It is clearly evident that there is

an optimal window of noise strength D, for which AND and OR logic is consistently

obtained, for negative bias and positive bias respectively. Note that larger coupling yields
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Figure 3.2: From top to bottom: panels 1 and 2 show streams of inputs I1 and I2, which
take value −0.8 when logic input is 0 and value 0.8 when logic input is 1. Panels 3, 4
and 5 show the waveforms of the state of the two sub systems, x(t) (blue) and y(t) (red),
obtained from numerical simulations of the system given in Eqn. 3.1 under noise levels
D = 0.1, D = 0.28, and D = 0.6, with coupling constant c = 4 and bias b = −0.28.
Clearly panel 4 (moderate noise) yields a consistent AND logic output. Note that
assigning output value 1 to x(t)/y(t) < 0, and output value 0 to x(t)/y(t) > 0, yields the
complementary logic NAND operations.
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Figure 3.3: From top to bottom: panels 1 and 2 show streams of inputs I1 and I2, which
take value −0.8 when logic input is 0 and value 0.8 when logic input is 1. Panels 3, 4
and 5 show the waveforms of the state of the two sub systems, x(t) (blue) and y(t) (red),
obtained from numerical simulations of the system given in Eqn. 3.1 under noise levels
D = 0.1, D = 0.28, and D = 0.6, with coupling constant c = 4 and bias b = +0.28.
Clearly panel 4 (moderate noise) yields a consistent OR logic output for bias b = +0.28.
Note that assigning output value 1 to x(t)/y(t) < 0, and output value 0 to x(t)/y(t) > 0,
yields the complementary NOR logic operation.
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larger windows of consistent operation, underscoring the crucial importance of coupling in

this phenomenon. Further we explicitly show the dependence of P(AND) and P(OR) on

coupling constant c in Figs. 3.12 and 3.13. It is clear that on increasing coupling strength

one observes a very sharp transition to consistent logic operations after a critical coupling

strength.

Figure 3.4: Dependence of the probability of obtaining AND logic operation, P(AND),
on noise strength D, for coupling strength c = 1 and bias b = −0.28.

The advantage this system has over the typical logical stochastic resonance set-ups is

that this eliminates the need to include an adder in the circuit, in order to sum up the

two input signals fed to the system. Here one logic input I1 drives the first system, and

the other logic input I2 drives the second system, as indicated in Eqn. 3.1. The output

from any one of the two coupled systems may be extracted to obtain the appropriate

logic output of the two inputs I1 and I2.
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Figure 3.5: Dependence of the probability of obtaining AND logic operation, P(AND),
on noise strength D, for coupling strength c = 2 and bias b = −0.28.
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Figure 3.6: Dependence of the probability of obtaining AND logic operation, P(AND),
on noise strength D, for coupling strength c = 3 and bias b = −0.28.
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Figure 3.7: Dependence of the probability of obtaining AND logic operation, P(AND),
on noise strength D, for coupling strength c = 5 and bias b = −0.28.

44



Figure 3.8: Dependence of the probability of obtaining OR logic operation, P(OR), on
noise strength D, for coupling strength c = 1 and bias b = −0.28.
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Figure 3.9: Dependence of the probability of obtaining OR logic operation, P(OR), on
noise strength D, for coupling strength c = 2 and bias b = −0.28.
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Figure 3.10: Dependence of the probability of obtaining OR logic operation, P(OR), on
noise strength D, for coupling strength c = 3 and bias b = −0.28.
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Figure 3.11: Dependence of the probability of obtaining OR logic operation, P(OR), on
noise strength D, for coupling strength c = 5 and bias b = −0.28.
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Figure 3.12: Dependence of probability of obtaining AND logic P(AND) on coupling
constant c, for noise strength D = 0.3 and bias b = −0.28
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Figure 3.13: Dependence of probability of obtaining OR logic P(OR) on coupling constant
c, for noise strength D = 0.3 and bias b = +0.28
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3.4 Experimental Realization

As proof of principle of this idea we now present the experimental realization of this

approach. In order to demonstrate the robustness and generality of this phenomenon

we implement the idea using a different bistable system. Specifically, we use a piecewise

linear bistable system. This system allows simple experimental realization with identical

individual units, owing to the minimal number of components required in its construction.

The non-dimensionalized form of the circuit equations is as follows:

ẋ = F (x) + b+ c(y − x) + I1 +D η1(t)

ẏ = F (y) + b+ c(x− y) + I2 +D η2(t) (3.2)

where F is a piecewise linear function given by,

F (k) =


−(k + 1) k < −0.5

k −0.5 ≤ k ≤ 0.5

−(k − 1) k > 0.5.

(3.3)

A schematic representation of the circuit is given in Fig. 3.14. The details of imple-

menting the nonlinearity F experimentally are discussed in reference [43]. The time traces

of this circuit, under varying noise, for positive and negative bias, are shown in Figs. 3.15

and 3.16. It is clearly evident that one obtains a consistent OR/NOR or AND/NAND

logic operation in an optimal window of moderate noise strengths, depending upon the

value of b in Eqn. 3.2. The system will behave either as logical OR or logical AND gate,

if we consider logic state 0 (OFF) to be the negative input voltage (output voltage) and

state 1 (ON) to be positive input voltage (output voltage). The same system can be

made to work as complementary logic gates throughout the circuit by simply using the

converse mapping of the negative input (output voltage) to be the ON state and positive

input(output) voltage as OFF state throughout the circuit.

So, unlike all the previous work on Logical Stochastic Resonance, we do not need to

first create a three-state signal of (I = I1 + I2) and then add it to the system for logic

extraction. In our method here the individual logic inputs I1 and I2 drive the individual

systems separately. The idea behind this approach is that we have individual systems,

each receiving independent logic inputs, and the individual systems co-operate and yield

a collective response that gives the desired logic output. In terms of circuitry, this reduces
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a resistor in each system in the input adder. However, the more significant thing is the

broad idea that individual systems receive only one logic input each, but due to coupling

they respond to give logic output that is a function of both inputs. This underlying idea

may potentially lead to alternate implementations of other operations and computational

tasks [44, 45].

3.5 Conclusions

In summary, we have shown how the constructive interplay between a noise-floor, cou-

pling and nonlinearity can be exploited to obtain extremely reliable logic gate output

from coupled bistable systems. Additionally, we have shown how the system can also

switch the logic response by adjusting a bias parameter, thus allowing one to effectively

manipulate the transfer characteristic of the system to optimize the logic response for a

given noise-floor. So one can use the constant bias to robustly implement different logic

truth tables. So one can use the constant bias in this coupled systems as a morphing

control to robustly implement different logic gates. Further, it is interesting to note that

the described coupled systems for logic gates are two dimensional in nature. Further-

more, due to the geometrical flexibility, it is possible to include additional systems (for

example in the form of star network) having their respective logic input signals, towards

the realization of multi-input logic gates without the need of separate adder circuits.
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Figure 3.14: Circuit diagram of the coupled system represented by Eqn. 3.2.The op-amp
used is µA741, capacitor value C1 = 470 nF, resistances R1, R2, R3, R4, R5 = 10 kΩ, R6

= 70 Ω and coupling resistance Rc = 173 Ω
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Figure 3.15: Progression of the response of either of capacitor voltages in the circuit of as
marked in Fig. 3.14, in the presence of white noise (increasing from the top). The panels
showing the capacitor voltage performing AND/NAND logic. The scale in the traces
are: 200mV/Div (Y-axis) and 5mS/Div (X-axis). For low noise strength (1.5 Vpp) the
output is not able to produce reliable transitions between the two states. As the noise is
increased, an optimal noise strength is reached (2.5 Vpp) in which the capacitor voltage
switches logically with the inputs, obtaining in this way a reliable logic gate. Further
increase of the noise strength (3.5 Vpp) leads to the occurrence of random switching
destroying the reliability of the logic gates. The bias voltage b is fixed as -150 mV. The
input logic signals levels are fixed as +400 mVpp (ON state) and -400 mVpp (OFF state).
Here, colors yellow and green correspond to the capacitor voltages of upper and lower
circuits respectively (Refer Fig. 3.14).
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Figure 3.16: Progression of the response of either of capacitor voltages in the circuit of
as marked in Fig. 3.14, in the presence of white noise (increasing from the top). The
panels showing the capacitor voltage performing OR/NOR logic. The scale in the traces
are: 200mV/Div (Y-axis) and 5mS/Div (X-axis). For low noise strength (1.5 Vpp) the
output is not able to produce reliable transitions between the two states. As the noise is
increased, an optimal noise strength is reached (2.5 Vpp) in which the capacitor voltage
switches logically with the inputs, obtaining in this way a reliable logic gate. Further
increase of the noise strength (3.5 Vpp) leads to the occurrence of random switching
destroying the reliability of the logic gates. The bias voltage b is fixed as +150 mV.
The input logic signals levels are fixed as +400 mVpp (ON state) and -400 mVpp (OFF
state). Here, colors yellow and green correspond to the capacitor voltages of upper and
lower circuits respectively (Refer Fig. 3.14).
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Chapter 4

Implementation of Noise-aided Logic

Gates with Memristive Circuits

Adapted from the work :

Manaoj Aravind V, K. Murali and Sudeshna Sinha,

Manuscript under review in International Journal of Bifurcation and Chaos
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4.1 Introduction

Memristive devices (memristor) [see 1.5] are used principally for resistive switching memo-

ries, and these have been considered very promising candidates for developing novel state-

of-the-art memory technology. Moreover, it has been established that networks of memris-

tors may potentially help implement neuromorphic computing architectures [46,47]. The

main advantages of computing with memristive elements is their low power consumption,

and their ability to store and process information on the same physical platform. So our

demonstration of noise-aided logic gates obtained from memristive elements in this work

will significantly push forward the potential of memristive devices to provide promising

alternatives to the conventional computing platforms, as well as expand the scope of [48].

4.2 LSR using Memristive circuit

Specifically, we have used a second order autonomous memristive circuit from Ref. [49]

to implement Logical Stochastic Resonance (see section 1.4). In Fig. 4.1a we display the

schematic of the circuit, which consists of a resistor, capacitor and memristor. We have

used a simple, inductor free equivalent circuit to emulate the memristive behavior, as

shown in Fig. 4.1b. The elaboration on how the given circuit has the functional form of a

voltage controlled memristor and a complete analysis of its current-voltage characteristics

can be found in ref. [49].

The dynamics of this circuit is dictated by two components, the capacitor C1 and

active voltage controlled memristor with memductance W (v0). Hence the circuit maybe

modeled with voltage v1 across capacitor C1, and voltage v0 as shown in Fig. 4.1, as the

two state variables. This yields the governing equations:

dv1
dt

=
I(t)− v1
RC1

+
(1− gv20)v1
R3C1

,

dv0
dt

= − v1
R1C0

− v0
R2C0

(4.1)

where I(t) is the combined input given to the system and is the sum of Input streams

I1 and I2, noise Dη(t) and bias b, i.e. I(t) = I1 + I2 + Dη(t) + b. The noise term

η(t) is a zero mean delta-correlated Gaussian noise, with variance 1 and D is the noise
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Figure 4.1: (a) Schematic of the single memristor based circuit. (b) Equivalent circuit
of the memristor W. The multipliers (M1 and M2) are realized with AD633. The op-
amps U1, U2, and U3 are realized with AD712. The circuit parameters are fixed as:
R1 = 8 kΩ, R2 = 4 kΩ, R3 = 1.4 kΩ, R4, R5 = 2.2 kΩ, C0 = 5 nF , g = 1 V −2, R = 3 kΩ
and C1 = 10 nF .
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strength. The focus of our investigation here is the switching of the states of the system

under varying noise strengths, and different bias parameters, and ascertaining whether

this emergent switching can yield consistent logic outputs [42].

4.2.1 Computational Model

In order to computationally model the system we use the non-dimensionalized form of

Eqn. 4.1

ẋ = fx(x, y) = −x+ α1x(1− gy2) + I(t),

εẏ = fy(x, y) = −α2x− α3y (4.2)

Here, I(t) is the sum of logic input streams I1, I2, Noise Dη(t) and bias b. i.e. I(t) =

I1 + I2 + Dη(t) + b. The noise term η(t) is a zero mean Gaussian noise, with variance

1 and D is the noise strength. The output is determined by the sign of variable x (or

y). For instance, if we can assign logic output value 1 to x(t) > 0, and output value 0 to

x(t) < 0.

Figure 4.2 shows the timeseries of the two variables x(t) and y(t) for the corresponding

input sequence I1 and I2, with bias b = +1. We see that consistent logic output is obtained

for moderate noise at D = 1 and the reliability of the logic response is lost for both low

noise strengths (for instance, D = 0.4) and high noise strengths (for instance, D = 2.5).

Specifically, state variable x(t) consistently produces an OR logic output, while the other

state variable y(t) produces the complementary NOR logic output, in parallel.

Most interestingly, given that the both signals are sub-threshold at I1, I2 = ±1 the

logic response is considerably amplified. For the parameters used here, the response from

y(t) is double that of the input streams and x(t) is five times that of the input streams (cf.

Figs 4.2 and 4.3). This amplification is also apparent in the oscilloscope traces obtained

from the experimental implementation shown in figs. 4.4 and 4.5.

Further, the bias b is the control parameter that determines the nature of the logic

function being implemented. For instance, in this system when bias b takes value +1 one

obtains a OR/NOR logic gate, and when it takes value −1 one obtains a AND/NAND

logic gate. Figure 4.3 shows consistent AND logic being obtained for moderate noise

(for instance D = 1) when bias b = −1. So a simple change of the bias allows us to
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morph between fundamental logic functions, and lays the building block for potentially

reconfigurable computing devices.

4.2.2 Experimental verification

We verify the computational results by constructing the circuit shown in Fig. 4.1. The

time traces of the voltage across capacitor C1 for different values of noise strength D and

bias b are shown in Figs. 4.4 and 4.5. We see that consistent logic is obtained only in the

presence of a moderately strong noise.

4.2.3 Quantitative measure of reliability

A quantitative measure of how reliably this system performs logical operations is obtained

by comparing the output of the system with the expected logical output, over long times,

and for different input sets. The probability of obtaining the desired output is estimated

by driving the system with a stream consisting of a large number of (I1 - I2) sets, where

each run consists of the four input sets (0, 0), (0, 1), (1, 0), (1, 1), in different permutations.

So the memristive system is subject to a many different random combinations of I1 and

I2 over time and its response to this random stream of inputs is recorded. If the logic

output, as obtained from x(t)(y(t)), matches the logic output in the truth table for all

input sets in the run, it is considered a success. The probability, P (logic), is the ratio

of the number of such successful runs to the total number of runs sampled. The fraction

of time where one obtains the desired logic output successfully, gives a measure of the

probability of obtaining that specific logic, denoted as P(OR) or P(AND). When this

measure approaches 1 we have completely reliable logic outputs. In Figs. 4.6 and 4.7

we show this measure, and it is clearly evident that there is an optimal window of noise

strength D, for which OR/NOR and AND/NAND logic is consistently obtained.

4.3 Coupling induced LSR using Memristive circuit

In a recent advancement [37], it has been shown that highly reliable logic response can be

obtained when the input signals (I1 and I2) are separately fed into two coupled bistable

sub-systems with sufficient coupling strengths in an optimal window of noise. Here since

the signals are fed into individual subsystems, the coupling between them is pivotal in
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Figure 4.2: Timeseries of variables x(t) and y(t) obtained by simulating Eqns. 4.2, for
three values of noise strength D, D = 0.4, D = 1, D = 2.5, with bias b = +1 yielding
OR/NOR logic. The corresponding input streams I1 and I2 are also shown. Here x(t) > 0
(or y(t) > 0) corresponds to logic output 1 and x(t) < 0 (or y(t) < 0) corresponds to
logic output 0. The parameter values used for the simulation are: g = 0.1, α1 = 1.86,
α2 = 0.325, α3 = 0.65 and ε = 0.69.
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Figure 4.3: Timeseries of variables x(t) and y(t) obtained by simulating Eqns. 4.2, for
three values of noise strength D, D = 0.4, D = 1, D = 2.5, with bias b = −1 yielding
AND/NAND logic. The corresponding input streams I1 and I2 are also shown. Here
x(t) > 0 (or y(t) > 0) corresponds to logic output 1 and x(t) < 0 (or y(t) < 0) corresponds
to logic output 0. The parameter values used for the simulation are: g = 0.1, α1 = 1.86,
α2 = 0.325, α3 = 0.65 and ε = 0.69.
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Figure 4.4: Waveforms of voltage across capacitor C1 obtained from hardware implemen-
tation of the memristive circuit, for different noise levels: D = 500mV (top) D = 1.5V
(middle) and D = 2.5V (bottom). (Noise bandwidth 10 kHz) (cf. Fig.4.1). The panels
also show the sum of the two input streams I1+I2 (green). I1 and I2 take value −0.5 V
when logic input is 0 and value +0.5 V when logic input is 1. Here the bias b is set to
b = +250 mV pp. Clearly the middle panel (moderate noise) yields a consistent OR logic
output. The noise signal is drawn from Agilent or Keysight 33522A, Function/Arbitrary
Waveform Generator. The oscilloscope used is Agilent or Keysight DSOX2012A. The
scale of the traces are 70 mV/Div (Y-axis) and 25 mS /Div (X-axis).
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Figure 4.5: Waveforms of voltage across capacitor C1 obtained from hardware implemen-
tation of the memristive circuit, for different noise levels: D = 500mV (top) D = 1.5V
(middle) and D = 2.5V (bottom). (Noise bandwidth 10 kHz) (cf. Fig.4.1). The pan-
els also show the sum of the two input streams I1+I2 (green). I1 and I2 take value
−0.5 V when logic input is 0 and value +0.5 V when logic input is 1. Here the bias b
is set to b = −250 mV pp. Clearly the middle panel (moderate noise) yields a consis-
tent AND logic output. The noise signal is drawn from Agilent or Keysight 33522A,
Function/Arbitrary Waveform Generator. The oscilloscope used is Agilent or Keysight
DSOX2012A. The scale of the traces are 70 mV/Div (Y-axis) and 25 mS /Div (X-axis).
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Figure 4.6: Dependence of the probability of obtaining OR logic operation, P(OR) on
noise strength D, for system parameters: g = 0.1, α1 = 1.86, α2 = 0.325, α3 = 0.65 and
ε = 0.69 in Eqns. 4.2.

Figure 4.7: Dependence of the probability of obtaining AND logic operation P(AND), on
noise strength D, for system parameters: g = 0.1, α1 = 1.86, α2 = 0.325, α3 = 0.65 and
ε = 0.69 in Eqns. 4.2.
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obtaining the demonstrated logical response. We implement the aforementioned coupling

induced Logical stochastic resonance using this memristive circuit to demonstrate another

configuration in which consistent logic can be obtained.

4.3.1 Computational Model

We computationally model this coupled system, where each individual unit is given by

Eqn. 4.2, by the following non-dimensionalized circuit equations:

ẋ1 = fx(x1, y1) + I1(t) + b+Dη1(t) + c(x2 − x1)

εẏ1 = fy(x1, y1)

ẋ2 = fx(x2, y2) + I2(t) + b+Dη2(t) + c(x1 − x2)

εẏ2 = fy(x2, y2) (4.3)

Here, c denotes coupling strength, D denotes the noise strength and b is a constant

bias. η1 and η2 are uncorrelated Gaussian noises with mean zero and variance 1. The

inputs I1 and I2 are used to drive the individual subsystems.

Figures 4.8 and 4.9 shows the timeseries of the two state variables of the subsystems

(x1 and x2), superposed with the expected logical outcomes for both AND and OR logic.

We again observe that consistent logic response is obtained for a moderate noise strength

while the consistency is lost both at high and low values of noise. We also observe that

x1 and x2 both yield the same logic and consistent output can be obtained from either of

them. This is a non-trivial feature, as one memristor receives input I1, while the other

receives input I2. However the output as determined by either state variable x1 or x2 is a

logic function of both I1 and I2. Further, due to the inherent symmetry of the memristive

circuit the other variables y1 and y2 yield the complementary logic i.e. if b = −1, while

x1 and x2 produce AND logic, y1 and y2 yield NAND.

4.3.2 Experimental Verification

To solidify the above computational result, we construct two identical copies of the mem-

ristive circuit, resistively couple them and demonstrate the occurrence of coupling induced
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Figure 4.8: Timeseries of variables x1(t) and x2(t) obtained by simulating Eqns. 4.3, for
three values of noise strength D, D = 0.5, D = 1, D = 2.5, with bias b = +1 yielding
OR/NOR logic. Coupling strength c = 1. The corresponding input streams I1 and
I2 are also shown. Here x1(t) > 0 (or x2(t) > 0) corresponds to logic output 1 and
x!(t) < 0 (or x2(t) < 0) corresponds to logic output 0. The parameter values used for the
simulation are: g = 0.1, α1 = 1.86, α2 = 0.325, α3 = 0.65 and ε = 0.69.
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Figure 4.9: Timeseries of variables x1(t) and x2(t) obtained by simulating Eqns. 4.3, for
three values of noise strength D, D = 0.5, D = 1, D = 2.5, with bias b = −1 yielding
AND/NAND logic. Coupling strength c = 1. The corresponding input streams I1
and I2 are also shown. Here x1(t) > 0 (or x2(t) > 0) corresponds to logic output 1 and
x!(t) < 0 (or x2(t) < 0) corresponds to logic output 0. The parameter values used for the
simulation are: g = 0.1, α1 = 1.86, α2 = 0.325, α3 = 0.65 and ε = 0.69.
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Figure 4.10: Waveforms obtained from hardware implementation of the coupled memris-
tive circuit, showing the voltage across capacitors C1 (yellow) and C2 (green) for different
noise levels: D = 1V (second) D = 1.8V (third) and D = 2.8V (bottom). (Noise band-
width 18 kHz) (cf. Fig.4.12). The top panel shows the two input streams I1 (yellow)
and I2 (green). I1 and I2 take value −0.5 V when logic input is 0 and value +0.5 V
when logic input is 1. Here the bias b is set to b = +150 mV pp. Clearly the third panel
(moderate noise) yields a consistent OR logic output. The noise signal is drawn from
Agilent or Keysight 33522A, Function/Arbitrary Waveform Generator. The oscilloscope
used is Agilent or Keysight DSOX2012A. The scale of the traces are 1 V/Div (Y-axis)
and 20 mS /Div (X-axis).
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Figure 4.11: Waveforms obtained from hardware implementation of the coupled memris-
tive circuit, showing the voltage across capacitors C1 (yellow) and C2 (green) for different
noise levels: D = 1V (second) D = 1.8V (third) and D = 2.8V (bottom). (Noise band-
width 18 kHz) (cf. Fig.4.12). The top panel show the two input streams I1 (yellow) and
I2 (green). I1 and I2 take value −0.5 V when logic input is 0 and value +0.5 V when logic
input is 1. Here the bias b is set to b = −150 mV pp. Clearly the third panel (moderate
noise) yields a consistent AND logic output. The noise signal is drawn from Agilent
or Keysight 33522A, Function/Arbitrary Waveform Generator. The oscilloscope used is
Agilent or Keysight DSOX2012A. The scale of the traces are 1 V/Div (Y-axis) and 20
mS /Div (X-axis).
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Figure 4.12: Schematic of the coupled memristive circuit. The circuit parameters are
fixed as: R1 = R2 = 2.4kΩ, C1 = C2 = 10nF and coupling resistance Rc = 5.57kΩ. The
equivalent circuit for memristors W1 and W2 are same as elaborated in Fig. 4.1b.
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logical stochastic resonance. The schematic circuit diagram of the construction is shown

in Fig. 4.12. Here the active voltage controlled memristor W is the same as shown in

Fig. 4.1b.

The oscilloscope trails of the voltage across capacitors C1 and C2 are shown in

Figs. 4.10 and 4.11. It is evident that the experimental results are completely consis-

tent with those observed in numerical simulations.

4.3.3 Quantitative measure of reliability

We again quantitatively identify the regions of parameter space where reliable logic op-

erations occur, using the same rigorous metric described in section 2.3. Specifically, we

use P (logic) to demarcate the regions in parameter space where logic operations are ob-

tained consistently. In Figs. 4.13 and 4.14 we see that a broad range of noise (D) and bias

(b) strengths yield completely reliable logic operations (i.e. P (logic) ∼ 1), with positive

values of bias yielding OR/NOR logic and negative values of bias yielding AND/NAND

logic. Figures. 4.15 and 4.16 show the regions of reliable operation in the c − D space.

Note that there exists a clear band of noise strengths for which consistent operations is

obtained. Also, we observe the existence of a minimum threshold of coupling strength

c for consistent operation. Coupling strengths larger than this threshold yields faithful

logic. We did not find any upper bound in coupling strength c for obtaining P (logic) ≈ 1,

in the explored range of c ∈ [0, 5].

Further, it is interesting to note from Figs. 4.15 and 4.16 the behaviour of the window

of optimal noise strengths for different values of coupling strength c. To make the behav-

ior more apparent, in Fig. 4.17 we show the minimum value of noise strengths D(low)

required to produce consistent logic and the maximum value of noise strengths D(high)

upto which consistent logic is produced. On increasing coupling strength c, we observe

that both D(low) and D(high) show a sharp transition at a critical value, from zero

to a finite moderate value, after which it saturates, with D(high) saturating slower and

at higher coupling strengths than D(low). So the width of the noise window supporting

robust logic operations increases very sharply from zero after a critical coupling threshold

and then rapidly saturates at increasing coupling strengths. This clearly indicates that

coupling is crucial for obtaining reliable logic outputs, as robust operations are obtained

only after sufficiently strong coupling.
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Figure 4.13: Dependence of the probability of obtaining OR logic operation, P(OR), on
noise strength D and bias strength b, for coupling strength c = 1 and system parameters:
g = 0.1, α1 = 1.86, α2 = 0.325, α3 = 0.65 and ε = 0.69 in Eqns. 4.3.
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Figure 4.14: Dependence of the probability of obtaining AND logic operation P(AND), on
noise strength D and bias strength b, for coupling strength c = 1 and system parameters:
g = 0.1, α1 = 1.86, α2 = 0.325, α3 = 0.65 and ε = 0.69 in Eqns. 4.3.

75



Figure 4.15: Dependence of the probability of obtaining OR logic operation, P(OR), on
noise strength D and coupling strength c, for bias b = 1 and system parameters: g = 0.1,
α1 = 1.86, α2 = 0.325, α3 = 0.65 and ε = 0.69 in Eqns. 4.3.
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Figure 4.16: Dependence of the probability of obtaining AND logic operation P(AND),
on noise strength D and coupling strength c, for bias b = 1 and system parameters:
g = 0.1, α1 = 1.86, α2 = 0.325, α3 = 0.65 and ε = 0.69 in Eqns. 4.3.
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Figure 4.17: Dependence of the minimum noise strength (D(low)) and maximum noise
strength (D(high)) required to obtain a probability P (logic) > 0.9 on the coupling
strength c. Here the bias b = +1.
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4.4 Conclusions

In summary, we have implemented logic gates, in a second order autonomous memristive

circuit, in the presence of a noise-floor. We have demonstrated that in an optimal band

of noise one obtains logic operations extremely reliably. Further, the system yields the

complementary logic operation in parallel as well. Lastly the outputs can be morphed

to different logic functions by a simple switch of the constant bias. Furthermore we

also demonstrated the successful implementation of coupling induced Logical Stochastic

Resonance in a coupled system of memristors, and this paves the path for realization

of multi-input logic gates without the need of separate adder circuits. All these ideas

are demonstrated explicitly through numerical simulations, as well as proof-of-principle

circuit experiments. Thus the memristive circuit offers a promising system to imple-

ment robust and flexible logic operations and our results may help expand the scope of

memristive device-based memcomputing.
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Chapter 5

Conclusions and future directions

”Begin at the beginning,” the King said, very gravely,

”and go on till you come to the end: then stop.”

- Lewis Carroll, Alice in Wonderland.
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Interplay of noise and nonlinearity in dynamical systems has been an area of research

that has garnered long standing interest for multiple reasons. Stochastic processes driving

deterministic nonlinear systems produce novel and sometimes counter intuitive phenom-

ena like stochastic resonance which need to be completely understood to effectively model

real world systems. Also, in the ever shrinking world of micro-electronics, implicit back-

ground noises have almost caught up with the operating voltages of circuits. This is a

direct outcome of the major progress in micro-fabrication and the explosive growth in

the number of transistors as predicted by Moore’s law. With the upper limit to compu-

tational power looming in our horizon, it becomes imperative to come up with innovative

ways of using noises in novel ways rather than simply trying to suppress them. Thus

the understanding of the interaction between dynamic noises and the rich controllable

dynamics of simple nonlinear systems have gained utmost importance.

This thesis broadly, is an attempt to further this cause in two ways. First, to in-

troduce the new paradigm of coupling in a simple well understood system, explore the

effects of the interplay of coupling and noise and use the understanding to propose and

demonstrate a new scheme for producing reliable logic operations using the coupling as

the key player. Second, to elucidate the possible use cases of fundamental passive non-

linear circuit elements, like the memristor, that have been recently physically realized,

in furthering this new push for dynamics based computing. The direct use of memris-

tors (which themselves are passive memory devices) in tandem with simple resistors and

capacitors to produce noise-aided logic, clearly takes us a step closer to neuromorphic

computing, where the same building blocks serve as both memory and processing devices.

In the first part (chapter 2) of this thesis we explored the different regimes of be-

haviour that arise in two diffusively coupled bistable systems, under the influence of

uncorrelated noise. Depending on the coupling and noise strengths, we saw four clear

regimes of behaviour emerge: (i) no synchrony and no hopping, (ii) synchrony without

hopping, (iii) unsynchronized hopping and (iv) synchronized hopping. We characterized

these regimes quantitatively using two measures: synchronization error and probability

of hopping. Interestingly, the synchronization error decreases monotonically with cou-

pling strength, while the probability of hopping changes non-monotonically with coupling

strength, exhibiting an optimal coupling where hopping probability is maximized. In con-

trast, the probability of hopping increases monotonically with noise strength, while the

synchronization shows non-monotonic dependence on noise strength. The delicate in-

terplay of these monotonic and non-monotonic behaviours with respect to coupling and

noise, yielded regions of parameter space where either synchrony or hopping, were domi-

nant. This gave rise to the four interesting dynamical patterns, including the non-trivial
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synchronized hopping regime.

We confirmed the generality of these findings for different noise distributions, and for a

variety of bistable systems. We also experimentally constructed and coupled, two simple

piecewise linear circuits and established the robustness of our results. We consolidated

the obtained results and moved on to use the results to implement coupling induced

Logical Stochastic Resonance that we elaborated in Chapter 3.

These results obtained in chapter 2 can be explored and expanded further in three

directions. First is to explore how the regions of behaviour change and morph with a

constant bias tilting the wells, as another parameter. Second is to check the influence

of various kinds on noise on the system so that we can better understand the behaviour

of coupled bistable systems in real world background noise, which usually contains a

mixture of noises, both additive and parametric. Third is to expand the spatial extent of

the system by increasing the number of bistable units. How a network of coupled bistable

systems operate in the presence of noise, is also a question worth pursuing as it will also

have direct implications in expanding the scope of cLSR to coupled bistable networks.

In the second part (chapter 3) of this thesis we demonstrate both in simulation and

real circuit implementations that when two coupled bistable sub-systems are driven in-

dividually by two aperiodic signals encoding a series of binary inputs, I1 and I2, in a

moderate window of noise strengths and sufficient coupling, the output of the system

robustly maps to the 2-input logic of I1 and I2. We show that the constant bias in the

system can act as a morphing control to switch between the different logic operations

possible. We rigorously quantify the probability of obtaining consistent logic P(logic)

of different gates, for various values of noise and coupling strengths. We observe that

coupling has a crucial role to play in this scheme as the two inputs are individually fed

into each subsystem and addition of the two signals isn’t required as is the case with

Logical stochastic resonance (see 1.4). We call this new scheme of obtaining logic from

coupled bistable systems as, coupling induced Logical Stochastic Resonance (cLSR).

The scope and applicability of cLSR can be furthered in two ways. When we explore

and understand the behaviour of coupled bistable systems in real world background noises

actual, thermal noise in micro-electronic devices can be used to implement noise-aided

logic gates and can work robustly with sub-threshold input signals. With the understand-

ing of a network of noisy bistable elements, the scope of cLSR can be further expanded

to produce multi-input logic gates.

In the final part (chapter 4) of this thesis we demonstrate the implementation of

83



both LSR and cLSR using a very simple autonomous memristive circuit. We show that

in both schemes reliable logic operations are achieved using the memristive circuit in a

wide windows of moderate noise. This was confirmed both using simulations of the non-

dimensionalized circuit equations and experimental realizations of the circuits themselves.

We rigorously quantify the regions of the parameter space of noise, coupling and bias

strengths, where highly reliable logic operations are achieved.

This work on memristive circuits can be further expanded within the scope of neu-

romorphic computing by exploring two key directions. One, to study how networks of

memristive elements interact with one another. Two, inspecting if the memristive coun-

terparts of the capacitor and resistor can be used to implement a circuit equivalent to

the one we realized. Thereby, forming a basic logical block in a network of memristive

elements.

In conclusion, the work presented in this thesis can act as a seed to further the ideas of

noise-based design and dynamics-based computing both of which have a crucial bearing

on the future of computation.
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