
Dynamics on Spatially Extended Systems

Promit Moitra

A thesis submitted in partial fulfillment of

the requirements for the degree of Doctor of Philosophy

Department of Physical Sciences

Indian Institute of Science Education and Research (IISER)
Mohali

May, 2019



ii



Certificate of Examination

This is to certify that the dissertation titled “Dynamics on Spatially Extended Sys-
tems” submitted by Mr. Promit Moitra (Reg. No. MP12012) for the partial fulfillment
of Doctor of Philosophy programme of the Institute, has been examined by the thesis
committee duly appointed by the Institute. The committee finds the work done by the
candidate satisfactory and recommends that the report be accepted.

Dr. Ananth Venkatesan Dr. Kamal Priya Singh Professor
Sudeshna Sinha

(Supervisor)

iii



iv



Declaration

The work presented in this dissertation has been carried out by me under the guidance
of Prof. Sudeshna Sinha at the Indian Institute of Science Education and Research
Mohali.

This work has not been submitted in part or in full for a degree, a diploma, or a fellow-
ship to any other university or institute. Whenever contributions of others are involved,
every effort is made to indicate this clearly, with due acknowledgment of collaborative
research and discussions. This thesis is a bona-fide record of original work done by me
and all sources listed within have been detailed in the bibliography.

Promit Moitra

(Candidate)

In my capacity as the supervisor of the candidate’s doctoral thesis, I certify that the
above statements by the candidate are true to the best of my knowledge.

Professor Sudeshna Sinha

(Supervisor)

v



vi



Acknowledgements

Seven years is a long time. Especially going from 21 to 28, there is a lot of growing
up to do. So first and foremost, I am thankful that the journey has been one to cherish.
And it wouldn’t have been, if not for the people I met along the way.

I am extremely thankful to Prof. Sudeshna Sinha, for her incredible patience and
constant support in my academic life. I have learned my entire approach to research
from illuminating and insightful discussions with her. She has been a source of inspira-
tion in dire times, and she has opened doors to wonderful opportunities which I greatly
appreciate. I honestly cannot imagine a better guide than Sudeshna ma’am for taking
my first steps in academics.

I thank Manaoj Aravind V., my oldest friend and neighbour. I am grateful to him for
giving me quite a few much needed timely reality checks. But most of all, I thank him
for turning the sad into funny-sad.

From the first couple of years, I have a lot of gratitude for my batchmates Ashish,
Srikant, Pankaj and Imran, for keeping me grounded and on my toes. I thank Zeeshan,
Vikesh and Shiv, for keeping my reading habit and the debater in me alive and kicking.
I thank the MS09 batch for the unforgettable experience of organizing the first cultural
fest. I especially thank Vrinda, for questioning every one of my thoughts and words,
letting me look beyond them.

I thank the MS10 batch for the mad times at and around the seventh floor of H5. We
shared courses as well, but the most memorable times were between the exams. I thank
Neeeraj, Manas and Arul, for everything from music to arguments (and more recently,
yoga). I thank Geetananda, for teaching me the art of zen, and Nishant Malik, for
practising the art of anarchy. I thank Tj, for being a rock right till my last few days here.

I thank Anubhuti, for showing me how people can stay friends while everything around
them changes. I thank Priyanka, for being the reason for my best days here, and being
there throughout.

I thank the colourful patchwork of old and new friends since then - Himanshu, Ruchika,
Panda, Sanjay, Dewra, Divanshu and especially Soumitro da, for showing me the true
meaning of the mountain soul. I thank Saurav, for epic times at Bob’s cafe.

I thank the juniors, across batches from MS12 to MS18, for making the last couple

vii



of years unexpectedly exciting and dynamic. I thank our band, Somak, Varun, Nilotpal
and Parth, for bringing one of my childhood dreams to life. I thank the debsoc group,
especially Misha for being the convener and bringing it back to life. I thank Dhruv and
Deesha for their constant friendship.

I thank IISER Mohali for the infrastructure and funding for the duration of my stay,
being the platform of this enriching experience. I sincerely hope the institute continues
to disseminate the kind of experience I had to future generations of researchers.

I thank my parents for being the material and emotional safety net I can fall back on
in times of crisis. Without that kind of support, such uncertain endeavours like research
cannot be undertaken, and I consider myself blessed for having Pallav Moitra and Runa
Moitra as my Baba and Ma.

Promit

viii



Preface

The study of dynamical systems can be broadly classified in terms of the spatial and
temporal characteristics of the system under consideration. Mathematical models of sys-
tems can be continuous or discrete, in both space and time. If the description of the
system’s behaviour involves many connected dynamical elements, then apart from the
individual dynamics of each element, the form and topology of coupling between these
elements becomes an important consideration as well. Such collective descriptions of
systems have become fundamental in order to model (and perhaps predict) the emer-
gent behaviour of real-world complex systems, which consist of interacting dynamical
units, which constitute many physical, biological, chemical or socially engineered sys-
tems, ranging from ecosystems to social networks, from atmospheric flows to traffic flows,
from infection spreading through a population to cascading failures on a power grid. The
research work in this thesis provides analysis and characterization of emergent behaviour,
arising from the interplay of local dynamics and the form and topology of coupling, in
such connected dynamical systems. Specifically, the spatially extended systems under
consideration in this thesis are motivated by biological phenomena. Thus the work of
this thesis is inter-disciplinary in nature.

In the first three sections of the thesis, the dynamics of infection spreading across
a population is modeled, and the emergence of persistent infection in a closed region is
explored. In this system, the disease progression of an individual is given by the SIRS
model, with an individual becoming infected on contact with another infected individual.
Specifically, the disease cycle consists of three compartments of discrete states: the sus-
ceptible state (S), which is an absorbing phase; the infected states (I), which triggers any
nearby susceptible individuals to become infected as well; and the refractory states (R),
which is a temporarily immune phase. An individual remains susceptible until infected
by a nearest neighbour, and then goes through the cyclical sequence of states described
above, returning to the susceptible state. Such excitation-relaxation dynamics can also
be used to model systems arising in various other contexts, such as neural or cardiac
tissues.

The persistence of contagion is qualitatively and quantitatively investigated, under
increasing heterogeneity in the partitioning of the population into different disease com-
partments, as well as increasing heterogeneity in the phases of the disease among individ-
uals within a compartment. It is observed that when the initial population is uniform,
consisting of individuals at the same stage of disease progression, infection arising from
a contagious seed does not persist. However when the initial population consists of ran-
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domly distributed refractory and susceptible individuals, a single source of infection was
found to cause sustained infection in the population. It is concluded that heterogeneity
facilitates the de-synchronization of the phases in the disease cycle of the individuals,
leading to steady state dynamics, or persistence, of the infection in the population. It is
also observed that the average extent of the window of persistence of infection depends
on the degree of heterogeneity in the initial composition of the population.

The next aspect that is focused on is the role of synchronization in the persistence of
infection in such a closed region. The following key result is observed: higher degree of
synchronization in the individual states, both globally in the population and locally in the
neighbourhoods, hinders persistence of infection. Importantly, it is demonstrated that
early short-time asynchrony appears to be a consistent precursor to future persistence of
infection, and can potentially provide valuable early warnings for sustained contagion in
a population patch. It is then found that transient synchronization can help anticipate
the long-term persistence of infection. It is also found that when the range of influence
of an infected individual is wider, the infection persists for a smaller window of initially
infected individuals. This counter-intuitive observation can also be understood through
the relation between synchronization and infection burn-out.

In a subsequent study, it is established that a population structured into communities
yields a persistently infected sub-population, in contradistinction to an equivalent popula-
tion where the same initial fractions of susceptible, refractory and infected individuals are
homogeneously distributed in space. So populations where the initial distribution of the
disease cycle is strongly compartmentalized leads to persistent infection in the complete
region. Even after transience, the patterns of disease spreading in the two communities
may be completely dissimilar, even though both communities settle down to the same
average infected sub-population size. The time evolution of the total number of infected
individuals in the two communities displays distinct periodic wave forms, with different
amplitudes, but same frequency.

In the last section of the thesis we study a collection of populations modeled by the
prototypical chaotic Ricker map. Such chaotic maps are widely utilized to model the
population growth of species with non-overlapping generations. The feedback received
by each population patch is modeled to be influenced by the local mean field of its neigh-
bourhood. Specifically, we separate the terms of the dynamical map into two parts: the
growth term and the regulation term. The growth term consists of a positive feedback,
and the regulation term contains a negative feedback, from the variable that represents
the population at each time step, leading to the characteristic unimodal shape of such

x



population maps. Now, instead of the commonly-used diffusive interactions among cou-
pled populations, here we consider networks of populations where the rate of population
growth at a site is influenced by neighbouring populations. We find that such paramet-
rically coupled networks of populations yield very interesting and non-intuitive collective
behaviour.

The dynamics and distribution of the local populations, as well as the total biomass,
in the coupled system described above, is examined. The significant observation is the
following: When the range of coupling is sufficiently large, namely when enough neigh-
bouring populations influence the growth rate of a population, the system yields remark-
ably large biomass values that are very far from the mean. These extreme events are
relatively rare and uncorrelated in time. It is also found that at any point in time, ex-
ceedingly large population densities emerge in a few patches, analogous to an extreme
event in space. It is important to note that the isolated dynamics of an individual Ricker
map does not result in extreme values, even asymptotically. These results indicate a new
mechanism in coupled chaotic systems that naturally yield extreme events in both time
and space.

The study above presents further scope of research on the mechanisms that generate
extreme events in networked systems, by implementing different forms of coupling. Com-
plex networks such as ecosystems may have connections between individual dynamical
constituents, which are not obvious, perhaps influencing each other in indirect ways, such
as via the environment, or in terms of resource availability. Sudden population explosions
and extinctions have been widely observed, but the attempts to model such phenomena
have largely been concentrated on refining the single species model in isolation. This
study provides the insight that the emergent behaviour of a unit should be considered,
not only in terms of its isolated dynamics, but also as a result of the collective influence
of its neighbourhood of similar dynamical units.

In summary, the problems explored in this thesis have led us to find interesting and
unexpected phenomena, such as the early warning of long-term persistence of infection
from transient local synchronization, and the emergence of extreme events in space and
time in a complex network of parametrically coupled populations. So our studies poten-
tially lend more understanding to the emergence of spatiotemporal patterns in complex
systems, arising from the interplay of local dynamics and non-local connections.
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Chapter 1

Introduction

1.1 Dynamics: a historical perspective

πάντα ῥεῖ. Everything flows. This is a quote attributed to the Greek philosopher Hera-
clitus, from pre-Socratic times. It is probably one of the earliest descriptions of the core
essence of the field of study known as “dynamics”. This body of knowledge has of course
come a long way since then. However, owing to the infinite richness and complexity of
phenomena observable in nature, this field is as active an area of research as it has ever
been, and perhaps will always remain so.

Dynamics, in very simple terms, is the study of change. Any quantity that changes
with time can be considered as a dynamical variable. A very successful descriptive lan-
guage to analyse dynamical phenomena has been defined by mathematics, namely the
field of differential calculus. Systems evolving continuously in time are represented math-
ematically, in the most general case, as follows:

Ẋ = F (X, t) (1.1)

where X(t) = {x1(t), x2(t).....xN(t)} is an N -dimensional vector of state variables, t is
time and F (X, t) = {f1(X, t), f2(X, t).....fN(X, t)} are the functions that describe the
dynamics of the system. If the systems are autonomous, the set of functions F (X) does
not explicitly depend on time.

In order to model phenomena with spatial extent, where the dynamical evolution of
the state variable depends on both the location and time, partial differential equations
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were developed, for instance, to model diffusive processes in space:

∂φ(x, t)
∂t

= ∇.[D(x, t)∇φ(x, t)] (1.2)

where D(x, t) is the diffusion coefficient for density φ at location x.

The field of dynamical systems has historically been dominated by the use of such
ordinary or partial differential equations. In fact, at it’s peak, the use of differential
calculus led to the notion of an infinitely deterministic “clockwork” universe, that was
presumed to be entirely predictable from it’s current state. This notion was embodied by
the emerging philosophy of causal determinism, according to which, in it’s strongest form,
it was conjectured that similar antecedents lead to similar consequences. Such notions
were, however, soon to be challenged.

It gradually became apparent that a large class of differential equations, while rep-
resenting a system’s behaviour accurately, eluded tractable analytical solvability. This
realization, along with the exponential growth of computing power, led to the genesis of
novel approaches to understand dynamical systems by numerical simulation and analysis.
Discrete algorithms were developed to solve intractable nonlinear equations numerically.
Eventually, in a seminal paper titled “Deterministic non-periodic flow” [1] by Edward N.
Lorenz in 1962, a major breakthrough occurred in our understanding of a fundamental
hallmark of chaotic nonlinear dynamical systems - that of sensitive dependence on initial
conditions. Although the study was being conducted with the aim of predicting weather
patterns, it was demonstrated that two distinct initial conditions, infinitesimally close to
each other in the phase space, can nevertheless follow radically different trajectories of
dynamical evolution. Therefore, making predictions was demonstrated to be impossible
without infinite precision in the knowledge of the initial conditions. This is not to be
misconstrued simply as a practical constraint on predictability due to finite observational
resolution, because the long term behaviour of an initial condition that is specified with
any uncertainty becomes unpredictable. Such a humbling realization sowed the seeds of
a paradigmatic shift in the study of nonlinear dynamical systems, and led to the devel-
opment of chaos theory.

One of the approaches developed consequently was the study of the geometric prop-
erties of the phase space representation of the dynamics of a system, also known as at-
tractors. Specifically, chaotic attractors, such as the Lorenz “butterfly attractor” shown
in Fig. 1.1 were found to have very interesting geometric properties. It was observed
that they are bounded, and yet they were not smooth. They represented a multitude
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Figure 1.1: The “butterfly” attractor representing the chaotic dynamics of the Lorenz
system

of possible trajectories diverging from infinitesimally close initial conditions. Such prop-
erties required the development of tools such as the analysis of fractional dimensions of
geometric objects embedded in high dimensional spaces.

The stability properties of such attractors became another important aspect of investi-
gation. Apart from the well established techniques of linear stability analysis, estimation
of the Lyapunov spectrum of a system, has proven to be an effective and reliable method
for the characterization of the chaotic properties of a dynamical system. Lyapunov ex-
ponents represent the rates of divergence of initially nearby trajectories in phase space.
Presence of a positive Lyapunov exponent enables the characterization of the dynamics
as chaotic. In recent years, estimating the size of, and characterizing the nature of, the
basins of attraction of asymptotic attracting states, has emerged as a new and effective
measure of the stability properties of the dynamics of complex systems [2].
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Another major advancement in our understanding of the ubiquitous presence of chaotic
dynamics occurred with the results published in a 1976 paper titled “Simple mathematical
models with very complicated dynamics” [3], by Robert M. May. The model described in
the study was a simple discrete-time difference equation in one variable, that modeled the
dynamics of populations with non-overlapping generations, known as the logistic map:

xt+1 = F (xt) = rxt(1− xt) (1.3)

Figure 1.2: The return diagram (xn+1 vs. xn) for the Logistic map, showing it’s unimodal
nature

Certain features of this map, represented by the return diagram, are shown in Fig. 1.2
It is evident that the map is unimodal, which means it is a continuous map from an
interval to itself, with a unique turning point. One of the important observations from
the dynamics of the logistic map was the dynamical route taken by the system, from stable
solutions, through oscillatory orbits and finally approaching the fully chaotic state, as the
system’s parameter was gradually varied. This is represented by the bifurcation diagram
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Figure 1.3: The bifurcation diagram (xn vs. r) for the Logistic map, demonstrating the
period doubling route to chaos

(Fig. 1.3), and is termed as a “period doubling cascade”. The fact that such simple
iterated maps could show sensitive dependence on initial conditions, behave chaotically
in certain parameter regimes, demonstrating a rich diversity of dynamical behaviours
along the way, led to a flurry of subsequent studies to develop tools (such as bifurcation
analysis) to understand and characterise their dynamics.

1.2 Synchronization

Having made some progress in the understanding of the dynamics of a single system,
explorations naturally extended towards systems of coupled dynamical elements. This
led to the discovery of a plethora of regimes of collective behaviours. One of the most
interesting and well explored phenomenon in this context was that of synchronization.
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Synchronization broadly refers to the emergence of a functional dependence of the
frequencies of an ensemble of coupled interacting dynamical systems. It is a phenomenon
that had been observed in many physical and biological systems, often in contexts as
simple as a crowd clapping, candle flames oscillating, or a swarm of fireflies flashing
together. Although it might intuitively seem that for two oscillators to synchronize their
frequencies, some conscious tuning (based on feedback from the neighbouring oscillators)
is required, it was demonstrated that the phenomenon was prevalent in systems with a
broad range of coupling forms and strengths.

Subsequently, studies on phase oscillators by Y. Kuramoto [4] revealed that coupled
systems undergo a well defined phase transition from the unsynchronized to the synchro-
nized state above a critical coupling strength. It has been characterized as a second order
phase transition, owing to the property of reversibility of the transition. This generated
a lot of interest in the phenomenon of synchronization, since such critical transitions
have been observed in physical systems from seemingly unrelated contexts, such as the
transition of magnetisation or spin, below a critical temperature.

Current avenues of investigation of the phenomenon of synchronization has broadened
to include exploration of patterns of synchrony in complex systems. A seminal paper by D.
Abrams and S. H. Strogatz [5] revealed the simultaneous existence of clusters of synchrony
and asynchrony in a system of coupled oscillators, which they termed as a chimera state.
Investigations in this direction continues relentlessly, with the aim of characterizing the
conditions under which such phenomena occur.

In this thesis, the concept of synchronization has been utilized specifically to under-
stand the underlying mechanism of the persistence of spatiotemporal oscillations in a
spatially extended model of the dynamics of an infection spreading across a population.

1.3 Complex systems

As mentioned above, in recent years, a question of intense research activity has been the
behaviour of interacting dynamical elements coupled with each other. Such systems are
broadly classified as complex systems. Examples of such systems are present all around
us, in natural and engineered systems - such as ecosystems, neural networks, power
grids, social networks etc. These high dimensional problems have led to studies involving
systems with multiple interacting dynamical units, such as populations of species coupled
via their interactions as predators, preys or mutually cooperating species; or neurons
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coupled via synapses, or profiles of individuals being connected on social networks, sharing
data with each other. This has allowed an avenue for the natural extension of the analysis
of these systems in spatial dimensions. The study of such dynamical systems can be
classified in terms of the spatial and temporal characteristics of the system, as well as
of the dynamical variables. Modelling and analysis of such complex dynamical systems
requires one to ascribe either a discrete or continuous nature to the space that the system
spans, the time with which the system evolves, and states attained by the system. In
these terms, the approaches to study the dynamical behaviour of systems can be broadly
(but non-exhaustively) classified as follows [6]:

Space Time State Type

Continuous Continuous Continuous Differential Equations (ODEs/PDEs)
Discrete Continuous Continuous Coupled Oscillators (Coupled DEs)
Discrete Discrete Continuous Coupled Maps
Discrete Discrete Discrete Cellular Automata

Certain features of the dynamics of complex systems have generated a lot of research
interest. One such feature is the emergence of collective dynamical behaviour across
multiple scales. This is termed as emergent phenomena. It has been a very active field as
it has proven to be exceptionally difficult and counter intuitive to predict such phenomena
from the relatively simple and well understood behaviour of the individual dynamical
elements. One of the most intensely discussed examples of emergent phenomena is known
as self organized criticality. It was observed that while most systems, when allowed to
evolve autonomously, approached stability (in conventional terms by minimizing their
energy), certain systems of interacting dynamical elements, with very simple dynamics at
the individual level, naturally organized themselves to a state that was minimally stable,
and responded to even small perturbations by reorganization over large scales. A classic
cellular automaton model, popularly known as the “sandpile” model, was demonstrated
to approach a self organized critical state in the study conducted by Bak, Tang and
Weisenfeld [7]. Certain patterns were observed in the statistics of such phenomena, such
as the prevalence of power laws in the distributions of the extents of the reorganization
events, and such phenomena remain active avenues of research.
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1.3.1 Modeling spatial extent: lattices and networks

As mentioned above, lattices of interacting dynamical elements have been established as
a very effective platform to model complex dynamics. Cellular automata were utilized
to model systems extending over a discrete space, where each dynamical unit evolves
over discrete time steps, attaining values from a discrete, finite state space. One of
the modeling paradigms that built upon this concept, and emerged as an effective way
to model interacting dynamical elements with continuous states, is termed as coupled
map lattices, or CML, developed by K. Kaneko [8]. This modeling paradigm has led
to the discovery of regimes of dynamic behaviour that had previously eluded in silico
observation, such as spatiotemporal intermittency [9] (Fig. 1.4).

Figure 1.4: A lattice of coupled logistic maps, displaying spatiotemporal intermittency

However, lattices embodied an inherent constraint, in terms of the regularity of the
underlying connectivity. While this is a natural feature of certain systems, and readily
models spatial extent in an intuitive sense, examples of complex systems are abound where
interactions are inherently non-local, such as long range interactions in social networks.
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In very recent times, with ever increasing computational capacity, networks have
become established as the natural choice of a platform to model complex systems. Each
node in a networked system represents a dynamical unit, and the interactions between
the nodes are implemented via connections, or edges, between such nodes. Structurally,
a network is characterised by the topology of connections, which is represented by an
adjacency matrix for the network. The network paradigm allows quite a bit of freedom
in terms of modeling not only the non-locality of connections, but also directionality and
strengths of interactions. Lattices emerge as a limiting case of network models, when the
connections are only between nearest neighbours.

Figure 1.5: A typical small world network, with high clustering and short average path
length

Apart from the flexibility proffered by the network paradigm, the reason for the adop-
tion of networks as a fertile basis for modeling complex systems, has been the remarkable
results presented in the study by D. Watts and S. H. Strogatz [10]. In the study, a
method was developed to gradually tune the overall topology of a network (by proba-
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Figure 1.6: A typical random scale-free graph generated by the preferential attachment
algorithm

bilistically rewiring the connections) from a regular lattice like structure, to a completely
random topology. At an intermediate stage of this process (Fig. 1.5), the topology at-
tained by the network was demonstrated to have structural properties that were similar
to both a regular network (high clustering) as well as a random network (short average
path lengths). Such structural properties have been accordingly observed in quite a few
networked systems, such as power grids.

Another very interesting method to attain a network topology prevalent in observed
scenarios was described by A. Barabasi [11] (Fig. 1.6). The study put forward a method
to grow a network, node by node, based on the principle of preferential attachment. This
protocol is naturally motivated by many systems which involve dynamical units gradually
forming a network, such as the world wide web.

Such studies have demonstrated the immense latitude given by the network paradigm,
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leading to many subsequent investigations into the interplay of individual dynamics and
the topology of interactions, revealing a plethora of dynamical behaviours, and it contin-
ues to do so.

1.4 Outline of the thesis

The outline of the chapters in this thesis are as follows:

In Chapter 2, the dynamics of an infection spreading across a population is modeled,
and the emergence of persistent infection in a closed region is explored. In this system, the
disease progression of an individual is given by a discrete version of the SIRS model. The
persistence of contagion is qualitatively and quantitatively investigated, under increasing
heterogeneity in the partitioning of the population into different disease compartments,
as well as increasing heterogeneity in the phases of the disease among individuals within
a compartment.

It is observed that when the initial population is uniform, the infection does not persist
in the population. However when the initial population consists of randomly distributed
refractory and susceptible individuals, a single source of infection was found to cause
sustained infection in the population. It is concluded that heterogeneity facilitates the
de-synchronization of the phases in the disease cycle of the individuals, leading to steady
state dynamics, or persistence, of the infection in the population. It is also observed that
the average extent of the window of persistence of infection depends on the degree of
heterogeneity in the initial composition of the population.

In Chapter 3, we focus on the role of synchronization in the persistence of infection
in such a closed region. The following key result is observed: higher degree of syn-
chronization in the individual states, both globally in the population and locally in the
neighbourhoods, hinders persistence of infection. It is demonstrated that early short-time
asynchrony appears to be a consistent precursor to future persistence of infection, and
can potentially provide valuable early warnings for sustained contagion in a population
patch. It is also found that transient synchronization can help anticipate the long-term
persistence of infection. We also find that when the range of influence of an infected
individual is wider, the infection persists for a smaller window of initially infected indi-
viduals. This counter-intuitive observation can also be understood through the relation
between synchronization and infection burn-out.
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In Chapter 4, we study the impact of segmenting a population patch into distinct
communities, with different concentrations of infection. We find that a population struc-
tured into communities yields a persistently infected sub-population, in contradistinction
to an equivalent population where the same initial fractions of susceptible, refractory and
infected individuals are homogeneously distributed in space. It is observed that even after
transience, the patterns of disease spreading in the two communities may be completely
dissimilar, even though both communities settle down to the same average infected sub-
population size. The time evolution of the total number of infected individuals in the
two communities displays distinct periodic wave forms, with different amplitudes, but
the same frequency.

In Chapter 5, we study a collection of populations modeled by the prototypical chaotic
Ricker map. The feedback received by each population patch is modeled to be influenced
by the local mean field of its neighbourhood. Specifically, we distinguish the terms of
the dynamical map into two parts: the growth term and the regulation term. The
growth term consists of a positive feedback, and the regulation term contains a negative
feedback, from the variable that represents the population at each time step, leading to
the characteristic unimodal shape of such population maps. In our study, instead of the
commonly-used diffusive interactions among coupled populations, we consider networks
of populations where the rate of population growth at a site is influenced by neighbouring
populations. We find that such parametrically coupled networks of populations yield very
interesting and non-intuitive collective behaviour.

The dynamics and distribution of the local populations, as well as the total biomass is
examined in the system. We observe that when the range of coupling is sufficiently large,
namely when enough neighbouring populations influence the growth rate of a population,
the system yields remarkably large biomass values that are very far from the mean. These
extreme events are found to be relatively rare and uncorrelated in time. It is also evident
that at any point in time, exceedingly large population densities emerge in a few patches,
analogous to an extreme event in space. These results indicate a new mechanism in
coupled chaotic systems that naturally yield extreme events in both time and space.

In Chapter 6, we present a summary of the problems explored in this thesis, as well as
the results and insights obtained from them, which potentially contribute to the under-
standing of emergent spatiotemporal collective behaviour in spatially extended complex
systems, arising from the interplay of local dynamics and spatially distributed connec-
tions. We also present certain techniques and possible directions for further characteri-
zation and analysis of emergent behaviours of complex dynamical systems in general.
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Chapter 2

Heterogeneity Facilitates Persistence
of Infection

Adapted from the work published in :

Vidit Agrawal, Promit Moitra and Sudeshna Sinha,
Scientific Reports, 7:41582, 2017.
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2.1 Introduction

How a disease spreads in a population is a question of much interest and relevance,
and consequently has been extensively investigated over the years [12, 13, 14]. Different
classes of models mimicking infection spread are obtained by exploring different models
of disease progression at the local/individual level. These may be simple disease cycles,
that end in fatality or permanent immunity, or they may be diseases that have more
complicated progression, including refractory periods where immunity is temporary. Fur-
ther, experimental observations, such as of the spread of measles in Iceland, which being
isolated provides a “natural laboratory” for the study of epidemics spreading, indicated
that the spatial element is essential in constructing any theory for valid predictions [14].
So a variety of models have been propounded, taking into account different properties of
the spatial domain in which the infection spreads.

A wide class of models focus principally on infection transmission, keeping the indi-
vidual disease progression at the local level simple. For instance, there are models based
on local transmission of infection, with the infection being ultimately fatal [15]. The
probability of infection from the infected host (transmissibility) is found to be the cru-
cial parameter in such host-pathogen models, and the pathogen must have a minimum
transmissibility in order to propagate, with the host driven to extinction if it exceeds
a certain transmissibility. Further simple models of disease transmission on small-world
networks has been investigated [16], varying the probability of infection by a disease
and/or the probability of its transmission. Such models display epidemic behavior when
the infection or transmission probability is above a threshold, analogous to percolation
thresholds. Similar studies on scale-free networks, with the disease cycle ending with per-
manent immunity shows that no long-term infection can be maintained as the number
of susceptibles decline as the epidemic spreads [17]. Studies of disease models where the
individuals become susceptible again, right after the infective period, shows that scale-
free networks are more prone to spreading and persistance of infection, while exponential
networks have an epidemic threshold above which the infection becomes persistent in
time [18].

Another class of models investigates more complicated disease progression, such as dis-
eases with temporary immunity. For instance in Ref. [19], for representative parameters
the model exhibits expanding circular waves of infection, some of which are generated
by unusual ‘pacemaker centres’. When infected individuals recover, the interior of the
growing wave boundary becomes a fresh pool of susceptible individuals. At the end of
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the cycle, a distant infectee short cuts through the network to reinfect the wave’s focal
pacemaker, enabling it to perpetuate. The results from this study suggest that both
the temporary immunity and the social structure have equal influence on the existence
of periodicity in the disease outbursts, and small-world connectivity was seen to lead to
persistent infection. A model with a similar disease progression has been studied, with
infection rate being a control parameter [20]. By using deterministic (mean field) equa-
tions to describe the temporal evolution of the disease, it was found that the epidemics
will be persistent when the control parameter is bounded in a certain range, and if the
infection rate is sufficiently large, too many susceptibles get infected at the same time
and therefore die simultaneously, leading to extinction.

Similar investigations of a generic model of excitable media with increasing density of
random long-range connections [21], reported the existence of two qualitatively different
regimes of self-sustained pattern formation. Starting from nearest neighbor coupling, as
the random links were increased, dynamically different results were observed. Below a
lower critical probability, the state of the system after an initial transient period was
characterized by self-sustaining single or multiple spiral waves. Second, at the critcial
probability, the spiral wave mode was suppressed and the system underwent a transition
to periodic activity. Third, when the value of probability was increased above a system-
size-dependent upper critical probability, the self-sustained activity ceased. This occurred
due to the spiral waves being primarily created by shortcut-induced excitations. So a
very large number of shortcut connections guaranteed almost simultaneous spread of
excitation to nearly all cells, as a result of which the dynamics of the system tended to
‘burn out’ after a transient. Several other studies on small-world networks also showed
the emergence of epidemic outbreaks for sufficiently large number of random connections
[22, 23]. Further it was shown that time-varying networks yield epidemics more readily
than static networks [24].

Lattice-based models for dealing with spatially-distributed host population, have also
been explored. For instance, Ref. [25] yield results suggestive of self-organised criticality.
By attaining a critical prevalence, the disease appears to reach a state where small fluc-
tuations have the potential to induce cascades of infection on a wide range of time and
length scales. This, in effect, maximises possibility of persistence by ensuring all spatial
and temporal scales are accessed. In the context of persistence, another very interest-
ing study [26] focuses on the local aspects of inhomogeneity in a spatially homogeneous
environment. In this work, the excitable media is characterized by a globally stable
equilibrium state, and also by a threshold mechanism which produces a large amplitude
response to a sufficiently large stimulus. It was shown that spatial inhomogeneities in
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such an excitable media tended to produce spatial patterns which oscillated periodically
in time.

Lastly, a large class of models consider the disease progression in homogeneously well-
mixed populations, where encounters are random, using an approach inspired by mass
action kinetics, resulting in a sets of ordinary differential equations [27, 28, 29]. The
advantage of these commonly used models based on differential equations (or difference
equations [30]) is that they are most often analytically tractable, and can yield asymptotic
stability regions for the equilibrium points. However, certain features are lost, as the
homogeneity of a large population is the underlying assumption in these models.

In this work we will explore the following crucial question, that has not seen much
focus yet: what population compositions are conducive to the emergence of long-term per-
sistence of infection in a population? In order to address this question we will consider
cellular-automata based descriptions of infection spreading, for a disease that has tem-
porary immunity [22, 23]. We will consider initial populations with varying degrees of
global heterogeneity, reflecting increasing non-uniformity in the condition of the individ-
uals comprising the population. Our attempt will be to ascertain the influence of this
heterogeneity on the persistence of infection. The model we will consider combines two
distinct features. The first is the transition from the susceptible to the infected state,
determined by the state of the immediate neighbourhood, which is stochastic in nature.
The second feature is a deterministic disease cycle, which ensues upon infection. We give
details below.

2.2 Model

Mathematically, epidemiological models have successfully captured the dynamics of in-
fectious disease [31, 32]. One well known model for non-fatal communicable disease
progression is the SIRS cycle. This model appropriately describes the progression of
diseases with temporary immunity, such as small pox, tetanus, influenza, typhoid fever,
cholera and tuberculosis [27, 28].

The SIRS cycle is described by the following disease compartments:

(i) Susceptible (denoted by symbol S) - An individual in this state remains susceptible
until they contract the infection from another infected person in their neighbourhood. At
the end of the refractory stage (namely the stage of temporary immunity) of the disease
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cycle, the individuals return to this state.

(ii) Infected (denoted by I) - In this stage of the disease cycle, the individual is in an
infected state, which signifies they can infect others around them.

(iii) Refractory (denoted by R) - At the end of the infectious stage, the individuals
acquire temporary immunity to the disease. In this stage they neither get infected by
infectious neighbors, nor do they infect anyone in their surroundings. Typically, this
stage lasts longer than the infected stage, and at the end of this stage the individual loses
the temporarily acquired immunity and becomes susceptible to the infection once again.

Specifically, in this work we consider a cellular automata model of the SIRS cycle
described above [22, 23, 24]. In this model of disease progression, time t evolves in discrete
steps, with each individual, indexed by (i, j) on a 2 dimensional lattice, characterized by
a counter

τi,j(t) = 0, 1, . . . , τI + τR (2.1)

describing its phase in the cycle of the disease [22]. Here τI+τR = τ0, where τ0 signifies
the total length of the disease cycle. At any instant of time t, if phase τi,j(t) = 0, then
the individual at site (i, j) is susceptible; if 1 ≤ τi,j(t) ≤ τI , then it is infected; if phase
τi,j(t) > τI , it is in the refractory stage. For, phase τi,j(t) 6= 0 the dynamics is given by
the counter updating by 1 every time step, and at the end of the refractory period the
individual becomes susceptible again, which implies if τi,j(t) = τ0 then, τi,j(t + 1) = 0.
Namely,

τi,j(t+ 1) = τi,j(t) + 1 if 1 ≤ τi,j(t) < τ0 (2.2)

= 0 if τi,j(t) = τ0 (2.3)

Hence the disease progression is a cycle (see Fig.2.1). We consider the typical condition
where the refractory period is longer than the infective stage, i.e. τR > τI .

We now investigate the spread of infection in a group of spatially distributed indi-
viduals, where at the individual level the disease progresses in accordance with the SIRS
cycle. In particular, we consider a population of individuals on a 2-dimensional lattice
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Figure 2.1: Schematic Representation of the SIRS cycle. The color scheme in all figures
is as follows: black represents the refractory state (R); white represents the susceptible
state (S); red represents the infected state (I).

where every node, representing the individual, has 4 neighbors [25]. Unlike many studies
with periodic boundary conditions, here the boundaries are fixed with no interactions
outside the boundaries. So our model mimics a patch of population, such as an island
or an isolated habitat [14], and investigates the persistence of infection in such a closed
region.

Condition for infection: Here we consider the condition that a susceptible indi-
vidual (S) will become infected (I) if one or more of its nearest neighbours are infected.
That is, if τi,j(t) = 0, (namely, the individual is susceptible), then τi,j(t + 1) = 1, if any
1 ≤ τx,y(t) ≤ τI where x, y ∈ {(i− 1, j); (i+ 1, j); (i, j − 1); (i, j + 1)}.

Notice that there are two distinct features determining the local state of the individu-
als. The first is the transition from the susceptible to the infected state determined by the
state of the immediate neighbourhood, which is stochastic in nature and dependent on
the distribution of initial states of the individuals in the population. The second feature
is the deterministic disease cycle: I → R → S. This interplay of a probabilistic feature
and a deterministic cycle shapes the dynamics of disease in the population.

In this work we focus on an unexplored aspect of such systems, namely we attempt
to ascertain the dependence of the persistence of infection on the composition of the
population. So the specific question of relevance here will be the connection between
sustained long-time persistence of infection in a region from an infective seed(s) and the
heterogeneity of the states of the individuals in the region.

Heterogeneity, namely non-uniformity in the states of the individuals, may be char-
acterized in different ways. Consider a generic initial population patch comprised of a
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random admixture of susceptibles, infected and refractory individuals, given by initial
fractions S0, I0 and R0. So, if either S0, I0 or R0 tends to one, we have a homogeneous
situation where almost all individuals are in the same state, namely almost all susceptible
(S0 → 1), or almost all infected (I0 → 1), or almost all recovered (R0 → 1). Increasing
deviations from this, reflects increasing heterogeneity in the population, as it implies an
increasing spread among different disease compartments.

Another source of heterogeneity arises from non-uniform stages of disease within a dis-
ease compartment. In our study, we first consider the scenario where the sub-population
of refractory individuals (given by R0) are in the same stage of the disease cycle, namely
the heterogeneity is entirely reflected by the variation of S0, I0 and R0. We will then
go on to study the effect of non-uniformity in the stages of recovery of the refractory
individuals, bringing in yet another type of heterogeneity in the population, reflecting
the spread in the states of individuals qualitatively in the same disease compartment. In
the sections below, we now present our simulation results, focussing on the persistence of
infection, obtained by sampling a large range of initial states, reflecting varying degrees
of heterogeneity, both in the partitioning of the population into disease compartments,
as well as non-uniformity in the disease phases within a compartment.

2.3 Spatio-temporal patterns of infection spreading

We first focus on the infection spreading patterns in the population. The principal ques-
tion we ask is the following: when is infection persistent in a patch, and how this depends
on the constitution of the initial population. In order to examine this, we study the spread
of infection from a seed of infection (namely one or two infected individuals) across a patch
of population composed of individuals at different stages in the disease cycle, and with
varying degrees of heterogeneity in the population.

With no loss of generality we consider τI = 4; τR = 9; τ0 = 13 and a lattice of
size 100 × 100. In our figures we represent the state of an individual in the disease
cycle (namely S, I or R) by a color, with white denoting a susceptible individual, black
denoting a refractory individual and red denoting an infected individual. The fraction
of susceptible individuals in the population at time t is denoted by St, the fraction of
infected individuals by It and the fraction of refractory individuals by Rt. In the sections
below we will focus on the possibility of the prolonged existence of infection arising in
different classes of initial populations, characterized by different S0, R0 and I0.

19



2.3.1 Non-persistent Infection in a Homogeneous Susceptible
Population

First we investigate the effect of an infected individual on a population patch where all
individuals are entirely susceptible to infection. Namely, we consider the case where at the
outset there is one infected individual and the rest of the population is in the susceptible
state, with τij = 0.

Fig. 2.2 displays the spreading patterns obtained in such a scenario. It is evident
that as time progresses the infection starts from the infected individual (“seed”) and
spreads symmetrically. This symmetric spreading pattern is readily understood from the
condition for infection, which turns susceptible individuals to infected if any one of their
neighbors is infected. So the infected seed infects its four neighbors, and these newly
infected individuals in turn infect their nearest four neighbours, and so on. This process
leads to an isotropic wave of infection which stops at the boundaries. In contradistinction,
periodic boundary conditions [20], or the presence of non-local “short-cuts” in space [19,
21], would place the infecteds in the proximity of suscpetibles again, thereby perpetuating
the infection.

We confirmed the generality of these observations for different relative lengths of the
infectious and refractory periods, namely varying τI and τR (with τI < τR). We further
ascertained that the choice of the location of the infected individual did not affect these
qualitative trends.

The key factor in infection spreading is the contact of susceptible individuals with
infected ones. It is clear that such an interaction takes place only at the outer edge of
the wave of infection, while the inner boundary of the infected zone is contiguous only to
refractory individuals. So the infection only spreads outwards, and does not move back
into the interior of the lattice again.

Importantly, the infection is removed after a while from the closed region, and all the
individuals comes to the end of the disease cycle and become susceptible again. So there
is no infective site left in the population to perpetuate the infection and initiate another
wave of disease spreading. Thus a fully susceptible population does not allow infection to
persist.
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Figure 2.2: Snapshots at specific times, showing the spread of infection from one infected
individual at t = 0, in a homogeneous initial population comprising entirely of susceptible
individuals (i.e. S0 ∼ 1, R0 = 0, I0 ∼ 0). The long bar shows the relative lengths of the
susceptible (S), infected (I) and refractory (R) stages in the disease cycle, where τI = 4,
τR = 9 and the total disease cycle τ0 is 13 (see text).
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2.3.2 Persistent infection in Heterogeneous Populations

Next we investigate the infection spread in the more realistic scenario where both refrac-
tory (τi,j > τI) and susceptible individuals (τi,j = 0) are present in the initial population,
and are randomly distributed spatially. We first consider the case where the refractory
individuals have phases τi,j = τI + 1, namely, they are at the start of the refractory stage
of the disease cycle. We investigate the persistence of infection in heterogeneous popu-
lations, with the initial state having (a) a single seed of infection and (b) varying initial
fractions of infected individuals (I0). In both scenarios, we analyze the effect of varying
S0 and R0 on the persistence of infection.

Figure 2.3: Snapshots of the infection spreading pattern in a heterogeneous population
comprising initially of a random mixture of equal numbers of susceptible and refractory
individuals (S0 ∼ 0.5, R0 ∼ 0.5 and I0 ∼ 0), with one infected individual at t = 0. Here
the refractory individuals have phases τi,j = τI + 1 (namely, they are at the start of the
refractory stage of the disease cycle). Again, the long bar shows the relative lengths of the
susceptible (S), infected (I) and refractory (R) stages in the disease cycle, where τI = 4,
τR = 9 and the total disease cycle τ0 is 13 (see text). The red box shows the fraction of S,
I and R individuals in the population at that instant of time. Interestingly, the spatially
random population evolves into a more regular pattern after a short transient time.
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To begin with, in Fig. 2.3, we illustrate the effect of a single infected individual on an
initial population with equal numbers of susceptible and refractory individuals, namely
S0 = R0. It is evident from these representative results that in a well mixed population,
consisting of a random collection of both susceptible and refractory individuals, introduc-
tion of a single infected individual can lead to persistent infection in the population. Also
notice that some of these spreading patterns are reminiscent of coalescing and interacting
spiral waves initiated by local inhomogeneity in an uniform background [26].

This can be rationalized as follows: the mixed presence of susceptible and refractory
individuals, implies that the disease cycles of the individuals in the population are not
synchronized [29]. So there are always some individuals in the infective stage of the disease
cycle in the population, and these act as seeds for continued infection propagation, leading
to persistent infection. Counter-intuitively then, the presence of individuals who are
(temporarily) immune to the disease amongst susceptible ones leads to sustained infection,
while in a completely susceptible population the infection dies out.

Next we focus on the time evolution of an initial population consisting of a random
mixture of S, I and R states. In particular we investigate the nature of the persistent
infection in the population under varying initial fractions of infected individuals I0. A
typical random initial condition is shown in Fig. 2.4, with the initial fraction of infected
sites I0 being one-tenth and the initial fraction of susceptibile and refractory individuals
being equal (i.e. S0 = R0). Here too we find that infection is sustained.

Further, interestingly, it is clear that there is an approximate recurrence of the complex
patterns of infected individuals in the population. Fig. 2.5 shows the time evolution of the
fraction of infected, refractory and susceptible individuals in the population, namely It, Rt

and St, in the case displayed in Fig. 2.4. It can be clearly seen that after transience, It, Rt

and St exhibit steady oscillatory dynamics, with period of oscillation close to the disease
cycle length τ0. This is consistent with the observed recurrence of the spatio-temporal
patterns when persistent infection emerges.

A quantitative measure of the recurrence of patterns can also be obtained by calcu-
lating the difference of the state of the population from the initial state, as reflected by
the Hamming distance:

H = 1
N

∑
i,j

|τi,j(t)− τi,j(0)| (2.4)
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Figure 2.4: Snapshots of the infection spreading pattern in a heterogeneous population
comprising initially of a random mixture of individuals, with S0 = R0 and I0 = 0.1. Here
the refractory individuals have phases τi,j = τI + 1 (namely, they are at the start of the
refractory stage of the disease cycle). Again, the long bar shows the relative lengths of the
susceptible (S), infected (I) and refractory (R) stages in the disease cycle, where τI = 4,
τR = 9 and the total disease cycle τ0 is 13 (see text). The red box shows the fraction of
S, I and R individuals in the population at that instant of time.

where the sum is over all N sites in the lattice. The time dependence of the Hamming
distance given above is shown in Fig. 2.6, and it clearly shows steady oscillations. This
indicates that the fraction of the susceptible, infected and refractory individuals in the
population, and more remarkably their locations, repeat almost periodically over time.
It should be noted that the frequency of oscillation again approximately corresponds to
the disease cycle length.

Another pertinent observation here is the dependence of this dynamics on disease
cycle. As the length of the infectious stage (i.e. τI) increases, keeping the total disease
cycle length invariant, the fraction of infected individuals It increases. The average It
is proportional to the fraction of the disease cycle occupied by the infectious stage, i.e
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Figure 2.5: Time evolution of It, St, Rt, in a heterogeneous population comprising initially
of a random mixture of individuals, with S0 = R0 and I0 = 0.1.

the ratio τI/τ0. So the size of the infected population strongly depends on the nature of
disease as reflected in the length of the infectious stage of the disease.

2.4 Influence of the initial composition of the popu-
lation on the persistence of infection

We now attempt to gauge the statistically significant trends in It, by averaging the fraction
of infected individuals at asymptotic time t, arising from a wide range of random initial
configurations at time t = 0. We denote this by 〈It〉. Such a global measure provides a
quantitative estimate of the size of the basin of attraction of the persistent state.

In terms of this quantity, persistent infection is indicated by a non-zero value. How-
ever, after sufficient transient time-steps, if 〈It〉 is zero, it indicates that the infection has

25



Figure 2.6: Hamming distance given by Eqn. 2.4 as a function of time, in a heterogeneous
population comprising initially of a random mixture of individuals, with S0 = R0 and
I0 = 0.1. The inset clearly shows that the frequency of spatial oscillations are very close
to the length of the disease cycle

died out. So 〈It〉 can serve as an order parameter for the transition to sustained infection
in a population.

2.4.1 Dependence of persistence of infection on the initial frac-
tion of susceptibles

For fixed τI and τ0 we have calculated 〈It〉, for different initial fractions of susceptible
individuals S0. We explore the full possible range of S0 ∈ [0, 1], where S0 = 0 signifies
a population comprised entirely of refractory individuals who are immune to infection
initially, and S0 = 1 implies an initial population comprised entirely of individuals sus-
ceptible to infection. While the phase of the susceptible (S) sub-population is τi,j = 0 of
course, the refractory individuals (R) can be present in different stages in the refractory
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period with τI < τi,j < τ0. We explore two different scenarios of the initial state of the
refractory individuals in the population.

Figure 2.7: Variation of 〈It〉 (after transience) with respect to the fraction of susceptible
individuals in the initial population S0, arising from the presence of a single infected
individual at time t = 0. Here the refractory individuals have the same phase, the
disease cycle has τI = 4; τ0 = 13, and It is averaged over 103 realizations of the initial
population on the lattice. The specific case of a 100× 100 lattice is displayed. However
note that different lattice sizes yield the same result.

First we present the case where all the refractory individuals are at the start of the
refractory stage of the disease cycle, i.e. all τi,j = τI + 1. So there is uniformity in
the stage of disease progression in the refractory sub-population, though the individuals
are randomly distributed spatially. We focus on the asymptotic state of infection in
such a population, arising from a single infected individual at the outset. The results
obtained from a large sample of initial states is shown in Fig. 2.7, and it is evident from
there that 〈It〉 is very low for both high and low S0, peaking around S0 ∼ 0.65 − 0.75.
Namely, homogeneous initial populations where all individuals are immune (S0 = 0), or
all are susceptible to disease (S0 = 1), do not yield persistent infection. Rather, mixed
populations lead to most sustained infection, with persistently high numbers of infected
individuals.
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We can rationalize our observations as follows: If an infected individual is completely
surrounded by refractory individuals with τ = τI +1, it will complete the infectious stage
without transferring the infection at all, as τI < τR. So the infection can spread only if
the infected seed is contiguous to at least one susceptible individual. Now the probability
of contact with a susceptible individual in the initial stages of infection spreading depends
on the initial fraction of susceptibles S0. This suggests that when S0 is low, the chance of
the infected individual being in contact with a susceptible one is low. As a result, as S0

tends to zero, on an average, the infection eventually gets removed from the population,
with the seed of infection crossing over to the refractory phase without infecting any other
individual.

When there are more susceptible individuals in the initial population, there is a higher
chance that the infected seed will encounter a susceptible neighbour. So as expected,
increasing S0 leads to a larger infected set on an average. However the surprising trend is
the decrease in the infected set as the initial susceptible sub-population becomes too high,
with the number of infected individuals tending to zero as the entire population becomes
susceptible. This feels counter-intuitive, but can be understood as follows: Consider the
limiting case where initially almost all the individuals are susceptible to the infection.
Now the infection will spread immediately in isotropic waves, but will eventually stop
at the boundaries. In analogy to the spread of forest fire, the boundary of refractory
individuals is like scorched earth preventing spread across them. Now after the wave
of infection passes, the individuals are in the refractory stage, leading eventually to the
entire set being synchronized in the susceptible regime. There is no infected individual
left then to act as a seed for a further wave of infection spreading. So the infection does
not persist. The susceptible stage is like an “absorbing state”, and in the absence of
“infectious perturbation” the system remains fixed in that state.

In order to prevent the above scenario, one needs enough refractory individuals in the
population. When R0 is below 1/4 (i.e. S0 > 3/4), typically the infected seed may not
have a refractory individual among its four neighbours. So one expects that the persisting
infection will have lower probability of occurrence as S0 increases beyond 3/4. This is in
accordance with the trends observed in the simulations.

We then see that for the infection to persist in a population, a well mixed heteroge-
neous population is required, with reasonable number of both susceptible and refractory
individuals. Randomly mixed populations prevent synchronization of the disease, and this
is the key to always having some source of infection left in the population.

28



2.4.2 Dependence of persistence of infection on the initial frac-
tion of infecteds

We now vary the initial fraction of infected individuals I0 in the population, over the
entire range [0, 1]. For the remaining population, the initial fraction of susceptible and
refractory individuals is set at different ratios. We consider an ensemble of initial condi-
tions, with specific I0, S0 and R0 and find the time averaged It, after long transience for
each realization. The ensemble average of this quantity is displayed in Fig. 2.8. Notably,
we find that there is a definite window of persistence over the range of I0, where the
infection never dies down and the fraction of infected individuals in the population is
reasonably high on an average.

Figure 2.8: Variation of 〈It〉 (after transience) with respect to the initial fraction of
infected individuals I0 in the population, and S0 = R0. The refractory sub-population
consists of individuals with phase equal to τI + 1. Here the disease cycle has τI = 4;
τ0 = 13, and It is averaged over 103 initial realizations. The specific case of a 100× 100
lattice is displayed. However note that different lattices sizes yield the same result.

In the state where infection is persistent, the individuals are unsynchronized and
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spread over the different stages of the disease cycle. So on an average the fraction of
infected individuals is ∼ τI/τ0, namely the fraction of the total disease cycle occupied
by the infected stage. For instance, in the example shown in Fig. 4.1 with τI = 4 and
τ0 = 13, at the plateau of persistence, the infected fraction is approximately one-third of
the population. The transition to persistent infection is sharp and occurs at I0 → 0. This
implies that the infection can spread and persist even when there is only a single infected
individual in the initial population. This is consistent with the results we presented earlier
(cf. Fig. 2.7) on infection spreading from a single infected individual.

Interestingly, the infection ceases to persist for higher values of I0, and the fall in
persistence is rapid. That is, if the initial population has too many infected individuals,
infection will not persist. This can be rationalized by noting that one needs a mix of
susceptibles and refractory individuals in the population for persistent infection. For
instance, considering the limiting case of all infected individuals in the initial state, it is
clear that all individuals will go through the disease cycle in synchrony. So all individuals
will become susceptible again together, but there will be no infective seed left in the
population to perpetuate the infection.

2.5 Effect of varying degrees of non-uniformity in the
refractory sub-population on the persistence of
infection

Now we will explore the effect of non-uniformity within the refractory sub-population on
the emergence of persistent infections. Namely, we will consider the refractory individuals
in the initial population to be in different stages of disease progression. We will consider
two distinct ways of interpolating between the completely heterogeneous and completely
uniform limiting cases, in order to gauge the effect of heterogeneity on sustaining infection.

First we consider the initial refractory sub-population to be an admixture of subsets
of individuals with uniform phase and with randomly distributed phases. Specifically, we
explore initial refractory sub-populations comprised of some fraction frand with phases
randomly distributed over the range τI + 1 to τ0, and the rest 1− frand with fixed phase
τR = τI +1. We examine the spread and persistence of infection in such a scenario, under
variation of the initial composition of the population.

Fig 2.9 exhibits the persistence of infection, with respect to varying S0, arising in
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Figure 2.9: Variation of 〈It〉 (after transience) with respect to initial fraction of susceptible
individuals S0, for different fractions frand of the initial refractory sub-population having
randomly distributed phases (see key). Here the disease cycle has τI = 4; τ0 = 13, and It
is averaged over 103 initial realizations and lattice size is 100× 100.

a population that had a single infected individual initially. Different fractions of the
initial refractory sub-population with randomized phases were explored, ranging from
frand = 0 (i.e. completely uniform), to frand = 1 (i.e. completely heterogeneous). The
trends clearly indicate a continuous cross-over from the condition where all refractory
individuals are in the same phase, to the scenario where all are in random phases.

Further, we explore the effect of varying the initial fraction of infected individuals
I0, over the range [0, 1]. Fig. 2.10 exhibits the change in the window of persistence
with respect to frand. It is evident that increasing frand, namely increasing the initial
number of refractory individuals with de-synchronized phases, leads to a definite increase
in the window of persistence. This implies that for populations with a more heterogeneous
refractory sub-population, the disease persists over a larger range of infected fractions I0

of the initial population.
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Figure 2.10: Variation of 〈It〉 (after transience) with respect to the initial fraction of
infected individuals I0 in the population, and S0 = R0. The initial refractory sub-
population consists of different fractions frand with randomly distributed phases (see
key). Here the disease cycle has τI = 4; τ0 = 13, and It is averaged over 103 initial
realizations. While the specific case of a 100 × 100 lattice is displayed, different lattices
sizes yield the same result.

Note however, that there is also an apparent reduction in the window of persistence at
very high frand. This can be rationalized by noting that when the entire initial refractory
sub-population R0 has uniformly distributed phases, there are a significant number of
individuals who are closer to the end of their disease cycle (for instance, stage 12 or
13). These individuals become susceptible within a few time steps, and therefore bring
the population closer to an overall state of homogeneity again, as all susceptibles are in
the same phase (stage 0) and remain in that phase unless infected. We have observed
qualitatively and quantitatively earlier, that a more homogeneous population leads to a
reduced window of persistence. Hence, presence of a significant number of individuals
closer to the end of their disease cycle acts as a homogenizing factor for the population
and is detrimental to persistence.
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Lastly, we study the effect of varying ranges of spread in the initial phases of the
refractory individuals. Specifically we consider that the phase of the refractory individ-
uals in the initial population to be randomly distributed over different ranges Rrand. In
particular we examine the persistence of infection for Rrand ranging from [τI + 1, τI + 1],
(where all refractory individuals have the same phase) to [τI + 1, τI + τR] (where hetero-
geneity is large as the phases of the refractory individuals are distributed over the entire
refractory range).

Figure 2.11: Variation of 〈It〉 (after transience) with respect to initial fraction of sus-
ceptible individuals S0, for the case where there is a single infected individual in the
population at the outset, and the refractory individuals in the population have phases
τ randomly distributed over different ranges Rrand in the refractory stage : [5,5]; [5,7];
[5,9]; [5,11]; [5,13]. Here It is averaged over 103 realizations, lattice size is 100× 100, and
the disease cycle parameters τI = 4, τ0 = 13.

Figs. 2.11-2.12 exhibit representative results of 〈It〉 as a function of the initial fraction
of susceptibles S0 and infecteds I0. It can be clearly seen that a smooth cross-over
takes place from the extremal case of all refractory individuals in the same phase, to the
limit where the stages of the refractory individuals are spread randomly over the entire
refractory period. The key observation here is that as the spread in phases increases, the
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Figure 2.12: Variation of 〈It〉 (after transience) with respect to initial fraction of infected
individuals I0, for the refractory individuals having phases τ randomly distributed over
different ranges Rrand in the refractory stage : [5,5]; [5,7]; [5,9]; [5,11]; [5,13]. Here It is
averaged over 103 realizations, lattice size is 100× 100, and the disease cycle parameters
τI = 4, τ0 = 13.

range of persistent infection becomes larger. Namely, when there is a large initial spread
in the stages of disease among the individuals, at subsequent times there are always some
individuals who can “pick up the baton of infection”, leading to persistent infection.

So we see that in the completely heterogeneous case, low susceptible and high re-
fractory initial subpopulations favour persistent infection. But in a completely uniform
population, a higher fraction of susceptibles leads to persistent infection. This has the
following important implication: when refractory individuals are not synchronized at the
same phase of disease progression, even if there are few susceptible individuals in the
population initially, the infection grows substantially and the average size of the infected
sub-population is large. So we have demonstrated that even when the entire population
is susceptible to infection, the infection eventually dies out, while even a few susceptibles
among an heterogeneous refractory population gives rise to a large persistent infected
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sub-population.

We can rationalize this counter-intuitive trend that persistent infection is more likely
when the number of susceptible individuals in the initial population is low, as follows:
When S0 is low, there are many refractory individuals in the population surrounding the
infected individual. These individuals are in various stages in the refractory period, and
some become susceptible again while the seed is still infectious. If S0 → 0 and the refrac-
tory individuals are uniformly distributed over the refractory range τR, the probability
of the seed encountering a susceptible individual while still infectious is proportional to
τI/τR. Since at least one neighbour in contact with the seed needs to be susceptible, this
probability should be greater than 1

4 for the infection to spread, on an average. So when
the infective stage τI is sufficiently long (as in our example of τI = 4, in a disease cycle
of length 13), extremely low initial S0 can also lead to persistent infection.

Lastly, note that certain systems in the broad class considered here, have found per-
sistent infection arising due to the presence of “short-cuts” or non-local connections in
space. Such long-range links allow a distant infectee to jump through to re-infect and
enable perpetuatuation [19, 21]. However, in our case there are no such “short-cuts”
aiding persistence. Rather persistence of infection arises from the initial heterogeneity
of the population, and this suggests yet another origin of self-sustained infection in a
population.

2.6 Conclusion

In summary, we have explored infection spreading qualitatively and quantitatively in
a patch of population, where the disease progression of the individuals was given by
the SIRS model and an individual became infected on contact with another infected
individual. Such an island or isolated patch or habitat, can provide a “natural laboratory”
to study spread of epidemics [14]. Here we have focussed on the emergence of persistent
infection in the patch, under varying degrees of heterogeneity in the initial population.

Specifically, we considered two scenarios of non-uniformity in the population. In one
we consider varying fractions of the initial population in different disease compartments,
and in another we examine varying spread in the phases of disease progression among the
individuals. Our central result is the following: we find that an infectious seed does not
give rise to persistent infection in a homogeneous population consisting of individuals at
the same stage of disease progression. Rather, when the population consists of randomly
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distributed individuals at various stages of the disease, infection becomes persistent in
the population patch.

Now the initial state of the patch of population can occur in different ways. First, a
random set of individuals may have colonized the patch, and so the initial state is typically
a random mix of individuals. Alternately, we can think of a population comprised of
individuals susceptible to a disease being invaded by individuals that may be infected
or recovering (refractory), namely a small set of infective or recovered individuals, enter
an island/patch of population comprised of individuals susceptible to the disease. The
question then is, will this entry lead to persistent infection in the patch? The interesting
indication of our study is that if only infecteds enter a population that is entirely made of
susceptibles, the infection will die out. However, if a few infecteds (even one) enters along
with some refractory individuals the infection will persist. Alternately, if susceptible and
refractory individuals are quarantined in a patch, a single infected can lead to sustained
infection. Further, if individuals who have recovered from the disease at different points
in time are in an isolated group, the entry of even a single infected individual can lead
to persistent infection in the group, while the entry of an infected in a group of entirely
susceptible individuals or individuals at the exact same stage of recovery, will only lead
to transient waves of infection, which will soon die out.

In order to broadly gauge the underlying mechanism that leads to the persistence of
infection, one must actually focus on the scenarios where infection burns out. Infections
die out eventually when there is too much synchrony in the population, as this can lead to
most of the patch entering the refractory stage, and subsequently the susceptible stage,
simultaneously. This leaves no infective seed in the population, and no new wave of
infection can be initiated. For persistence of infection one then needs a balance between
sufficiently large number of susceptibles (so that the disease can spread), as well as enough
refractory individuals (so that there is no synchronization).

The key to persistent infection therefore, is the random admixture of an infected
allows spread of disease, without the entire neighbourhood entering the infective stage
synchronously. The counter-intuitive consequence of this is that infection eventually
dies out when an infective seed enters a population that is entirely susceptible, while
its entry in a population comprised of individuals in different stages of recovery (some
of whom will become susceptible within the infective period of the infected individual)
gives rise to persistent infection. So our observations suggest that initial heterogeneity
leads to greater propensity for sustaining an infected sub-population, thereby facilitating
persistent infection refractory and susceptible individuals, leading to de-synchronization
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of the phases in the disease cycle of the individuals. So we have demonstrated that when
the entire population is susceptible to infection, the infection eventually dies out, while
even a few susceptibles among an heterogeneous refractory population gives rise to a large
persistent infected sub-population.
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Chapter 3

Synchronization Inhibits Persistence
of Infection

Adapted from the work published in :

Promit Moitra, Kanishk Jain and Sudeshna Sinha,
Europhysics Letters, 121:6, 2018.
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3.1 Introduction

One of the outstanding problems in the area of infectious epidemics spreading across a
population has been obtaining reliable early warning signals for persistence of infection in
a region. This is a problem of obvious significance, as it can potentially influence strategies
of long-term control of disease. Mathematically this is a challenging problem, as one has
to consider large interactive complex systems that are strongly nonlinear and typically
not well mixed. In this work we attempt to uncover what dynamical features at early
times are strongly correlated to long-term characteristics, such as the continued presence
of infection in a population patch. Such features, if found to exist, can potentially provide
important early warning signals for persistent infections.

The mathematical epidemiological model used in this study is the discrete spatially
extended SIRS model, as in the previous problem. The individual dynamics are shown
in the schematic Fig 3.1

The total length of the disease cycle, denoted by τD, is equal to τI + τR + 1, including
the state τ = 0 the individual returns to at the end of the refractory period. In this work
we consider the typical condition where the refractory stage is longer than the infective
stage, i.e. τR > τI .

3.2 Spatiotemporal evolution of infection

We now investigate the spread of disease in a spatially distributed group of individuals,
where at the individual level the disease progresses in accordance with the SIRS cycle de-
scribed by the Cellular Automaton model above. In particular, we consider a population
of individuals on a 2-dimensional square lattice of linear dimension L, where every node
represents an individual [25]. Unlike many earlier studies, we are interested in a closed
patch of individuals. So instead of the commonly used periodic boundary conditions, the
boundaries of our system are fixed, with no individuals outside the boundaries. We will
focus on the emergence of persistent infection in such an isolated patch.

We consider a following condition for spread of infection: if one or more of its
nearest neighbours of a susceptible individual is infected, then the susceptible indi-
vidual will become infected. That is, if τi,j(t) = 0, (namely, the individual is sus-
ceptible), then τi,j(t + 1) = 1, if any 1 ≤ τx,y(t) ≤ τI where x, y belong to a neigh-
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Figure 3.1: The individual oscillatory dynamics of the disease model, represented
schematically. The susceptible state S, where τ = 0, is an absorbing state. Once in-
fected, the dynamics is deterministic for an individual, and progresses as shown. The
interaction between individuals occurs in the infected phase I, with τ ∈ [1, τI ]. The re-
fractory phase R (τ ∈ [τI , τ0]) confers individuals with temporary immunity, preventing
the spread of infection, till they become susceptible again.

bourhood consisting of 4 individuals, namely the von Neumann neighborhood, given
by: x, y ∈ {(i− 1, j), (i, j + 1), (i+ 1, j), (i, j + 1)}. Further, we will also consider a
neighbourhood comprising of 8 individuals, namely the Moore neighbourhood, given by:
x, y ∈ {(i−1, j), (i, j+1), (i+1, j), (i, j+1), (i−1, j−1),(i+1, j+1), (i−1, j+1), (i+1, j−1)}
We denote the number of neighbours by K, with the von Neumann neighbourhood having
K = 4, while the Moore neighbourhood has K = 8. Larger K implies that an infected
individual can affect individuals in a larger zone around it, namely the infected individ-
ual has a larger range of influence. So the dynamics of this extended system combines
deterministic, as well as probabilistic elements. The disease progression of an infected in-
dividual is deterministic, with the infected period of length τI , followed by the refractory
period of length τR. However, the process of contracting the infection is probabilistic,
arising from the interplay of the localized nature of the interactions and the random
initial states of the individuals.
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Now the infection in this closed patch can either die out, or it can persist. So it is of
considerable significance to find the conditions that lead to sustained infection, as well
as to uncover the salient features that characterize the persistent state. The relevant
quantity here is the asymptotic fraction of infected individuals in the population. To
obtain an appropriate measure of this we first find the fraction of infecteds at time t,
denoted by I(t). In order to gauge asymptotic trends, we consider this fraction of infected
individuals, after long transient time, averaged over several disease cycles, denoted by 〈I〉.
This quantity serves as an order parameter for persistent infection, with non-zero 〈I〉
indicating persistent infection, while 〈I〉 = 0 indicates that infection has died out in the
patch. Further we consider the ensemble averaged 〈I〉, denoted by 〈〈I〉〉. This quantity
reflects the the size of the basin of attraction of the persistent state, and indicates the
probability of persistent infection arising from a generic random initial condition of the
population. So 〈〈I〉〉 is non-zero when persistent infection arises from typical initial states
and zero otherwise.

By studying the dependence of 〈〈I〉〉 on the initial fraction of infecteds I0, suscepti-
bles S0 and refractory individuals R0 in the population, it was found in Ref. [33] that
for sustained contagion in a population, the initial population needed to be a well mixed
heterogeneous collection of individuals, with sufficiently large number of both suscepti-
ble and refractory individuals. Further, it was found that in a population composed of
an admixture of susceptible and refractory individuals, persistent infection emerged in a
window of reasonably low I0, with I0 → 0 at the lower end of this persistence window.
Similar phenomena have been observed in diseases modeled by SEIR where spatial het-
erogeneity was seen to play an important role in the persistence of disease [34]. Further,
in more general terms, these results are reminiscent of the observation of noise-sustained
oscillations of excitable media [35], with noise playing the role of heterogeneity.

In this work we will focus on the correlation between synchronization and persistent
infection. We ask two complementary questions: First, does lack of synchronization
characterize the state of the population where infection is sustained. Secondly, and more
significantly, does the lack of synchronization in the early stages of disease spreading lead
to persistent infection at later times. We will explore this question by introducing local
and global measures of synchronization. Lastly, we will demonstrate that when the range
of infection transmission of an infected individual is wider, one obtains lower persistent
infection. We will account for this counter-intuitive observation through the relation
between synchronization and infection burn-out.
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3.2.1 Synchronization characterizes populations with sustained
infection

We first explore the degree of global synchronization in the system, by calculating the
quantity:

σ(t) = | 1
N

ΣN expiφm,n(t)| (3.1)

where φm,n = 2πτm,n/τD is a geometrical phase corresponding to the disease stage
τm,n of the individual at site (m,n). Here the indices m and n run from 1 to L, namely
over all N = L × L individuals in the population patch. We use Eqn. 3.1 to obtain the
asymptotic time averaged synchronization order parameter, denoted by 〈σ〉, by averaging
σ(t) over time, of the order of several disease cycles, after transience. This reflects the
synchronization in the emergent system, namely the asymptotic degree of synchronization
in the population arising from a specific initial state. So when the phases of disease of the
individuals are uncorrelated, that is the disease cycles of the individuals in the population
are not synchronized, 〈σ〉 is close to 0. On the other hand when the individual disease
cycles are quite synchronized, 〈σ〉 tends to 1. We will then go on to calculate the en-
semble averaged asymptotic synchronization order parameter denoted by 〈〈σ〉〉, obtained
by further averaging the time-averaged asymptotic synchronization order parameter 〈σ〉
over a large number of initial states characterized by a specific (I0, S0, R0). This order
parameter indicates the probability of synchronization arising from a generic random
initial condition of the population. We will use this measure, alongside the ensemble av-
eraged persistence order parameter 〈〈I〉〉, to help us gauge the broad correlation between
synchronization in the emergent population (or lack thereof) with persistent infection.
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Figure 3.2: Dependence of the ensemble averaged asymptotic synchronization order pa-
rameter 〈〈σ〉〉 (black solid line) on the initial fraction of infecteds in the population I0
(with equal initial fractions of susceptible and refractory individuals: S0 = R0). where
〈〈I〉〉 is obtained by averaging over 30 time steps (after the system has evolved through
100 transient time steps) and for 100 random initial conditions. Here system size is
100× 100 and K = 4. The figure also shows the variation of 〈〈I〉〉 (red dashed line) with
respect to I0, where 〈〈I〉〉 is an ensemble averaged order parameter reflecting the degree
of persistence of infection in the population.

Fig. 3.2 shows 〈〈I〉〉 and 〈〈σ〉〉, for different initial fraction of infecteds I0 in the pop-
ulation. As mentioned before, one observes persistent infection (i.e. 〈〈I〉〉 6= 0), in a
window of I0 [33]. Further, it is now clearly evident that in this same window of per-
sistent infection, the global asymptotic synchronization order parameter is the lowest.
So higher persistence of infection is consistently correlated with lower degree of synchro-
nization, distinctly implying that a population where infection is persistent is generally
characterized by low synchronization among the individuals. Specifically, for instance for
the case of persistent infection with 〈〈I〉〉 ∼ 1

3 , we find 0 < 〈〈σ〉〉 < 1
3 . On the other hand,

for cases where the infection eventually dies out, i.e. 〈〈I〉〉 ∼ 0, we have 〈〈σ〉〉 ∼ 1. So
it is evident that there is clear inverse dependence of infection persistence as reflected by
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〈〈I〉〉 and degree of synchronization of the disease cycles of the individuals in the emer-
gent population as reflected by 〈〈σ〉〉. So one can infer that a population where persistent
infection emerges, is quite unsynchronized.

3.2.2 Transient synchronization results in weaker persistence of
infection

We have shown above that lack of synchronization is a key feature of populations with
sustained infection, and the asymptotic synchronization order parameter 〈σ〉 successfully
characterizes populations with different degrees of persistence of infection. This motivates
us to explore the second question: is synchronization in the initial (transient) stage, which
we will call transient synchronization here, an indicator of future persistence of infection
in the population?

First, we show in Fig. 3.3 and Fig. 3.4 illustrative examples in order to visually
examine the state of the system at various instances of time within the first disease cycle,
arising from two distinct initial conditions. The first example is a population with initial
fraction of infecteds I0 = 0.1 for which the infection persists, and the second example
has I0 = 0.5 for which the infection burns out (cf. Fig. 3.2). Clearly the case with long-
term persistence of infection is marked by a lack of synchrony. On the other hand, the
case where the infection dies out shows pronounced synchrony within the first few time
steps. We would now like to investigate if this qualitative observation holds consistently,
quantitatively, over a large range of initial states.

3.3 Quantifying finite-time transient synchronization

In order to quantify the early time synchronization in the system, we introduce a finite
time average of the synchronization order parameter σ(t), from the initial time (t = 0)
up to a specific time t = T denoted by 〈σT 〉. Such a measure reflects the degree of
synchronization over short time-scales, at early times. We further consider the ensemble
average of this quantity, where the average is over a large set of initial states with a spe-
cific initial partitioning (I0, S0, R0). This quantity reflects the degree of synchronization
typically arising up to time T in the population, from a generic initial state, for a specific
(I0, S0, R0), and is denoted by 〈〈σT 〉〉. When T ∼ τ0 (of the order of a single disease
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Figure 3.3: Snapshots of the infection spreading pattern at very early times t = 0, 5, 10, 15,
in an initial population comprising of a random admixture of individuals, with S0 = R0
and I0 = 0.1 and (b) I0 = 0.5. The colour bar shows the relative lengths of the susceptible
(S), infected (I) and refractory (R) stages in the disease cycle, where τI = 4, τR = 9 and
the total disease cycle τD is 14. The red box shows the fraction of S, I and R individuals
in the population at that instant of time. Notice that the population appears to lack
of synchrony in the individual states, and has a non-uniform distribution. The infection
persists in this case.

cycle), this quantity reflects the transient synchronization or early-time synchronization,
namely synchronization of the population within the first cycle of disease. In this work
we will aim to explore if this quantity can offer a consistent early warning signal for
persistence of infection in the patch of population.

Specifically we will now investigate 〈〈σ15〉〉, namely the case where T = τD + 1, where
τD is the length of the disease cycle. So this quantity reflects the synchronization of the
individual disease cycles in the population at early times, and can serve as an useful order
parameter for transient synchronization. When 〈〈σ15〉〉 → 1, complete synchronization of
the individual disease cycles in the population is obtained soon after one disease cycle.
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Figure 3.4: Snapshots of the infection spreading pattern at very early times t = 0, 5, 10, 15,
in an initial population comprising of a random admixture of individuals, with S0 = R0
and I0 = 0.5. The colour bar shows the relative lengths of the susceptible (S), infected (I)
and refractory (R) stages in the disease cycle, where τI = 4, τR = 9 and the total disease
cycle τD is 14. The red box shows the fraction of S, I and R individuals in the population
at that instant of time. Notice that the population appears to be in synchrony in the
individual states, and has a more uniform distribution. The infection dies out in this
case.

Fig. 3.5 shows the dependence of the degree of transient synchronization 〈〈σ15〉〉,
namely the degree of synchronization right after completion of the first cycle of disease,
on the fraction of infecteds I0 in the initial population. It is evident that the onset
of the persistence window is clearly indicated by minimum 〈〈σ15〉〉, i.e. the transient
synchronization is the lowest when persist infection begins to emerge in the population.
So, the early synchronization properties of the system allows one to gauge the future
persistence of contagion. A valuable consequence of this observation is that early-time
synchronization can serve as an early warning signal for sustained infection at a much
later time.
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Figure 3.5: Dependence of the transient synchronization order parameter 〈〈σ15〉〉 on the
initial fraction of infecteds I0 ∈ [0, 1] (with S0 = R0 and system size 100 × 100). Here
the synchronization order parameter at each I0 is obtained by averaging over 100 random
initial conditions. The quantities are obtained by averaging over I0 ∈ [0, 1], with S0 = R0.
Here K = 4.

Now we examine the explicit correlation between 〈〈σ15〉〉 and the asymptotic fraction
of infecteds in the population 〈〈I〉〉. This is shown in Fig. 3.6, from where one can clearly
see a well-defined transition to long-term persistent infection as the transient states get
more synchronized. So the asymptotic fraction of infecteds decreases sharply at short-
time synchronization order parameter values close to 2/3. Namely, there exists a critical
transient synchronization order parameter σ?T , beyond which persistent infection does
not occur (i.e. 〈〈I〉〉 ∼ 0). Note that this critical σ?T reflects early-time properties, while
offering a clear correlation with an asymptotic phenomena. It quantitatively confirms
our intuition that when the system is more synchronous at early times, there is greater
propensity of the infection dying out.

So we conclude that greater degree of synchronization at early times hinders the suste-
nance of infection. Thus early short-time asynchrony appears to be a consistent precursor
to future persistence of infection, and can perhaps provide valuable early warning signals
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Figure 3.6: Correlation between the asymptotic persistence parameter 〈〈I〉〉 and the
ensemble averaged transient synchronization order parameter 〈〈σ15〉〉. The quantities are
obtained by averaging over I0 ∈ [0, 1], with S0 = R0. Here K = 4.

for anticipating sustained contagion in a population patch.

3.3.1 Transient Local synchronization

Now we explore the correlation of transient local synchronization, namely synchronization
in a local neighbourhood of an individual. This is important, as infection spread is a local
contact process and so the composition of its local neighbourhood is most crucial for an
individual. In order to capture finite-time local synchrony, we introduce the following
synchronization parameter:

σ
(i,j)
K (t) = | 1

K + 1Σm,n expiφm,n(t)| (3.2)

where φm,n is a geometrical phase corresponding to the disease stage τm,n of the
individual at site (m,n). Here the indices m and n run over the site index and all K sites
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contained within the neighbourhood of (i, j). The average of σ(i,j)
K (t) over all sites (i, j)

in the system is denoted by σK(t).

The focus of our investigation is the finite time average of σK(t) from initial time
(t = 0) to time T , where T is of the order of one disease cycle length. We denote this
measure of finite-time local synchronization as 〈σK,T 〉. The ensemble averaged 〈σK,T 〉 is
denoted by 〈〈σK,T 〉〉, and this quantity reflects the typical transient local synchronization
present in the system.
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Figure 3.7: Dependence of the asymptotic persistence parameter 〈〈I〉〉 on the ensemble
averaged transient local synchronization order parameter 〈〈σK,15〉〉. The quantities are
obtained by averaging over I0 ∈ [0, 1], with S0 = R0 and K = 4. Inset shows the
dependence of 〈〈I〉〉 on the root mean square deviation (RMSD) of σK,15.

We show the explicit correlation between the transient local synchronization order
parameter 〈〈σK,15〉〉 and the asymptotic fraction of infecteds in the population 〈〈I〉〉 in
Fig. 3.7. It is clearly evident that there exists a sharp transition to infection burn-out
as transient local synchronization goes beyond a critical value σ?K,T ∼ 3/4. Broadly
speaking then, on an average, local neighbourhoods need at least one neighbour whose
state in not in sync with the other neighbours, to allow the sustenance of infection in the
population. That is, when local neighbourhoods are synchronized beyond a critical degree
during early stage of disease spreading, persistent infection does not occur. So, though
critical σ?K,T depends on early-time spatially local information, it offers a clear indication
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of asymptotic phenomena.

Further notice that the spread in transient local synchronization across initial states,
as reflected by the root mean square deviation (RMSD) of 〈σK,T 〉 in the inset of Fig. 3.7,
also exhibits a sharp transition from the case of non-persistent infection (i.e. 〈〈I〉〉 = 0)
to persistent infection (where 〈〈I〉〉 ∼ 1/3). This suggests that when the early-time local
synchronization has deviations larger than a critical RMSD, infection persists over a long
time in the population patch.

3.4 Dependence of persistence of infection on the
range of infection transmission

Lastly, we explore the influence of the range of infection transmission on the persistence of
infection. Specifically we investigate the case of K = 8, namely the case where infected
individuals can affect eight neighbours. So now the range of influence of the infected
individual is double that presented earlier, where K was 4. Fig. 3.8 shows the dependence
of the persistence order parameter 〈〈I〉〉 on the fraction of infected individuals I0 in the
initial population, with S0 = R0. It is clearly evident from the figure that persistent
infection is lower when the infected individual influences a larger number of neighbouring
individuals. That is, surprisingly, a larger range of infection transmission hinders long-
term persistence of the disease.

However, this counter-intuitive result is completely in accordance with our earlier
observation, namely higher synchronization implies lower persistence of infection. This
is clearly bourne out by the asymptotic synchronization order parameter, which is also
displayed in Fig. 3.8 alongside the persistence order parameter 〈〈I〉〉. From the figure it
can be seen that for K = 8 the synchronization is enhanced, and so 〈〈σ〉〉 is low only in
a very small range of I0. It is this precise range that supports persistent infection. Since
the range of low synchronization is significantly smaller for K = 8 vis-a-vis K = 4, we
correspondingly have a significantly smaller range of persistent infection when the range
of infection transmission is larger.

Further, we again examine the explicit correlation between the transient synchroniza-
tion, as reflected by 〈〈σ15〉〉, as well as the local transient synchronization, as reflected
by 〈〈σK,15〉〉, and the asymptotic fraction of infecteds in the population 〈〈I〉〉. These
are shown in Fig. 3.9 and Fig. 3.10, from where one can again clearly see a well-defined
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Figure 3.8: Dependence of 〈〈I〉〉 on the initial fraction of infected individuals I0 in the
population, for the case of K = 8 (solid red line) and the case of K = 4 (red dashed line)
for reference. Here system size is 100 × 100. Alongside we show the dependence of the
ensemble averaged asymptotic synchronization order parameter 〈〈σ〉〉 on I0, for the case
of K = 8 (solid black line) and the case of K = 4 (black dashed line) for reference.

transition to long-term persistent infection as the transient states get more synchronized
both locally and globally. So again, quantitatively it can be seen that early-time local
and global properties offer a clear indication of asymptotic persistence properties. This
lends further credence to our central observation, and demonstrates the robustness and
generality of the phenomenon with increasing range of infection transmission.

Also interestingly, as in the case of K = 4, the asymptotic fraction of infecteds again
decreases sharply at transient synchronization order parameter values close to 2/3 and
local transient synchronization order parameter values around 3/4. However we observe
that the precise value of the critical transient synchronization order parameters, σ?T and
σ?K,T , beyond which persistent infection does not occur (i.e. 〈〈I〉〉 ∼ 0), is lower for
the system with a wider range of infection transmission. This implies that larger de-
synchronization of the phase of the individual disease cycles is necessary in order to
obtain persistent infection, when the range of infection transmission is larger. This is
consistent with the counter-intuitive observation that persist infection arises over smaller
parameter ranges for larger K, as evident in Fig. 3.8.

52



0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0〈〈
σ15

〉〉
0.00

0.05

0.10

0.15

0.20

0.25

0.30

〈〈 I〉〉
8 neighbours

Figure 3.9: Dependence of the asymptotic persistence parameter 〈〈I〉〉 on the ensemble
averaged transient synchronization order parameter 〈〈σ15〉〉. The quantities are obtained
by averaging over I0 ∈ [0, 1], with S0 = R0. Here system size is 100× 100 and K = 8.

3.5 Discussion

In summary, we have explored the emergence of persistent infection in a closed region
where the disease progression of the individuals is given by the SIRS model, with an
individual becoming infected on contact with another infected individual within a given
range. We focussed on the role of synchronization in the persistence of contagion. Our
key result is that higher degree of synchronization, both globally in the population and
locally in the neighborhoods, hinders persistence of infection. Importantly, we found
that early local asynchrony appears to be a consistent precursor to future persistence of
infection, and can potentially provide valuable early warnings for sustained contagion in a
population patch. Thus transient local synchronization can help anticipate the long-term
persistence of infection. Further we demonstrated that when the range of influence of an
infected individual is wider, one obtains lower persistent infection. This counter-intuitive
observation can also be understood through the relation of synchronization to infection
burn-out.

Lastly, our results also have broad relevance in the context of large interactive excitable
systems. For instance, the system we study here is reminiscent of models of reaction-
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Figure 3.10: Dependence of the asymptotic persistence parameter 〈〈I〉〉 on the ensemble
averaged transient local synchronization order parameter 〈〈σK,15〉〉. The quantities are
obtained by averaging over I0 ∈ [0, 1], with S0 = R0. Inset shows the dependence of 〈〈I〉〉
on the root mean square deviation (RMSD) of σK,15. Here system size is 100× 100 and
K = 8.

diffusion systems [36], heterogeneous cardiac tissue [37, 38] and coupled neurons [39].
The self-sustained excitations in these systems are analogous to the state of persistent
infection we have focused on in this work. Specifically, persistent chaotic activity in a
patch of tissue is characteristic of atrial fibrillation, and so our observations may have
potential relevance to such phenomena arising in cardiac tissue. In the context of brain
functions, neuronal circuits are able to sustain persistent activity after transient inputs,
and studies have suggested that the asynchronous phase of synaptic transmission plays
a vital role in the this persistent activity which is of considerable importance to motor
planning and memory. Further, in the context of metapopulations [40], there exists
research which argues that enhanced coherence would decrease the probability of species
persistence [41]. So our demonstration of the potential of early short-time local and
global synchronization as an early warning signal for anticipating persistent activity, has
relevance to such phenomena as well.
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Chapter 4

Effect of Community Structure on
the Persistence of Infection
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4.1 Introduction

We now investigate the spread of infection in a group of spatially distributed individuals,
where at the individual level the disease progresses in accordance with the SIRS cycle,
as modeled by the cellular automaton described in the previous chapters. In this work
we focus on an unexplored aspect of such systems, namely we attempt to ascertain the
dependence of the persistence of infection on the structure of the population. So the
specific question of relevance here will be the correlation between sustained long-time
persistence of disease in the two communities and the difference in the initial states of
the two communities. That is, we will investigate the dependence of infection persistence
(if any) on the initial differences between the communities constituting the population.

In particular, we consider a population of individuals in two distinct communities.
Each community is a 2-dimensional N × N lattice where every node, representing an
individual, has 4 immediate neighbors. Within each patch, the phases of the disease
cycle are randomly distributed among individuals such that the distributions of infecteds,
susceptibles and refractory individuals are spatially uniform over the lattice constituting
each community. The boundaries of the communities are fixed, with no interactions
outside the patch. So each community mimics a closed population patch, such as an
island or an isolated habitat.

Now we consider two such communities to be connected through a small number of
links. The connections between the two communities may be spatially adjacent or ran-
domly located. The fraction of inter-community links along the adjoining edges of the
communities is denoted by fic. This quantity is analogous to a connection density be-
tween the communities, and reflects the probability that individuals from a community
can interact, through migration or transport across the boundary, with a set of individuals
in the other community. In this work we will consider a wide range of connection densi-
ties, from one or two connections, to links along the entire boundary edge between the
communities. The central results of our work here, based on order parameters obtained
by averaging over space and time, do not depend on the location of the links.
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4.2 Spatiotemporal Patterns of Disease Spreading among
the Communities

We first study the spatiotemporal patterns of the spread of infection among the two
communities connected via a few links along an adjoining edge. With no loss of generality,
we display results for two communities of size 100× 100.

In order to explore the effect of heterogeneous communities on persistence of disease,
which is the principal focus of our investigation, we consider the communities to have
varying initial fractions of susceptibles S(i)

0 , infecteds I(i)
0 and refractory individuals R(i)

0 ,
where i = 1, 2 is the index of the community. So the communities are comprised of
random admixtures of infected, susceptible and refractory individuals, which may differ
on an average, in varying degrees.

Patch: 1
|St : 0.454 | It : 0.100 | Rt : 0.446|

t=0

Patch: 2
|St : 0.049 | It : 0.900 | Rt : 0.051|

Patch: 1
|St : 0.605 | It : 0.111 | Rt : 0.284|

t=15

Patch: 2
|St : 1.000 | It : 0.000 | Rt : 0.000|

Patch: 1
|St : 0.182 | It : 0.229 | Rt : 0.589|

t=30

Patch: 2
|St : 1.000 | It : 0.000 | Rt : 0.000|

Patch: 1
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t=100

Patch: 2
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Figure 4.1: Infection spreading patterns for two communities, where the initial fraction
of infecteds is I(1)

0 = 0.1 in patch 1 and I
(2)
0 = 0.9 in patch 2, with the initial fraction of

susceptible and refractory individuals being equal in both communities (i.e. S(i)
0 = R

(i)
0

for i = 1, 2). Here the fraction of boundary sites that have inter-community connections
is fic = 0.1, i.e. 10 sites on an average interact with the other community.

We explore the number of infecteds in the emergent state of the entire population,
under varying differences in the initial states of the communities. That is, we investigate
the long-term presence of infection in both communities under progressively increasing
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difference in the initial states of the patches. Representative results are displayed in
Figs. 4.1-4.2. Fig. 4.1 shows the infection spreading patterns for two communities, where
the initial fraction of infecteds is I(1)

0 = 0.1 in one patch and I
(2)
0 = 0.9 in the other. As

a reference Fig. 4.2 shows the infection spreading patterns for two communities, where
the initial composition is identical. Note that the average initial fractions of infected,
susceptibles and refractory individuals is the same in both systems, i.e I(1)

0 (= I
(2)
0 ) in

Fig. 4.2 is equal to (I(1)
0 +I(2)

0 )
2 in Fig. 4.1. So the populations in the two figures do not differ

on an average. However, the populations are very different in terms of the heterogeneity
in the distribution of the infecteds. In Fig. 4.1 the communities are significantly different
in initial composition and so the system as a whole is strongly non-uniform, while in
Fig. 4.2 the disease phases are uniformly distributed across the population and there is
no difference in the distributions of the two communities. It is clearly evident then from
Fig. 4.1 via-a-vis Fig. 4.2, that populations partitioned into distinct communities yield
long-term persistence of disease, while a population with uniformly distributed individuals
in different stages of disease, results in the extinction of the infection from the entire
population.
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Figure 4.2: Infection spreading patterns for two communities, where the initial fraction
of infecteds is I(1)

0 = I
(2)
0 = 0.5 in both patches, and S

(1)
0 = S

(2)
0 = R

(1)
0 = R

(2)
0 . Here all

sites along adjoining edge of the two communities have inter-community connections (i.e.
fic = 1.0).

Figs. 4.3-4.4 shows the time evolution of the fraction of infected individuals in the
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Figure 4.3: Time evolution of the fraction of infected individuals I(i)
t in the two commu-

nities, of size N = 100× 100, where the initial fraction of infecteds is (a) I(1)
0 = I

(2)
0 = 0.1

and (b) I(1)
0 = 0.1 and I

(2)
0 = 1.0 (with S

(i)
0 = R

(i)
0 for i = 1, 2). On an average two

boundary sites have inter-community connections (i.e. fic = 0.02). In (b), as a reference
the evolution of two identically distributed communities with the same average number
of infecteds as the average of the two communities (i.e. (I(1)

0 +I(2)
0 )

2 = 0.55 ) spread uni-
formly across the communities, is shown by the black/grey lines. Clearly, the infected
fraction rapidly goes to zero when the phases of disease are uniformly distributed among
the communities, namely there is no persistence of infection for spatially homogeneous
populations.

two communities for the case of communities with identical average initial states, and for
communities with very different initial states. It is clear from the time series that when
the initial state of the patches are close, the wave forms are similar in both amplitude and
frequency. However, when the initial states of the communities are markedly different, the
time evolution of the infected sub-set has very different amplitude, though same frequency.
Interestingly, the average fraction of infected is the same in both communities, though the
pattern of evolution is significantly different. The patch which had a much higher initial
fraction of infecteds evolves to an oscillatory pattern with very low amplitude around
the average value of approximately 1/3, while the fraction of infecteds in the patch with
low initial fraction of infecteds oscillates with large amplitude around the same mean
value (∼ 0.3). So after transience, two communities with very different initial average
composition settle down to identical average behaviour. Nevertheless, the local evolution
of infection bears a discernible mark of the distinct initial states.
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Figure 4.4: Time evolution of the fraction of infected individuals I(i)
t in the two commu-

nities, of size N = 100× 100, where the initial fraction of infecteds is (a) I(1)
0 = I

(2)
0 = 0.1

and (b) I(1)
0 = 0.1 and I

(2)
0 = 1.0 (with S

(i)
0 = R

(i)
0 for i = 1, 2). Here all sites along the

adjoining edge of the communities have connections across the boundary in the other com-
munity (i.e. fic = 1), with the inter-community links being spatially random. In (b), as a
reference the evolution of two identically distributed communities with the same average
number of infecteds as the average of the two communities (i.e. (I(1)

0 +I(2)
0 )

2 = 0.55) spread
uniformly across the communities, is shown by the black/grey lines. Clearly, the infected
fraction rapidly goes to zero when the phases of disease are uniformly distributed among
the communities, namely there is no persistence of infection for spatially homogeneous
populations.

4.3 Dependence of the Persistence Order Parameter
on Heterogeneity

In order to quantify the long-term persistence of disease we define a persistence order
parameter 〈〈It〉〉, given as the fraction of infected individuals in the entire population
(comprised of both communities), after transience, averaged over time of the order of
several disease cycles, and further averaged over a large sample of random initial states.
This persistence order parameter indicates the absence of infection in the long-term when
equal to zero, and indicates the sustained presence of infection when non-zero.

Specifically, we first consider the initial infected fraction I
(1)
0 of one patch to be I∗0 =

0.1. This implies that initially, 10% of the population in the patch is infected. The
fractions S0 = R0 for both communities, unless otherwise specified. Now, if this patch
was considered independent of the second patch, this fraction of initial infecteds I∗0 would
yield persistent infection [33].
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The initial infected fraction of the second patch I
(2)
0 is varied as I∗0 + ∆. So ∆ serves

as an useful parameter reflecting the difference between the initial fractions of infected
individuals present in the communities, indicative of the heterogeneity of the system. In
particular, in our representative examples, ∆ ∈ [0.0, 1−I∗0 ] = [0.0, 0.9]. This provides us a
parameter to control the spatial compartmentalization, or non-uniformity, of the disease
phases within the system. Larger ∆ indicates a more heterogeneous system, comprised
of more diverse communities.

We explore the variation in this persistence order parameter 〈〈It〉〉, under increasing
differences between the initial states of the two patches ∆. We scan the full range of
∆ between 0.0 to 0.9. When ∆ = 0.0, both communities have equal initial fractions of
infected individuals (I(1)

0 = I
(2)
0 = I∗0 = 0.1), and so the spatial distribution of disease

phases of the entire population is uniform. When ∆ is very large, for instance equal to
0.8, I(2)

0 = I∗0 + ∆ = 0.1 + 0.8 = 0.9. This implies that the second patch has a much
higher density of infected individuals than the first one, thus yielding an exceedingly
non-uniform spatial distribution of disease phases in the system. The question we focus
on here is the correlation between this spatial heterogeneity and the long-term behaviour
of the coupled communities, specifically in terms of the sustained presence of disease and
the patterns of infection spreading.

It is important to note that as ∆ is varied, the average fraction of initially infected
individuals in the full system, comprised of both the communities, also changes. Specifi-
cally, as we vary ∆ from 0.0 to 0.9, with I(1)

0 = 0.1, I(2)
0 varies from 0.1 to 1.0. This implies

that the collective average infected fraction of the two communities 〈I0〉 = I
(1)
0 +I(2)

0
2 , varies

from (0.1 + 0.1)/2 = 0.1 to (0.1 + 1.0)/2 = 0.55.

In order to establish that the emergent patterns of infection in the two coupled com-
munities, depend on the initial spatial non-uniformity of the individual disease phases,
and not on the collective average infection initially present in the communities, it is il-
lustrative to compare our observations in two contrasting conditions. As a reference for
comparison (as we had done earlier in Figs. 4.1-4.2), we first find the asymptotic fraction
of infecteds in the entire population, 〈〈It〉〉, for a population comprised of two commu-
nities whose average initial state is identical (i.e. I

(1)
0 = I

(2)
0 ), namely there is spatial

uniformity (on an average) between the patches. We consider different average initial
fraction of infecteds 〈I0〉 in this population, spanning the full range corresponding to
different values of ∆, given as:

〈I0〉 = I
(1)
0 + I

(2)
0

2 = I∗0 + I∗0 + ∆
2 = I∗0 + ∆

2 (4.1)
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We find the persistent infected set for initial populations with increasing average
infected fractions 〈I0〉, obtained by varying ∆ as in Eqn. 4.1. The initial spatial homo-
geneity is maintained by initializing both communities with an equal fraction of infected
individuals (i.e. I(1)

0 = I
(2)
0 = 〈I0〉 = I∗0 + ∆

2 ∈ [0.1, 0.55]). With this constraint, we vary
their collective average infected fraction, and track the long-term presence of infecteds in
the entire population.

In order to establish the impact of spatial non-uniformity on the long-term persistence
of infection, we identify the distinct features that arise specifically in heterogeneous com-
munities, by comparison to reference control systems that are spatially uniform. From
Fig. 4.5, it can be ascertained that when the initial spatial distribution of infected indi-
viduals between the two communities is significantly different, the infection is persistently
present in both the communities asymptotically, for all initial conditions. The red curve
shows the response of the system if the two patches were not segmented, and behave as
a single uniform patch, with the infected individuals initially distributed uniformly as in
Fig. 4.2. When the average initial infection of this system increases, the persistence of
infection drops significantly. However, when the two patches have distinct densities of
initial infection as in Fig. 4.1, with the sum total of infecteds in the two communities
being the same as in the reference system on average, the infection sustains itself in both
the communities. Thus we can conclude that the presence of infection in the long run
originates due to the non-uniform spatial distribution of the disease phases in the two
communities, and not due to the variation in the overall average initial infection present
in the system.
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Figure 4.5: Dependence of the persistence order parameter 〈〈It〉〉 of the community 2 (i.e.
average asymptotic fraction of infected individuals in the second patch) on parameter ∆
(which quantifies the difference in the initial composition of the communities). Here the
initial infecteds I(0)

0 = I∗0 and I(2)
0 = I∗0 + ∆, community size is 50×50 and the fraction of

boundary sites with inter-community connections is: fic = 0.02 (blue), 0.5 (yellow) and
1.0 (green). The red curve shows the variation of persistence order parameter 〈〈It〉〉 for
the reference case of I(1)

0 = I
(2)
0 = 〈I0〉 = I∗0 + ∆

2 .

Fig. 4.6 shows the dependence of the average difference in amplitudes of the emergent
oscillations in the size of the infected sub-population in the two communities 〈∆A〉, on the
difference in the initial composition of the communities, quantified by parameter ∆. As
in Fig. 4.5, here the initial infecteds I(0)

0 = I∗0 and I(2)
0 = I∗0 + ∆. Different fractions fic of
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Figure 4.6: Dependence of the average difference in amplitudes of the emergent oscil-
lations in the size of the infected sub-population in the two communities 〈∆A〉, on ∆
(which quantifies the difference in the initial composition of the communities). Here the
initial infecteds I(0)

0 = I∗0 and I(2)
0 = I∗0 + ∆, community size is 50×50 and the fraction of

boundary sites with inter-community connections is: fic = 0.02 (blue), 0.5 (yellow) and
1.0 (green).

boundary sites with inter-community connections are investigated. It is clear that there
is a sharp transition to a large amplitude difference in the oscillatory patterns of the two
communities as ∆→ 0. This suggests that the smallest non-uniformity in the constituent
communities yields distinct temporal patterns, even though the average quantities (such as
the average number of infecteds, susceptibles and refractory individuals) evolve to same
values in the two communities after transience. So, as evident through the spatiotemporal
spreading patterns in Fig. 4.1, the initial differences in the constitution of the communities
is clearly discernible even at long-times, in spite of the homogenization of the average
composition of the communities.
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Figure 4.7: Dependence of the persistence order parameter 〈〈It〉〉 of the community 2 (i.e.
average asymptotic fraction of infected individuals in the second patch) on parameter ∆,
which determines the initial infecteds of the two communities as follows: I(1)

0 = I∗0 − ∆
2

and I
(2)
0 = I∗0 + ∆

2 , with I∗0 = 0.5. Here the community size is 50 × 50 and 100 × 100
(i.e. N = 50, 100), and the fraction of boundary sites with inter-community connections
is fic = 0.02, 0.5, 1.0. So ∆ is a parameter that quantifies the difference in the initial
composition of the communities, while maintaining the same average fractions of disease
phases in the entire population, i.e. I(2)

0 − I
(1)
0 = ∆, with (I(1)

0 +I(2)
0 )

2 = 0.5 across all ∆.

Fig. 4.7 shows the dependence of the persistence order parameter 〈〈It〉〉 of the com-
munity 2 (i.e. average asymptotic fraction of infected individuals in the second patch)
on parameter ∆, where the initial infecteds of the two communities is given in terms of
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∆ as follows: I(1)
0 = I∗0 − ∆

2 and I
(2)
0 = I∗0 + ∆

2 , with I∗0 = 0.5. So ∆ is a parameter that
quantifies the difference in the initial composition of the communities, while maintaining
the same average fractions of disease phases in the entire population, i.e. I(2)

0 − I
(1)
0 = ∆,

with (I(1)
0 +I(2)

0 )
2 = 0.5 across all ∆. Results from two different community sizes are shown,

with the first case where the two communities are of sizes 50 × 50 each, and the second
case where the communities are of sizes 100×100. Further, we consider different fractions
fic of boundary sites with inter-community connections, 0.5 and 1.0. The first striking
feature is that there is a transition to persistent infection when the difference between the
communities is sufficiently large. It is also clearly evident that the persistence of infec-
tion does not depend in any significant way of the density of inter-community links. We
also observe that larger communities yield persistent infection at smaller ∆, implying that
one obtains persistent infection for fairly small differences in the constituent communities
when the communities are large.

4.4 Conclusion

In summary, we have explored the long-term persistence of infection qualitatively and
quantitatively in two communities, where the disease progression of the individuals was
given by the SIRS model and an individual became infected on contact with another
infected individual. Such weakly connected islands or patches of habitats can provide a
test-bed to study the sustenance of disease in adjacent regions [14].

We demonstrate that when the population is compartmentalized into distinct commu-
nities, with very different compositions of diseased individuals in each, the entire system
comprising of the connected communities is much more to prone to long-term persis-
tent infection than a system which has an uniform admixture of infected, refractory and
susceptible individuals in the same proportion.

Our central result is the following: if a population is structured into distinct com-
munities, the infection will persist. This is in contrast to the situation where infected,
susceptible and refractory individuals are uniformly distributed in a region, in which case
there will be rapid transient waves of infection that will quickly die out.

So an important consequence of our results is the following: we have established that
the persistence of infection is crucially dependent on the distribution of the disease phases
in a population, and not merely determined by the average properties. This implies that
descriptions of disease spreading that are relevant to well-mixed populations, such as
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differential equation based models, may not be able to capture the long-term persistence
of infection in a region. Specifically, we find that the more spatially non-uniform a
population is, the greater is the probability of persistent disease in the population. That
is, a population compartmentalized into distinct sections that differ significantly from
each other would be more likely to sustain the disease cycle and yield a situation where
the population has an infected set of individuals at all times. Thus the important feature
of persistent infection is strongly correlated to the structure of the population and the
heterogeneity of its initial composition, and cannot to fully understood from spatially
averaged data.
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Chapter 5

Extreme Events in Networks of
Chaotic Population Maps

Adapted from the work published in :

Promit Moitra and Sudeshna Sinha,
Chaos, 29:023131, 2019.
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5.1 Introduction

Extreme events have generated a lot of research attention due to their large impact in
phenomena ranging from weather to traffic flows [42]. An extreme event is one where
the relevant state variable(s) of a natural or human engineered system exhibits periods of
small scale deviations about a level, interrupted by abrupt large excursions to values that
differ very significantly from its mean value, typically several standard deviations away
from the mean. These recurrent unusually large (or small) values are very important, as
they signal occurrences of catastrophic significance, such as extreme weather events [43],
rogue waves in the ocean [44] or optical systems [45], large-scale blackouts in power supply
networks [46] or market crashes [47]. Further, though relatively rare, the magnitude of
these events is so large that their consequence, in terms of damage or cost to contain the
event, is very large.

A question of vital importance is to find generic mechanisms that naturally yield such
extreme events. Efforts to obtain extreme events typically involve stochastic models, such
as the recent random walk model of transport on networks [48]. There have also been
a few recent studies of excitable systems, such as diffusively coupled FitzHugh-Nagumo
units, which generate extreme events [49].

The emergent behaviour of large interactive systems is often counter intuitive and
interesting. The question being explored here is: Can coupled chaotic systems yield a
significant number of extreme events?. Specifically it is demonstrated how networks of
parametrically coupled chaotic systems are capable of generating extreme values, i.e.
how such networks give rise to recurrent strong deviations from mean behaviour that
occur aperiodically at random intervals. Unlike earlier models yielding extreme events,
the model under study here has no stochastic environmental influences or sources of
random fluctuations, in either the state variables or the parameters determining the
dynamics of isolated sites. Nor are the dynamical constituents of the system excitable
units, naturally capable of exhibiting “pulse-like” behaviour or “spikes”. Rather, a new
scenario is presented, namely the emergence of extreme events in a deterministic system
of coupled chaotic maps, typically modelling population dynamics.

Another novel aspect of extreme events is demonstrated in this work. The events
were observed to be extreme in both space and time, namely when a time snap-shot
of the system is observed, a few sites/patches with very large populations were found.
It is concluded that these coupled populations, with increasingly large coupling neigh-
bourhoods, display extremely large and relatively rare explosive growth in progressively
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isolated patches, akin to an “extreme event” in space, in addition to a marked propensity
for extreme events in the variation of the total biomass in time.

5.2 Model

Populations modelled by the prototypical Ricker (Exponential) Map [50] are considered.
Such a map is widely used to model population growth of species with non-overlapping
generations, and is given by the functional form:

xt+1 = f(xt) = xte
r(1−xt) (5.1)

where (dimensionless) xt is the population scaled by the carrying capacity at gener-
ation t, taking values in the range [0,∞), i.e. the iterates of the map are non-negative,
at all parameter values, as can be discerned from Fig 5.1. The solutions of this iterated
function system follow a period doubling route to chaos, as the parameter r is varied
from 0 to 4, as shown in Fig. 5.2. The term er(1−xt) models the effective growth rate,
incorporating the feedback of the existing population on the next generation.

A collection of N such populations [51, 52] are considered, characterized by the vari-
able xit, at each node/site i (i = 1, . . . N) at time instant t. In this system, the nodal
populations are intrinsically chaotic oscillators whose dynamics is governed by the Ricker
map (Eq. 5.1), with the parameter for each node fixed at the chaotic limit r = 4. Each
node couples to a set of neighbours and the range of coupling, namely the size of the con-
nected neighbourhood k, can vary from two nearest neighbours to global coupling. The
presence of these populations in the neighbourhood provides feedback to the population
and modifies it’s growth rate [53]. Specifically the feedback is provided by the local mean
field 〈x〉 as the argument in Eq. 5.1, rather than simply x, namely: exp [r(1− 〈x〉)]. So
the effective growth rate of the populations is modified by the mean population of the
neighbourhood, and not merely by the existing population in that particular patch. This
is in contrast to the most commonly used diffusive coupling, where the population density
of the node is modified [54], rather than the growth rate.

The complete dynamics is then governed by:

xit+1 = er(1−〈x
i
t〉) xit +Dηi(t) (5.2)

71



Figure 5.1: xn+1 vs. xn for the Ricker map (Eq. 5.1), with r = 4, which is in the regime
of fully developed chaos

where ηi(t) is a delta-correlated uniform noise in the range [0 : 1], characterized by
〈ηj(t)ηj(t+ t′)〉 = δijδ(t′), with noise strength D = 10−10.

The parametric coupling is through the mean field of the coupling neighbourhood
(including self), given as:

〈xit〉 = 1
k

∑
j

xjt (5.3)

where k is the total number of neighbours that influence a population patch, including
self-feedback, i.e. the sum also includes site i and k − 1 other distinct sites determined
by the topology of the connections. Such a parametric form of coupling then provides
a “tuning” of the effective growth rates of the populations at each node, at each time
step, drawing feedback from the local mean population in the connected neighbourhood.
This form of coupling where the growth rates are influenced by the local mean field of
its neighbourhood, has not been adequately explored, compared to the usual diffusively
coupled systems. The presence of a noise floor, though very small, provides a natural
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Figure 5.2: xn vs. r ∈ (0, 4] for for the Ricker map (Eq. 5.1)

robustness to the results.

In the present study, the small-world connection topology is considered, as it is widely
applicable to a range of biological and engineered systems. The small-world topology,
as described in [10], is obtained by a process of probabilistic rewiring, starting from
a regular graph of degree k (i.e. each node has exactly k neighbours). Varying the
probability of rewiring, p, enables one to tune the connection topology from the limiting
case of an ordered lattice structure on one hand (at p = 0), to the limit of completely
random connections on the other (at p = 1). The small-world topology attained by the
network at intermediate p (p ∼ 0.1 − 0.2), simultaneously shows certain characteristics
of a lattice (a significant clustering coefficient) as well as a random network (short mean
path lengths). These simultaneous contrasting properties of the small-world topology,
have been observed to enhance collective dynamical properties such as signal propagation
speeds and synchronizing ability. Considering the ubiquitous presence of this topology
in networks which have naturally evolved in a distributed manner, such as cortical brain
networks, social networks or power grids, there is a lot of research interest regarding
the impact of this topology on collective dynamics. Specifically, the fraction of random
short-cuts, quantified by the rewiring probability p, provides a framework to establish a
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link between the structure of the network and the dynamic behaviour of the networked
system.

The quantities of considerable interest in this network of populations is the local
population density in the patches, and their variations in time. The primary focus of
this study was the deviation of these local population densities from the average, and
the probability of the occurrence of very large populations at a site. These quantities
enable the exploration of the emergence of extreme events at spatial locations, signalling
explosive growth at a site. Such events are of catastrophic significance, even if rare, as
they may entail serious consequent damage.

Another relevant quantity of interest is the total biomass of the system, representing
the global dynamical state of the network, at an instant of time t, defined as follows:

B(t) =
N∑
j=1

xjt (5.4)

where N is the system size.

The presence of large excursions of the biomass from mean-values is investigated, over
an observed window of time T ∼ 103 (post transience), as such an event would signal the
occurrence of collective explosive growth in time.

In this work, the changes in local population densities are explored, as well as the total
biomass of the system. Namely spatially local quantities are tracked, as well as global
indicators reflecting collective properties. The central questions are as follows: Does
feedback from neighbouring populations yield extreme events in space or time? Does
the spatial extent of coupling among the patches, i.e. the size of the “neighbourhood”
of each site, affect the probability of obtaining spatial or temporal extreme events? In
particular, the size of the coupling neighbourhood k is varied, as well as the relative size
of the coupling neighbourhood k/N (i.e. k scaled by system size), and the impact of the
neighbourhood on the emergence of extreme events is investigated.

5.3 Emergence of Extreme Events in the Network

Fig. 5.3 displays the spatial behaviour of the populations at each site i, i.e. xit, i = 1, . . . N ,
at different times, starting from an initial state that is randomly distributed over the range
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Figure 5.3: Population densities xit, i = 1, . . . N , where system size N = 100, at different
times t = 0, 50, 100. The initial state xi0 is randomly distributed over the range (0 : 1].
The dotted line marks the 3σt, where σt is the standard deviation of the population
densities at time t. Here we have a small world network of populations, with fraction
of random links p = 0.15. The size of the coupling neighbourhood is k = 2 (denoted in
blue) and k = 50 (denoted in yellow). Note that the population densities are shown on a
log-scale. So it is evident that the maximum emergent population density is at least an
order of magnitude larger than that in the initial state.

(0 : 1]. The figure also displays the value 3σt. Population densities above this deviate
significantly away from the mean, and thus can be considered an extreme event in space.
It should be noted that the initial state has no site with an extreme value. However as the
system evolves, extreme events in space emerge. The population densities are shown on
a log-scale in the figure. So it is evident that the maximum emergent population density
is at least an order of magnitude larger than that in the initial state.

Interestingly, it is observed that the system splits into two distinct groups: active
sites characterised by dynamics that occasionally lead to extremely large populations, and
inactive sites characterised by exceedingly low population densities. So it is clearly evident
from the temporal patterns of the network that extreme local growth in patches occurs at
the expense of other patches which are driven to near-extinction. This observation has
ecological significance, as it indicates that in this population network, the coupling form
allows a few populations patches to grow enormously at the cost of the large number of
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remaining patches.

For small k, where each population patch is coupled to only a few neighbouring
patches, most sites remain active. However, it is clearly evident that with increasing
neighbourhood sizes, the activity of the system is confined to a few population patches
in the system, with these active sites showing explosive growth. So as the coupling
neighbourhood goes from local to near-global coupling, the system yields more explosive
localized growth patterns, i.e. as the sites couple to a larger number of patches, a larger
number of patches become near-extinct and some patches grow explosively yielding ex-
treme spatial events. This phenomenon is distinct from the behaviour observed typically
in diffusively coupled systems.

Figure 5.4: Probability distribution of population densities xit, for the case of different
coupling neighbourhood sizes k (cf. key), for p = 0.15 and network size N = 100. As a
reference, the case of networks of uncoupled populations (k = 0) is also shown

The distribution of the population densities, sampled over long times post-transience,
is displayed in Fig. 5.4. Clearly, as the size of the coupling neighbourhood increases,
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the tail of the distribution stretches to larger values. In contrast, the distribution of
population densities in a network of uncoupled chaotic maps is confined to values an
order of magnitude smaller than those emerging in coupled networks and has no extended
tail. Though the probability of obtaining these very high population densities in coupled
networks is low, they are significant as they yield rare explosive growth at sites, namely,
extreme events.

A quantitative estimate of the propensity of such extreme events in space is defined.
In order to gauge the probability of encountering an extreme event in a network at any
given point in time, the following measure is calculated: an “extreme event” in space is
defined (with no significant loss of generality) to be one that is more than three standard
deviations away from the mean value of the populations on the entire network at that
point in time, i.e. 〈x̄t〉 ± 3σt. The number of sites exhibiting such explosive growth is
noted, scaled by the system size N . Averaging this ratio over long times after transience
and over a large set of random initial states, provides an estimate of the frequency of
extreme events in space, and is denoted by PXE

S . Specifically in this work this probability
is estimated by sampling 103 time steps (post transience), evolved from 102 random initial
states.

The results of PXE
S for representative values of p are displayed in Fig. 5.5. The top

panel of the figure shows results for low k/N , clearly indicating a very sharp transition
at k/N close to zero, i.e. there is a jump from PXE

S ∼ 0 at k = 0 (i.e. the case of
uncoupled populations) to a significantly large value at the lowest sampled non-zero k.
The maximum PXE

S is observed to occur around k/N ∼ 0.025, after which the probability
of extreme events in population patches decreases with increasing coupling neighbour-
hood, as a power law given by: PXE

S ∼ (k/N)ν , where ν is a function of p. In particular,
ν = −0.4 for p = 0.05, ν = −0.47 for p = 0.15 and ν = −0.56 for p = 0.5, suggesting that
ν ∼ p0.15. It is also clear that even as PXE

S falls with k for large k, it still remains signif-
icantly higher than the probability of an extreme occurrence in uncoupled populations.
So the first important finding is the following: parametric coupling induces the emergence
of extreme population densities in localized patches.

The maximum population density in the network is focused on next, xmax(t), at an
instant of time t. The mean value of this is estimated, denoted by 〈xmax〉, by averaging
xmax(t) over long times post transience, for a large sample of random initial states [55]. So
〈xmax〉 reflects the maximum population density that may be expected in the network at
any point in time, and large values of 〈xmax〉 suggest the emergence of extreme population
densities in space. Further, Fig. 5.6 displays the relation between 〈xmax〉 and the number
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Figure 5.5: Dependence of the probability of extreme events in space PXE
S (see text for

definition) on the relative neighbourhood size k/N . Here network size N = 100, with
fraction of random links p = 0.05 (yellow), p = 0.15 (green) and p = 0.5 (red). (a) shows
PXE

S for k/N ≤ 0.2, clearly indicating a sharp transition at k/N → 0. (b) shows PXE
S for

0 < k/N < 1, indicating the power law dependence of PXE
S on k/N , for higher k/N (see

fitted curves): PXE
S ∼ (k/N)ν .

of neighbours k, for k ≤ 20. As can be observed, for small k, 〈xmax〉 ∼ k, i.e. the
maximum population density grows linearly with the number of neighbours influencing a
patch. A significant implication of this is that when the size of the coupling neighbourhood
is small, the size of the network does not matter. So for small k, networks of different sizes
yield the same maximum population density 〈xmax〉, when the coupling neighbourhoods
are of the same size.

We now attempt to rationalize this result by analyzing the dynamics of a population
patch in the network.

xit+1 = xite
r(1−〈xi

t〉) = xite
r(1− 1

(k+1)
∑

j
xj

t )

Which can be separated out as

xite
r(1− 1

(k+1)x
i
t)e−

r
(k+1)

∑
j 6=i

xj
t

Now, we observed that a node with very high population density is typically connected
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Figure 5.6: Dependence of the average maximum population density 〈xmax〉 on k/N for
different fractions of random links p and systems sizes N , for small k(< 20). A linear
estimation, given by Eq. 5.5, is shown by the gray dashed line.

to nodes with very low population densities. Therefore, to a first approximation, the sum
over xj of all nodes j(j 6= i) coupled to a node i is close to zero. So effectively, the
dynamics at the nodes with very large population densities can be mimicked by the
dynamical map

f(x) = xer(1−
1

(k+1)x)

Calculating the extremum of the function above shows that the maxima of f(x) will occur
at x = (k + 1)/r, namely,

xmax ∼ (k + 1)1
r
e(r−1) (5.5)
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This implies a linear dependence of xmax on k. The functional form in Eq. 5.5 is
matched well by simulations of networks of varying sizes N and fractions of random
links p, as is evident from Fig. 5.6, for small k. For larger the overall contribution from
neighbours (excluding self) to the local feedback deviates more from zero, and this lowers
the prefactor, yielding values of xmax that are lower than the linear prediction of Eq. 5.5.

Further, it is observed that the fraction of random links p in the network does not
influence the extremal values 〈xmax〉. This is evident through the near identical results
obtained for p ranging from 0.05 to 1 in Fig. 5.9.
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Figure 5.7: Cumulative distribution function F (xmax) of the maximum population density
xmax for k = 2 (blue) and for k = 20 (yellow), for p = 0.15 and systems size N = 100. The
curves display the best fit to the cumulative distribution corresponding the Generalized
Extreme Value probability density function: F (x, c, µ, σ) = exp(−(1 + c(x−µ

σ
))−1/c) for

x−µ
σ

< −1/c, where c (6= 0) is the shape parameter, µ is the location and σ is the scale
parameter. The scale σ for the blue curve (fit to data for k = 2) is 2.16, and for the
yellow curve (fit to data for k = 20) is 23.52, indicating that the distribution is much
more spread out for higher k.
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The cumulative distribution function (cdf) of the maximum population density xmax,
denoted by F (xmax), is estimated. The results are displayed in Fig. 5.7. It is evident
that the cumulative distribution is well fit by the cdf corresponding to the Generalized
Extreme Value probability density function. Notice that the scale σ of the best fit cdf
for k = 2 is 2.16, and for k = 20 is 23.52. This indicates that the distribution is much
more spread out for networks which couple over larger neighborhoods.
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Figure 5.8: Average fraction of near-extinct nodes, denoted by 〈fextinct〉 (see text for
definition), for different neighbourhood sizes k. Results for network size N = 100 with
p = 0.05, 0.15, 0.5, 1.0, and network sizes N = 200 and N = 50 with p = 0.15, are
displayed with different symbols given in the key.

Lastly, the population patches where the population density has depleted severely are
observed. Since it is clearly evident from the temporal patterns of the sites in the network
that extreme local growth in patches occurs at the expense of other patches which are
driven to near-extinction, a good indicator of the extreme local variation of populations
would be the number of near-extinct sites that emerge in the network. So the fraction
of near extinct nodes in the network at time t is calculated, denoted by f extinctt , where a
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near-extinct node is one whose population density is less than some low threshold value,
i.e. xit < xthreshold, with xthreshold chosen to be 10−5 without loss of generality. The average
fraction of such near-extinct sites, 〈f extinct〉, are estimated by sampling over 103 time steps
(post transience) and 102 random initial states. It is evident from Fig. 5.8 that there is
a very sharp transition from 〈f extinct〉 = 0 to a large finite 〈f extinct〉 at k → 0. Therefore,
in the presence of coupling, for the smallest possible coupling neighbourhood (k ∼ 2)
the number of near-extinct sites jumps significantly and constitutes the majority of the
network sites. Also notice that the data from networks of different sizes and different
fractions of random links (0 < p < 1) collapse to the same curve. This indicates that
this behaviour is universal for networks of varying sizes and topologies. It also indicates
that the size of the coupling neighbourhood k is important for 〈f extinct〉, not the relative
size of the neighbourhood k/N . This feature is similar to our observations for 〈xmax〉 for
small k.

To complement this analysis, we observe the the population densities at the patches
which are intermittently growing explosively. It is clearly evident from Fig 5.9 that
〈factive〉 decreases with k as a power law. Also notice that the data from networks of
different sizes N and different fractions of random links (0 < p < 1) collapse close to the
same curve. This indicates that this behaviour is quite universal for networks of varying
sizes and topologies. It also indicates that the size of the coupling neighbourhood k is
important for 〈factive〉, not the relative size of the neighbourhood k/N . This feature is
similar to our observations for 〈xxmax〉 for small k.

5.4 Extreme Events in Biomass Production

The next focus of this study is on the temporal patterns of emergent collective behaviour
of the network, by exploring the time evolution of an important collective quantity, the
biomass B(t). The time series of the biomass for different neighbourhood sizes is shown
in Figs. 5.10. It is clear that the biomass displays some extremely high values at certain
points in time when the coupling neighbourhood k is sufficiently large, i.e. as the coupling
neighbourhood k increases, there are more instances of large deviations of the biomass
from the mean, namely more extreme events. The top panel in Fig. 5.10 shows the
evolution of biomass of a system of completely uncoupled population patches (k = 0),
and it is clear that there are no extreme events in the large window of time displayed.
However, for larger k there is a suppression of activity interrupted by random bursts of
explosive biomass generation (cf. second panel of Fig. 5.10 displaying B(t) for a network
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Figure 5.9: Dependence of the average fraction of active nodes, denoted by 〈factive〉 (see
text for definition), on different neighbourhood sizes k, for networks of different sizes N
and with different fractions of random links p. Clearly, 〈factive〉 ∼ k−γ. The values of γ
obtained from the best fit using the least square method are in the range 0.68− 0.72 for
different N and p. The γ values, along with the uncertainty in their estimates, are listed
in the key.

with coupling neighborhood k = 50).

This qualitative observation is further corroborated quantitatively through the distri-
bution P (B) of the biomass in Fig. 5.11. It is evident that the distribution is close to a
Gaussian distribution when the coupling neighborhood k is very small, such as the case
of k = 2 shown in the figure. Note that a Gaussian distribution is expected from a set
of uncoupled sites evolving from random initial conditions, according to the chaotic map
given by Eq.5.1. So when the coupling neighborhood is small, the network is similar to
a system of uncoupled populations. Specifically, at these low k values the distribution
of biomass is narrowly peaked at a value around 2N , indicating that on an average the
sites have population densities close to 2. As the coupling neighborhood increases, the
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Figure 5.10: Time evolution of the total biomass B(t), (cf. Eqn. 5.4) over 400 time
steps (post transience), for neighbourhood sizes k = 2 and k = 50, on a network of size
N = 100 with a fraction of random links (rewiring probability) p = 0.15. The red dashed
line marks the mean value of biomass B̄, and the red dotted line indicates 3σ above the
mean. Clearly the biomass values deviate much more significantly from the mean when k
is larger. The line indicates the value 〈B(t)〉+3σ, and marks the Extreme Events regime.

distribution becomes heavy tailed and stretches towards high values of B, indicating that
there is enhanced probability of obtaining very high biomass at certain points in time.
For instance, for k = 20, the distribution suggests that even B ∼ 600 has significant prob-
ability of occurence. For k = 80 the tail of the distribution stretches beyond B ∼ 1000.
Also notice that the distribution develops significant weight at very low biomass. This
implies that the probability of obtaining large biomass is correlated with the probability
of obtaining B close to zero. Namely, the explosive total population densities at points
in time is interspersed with episodes of all sites falling to very low population densities.

A quantitative estimate of the propensity of extreme biomass events is calculated.
In order to gauge the probability of encountering an extreme event in a large window of
time, the following measure is defined (with no significant loss of generality): an “extreme

84



Figure 5.11: Probability distribution P (B) of the biomass B (cf. Eqn. 5.4), obtained by
sampling over long time periods and random initial states. Here system size N = 100,
p = 0.15, and k = 2, 20 and 80.

event” is one that is more than three standard deviations away from the mean. The system
is allowed to evolve over a long period of time and the number of such events is counted,
after transience. The number of extreme B values, scaled by the length of the time
window under consideration, denoted by PXE

B in Fig. 5.12, provides an estimate of the
frequency of extreme biomass events. Fig. 5.12 shows this quantity for different sizes of
the relative size of the coupling neighborhood. Clearly, the probability of encountering an
extreme event increases approximately linearly with k/N , up to k/N ∼ 0.9. This result
holds for different fractions of random links p and system sizes N , as evident through
the collapse of the data for varying p and N on to a broadly similar trend. Further,
for 0.9 < k/N < 1 there is a sharp jump in PXE

B , i.e. close to the global coupling limit
the system shows an enhanced propensity for extreme biomass production. Interestingly
however, the exact global coupling limit, where the system attains full symmetry in the
dynamical equations and the random links do not have any effect on the dynamics as the
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Figure 5.12: Dependence of the probability of extreme biomass events, PXE
B (see text

for definition), on relative size of the coupling neighbourhood k/N . The probability is
estimated by sampling 103 time steps (post transience), evolved from 102 random initial
states. Here network size N = 100, with fraction of random links p is equal to 0.05
(yellow), 0.15 (green) and p = 0.5 (red). The best linear fit is indicated by lines in yellow
(for p = 0.05), green (for p = 0.15) and red (for p = 0.5).

coupling is all-to-all, shows singular behaviour: all extreme events are again suppressed,
and PXE

B ∼ 0 at k = N .

The probability distribution P (Tint) of the time intervals between two successive ex-
treme events, denoted by Tint, is shown in Fig. 5.13. It is evident from the figure the
time intervals are well described by Poissonian distributions. This implies that successive
extreme events are essentially uncorrelated events, and there is no temporal pattern to
the occurence of the extreme events. The consequence of this observation is that it would
be difficult to anticipate such events.
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Figure 5.13: Probability distribution P (Tint) of the time intervals between two successive
extreme biomass production events, Tint, for coupling neighbourhood sizes k = 20 and
k = 80. The solid lines show the best fit line to exponential decays.

5.5 Special limiting cases

We observe the behaviour of the population patches when they are connected as a regular
a ring, which is the limiting case of p = 0.0. Fig 5.14 shows the behaviour of the ring
network, initialized randomly and evolving in time. Localized clusters of population
patches are visibly growing in an explosive fashion, with some of them going into the
regime of extreme events.

We also observe the probability of extreme events in space PXE
S for the case of the

ring topology. It is evident from Fig 5.15 that for small k, PXE
S undergoes a very sharp

transition at k/N close to zero, as well as attains a similar maxima, to the small-world
topologies. However, the power-law scaling behaviour of PXE

S with k/N was not observed
for larger relative neighbourhood sizes.
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Figure 5.14: Population densities xit, i = 1, . . . N , where system size N = 100, at different
times t = 0, 50, 100. The initial state xi0 is randomly distributed over the range (0 : 1].
The dotted line marks the 3σt, where σt is the standard deviation of the population
densities at time t. Here we have a ring of populations, with only nearest neighbour
connections and no random links (p = 0.0). The size of the coupling neighbourhood
is k = 2 (denoted in blue) and k = 50 (denoted in yellow). Note that the population
densities are shown on a log-scale. So it is evident that the maximum emergent population
density is still at least an order of magnitude larger than that in the initial state. Owing
to the local nature of connections, clusters of bursting patches are observed.

We further explore the temporal collective behaviour of the system, by observing the
dynamics of the biomass B(t) in time. Fig 5.16 makes it clear that the system displays
extreme biomass growth, intermittently in time, similar to our observations for small-
world networks.

The other limiting case we explore is the case of global, or all-to-all coupling, that
is k = 100. In this scenario, each node is connected to every other node, and therefore
each node has the same neighbourhood (which is the entire network). Therefore the
feedback received by every node is identical. As can be seen in Fig 5.17 , in this case, we
found that all the population patches grew and fell together, and all extreme events get
suppressed. The suppression of extreme events was observed not only in space, but also
in time. Fig 5.18 shows the time evolution of the biomass in the globally coupled case,
and it is clear that the biomass does not deviate from the mean beyond the 2σ limit.
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Figure 5.15: Dependence of the probability of extreme events in space PXE
S (see text for

definition) on the relative neighbourhood size k/N . Here network size N = 100, with no
random links, that is p = 0.0. The figure shows PXE

S for k/N ≤ 0.2, clearly indicating a
sharp transition at k/N → 0.

5.6 Discussions

To summarise, in this work we considered a network of populations modelled by the
prototypical chaotic Ricker map (Eq. 5.1), relevant to population growth of species with
non-overlapping generations, whose growth rates are influenced by the local mean field of
its neighbourhood. This form of parametric coupling has not been adequately explored,
compared to the usual diffusively coupled systems. We examined the dynamics and
distribution of the local populations, as well as the total biomass. We found the following
counter-intuitive and interesting emergent behaviour in the system: When the range of
coupling is sufficiently large, namely when enough neighbouring populations influence
the growth rate of a population, the system yields extremely large biomass values that
are very far from the mean. These extreme events are relatively rare and uncorrelated
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Figure 5.16: Time evolution of the total biomass B(t), (cf. Eqn. 5.4) over 400 time
steps (post transience), for neighbourhood sizes k = 2 and k = 50, on a network of size
N = 100 with no random links, i.e. p = 0.0. The red dashed line marks the mean value
of biomass B̄, and the red dotted line indicates 3σ above the mean. Clearly the biomass
values deviate much more significantly from the mean when k is larger. The line indicates
the value 〈B(t)〉+ 3σ, and marks the Extreme Events regime.

in time, even though this system is completely deterministic and there is no external
stochastic influence. We also find that at any point in time, large population densities
emerge in a few patches, and this extremely large and relatively rare explosive growth
in space is analogous to an extreme event in space. Interestingly, a similar form of
parametric coupling has been explored in the context of models of income distributions
of individuals on a regular network of deterministic economic agents [56]. So the rare
and sudden extreme growth reported in our work also has potential relevance to such
economic systems. Thus we suggest a new mechanism for the emergence of extreme
events in coupled chaotic systems, in both time and space.
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Figure 5.17: Population densities xit, i = 1, . . . N , where system size N = 100, at different
times t = 0, 50, 100. The initial state xi0 is randomly distributed over the range (0 : 1]. The
dotted line marks the 3σt, where σt is the standard deviation of the population densities
at time t. The size of the coupling neighbourhood is k = 100 (globally coupled). So it
is evident that the maximum emergent population density evolves almost in synchrony,
largely maintaining their initial differences.

Figure 5.18: Time evolution of the total biomass B(t), (cf. Eqn. 5.4) over 400 time steps
(post transience), for neighbourhood size k = 100 (globally coupled), on a network of size
N = 100. The red dashed line marks the mean value of biomass B̄, and the red dotted
line indicates 3σ above the mean. Clearly the biomass values do not deviate significantly
from the mean. The line indicates the value 〈B(t)〉+ 2σ.
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Chapter 6

Conclusion

The work presented in this thesis is motivated by the advent of novel modeling approaches
to understand the emergent collective dynamics of complex systems. The focus of the
problems has been numerical experimentation and analysis of dynamics on spatially ex-
tended systems. This approach has revealed a rich diversity of behaviours which are
pervasively observed, although the underlying mechanisms of their generation has largely
eluded explanation. The research work in this thesis provides analysis and characteriza-
tion of these emergent behaviours, arising from the interplay of local dynamics and the
form and topology of coupling, in complex dynamical systems.

In the first problem that was explored, we present a model of a non fatal infection
spreading across a population within a bounded region. The dynamics of infection at
the individual level was represented by the SIRS model, where a susceptible (S) indi-
vidual becomes infected by infected individuals (I) in its immediate neighbourhood, and
then proceeds deterministically to the refractory phase (R) which provides them with
temporary immunity, at the end of which they become susceptible again. We observe
the impact of a heterogenous initial condition, with a mixture of individuals at different
phases of the disease and located randomly, on the asymptotic persistence of infection
in the population. The interplay of deterministic dynamics at the individual level with
the randomness of locations, owing to the locality of the interactions, reveals interesting
emergent phenomena from the system.

The persistence of infection in the population was studied under increasing heterogene-
ity in the partitioning of the population into different disease compartments, as well as
increasing heterogeneity in the phases of the disease among individuals within a compart-
ment. Our main observation was that a uniform distribution of phases in the population
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led to the burnout of the infection in the population, and the population evolves to a
homogenous state with all individuals becoming susceptible. However, the presence of
even a single infected individual in a sufficiently mixed distribution of individual phases,
leads the population to evolve to a dynamic steady state with persistent spatiotemporal
oscillations, or waves, of infection being generated and spreading across the system. We
characterize the basin of these asymptotic states, and investigate the effects of further
randomizing the phases within each disease compartment. We find qualitatively similar
results for such controls, leading us to the the conclusion that heterogeneity in the initial
state enables the persistence of spatiotemporal oscillations of infection in such systems.

In the following study we investigated the role of synchronization of the disease phases
on the persistence of infection in the system presented above. We not only explored syn-
chronization in the asymptotic and global context, but we also defined and observed
the synchronization of disease phases in the initial few time steps of the system’s evo-
lution, as well as in local patches. The motivation behind this approach was to explore
whether early transient local synchronization could act as a consistent precursor to the
presence or absence of infection in the asymptotic state of the population, thus providing
an early warning signal and enabling us to anticipate the final state of the system. We
demonstrated clear correlations between low synchrony and high probabilities of persis-
tent infection, and established the effectiveness of utilizing transient local synchronization
as a measure of the future persistence of infection in the population.

So far, we had been implementing a uniformly random distribution of initial phases for
our investigations of the spreading of infection in a population. Subsequently, we studied
the impact of segmenting the population into distinct communities, with varying densities
of infected sub-populations, on the asymptotic prevalence of infection. We found that
even when the average density of infection is too high to sustain persistent oscillations
(when distributed uniformly in space), the community structure enabled certain spatially
distinct parts of the system to support persistent oscillations, which eventually spread
across to the rest of the population, thus attracting it to an asymptotically persistent
state. We also observed that the spatial spreading patterns of infection are distinct in each
community. Instead of homogenising over time, the communities maintained signatures,
akin to some memory, of their initial states. This observation is especially surprising, in
context of the temporal behaviour of the communities, namely the average fraction of the
infected sub-population in each community, which show striking similarities.

The first three studies on the spatiotemporal dynamics of an infection spreading across
a population in a closed region, have revealed very interesting and counter intuitive
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emergent phenomena. Although the model is very simple in terms of the individual
dynamics as well as the form of interaction between the elements, it is readily applicable
in the broad context of critically damped excitation relaxation oscillators, spread out in
space and interacting with each other. Such examples are ubiquitous in their presence in
biological systems, from cardiac tissues to neurons. The observed asymptotic states are
reminiscent of many dynamical behaviours which are found in such real-world systems,
but which have proven to be exceptionally tricky to model and analyze.

Certain possible modifications to, and generalizations of, the system described above
will surely reveal a richer, wider gamut of complex dynamical phenomena. For instance,
motivated by the variability of immune responses of individuals to a certain disease, one
such modification could be the inclusion of variability in the timescales of each oscillator
in the system. This could establish the importance of the ratio of the lengths of the
infectious and refractory phases, to the total length of the disease cycle, in determining
the collective emergent behaviour of the system. Another possible aspect of the system
that may be investigated is the impact of mobility on the persistence of infection. Allowing
the oscillators to move in space as random walkers, and interacting only when they are
within a certain radius of each other, could reveal interesting patterns and mechanisms
of spreading and sustaining the oscillations of the infected sub-population in the system.

In a final study, we investigated the effect of a novel form of coupling on a network of
one dimensional chaotic population maps. The form of coupling is motivated by indirect
interactions between isolated patches where a population resides, via the environment.
We modeled the impact of these indirect interactions between such patches by reinter-
preting the map as a combination of two distinct terms - one for growth, and the other
as a nonlinear feedback term to suppress growth. The interplay of these two terms leads
to the unimodal nature of the dynamical map at the individual scale. We modified the
feedback term at each node to reflect the indirect interactions with their neighbours, by
including feedback not only from a node to itself, but also from its neighborhood. We
observed that this form of coupling leads to a very asymmetric state of the overall system,
where the activity at certain nodes gets suppressed, and a few nodes show explosive ac-
tivity, going well beyond the average populations present in the network. We investigated
the impact of gradually increasing the coupling neighborhood for each node, and it was
found that suppression of activity occurred for a larger fraction of the nodes, along with
increase in the extent of explosive activity at fewer and fewer nodes. After analyzing
the spatial distributions, as well as the biomass distributions over time, we concluded
that this emergent behaviour is akin to the generation of extreme events, in both space
and time. Thus we found a novel mechanism for the generation of extreme events in a
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network of chaotic populations.

Although we established the robustness of our results for unimodal maps in the in-
terval [0,∞) in the study elucidated above, it is imperative to generalize this notion of
parametric coupling, and extend it to systems with multiple state variables, as well as
continuous time systems. A rigorous definition of the notion of the feedback term utilized
in the above investigation, needs to be developed. This study has, figuratively, opened a
door towards analyzing how cross-coupling of state variables from neighbouring dynamical
units, provides a mechanism for the generation of extreme events. It would be interesting
to explore new and original coupling forms that directly modify the parameters of the
dynamical elements of a complex system, based on inputs from their neighborhood. Such
models, if fitted to real-world data, would provide deep and enduring insights into the
underlying cause and effect relationships present in complex systems such as ecosystems,
which usually elude intuitive understanding.

In conclusion, through these studies, apart from revealing and characterising a range
of interesting dynamical regimes shown by these spatially extended models, we have
established that such models provide an inventory of very effective tools to investigate
and analyze the rich dynamics demonstrated by such systems. The results and insights
from the simple models analyzed in these studies provide a basis to understand and model
many real-world systems.
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