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Abstract

Nanoparticles are the new technological revolution in the field of medicine.

Different kind of nanoparticles are being used for different purposes. Targeted drug

delivery is the main aim to fulfill through the use of these nanoparticles. The physical

properties of these nanoparticles vary with reference to the feature of the target. Mag-

netic Nanoparticles(Fe2O3), Gold Nanoparticles(AuNP), Silica Nanoparticles(SiO2),

Silver Nanoparticles(AgNP) are some examples which have been regularly used in

medicinal purposes. Now since the delivery of drug to the target is through a path

which contains different parts of cell so studying the interaction with those parts is

also part of the problem as that affect the effciency of targeted delivery. Lipid bi-

layer membrane is a part of a cell through which our nanoparticle makes it’s way to

the target. There are various studies[1–3] of the interaction between lipid membrane

and nanoparticle. Here we have studied the phase behavior of the lipid membrane

with and without nanoparticle at a temperature range from 10◦C to 40◦C through
31P Nuclear Magnetic Resonance(NMR). We have compared T1 Relaxation time, T2

Relaxation time, Diffusion Coefficient, Hydrodynamic Radius of the same. A signifi-

cant difference have been found in these values at various temperature and also phase

transition temperature has shown some shift in the values.

Interaction studies of Nanoparticle and Polymer Mesh is also important as

polymer meshes work as a vesicle for these nanoparticle to reach the target. Various

studies suggested that Triblock Copolymer have a property to form better mesh than

other normal polymer which is why it has been used in this area for a long time as

a vesicle for nanoparticle. We studied the effect of nanoparticle on the correlation

in between the bond of Triblock Copolymer through 1D Proton NMR & 2D COSY

NMR. A significant shift has been found at some peaks which shows strong interaction

of nanoparticle and Triblock Copolymer.
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Chapter 1

Introduction

1.1 NMR Signal

The phenomenon of Nuclear Magnetic Resonance(NMR) depends on the magnetic

properties of atomic nuclei. Atomic nuclei can be of three types:

• (a) Nuclei with odd number of total Nucleons(Proton + Neutron)

• (b) Nuclei with even number of Neutrons and even number of Protons

• (c) Nuclei with odd number of Neutrons and odd number of Protons

Nuclei with an odd number of Nucleons will have a half-integral spin quantum number

as only one nuclear spin will be unpaired. On the other hand nuclei with even number

of nucleons will have either zero spin quantum number as neutron and proton each

get paired or are integral spin quantum number where one unpaired neutron and one

unpaired proton contribute to the spin quantum number.

Since the NMR phenomenon depends only on the existence of nuclear spin thus nuclei

of category (b) are NMR inactive. Most common NMR nuclei include 1H,13C,15N

and 31P (spin 1/2) and 2H1 (spin 1).

1
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The energy diagram for two spin states of nuclei with I = 1
2

has its classical equiv-

alent in the parallel(ground state) and antiparellel(excited states) orientation of z-

component of nuclear magnetic moment µ relative to the external field B0. In this

model, absorption of energy via interaction of the electromagnetic radiation with the

nuclear moment leads to inversion of the magnetic vector µ. [4]

The magnetic dipole in a homogeneous magnetic field B0 experiences a torsional mo-

ment that attempts to align it with the direction of the field. The angular momentum

of the nucleus therefore causes a precessional motion of µ around the z-axis that can

be easily understood according to the principles of gyration. The angular velocity of

this precessional motion, known as Larmor precession, is given by ω0 = −γB0, since

the vector ω0 points the negative z-direction. The Larmor frequency is thus

ω0 = γB0 (1.1)

For the resonance process it is important to note that a magnetic field B1(r.f. Pulse)

can effect the inversion of the magnetic moment µ mentioned above. In order to

achieve this, B1 must be directed at right angles to x, y-component of µ and rotate

in the x,y-plane with an angular velocity equal in sign and magnitude to the Larmor

frequency. At this point it proves advantageous to introduce, in addition to the fixed

coordinate system C(x, y, z), known as laboratory frame, a rotating coordinate system

C ′(x′, y′, z′). In this rotating frame, the magnetic moment no longer feels the effect of

the static magnetic field B0 but rather that of a magnetic field

B′ = B0 + ω/γ (1.2)

where ω is the angular velocity of C’ and ω/γ is a fictitious field Bf that exists only

as a result of the relative motion of the coordinate systems C and C’. For ω = 0, Bf

vanishes while for ω = −γB0, B’ becomes zero. This obviously corresponds to the

statement that the vector assumes a fixed position in the rotating frame if ω is equal
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both in sign and magnitude to the Larmor frequency. The angular velocity and sign

of rotation of C’ then coincides with the precessional motion.

If we now turn on the magnetic field B1 that is assumed stationary in the rotating

frame and directed along the x’-axis perpendicular to B0, the effective field according

to Equation 1.2 is given by

Beff


= B′ +B1

= B0 + ω/γ +B1

= B0(1− ω/ω0) +B1

(1.3)

The angle θ formed by Beff with the z-axis is defined by

tan θ =
B1

B0(1− ω
ω0

)
(1.4)

With the condition B0 � B1 for the magnitude of the individual fields variation of

B0 and thus Larmor frequency ω0 (Equation 1.1) leads to the following situation:

1. If the magnitude of ω0 and β are very different, the effective field is aligned paral-

lel to the z-axis, because according to Equation 1.4, tan θ becomes approximately

equal to zero, i.e. θ ≈ 0◦or 180◦for ω0 < ω or ω0 > ω, respectively(B0 � B1).

2. On the other hand, if ω0 ≈ ω, tan θ approaches∞ and θ = 90◦; Be is then equal

to B1 and the vector µ precesses with frequency ω1 around the direction of B1,

that is around the x’-axis. Thus, µ passes from the ground to the excited state.

Because B0 � B1 this situation represents a typical resonance phenomenon,

since a small periodic perturbation of the system leads to a large variation.

The system is affected by the perturbing field, however, only when the Larmor

frequency and the frequency ω are identical.

In practice, the rotating field B1 is generated by an oscillator along the x-axis of the

fixed coordinate system C. A magnetic field Bx linearly polarized in the x-direction
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with frequency ω and the amplitude 2B1 can be represented by two rotating magnetic

vectors B1(l) and B1(r), one of which, B1(r), has the desired rotational sense. The

other vector has practically no effect on the experiment. The foregoing model was

based upon an isolated nucleus. We now extend our analysis to a macroscopic sample

and thus to a large number of nuclei.

After turning on the magnetic field B0, the nuclei approach an equilibrium distribu-

tion between energy levels α and β. This process, which occurs within a certain time

interval, yields Nβ > Nα according to the Boltzmann distribution law. The result of

this process is the build-up of macroscopic equilibrium magnetization M of the mag-

nitude M0, which is the resultant of individual magnetic moments of those nuclei that

form the excess population of the ground state. Since the nuclear moments do not

rotate in phase but are statistically distributed over a conical envelope, no component

of the macroscopic magnetization in the x,y plane exists. By means of a transmitter

on the x-axis, a linearly polarized electromagnetic field B1 of the frequency ω and am-

plitude 2B1 stationary in the rotating frame is now generated. At resonance(ω0 = ω)

an interaction between the individual nuclear moments and the field B1 occurs, which

deflects M from its equilibrium position along the z-axis. This is turn creates a finite

transverse magnetization My′ in the y’-direction. In contrast to the case for individ-

ual nuclear magnetic moments, here the vector M is not inverted, because when the

amplitude of B1 is small, not all nuclear moments µ can absorb energy. Consequently,

in the fixed coordinate system, M executes a precessional motion around the z-axis.

[4]

As a result the transverse magnetization produced also rotates in the coordinate sys-

tem C and can be detected by means of a receiver coil along the y-axis. The deviation

of M is proportional to the energy take-up of the spin system from the r.f. field B1

and the Continuous Wave(CW) N.M.R. signal corresponds to the stationary state

between nuclear excitation and relaxation.
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Since the ideal case, in which all nuclei of a macroscopic sample have the same Larmor

frequency, is not encountered in practice, a transverse magnetization is induced both

before and after attainment of the exact resonance condition. When ω0 is varied

sufficiently slowly, the vector M traces a circle in the rotating frame. If one plots its

components Mx′ and an absorption curve for My′(symbolized by u and v, respectively)

as a function of the frequency difference ∆ω = ω0 − ω, one obtains a dispersion

curve for Mx′ and an absorption curve for My′ . The components of the transverse

magnetization differ in phase by 90◦, but both can be measured, since according

to Faraday’s law the induced electric current in the fixed coordinate system C is

proportional to the periodic variation dMx/dt or dMy/dt.

The quantitative mathematical basis for the phenomenological treatment (Appendix

D) was developed by Bloch. It culminates in the famous Bloch equations. The trans-

verse magnetization My′ which corresponds to the absorption signal is given by:

My′ =
−M0γB1T2

1 + T 2
2 (ω0 − ω)2 + γ2B2

1T1T2

(1.5)

Similar relationships are obtained for Mx′ and, correspondingly, for My and Mx in the

laboratory frame.

1.2 Relaxation

Two macroscopic magnetizations are distinguished in an NMR experiment: the lon-

gitudinal magnetization along the z-axis and the transverse magnetization in the x,y

plane. Both are subject to relaxation phenomena, i.e., their magnitudes are time-

dependent.
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1.2.1 Longitudinal Relaxation Time (T1)

Immediately after exposing the spins of a sample to the external magnetic field B0,

they are in a non-equilibrium state because all spin states are equally populated and

M0 = 0. The build-up of the equilibrium magnetization M0 then requires a time

T1 and the variation of the z component of the macroscopic magnetization obeys a

first-order differential equation:[4]

dMz/dt = (M0 −Mz)/T1 (1.6)

1/T1 is thus the rate constant for the transition of the perturbed system to the equi-

librium state. During T1, energy is transferred from the spin to environment, the so

called lattice. This process, is called longitudinal relaxation. Accordingly, T1 is known

as the longitudinal or spin-lattice relaxation time.

relaxation plays an important role in the observation of the resonance phenomenon.

The magnitude of the new equilibrium magnetization Mz is a function of the longi-

tudinal relaxation time and the amplitude of the B1 field. As can be derived for B1

fields, the maximum intensity I of the CW signal at ω = ω0 is given by

I(ω0) = constant/B1T1 (1.7)

Long relaxation times T1 and the high amplitude of the oscillating field therefore

reduce the signal intensity, i.e. saturate the resonance line. [4]

Shorter relaxation times, on the other hand, broaden the resonance lines. This arises

because the lifetime of nuclei in the exited state is decreased, which causes an un-

certainty in the determination of the energy difference. According to the uncertainty

principle ∆E∆t ≈ h and with ∆E = h∆ν this leads to ∆ν∆t ≈ 1/2π or ∆ν = 1/2π∆t

for the uncertainty in the determination of the resonance frequency. The line width
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therefore contains the quantity 1/∆t or 1/T1. in organic liquids T1 for protons is gen-

erally in the order of a few seconds or less so that spin-lattice relaxation contributes

not more than 0.1 Hz to the line width.

Now, by which mechanism is energy exchanged between the lattice and the nuclear

spin system? In liquids magnetic dipole-dipole interaction is mainly responsible and

thus is significant for high-resolution NMR even if it does not lead to a line splitting.

Rotational and translational motions of a molecule in a liquid occasion a fluctuation,

i.e. time-dependent magnetic field, which can be described simply as magnetic noise.

This fluctuating field possesses components Bx′ and By′ with frequency ω0 which sat-

isfies the resonance condition and can stimulate transitions. The magnetic energy

received by the lattice is then transformed into thermal energy. The longitudinal re-

laxation process is especially effective if paramagnetic substances are present in the

solution. This is because the relaxation time T1 theoretically is inversely proportional

to the square of the magnetic moment that gives rise to the above mentioned fluctu-

ating field. The magnetic moment of an unpaired electron is larger than the nuclear

magnetic moment by a factor of about 103. T1 therefore become smaller than 10−1 s

and the resonance lines become very much broadened. [4]

1.2.2 Transverse Relaxation(T2)

In the classical description of the NMR experiment, in addition to the z-magnetization

there exists a second magnetization in the x,y plane, usually termed transverse magnetization(Mx,y).

It seems therefore reasonable to introduce a second relaxation time T2, the so-called

transverse relaxation time, especially since it turns out that the time dependence of

Mx,y usually differs from that observed for Mz. T2 is also known as the spin-spin relax-

ation time after the mechanism responsible for transverse relaxation(energy transfer

between individual spins).
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Another justification for the introduction of T2 comes from the consideration of the

line width of the NMR transitions. As was mentioned above, longitudinal relaxation

usually contributes less than 0.1 Hz. Nevertheless, observed line widths are larger and

may amount to several kilohertz in the case of solids. It is therefore convenient to

define another characteristic time T2 , shorter than T1, to deal with this situation.

In the simplest case T2 = T1 for liquids since, after resonance, the x,y-component of the

magnetization vanishes at the same rate as the longitudinal magnetization attains its

previous value M0 along the z-axis. On the other hand, the transverse magnetization

can be reduced without the simultaneous increase in the z-component(T2 < T1). As

in the case of spin-lattice relaxation, fluctuating field can interact with the transverse

component Mx,y, thereby reducing its magnitude. Whereas time dependent fields

Bx′(t) and By′(t), stationary in the rotating field, interact with Mz,Mx,y can interact

not only with Bx′(t) and By′(t) but also with Bz. The component Bz, however, is

static in the laboratory frame; thus transverse relaxation can also originate from the

presence of static dipolar fields.

An important mechanism for transverse relaxation is based on an energy transfer

with the spin system. Any transition of a nucleus between its spin states changes

the local field at nearby nuclei at the correct frequency to stimulate a transition in

the opposition direction. The lifetime of the spin states will be shortened by this

process and it therefore contributes to the NMR line width in a manner similar to the

spin-lattice relaxation process. The total energy of the spin system does not change,

however, and transverse relaxation of this kind can be regarded as an entropy process.

Spin-lattice relaxation, on the other hand, is classified as an enthalpy process.[4]

In liquids, the inhomogeneity, ∆B0, of the magnetic field B0 is by far the most impor-

tant factor for the time dependence of Mx,y. Exposure of the individual nuclear spins

to different external fields B0±∆B0 will result in a spread of their Larmor frequencies

and in a fanning out process for Mx,y. In order to avoid the resulting line broadening,
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each determination of an NMR spectrum should be preceded by optimization of field

homogeneity through adjustment of the field gradients.

According to the quantitative classical treatment of the resonance process, for small

amplitudes of the B1 field, i.e. for γ2B2
1T1T2 � 1, the resonance signal is described

by

I(ω) =
constant×B1T2

1 + (ω0 − ω)2T 2
2

(1.8)

The signal intensity at the point of resonance (ω = ω0) is then proportional to the

transverse relaxation signal:

I(ω0) = constant×B1T2 (1.9)

Including B1 in the constant, it follows for the intensity at half the signal height that

I1/2 = constant× 1

2
T2 (1.10)

As this value for I1/2 must also satisfy equation for I(ω), there results

T2

2
=

T2

1 + (ω0 − ω)2T 2
2

(1.11)

and one obtains

ω0 − ω1/2 =
1

T2

or∆ =
2

T2

(1.12)

where ∆ is the line width of resonance signal at half-height. Since the decay of Mx,y

is caused by field inhomogeneity and natural spin-spin relaxation as well, one usually

writes

∆ =
2

T2?
(1.13)

with
1

T2?
=
γ∆B0

2
+

1

T2

(1.14)

where the first term is the inhomogeneity contribution to the line width. In hertz one
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has ∆ = 1/πT2? if T2? is measured in seconds. Equation of I(ω) describes a Lorentz

curve and the signal is said to have a Lorentzian line shape.[4]

1.3 2D NMR

No other development has influenced magnetic resonance spectroscopy in the last

twenty years so profoundly as the concept of two-dimensional(2D) NMR. This tech-

nique, which emerged from an idea of the Belgian physicist Jeener, has been developed

for applications primarily in the laboratories of R.R. Ernst at the ETH Zurich and R.

Freeman at the University of Oxford. Today it forms the basis for a large number of

experiments in all branches of NMR. [4]

The 2D NMR experiment is basically characterized by three intervals: preparation,

evolution and detection. In a number of 2D experiments a further interval is added

before detection, the so-called mixing time.

During the preparation time the spin system of the interest is prepared for the experi-

ment, for example by application of decoupler experiments or simply by the generation

of transverse magnetization through a 90◦pulse. In the evolution time t1 it then de-

velops under the influence of different factors, as for example Larmor precession or

scalar spin-spin coupling, before a signal is detected during the detection time t2.[4]

Only if in a series of experiments the sequence is repeated with a systematic variation

of the evolution time t1 by adding time increments ∆t1, and if after the first Fourier

transformation of the resulting t2 signals a number of one-dimensional spectra is ob-

tained in the frequency domain F2 which shows a modulation in amplitude or phase,

can a second Fourier transformation be applied. The data of these spectra are then

transformed with respect to the time axis t1. A frequency axis F1 results which now

contains the frequencies of those mechanisms which have been effective during the

evolution time t1 and which caused the observed modulation of signal amplitude or
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signal phase. If for instance spin-spin coupling was effective during t1 and Larmor pre-

cession during t2, F1 contains coupling constants while the chemical shifts appear on

the frequency axis F2. Resonance frequencies and spin-spin coupling constants which

are a priory indistinguishable in a conventional one-dimensional NMR spectrum can

thus be separated and presented on two distinct frequency axes.[4]

A 2D NMR experiment is possible only after a series of n 1D spectra has been mea-

sured. Thereby the evolution time is systematically increased by adding time incre-

ments ∆t1: Normally 32 1D experiments are used as a minimum, but 128 or 256 single

1D experiments are not uncommon.

The experimental data of such a series of 1D experiments are not individually Fourier-

transformed but rather stored in the computer memory. They yield a data matrix

which is characterized by two time axes: t1 and t2. The 2D spectrum is thus a

function of two variables: S(t1, t2). A first Fourier transformation with respect to t2

yields S(t1, F2). This function must be seen as a series of one dimensional spectra,

the signals of which are modulated with respect to their amplitude or phase. There

exists a periodical behavior along t1. The final 2D spectrum is thus a function of two

frequencies variable: S(F1, F2).

Only the detection time is a real time axis in 2D experiment, that is, real FID signals

are only detected in t2. In contrast, the FID for Fourier transformation along t1 is

constructed point by point. Therefore, the t1 increments ∆t1 determine the Nyquist

frequency in the F1 domain. Thus a value of 1 ms for ∆t1 means, for example, that

along t1 frequencies of 1 kHz can be recognized if quadrature detection can be used

in t1. The t1 increment ∆t1 thus corresponds to the dwell time of the t1 dimension.

Quadrature detection in t1 can be achieved through certain phase cycles, which yields

a phase shift of 90◦for the receiver signal. Two experiments must then be performed

for each t1 increment.

Normally long measuring times are required for 2D NMR. This is also due to the fact

that nearly always 90◦excitation pulses are used. Therefore. after each individual
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t1 experiment a relaxation delay is necessary in order to provide uniform starting

conditions. Finally the mass of data which has to be mathematically processed is

much larger than in 1D experiment. Without modern computers, especially efficient

data storage capacities, 2D NMR would not be practicable.[4]

1.4 Pulsed Field Gradients

The pulsed field-gradient spin-echo(PGSE) NMR method dates back to the year 1965.

In the 46 years that have elapsed since this pioneering work, a large number of pub-

lications have dealt with the study of molecular-self-diffusion in systems of various

complexity.[5] In the most basic form, the PGSE experiment is based on the 90◦-τ -

180◦spin-echo radio frequency sequence used in, the Carr-Purcell method for spin-

spin(T2) relaxation measurements to which magnetic-field gradients have been added.

At a time τ after the 180◦pulse a spin-echo is formed. If the Fourier transformation

starts at this point, the resulting spectrum will be essentially identical to the one

obtained using an ordinary 90◦RF pulse sequence, except for the attenuation of the

various signals, brought about by the spin-spin relaxation over the time span of 2τ .

This attenuation is in principle given by exp(−2τ/T2). The value of T2 are differ-

ent from one component to the other, and also in principle from one NMR signal

to another in the same component. Therefore, there will always be a restriction on

the range of τ that may be used in such experiments.[5] There are two main ways

in which NMR may be used to study self-diffusion coefficients, which are also known

as tracer-diffusion or intradiffusion coefficients (a)analysis of relaxation data and (b)

pulsed-field gradient (PFG) NMR. However, the two methods report on motions in

very different time scales and thus, even though a translational diffusion coefficient

can be derived in both cases, the two estimates will agree only under certain circum-

stances. since the relaxation method is in fact sensitive to rotational diffusion, whereas

the PFG method measures translational diffusion. Generally, in experiments involving

the solution state, relaxation measurements are sensitive to motions occurring in the



Chapter 1. Introduction 13

picosecond to nanosecond time scale-that is, motion on the time scale of the reorien-

tational correlation of the nucleus. While in PFG measurements, motion is measured

over the millisecond to second time scale.[5] In the first method, relaxation data are

analyzed to determine the rotational correlation time(s) (τc) of a probe species.τc can

then be related to the solution viscosity, and ultimately, to the translational diffusion

coefficient by using the Debye equation

τc = 4πηr3
s/(3kT ) (1.15)

and the Stokes-Einstein equation, However, a number of assumptions which, depend-

ing upon the system being studied, may or may not be justified need to be made in

performing this analysis. First, the relaxation mechanism of the probe species needs

to be known, and it is required that the intermolecular contributions to the relaxation

can be separated from the intramolecular contributions. Second, only if the molecule

is spherical can its rotational dynamics be properly characterized by a single corre-

lation time. Third, depending on the size of the probe molecules compared to the

molecules of the bulk solution, they may not see the solution as being continuous; as

a consequence, one of the basic requirements for the validity of the Debye equation is

violated. Thus, serious assumptions are involved in applying this method to study-

ing biological systems when a small probe species is used since the solution normally

has a large macromolecular component (e.g., a large part of the cytoplasm of red

blood cells is composed of hemoglobin). The final problem with this method is that

the Stokes radius of the probe molecule needs to be known and the determination

of this is not straightforward.[5] In the PFG method, the attenuation of a spinecho

signal resulting from the dephasing of the nuclear spins due to the combination of the

translational motion of the spins and the imposition of spatially well-defined gradient

pulses is used to measure motion. In contradistinction to the relaxation method, no

assumptions need to be made regarding the relaxation mechanisms, or in relating τc

to the translational motion of the probe molecule. However, to determine the “true”

diffusion coefficient, D, as against an “apparent” diffusion coefficient Dapp the effects
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of structural boundaries that affect the natural diffusion of the probe species need

to be considered. The mathematics required to model anything except for free dif-

fusion or diffusion within simple geometries becomes rather complicated, and as a

result, analytical solutions are generally not possible and numerical solutions must be

sought.[5]

1.5 Nanoparticles

Nano science plays an important role in the study of biological phenomenon because

the size of inorganic nanoparticles as probes and the spatial resolution of nanotools

match the sizes of macromolecules.[6]Nanosystems can be prepared in a variety of

shapes. Nanocrystals are often irregular; there are asymmetric carbon nanotubes,

and surfactant and lipid vesicles can be produced as discs, polyhedral structures,

toroids and tubes. The vesicles constructs often have dimensions larger than 500 nm;

it must be assumed that vesicles in the nanometer size range will be less affected.

In these systems, shape is less important than membrane properties in controlling

the release of encapsulated drug, but the flow properties of vesicular suspensions are

clearly determined by shape and elasticity. [6]

Polymeric nanoparticles are promising vehicles for site-specific and controlled deliv-

ery of therapeutic agents, following different routes of administration and these trends

seem to continue with advances in materials and polymer chemistry and pharmaceu-

tical nanotechnology. However, nanoparticle do not behave similarly; their encap-

sulation capacity, drug release profile, biodistribution and stability vary with their

chemical makeup, morphology and size. Inherently, nanosphere design and targeting

strategies may vary according to physiological and therapeutic needs, as well as in

relation to the type, development stage and location of the disease. Attention should

also be paid to toxicity issues that may arise from nanoparticle administration and

the release of their polymeric contents and degradation products.
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1.6 Triblock Copolymer

Copolymers are derived from two(or more) type of monomeric species. Block Copoly-

mers are polymers of copolymers with block of these monomeric species. Triblock

Copolymer has a block of 3 monomeric species to polymerize. In our studies we used

Polyethylene Glycol(PEG)-Polypropylene Glycol(PPG)-Polyethylene Glycol(PEG) as

a block. Triblock Copolymers(PEG-PPG-PEG) are quite useful because of their prop-

erty of forming Self-Constructing Meshes. By varying the concentration of Triblock

Copolymers we can change the mesh properties. These meshes can be used as a

vesicles for nanoparticles for possible drug delivery applications.

1.7 Lipid Membrane Mimetics

All cells are bounded by a thin membrane called the plasmalemma. This membrane is

not visible under the light microscope. The structure seen under the light microscope

is the cell membrane. This consists of the plasmalemma along with surrounding cell

cement.

In an attempt to explain the physical and biological features of cell membranes two

main categories of hypotheses have been proposed, the bilayer models and the micel-

lar or subunit models. In the bilayer models the protein and lipid constituting the

membrane are believed to occur in layers. In the micellar model the membrane is

believed to consist of a number of similar units.[7–9]

Membranes being 5 to 8 nm (50 to 80 Å) thick are only permeable to nonpolar com-

pounds, The physical studies of permeability and the motion of individual protein and

lipid molecules within membranes and combined evidence from electron microscopy

and studies of chemical composition, led to the development of the fluid mosaic

model for the structure of biological membranes.[9] Phospholipids form a bilayer in

which the nonpolar regions of the lipid molecules in each layer face the core of the
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bilayer and their polar head groups face outward, interacting with the aqueous phase

on either side. “Sidedness” of the bilayer is determined by the protein which are

embedded in this bilayer sheet, held by hydrophobic interactions between hydropho-

bic domain of proteins and membrane lipid. Some of these proteins protrude from

only one side of the membrane; others have domains exposed on both sides. The

orientation and functional behavior of proteins in the bilayer is asymmetric, which

determines the sidedness of the membrane. The individual lipid and protein units in

a membrane form a fluid mosaic with a pattern that, unlike a mosaic of ceramic tile

and mortar, is free to change constantly.[7] The membrane mosaic is fluid because

most of the interactions among its components are noncovalent, leaving individual

lipid and protein molecules free to move laterally in the plane of the membrane. We

now look at some of these features of the fluid mosaic model in more detail and con-

sider the experimental evidence that supports the basic model but has necessitated

its refinement in several ways.[7–9]

1.7.1 Bilayer Models

In 1895 Overton found that fat-soluble substances passed easily through the cell

membrane. He therefore concluded that the cell membrane contained lipids. Later

Hober(1910) and Fricke(1925) found that the intact cell had low electrical conductiv-

ity, indicating a lipid bilayer. The existence of a lipid layer was confirmed on the basis

of experience.[7]

Glycerophospholipids, sphingolipids, and sterols are virtually insoluble in water. When

mixed with water, they spontaneously form microscopic lipid aggregates in a phase

separate from their aqueous surroundings, clustering together, with their hydropho-

bic moieties in contact with each other and their hydrophilic groups interacting with

the surrounding water. Lipid clustering reduces the amount of hydrophobic surface

exposed to water and thus minimizes the number of molecules in the shell of ordered

water at the lipid-water interface, resulting in an increase in entropy. Hydrophobic
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interactions among lipid molecules provide the thermodynamic driving force for the

formation and maintenance of these clusters. Depending on the precise conditions and

the nature of the lipids, three types of lipid aggregates can form when amphipathic

lipids are mixed with water. [7–9] A first type of lipid aggregate in water is the bi-

layer, in which two lipid monolayers (leaflets) form a two-dimensional sheet. Bilayer

formation occurs most readily when the cross-sectional areas of the head group and

acyl side chain(s) are similar, as in glycerophospholipids and sphingolipids. The hy-

drophobic portions in each monolayer, excluded from water, interact with each other.

The hydrophilic head groups interact with water at each surface of the bilayer. Be-

cause the hydrophobic regions at its edges are transiently in contact with water, the

bilayer sheet is relatively unstable and spontaneously forms a third type of aggregate:

it folds back on itself to form a hollow sphere, a vesicle or liposome. By forming

vesicles, bilayers lose their hydrophobic edge regions, achieving maximal stability in

their aqueous environment. These bilayer vesicles enclose water, creating a separate

aqueous compartment. It is likely that the precursors to the first living cells resem-

bled liposomes, their aqueous contents segregated from the rest of the world by a

hydrophobic shell.[7–9]

1.7.2 Lipid Bilayer Gel Phase Transition

Amphiphilic phospholipids, a major constituent of biological membranes, are involved

in numerous cell activities, ranging from simple mechanical functions to complex and

highly specific biomolecular interactions. The thermodynamic and structural behavior

of the lipid membrane depends strongly on its chemical environment and composition.

Fundamental understanding of this dependence is necessary for the development of

lipid-based technologies, e.g., drug delivery and biological sensors. [10] One of the

properties that greatly influences membrane functionality and behavior is the phase

state of the lipid bilayer.It is well established that one-component saturated lipid

bilayers undergo a reversible transition between an ordered gel phase and a disordered
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liquid-crystalline phase at a specific temperature termed the main chain transition

temperature. The structural properties of the gel and liquid crystalline phases are

significantly different, bringing about a dependence of the bilayer’s functionality on

its phase state. [10]

The presence of an adsorbed particle could affect the molecular conformations of the

phospholipid molecules and change the structural properties of the fluid-like bilayer.

Consequently, essential biological functions of the phospholipid membrane could be

inhibited. For instance, membrane fluidity, which is characterized by the relative

motional freedom of the lipid molecules within the plane of the bilayer, is a central

property that is present in the liquid-crystalline phase but not in the gel phase.[11]

Changes in membrane fluidity have been associated with changes in the functional-

ity of the bilayer, including enzyme activity and ligand receptor interactions. Their

experimental evidence[12] suggests that when negatively charged nanoparticles are

adsorbed onto a dipalmitoylphospha- tidylcholine (DPPC) bilayer, which has zwitte-

rionic head-groups, there is an induced ordering of the bilayer and the lipid molecules

undergo a phase transition. These experiments demonstrate how changes in the envi-

ronment around the phospholipid bilayer can have a significant effect on its behavior.

[11, 12]

1.7.3 Chemistry of DPPC

• Biological membranes define cellular boundaries, divide cells into discrete com-

partments, organize complex reaction sequences, and act in signal reception and

energy transformations.

• Membranes are composed of lipids and proteins in varying combinations partic-

ular to each species, cell type, and organelle. The fluid mosaic model describes

features common to all biological membranes. The lipid bilayer is the basic

structural unit. Fatty acyl chains of phospholipids and the steroid nucleus of
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sterols are oriented toward the interior of the bilayer; their hydrophobic inter-

actions stabilize the bilayer but give it flexibility.

• Peripheral proteins are loosely associated with the membrane through electro-

static interactions and hydrogen bonds or by covalently attached lipid anchors.

Integral proteins associate firmly with membranes by hydrophobic interactions

between the lipid bilayer and their nonpolar amino acid side chains, which are

oriented toward the outside of the protein molecule.[7]

• Some membrane proteins span the lipid bilayer several times, with hydropho-

bic sequences of about 20 amino acid residues forming transmembrane α helices.

Detection of such hydrophobic sequences in proteins can be used to predict their

secondary structure and transmembrane disposition. Multistranded β barrels

are also common in integral membrane proteins. Tyr and Trp residues of trans-

membrane proteins are commonly found at the lipid-water interface.

• The lipids and proteins of membranes are inserted into the bilayer with specific

sidedness; thus membranes are structurally and functionally asymmetric. Many

membrane proteins contain covalently attached oligosaccharides. Plasma mem-

brane glycoproteins are always oriented with the carbohydrate-bearing domain

on the extracellular surface.[7]

1.8 Organization of the Thesis

This thesis is organized as follows: Chapter 2 talks about basics of diffusion and finding

diffusion constants using NMR. Chapter 3 discusses the basics and previous studies

of nanoparticles and some of our experimental results of NMR of silver nanoparticles

are also presented. Chapter 4 deals with the interaction of silver nanoparticles with

Di Palmitoyl Phosphatidyl Choline(DPPC) bilayer. Gel to Liquid phase transitions

and consequences of temperature have been experimentally observed using 31P NMR.
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Chapter 5 deals with experimental studies of interactions between silver nanoparticles

and triblock copolymers. Chapter 6 contains the concluding remarks and an outlook

for the future.



Chapter 2

Diffusion Studies Using PFG NMR

2.1 Diffusion

Diffusion can be understood as motion of a Random Walker e.g. Pollen grains. Ein-

stein said, although we can not see the small rapid jerks of the pollen grains due to

individual molecular collision still we can and will see the rare large displacements.

Random walk has structure on all length scales. For 1D one can visualize a random

walk by tossing a coin once per second & each time you get heads, you move the

marker one step to the east; for tails, one step to the west. Once in a while you will

flip 100 heads in a row thus producing a step clearly visible from after. For 2D place

the marker on the checkerboard and flip two coins each second: use the first coin

to move the marker east/west and use the second coin to move the marker north/-

south. The path traced by marker is then a two-dimension random walk; each step is

a diagonal across a square of a checkerboard.

21
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2.1.1 Diffusion Law

Diffusion law is model independent. Diffusion law is universal as long as we have some

distribution of random, independent steps. Suppose each step is of length L. Thus the

displacement of step j is kjL , where kj is equally likely to be ±1. Call the position

after j steps xj with initial condition x0 = 0

x1 = k1L

xj = xj−1 + kjL

〈(xN)2〉 = 〈(xN−1 + kNL)2〉 = 〈(xN−1)2〉+ 2L〈kNxN−1〉+ L2〈kN〉2

〈(xN)2〉 = NL2

If we wait a total time t then the marker makes N = t/4t random steps and diffusion

constant D = L2/24 t⇒ L2 = 2D4 t⇒ NL2 = 2Dt. Thus for one dimension

〈(xN)2〉 = 2Dt (2.1)

In this case any individual walk will not conform to diffusion law even approximately.

There are few steps which we need to follow in order to calculate diffusion constant

for a colloidal particle:

1. Note the initial position of colloidal particle.

2. Wait a time t

3. Note final position

4. Calculate x2/2t

5. Make several observations

6. Average of x2/2t gives D

7. Value of D thus found will not depend on elapsed time t
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Suppose our marker steps of various lengths. We are given a set of numbers Pk, the

probabilities of taking steps of length kL, where k is an integer length kj of step j

can be positive or negative. Relative probabilities of the various step sizes are all the

same for each step. So u = 〈Kj〉 = ΣkPk
average drift motion superimposed on the

random walk

〈xN〉 = 〈xN−1〉+ L〈kN〉

= 〈xN−1〉+ uL

= NuL

Diffusion concerns the fluctuation about the mean thus we have to compute the vari-

ance (mean square deviation)

variance(xN) = 〈(xN − 〈xN〉)2〉

= 〈(xN−1 + kNL−NuL)2〉

= 〈((xN−1 − u(N − 1)L+ (kNL− uL))2〉

= 〈(xN−1 − u(N − 1)L)2〉+ 〈(kNL− uL)2〉+ 2〈(xN−1 − u(N − 1)L)(kNL− uL)〉

= 〈(xN−1 − u(N − 1)L)2〉+ L2〈(kN − 〈kN〉)2〉

= variance(xN−1) + L2variance(k)

After N steps, variance is NL2 ∗ variance(k) so variance(xN) = 2Dt,

⇒ D = (L2/2∆t)variance(k). If there is no drift u=0 then D = L2/2∆t and this

implies that diffusion law is model independent.

Similarly for 2D walk on checkers board with squares of side L gives diffusion con-

stant as D = L2/24 t and now each step is diagonal and hence has length L
√

2 so

〈(rN)2〉 = 〈(xN)2〉+〈(yN)2〉 = 4Dt is twice as large as before. For 3D the expressions

is 〈(rN)2〉 = 6Dt.
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2.2 Fick’s Law

In terms of concentration in number of particles per unit volume, c(r,t), the flux of a

particle is given by Fick’s first law of diffusion

J(r, t) = −D∇c(r, t) (2.2)

The minus sign indicates that(in isotropic media) the direction of flow is from larger

to smaller concentration. Because of the conservation of mass, the continuity theorem

applies, and thus,
∂c(r, t)

∂t
= ∇.J(r, t) (2.3)

This equation states that ∂c(r, t)dt is the difference between the flux and efflux from

the point location at r. Combining above equations we arrive at Fick’s second law of

diffusion:
∂c(r, t)

∂t
= −D∇2c(r, t) (2.4)

2.3 Stejskal-Tanner Equation

ln(
S(k)

S(0)
) = −D(γδg)2(∆− δ

3
) (2.5)

where:

S(k) is intensity of signal in the presence of field gradient pulse

S(0) is intensity of signal in the absence of field gradient pulse

D is diffusion Coefficient

γ is gyromagnetic ratio

δ is duration of field gradient pulse

∆ is diffusion delay time

g is field gradient strength
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2.4 Stokes-Einstein Equation

:

D =
kT

f
(2.6)

where frictional coefficient f = 6πηRh

η is viscosity

Rh is hydrodynamic radius

D is Diffusion Coefficient

k is Boltzmann Constant

T is Temperature

2.5 Diffusion NMR

The molecular translation in the solution arises due to molecular thermal energy. This

translational motion is known as Brownian molecular motion and is called diffusion

or self diffusion. It depends on various physical parameters like size and shape of

the molecule, temperature and viscosity. The diffusion coefficient is given by Stokes-

Einstein equation as

D =
kT

6πηrs
(2.7)

where k is the Boltzmann constant, T is the temperature, η is the viscosity of the

liquid and rs is the hydrodynamic radius of the molecule (it is assumed that the

molecule is having spherical shape). This self-diffusive motion can only be detected

by various methods. Nuclear magnetic resonance provides a molecular label via the
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characteristic Larmor frequencies of the component nuclei. This label may be given

a spatial dependence by the imposition of a well defined magnetic field gradient over

the sample space. The suggestion that spin echo signals might be used to measure

molecular translational motion was first given by Hahn (1950) when he proposed the

spin-echo (SE) experiment. A precise theoretical treatment of this sequence was pro-

vided by Carr and Purcell (1954). All NMR diffusion measurements are based on the

fact that the diffusion coefficient can be calculated from the echo attenuation if the

amplitude and duration of magnetic field gradient are known. Magnetic field gradi-

ents are produced using quadrupolar coils [13], as they are superior in their geometry,

have smaller inductance/gradient ratio and the ease with which orthogonal indepen-

dent ∂Bo/∂x and ∂Bo/∂z gradients are incorporated in one assembly. Protons offer

the greatest sensitivity in NMR because of their high gyromagnetic ratio, although

PFGNMR experiments have been reported using 13C, 2H, 19F and 7Li [14, 15].

2.5.1 Diffusion ordered NMR spectroscopy (DOSY)

Diffusion can be obtained by incrementing the areas of the gradient pulses (q) in

PFGNMR. The result is diffusion ordered NMR spectroscopy (DOSY). The three basic

DOSY requirements are (i) distortion free absorption mode data sets acquired with

precise gradient encoding, (ii) effective data inversion (transformation) procedures,

and (iii) algorithms for the display of the diffusion spectra. DOSY requires high

quality gradient probes which incorporate active shielding and are designed to provide

constant (flat) gradients over the NMR active sample volume.

2.5.2 Pulse sequence

The pulse sequence mostly used for DOSY experiment is stimulated echo (STE) se-

quence show in Figure 2.1. This sequence consists of three 90◦rf pulse which can

generate up to five echoes. The advantages of the STE sequence arise because the
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Figure 2.1: Stimulated Echo(STE) pulse sequence to measure diffusion coefficient
in a DOSY experiment

evolution time for transverse magnetization can be limited. When 2τ � T , spin relax-

ation starts depending on T1 rather than T2, and with τ � 1/J , J-modulation is not

signi[U+FB01]cant. The advantage of T1 relaxation relative to T2 relaxation depends

on the ratios R=T2/T1 and X=T/T1. For T ∼= ∆ and T � τ the STE/SE signal ratio

will be given by (0.5) exp[R(X − 1)/X] for R=0.1 and X=0.5 the enhancement factor

is greater than 200. But the problem is gradient pulses tend to induce eddy currents in

the surrounding metal structures of the probe and the magnet. These eddy currents in

turn produce slowly decaying magnetic fields at the sample that lead to spectral dis-

tortions resulting from time dependent phase changes. Therefore, experiments must

be designed which avoid or at least minimize the effects of eddy currents. There is also

the related requirement that the NMR resolution can be maximized to avoid overlap

of peaks from different components in a mixture as data transformations, required to

produce diffusion spectra, fail when NMR peaks for similar sized molecules overlap.

The best way to avoid the effects of eddy currents is to prevent its formation. There

are some ways but not very effective. In spite of the best efforts, eddy current effects

are still significantly and they depend on the strength of the gradient pulses. The

stimulated echo (see Fig. (2.2)) is primarily affected by eddy currents induced by the

final gradient pulse, and the problem can be solved by keeping τ short in order to

minimize transverse relaxation and J- modulation. One more pulse sequence called

Longitudinal Eddy-current Delay (LED) sequence is also now a days being used quite

widely in which the major change is the addition of a fourth 90◦pulse at the center of
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the stimulated echo for the purpose of storing the magnetization in the longitudinal

direction while the eddy currents decay. After the eddy current settling period Te,

the magnetization is recalled with a fifth 90◦pulse and the FID is acquired. The

effectiveness of this sequence is further enhanced by adding three gradient pre-pulses

to make a chain of five equally spaced pulses.

The LED sequence significantly improves the quality of spectra but suffers from the

slowly decaying eddy currents. The consequence is that the Te period, required to ob-

tain undistorted spectra in experiments with large gradient pulses, can be unaccept-

ably long. There is also the problem that the gradient pre-pulses introduce additional

heat.

One of the best ways to diminish the eddy currents induced by a short gradient

pulse (g) is to replace the pulse with two pulses of different polarity separated by a

180◦RF pulse, i.e. the composite bipolar gradient pulse combination (g-180◦-(- g)).

Gradient pulse sequences with alternating polarity were introduced into PFG-NMR

by Karlicek and Lowe(1980) to take advantage of the fact that the 180◦RF pulses

refocus static gradients. A number of STE sequences were proposed with alternating

grading polarities to minimize the effect of background gradients. More recently all of

the gradient pulses in the LED sequence were replaced with bipolar pulse pairs (BPPs)

to permit diffusion measurements in the presence of large background gradients. The

BPPs were found to cancel more than 95% of the eddy currents, and undistorted

signals could be obtained with Te reduced by a factor of 20. Further, this improvement

could be obtained without the need for gradient pre-pulses, thus reducing undesirable

heating effects.

Eddy current compensation is more complete when both δ and τ are short. The extra

introduced 180◦pulses cause some loss of signal because of the greater sensitivity to

inhomogeneities in the RF pulses. However, this turns out to be an advantage because

signal acquisition is limited to the region where the gradient is constant and higher

quality data result. Also, the refocusing effect of the 180◦pulses does eliminate the
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effect of steady background gradients, and more importantly for DOSY it refocuses

chemical shifts. The latter can be very important when chemical exchange or spin

diffusion is present. At present the BPP-LED sequence is the sequence of choice for

many DOSY experiments, especially those requiring maximum gradient strengths with

small temperature rises. It can also be combined with water suppression sequences if

required.
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2.6 Diffusion Analysis

2.6.1 Method for discrete diffusion coefficient(SPLMOD)

SPLMOD is a single channel method which is restricted to analyse a system with

discrete diffusion coefficients. SPLMOD intends to analyse sums of pure exponentials

by performing least square fit of

S(ν, t) =
n∑
i=1

S0(i) exp(−λis) + E (2.8)

where n is the number of components, λ = D(i)(∆ − δ/3), s = K2, K = γgδ and E

accounts for noise. S is the intensity of a specific frequency channel ν and its variation

of exponential decaying depends on the increase of s. Resolution of discrete compo-

nents using SPLMOD with certain rejection criteria has been presented by Morris

and Johnson([17]). However, with the benefit of remedial constraints, SPLMOD still

suffers from the overlap problem, i.e. It is difficult to separate more than two com-

ponents in one single channel. It is also very sensitive to noise and hence SPLMOD

often overestimates the number of the components.[18]

2.6.2 Method for continuous diffusion coefficients (CONTIN)

Some samples are composed of components with continuous distributions of diffusion

coefficients, e.g. Polymers and aggregates. For a specific frequency channel of the

data of polydisperse system, the signal can be described by:

S(ν, t) =

∫ maxλ

minλ

g(λ) exp(−λs)dλ+ E (2.9)

g(λ) represents the ’spectrum’ of diffusion coefficients and can be obtained by an in-

verse laplace transform(ILT). A method called CONTIN, a constrained regularization

program, attempts to solve this ILT problem and obtain the Laplace spectrum of the
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diffusion coefficients. The constraints are based on the non-negativity of the signal

and decay constant, statistical prior knowledge and parsimony. Usually, the smoothest

solution with the minimum number of peaks is selected. There is no need to provide

the number of components and only the threshold value is chosen as input for the

program. An advantage of CONTIN is that it allows broad and narrow distributions

and therefore it can be used to analyse an unknown system without any knowledge

of whether the diffusion coefficient follow discrete or continuous distribution. If the

distribution is narrow, then it can be reanalysed by SPLMOD if desired. The major

problem is caused by essential smoothing features which broaden all the peaks, even

those of monodisperse components. This problem can lead to two monodisperse com-

ponents to be described by one continuous diffusion coefficient. Thus, CONTIN often

presents an incorrect number of components, due to oversmoothing. Other limitations

of CONTIN include the requirement of high S/N. [18]

2.6.3 Direct exponential curve resolution algorithm (DECRA)

DECRA is a multivariate method to calculate the pure spectrum and the correspond-

ing decay profile of each component based on the GRAM.

DECRA is a fast algorithm to obtain information of pure component in a mixture. It

can deal with spectra with overlapping regions within a few seconds. DECRA requires

equally spaced gradient(g2) to create exponential decay data. This is easy to imple-

ment experimentally. However, in the experimental data, the increase of g2 can be

non-linear due to the systematic error. Therefore, even if the experiment parameters

are set to fulfill the requirement of getting equally spaced g2, it is recommended that

non-linear g2 levels be checked and corrected before using the DECRA. The limita-

tion of DECRA is that it can only be applied to discrete diffusion components with

the range of about two orders of magnitude in the diffusion dimension due to the

requirement of equal g2 steps.[18]





Chapter 3

NMR of Nanoparticles

3.1 Introduction

Fast developing nanotechnology, among other areas, is expected to have a dramatic

impact on medicine. The application of nanotechnology for treatment, diagnosis, mon-

itoring, and control of biological systems has recently been labeled as nanomedicine.

Among the approaches for exploiting nanotechnology developments in medicine, var-

ious nanoparticles offer some unique advantages as pharmaceutical delivery systems

and image enhancement agents. Several varieties of nanoparticles are available: dif-

ferent polymeric and metal nanoparticles, liposomes, micelles, quantum dots, den-

drimers, microcapsules, cells, cell ghosts, lipoproteins, and many different nanoassem-

blies. All these nanoparticles can play a major role in diagnosis and therapy. [19]

Among particulate drug carriers, liposomes, micelles and polymeric nanoparticles are

the most extensively studied and possess the most suitable characteristics for encap-

sulation of many drugs and diagnostic agents. Making these nanocarriers multifunc-

tional and stimuli-responsive can dramatically enhance the efficiency of various drugs

carried by these carriers. These functionalities are expected to provide:

33
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• prolonged circulation in blood and the ability to accumulate in various patholog-

ical areas(such as solid tumors) via enhanced permeability and retention effect

(EPR effect)

• ability to specifically recognize and bind target tissues or cells via the surface-

attached specific ligand.

• ability to respond local stimuli characteristic of the pathological site by, for

example, releasing an entrapped drug or specifically acting on cellular membrane

under abnormal pH or temperature in disease sites

• ability to penetrate inside cells by passing the lysosomal degradation for efficient

targeting of intracellular drug targets

Hydrophobicity and low solubility in water appear to be intrinsic properties of many

drugs, since it helps a drug molecule to penetrate a cell membrane and reach im-

portant intracellular targets. By the virtue of small size and by functionalizing their

surface with synthetic polymers and appropriate ligands, nanoparticles carriers can

be targeted to specific cells and locations within the body after intravenous and sub-

cutaneous routes of injection. [20]

3.2 Utility and Application of AgNPs

• Silver is an effective antimicrobial agent with low toxicity.

• Drug releasing silver in ionic forms are known to get neutralized in biological

fluids and upon long-term use may cause cosmetic abnormality e.g. argyria and

delayed wound-healing.

• Silver nano particle have been the focus of increasing interest.

• It is an excellent candidate for therapeutic purposes.
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• Nano-delivery systems are attractive to researcher because of their ability to

efficiently penetrate tumors and eliminate them in a single treatment.

• Nano particle have the potential to cross the blood brain barrier and this may

open new ways for drug delivery into the brain. [21]

• Access into the cell and various cellular compartments including nucleus.

3.3 Previous NMR Studies of NP

A study of gold nanoparticles(NPs) by Canzi et al. [22]presents a time and cost effec-

tive way to characterize alkanethiol protected Au nanoparticles via 2D diffusion based

NMR. 2D NMR has been used to study nanomaterials in multitude of ways recently,

including ligand exchange kinetics of organic bound to NP surfaces, along with com-

position and purification of nanomaterials.[23, 24] 2D diffusion-ordered NMR(DOSY)

spectroscopy has previously been used as an effective tool in bridging imaging and

species characterization.[25, 26] The technique is especially powerful when dealing

with mixtures containing large distribution of particle size, as is often the case in

nanoparticle studies. Using 2D DOSY NMR, size estimates of varying length alka-

nethiol protected nanoparticles were obtained using correlated diffusion coefficients

of nanoparticle capping thiols as referenced to an internal standard[27]. A significant

finding by this group is that protecting thiols do not have direct effect on hydro-

dynamic radii of nanoparticles in the solvents studies, and thus the measurements

obtained from DOSY were in direct agreement with other visual measurements from

TEM and were a true estimate of the metal core size.[27, 28]

In another study Gomez et al.[29] have reported a new method for measuring the

size of metal nanoparticles encapsulated within dendrimers. This approach should be

appropriate for measuring the size of any encapsulating object as long as the following

two conditions are met. First, the host must have a regular structure. Second, the
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guest must affect a property of the host in a way that can be detected by NMR. The

advantage of this method for dendrimer-encapsulated nanoparticle(DEN) system are

the remarkable sensitivity of proton resonances to nanoparticle size and the fact that

the average nanoparticle size can measured in situ. So a straightforward 1D 1H NMR

experiment can be used to readily distinguish between DENs differing in size by just

a few tens of atoms.

3.4 Materials & Method

Figure 3.1: Silver Nano Particle System

Various functional groups can be easily introduced onto the nanoparticle surface for

mediating both the nanoparticles solubility and serving as a point of chemical attach-

ment for biomolecules. Biofunctional ligands may be used which present a surface

anchoring moiety to bind to the inorganic nanoparticle(for example, thiol) and an

opposing hydrophilic end group(for example, hydroxyl, carboxyl) to achieve water

compatibility. Once the nanoparticle surface has been modified, biomolecules such

as proteins, enzymes, antibodies, oligonucleotides can be linked to the nanoparticle

following standard conjugation protocol. Silver Nano Particle were substrated on

Decanethiol and this whole system(3.2) was dispersed in hexane solvent for stabil-

ity. This system of Silver Nanoparticle was purchased from Sigma Aldrich. Various
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Figure 3.2: Silver Nanoparticle with it’s substrate Decanethiol

solvents were used to check compatibility of the system like DMSO, Ethanol & D-

Benzene mixure, D2O and D-Benzene. D-Benzene gave the best spectra because of

its nonpolar nature. Its compatibility with hexane is the most. The effect of silver

nanoparticles on substrate were also checked (Decanethiol was also purchased from

Sigma Aldrich)

3.5 Results and Analysis

Decanethiol in D-Benzene solvent 1H Spectra(Figure 3.3(a)) showing one extra peak of

proton connected to Sulpher in thiol group. Decanethiol+Hexane in D-Benzene(Figure

3.3(b)) has the same spectra as Figure 3.3(a) except the width of signal at around

0.89 & 1.23. These being standard 1H peak for hexane in D-Benzene. Silver Nanopar-

ticle(silver capped decanethiol dispersed in hexane) in D-Benzene 1H Spectra(Figure

3.3(c)) which does not have thiol proton peak and also all other proton peaks are

coming in spectra due to asymmetric electronic environment created by the presence

of Silver Nanoparticles.

Similarly 13C Spectra of Silver Nanoparticle+D-Benzene(Figure 3.4(c)) is quite sim-
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Figure 3.3: (a) Decanethiol in D-Benzene 1H Spectra (b) Decanethiol+Hexane in
D-Benzene (c) Silver Nano Particle(silver capped decanethiol dispersed in hexane)

in D-Benzene 1H Spectra

ilar to Decanethiol+Hexane+D-Benzene(Figure 3.4(b)) except some peaks of carbon

due to asymmetry generated because of silver. In the case of carbon spectra there are

no thiol carbon so that peak will not come into the picture here.

2D COSY NMR spectra of Silver Nanoparticle+D-Benzene is very different from

the Decanethiol+Hexane+D-Benzene is due to the same asymmetry in the chemical

environment generated by silver in silver nanoparticle system(3.2). We can clearly

see the correlations exists in Figure 3.5(a,b) due to thiol protons, but it is absent in

Figure 3.5(c) because that proton is replaced with silver here.
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Figure 3.4: (a) Decanethiol in D-Benzene solvent 13C Spectra (b)13C Spectra
of Decanethiol+Hexane in D-Benzene (c) Silver Nanoparticles(silver capped de-

canethiol dispersed in hexane) in D-Benzene 13C Spectra
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(a)

(b)

(c)

Figure 3.5: 2D COSY Spectra of (a) Decanethiol+D-Benzene,
(b)Decanethiol+Hexane+D-Benzene and (c) Silver Nanoparticles+D-Benzene.



Chapter 4

Permeation of AgNPs in Lipid

Bilayer

4.1 Introduction

Recent advances in the available experimental techniques to synthesize nanoparticles

from a variety of starting materials and with well controlled geometry, size distribu-

tion, and surface chemistry has opened new unprecedented opportunities[3] in using

these nano particles for drug delivery, imaging, and as antimicrobial agents. Ratio-

nal design of multifunctional nanoparticles with programmable functionalities require

fundamental understanding of how they interact with lipid membranes. Experimen-

tal studies in the field report a number of possible mechanisms of interaction between

nanoparticles and lipid membranes. These mechanisms depend on the morphology of

nanoparticles(size, shape), surface chemistry, and charge, as well as the characteristics

of the environment, including type of cell membrane, pH, and interaction with other

biological entities present in the system. [3]

41
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Hybrid lipid/nanoparticle conjugates provide a biologically inspired means of design-

ing stable agents for biomedical imaging, drug delivery, targeted therapy, and biosens-

ing. An advantage of using lipids as stabilizing of functional ligands is that they mimic

the lipid scaffolding of biological membranes and have well-characterized physicochem-

ical membranes and phase behavior. In lipid vesicles, nanoparticle encapsulation can

be achieved by trapping particles within the aqueous vesicle core or within the hy-

drophobic lipid bilayer. To embed nanoparticles within lipid bilayers, the nanoparticle

must be small enough to fit within a DPPC bilayer and it must present a hydrophobic

surface. For hydrophobic nanoparticles embedded within lipid bilayer, which is the

focus of this work, the presence of nanoparticles can lead to changes in lipid packing

and may disrupt lipid-lipid interactions amongst the head group and/or acyl tails.

Disruption of such inter-lipid interactions can result in changes in lipid bilayer phase

behavior, which is related to the degree of lipid ordering and bilayer viscosity. Hence,

depending on their size and surface chemistry, embedded nanoparticles may influence

the stability and function of hybrid vesicle, as well as the conditions required for

preparation. [2]

Since nanoparticles(NPs) that are capable of crossing cellular barriers can migrate

into systemic circulation, attention is given to factors that influence the permeation

process. Additionally, the presence of trapped, hydrophobic NPs can instigate changes

in lipid packing and influence the phase behavior of the bilayer. Reciprocally, the per-

meability of molecular NPs into lipid bilayers themselves, as well as the morphology

and polarity of permeant molecules. A clear difference in the permeation of small

molecules like NPs has been shown by computational simulation and calculation of

so-called local diffusion constant as a function of permeant depth z, within the bi-

layer. NP diffusion constant values, however, have been observed to be relatively

independent of molecular position in bilayer interior.[1]

Liposome is the assembling structure that cell membrane like lipid dispersion from

bilayers spontaneously in water. Liposome exhibits many features of the surface of

which acts as a permeability barriers and the fluidity of lipid membranes plays a very
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important role for the cell. These liposomes can mimic various functions of biological

membranes and can be used as a container for storage, transport and controllable

release of compound; therefore, it is widely used in drug delivery system. It has

been known that liposome can be constructed with bilayer permeability responsive

to a variety of physical and chemical stimuli, including temperature, light, pH, and

ions. On the other hand, nanoparticles that consist of metals such as silver, gold,

and palladium seem to be attractive units for the engineering of such structures.

Nano materials such as metal nanoparticles exhibit similar dimensions to those of

biomolecules. Nanoparticles exhibit unique electronic, photonic and catalytic proper-

ties. The integration of nanoparticles with biomaterials displays unique recognition,

catalytic, and inhibition properties, yield novel hybrid nano bio materials of syner-

getic properties and functions. The importance of functionalized nanoparticles for

bio-medical applications cannot be overestimated. There has been reported some

work about biological model system that various nanoparticles are applied as tar-

geted biomarkers and drug-delivery agents and medical treatment. Especially silver

nanoparticle have been reported as antimicrobial properties and are used as drugs.

On the basis of these backgrounds, it occured to us that silver nanoparticles can be

entrapped in nano-sized realm of DPPC bilayer, and it might affect the membrane

fluidity at particular temperature(phase transition temperature)[30]. In our studies,

silver-loaded liposome was prepared and fluidity of the DPPC bilayer containing silver

nanoparticles was measured by 31P NMR.

4.2 Previous MD and Other Experimental Studies

An experimental study by Verma and co-workers[31] shows that the internalization

mechanism of spherical nanoparticles in the fibroblast cells strongly depend on the

distribution of hydrophobic and hydrophilic domains on the surface of the nanopar-

ticles. They observed that uniformly polar nanoparticles can be internalized by the
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cell via an endocytotic pathway only. On the contrary, nanoparticles with the sur-

face featuring ordered hydrophobic and hydrophilic stripes were able to translocate

through the cell membrane via some direct mechanism, independent of endocytosis.

Interaction of fully hydrophobic silver nanoparticles with dipalmitoylphosphatidyl-

choline(DPPC) lipid bilayer were explored by Bothun[2]. It was shown that hydropho-

bic nanoparticles tend to accumulate inside lipid bilayers and if present in sufficient

concentration(more than 15:1 w/w DPPC/nanoparticle ratios), leads to a lowered

melting temperature of the gel phase. In another example, single component phos-

phocholine bilayers in the presence of charged nano-particles have been investigated

by Wang and co-workers[32]. Their results suggest that charged nanoparticlesposition

themselves at the bilayer-water interface with negatively charged nanoparticlesinclud-

ing local gelation in the fluid bilayers, whereas positively charged nanoparticles cause

local fluidization(disordering) in the gel phase. The effect of nanoparticle size on the

stability of lipid membranes was investigated by Roiter et al.[33], using AFM mea-

surements. It was shown that silica nanoparticles in a particular size range(between

1.2 nm and 22 nm) can cause formation of holes and defects in dimyristoylphos-

phatidylcholine(DMPC) bilayers. These are only a few examples of the recent studies

of membrane-nanoparticles phenomena, varying broadly in the type of systems and

nanoparticles under investigation, condition, methods, and observation. It is clear

that systematic nanoparticle design requires a general fundamental framework within

which membrane-nanoparticle systems can be described on a molecular level, disparate

experimental observation explained and rationalized, and predictions on nanoparticle

behavior as a function of its morphology made.

4.3 Various Models of NP-DPPC interactions

Several theoretical models of colloidal and nanoparticle interactions with lipid mem-

brane have been proposed over the years, including those based on the Helfrich Hamil-

tonian and mean field theories.[34–40] However, these models often omit important
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finer details on the structure of membrane, solvent, and other properties. Alterna-

tively, coarse-grained(CG) models have recently been playing an increasingly impor-

tant role in the studies of biological membranes.[39, 41] In these models, several atoms

are represented as a single interaction site, and both implicit and explicit solvent mod-

els have been developed. The models have been applied to investigate the behavior of

single and multicomponent lipid bilayers, vesicles, and micelles, as well as interaction

of these entities with other species such as cholesterol, peptides, and proteins.[3]

Ramalho et. al[3] has employed molecular modeling to understand the structure of

lipid bilayers and pathways of gel formation in the presence of nanoparticles. In

this preliminary work they have concentrated on two specific cases reflecting recent

experimental studies: a hydrophobic nanoparticle embedded in the core of a lipid

bilayer and a charged nanoparticle at the surface of the bilayer. To investigate these

phenomena on molecular level, they adopted a coarse grained forcefield developed

by Marrink and co-worker[41] that has been employed to investigate the kinetics of

fluid-gel phase transformations and, at the same time, has been also recently applied

to study of the DPPC bilayer in the presence of several type of nanoparticles. In

this study they have focused on the impact of different type of nanoparticles on the

fluid-gel transformation rather than attempt to identify the location of the true phase

coexistence. [3]

Several general concepts associated with fluid-gel phenomena in lipid bilayers and key

observations have emerged from the studies of fluid-gel transformation by Marrink and

co-workers[41] using an earlier version of MARTINI forcefield and single component

DPPC bilayer as an exemplary and most characterized system. The most physiologi-

cal relevent phase of a lipid bilayer is the disordered fluid phase Lα. Upon cooling, this

phase undergoes a phase transition to a gel phase Lβ, characterized, among several

other available properties, by an ordered (but not crystalline) structure, substantially

lower area per lipid compare to the fluid phase, and at the same time still substantial

lateral mobility of the lipid compared to the proper crystalline phase. Several variants

of the gel phase Lβ have been observed with either perpendicular average orientation
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of the lipid molecules to the plane of the bilayer(Lβ) or oriented at a tilt angle (Lβ′).

For DPPC, the fluid-gel transition temperature is 315K. In reality, the actual temper-

ature at which transformation from fluid to gel phase takes place may deviate from the

equilibrium phase transition temperature towards lower values. The phase transfor-

mation from fluid to gel and from gel to fluid exhibits temperature hysteresis, which is

a non-equilibrium, kinetically controlled phenomenon. Ramalho et. al[3] also briefly

explored the effect of the nanoparticle presence on fluid-gel transformation from a

kinetic perspective. They have shown that the rate of gel-phase growth is higher for

the bulk lipid bilayer case, compared to that in the presence of nanoparticles. This

effect is rather small for 3 nm hydrophobic nanoparticle or 6 nm positively charged

nanoparticle, but it is more pronounced for the negatively charged nanoparticle at the

bilayer surface. They have summarized the behavior of the lipid bilayer by studying

the temperature dependence of surface area per lipid molecule. The presence of a

hydrophobic nanoparticle or a positively charged nanoparticle at the bilayer surface

does not significantly impact the fluid-gel transformation and it takes place at 288

K, the same temperature as for the bulk bilayer case. The presence of a negatively

charged hydrophobic nanoparticle at the surface of the bilayer, however, delays for-

mation of the gel phase, shifting of the location of the fluid-gel transformation to a

lower temperature of 284K. This is consistent with the slow growth of gel phase in

the presence of negatively charged nanoparticles. [3, 8]

Here we will see the change in the phase behavior of DPPC upon insertion of AgNP

through 31P NMR with varying temperature from 283K to 318K in steps of 5K. We

recorded the changes in T1, T2 & Diffusion Coefficient with temperature.

4.4 Materials & Methods

DPPC, Chloroform and Ag-decanethiol nanoparticles(AgNPs) were obtained from

Sigma-Aldrich. An average nanoparticle diameter was 3-10nm. Lipid assemblies were
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prepared in Phosphate Buffered Saline(PBS) at 80 mM DPPC using the Bangham

method[42]. AgNP concentration was fixed to provide DPPC/AgNP ratio 2:1(w/w)

respectively. To form lipid/nanoparticle assemblies(LNAs), an aliquot of Ag-decanethiol

NP/hexane solution was added to DPPC dissolved in chloroform to yield a transpar-

ent, miscible brown phase. The solvent phase was evaporated under nitrogen and the

sample was placed under vaccum for 2 hours, leaving a dry DPPC/AgNP film. Hydra-

tion and processing steps were performed at 50◦C, which is above the DPPC gel-fluid

melting temperature(Tm=42◦C). The film were hydrated with PBS, incubated for 1

hours, and sonicated for 2 hours.

4.5 Results & analysis

Experiments performed on a sample of DPPC bilayer in PBS buffer and with DPPC

bilayer interacting with silver nanoparticles residing on Decanethiol. One dimensional

proton experiment with water suppression is acquired for locating the regions in which

the NMR signals corresponding to various components fall. Two dimensional homonu-

clear experiments : COSY, TOCSY and NOESY have also been performed to draw

the H-H correlations in both sample types.

4.5.1 1D & 2D Proton Spectra

Protons in DPPC fall in the region of 0.5-1.5ppm as can be seen from Figure(4.1). On

adding AgNP(Silver nanoparticle) with decanethiol as substrate, some of the proton

signals from decanethiol overlap with that from DPPC, there can be seen some extra

signals also in the range of 2-4ppm. We can see the similar pattern in NOESY spectra

Figure(4.2) of extra signal in DPPC+AgNP with respect of DPPC alone. In case of

COSY spectrum Figure 4.3(a) there can be seen correlation between two broad peaks

of DPPC depicting direct coupling, while in Figure 4.3(b) two rectangles are made
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Figure 4.1: 1H spectra of DPPC & DPPC+AgNP
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Figure 4.2: 1D NOESY Spectra of DPPC & DPPC+AgNP
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(e),(f) bear NOESY spectrum for DPPC and AgNP+DPPC respectively. Related
crosspeaks are joined in all the spectra types showing the proton-proton correlations.
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showing two correlations : one among the protons in DPPC which is same as in case

of DPPC alone and one corresponding to decanethiol among the peak at 2.53ppm and

the peak near the foot of the DPPC signal. Performing TOCSY is not introducing

any new correlations in the DPPC sample but one faint pair of crosspeaks is seen

corresponding to peaks at 1.49ppm and 1.34ppm in AgNP+DPPC. Thus the protons

at 1.5 ppm are coupled to protons at 1.34 ppm and at 2.53 ppm. All these possibly

belong to decanethiol. Things become interesting when we come across NOESY spec-

trum which reflects the homonuclear correlations through space. There exist only one

correlation in case of DPPC alone which is expected. Close look at the NOESY spec-

trum of DPPC+AgNP, shows three pairs of crosspeaks (joined by rectangles) peak at

1.34ppm is spatially correlated to signal embedded in the broad peak centered around

1.26ppm. Signal at 1.34ppm is from Decanethiol but the one at 1.26ppm is coming

from both DPPC as well as Decanethiol. This particular correlation is not found in

the COSY spectrum and hence witnesses the spatial disturbances which is arising

from interaction of silver nanoparticles with DPPC bilayer.

Experimental parameters: Three homonuclear correlation experiments are per-

formed - cosyqf using gradients, phase sensitive NOESY using gradients with mixing

time of 500ms and TOCSY with Hartman-Hahn transfer using mlev17 sequence taking

mixing time of 60ms. Spectral width of 12ppm in both the dimensions are acquired for

COSY, NOESY experiments and 10ppm in case of TOCSY. In all the experiments, 16

transients are collected. Sined gradient pulse is applied with strength 40% in NOESY

and 10% in COSY. For 1D 31P experiments Spectral Width(SW) is taken as 395 ppm

with transmitter frequency offset(o1p) as -50ppm. Inter-scan delay is 5 Seconds &

transients 16 in all 1D 31P experiments.

4.5.2 31P Experiments

All the 31P experiments are performed at Avance III 400MHz spectrometer equipped

with BBO probe. Being equipped with the two systems one containing DPPC bilayer



Chapter 4. Permeation of AgNPs in Lipid Bilayer 51

Table 4.1: Spin lattice relaxation time T1 of 31P in DPPC and AgNP+DPPC at
different temperatures.

S.No. Temperature T1 (s) T1 (s)
(in Celcius) (for DPPC) (for DPPC+AgNP)

(1) 10 2.9673 2.6300
(2) 15 2.9578 2.7036
(3) 20 2.9029 2.6507
(4) 25 2.6066 2.3376
(5) 30 2.5865 2.4366
(6) 35 2.7928 2.7100
(7) 40 2.7271 2.7117
(8) 45 2.7787 2.7107

Table 4.2: Spin-spin relaxation time T2 of 31P in DPPC and AgNP+DPPC at
different temperatures.

S.No. Temperature T2 (s) T2 (s)
(in Celcius) (for DPPC) (for DPPC+AgNP)

(1) 10 0.1798 0.0518
(2) 15 0.1741 0.0494
(3) 20 0.1498 0.1304
(4) 25 0.2591 0.0916
(5) 30 0.2151 0.0699
(6) 35 0.1007 0.0387
(7) 40 0.0801 0.0346
(8) 45 0.0612 0.0310

and one with the interacting AgNPs (as clear from the 2d spectra analysis), we proceed

towards studying dynamics. As we know that phosphorous(31P ) is NMR active and in

the system under study, only DPPC contains phosphorous. Thus 31P can act as our

marker, making the dynamical study precise and the distinctions in observations clear.

We are starting with the lyposomal structure of lipid bilayer with silver nanoparticles

embedded in it. [43]
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Table 4.3: Diffusion coefficients for DPPC and AgNP+DPPC using 31P NMR at
different temperatures.

S.No. Temperature Diffusion Coefficient(in m2s−1)
(in Celcius) (for DPPC) (for DPPC+AgNP)

(1) 10 1.5864×10−10 1.3810×10−10

(2) 15 1.8664×10−10 1.6151×10−10

(3) 20 2.1589×10−10 1.8408×10−10

(4) 25 2.6368×10−10 2.0319×10−10

(5) 30 3.0946×10−10 2.7654×10−10

(6) 35 3.7312×10−10 2.7153×10−10

(7) 40 10.5052×10−10 2.7838×10−10

(8) 45 12.8880×10−10 4.0186×10−10
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Figure 4.4: Shifting of 31P signals of DPPC on Different Temperature(on actual
scale)

DPPC in Lipid bilayer form transits from Gel phase to liquid in the temperature

ranging from 10− 400C. 31P NMR Experiments are performed at different tempera-

tures. The NMR signal gradually shifts towards higher ppm values with temperature

increasing from 100C to 400C (fig 4.4 & 4.5). Spin lattice relaxation time(T1) for 31P
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Figure 4.5: Shifting of 31P signal of DPPC+AgNP with Varying Temperature(on
actual scale)

in both the systems is found at regular temperature intervals shown in table(4.1) and

the fig(4.6). The plot clearly shows the faster build up of longitudinal magnetization

during the phase transition in both cases. This happens due to the presence of inho-

mogeneous mixture of liquid and gel phase at the same time. Also T1 corresponding to

AgNP+DPPC is lower than that of DPPC alone at the corresponding temperatures,

which is expected. [44]
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Figure 4.6: DPPC and AgNP+DPPC T1 Relaxation plot with varying tempera-
ture

Figure 4.7: DPPC and AgNP+DPPC T2 Relaxation plot with varying tempera-
ture
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Figure 4.8: DPPC and AgNP+DPPC diffusion coefficient plot with varying tem-
perature. After 35 degree Celsius diffusion coefficient of DPPC becomes significantly
higher compare to DPPC+AgNP which suggests that Phase transition occur in
DPPC after that temperature. It get converted from gel phase to fluid phase and
that result in higher diffusion coefficient. On the other hand DPPC+AgNP does

not show such behavior even on higher Temperature.

T2 relaxation studies(table(4.2), fig(4.7)) also show lower values of relaxation time and

hence faster relaxation in case of AgNP+DPPC than in DPPC. Abrupt behavior is

observed in the temperature range 15−350C. Diffusion studies are highly temperature

dependent. Diffusion coefficient for phosphorous is found at different temperatures

as shown in table. As can be seen from table(4.3) and fig(4.8), rate of diffusion in-

creases with increasing temperature. Under the effect of gradients of varied strengths,

the whole liposomal structure diffuses and we can get an average rate of diffusion of

DPPC bilayer. Addition of AgNPs bring in distortions in the system making it more

bulky and hence diffuses relatively slow. The plot in Figure(4.8) shows lower value of

diffusion coefficient in case of AgNP+DPPC than that of DPPC alone at correspond-

ing values of temperature. In other words, due to embedded AgNP, there exist higher

values of hydrodynamic radii in case of AgNP+DPPC which is inversely proportional
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Figure 4.9: DPPC and AgNP+DPPC 1/D(hydrodynamic radius) plot with vary-
ing temperature

to the diffusion coefficient. Dependence of inverse diffusion coefficient on temperature

is shown in Figure(4.9).



Chapter 5

AgNP Diffusing in Polymer Mesh

5.1 Introduction

Understanding the transport properties of nano- and micrometer sized particles in

crowded solutions of macromolecules is important in various problems of medical and

technological interests, such as chromatography, electrophoresis, and drug delivery.

In the field of biophysics, the modeling of cellular processes, such as enzymereactions,

critically rely on understanding the diffusion of globular proteins in crowded cytoplas-

mic environments.[45, 46] In the area of polymer physics, the dynamics of particles can

provide important information about the local mechanical and viscoelastic properties

of the solution, an approach widely used in microrheology.[47, 48] A large body of ex-

perimental work has focused on comparing the experimentally measured translational

diffusion coefficient (D) of the particles with the prediction from Stokes-Einstein(SE)

relation using the known polymer macroscopic viscosity(η).[49, 50] Though there are

some discrepancies, the results generally indicate that when the size of the particle (R)

is much greater than the correlation length(ξ) of the polymer solution, the medium

behaves as a continuum fluid. In this scenario, the mobility of the particle is coupled

to the chain relaxation; hence, the particle experiences the macroscopic zero shear

57
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rate viscosity and the particle diffusion satisfies the SE relation. In the opposite case

when R� ξ, the particles generally experience the local microscopic viscosity, which

is a strong function of the length scale at which it is probed. The local viscosity

is generally lower than the microscopic viscosity of the polymer solution, therefore

in this situation the particle mobility is faster compared to SE prediction [21, 51].

Small proteins and nano-particles diffuse surprisingly quickly in living cells and in

other high viscosity complex liquids. Their diffusion coefficients are often orders of

magnitude larger than expected from the Stokes-Sutherland-Einstein(SSE) relation

and solution macroscopic viscosity, ηmacro[52]. Here we will focus on the diffusion of

Silver Nanoparticle in Triblock Copolymer(PEG-PPG-PEG) in different solvent like

D-Benzene and D20.

Polymeric Vesicles: polymeric vesicles were first investigated as a means of stabiliz-

ing the metastable self assemblies formed from low molecular weight amphiphiles, with

the polymer providing a kinetic trap for the self assembled system. A wealth of poly-

mer architectures are now known to assemble into vesicles: namely block copolymer,

random graft copolymer, polymerized self assembling monomers and polymers bearing

lipid pedant groups. Additionally, polymeric vesicles, although not normally termed

as such, arise from the self assembly of amphiphilic polymers, i.e. poly(oxyethylene)

amphiphiles with: (a) lipids to give poly(oxyethylene) coated liposomes, or (b) non-

ionic surfactants to give poly(oxyethylene) coated niosomes. [19]

Block copolymer vesicles, termed ’polymersomes’ are fairly new discoveries, being

first reported in the 1990s. Polymersomes have been prepared from a variety of

block copolymers. There is a clear relationship between the hydrophobic content of

polymers and self assembly. Vesicle sizes are varied and range from tens of nanometers

to tens of microns. The thickness of the membrane is determined by the degree of

polymerization in the hydrophobic block and these extra thick membranes confer, on

the vesicle, exceptional stability to soluble surfactants and mechanical stress.[19]
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5.2 Physics of Polymer Network & meshes

Multicomponent solutions consisting of polymers, surfactants, proteins, and other

macromolecules are common to many biological systems as well as cosmetic and

pharmaceutical preparations. The understanding of the nature of macromolecular

aggregates and complexes is consequently of great technological relevance. [51] NMR

spectroscopy has been used as a powerful technique to study macromolecular dy-

namics in these systems, since it can report on molecular motion inside the aqueous

solutions via the longitudinal relaxation time T1 and the transverse relaxation time

T2. In addition, pulsed-field-gradient diffusion NMR spectroscopy is used to measure

the molecular self-diffusion coefficient. All of these physical quantities will change due

to the interaction between molecules, molecular aggregation, and micellization.[53]

Polyethylene oxide(PEO) and polyethylene glycol(PEG) are polymers with the sub-

unit C-O-C. They are well-known encapsulating agents for drug delivery,[54] solvents

for low temperature crystallography,[55] and modulators of osmotic pressure.[56] Low

molecular weight PEG readily passes through the pores of membrane proteins,[57]

and in fact, can be sized by single channels.[58] Comparisons with crystal structures

and electron micrographs indicate that the pore radius, Rp, is close to the effective

hydrodynamic radius in the solution, Rh, of the largest PEG able to diffuse through

the pore or to block ion conductance. [59]

Self-assembly on the mesoscopic length scale tends to impose severe internal con-

straints on molecular diffusion. These constraints act as internal restrictions on molec-

ular propagation, analogously to the external confinement characteristic of typical

host-guest systems. Specific symmetry and connectivity properties of local molecular

ordering tend to inhibit three-dimensional isotropy. Block Copolymer(BCP) exhibit a

rich variety of equilibrium symmetries(spherical, cylindrical and lamellar) which can

be controlled by varying concentration, temperature, and block composition. [60, 61]
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5.3 Materials & Methods

Triblock Copolymer(PEG-PPG-PEG) with Mn as 1100 was purchased from Sigma-

Aldrich. Silver Nanoparticle substrated on Decanethiol dispersed in Hexane was

also purchased from Sigma-Aldrich. Four type of samples were made: 1) 10% Tri-

block Colpoymer(PEG-PPG-PEG) in D-Benzene 2) 10% Triblock Copolymer(PEG-

PPG-PEG) in D2O and 3) 10% Triblock Copolymer(PEG-PPG-PEG) in AgNP +

D-Benzene 4) AgNP in D-Benzene. Sodium Dodecyl Sulphate(SDS) was also pur-

chased from Sigma Aldrich. All samples were made on Room Temperature.

Experimental Parameters: Homonuclear correlation experiment COSY is performed-

cosygpqf using gradients with inter-scan delay(D1) as 1 second. Time domain(td) for

both axis was respectively 1028 & 128. Transmitter frequency offset(o1p) was 5 ppm

& Spectral width was 10 ppm in both dimensions for all experiments performed. 64

transients are collected. Sined gradient pulse is applied with strength 10% in COSY.

1D experiments were performed with 16 transients and D1 as 2 second.
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5.4 Results & Analysis

Triblock Copolymer(PEG-PPG-PEG) sample was dissolved in D2O and after that one

dimensional proton, carbon spectra and two dimensional COSY Spectra was recorded.

Then Triblock Copolymer(PEG-PPG-PEG) was mixed in D-Benzene because of its

compatibility with Silver Nanoparticle. Silver Nanoparticles were added in Triblock

Copolymer(PEG-PPG-PEG) & D-Benzene mixture. 1D proton, carbon, 2D COSY

spectras were then recorded for the same. The same process was repeated for Sodium

Dodecyl Sulphate(SDS) too (figure 5.3).
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(a)     Triblock Copolymer+D-Benzene 1D 1H Spectra

(b)      AgNP+D-Benzene 1D 1H Spectra

(c)     Triblock Copolymer+AgNP+D-Benzene 1D 1H Spectra
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Figure 5.1: Effect of AgNP upon 1H spectra of Triblock Copolymer
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(a)     Triblock Copolymer+D-Benzene 1D 13C Spectra

(c)     Triblock Copolymer+AgNP+D-Benzene 1D 13C Spectra

(b)      AgNP+D-Benzene 1D 13C Spectra
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Figure 5.2: Effect of AgNP upon 13C spectra of Triblock Copolymer

Protons in Triblock Copolymer fall in the region around (0.85-1.30 ppm) & (3.0-4.0

ppm) as shown in fig 5.1. Silver Nanoparticle alone has a proton frequency rage from

(0.5-1.8 ppm). If we add AgNP to Triblock Copolymer(PEG-PPG-PEG) then some

proton spectra overlap with Triblock Copolymer(PEG-PPG-PEG). Similar case was

with carbon spectra(figure 5.2) as Triblock Copolymer has range (17-19 ppm & 61-77

ppm), but AgNP has range from (10-42 ppm) so there is a overlap region from (17-19

ppm), other than that spectral peaks are in different regions. Now if we see the COSY

spectra, some new correlations come up due to AgNP. We can compare Figures 5.4,

5.5 & 3.5. We see that if the COSY Spectra of AgNP alone is observed then there are

no correlation peaks around (3.90 ppm & 3.95 ppm). Triblock Copolymer alone gives

correlation peaks around (3.90 ppm & 3.95 ppm) but the mixture of these have some

shifting in the correlation peaks that suggests that AgNP are binding to Triblock

Copolymer at some site.

In case of SDS it happens in reverse way. Some correlations which were coming in
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(a)    SDS+D-Benzene 1D 1H Spectra

Figure 5.3: (a) 1D 1H Spectra of Sodium dodecyl Sulphate(SDS) in D-Benzene
solvent. Spectra has some extra peaks at above 2.25 ppm which are totally absent in
the mixture of SDS & AgNP. (b) Silver Nano particle 1D-1H Spectra (c) SDS+AgNP
Spectra has some peaks due to AgNP but some SDS peaks are absent in this spectra
and also there is some shifting in peaks too due to presence of AgNP inside SDS

mesh

SDS alone 2D COSY Spectra(Figure 5.6) were absent in the mixture(Figure 5.7).

That means presence of AgNP affects the correlations of SDS itself and disturb its

dynamics too.
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Figure 5.4: 2D COSY Spectra of Triblock Copolymer(PEG-PPG-PEG) + D-
Benzene

Figure 5.5: 2D COSY Spectra of Triblock Copolymer(PEG-PPG-PEG) + AgNP
+ D-Benzene
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Figure 5.6: 2D COSY Spectra of Sodium Dodecyl Sulphate(SDS) + D-Benzene

Figure 5.7: 2D COSY Spectra of Sodium Dodecyl Sulphate(SDS) + AgNP +
D-Benzene





Chapter 6

Summary and Outlook

T1 Relaxation, T2 Relaxation & Diffusion experiments of 31P performed on DPPC

Lipid Bilayer in absence & presence of Silver Nanoparticles(AgNP) clearly show that

the phase behavior of DPPC Bilayer changes drastically after introducing AgNP. Fig-

ures 4.6, 4.7, 4.8, and 4.9) depict that as temperature varies from 10◦C to 40◦C,

DPPC Bilayer transforms from gel phase to liquid phase gradually. We can see from

the Figures 4.6 and 4.7 that temperatures below 20◦C contain pure gel phase of DPPC

Bilayer and temperatures above 35◦contain pure liquid phase of the same, however

both the phases coexist in the range 20◦to 35◦. Some shifting of this transition zone

has been seen after adding AgNP.

Triblock Copolymers(PEG-PPG-PEG) & sodium Dodecyl Sulphate(SDS) also show

some different correlations if we compare 2D COSY Spectras of Triblock & SDS

alone(Figures 5.4 and 5.6) and after adding AgNP (Figures 3.5, 5.5, and 5.7). Over-

lapping of some peaks of Triblock & AgNP in 1D spectras(Figures 5.3, 5.1, and 5.2)

suggested that there can be some new correlations because of attachment of AgNP

in the Triblock Copolymer Mesh. After performing 2D COSY spectra we indeed got

some new correlations in the case of Triblock and some correlations are missing in the

case of SDS. This confirms the effect of AgNP on the Mesh of Triblock or SDS.
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We can crosscheck these results with the help of Molecular Dynamics(MD) Simulations

or other experimental techniques. T2 relaxation study with temperature in these

systems are to be done in more detail because of its strange behavior in both DPPC

& DPPC+AgNP. We can apply the same technique in some real systems like Actin

and see the effect of Silver Nanoparticles on its diffusion and phase properties.



Appendix A

Fourier transform

The Fourier transformation defines a relationship between one function in the time

domain and another function in the frequency domain:

S(ω) = F{s(t)} =

∫ ∞
−∞

s(t)e−iωtdt; (A.1)

S(ν) = F{s(t)} =

∫ ∞
−∞

s(t)e−i2πνtdt, (A.2)

in which ω = 2πν. The two functions s(t) and S(ω)[or s(t) and S(ν)] are said to form

a Fourier transform pair. The inverse Fourier transformations are defined by

s(t) = F−1S(ω) =
1

2π

∫ ∞
−∞

S(ω)eiωtdω; (A.3)

s(t) = F−1{S(ν)} =

∫ ∞
−∞

S(ν)ei2πνtdν, (A.4)

Fourier transformation and inverse Fourier transformation are linear operations and

satisfy the relationships.

F{cs(t)} = cF{s(t)}; (A.5)

F{s(t) + r(t)} = F{s(t)}+ F{r(t)}, (A.6)

69
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in which c is a complex constant.

For completeness, some important theorems concerning Fourier transformations are

listed below; proofs of these theorems can be found in standard texts:[62]

1. Similarity:

F{s(at)} =
1

|a|
S(ω/a) =

1

|a|
S(ν/a). (A.7)

2. Time Shifting:

F{s(t− π)} = e−iωτS(ω) = e−i2πντS(ν). (A.8)

3. Frequency Shifting:

F{s(t)e−iω0τ} = S(ω − ω0); (A.9)

F{s(t)e−i2πν0τ} = S(ν − ν0). (A.10)

4. Derivative theorem:

F{ d
k

dtk
s(t)} = (iω)kS(ω) = (i2πν)kS(ν). (A.11)

5. Convolution: If the convolution integral of two functions r(t) and s(t) is defined

as

r(t) ∗ s(t) =

∫ ∞
−∞

r(τ)s(t− τ)dτ, (A.12)

then

F{r(t) ∗ s(t)} = R(ω)S(ω) = R(ν)S(ν) (A.13)

6. Correlation: If correlation integral of two functions r(t) and s(t) is defiend as

Corr[r(t), s(t)] =

∫ ∞
−∞

r(t+ τ)s(τ)dτ, (A.14)

then

F{Corr[r(t), s(t)]} = R(ω)S∗(ω) = R(ν)S∗(ν) (A.15)
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in which S∗(ω) and S∗(ν) are the complex conjugates of S(ω) and S(ν), respec-

tively.

7. Parseval’s theorem:

∫ ∞
−∞
|s(t)|2dt =

∫ ∞
−∞
|S(ω)|2dω =

∫ ∞
−∞
|S(ν)|2dν (A.16)

These theorems have important practical consequances for NMR spectroscopy. The

similarity theorem demonstrates that broadening of a function in one dimension re-

sults in narrowing of the function in other dimension. The time-shifting theorem

demonstrates that delaying acquisition(intentionally or due to instrumental delay) in

the time domain results in a frequancy-dependent phase shift in frequency domain.

The frequency-shifting theorem permits the apparent frequencies in the frequency

domain to be shifted after acquisition. The convolution and correlation theorems

provide efficient means of calculating the convolution and correlation of two func-

tions. In most cases, it is more efficient to Fourier-transform both functions, multiply

their transforms, and inverse-Fourier-transform the result to obtain the convolution or

correlation than by direct integration. As discussed later, apodization of the free in-

duction decay in the time domain is performed to convolute the signal in the frequency

domain with a more desirable lineshape function. Parseval?s theorem demonstrates

that the signal energy is identical in the two domains and implies that the information

content of the signal is identical in the time and frequency domains.[62]

The most important operation for pulsed Fourier transform NMR spectroscopy in

liquids is the Fourier transform of the time-domain signal for a damped oscillator,

which is given by

s(t) = I0 exp[(iω0 − λ0)(t+ t0) + iφ0] (A.17)

for t ≥ 0; s(t) = 0 for t < 0. I0 is the initial signal amplitude, ω0 is the frequency, λ0

is the decay constant(usually the transverse relaxation rate constant), φ0 is the initial

signal phase, and t0 is the value of the initial sampling delay. The initial sampling
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delay may arise from instrumental delays or may be intentionally set. The Fourier

transform of s(t) is

S(ω) = I0 exp[(iω0 − λ0)(t0) + iφ0]

∫ ∞
0

exp [i(ω0 − ω)− λ0]tdt (A.18)

= I0 exp[(iω0 − λ0)(t0) + iφ0]
exp [i(ω0 − ω)− λ0]t

i(ω0 − ω)− λ0

|∞0 (A.19)

= I0 exp[(iω0 − λ0)(t0) + iφ0]
−1

i(ω0 − ω)− λ0

× −i(ω0 − ω)− λ0

−i(ω0 − ω)− λ0

(A.20)

= I0 exp[(iω0 − λ0)(t0) + iφ0]
i(ω0 − ω) + λ0

(ω0 − ω)2 + λ2
0

(A.21)

= I0 exp[(iω0 − λ0)t0 + iφ0][A(ω) + iD(ω)] (A.22)

in which the absorption, A(ω), and dispersion, D(ω), lineshapes can be expressed as

A(ω) =
λ0

λ2
0 + (ω0 − ω)2

(A.23)

D(ω) =
(ω0 − ω)

λ2
0 + (ω0 − ω)2

(A.24)

The linewidth of the absorptive Lorentzian is defined as the full-width at half-height

(FWHH) and is given by ∆ωFWHM = 2λ0 or ∆νFWHM = λ0/π.

The maximum and minimum cusps of the dispersive lineshape are separated by ex-

actly the absorptive linewidth. Note that for large frequency offsets, the decay of

the absorptive Lorentzian lineshape is proportional to 1/(ω0 − ω)2, but the decay

of the dispersive Lorentzian lineshape is proportional to 1/(ω0 − ω). Accordingly,

absorptive-phase lineshapes yield much more highly resolved NMR spectra and are

greatly preferred to dispersive lineshapes.
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Because the free induction decay is sampled digitally, the experi- mental frequency

domain spectrum is calculated using the discrete Fourier transform

S(ν) = S(k/N∆t) = F{s(j∆t)} =
N−1∑
j=0

s(j∆t)e−i2πjk/N (A.25)

in which N is the number of (complex) data points, ∆t is the sampling interval,

k = −N/2, · · · , 0, · · · , N/2, and the digitized signal, corresponding to the continuous

signal, is described by

s(j∆t) = I0 exp[(iω0 − λ0)(j∆t+ t0) + iψ0] (A.26)

The inverse transform is given by

s(j∆t) = F−1{S(k/N∆t)} =
1

N

N−1∑
t=0

S(k/N∆t)ei2πjk/N (A.27)

The frequency range represented by the Fourier transformed signal is −1/(2∆t) ≤

ν ≤ 1(2∆t) in discrete steps of ∆ν = 1/(N∆t). In terms of the Nyquist frequency,

fn ≤ ν ≤ fn the discrete Fourier transform of the N input signal points yields N+1

frequency domain data points. In fact, S(fn) = S(−fn), so that only N unique

points are obtained in the frequency-domains function. Most Fourier transformation

algorithms provide as output the N points for k = −N/2, · · · , N/2− 1; i.e., the point

S(fn) is not returned. Consequently, the zero frequency point in the frequency domain

spectrum is not k = N/2 but rather k = N/2 + 1. The discrete Fourier transform can

be expressed as

S(ωk) = Io exp[(iω0 − λ0)t0 + iψ0]
1− exp[N∆t(iω0 − iωk − λ0)]

1− exp[∆t(iω0 − iωk − λ0)]
(A.28)
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in which ωk = 2πk/(N∆t) and the series has been summed using the identity

N−1∑
j=0

xj =
1− xN

1− x
(A.29)

discrete Fourier transform can be represented in the I0 exp[(iω0− λ0)t0 + iφ0][A(ω) +

iD(ω)] form if ∆t → 0 and N → ∞ while N∆tλ0 � 1. This limit represents quasi-

continuous sampling of the time-domain signal until it has completely decayed.[62]



Appendix B

Fast Fourier transform

In 1965 a method of computing discrete Fourier transforms suddenly became widely

known(Cooley and Tukey, 1965) and revolutionized many fields where onerous com-

puting was an impediment to progress.

There are various ways of understanding thsi fast fourier transform(FFT). One way,

which will appeal to certain people, is in terms of factorization of the transform ma-

trix. From the definition, we can write the DFT relation(for N=8) in the form of a

matrix product,



F (0)

F (1)

F (2)

F (3)

F (4)

F (5)

F (6)

F (7)



=



1 1 1 1 1 1 1 1

1 ω ω2 ω3 ω4 ω5 ω6 ω7

1 ω2 ω4 ω6 ω8 ω10 ω12 ω14

1 ω3 ω6 ω9 ω12 ω15 ω18 ω21

1 ω4 ω8 ω12 ω16 ω20 ω24 ω28

1 ω5 ω10 ω15 ω20 ω25 ω30 ω35

1 ω6 ω12 ω18 ω24 ω30 ω36 ω42

1 ω7 ω14 ω21 ω28 ω35 ω42 ω49



×



f(0)

f(1)

f(2)

f(3)

f(4)

f(5)

f(6)

f(7)


where ω = exp(−i2π/N). The quantity ω is an Nth root of unity, since ωN =

75
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exp(−i2π) = 1. It may be thought of a complex number whose modulus is unity and

whose phase is -(1/N) turns.

F (0)

F (1)

F (2)

F (3)

F (4)

F (5)

F (6)

F (7)



=



1 0 0 0 1 0 0 0

0 1 0 0 0 ω 0 0

0 0 1 0 0 0 ω2 0

0 0 0 1 0 0 0 ω3

1 0 0 0 ω4 0 0 0

0 1 0 0 0 ω5 0 0

0 0 1 0 0 0 ω6 0

0 0 0 1 0 0 0 ω7



×



1 0 1 0 0 0 0 0

0 1 0 ω2 0 0 0 0

1 0 ω4 0 0 0 0 0

0 1 0 ω6 0 0 0 0

0 0 0 0 1 0 1 0

0 0 0 0 0 1 0 ω2

0 0 0 0 1 0 ω4 0

0 0 0 0 0 1 0 ω6



×



1 1 0 0 0 0 0 0

1 ω4 0 0 0 0 0 0

0 0 1 1 0 0 0 0

0 0 1 ω4 0 0 0 0

0 0 0 0 1 1 0 0

0 0 0 0 1 ω4 0 0

0 0 0 0 0 0 1 1

0 0 0 0 0 0 1 ω4



×



1 0 0 0 0 0 0 0

0 0 0 0 1 0 0 0

0 0 1 0 0 0 0 0

0 0 0 0 0 0 1 0

0 1 0 0 0 0 0 0

0 0 0 0 0 1 0 0

0 0 0 1 0 0 0 0

0 0 0 0 0 0 0 1



×



f(0)

f(1)

f(2)

f(3)

f(4)

f(5)

f(6)

f(7)


This factorization leaves only two nonzero elements in each row. In first matrix there

are N2 multiplications but there are only 2N multiplication per factor if we use second

matrix equation, and the number of factors M is given by 2M = N if we do not count

the first factor, which merely represents a rearrangement. Thus the multiplications

total 2N log2N . Examination of the factors shows that many of the multiplications

are trivial, and therefore to calculate the precise time saving will require careful at-

tention to details. Nevertheless, we are better off by a factor of N which arise with

a long data trains or with digitized two dimensional images such as photograph, for

example.[63]

Here is another method of understanding the fast Fourier transform. A sequence of N

elements may be devided into two shorter sequences of N/2 elements each by placing
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the even-numbered elements into first sequence and the odd-numbered ones into the

second. For example,{8 7 6 5 4 3 2 1} can be split into {8 6 4 2 } and {7 5 3 1}. Each

of these possesses a DFT. From these two DFT’s how could one obtain the DFT of

the longer sequence? The answer is obtained by writing

{87654321} = {80604020}+ {07050301} (B.1)

We see that the described DFT can be obtained by using the streching and shift

theorem. From the streching theorem we know that if

{8642} ⊃ {ABCD} (B.2)

then

{80604020} ⊂ 1

2
{ABCDABCD} (B.3)

a phenomenon that may be familiar from Fourier series coefficients for periodoc func-

tions.

Likewise, if

{7531} ⊃ {PQRS} (B.4)

then

{70503010} ⊂ 1

2
{PQRSPQRS} (B.5)

Now we apply the shift theorem to find that

{70503010} ⊂ 1

2
{P ωQ ω2R ω3Sω4P ω5Q ω6R ω7S} (B.6)

Multiplication by ω means rotation by one Nth of revolution in the complex plane,

so the effect of the shift is to apply a phase delay that increase progressively along

the sequence of elements {P Q R S P Q R S}. Adding 1.39 and 1.42 gives the DFT
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of the long sequence. Thus the transformation with N=8 has been broken down into

two transformations with N=4, which potentially represents a 50 percent time saving,

since the number of multiplications in a DFT performed according to (1) goes as N2.

To see how this breaking down can be taken even further. Starting with the given

sequence on the left, we rearrange it into the two short sequences {8 6 4 2} and {7 5

3 1} that form the inputs to two transformers with N=4 whose outputs are {A B C

D} and {P Q R S}, respectively. The unbroaken flow lines show that A, B, C, and

D are transferred to the output nodes to deliver {A B C D A B C D}. The broken

flow lines are tagged with factors that cause the delivery of P, ωQ, ω2R, etc., as in

equation 1.42 to the same output nodes, where addition takes place.[63]

Finally, the steps may be summarized as follows. First, we rearrange th given sequence

into {8 7 6 5 4 3 2 1}, an operation corresponding exactly to multiplication by the

first square matrix of (2) and sometimes loosly referred to as bit reversal. Then eight

new numbers are calculated as linear combinations of various pairs of rearranged data,

exactly as indicated by second square matrix of (2). There are two more similar stages,

making a total of three such operations in all(or M, in general, where 2M = N). Of

course, not all the 48 multiplications are significant. There are 32 multiplications by

unity and 7 multiplications by ω4, which is simply a sign reversal. In addition, ω2 and

ω6 are rather simple to handle.



Appendix C

Data Processing

It is very rare that a spectrum obtained by Fourier transformation of a free induction

decay satisfies all demands with regard to optimum presentation. In most cases, it is

desirable to subject the data to a linear filtering procedure to optimize the appearance

of the spectrum. The restriction to linear processes is justified since it allows the

processing of overlapping resonance lines without causing inteference effects.

Linear transformation processes can always be represented by a convolution integral

of the signal and the impulse responce of the filter process. In the context of Fourier

spectroscopy, the spectrum S(ω) must be submitted to a filtering process characterized

by a frequency-domain filter function H(ω)

Sf (ω) = H(ω) ? S(ω) (C.1)

The convolution integral can be evaluated directly, but one may take advantage of the

convolution theorem and multiply the time-domain signal s(t) with the corresponding

time-domain filter function h(t)

sf (t) = h(t).s(t) (C.2)
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where h(t) is the Fourier transform of H(ω).

We may identity H(ω) with the ’impulse response’, while h(t) now represents the

’frequency response’ of the filter. To avoid semantic difficulties in the distinction of

the two function, we prefer to use the more neutral terms ’frequency-domain’ and

’time-domain filter function’ for H(ω) and h(t), respectively.

Equation 1.44 demonstrates that filtering in Fourier spectroscopy boils down to the

multiplication of the free induction signal with a suitable weighing function h(t) prior

to Fourier transformation. It is one of the virtues of Fourier spectroscopy that filtering

can be achieved in this extremely simple and convenient manner, perhaps with the

only disadvantage that a Fourier transformation must be computed before the effect

of a filter function on the spectrum can be appreciated.[62]

The purposes of filtering may be quite diverse, and we shall mention only few of the

many possible application.

1. Matched filtering to maximize the sensitivity(signal-to-noise ratio) in one- and

in two-dimensional spectroscopy.

2. Resolution enhancement by artificially narrowing the resonance lines.

3. Lineshapes transformation

4. Apodization of free induction decays to suppress oscillating signal tails (’ripple’)

in the spectrum.

5. Pseudo-echo filtering to eliminate dispersive contributions to line-shapes in two-

dimentional spectroscopy.

6. Correction of instrumental distortions, caused for example by a finite response

time.

In the following, we shall briefly discuss apolization and resolution enhancement, as

they are not adequately covered in the later parts of this volume. A few remarks
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on resolution enhancement by zero-filling and linear prediction methods will conclude

this section.

C.1 Apodization

In practical Fourier spectroscopy, the acquisition time tmax of the free induction decay

is always limited and the signal s(t) is known only for 0 ≤ t ≤ tmax. This may severely

limit the resolution of the spectrum, since one is restricted to calculating the Fourier

transform of a truncated signal

strunc(t) = s(t) for t ≤ tmax

strunc(t) = 0 for t > tmax

The truncated signal strunc(t) can be thought of as the product of the untruncated

signal s(t) with a rectangular weighing function,

struc(t) = s(t).Π(
t

2tmax
) (C.3)

with

Π(x) = 1 for −1
2
< x < 1

2
,

Π(x) = 0 for |x| > 1
2

The corresponding Fourier spectrum is therefore obtained by convolution of the undis-

torted spectrum S(f) with the Fourier transform of the rectangular weighing function

Strunc(f) = S(f) ? 2tmaxsinc(2tmaxf)

The sinc(x) function, defined by

sinc(x) = sinπx
πx

produces oscillatory signal tails(’ripple’), which may be highly undesirable as it severely

limits resolution.
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The oscillations arise from the sharp cut-off of the free induction signal which intro-

duces high frequencies. It is the purpose of apodization to modify the envelope of the

trucated signal by multiplication with a weighing function such that these oscillations

are largely suppressed. It is obvious that the envelope must tend smoothy to zero at

t = tmax to prevent such oscillations. At the same time, care should be taken to avoid

excessive line-broadening.[62]

The selection of a suitable weighing function h(t) to apodize truncated signals has

been discussed in numerous papers in various fields of science, such as electrical com-

munication, astronomy, and infra-red Fourier spectroscopy as well as in NMR. The

approaches range from inspired guesswork to computer optimization and purely the-

oretical derivations.

In the context of digital signal processing by Fourier transformation, apodization is

often called “windowing”. This term suggests that truncation errors can be mini-

mized by properly shaping the window through which the data is observed. A certain

broadening has to be admitted to minimize the amplitude of the ripple, and the larger

the acceptable broadening the better the suppression of the ripple. The theoretical

optimum is reached by so-called Dolph-Chebycheff window. This class of windows

minimizes the relative ripple amplitude for any predetermined broadening B of the

resonance lines.[62]

Unfortunately there is no analytical expression for the optimum weighting function

h(t), but it can be obtained numerically by Fourier-transforming the corresponding

frequency domain filter function H(f)

H(f) =
cos{2P cos−1[z0 cos(πf/v0)]}

cosh{2P cosh−1(z0)}
(C.4)

where P+1 is the number of sampling points of the free induction decay, νs is the

sampling rate, and the quantity

z0 = [cos(πB/2νs)]
−1 ≈ 1 + π2B2/(8ν2

s ) (C.5)
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is determined by the allowed broadening B(expressed in Hz). H(f) corresponds then

to the lineshapes obtained for a line of infinitely narrow natural width.

In most practical applications it is not necessary to afford the trouble of adjusting the

apodization function to the number of sampling points. Numerous simple approxima-

tions are known, particularly in the field of digital data-processing.

C.2 Resolution Enhancement

While apodization aims at a faithful representation of the spectrum, resolution en-

hancement attempts to achieve a transformation of the lineshape to narrow the reso-

nance lines artificially.

In principle, it is possible to select an arbitrary desired lineshape Sf (ω) and to compute

a weighing function h(t) which will transform the experiemental into the desired

lineshape. The transformation can be obtained by multiplying th free induction decay

with the function

h(t) = sef (t)/s
e(t) (C.6)

where se(t) is the envelope of the recorded free induction signal, and sef (t) is the

desired envelope, i.e. sef (t) = F−1{Sf (ω)}. In other words, the signal s(t) is stripped

of its ’natural’ envelope se(t) and is fitted out with an envelope sef that produces the

desired lineshape after Fourier transformation.[62]

In practice, however, two restrictions have to be taken into account

1. Resolution enhancement necessarily implies the enhancement of the later parts

of the free induction signal, since the weighing function h(t) increase with t.

Random noise contributions in the later parts of the signal may therefore be

excessively enhanced, and the sensitivity may be deteriorated beyond an ac-

ceptable limit. A useful resolution enhancement function h(t) should therefore
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always decay towards zero for large t, in order to abtain a compromise between

resolution and sensitivity.

2. The achievable resolution enhancement is often restricted by the fact that the

local acquisition time tmax is limited, and an appreciable resolution enhancement

is only feasible when the sampling period is extended.

We limit the discussion to some widely used resolution enhancement function:

1. Lorentz-Gauss transformation: Assuming that the natural decay is exponential

with a time constant T ?2 , multiplication of the free induction signal with the

weighing function

h(t) = exp{t/T ?2 − σ2t2/2} (C.7)

strips the line of its Lorentzian character with half-width at half-height ω 1
2

=

1/T ?2 and fits it out with a Gaussian shape

S(ω) =

√
2π

σ
exp{−ω

2

2σ2
} (C.8)

with a half-width at half-height ω 1
2

= 1.177σ. By adjusting the parameter

σ, it is in principle possible to achieve an arbitrary degree of line-narrowing,

disregarding for the moment the limitations imposed by the finite acquisition

time tmax. The Gaussian shape has the advantage that the resonance lines have

’tails’ that are less pronounced. At the same time, a fair apodization of the FID

is achieved, thus reducing problems with truncation.

2. Sine-bell function: Multiplication of the free induction signal with a sine-bell

function with a period equal to twice the aquisition time tmax

h(t) = sin(πt/tmax) (C.9)

has the desired effect of giving the free induction signal an envelope that in-

creases with time and that is apodized towards zero for t approaching tmax.
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The application of this function is extremely simple, since it has no adjustable

parameter, but the resolution enhancement is limited. The resulting lineshape

vanishes, which implies the presence of negative signal tails that distort the

baseline of the spectrum. The deficiency can be slightly improved by shifting

the phase of the sine-bell.[62]

C.3 Linewidth

The phenomenological linewidth is defined as the full-width at half-height of the res-

onance lineshape and is a primary factor affecting both resolution and signal-to-noise

ratio of NMR spectra. For a lorentzian lineshape, the homogeneous linewidth is given

by ∆νFWHM = R2/π in hertz(or ∆ωFWHM = 2R2 in rad/s) and the inhomogeneous

linewidth is ∆νFWHM = R∗2/π, in which R∗2/π = R2+Rinhom and Rinhom represents the

broadening of the resonance signal due to inhomogeneity of magnetic field. In modern

NMR spectrometers Rinhom/π is on the order of 1Hz. Values of R2(and hence homoge-

neous linewidths) are approximately prportional to the overall rotational correlation

time of th eprotein and thus depend on molecular mass and shape of the molecule.

Observed linewidths significantly larger than expected based on the molecular mass

of the protein imply that aggregation is increasing the apparent rotational correlation

time or that chemical exchange effects contribute significantly to the inhomogeneous

linewidth.[62]

Given theoretical or experimental estimates of τc, the theoretical equation can be used

to calculate approximate values of resonance linewidths. The principal uncertainties

in the calculation are due to following factors:

1. Anisotropic rotational diffusion of nonspherical molecules.

2. Differential contribution from internal motion(particularly in loops or for side

chains).



Appendix C. Data Processing 86

3. Cross-correlation effects.

4. 1H dipolar interaction with all nearby protons(which depend on detailed struc-

tures of the proteins).

5. Incomplete knowledge of fundamental parameters[such as chemical shift anisotropies(CSA)].

In light of these uncertainties, the result should be regarded as approximate guidelines.

The correlation time for brownian rotational diffusion can be measured experimen-

tally using time resolved fluoroscence spectroscopy, light scattering, and NMR spin

relaxation spectroscopy, or calculated using a variety of hydrodynamic theories(that

unfortunately require detailed information on the shape of the molecule). In the

absence of more accurate information, th esimplest theoretical approach for approxi-

mately spherical globular proteins calculates th eisotropic rotational correlation time

from the Stokes’ law:

τc =
4πηwr

3
H

3kBT
(C.10)

in which ηw is the viscosity of the solvent, rH is the effective hydrodynamic radius of

the protein, kB is Boltzmann’s constant, and T is the temperature.[62]



Appendix D

Stejskal and Tanner Equation

Bloch Equations Including the Effects of Diffusion [5]. The Bloch equations

for the macroscopic nuclear magnetization M(r, t) = Mx + My + Mz, including the

diffusion of magnetization, are given by

∂M(r, t)

∂t
= γM ×B(r, t)− Mxi+Myj

T2

− (Mz −M0)k

T1

+D∇2M (D.1)

In he case of anisotropic diffusion, the last term in the equation would be replaced by

∇.D.∇M . If we take B0 to be oriented along z axis and that this is superposed by

gradient g vanishing at the origin which is parallel to B0, and thus we can write

Bx = 0, By = 0,

Bz = B0 + (g.r) = B0 + gxx+ gxy + gzz (D.2)

If equation 2.7 is then substituted into equation 2.6, noting that

M ×B = (MyBz −MzBy)x + (MzBx −MxBz)y + (MxBy −MyBx)z (D.3)
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and defining the transverse magnetization as m = Mx + iMy we obtain

∂m

∂t
= −iωom− iγ(g.r)m− m

T2

+D∇2m (D.4)

The Stejskal and Tanner Pulse Sequence in the Absence of Diffusion[5]. In

the absence of diffusion(i.e. D = 0), m relaxes exponentially with a time constant T2,

and thus we set

m = ψe
−iω0t− t

T2 (D.5)

where ψ represents the amplitude of the precessing magnetization unaffected by the

effects of relaxation. If we substitute equation 2.10 into equation 2.9, we obtain

∂ψ

∂t
= −iγ(g.r)ψ +D∇2ψ (D.6)

In the absence of diffusion, equation 2.11 is a first-order ordinary differential equation

with solution

ψ(r, t) = S exp(−iγr.F ) (D.7)

where S is a constant and

F (t) =

∫ t

0

g(t′)dt′ (D.8)

Now, if we consider the case of the PFG pulse sequence, then during the period from

the π/2 pulse to the π pulse, we have now

ψ(r, t) = S exp(−iγr.F ) (D.9)

and S corresponds to the value of ψ immediately after the π/2 pulse. After the π

pulse, we have

ψ(r, t) = S exp(−iγr.(F − 2f)) (D.10)

where f = F (τ). Thus we can see that the effect of the π pulse is to set back the

phase of ψ by twice the amount that it had advanced up until the π pulse. Then
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equation 2.15 can be combined into

ψ(r, t) = S exp(−iγr.(F − 2H(t− τ)f)) (D.11)

where H(t) is the Heaviside step function. We not here that above equation is valid

for the Hahn spin-echo pulse sequence.

The Stejskal and Tanner Pulse Sequence in the Presence of Diffusion[5].

In the above paragraph we considered the solution to previous in the absence of the

diffusion. In this section, we derive a solution to Eq. w41x including the effects of

diffusion. We assume a solution to above equation, including the diffusion term, to

be of the form of above equation but allow S to be a function of t [i.e., S(t)]. Now we

obtain
dS(t)

dt
= −γ2D[F − 2H(t− τ)f ]2s(t) (D.12)

Now we integrate above equation from t = 0 to t = 2τ

ln[
S(2τ)

S(0)
] = ln(E(2τ)) (D.13)

=

∫ τ

0

−γ2DF 2dt+

∫ 2τ

τ

−γ2D[F − 2f ]2dt (D.14)

= −γ2D{
∫ 2τ

0

F 2dt− 4f

∫ 2τ

τ

Fdt+ 4f 2τ} (D.15)

The application of equation 2.20 to the calculation of the echo attenuation resulting

from the effects of diffusion and the application of gradients is quite straightforward

but rather tedious. If we apply the gradient pulses as shown in the spin echo pulse

sequences and neglect the effects of any background gradients, then we can define

g(t) and the effective field gradient, geff (t). Using definition 2.13 of g(t), F(t) for

t1 + ∆ < t‘t1 + ∆ + δ is calculates as follows,

F (t) =

∫ t1

0

0dt+

∫ t1+δ

t1

gdt+

∫ t1+∆

t1+δ

0dt+

∫ t

t1+∆

gdt (D.16)
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= g(t+ δ − t1 −∆) (D.17)

We obtain the result

ln(E) = −γ2g2Dδ2(∆− δ/3) (D.18)

The term δ/3 accounts for the finite width of the gradient pulse. Equation 2.23 is

not a function of t1, and thus the placement of the gradient pulses in the sequence

is of no consequence; for example, there is no requirement that the gradient pulses

be symmetrically placed around the π pulse. If instead we had imposed a steady

gradient throughout the echo sequence(i.e. ∆ = δ = τ), we would have reproduced

the well-known diffusion term in the expression for the intensity of the Hahn spin-echo

sequence, as expected.[5]
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Spin Echo Pulse Sequence

E.0.1 Pulse sequence

Pulsed field gradient NMR (PFGNMR) method consists of two-rf-pulse Hahn-echo

experiment with identical magnetic field gradient pulses of magnitude g, duration δ

and separation ∆ applied respectively during the dephasing and rephasing segments of

the echo cycle (Figure E.1. The first gradient produces a rapid precessional phase shift

depending on the position of each nucleus in the sample. Between gradient pulses the

molecules containing the nuclei change position due to diffusion. In the intervening

period, the 180◦rf pulse inverts all previous phase shifts so that the second gradient

has the effect of producing phase compensation, thus forming an echo. To the extent

that motion has occurred, the refocusing is incomplete and the consequent attenuation

of the spin echo gives a measure of the ensemble average of nuclear translations. The

two gradient thus record respectively the initial and subsequent positions of the nuclei

over the well defined time scale ∆, and hence PFGNMR is well suited to examine the

displacement time dependence.

The echo at 2τ has magnitude

S(2τ) = Moexp(−2τ/T2)exp[−Dq2(∆− δ/3)] (E.1)
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90 180

0 τ

δ

2τ

Acqx y

δ

∆

Time

Figure E.1: The spin-echo (SE) pulse sequence

where Mo is the equilibrium magnetization and q=γgδ is the area of the gradient pulse.

The correction term δ/3 is because of rectangular gradient shape. The maximum

possible signal is recovered in the absence of relaxation effects and chemical shifts are

refocused at the echo. T2 can be short for slowly tumbling macromolecules but then

this lead to a severe loss of signal. J-modulation refers to signal modulation resulting

from hard RF pulses that exchange the spin states of nuclei that are coupled to the

nuclei of interest thus preventing complete refocusing. These effects present special

problems for strongly coupled spin systems [16].



Bibliography

[1] Steven L. Fiedler and Angela Violi. Simulation of nanoparticle permeation

through a lipid membrane. Biophysical Journal, 99:144–152, July 2010.

[2] Geoffrey D Bothun. Hydrophobic silver nanoparticles trapped in lipid bilayer:

Size distribution, bilayer phase behavior, and optical properties. Journal of Nnao-

biotechnology, 6, November 2008.

[3] P. Gkeka J.P. Prates Ramalho and L. Sarkisov. Structure and phase transfor-

mations of dppc lipid bilayers in the presence of nanoparticles: Insights from

coarse-grained molecular dynamics simulations. Langmuir, 27:3723–3730, March

2011.

[4] Harald Gunther. NMR Spectroscopy: Basic Principles, Concept, and application

in Chemistry. John Wiley & Sons, 1992.

[5] William S. Price. Pulsed-field gradient nuclear magnetic resonance as a tool for

studying translational diffusion: Part 1. basic theory. Concepts Magn Reson, 9:

299–336, 1997.

[6] Hans-Eckhardt Schaefer. Nanoscience: The Science of the small in Physics,

Engineering, Chemistry, Biology and Medicine. Springer, 2010.

[7] Principles of Biochemistry. Lehninger.

93



Bibliography 94

[8] Amrish Menjoge Monica Sanders, Robert Mueller and Sergey Vasenkov. Pulsed

field gradient nuclear magnetic resonance study of time-dependent diffusion be-

havior and exchange of lipids in plannar-supported lipid bilayers. J. Phys. Chem.

B, 113:14355–14364, September 2009.

[9] C.B. Powar. Cell Biology. Himalaya Publishing House, 2008.

[10] Monica Olvera de la Cruz Doris Grillo and Igal Szleifer. Theoretical studies of

the phase behavior of dppc bilayers in the presence of macroions. Soft Matter,

2011.

[11] Tiina Roose Maurits R.R. de Planque, Sara Aghdaei and Hywel Morgan. Elec-

trophysiological characterization of membrane disruption by nanoparticles. ACS

NANO, 5(5):3599–3606, April 2011.

[12] Zhen Chen Jiaqi Lin, Hongwu Zhang and Yonggang zheng. Penetration of lipid

membranes by gold nanoparticles: Insight into cellular uptake, cytotoxicity, and

their relationship. ACS NANO, 4(9):5421–5429, August 2010.

[13] D. S. Webster and K. H. Marsden. Improved apparatus for the nmr measure-

ment of self[U+2010]diffusion coefficients using pulsed field gradients. Rev. Sci.

Instrum., 1974.

[14] Moseley M. Lindman, B. and P. Stilbs. Fourier transform nmr self-diffusion and

microemulsion structure. J Colloid Interface Sci, 1981.

[15] J. S. Murday and R. M. Cotts. Self[U+2010]diffusion in liquids: H2o, d2o, and

na. J. Chem. Phys., 1970.

[16] R. Vold and R. Vold. Prog. Nuc. Magn. Reson., 1978.

[17] K.F. Morris and C.S. Johnson Jr. J. Am. Chem. Soc., 1993.

[18] J. Van Duynhoven R. Huo, R. Wehrens and L.M.C. Buydens. Assessment of

techniques for dosy nmr data processing. Analytica Chimica Acta, 2003.



Bibliography 95

[19] Vladimir P Torchilin, editor. Nanoparticles as Drug Carriers. Imperial College

Press, 2006.

[20] Peter Rodgers, editor. NANOSCIENCE AND TECHNOLOGY. nature publisher

group, 2010.

[21] Christopher A. Graowski Rami A. Omari, Andrew M. aneese and Ashis

Mukhopadhyay. Diffusion of nanoparticles in semidilute and entangled polymer

solutions. The Journal of Physical Chemistry B Letters, 113:8449–8452, May

2009.

[22] Anthony M. mrse Gabriele Canzi and Clifford P. Kubiak. Diffusion-ordered nmr

spectroscopy as a reliable alternative to tem for determining the size of gold

nanoparticles in organic solutions. The Journal of Physical Chemistry C, 115:

7972–7978, April 2011.

[23] M. Bergamin L. Feruglio F. Dinon A. Bianco E. Murano R. Marega, V. Aroulmoji

and M. Prato. Two-dimensional diffusion-ordered nmr spectroscopy as a tool for

monitoring functionalized carbon nanotube purification and composition. ACS

Nano, 2010.

[24] Ribot F Escax V Verbruggen I Sanchez C Martins JC Biesemans M Van

Lokeren L, Maheut G and Willem R. Characterization of titanium dioxide

nanoparticles dispersed in organic ligand solutions by using a diffusion-ordered

spectroscopy-based strategy. Chem.-Eur. J., 2007.

[25] M Findeisen G.S Kapur and S Berger. Analysis of hydrocarbon mixtures by

diffusion-ordered nmr spectroscopy. Fuel, 2000.

[26] M. A. Delsuc and T. E. Malliavin. Maximum entropy processing of dosy nmr

spectra. Anal. Chem., 1998.

[27] M-E Aubin-Tam and K Hamad-Scifferli. Structure and function of nanoparticle-

protein conjugates. Biomedical Material, 3, 2008.



Bibliography 96

[28] Xi Li Bin Zhang Wei Li Hongyu Zhou, Fenfang Du and BING Yan. Charac-

terization of organic molecules attached to gold nanoparticle surface using high

resolution magic angle spinning 1h nmr. J. Phys. Chem C., 112:19360–19366,

November 2008.

[29] V. Sue Myers Richard M. Crooks M. Victoria Gomez, Javier Guerra and Aldrik H.

Velders. Nanoparticle size determination by 1h nmr spectroscopy. JACS Com-

munications, 131:14634–14635, September 2009.

[30] Ji-Young Mun Sung-hee Park, Seong-Geun Oh and Sung-Sik Han. Effects of

silver nanoparticles on the fluidity of bilayer in phospholipid liposome. Colloids

and Surface B, 44:117–122, June 2005.

[31] Y. H. Hu-Y. Hu H. S. Han N. Watson S. L. Chen-D. J. Irvine A. Verma, O. Uzun

and F. Stellacci. Surface-structure-regulated cell-memmbrane penetration by

monoleyer-protected nanoparticles. Nat. Mater., 2008.

[32] S. C. Bae B. Wang, L. F. Zhang and S. Granick. Nanoparticle-induced surface

raconstruction of phospholipid membranes. Proc. Natl. Acad. Sci. U.S.A., 2008.

[33] A. R. Rammohan J. Balakrishnan D. R. Heine Y. Roiter, M. Ornatska and

S. Minko. Interaction of nanoparticles with lipid membrane. Nano Lett., 2008.

[34] R. Lipowsky and H. G. Dobereiner. Vescicles in contact with nanoparticles and

colloids. Europhys. Lett., 1998.

[35] M. Deserno and W. M. Gelbert. Adhesion and wrapping in colloid-vescicle com-

plexes. J. Phys. chem. B, 2002.

[36] M. Deserno. When do fluid membranes engulf sticky colloids? J. Phys.: Condens.

Matter, 2004.

[37] L. Livadaru and A. Kovalenko. Fundamental mechanism of translocation across

liquidlike membranes: Toward control over nanoparticle behavior. Nano Lett.,

2006.



Bibliography 97

[38] V. V. Ginzburg and S. Balijepalli. Modeling the thermodynamics of the interac-

tion of nanoparticles with cell membranes. Nano Lett., 2007.

[39] S. Pogodin and V. A. Baulin. coarse-grained models of phospholipid membranes

within the single chain mean field theory. Soft Matter, 2010.

[40] S. Pogodin and V. A. Baulin. Can a carbon nanotube pierce through a phospho-

lipid bilayer? ACS Nano, 2010.

[41] S. J. Marrink and A. E. Mark. Coarse grained simulation of phase transitions of

lipid membranes. Biophys. J., 2005.

[42] D. Deamer and A.D. Bangham. Large volume liposomes by an ether vaporization

method. Biochimica et Biophysica Acta (BBA)-Biomembranes, 1976.

[43] Weidong Wang Megan D. Reeves, Adam K. Schawel and Phoebe Dea. Effects of

butanol isomers on dipalmitoylphosphatidylcholine bilayer membrane. Biophys-

ical Chemistry, 2007.

[44] Ludwig Nissler Rolf Gebhardt Holger A. Scheidt, Andre Pampel and Daniel Hus-

ter. Investigation of the membrane localization and distribution of flavonoids by

high-resolution magic angle spinning nmr spectroscopy. Biochimica et Biophysica

Acta, 2004.

[45] D. S. Banks and C. Fradin. Anomalous diffusion of proteins due to molecular

crowding. Biophys. J., 2005.

[46] Fredrik Kartberg† Matthias Weiss, Markus Elsner† and Tommy Nilsson†.

Anomalous subdiffusion is a measure for cytoplasmic crowding in living cells.

Biophysical Journal, 2004.

[47] Joris Sprakel, Jasper van der Gucht, Martien A. Cohen Stuart, and Nicolaas

A. M. Besseling. Rouse dynamics of colloids bound to polymer networks. Phys.

Rev. Lett., 99:208301, Nov 2007.



Bibliography 98

[48] Victor Pryamitsyn and Venkat Ganesan. Dynamics of probe diffusion in rod

solutions. Phys. Rev. Lett., 100:128302, Mar 2008.

[49] LJ Ye X.; Tong P.; Fetters. Colloidal sedimentation in polymer solutions. Macro-

molecules, 1998.

[50] Minerva Roman Clement N. Onyenemezu, Douglas Gold and Wilmer G. Miller.

Diffusion of polystyrene latex spheres in linear polystyrene nonaqueous solutions.

Macromolecules, 1993.

[51] Olle Soderman Harald Walderhaug and Daniell Topgaard. Self-diffusion in poly-

mer systems studied by magnetic field-gradient spin-echo nmr methods. Progress

in Nuclear Magnetic Resonance Spectroscopy, 2010.

[52] Tomasz Kalwarczyk Marcin Fialkowski Natalia Ziebacz, Stefan A. Wieczorek and

Robert Holyst. Crossover regime for the diffusion of nanoparticles in polyethylene

glycol solutions: influence of the depletion layer. Soft Matter, 7:7181, June 2011.

[53] Suliman Barhoum and Anand Yethiraj. An nmr study of macromolecular aggre-

gation in a model polymer-surfactant solution. The Journal Of Chemical Physics,

132, January 2010.

[54] J.M. Harris and R.B. Chess. Effect of pegylation on pharmaceuticals. Nat. Rev.

Drug Discov., 2003.

[55] F. T. Greenaway J. J. Girerd G. Morgant J. C. Daran D. Nguyen-Huy B. Vios-

sat, A. Tomas and J. R. J Sorenson. Low-temperature (180k) crystal struc-

tures of tetrakis-µ-(niflumato)di(aqua)dicopper(ii) n,n-dimethylformamide and

n,n-dimethylacetamide solvates, their epr properties, and anticonvulsant activi-

ties of these and other ternary binuclear copper(ii)niflumate complexes. J. Inorg

Biochem., 2005.

[56] Warriner HE Zasadzinski JA Lu KW and Taeusch HW. Braun A, Stenger PC. A

freeze-fracture transmission electron microscopy and small angle x-ray diffraction



Bibliography 99

study of the effects of albumin, serum, and polymers on clinical lung surfactant

microstructure. Biophys J., 2007.

[57] Decad GM and Nikaido H. Outer membrane of gram-negative bacteria. xii.

molecular-sieving function of cell wall. J Bacteriol., 1976.

[58] Vincent M. Stanford Kenneth A. Rubinson Oleg V. Krasilnikov Joseph W.

F. Robertson, Claudio G. Rodrigues and John J. Kasianowicz. Single-molecule

mass spectrometry in solution using a solitary nanopore. Proc Natl Acad Sci U

S A., 2007.

[59] Alexander D. MacKerell Jr. Hwankyu Lee, Richard M. Vanable and Richard W.

Pastor. Molecular dynamics studies of polyethylene oxide and polyethylene glycol:

Hydrodynamic radius and shape anisotropy. Biophysical Journal, 2008.

[60] Jorg Karger Konstantin Ulrich, Petrik Galvosas and Farida Grinberg. Effects of

self-assembly on diffusion mechanism of triblock copolymer in aqueous solution.

Physical Review Letters, 102, January 2009.

[61] William S. Price. Protein association studied by nmr diffusometry. Current

Opinion in colloid & Interface Science, 11:19–23, November 2006.

[62] Geoffrey Bodenhausen Richard R. Ernst and Alexander Wokaun. Principles of

nuclear magnetic resonance in one and two dimensions. CLARENDON PRESS-

OXFORD, 1987.

[63] The Fourier Transform and Its Applications. Mcgraw Hill Higher Education,

2000.


	Declaration of Authorship
	Certificate of Examination
	Abstract
	Acknowledgements
	List of Figures
	List of Tables
	Abbreviations
	Symbols
	1 Introduction
	1.1 NMR Signal
	1.2 Relaxation
	1.2.1 Longitudinal Relaxation Time (T1)
	1.2.2 Transverse Relaxation(T2)

	1.3 2D NMR
	1.4 Pulsed Field Gradients
	1.5 Nanoparticles
	1.6 Triblock Copolymer
	1.7 Lipid Membrane Mimetics
	1.7.1 Bilayer Models
	1.7.2 Lipid Bilayer Gel Phase Transition
	1.7.3 Chemistry of DPPC

	1.8 Organization of the Thesis

	2 Diffusion Studies Using PFG NMR
	2.1 Diffusion
	2.1.1 Diffusion Law

	2.2 Fick's Law
	2.3 Stejskal-Tanner Equation
	2.4 Stokes-Einstein Equation
	2.5 Diffusion NMR
	2.5.1 Diffusion ordered NMR spectroscopy (DOSY)
	2.5.2 Pulse sequence

	2.6 Diffusion Analysis
	2.6.1 Method for discrete diffusion coefficient(SPLMOD)
	2.6.2 Method for continuous diffusion coefficients (CONTIN)
	2.6.3 Direct exponential curve resolution algorithm (DECRA)


	3 NMR of Nanoparticles
	3.1 Introduction
	3.2 Utility and Application of AgNPs
	3.3 Previous NMR Studies of NP
	3.4 Materials & Method
	3.5 Results and Analysis

	4 Permeation of AgNPs in Lipid Bilayer
	4.1 Introduction
	4.2 Previous MD and Other Experimental Studies
	4.3 Various Models of NP-DPPC interactions
	4.4 Materials & Methods
	4.5 Results & analysis
	4.5.1 1D & 2D Proton Spectra
	4.5.2 31P Experiments


	5 AgNP Diffusing in Polymer Mesh
	5.1 Introduction
	5.2 Physics of Polymer Network & meshes
	5.3 Materials & Methods
	5.4 Results & Analysis

	6 Summary and Outlook
	A Fourier transform
	B Fast Fourier transform
	C Data Processing
	C.1 Apodization
	C.2 Resolution Enhancement
	C.3 Linewidth

	D Stejskal and Tanner Equation
	E Spin Echo Pulse Sequence
	E.0.1 Pulse sequence

	Bibliography

