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Abstract

Two of the most prominent challenges for modern cosmology are dark matter and
dark energy. Observations show that rate of expansion of the Universe is increas-
ing. Our current theory of gravitation: Einstein’s General Relativity (GR) cannot
account for this accelerated expansion if the Universe contains only normal mat-
ter and radiation. For GR to explain this late time acceleration, one needs to
assume the presence of a new constituent in the energy budget. This constituent
is dubbed "Dark Energy (DE)" and needs to have unusual properties like negative
pressure. A number of DE models have been proposed. The "standard" model of
cosmology (ΛCDM) has the Cosmological Constant (Λ), that acts as dark energy
with a constant density and pressure. In contrast, there are theories of dark energy
e.g. quintessence, chaplygin gas, tachyonic field, k-essence, etc. where density and
pressure can vary in space-time. Although, ΛCDM is consistent with data, theo-
retical basis of such a constant is problematic. There are issues like the fine-tuning
problem, coincidence problem, etc. This provides motivation for models beyond
Λ. Methods need to be developed that can help distinguish between these models.
Study of perturbations can help achieve this as perturbations might evolve differ-
ently in different models. Perturbations are studied at varying levels of approxi-
mation, e.g., linear theory approximation, spherical/ellipsoidal symmetry, N-body
simulations, etc. This sets the context for this thesis. In this thesis, we study
perturbations in scalar field based dark energy models: quintessence and tachy-
onic fields. We do relativistic, spherically symmetric simulations for both fields,
with minimal assumptions. We derive equations in spherically symmetry, start-
ing directly from action, without imposing any additional limitation on clustering
properties of dark energy. We numerically calculate the evolution of this system
for several lengthscales for initially overdense and underdense halos. We find that,
even though we start with a homogeneous scalar field, perturbations are induced
in quintessence because of minimal coupling. Induced perturbations grow with
time but the amplitude remains small even when matter perturbations become
nonlinear. DE density and equation of state (w) become functions of space-time.
We also show that at late times, perturbation growth rate is slightly faster than
that predicted by linear theory. Dark energy perturbations are stronger in large
voids. Length scales play an important role as perturbations at large scales show
faster growth for the same dark matter perturbation amplitude. We also study the
prospects of distinguishing these two models using results from spherical collapse
and linear perturbation theory. For the purpose of comparison between models
we need methods of reconstructing potentials to reproduce a given expansion his-
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tory. For quintessence and tachyonic fields we reconstruct potentials for a given
w(z). We show that closed form expressions for V (φ) can be obtained only for
a limited classes of w(z). We derive the necessary equations and then outline a
numerical schema for reconstructing potentials for any general w(z). This scheme
is based on numerical interpolation technique of cubic splines. We also reconstruct
potential for a coupled quintessence model, where background expansion mimics
the ΛCDM model. A unique investigation that we carry out is this: if the back-
ground cosmology for two different models is tuned exactly, so that observations
like supernovae cannot distinguish these, can the two models be distinguished
by perturbations (linear and spherically symmetric nonlinear)? We do a system-
atic comparison of quintessence and tachyonic scalar fields. This is done using
methodologies for reconstruction of potentials for two field models, given a partic-
ular background expansion. This allows us to delineate differences coming from
different background and those coming from differences in dynamics of pertur-
bations, owing to different nature of Lagrangians for quintessence and tachyonic
models. We find that differences in dark matter and metric perturbations are
weak and dependent on deviation of background from w = −1. Expansion his-
tories that deviate significantly from Λ or w = −1, show large differences while
models close to w = −1 show very little difference. Dark energy perturbations do
show differences between the two classes of models, but these remain too weak to
affect the metric/matter fluctuations. For the background expansions constrained
by current data, the prospects of distinguishing models just on the basis of per-
turbations are not promising.
We also consider the question of distinguishing tachyonic and quintessence mod-
els with the same expansion history using Cosmological (Linear) Perturbation
Theory. We show that while dark energy perturbations show differences, these
are insignificant for effects on observables. Consistent with results from previous
chapter, we find that for expansion histories allowed by data, distinguishing two
models is extremely difficult on the basis of dark energy perturbations. To vali-
date this result, we use parametric form for effective speed of sound for tachyonic
and quintessence models, modify CMB code CLASS, and try to constrain these
parameters. We find that the parameters remain unconstrained by present data.
We also use CMB data to constrain common tachyonic models.
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Chapter 1

Introduction

1.1 Cosmology

The Universe and astronomical objects have been a source of wonder and have
aroused human curiosity. What started as the identification of heavenly bodies
and the pattern they follow, has transformed into various disciplines with varying
levels of mathematical rigor. Cosmology is the study of the Universe at the largest
scales. It has been known, since Newton’s time, that gravitation is the key force
in the dynamics of extraterrestrial bodies. At these scales and beyond, any theo-
retical description of the dynamics of the Universe is intertwined with the theory
of gravitation. On one hand, the theory of gravitation forms the foundation for
cosmology, and on the other hand, cosmology provides tests of gravitation at the
largest scales that can be probed in the Universe.
The first three decades of the 20th century revolutionized both: our concepts
of gravitation as well as our understanding of the cosmos. On the theoretical
front, the development of General Theory of Relativity (GR) ([1, 2, 3]) completely
changed the perspective on gravitational dynamics while observations by Hubble,
Slipher, and others ([4, 5]) established the case for an expanding universe. At
the time, it was debated if the Universe is static and ever-lasting. Einstein found
in his new theory that the Universe cannot be static unless he introduced a new
constant in his theory. This new constant was called the “Cosmological Constant
(Λ)”. Even then the perturbations in the Universe were not static and hence the
static model is unstable. Observational work by Hubble, Slipher, etc. showed that
Universe was indeed expanding. Hence there was no need for Λ to make the static
model viable [6].
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The simplest models (see 1.1.2) of the Universe, based on the ideas of isotropy and
homogeneity, use the General Theory of Relativity (GR) to predict the average
expansion of the Universe. The expansion rate can be measured using luminosity
and spectral shifts of astrophysical objects. Calculations that only consider dark
matter, radiation, and baryons lead to an ever-slowing expansion rate. In the
1980s and late 1990s, observations from galaxy correlation functions and super-
nova suggested that the expansion rate is accelerating. This “accelerated expan-
sion” required the introduction of a new component, with the unusual property
of negative pressure. This new component was said to represent a new form of
energy called “dark energy”. Theoretical modeling of this component, simulations
of these models, and comparison with observations, form one of the core themes
of modern Cosmology and Physics, in general.

The Dark Sector (Dark Energy and Dark Matter) of the Universe is one of the
biggest challenges for modern physics. Observations are effectively passive in the
sense that we can not set up the phenomena or design a laboratory experiment,
we have to be content with information coming to us and try to observe. Besides
the observational/experimental limits, there are mammoth challenges on the the-
oretical side. Calculations/simulations in General Relativity (or its modifications)
are extremely complicated. Besides a few very simplified scenarios, almost all cal-
culations require approximations (even when solving on computers). Dark Energy
physics brings its own theoretical complexities. Simulations have to be done with
various degree of approximations and validity of these have to be tested. Dark
Energy models can have perturbations and studying the influence of these on cos-
mological observables is a very important area of research. Any predicted and
confirmed deviations from the standard ΛCDM paradigm will open the doors for
new physics.
The study of perturbations in dynamical dark energy models, is mostly done at
linear approximations. Nonlinear regime can be simulated in only simplified sce-
narios. This is the context of this thesis. Here we look into simulations of nonlinear
and linear perturbations in scalar field dark energy models.

This chapter sets the context and gives a quick overview of cosmology. We
briefly look at some important building blocks of modern cosmology that are rele-
vant to this work. We start by discussing some simple cosmological models. Then
we introduce the “accelerated expansion” and henceforth dark energy. This is fol-
lowed by an introduction to scalar field models of quintessence and tachyonic field.
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The remaining sections discuss tools/methodology that are needed for studying
dark energy perturbations. The last section describes the layout of this thesis.

1.1.1 General Theory of Relativity (GR)

As mentioned earlier, gravitation is the dominant force at extra-galactic scales. So
we need a theoretical description of gravity to build any theoretical model of the
Universe. Newton’s law of gravity ([7]) was the first founding stone of our under-
standing of gravity. It is an extremely successful theory across wide domains/scales
of applications. However, Newtonian theory of gravity is not compatible with the
special theory of relativity (SR)[8, 9]. Newton’s law requires action at a distance,
which is not allowed as per the principles of SR. So Einstein, who gave his the-
ory of special relativity in 1905, formulated a relativistic theory of gravity, which
generalized the special theory of relativity to include dynamics with accelerated
observers. This “General Theory of Relativity” ([1, 2]), completely changed the
notion of what are the variables of interest for dynamics. It made space-time itself
a dynamical quantity that is sourced by the matter energy content of space-time.

In GR, dynamics is formulated in terms of space-time. In Newtonian theory, we
start with the distribution of sources (masses), calculate potentials/forces, move
the masses, and repeat the process as required. In GR, mass energy distribution
acts upon space-time and the geometry of the space-time decides how the con-
stituents evolve. In addition, there can be forces coming from non-gravitational
interactions. In absence of other forces, massless particles move on null-geodesics
while massive particles follow geodesics. The equations have to be solved simul-
taneously for metric coefficients as well as the matter and field constituents of the
Universe.
In short, in GR, geometry of space-time becomes equivalent to gravity. Metric is
related to constituents of that space-time through Einstein Field Equations:

Gµν = 8πGTµν (1.1)

Here Gµν , called the Einstein tensor, encodes the information of space-time
geometry while on the right-hand side Tµν , called the stress-energy tensor or the
stress-momentum tensor, represents the sources/constituents of the Universe.

3



1.1.2 Homogeneous and Isotropic Universe

Once we have a theoretical framework for gravitation (GR here), the simplest
models of the Universe can be formulated using the Copernican Principle ([10]).
Copernican Principle states that no observer is special in the entire cosmos. In the
context of Cosmology, this is called “the Cosmological Principle", a term coined
by Weyl. This can be made mathematically precise using concepts of isotropy
and homogeneity of space. Important pioneering work was done by Friedmann,
Lemaitre, Robertson, Walker, etc.[11, 12, 13, 14, 15, 16]. If we assume that the 3-
space is invariant under translation and rotations, it can be shown rigorously[13,
14, 15, 16], that the only possible class of metrics is given by following general
metric:

ds2 = gµνdx
µdxν = dt2 − a(t)2

(
dr2

1− κr2 + r2dΩ2
)

(1.2)

This metric is called the FLRW metric named after Friedmann, Lemaitre,
Robertson, and Walker. Here we see that we have only one variable to solve for,
a(t) called the scale factor. Einstein’s equations are used to obtain differential
equations for a(t). We need the form of the stress-energy tensor to solve Ein-
stein’s equations. Many cosmic components can be described by an effective fluid
description. Stress energy tensor for a perfect fluid can be written as:

Tµν = (ρ̄+ p̄)uµuν − p̄gµν (1.3)

Then the equations for a(t) are:

(
ȧ

a

)2
= 8πG

3
∑
i

ρ̄i −
κ

a2 (1.4)

(
ä

a

)
= −4πG

3
∑
i

ρ̄i(1 + 3wi) (1.5)

where ρi and wi is the average energy density and equation of state, respec-
tively, of ith constituent. w is defined as:

w ≡ p̄

ρ̄
(1.6)
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These equations are known as Friedmann equations. These have to be solved along
with continuity/dynamics equations for the evolution of source terms. These equa-
tions can be obtained either from respective Lagrangian by variational calculus or
from the vanishing four divergence of stress-energy tensor:

T µν ,µ = 0 (1.7)

For a fluid with equation of state parameter w, the continuity equation is:

ρ̇+ 3Hρ(1 + w) = 0 (1.8)

where H is defined as:
H ≡ ȧ

a
(1.9)

Although we do observe in the real physical universe a lot of structure, the mathe-
matical construct of a homogeneous and isotropic universe can be used as a proxy
for studying dynamics of the Universe “on average”. We assume that the observed
Universe is statistically homogeneous & isotropic. Although there is no rigor-
ous derivation that proves the equivalence of “metric isotropy & homogeneity”
and “statistical homogeneity & isotropy”, observationally the FLRW metric based
calculations are consistent with observational data. There are a number of toy
models that demonstrate that the differences are small.
Once we decide on contents of the Universe, Friedmann equations can be solved
for a(t). If there is only one component described by a single fluid with a constant
w, we have:

ρ ∝ a−3(1+w) (1.10)

a ∝ t
2

3(1+w) (1.11)

In general, we can solve Friedmann equations for any mix of constituents and
put the theory to observational tests.

1.1.3 Some useful solutions of Friedmann Equations

An FLRW universe which only has pressure-less matter is called the Einstein-de
Sitter universe[17]. Then the Friedmann equation is:

da

dt
= H0

√
Ωm

0
a

3/2
0√
a

(1.12)
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here H0 is Hubble constant i.e. present value of H and Ωm
0 is present day density

parameter for matter. Density parameter for a component is dimensionless mea-
sure of density contribution of that component to the total energy budget of the
Universe. It is defined (for a component i with density ρi) as:

Ωi ≡
8πGρi
3H2

0
≡ ρi
ρc

(1.13)

where ρc is called critical density of the Universe and is defined as:

ρc = 3H2
0

8πG (1.14)

For Einstein-de Sitter, matter density is equal to critical density. In this case the
solution for a and H are:

a =
(3H0

2

)2/3
t2/3 H = 2

3t (1.15)

In general, allowing for curvature, radiation and cosmological constant, Friedmann
equation can be written as:

(
ȧ

a

)2
= H2 = H2

0

(
Ωr

0a
−4 + Ωm

0 a
−3 + ΩΛ + Ωκa

−2
)

(1.16)

Evolution of density parameters and H is plotted for a particular set of param-
eters, in following figure (1.1)

1.1.4 Distances & Redshifts

Solving Friedmann equations one can obtain evolution of a(t). Given the FLRW
metric (1.2), equations of motion for photons can be calculated as massless parti-
cles move on null geodesics of a given geometry:

PαP β
,α = 0 (1.17)

where P represents four momentum of a photon. From these equations, it can be
shown that:

P 0 ∝ a−1 (1.18)

which can be translated into a relation between emitted wavelength and observed
wavelength of photons. If λe is emitted wavelength of an electromagnetic signal
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Figure 1.1: Left panel: Evolution of density contributions for different components.
Matter density falls faster than Λ and eventually Λ comes to dominate giving late
time acceleration. Right panel: Hubble parameter as function of redshift, while ȧ
begins to increase near z = 0, the ratio ȧ

a
continues to decrease.

at ae, its observed wavelength is λo at ao, then:

λo
λe

= ao
ae

(1.19)

We define the redshift (z) of an epoch at a as:

z ≡ a0

a
− 1 = λ0

λ
− 1 (1.20)

here a0 is taken to be present value of a.
Light/electromagnetic radiations are one of the primary media for carrying out
observations. As photons travel in this FLRW space-time geometry their wave-
lengths are stretched and the relation between coordinate distances of source and
the amount of wavelength change is dependent on the geometry of space-time. So
it can be used as a test of the theory of space-time, in this case, the validity of
dynamics coming from FLRW metric and associated equations, and hence also a
check on GR.
For this purpose we need to identify variables in the theory that can be con-
nected to observations. Different notions of distances[18] can be defined/used in
Cosmology depending upon the observation being made. The simplest one is the
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comoving distance. Let’s write FLRW metric 1.2 in a new form:

ds2 = gµνdx
µdxν = dt2 − a(t)2

[
dχ2 + fκ(χ)2dΩ2

]
(1.21)

with

r =


sin(χ) (κ = 1)

χ (κ = 0)

sinh(χ) (κ = −1)

and

fκ(χ) =


sin(χ) (κ = 1)

χ (κ = 0)

sinh(χ) (κ = −1)

For photons moving on null paths, the interval ds is zero and we have (for photons
and other massless particles originating at {χ = χe, t = te}moving along the radial
direction):

dc ≡ −
∫ te

to

dt

a(t) = χe (1.22)

Here subscript o represents present epoch/observer. dc is called the comoving
distance to an emitter at te and is a marker of a particular location in space.
Writing the above relation in terms of redshifts (z):

dc = 1
ao

∫ z

0

dz

H(z) (1.23)

Redshifts of sources can be estimated directly using spectroscopic observations.
Another useful distance, called the luminosity distance (dl), can be composed out
of z and comoving distance χ. dl is defined as:

d2
l ≡

Le
4πFo

(1.24)

where Le is luminosity of the source and Fo is observed flux covering all frequencies.
Fo is also called the bolometric flux. dl is related to the comoving distance χ as:

dl = aofκ(χ)(1 + z) (1.25)
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hence,

dl = 1 + z√
−κ

sinh

(√
−κ

∫ z

0

dz

H(z)

)
(1.26)

If we independently know the luminosity of a light source, then using the
observed flux, we can estimate the luminosity distance. Redshifts can be obtained
from spectroscopic analysis. Then using eq. 1.26 along with Friedmann equations,
we can compare theory with observations as we have (dl, z) from observations as
well as from theory. This is one of the ways a theory of cosmological space-time can
be tested/constrained. But for this, we need an estimate of luminosity. Supernova
type Ia have been used to good effect in the last 25 years for this purpose.

1.2 Accelerated Expansion and the Cosmologi-
cal Constant

As discussed in the previous subsection, we need to know the luminosity of a
source along with an independent measure of redshift to constrain cosmological
dynamics. Supernova of type Ia serve this purpose. Such sources are known as
“standard candles” of cosmology.
In the late 90s, studies of these types of supernova indicated that the expansion
rate of the Universe is increasing. Studies that established this results were done
by HSST team (Riess et. al[19]), SCP team (Perlmutter et. al[20]) and Schmidt
et al ([21]). As we saw in subsection 1.1.3 that if we have only normal/dark
matter with a positive equation of state parameter, we can not have accelerated
expansion. From Friedmann eq. 1.5:

(
ä

a

)
= −4πG

3
∑
i

ρ̄i(1 + 3wi)

we can see that for ä to be positive the dominating energy component needs to
have w < −1/3, which is very strange requirement in the context of standard
physics. Recall that w is ratio of pressure to density, and this requirement makes
pressure negative.
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1.2.1 Return of the Cosmological Constant

When Einstein studied cosmological implications of the General Theory of Relativ-
ity, he found[3, 22] that he could only have a quasi-static universe if he introduced
an additional term in his field equations:

Gµν − Λgµν = 8πGTµν (1.27)

He later abandoned it in light of observations that the Universe is expanding,
not static. But the observations that suggested accelerated expansion brought
back Λ into Cosmology. Even before supernovae observations established the case
for a Λ-like component, there was indirect observational evidence combined with
theoretical arguments, which suggested the presence of Λ[23, 24, 25, 26]. Einstein’s
equations with cosmological constant, considering matter and curvature, are:

(
ȧ

a

)2
= 8πG

3 ρ̄m + Λ
3 −

κ

a2 (1.28)

Using definitions of critical density and density parameters (Ω):

H2 = H2
0

(
Ωm0

a3
0
a3 + ΩΛ −

Ωκ

a2

)
(1.29)

For early universe (high redshifts), radiation needs to be taken into account in
above two equations. The form as stated above is appropriate at low redshifts.
This model of the Universe with Λ and Cold Dark Matter (CDM) is the current
standard model of Cosmology called the ΛCDM model. It not only provides a
phase of late time acceleration suggested by supernova data, but it also gives an
excellent fit to a wide variety of direct/indirect astrophysical data [27, 28, 29].

While the cosmological constant model is in great agreement with data, there
are some “theoretical caveats” associated with cosmological constant, which make
modern cosmology both challenging and interesting[30]. There is a possible theo-
retical basis for Λ coming from vacuum energy. But the predicted energy density
associated with Λ is of order ρvac ≈ 1074 GeV 4 which is way way off from observed
value of ρΛ ≈ 10−47 GeV 4. This is called the fine-tuning problem. Another
important issue is that of the Coincidence problem. The observed values of
dark energy density and matter density are both of similar order at the present
epoch. In most of the models of dark energy, the ratio of these two is of order
unity only at epochs close to z = 0. Hence it calls for an explanation of why it is
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so at the present.
These and other various theoretical motivations ([30, 31, 32]), mostly motivated
by a goal to find a unifying picture with standard particle physics, have led people
to explore the reasons for accelerated expansion beyond Λ.

1.3 A Quick Introduction to Dark Energy

In the quest for seeking a cosmological theory that accounts for the acceleration
of the expansion rate, there are two approaches that can be taken:

• Modified Gravity Theories: Cosmological evolution depends on the con-
stituents of the Universe and the laws (e.g. GR) that connect space-time
with these constituents. One can argue that late time acceleration is a con-
sequence of deviations from GR. This is the paradigm of modified gravity
theories[33, 34, 35, 36, 37, 38]. In this approach various modifications to
Einstein’s equations or Einstein-Hilbert action are proposed and tested.

• Dark Energy: The other way is to postulate the presence of a component
with properties as required by observations of the expansion rate. To remain
consistent with observations, this new component has to interact mainly
through gravity. So it has to be minimally coupled through metric to other
components or the direct coupling to other components[39] is extremely
weak as constrained by observations. This new component postulated to
solve the accelerated expansion problem is called “dark energy”. There
are many proposed forms: scalar fields like quintessence[40, 41, 42],tachyon
fields[43, 44],etc., generalized scalar fields called k-essence[45, 46, 47], fluid
descriptions[48], etc. Often there are phenomenological descriptions of dark
energy with fluids characterized by parameters/parametric forms for w, ef-
fective speed of sound c2

s etc.[49]. In general, in these models, dark energy
is dynamical in space-time i.e. its features can vary in both space and time,
but often various approximations can be used in some models, where fluc-
tuations/perturbations are ignored at some scales. One of the aims of this
thesis work is to do self-consistent simulations of perturbations in scalar
field models and check if these assumptions of small/insignificant dark en-
ergy clustering hold out or not.

These approaches are not “fundamentally” different as terms postulated in mod-
ified theories can be written as an effective stress-energy tensor with appropriate
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couplings[50]. This statement is valid in the regime of classical theories.
In this work, we study the dynamics of perturbations in scalar field models, partic-
ularly quintessence and tachyonic dark energy. In the late part, we also consider
fluid descriptions with effective w and c2

s that can be mapped from general scalar
field models of k-essence.

1.4 Quintessence

Quintessence[51] refers to the canonical scalar field that is responsible for the late
time acceleration of the Universe. A scalar field is one of the simplest components
to include in the energy budget of the Universe. The use of scalar fields has
already been well studied in the context of another era of accelerated expansion
i.e. inflation ([52, 53, 54]). Even before the confirmation of late-time acceleration,
people have studied cosmological implications of a scalar field [55]. The action for
the quintessence is [42]:

I =
∫
d4x
√
−g

[1
2g

µν∂µφ∂νφ − V (φ)
]

(1.30)

Using FLRW metric with Einstein’s equations, the equation of motion for the field
in background cosmology is:

φ̈+ 3Hφ̇+ V,φ = 0 (1.31)

where V (φ) is the potential for the quintessence and V,φ denotes the derivative
of potential with respect to the field. From variation of the full action (Einstein-
Hilbert plus all components), we can obtain the stress-energy tensor for the field
and the corresponding effective pressure (Pφ) and density (ρφ).

For FLRW geometry:

ρφ = φ̇2

2 + V (1.32)

Pφ = φ̇2

2 − V (1.33)

and the effective equation of state parameter (wφ) is:

wφ = Pφ
ρφ

= φ̇2 − 2V
φ̇2 + 2V

(1.34)
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As mentioned in previous section 1.2 and obvious from eq. 1.5, we need w < −1/3
for accelerated expansion. Looking at eq.1.34, we notice that if kinetic part (φ̇2) is
small compared to potential part (V (φ)), we get negative values of w. For slowly-
rolling field φ̇2 � V (φ), w is very close to Λ (w = −1). So with an appropriate
potential and parameters we can obtain a background evolution which is very close
to ΛCDM . In fact, for a number of choices for the functional form of w(z), one
can reconstruct the form of potential.
There can be different forms for potential motivated by various type of underlying
mechanisms or phenomenology. Quintessence models are often classified according
to the behaviour of w(z). There are two broad classes[56, 57]: freezing and thawing
models. In freezing potentials the field is initially rolling, and w is away from −1,
with ẇ < 0. It approaches −1 at late times. Examples of freezing potentials are:

V (φ) ∝ φ−n (1.35)

V (φ) ∝ exp(αφ2) (1.36)

On the contrary, in thawing potentials, field is initially rolling very slowly, so
that w ∼ −1, but as we approach the present epoch, the field rolls and w moves
away from −1 on higher side. Examples of thawing models are:

V (φ) = V0 +M4−nφn (1.37)

V (φ) = M4 cos2(φ/f) (1.38)

There have been efforts to find quintessence models wherein the coincidence
problem can be resolved. These efforts[56, 58, 59, 60], use dynamical systems
approach to obtain solutions that have trajectories with attractors such that the
field density tracks the other component for a wide range of initial conditions.
Thus dark energy and matter-energy densities remain of the same order for an
extended period. But these models do not completely alleviate the coincidence
problem as often one coincidence is replaced by another[56].

1.5 Tachyonic models

The quintessence field is a canonical scalar field with a Lagrangian of the form “Ki-
netic Energy+Potential Energy” which is like the Lagrangian of a non-relativistic
particle. Similarly, one can take the Lagrangian for a relativistic particle and write
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a field theory version of it:

L = −V (φ)
√

(1− ∂µφ∂µφ) (1.39)

This type of field is called tachyonic field[43] These models are effective low en-
ergy theories with an origin in string theory[61]. These models have also been
investigated for the prospect of a unified dark sector[62]. Certain potentials in
these models have nontrivial features which make them interesting for a detailed
study. For example: exponential potential (V ∝ e−φ) has an asymptotic future
behavior that can avoid a future horizon[44] and V ∝ φ−2 potentials can give scale
dependent dark matter like behaviour[62].
In FLRW cosmology, the energy density and pressure for tachyonic field are:

ρφ = V (φ)√
1− ∂µφ∂µφ

(1.40)

Pφ = −V (φ)
√

1− ∂µφ∂µφ (1.41)

Equation of state parameter is:

w = −1 + φ̇2 (1.42)

While the quintessence models are well studied, tachyonic models are not so.
Background constraints on some tachyon models have been studied in [63] and a
detailed study of perturbations has been done in [64].

1.6 Calculations of Dark Energy Cosmology

Once, we have decided on a dark energy model (like an action or phenomenologi-
cal characteristics), simulations have to be done for comparison with observations.
There are different phenomena that can be affected by the dynamics of dark energy
and hence different types of calculations might be needed. Dark energy changes
the average expansion rate of the Universe and hence any observation that de-
pends on a(t) or its derivatives is affected. This affects the distance-luminosity
relations for any source of light, clustering of other components of the Universe,
etc. For minimally coupled models, i.e. models in which dark energy interact only
via gravity, dark energy affects other constituents only through metric.
This means simulations can be done at various levels of rigor/approximations de-
pending upon which observations we want to explain. In this section, we look
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at this “hierarchy of calculations”. This structural study is important because
different dark energy models might be sensitive to different types of observa-
tions. Sets of models that are “observationally degenerate” at one level of simula-
tion/observations need another level for constraining the models. Different levels
also set the phenomenological structure of dark energy theories.

1.6.1 Background

As discussed in previous sections the simplest cosmological calculations are done
with assumptions of homogeneity and isotropy, using FLRW metric. This assump-
tion means that all dependent variables of theory have only time dependence, e.g.
the only degree of freedom in metric is a(t), all densities are only time-dependent
ρ(t), dark energy Lagrangians are just functions of a time-dependent field and
its time derivatives. With the assumption of minimal coupling, any dark energy
model is completely specified, at the background level, by its equation of state
w(t). The energy density is given by the continuity equation 1.8 and we solve
Friedmann equations for a(t). Specification of w(t) for each component lets us
solve for evolution of all components and with Friedmann equations 1.41.5, the
cosmological model is completely specified. Here the free parameters of theory
are specifications of density parameters at present/initial time (Ω0’s for differ-
ent components), current/initial value of Hubble factor H0, and any parameters
describing either a parametric form of wde(t) for dark energy or parameters of
underlying dark energy model (like parameters of V (φ)).
Almost all cosmological probes are affected by the average expansion of the Uni-
verse. So even if the calculations are being done at a more elaborate level (like
including perturbations), changes in background cosmology are reflected in per-
turbations, non-linear structures, etc. So when we discuss the next levels of cal-
culations, they encapsulate this background dynamics. An important task is to
investigate if two models of dark energy give the same background expansion,
how efficiently can they be distinguished by the next levels of calculations. For
example, one can have two different types of scalar field models and reconstruct
corresponding forms of the potential for these two fields such that they have the
same effective w(t). Then background expansion is same and we can ask if the lin-
ear perturbation theory based calculations/observations distinguish these. Work
presented in this thesis attempts to address this question by working with different
scalar field Lagrangians: quintessence and tachyonic field.
One important thing to note here is that all observations which are only sen-
sitive to background observations cannot distinguish two dark energy
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models with the same effective w(t). However, this is fairly easy to do in a lot
of models. ΛCDM gives an excellent fit to background cosmology and, hence most
theories by construction have tunable parameters, which when adjusted, make the
expansion very similar to ΛCDM , and hence satisfy background constraints.
Every cosmological observation is affected by the expansion rate, but observa-
tions that only depend on the luminosity-distance relationship, like supernovae
observations, can only probe expansion history.

1.6.2 Linear Theory

The Universe has structures existing at different scales: e.g. planets, stars, galax-
ies, interstellar medium, clusters of galaxies, dark matter halos, etc. The origin
and formation of these structures are entangled with the evolution of space-time.
General Relativity (its modifications) are nonlinear theories and in most of the
cases, we have to use approximations to solve equations. To study structure for-
mation or perturbations in the Universe, we make certain assumptions (which
can be tested against observations). The standard formalism is as follows: All
the structures that we observe have originated from small fluctuations, seeded at
early times in the history of the Universe. Standard cosmological models start
from a singularity, called Big Bang ([11]) in past. The big bang was followed by
a period of exponential expansion called inflation ([52, 53, 54]). At initial time,
when the Universe was very tiny, primordial fluctuations were seeded by quan-
tum fluctuations (though there are other theoretical possibilities, like topological
defects[65]), which were then stretched out by inflation. These fluctuations were
very small. This is validated by Cosmic Microwave Background (CMB) radiation
([66, 67, 68]), which was emitted much later than the end of inflation, which is
almost uniform with anisotropies of order 10−5. These primordial fluctuations
evolved in the dynamic fabric of space-time, growing with time and forming non-
linear structures that we observe. Hence studies of the growth and formation of
structures are very useful in investigating the theories of space-time dynamics.
Once we assume primordial fluctuations to be small, we can study these at early
times using linear perturbation theory (as discussed below)[69, 70, 71]. At linear
order, in Fourier space, evolution for different lengthscales decouple and original
partial differential equations can be approximated by ordinary differential equation
for each Fourier mode (k). Furthermore, in Fourier space different length-scales
evolve differently. After the end of inflation, modes above a certain length-scale
are out of the comoving horizon, and hence these “super horizon” perturbations
remain frozen until they come back into the horizon ([72, 73]). Given the initial
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fluctuations were small and existence of an evolving horizon, we can effectively use
linear approximations in two regimes: early time scales and large length scales.
Now we brifly discuss the formalism of (linear)cosmological perturbation theory.
For comprehensive and detailed reviews, please see [69, 70, 71, 74].
Our starting point is assuming a background metric (FLRW like) and then per-
turbing it. All quantities are written as “background+perturbation”, where the
perturbation quantities are grouped or classified according to their transformation
properties under 3-space transformations. This decomposition decouples different
types of perturbations at linear order.
If ḡµν is background metric and gµν is the metric with perturbations δgµν , then

gµν ≈ ḡµν + δgµν (1.43)

δgµν can be decomposed into scalar, vector and tensor forms, then it can be
shown that for symmetric and homogeneous Robertson-Walker spaces and lin-
ear perturbations on them, different components decouple and can be studied
separately[69]. Further, tensor perturbations do not couple with energy densi-
ties or pressure inhomogeneities and vector perturbations decay in an expanding
universe. Scalar perturbations can show instabilities and can significantly affect
matter dynamics[69, 70]. Hence, in context of this work, we restrict ourselves to
scalar perturbations:

g00 = a2(1 + 2ψ) (1.44)

g0i = −aB,i (1.45)

gij = −a2(γij[1− 2φ] + 2E,ij ) (1.46)

ds2 = a2(1 + 2ψ)dη2 − aB,i dηdxi − a2(γij[1− 2φ] + 2E,ij )dxidxj (1.47)

Here γij is spatial symmetric metric, “,” represents covariant derivative with re-
spect to γ and {ψ,B, φ,E} are scalars (with respect to spatial transformations)
that characterize the metric perturbations. This is a general form for perturba-
tions. But these scalar functions are dependent on the choice of coordinates i.e.
there is a “Gauge dependence”. We discuss this next.

1.6.2.1 Gauge dependence

In General Relativity, space-time is a dynamical quantity and it is represented by
a metric, a symmetric tensor of rank 4. So, gµν has 10 components/functions to
be solved for. But, there is a freedom to choose coordinate systems and these 10
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functions are coordinate dependent, so they take different forms for different coor-
dinates. Given a solution, one can choose transformations to another coordinate
system and hence get a different-looking solution. This is called “Gauge freedom”.
Transformations from one coordinate system to other (say from xα to x̃α) are, in
general, characterized by 4 functions:

x̃α = ξα(x0, x1, x2, x3) (1.48)

These functions are chosen by hand, to get a suitable coordinate system. Hence
there are 4 more functions specified, hence the degree of freedom in unknown met-
ric functions reduces to 10− 4 = 6. This is valid for any perturbative space-time
dynamics.

But while doing linear perturbation theory, complications can potentially arise
depending on the particular type of space-time.[69, 70]. A splitting is done on
space-time between a “background space-time” and a “perturbed space-time”,
while in reality there is only one space-time, which is deformed compared to the
background. A choice for a coordinate system on the background is made and then
a coordinate system has to be established on perturbed space-time. Perturbations
are defined as the differences of various functions on space-time, from correspond-
ing functions on background space-time. Hence the definition of perturbations is
dependent on the “correspondence of coordinate system on the background and
perturbed space-time”. As a manifestation of gauge freedom on perturbed space-
time, this correspondence is not unique. While one can choose a particular gauge
and work using it consistently, the physical meaning of perturbations in some
gauges might be ill-defined. There is one particular gauge called the “synchronous
gauge” where this confusion often arises[70].
When considering gauge transformations (1.48) in context of linear perturbations
theory, we only consider small transformations i.e. functions ξα are only signifi-
cant at first order. Further, when considering only scalar perturbations (as we are
doing here), transformations 1.48 can be written in terms of two scalars:

ξ0(xα) = ξ0(xα) (1.49)

ξi(xα) = γijξ(xα),j (1.50)
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Then perturbations in equations 1.47 transform as:

ψ̃ = ψ − a′

a
ξ0 − ξ0′ (1.51)

φ̃ = φ+ a′

a
ξ0 (1.52)

B̃ = B + ξ0 − ξ′ (1.53)

Ẽ = E − ξ (1.54)

In light of gauge-related complications, it is highly desirable that “gauge inde-
pendent” approaches be studied. Bardeen [75] and Gerlach & Sengupta [76] built
upon the previous works of other people to develop a gauge-invariant approach.
The key point is to notice how various perturbations transform and find combi-
nations of perturbations such that the resultant quantity is invariant under gauge
transformations. Two such combinations were pointed out by Bardeen[75], which
are called Bardeen potentials (ΦA and ΦH):

ΦA = Ψ = ψ + 1
a

[a(B − E)′]′ (1.55)

−ΦB = Φ = φ− a′

a
(B − E ′) (1.56)

Gauge transformations for scalar perturbations involve two functions (ξ0, ξ)
and these can be chosen to reduce 4 scalar perturbations to 2. Two very common
choices of gauge leverage this freedom to get equations that are suited for some
particular applications. These are:

• Synchronous Gauge: This gauge is obtained by any such transformation
which makes ψ = 0 and B = 0. These properties can be used to write
transformations from any gauge to synchronous gauge. Synchronous gauge
is popular for numerical codes as it shows better numerical suitability. How-
ever, transformations that are used to reach synchronous gauge still leave
freedom for residual transformations which can sometimes lead to unphysical
perturbations[70].

• Conformal Newtonian Gauge: This gauge is defined by conditions: B =
0 and E = 0. From the definition of Bardeen’s potentials (1.56), it is obvious
that the perturbations (ψ and φ) are themselves gauge-invariant. This is the
most attractive feature of this gauge as many perturbations are naturally
gauge invariant. Another useful feature is that of interpreting perturbations.
If off-diagonal components of spatial part of stress-energy tensor vanish, then

19



φ = ψ which has correspondence with Newtonian potential. Metric in this
gauge takes form:

ds2 = a2(1 + 2ψ)dη2 − a2(γij[1− 2φ])dxidxj (1.57)

Because of the above-mentioned features, we use, for linear theory, Conformal
Newtonian gauge. Now we discuss linear theory formalism in this gauge.

1.6.2.2 Basic Equations

Here we demonstrate the basic working procedure of linear theory with a simple
example (assuming spatial curvature to be 0). All the equations are derived as in
the usual GR formalism but all perturbations from respective background quanti-
ties are retained only at first order. Further going to Fourier space simplifies the
calculations as different k- modes are de-coupled at first order and we are left with
only ordinary differential equations to solve instead of partial ones. We start from
metric 1.57 and use Einstein equations to obtain:

6 ψ
a2

[
a′2

a2 − 2a
′′

a

]
− 12a

′

a

φ′

a2 − 6a
′

a

ψ′

a2 − 6φ
′′

a2 + 2 ∆
a2 [φ− ψ]

= 8πG(δT 1
1 + δT 2

2 + δT 3
3 )

(1.58)

3∑
i=1

[
a′

a

∂ψ

∂xi
+ ∂φ′

∂xi

]
= 4πGa2

3∑
i=1

δT 0
i (1.59)

[
∂2

∂x1∂x2 + ∂2

∂x2∂x3 + ∂2

∂x3∂x1

]
(ψ − φ) = 8πGa2(δT 1

2 + δT 2
3 + δT 3

1 ) (1.60)

− 3a
′2

a2 ψ − 3a
′

a
φ′ + ∆φ = 4πGa2δT 0

0 (1.61)

Here δT represents first-order perturbations to stress-energy tensor and ∆ is the
Laplacian operator defined as:

∆ ≡
3∑
i=1

∂2

∂xi2
(1.62)
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Here we consider a perfect fluid as source. Decomposing pressure and density in
background+perturbation:

ρ(x, y, z, t) = ρ̄(t)(1 + δm(x, y, z, t)) (1.63)

p = p̄+ δp (1.64)

and we have velocity perturbations (background/average velocity is 0) defined as:

vi ≡ dxi

dη
(1.65)

Then stress energy tensor for matter fluid is:

(δT 1
1 + δT 2

2 + δT 3
3 ) = −3ρ̄c2

sδm (1.66)

(δT 1
2 + δT 2

3 + δT 3
1 ) = 0 (1.67)

3∑
i=1

δT 0
i = ρ̄

3∑
i=1

vi (1.68)

Defining Θ:

Θ =
3∑
i=1

∂vi

∂xi
= ikjvj (1.69)

where the rhs of second equality is in Fourier space, i.e., vi in rightmost term is
Fourier coefficient of vi. Now on, in this subsection we would work in Fourier space
i.e. all variables are Fourier coefficient in following calculations. Using equations
from time-space components:

k2

a2

[
a′

a
ψ + φ′

]
= −4πGρ̄(1 + w)Θ (1.70)

To obtain the equations of motion for density and velocity, we can use conti-
nuity equations:

T µν ;µ = 0 (1.71)

We get
δ′m = −3a

′

a
(c2
s − w)δm + 3(1 + w)φ′ − (1 + w)Θ (1.72)

Θ′ = −
[
a′

a
(1− 3w) + w′

1 + w

]
Θ + k2

[
c2
sδm

1 + w
+ ψ

]
(1.73)

The above two equations hold with off-diagonal terms of stress-energy ten-
sor vanishing (as in eq.1.67), otherwise, there is an extra term proportional to
anisotropic stress σ. Now we have all the equations that have to be solved for a
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universe containing a single fluid. If there are multiple fluids then all perturbation
sources (δT µν ) have to be considered in Einstein equations 1.58-1.61. Also, the
continuity/dynamics equation for each component has to be derived and solved
simultaneously. For minimally coupled fluid, with vanishing anisotropic stress,
continuity equations (1.72 and 1.73) should work. Looking at the continuity equa-
tion, we observe that such a fluid is characterized by two functions: equation of
state for background (w(τ)) and effective speed of sound c2

s. In phenomenolog-
ical investigations, these functions are often investigated. For example, if dark
energy effectively behaves like a fluid, then what would be its equation of state or
effective speed of sound. We will look at these investigations in greater detail in
chapter 5. In practice, these equations are written considering different compo-
nents (baryons, photons, neutrinos, dark matter, models of dark energy, etc) and
solved on a computer. But it is worth looking into some simple observations from
the above-mentioned equations:

• In case, off-diagonal components of spatial part of T µν vanish, then from
eq.1.60, one can deduce that the two potentials are equal (i.e. ψ = φ). In
Newtonian approximation (i.e. small velocities) this turns out to be the
Newtonian gravitational potential.

• In small scale limit (k � aH), one can show that (using the fact that
potential changes are very small in this limit), matter fluctuations behave
as per:

δ′′m + a′

a
δ′ + k2c2

sδm = 4πGρ̄δm (1.74)

In a dark matter-dominated universe, this equation has a growing solution
δm ∝ a ∝ t2/3.

1.6.3 Nonlinear Approximations

Linear theory works well at early times or at large length scales, it breaks down
when perturbed quantities like δ approach 1. Then alternative methods need to be
explored. Solving GR equations in their full nonlinear form is extremely hard for a
general distribution of matter and energy. Hence, for nonlinear regimes, different
types of approximations are employed. One is the N-body formalism which we
discuss in the next subsection. Technically, one can do second-order linear theory
([77, 78]) and go on to higher-order as well. But even second-order turns out to
be extremely cumbersome and this also fails as δ → 1.
There are other methods that remove the assumption of small perturbations but
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make some other assumptions. For example, there are efforts exploiting some
geometrical symmetry, like spherical, cylindrical, or ellipsoidal symmetry ([79,
80]). These calculations, although idealized, are very useful in giving physical
insights. Combined with semi-analytical and partly numerical methods, these
even give predictions for observables. In section 1.7, we will see how this can be
done in an example with spherical symmetry.

1.6.4 N-body Simulations

Linear theory breaks down when perturbed quantities like δm become of order
unity. N-body simulations try to simulate dynamics with an ensemble of parti-
cles and can have nonlinear matter structures in simulation. Most of (traditional)
cosmological N-body simulations[81, 82, 83] use Newtonian approximations in an
expanding universe. The particles are moved in a non-relativistic manner accord-
ing to force calculated either from a potential or using some contribution scheme
for force due to other particles. Even before the discovery of accelerated expan-
sion using supernova observations, comparisons of results from N-body simulations
with observations suggested the presence of cosmological constant[24, 25, 84]. Ba-
sic level implementation of dark energy in N-body simulations can be done by
modifying the expansion background of the existing cosmological code. More ad-
vance implementations include dark energy perturbations/modified gravity effects
as well (see [85] for a review). But most dark energy models are best described by
relativistic fields and hence consistency would require simulating fields in General
Relativity. There have been some recent efforts towards developing relativistic
N-body cosmological simulations[86, 87, 88].

1.7 Spherical Collapse

General relativistic equations are in general too complicated to solve. But if
we assume some symmetry, like spherical symmetry, equations not only become
amenable to easy numerical implementation but may also have analytical closed-
form solutions. Despite this strong symmetry assumption, this approach is very
important because it allows us to probe strong perturbation regime. In absence of
very general solutions, it is very useful to have solutions (corresponding to observ-
ables) in different regimes like linear assumptions without symmetry, symmetry
assumptions without linearity constraints, etc.
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Pioneering work in spherically symmetric models for cosmology was done by
Lemaitre, Tolman, and Bondi ([89, 90, 91]). Gunn and Gott used the spheri-
cal collapse formalism to connect observational characteristics of galaxy clusters
to cosmology[92]. Quantities calculated in spherical collapse formalism can be
used to build semi-analytical models of halo-distributions[93, 94]. Here we review
the basic formalism of spherical collapse. We will further review spherical collapse
formalism in context of dark energy in chapter 2.

1.7.1 Newtonian Spherical Collapse

For an overdense or underdense sphere in otherwise homogeneous universe, dy-
namics of shell can be described using Newtonian mechanics (if there is only
non-relativistic dark matter). For a shell that encloses mass M , dynamics is given
by:

d2R

dt2
= −GM

R2 (1.75)

and an energy conservation equation can be written:

1
2

(
dR

dt

)2

− GM

R
= E (1.76)

where E is energy averaged inside the shell. Dynamics depends on the sign
of E . For positive energy, the shell may go expanding forever. If the energy is
negative, the system is bound, a shell initially expanding, expands to a finite
radius, turns around, and collapses. For bound systems, the above equations have
a parameterized analytical solution[95].

R = A(1− cos θ) t = B(θ − sin θ) (1.77)

where A and B are constants obtained from initial conditions, and can be related
to mass and energy:

A3 = GMB2 A = −GM2E (1.78)

These constants are determined by initial conditions. All collapsing halos have
characteristic turn around and virial properties. Although analytical or numerical
solutions eventually lead to singularity, in the real universe, it is assumed that
the system goes through some stabilizing process and eventually leads to the for-
mation of quasi-stable structures. The process of virialization[96], in dark matter
collapse, is not well understood and is often implemented by hand in simulations.
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This epoch of virialization, can be taken as the epoch at which overdensity tends
to infinity or the time it takes to collapse to 0, or it can be imposed by other
conditions, for example, virialization happens at a time which is twice the time
turn around happens[95, 97]. A more physical way is to take the virial theorem
of classical mechanics and use the kinetic-potential energy virial relation[98]. For
a collapse with just dark matter, turn around overdensity δta is independent of
initial overdensity/size. It is:

δdm = 9π2

16 − 1 (1.79)

while relation of radius at maximum (Rta) to virial radius (Rv) can be very well
approximated by Rta = 2Rv.
In presence of simplest dark energy, that is in presence of cosmological constant,
eq.1.76 is modified to:

1
2Ṙ

2 − GM

R
− 1

6ΛR2 = E (1.80)

This contains the previous case for Λ = 0. Expressions for virial and turn around
radii can be obtained[97, 98]:

RT = 3(1 + δ̄in)
δ̄in

Rin

(
4ΩM(δ̄ina0)3

27ΩΛ(1 + δ̄in)2a3
in

)1/2

sin
1

3 arcsin


(

27ΩΛ(1 + δ̄in)2a3
in

4ΩM(δ̄ina0)3

)1/2
 (1.81)

RV =
(2

3

)1/2 (ΩΛR
3
T + ΩM( a0

ain
)3(1 + δin)R3

in

ΩΛRT

)1/2

sin

1
3 arcsin

ΩMa
3
0(1 + δin)R3

in

a3
inR

3
T

 1.5
1 + ΩM

ΩΛ
( a0Rin
ainRT

)3(1 + δin)
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(1.82)

The properties of collapsed objects depend on the cosmology in which they are
formed. So, in principle, observations of characteristics of bound objects can
shed some light on the nature of cosmological dynamics. But this requires a lot
of approximations and a number of formalisms have been developed e.g. Press-
Schechter mass function[93], excursion set approaches [94], semi-numerical approaches[99,
100], etc. Now we take a quick look at an example of how the properties of col-
lapse can be related to observations: In linear theory, different k-modes evolve
independently. Then, starting from a random density field, we can work with
different smoothened versions of the field, i.e. fields at each point are replaced
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by fields averaged over certain lengthscales. This is calculated at different times
while the field is evolved using linear theory calculations. At any epoch, the points
which go over some critical value, e.g. δv calculated using spherical collapse, are
said to virialize. This can be used to guess the probability of the number of halos
of various sizes formed at different redshifts. This is a simplified description of
Press-Schechter formalism[93]. Similar approaches have been tried[100].

1.8 Spherical Collapse in General Relativity

Approaches described in the previous subsection are valid only in the case of
non-relativistic (cold) dark matter and the cosmological constant. In General
Relativity, one has to formally start from a metric and derive the equations. In
this subsection, we look at how equations mentioned in the Newtonian case are
obtained starting from metric and Einstein’s field equations. This is necessary if
we want to investigate dark energy models as these are best described in GR and
might not have a Newtonian analog.
Starting from a very general form for spherically symmetric metric:

ds2 = −eλdr2 − eω(dθ2 + sin2θdφ) + dt2 (1.83)

where λ and ω are, in general, functions of r and t. Putting this metric in Einstein’s
equations and using cold dark metter and cosmological constant as only sources, we
can obtain dynamics equations. In this case first integrals or conserved quantities
can be found:

e
ω
2 ω′

2eλ2
= f(r) (is a first integral)

e3ω/2
(
ω̇2

2 + 2
3Λ
)

+ 2eω/2(1− f 2) = F (r) (another first integral)

Defining
A(r, t) = eω/2 (1.84)

We get following form:

ds2 = − A′2

f 2(r)dr
2 − A2(dθ2 + sin2θdφ) + dt2 (1.85)

From Einstein’s equations, we get:

(
Ȧ

A

)2

= F

2A3 + Λ
3 −

1− f 2

A2 (1.86)
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which is equivalent to eq.1.80.
While working with dark energy models, we work in this GR based approach. We
will review spherical collapse approaches with dark energy in next chapter 2.

1.9 Perturbations in Dark Energy

We have briefly looked at how perturbations are calculated in linear theory. The
standard algorithm is similar for different models. One writes the Lagrangian
densities for all components plus Einstein Hilbert action. Then using calculus
of variations, equations are obtained at linear order in perturbations from the
background. The presence of a dark energy component that is not Λ can, in
general, affect the dynamics of perturbations beyond the effect coming from the
change in background expansion. So, for consistency, one has to allow for dark
energy perturbations also, as coming from equations. For example, if dark energy
is a canonical scalar field (quintessence), then the total action is:

I =
∫
dx4√−g

{ 1
16πGR + Lφ + Lm

}
(1.87)

where Lφ is quintessence action (1.30) and Lm is for matter. In this section, φ
represents quintessence field. For metric potentials we will just use ψ, using the
fact that for scalar field and dark matter sources, two potentials are equal at linear
order. If field is expanded into background plus perturbation (φ+ δφ), upto first
order (ε) stress-energy tensor corresponding to quintessence is (Newtonian gauge):

T kk =
(
V − φ̇2

2

)
+
(
(δφ)V,φ +ψφ̇2 − φ̇(̇δφ)

)
ε+O[ε]2 (1.88)

T tt =
(
V + φ̇2

2

)
+
(
(δφ)V,φ−ψφ̇2 + φ̇(̇δφ)

)
ε+O[ε]2 (1.89)

T tk =
(
φ̇
∂(δφ)
∂xk

)
ε+O[ε]2 (1.90)

T kt = −
(
φ̇

a2
∂(δφ)
∂xk

)
ε+O[ε]2 (1.91)

T jk = O[ε]2 (1.92)
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Note: dot (.) represents a derivative wrt to time. Perturbations of field are gov-
erned by:

¨(δφ) = −2ψV,φ−(δφ)V,φφ +4φ̇ψ̇ − 3 ȧ
a

( ˙δφ) + ∆(δφ)
a2

(1.93)

Using this stress energy tensor along with that of matter, Einstein equations are
solved for ψ along with field perturbation equations. Theoretically, this adds new
degree of freedom in terms of perturbations of dark energy field. This is in ad-
dition to any effect that comes through background cosmology. As we can see
from the case of Λ, the inclusion of a dark energy like component modifies the
expansion and hence affects almost every aspect of cosmology. “How strong are
the effects of dark energy perturbations, on top of background cosmology?”; this
is a matter of investigation. A part of this thesis work tries to study this question,
by separating the effects coming from different background cosmology from the
effects coming from perturbations in dark energy. This brings us to the question
of how to connect perturbations with observables.

Some of the ways in which perturbations can be related to observables are:

• Matter/Large Scale Structure distribution: Growth of matter pertur-
bations can be related to the observed distribution of structures. Given the
statistical nature of initial conditions and the assumptions of homogeneity
and isotropy on average, cosmological fields (e.g. matter density) are char-
acterized by statistical measures such as power spectrum. If a cosmological
field f(~x, z) is represented in Fourier space by its coefficients f̃(z, k), then
power spectrum Pf (z) is given by:

f(~x, z) = V

(2π)3

∫
f̃(z, k)ei~k.~xd3k (1.94)

Pf (z, k) = f̃ ∗(k, z)f̃(k, z) (1.95)

We calculate the evolution of Fourier coefficients, in linear theory, for differ-
ent quantities and then these are related to statistical measures like power
spectrum. These are measurable quantities. Observations can measure the
distributions of galaxies and other baryonic matter. These can be related to
the distribution of dark matter using appropriate bias models ([101, 102]).
Another statistics related to power spectrum of matter density contrast field
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(δdm) is the correlation function ξ(~r):

ξ(~r) = 1
V

∫
δdm(~x+ ~r)δdm(~x)d3x (1.96)

ξ(~r) = 1
(2π)3

∫
P (~k)ei~k.~rd3k (1.97)

Technically it is the inverse Fourier transform of the power spectrum. Phys-
ically, it indicates the deviation from the average distribution of galaxies at
separation ~r. Again this can be estimated from observations. Higher mo-
ments of fields can be calculated and compared with those estimated from
observations. Large scale surveys of galaxies and other tracers of the mass
distribution are done to estimate these.
The biggest effect of dark energy comes through the change in background
expansion. Even before the discovery of accelerated expansion using SNIa,
there were studies that indicated the presence of dark energy using the infor-
mation from the amount of large-scale structures predicted from simulations
[23, 24, 25, 26]. But if the dark energy model considered allows for pertur-
bations, this has to be included and solved while simulating cosmological
perturbations of space-time. Linear theory calculations are done as a pri-
mary tool to predict power spectrum, correlation functions, etc.
Velocities of observed structures can be related to linear theory and be
used to match theoretical predictions with data[103]. Redshift distribu-
tion as measured from velocities is affected by both peculiar velocities as
well as cosmological Hubble flow. But distribution or spectrum as mea-
sured by redshifts can be related to real space distribution using a number
of approximations[103, 104]. Cosmological information such as the growth
rate of perturbations can be obtained by measuring different multipoles of
the spectrum[103].

• Cosmic Microwave Background: Interaction of photons with space-time:
CMB photons emitted at the epoch of around z ∼ 1100, travel through an
evolving space-time to reach us at z ∼ 0. Hence any dynamics that change
the potential experienced by these photons, affect the CMB radiation. Since
photons do not couple with dark energy and dark energy is a late time phe-
nomenon (at least in minimally coupled models), the major contribution to
the effects of dark energy on CMB comes through background cosmology.
As photons travel through perturbed potentials, their energies change in
accordance. Presence of dark energy makes these perturbations of metric
potentials evolve in time and space. The photons passing through a per-
turbed space-time experience a potential that has evolved since the photon

29



entered that region and hence there may be an increment or decrement in
photon energy/frequency. This is reflected in statistics of CMB anisotropy.
This particular effect is called the Integrated Sachs Wolfe effect (ISW)[105].
Photons trajectories are curved by space-time and hence lead to lensing of
sources. Statistical attributes of lensing are studied and can be related to
theoretical models.

1.9.1 General Program to study Dark Energy pertur-
bations

– Starting from a basic model (Lagrangian or phenomenological features),
linear theory calculations are done to find how density contrasts (δ),
peculiar velocities (vi), metric perturbations, etc. evolve for different
scales (k).

– Linear theory solutions are used to predict statistical quantities like
power spectra. These are then compared with the observed distribution
of “non-dark matter” as well as their velocities.

– Statistical indicators of distortions in photon propagation in evolving
space-time are calculated and these are used to compare with observa-
tions e.g. weak lensing, ISW effect, etc.

– Non-linear, but simplified, simulations like spherical collapse or ellip-
soidal collapse are done to get insights into properties of formation of
nonlinear structures like virialization epoch, etc. These can be used to
get an estimate of the abundances of halos.

– N-body simulations are done with various approximations. These simu-
lations provide 3-d distribution of cosmic fields at different epochs. How
to maximally utilize this information for model selection is a matter of
active research.

1.10 About This Thesis

The work presented in this thesis aims at studying dynamics with dark energy per-
turbations (in scalar field models), in a fully consistent relativistic manner. We
study non-linear spherically symmetric perturbations in quintessence and tachy-
onic dark energy models. We do not make any other assumption about dark
energy perturbations apart from spherical symmetry.

30



We start in the next chapter with the study of spherically symmetric perturbations
in quintessence dark energy. We find that metric perturbations induce perturba-
tions in the dark energy field, which grow with time. But these are insignificant
in comparison with nonlinear matter perturbations.
One important question that this work tries to investigate is: If two different
Lagrangians for dark energy give the same background expansion, can they be
distinguished by dynamics of perturbations? For this purpose, we consider two
scalar field models with different Lagrangians: quintessence and tachyonic field.
To address the above question, we need to reconstruct/find potentials in two
models such that they give the same expansion history. The formalism for this
reconstruction is presented in chapter 3 .
In chapter 4, we discuss the spherically symmetric perturbations in tachyonic mod-
els and how do they compare with quintessence models with the same background.

In chapter 5, we try to investigate if CMB observations can differentiate be-
tween the two. Here we stick to linear theory but rewrite equations in a manner,
which helps illustrate why two models cannot be effectively distinguished using
CMB observation in linear regime. We also constrain tachyon models with CMB
data.
Finally, in chapter 6 we summarize the work in this Ph.D. project and provide
outlook on future prospects.
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Chapter 2

Nonlinear Spherical
Perturbations in Quintessence
Dark Energy

This chapter is based on following published article

Manvendra Pratap Rajvanshi and J.S. Bagla, Nonlinear spherical perturbations
in quintessence models of dark energy, Journal of Cosmology and Astroparticle
Physics, Volume 2018, June 2018 doi: 10.1088/1475-7516/2018/06/018 [arXiv:1802.05840]

In this chapter we study nonlinear perturbations in spherical symmetry, when
dark energy is represented by quintessence. We start by looking into how dark
energy perturbations are included in spherical collapse 2.1. We review some pre-
vious work on this topic and then go on to derive basic equations, for collapse in
scalar field dark energy models, from first principles.
Main aims of this work are:

• Studying the effect of metric/matter perturbations on dark energy. We start
with homogeneous dark energy field and let it evolve according to equations
to see if perturbations are induced and how strong they are.

• Effect of dark energy perturbations on characteristics of dark matter pertur-
bations is studied.
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• Checking the validity of the assumptions of quintessence field remaining
homogeneous on small scales.

Although we restrict ourselves to spherical symmetry, we do not make any
assumptions about the clustering properties of quintessence.
In section 2.1, we review some previous work on spherical collapse in scalar field
cosmology. In section 2.2, we derive the basic equations needed for our work and
layout the formalism. This section also describes the initial conditions used and
implementation of virialization. In section 2.3, we present the results. Results are
further organized as dark matter perturbations results 2.3.1 and results concerning
dark energy perturbations 2.3.2. We summarise in section 2.4.

2.1 Introduction

In chapter 1 (1.7), spherical collapse formalism was introduced. Here we briefly
review the conceptual basis for inclusion of dark energy perturbations in spherical
collapse. Most of such works ([106, 107, 108]), evolve spherical perturbed region as
a separate universe with non-vanishing curvature. This can be justified rigorously
in case of a spherical density embedded in otherwise empty region, using Birkhoff’s
theorem. In presence of various components, which can have perturbations, this
justification loses its rigour.
Dark energy is itself modeled as an fluid with an effective equation of state and
speed of sound. Then using continuity equation and Einstein’s equations, equa-
tions of motion can be obtained for overdensity (δ) of spherical region or the radius
of different shells. Equations simplify a bit, if form of perturbation is assumed to
be top-hat.

There have been other works on spherical collapse in quintessence or other dark
energy models [106, 109, 110, 111, 112, 113, 114, 115, 116, 117, 118, 119, 120, 121]
But almost all of them either make assumptions about clustering of dark energy or
use some kind of perturbation scheme. Some recent approaches [117], use meth-
ods from numerical relativity, to derive and solve equations from basic principles,
similar in spirit to this work. But they do not do a thorough investigation of
cosmological implications.
Most basic approach is to to assume that there are various kind of fluids and to de-
rive the continuity equations for the fluids in spherically symmetric geometry[106].
There are also studies using Newtonian hydrodynamics for collapse[108]. An ex-
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ample of continuity equation for dark energy[107]:

ρ̇ = −3Ṙ
R

(1 + w)ρ+ Γ (2.1)

Here Γ is supposed to account for the clustering or the difference from background
dynamics for the fluid and R corresponds to radius of spherical inhomogeneity.
Different approximations for Γ lead to different clustering properties, see [107] for
details. Another popular approach is to consider dark energy perturbations by
phenomenological effective descriptions like fluids with effective speed of sound
(c2
s)[112, 122, 123].

In this work we try to work with minimal assumptions. We assume spherical
symmetry and assume that the action for the dark energy component is that of
a canonical scalar field. Equations follow from these assumptions and are solved
using numerical methods.

2.2 Formalism

Here, we detail the formalism, derive basic equations, describe initial conditions
and virialization. When the only content of the Universe is cold dark matter,
Newtonian limit can be used to formulate spherical collapse. But when there are
other components like scalar field, it is necessary that we derive the equations
starting from GR, independent of Newtonian approximations. Here, we consider
cold dark matter (i.e. pressure-less dust) and scalar field.

For modelling spatially isotropic perturbations, we start by considering a gen-
eral spatially isotropic metric in comoving frame[90, 91]:

ds2 = −e(2B)dr2 −R2(dθ2 + sin2θdφ2) + dt2 (2.2)

where B(t, r) and R(t, r) are arbitrary functions of r and t. Some of the char-
acteristics of the metric in presence of pressure are discussed by Lynden-Bell, D.
and Bičák, J.[124]. There are two functions representing space-time, B(t, r) and
R(t, r), which we have to solve for, in addition to equations of dynamics for con-
tents of the Universe. The full set of equations (Einstein’s equations and continuity
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equations):

B̈ = −c2e−2BR
′2

R2 + c2

R2 + Ṙ2

R2 − Ḃ
2 − 4πGρ− 8πG

c

[
ψ̇2

2c2 − e
−2Bψ

′2

2

]
(2.3)

R̈

R
= −4πG

c

[
ψ̇2

2c2 + e−2Bψ′2

2 − V
]
− 1

2
Ṙ2

R2 + c2

2

[
e−2BR

′2

R2 −
1
R2

]
(2.4)

ψ̈ = c2
[
−∂V
∂ψ

+ e−2B
{
ψ
′′ −

(
B′ − 2R′

R

)
ψ′
}]
−
(
Ḃ + 2Ṙ

R

)
ψ̇ (2.5)

˙ρm = −
(
Ḃ + 2Ṙ

R

)
ρm (2.6)

Here a dash/prime represents a partial derivative with respect to r and a dot
represents a partial derivative with respect to t. In this problem, these are the
two independent variables. Two potentials that are studied, are (V ∝ ψ2 and
V ∝ exp(−ψ)). See Appendix (A.1 and A.2 ) for details of equations.

We set the initial conditions on a grid of r for B, R, Ḃ, Ṙ, ρm, φ and φ̇ and
then evolve the system. An RK-4 based numerical scheme was used to solve these
equations. See Appendix A.3 for details.

2.2.0.1 Initial conditions

To begin with, we look into solutions of derived equations, without any pertur-
bations. Then, there is no dependence on r and the system reduces to a FLRW
universe[11, 13, 125, 126]. In this limit B(t, r) → log(a(t)) and R(r, t) → a(t)r.
We set initial conditions for this system so that the universe has ∼ 30% non-
relativistic matter, and ∼ 70% dark energy at the present epoch. Dark Energy
is represented by scalar field. To satisfy background cosmology constraints, we
require that w (the effective equation of state) is close to -1. We set ψ̇ = 0 at the
initial time. These requirements fix the initial conditions. Initial conditions were
set at z ∼ 1000.

We first solve for the background/homogeneous case i.e. equations for a(t),H
and average density parameters. The field is initiated with zero kinetic energy
i.e. at initial time w = −1. For both the potentials, we can get solutions which
remain fairly close to w = −1 till present epoch. We show the evolution of w and
the density parameter for matter (Ωnr) and field (Ωψ) in figure 2.1. This exercise
allows us to set the parameters of the scalar field at the initial time for the case
where we study non-linear evolution of perturbations.
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Figure 2.1: Evolution of the model without any perturbations. This is shown for
the two potentials: V ∝ ψ2 (left column) and V ∝ exp(−ψ) (right column). The
top row shows the evolution of the equation of state parameter w as a function of
redshift z. The lower row shows the evolution of the density parameter for non-
relativistic matter and the dark energy components. We use initial conditions for
the scalar field used here in all the simulations presented here unless mentioned
otherwise. Initial conditions for dark matter at large r also fall back to this set.

At the initial time (z ∼ 103), we assume that the scalar field (quintessence)
is homogeneous. This has been shown to lead to the expected adiabatic mode
for quintessence models [127]. This has also been noted by other authors who
have studied attractors for dark energy perturbations [113]. Further we note that
the evolution of metric is controlled by “net density” i.e. ρ̄(1 + δ), so even if the
perturbations δ are of comparable order, it is the average or background density
that plays the deciding role. So at earlier times, when dark energy contributions
is very small to background energy budget, it is primarily the fluctuations of
dominating constituent (dark matter here), that play central role in setting initial
metric data.

We study results of our calculations at late times, z ≤ 10 and hence there is
adequate time for the solution to approach the attractor. From scalar field initial
conditions assuming that there are no perturbations and w = −1:

ψ′i = 0 = ψ′′i

ψ̇i = 0

ψi = 1 (2.7)

Parameters of potentials, like amplitude of potential V0 and λ in V = V0 exp(−λψ)
have to be decided. Choice of desired of background evolution fixes these.
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At initial time, matter distribution has small perturbation. We use a compen-
sated profile for perturbation, i.e, the central perturbation is offset by a pertur-
bation of opposite sign so that at large r, the net perturbation integrated over
volume goes to zero. We use the following functional form:

δi(r) =


α0

[
1−

(
r
σ0

)2
]2
− α1

[
1−

(
r
σ1

)2
]2

(r ≤ σ0)

−α1

[
1−

(
r
σ1

)2
]2

(σ0 < r ≤ σ1)

0 (r > σ1)

(2.8)

Here we require σ0 < σ1. The requirement of net perturbation after averaging
over volume to r = σ1 can be stated as:

σ1∫
0

δi(r)r2dr = 0 (2.9)

Thus there is no net perturbation at scales larger than σ1 and these regions should
evolve as a smooth universe. This leads to the following relation between α0 and
α1:

α1 = α0

(
σ0

σ1

)3
(2.10)

Initial velocity of each shell is set by assuming that these are comoving with
the uniform Hubble expansion. This facilitates comparison as this assumption has
been used in earlier studies [98] [92] as well. In comparison with linear theory it is
important to recall that only 3/5 of the initial density perturbation in such a case
is in the growing mode1. Using this with initial condition Ri = air, we can obtain
initial conditions for metric coefficients and their time derivative. For numerical
convenience, we redefine the time variable as t→ tHi where Hi is initial value of
the Hubble parameter.

Bi = ln(ai)−
1
2 ln

[
1− 3

r

Ωima
2
i

c2

∫
drr2δ(r)

]
(2.11)

Ḃi = 1 (2.12)

Ri = air (2.13)

Ṙi = Ri (2.14)

R′ = ai (2.15)

R′′ = 0 (2.16)

1While the number 3/5 is derived for the Einstein-deSitter model, it is a useful approximation
as much of the evolution takes place in the matter dominated phase.
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The subscript i refers to the initial value of the variable, a is the scale factor and H
is the Hubble parameter. Ωim is the initial value of density parameter for matter.

We note the presence of a logarithm in initial function for B. This means
second term in expression for Bi, is constrained such that argument to log is
positive. This restrict the amplitude and scale of overdense perturbations. In
particular this affects the simulations of large scale over densities: comoving initial
conditions for arbitrarily large perturbations are not allowed.

Overdense shells, initially comoving with hubble flow, expand initially, their
expansion is slowed down by gravity of extra mass. If the initial density contrast is
above a critical value, the shell eventually reaches a maximum radius (turn-around
radius) and then collapses on to itself.

2.2.1 Virialisation

The solutions of system of equations, for spherical collapse, lead to a singularity.
Each shell reaches turn around and collapses to origin. This is the “mathemati-
cal solution”. In real world, perturbations collapse to form stable/pseudo-stable
structures. Velocity dispersion and non-radial motions might come into play dur-
ing late time dynamics. It is assumed that violent relaxation will drive the system
to virial equilibrium. Dark matter can not radiate or exchange energy to other
channels. Physics of virialisation of dark matter is very poorly understood. Fur-
ther, inclusion of dark energy perturbations complicates the situation[96]. We
start with a simplistic approach assuming that in-falling perturbation stabilizes
at radius where kinetic energy and potential energy satisfy virial theorem (2.18).

In case of Einstein-deSitter universe, this leads to a simple expression for the
virial radius: the radius of the virialised halo is exactly half of the maximum or
the turn around radius for the shell [92]. Barrow and Saich[98] generalised this to
the case when a non-zero cosmological constant is present besides non-relativistic
matter.

RV =
(2

3

)1/3 (ΩΛR
3
T + ΩM( a0

ain
)3(1 + δin)R3

in

ΩΛRT

)1/2

sin

1
3 arcsin

ΩMa
3
0(1 + δin)R3

in

a3
inR

3
T

 1.5
1 + ΩM

ΩΛ
( a0Rin
ainRT

)3(1 + δin)

3/2



(2.17)

Here, Rin is the initial radius, RT is the maximum or the turn around radius, δin
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is the initial density contrast inside the shell, ain is the initial value of the scale
factor and a0 is its present value, ΩΛ is the density parameter corresponding to
the cosmological constant at present and ΩM is the density parameter for non-
relativistic matter.

In case of dark energy perturbations, calculations are further involved. Maor
and Lahav [96] summarize two limiting cases for a fluid model of dark energy. They
point out that there are significant differences that arise depending upon whether
or not dark energy participates in the virialisation process. The two limiting cases
they consider are: only dark matter virialises and dark energy does not cluster,
and, both dark matter and dark energy virialise. Maor and Lahav [96] show that if
only dark matter virialises, then the ratio of virial radius to turn around radius is
on lower side of Einstein-DeSitter value of 0.5, while if the two component system
of dark energy plus dark matter virialises together, then this ratio is larger than
half. It is relevant to note here that in the case of a cosmological constant, the
expected ratio of virial radius to turn around radius is less than half.

As we shall see below, we find that in the case of scalar field, the ratio of virial
radius to the turn around radius is less than half.

2.2.1.1 Evolution of dark energy beyond virialisation

We use the Virialisation condition:

< T > +1
2 〈RFR〉 = 0 (2.18)

here T is the kinetic energy, R is the radius of the shell and FR is the radial force
on the shell. Angular brackets denote averaging over time.

T = 1
2Ṙ

2 FR = R̈ (2.19)

In case of cosmological constant one can use this relation to get an analytical form
(2.17) for RV is terms of RT [98]. In case of quintessence being considered here,
we track the value of the right hand side of Eqn.2.18 after turn around and declare
the shell to have virialised when this value becomes zero for the first time.

It is important to note that in our implementation of virialisation, virialisation
time is when the collapsing shell reaches the configuration where it satisfies the
virial theorem. This implementation is different from approaches which assume
the time of virialisation to be the time when shell collapses to singularity.
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An implication of this is that the density contrast at the time of virialisation
computed here is lower than that obtained with the usual method as the back-
ground density is higher.

For reference, note that in case of an Einstein-deSitter background, the density
contrast at virialisation with this approach is 145, as compared to 168 that we
obtain using the usual method.

After turn around, we check for condition (2.18) and at that particular R(r)
we freeze the metric terms B(t, r) and R(t, r), and we do so because R(t, r) has
physical meaning of physical radius which stabilizes at virialisation. In case of
B(t, r) we take a cue from ΛCDM where B(t, r) is dependent on spatial derivatives
of R(t, r). Further, consistency requires that we set time derivatives of the two
variables to zero.

As we freeze the metric coefficients, the set of equations we have can no longer
be evolved self consistently. Therefore the solutions at later times, after viriali-
sation of the innermost shells, are approximate solutions. As we shall see, dark
matter dominates over dark energy in the virialised region and hence an approxi-
mate solution can be attempted without expecting a significant back reaction and
an implied variation of metric coefficients. The scalar field equations need to be
solved over the entire range of scales and it is not obvious whether any choices we
make for the solution in the interior of the virialised region will have an impact
on the evolution of the field at large scales.

We try three approaches to approximate solution for the scalar field in the
virialised region.

1. The scalar field can be evolved as a test field in the space-time determined
by the frozen metric coefficients in the virialised region.

2. The scalar field can also be frozen in the virialised region, i.e., we put ψ̇ =
0 = ψ̈ in this region.

3. We put ψ̈ = 0 and freeze the value of ψ̇(r) inside the virial region.

We compare three approaches. We find that first approach is most numerically
stable. Second and third approaches are more abrupt and they show numerical in-
stabilities, particularly when simulating perturbations of physically relevant scales.
All three approaches are numerically feasible at extreme lengthscale perturbations
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Simulation σ0 σ1 α0 zvir
OD1 3 18 0.0068 1.5
OD2 3 18 0.0136 4.0
OD3 6 18 0.0068 1.5
UD1 150 250 -0.0136 -
UD2 20 200 -0.0068 -
UD3 40 200 -0.0068 -
UD4 20 200 -0.0136 -
UD5 100 200 -0.0136 -

Table 2.1: Parameters used in simulations in this work. Note that for simplicity we
have stated the approximate value of the redshift at which the first shell virialises
in the case of simulations with over-densities. The simulations are referred to by
the Simulation code in figure captions.

of order GigaParsecs. For these lengthscales, they show similar evolution at virial
radius and are indistinguishable beyond turn around radius.

In the first approach given above, we solve for the scalar field inside the virial
radius according to the following equation:

ψ̈ = c2
[
−∂V
∂ψ

+ e−2Bvir

{
ψ
′′ −

(
B′vir −

2R′vir
Rvir

)
ψ′
}]

(2.20)

Here, Rvir and Bvir are the frozen values of metric coefficients inside the virial
radius. We solve the full set of equations outside the virial radius.

A comparison of the three approaches is shown in Figure 2.2. We have plotted
the density contrast δde for dark energy (top panel) and the equation of state
parameter w (lower panel) as a function of scale r. The two columns are for two
different potentials: the left column is for V ∝ ψ2 whereas the right column is for
V ∝ exp [−ψ]. We have marked the turn around radius with a vertical line on these
plots. We find that the qualitative trend is the same for the three approaches. The
three approaches have differences at scales close to the virial radius, however the
differences decrease rapidly beyond the turn around scale. Percentage difference
among three approaches outside virial radius is less than 1% at all scales. The
approach where we set ψ̇ = 0 deviates most from the other two approaches and
the differences are most obvious in the plot of w as a function of scale r.

We use the first approach where the scalar field is evolved as a test field in the
fixed background inside the virial radius in the following discussion.
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Figure 2.2: A comparison of the three approaches for evolving the scalar field in
the virialised region. Here we show δde and w as a function of r at scales outside
the virial radius at the present epoch. The left column is for V ∝ ψ2 and the right
column is for V ∝ exp(−ψ) The turn around radius is marked by the vertical line.
The amplitude of perturbations is adjusted so that the innermost shells virialise
at z ' 1.5. Simulation OD1 was used for these plots. We find that the three
approaches match very well at all scales away from the virial radius. Differences
between the three approaches are less than a few percent at all scales, and less
than a percent at all scales larger than twice the virial radius.

2.3 Results

We present the results from our simulations in this section, showing the effects on
dark matter and energy perturbations. The complete list of simulations with the
relevant parameters is given in table 1. The section is divided into sub-sections
where we separately study the effect of dark energy perturbations on collapse of
dark matter, evolution of dark energy perturbations: both in the case of over
density and an under density, analysis of variations with the scale as well as the
amplitude of dark matter perturbations, and, a comparison of the evolution of
dark energy perturbations with the linear perturbation theory.

2.3.1 Dark matter perturbations

We want to probe the question if presence of perturbations in dark energy field af-
fects matter growth. For studying such effects, we run, in addition to quintessence
simulations mentioned above, simulations with same initial conditions, but with
dark energy modeled as a non-clustering fluid having same w(z) for the background
as the quintessence simulations. For this we first run a quintessence background
for which we want to make comparisons, store the table for w(z) and run sim-
ulation with dark energy as non-clustering fluid with this w(z). A full-fledged
quintessence simulation as governed by equations derived in previous sections is
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Figure 2.3: We have plotted the turn around radius in the combination
Rta〈δdm〉i/Ri as a function of the initial density contrast. The expected value
of the combination is unity for the Einstein-deSitter model and we see that at
large values of 〈δdm〉i we indeed approach this value. The left panel is for V ∝ ψ2

while the right panel is for V ∝ exp(−ψ). Simulation OD1 and the same initial
conditions for the case without dark energy perturbations have been used for these
plots. We plot values from our simulations with perturbations in dark energy as
well as from a model where the dark energy does not have any perturbations. The
two curves match to better than 0.03% at all scales, indicating that perturbations
in dark energy do not influence collapse of dark matter perturbations.
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Figure 2.4: Density contrast at turn around is shown here as a function of the
initial density contrast. The expected value of the combination is 4.55 for the
Einstein-deSitter model and we see that at large values of 〈δdm〉i we indeed ap-
proach this value. The left panel is for V ∝ ψ2 while the right panel is for
V ∝ exp(−ψ). We plot values from our simulations with perturbations in dark
energy as well as from a model where the dark energy does not have any perturba-
tions. Initial dark matter perturbations here correspond to simulation OD1. The
two curves match to better than 0.06% at all scales, indicating that perturbations
in dark energy do not influence collapse of dark matter perturbations.
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Figure 2.5: Ratio of virial radius to turn around radius is shown here as a function
of the initial density contrast in dark matter. The expected value of the combi-
nation is 0.5 for the Einstein-deSitter model and we see that at large values of
〈δdm〉i we indeed approach this value. A value lower than 0.5 signifies that dark
energy does not cluster significantly [96]. The left panel is for V ∝ ψ2 while the
right panel is for V ∝ exp(−ψ). We plot values from our simulations (OD1) with
perturbations in dark energy as well as from a model where the dark energy does
not have any perturbations. The two curves match to better than 0.01% at all
scales, indicating that perturbations in dark energy do not influence collapse of
dark matter perturbations.
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Figure 2.6: Density contrast at virialisation as a function of the initial density
contrast in dark matter. The expected value in our approach for Einstein-deSitter
universe is 145 (see text). We see that the curve is tending towards that value
at large initial density contrast. The left panel is for V ∝ ψ2 while the right
panel is for V ∝ exp(−ψ). We plot values from our simulations (OD1) with
perturbations in dark energy as well as from a model where the dark energy does
not have any perturbations. The two curves match to better than 0.3% at all
scales, indicating that perturbations in dark energy do not influence collapse of
dark matter perturbations.
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run and comparisons are made for collapse and virial properties of dark matter.
So in following figures we have comparsions between a w(z) fluid model, which
does not have any dark energy perturbations and a quintessence simulation which
allows for perturbations coming from the underlying equations. w(z) fluid has
following dynamics:

dρde
dt

= −3 ȧ
a

(1 + w)ρde (2.21)

Results of a comparative study of this fluid model with full-fledged spherical
collapse in quintessence are presented here. We show the comparison for various
quantities related to turn around and virialisation. We choose to plot these as a
function of the initial density contrast δi. The choice is motivated by the emer-
gence of a critical value for density contrast required for collapse in the case of
the cosmological constant. We find that just like the cosmological constant model
for dark energy, there is a critical value that emerges in the dynamical dark en-
ergy models. Perturbations with a lower initial density contrast do not enter a
collapsing phase. Further, we find that various quantities of interest approach the
values obtained in the Einstein-deSitter model as δi becomes much larger than
the critical value. On the other hand, as we approach the critical initial density
contrast from above, dark energy becomes more and more important, and hence
it takes longer to begin collapse. Thus the universe expands by a significantly
larger amount by the time such perturbations reach turn around or virialisation
and hence the average density of matter in the universe is much lower.

Figure 2.3 shows the turn around radius as a function of δi. Instead of the
turn around radius, we choose to plot the combination Rta〈δi〉/Ri. Here Ri is the
initial radius of the shell and 〈δi〉 is the average density contrast inside this shell at
the initial time. This combination is unity for spherical collapse in the Einstein-
deSitter model. The left panel is for the ψ2 potential whereas the right panel is for
the exponential potential. Curve for the model with dark energy perturbations
and points for the corresponding model without dark energy perturbations are
plotted in the same panels. The difference between the two cases is too small to
be seen from these panels. In both models, and for the cases with and without
dark energy perturbations, the qualitative trend is the same: the turn around
radius is larger for smaller δi. At large δi, we approach the turn around radius
approaches the expected value in the Einstein-deSitter model. Bottom panels
show the percentage difference between the turn around radius in the two models
(with and without dark energy perturbations) as a function of δi. We find that
the percentage difference is well below one percent for the turn around radius.
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Figure 2.4 shows the turn around density contrast for different shells in the
same format as Figure 2.3. We find that the density contrast at turn around
for shells with large δi approaches the expected value for the Einstein-deSitter
model. As we approach lower δi, we find that the density contrast at turn around
increases rapidly. This is largely because it takes longer to reach turn around for
shells with a smaller initial density contrast, and in this time the density of matter
in the universe decreases significantly, leading to a larger density contrast within
the perturbation. In this case too, the difference between the model with dark
energy clustering and without dark energy clustering is smaller than a percent at
all scales for the two potentials studied here.

Figure 2.5 and Figure 2.6 show the virial radius (in units of the turn around
radius) and the density contrast at the time of virialisation, respectively. We find
that the two quantities approach the values expected for the Einstein-deSitter
model at large δi. For shells with smaller δi, the virial radius is less than half the
turn around radius with the ratio decreasing as we get to shells with a smaller
initial δi. The density contrast at virialisation increases rapidly for smaller initial
δi, whereas for larger δi, we get the value expected in the Einstein-deSitter model
(145).

2.3.2 Dark Energy Perturbations

In this subsection, we present dark energy perturbation results. As mentioned
before, at initial time, there is no perturbation in dark energy field. As the system
evolves, perturbations in dark matter drive the perturbations in metric, which in
turn induce perturbations in dark energy. We study both, initially underdense
dark matter and initialy overdense dark matter regions.

As stated in initial condition discussion, we cannot simulate arbitrary large
overdensities, but we can simulate very large voids. One imporatant feature that
we notice from our simulations is that dark perturbations are stronger for bigger
scales. Hence large voids offer better prospects of probing dark energy perturba-
tions. We start by looking into overdense cases.

2.3.2.1 Over dense Profile

In a region with an initial over density in matter, gravitational instability ensures
that the density of dark matter in the region increases monotonically when com-
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Figure 2.7: Contribution of Dark Energy to total energy density for over dense case
(simulation OD1). We see that at large r, the relative contribution of dark energy
increases monotonically. However, within the over dense region the contribution
of dark energy reaches a maximum of ∼ 0.007 and then drops to lower values. The
left panel is for V ∝ ψ2 while the right panel is for V ∝ exp(−ψ). We have shown
curves outside the virial radius while omitting the values inside the virial radius as
we do not have a self-consistent evolution inside the virialised halo. This omission
of data within the virial radius impacts only one of the curves shown here.
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Figure 2.8: Density contrast for dark energy as a function of scale at different
epochs. We see that the amplitude of perturbations in dark energy remains small
at all scales and at all times. We have plotted values only at scales outside the
virial radius for simulation OD1. The left panel is for V ∝ ψ2 while the right
panel is for V ∝ exp(−ψ).
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Figure 2.9: The equation of state parameter for dark energy as a function of
scale at different epochs from simulation OD1. We see that the variation in w
with scale is fairly significant, particularly at late times. The lower row of plots
shows the variation of w with respect to the value in the background model, or the
asymptotic value at large scales. We have plotted values only at scales outside the
virial radius. The left panel is for V ∝ ψ2 while the right panel is for V ∝ exp(−ψ).

pared with the average density of matter in the universe. If the initial density
contrast is sufficiently high, we find that gravitational instability leads to local
collapse and a sharp increase in the density of matter within the collapsed region.
It is important to assess the evolution of dark energy density in the region. We
show the relative contribution of energy density of dark energy as compared to
dark matter drops significantly in the region where dark matter collapses. We
show this for a model with σ0 = 3 Mpc, σ1 = 18 Mpc and the redshift of viriali-
sation z ∼ 1.5. This is shown in Figure 2.7. Each curve refers to a specific epoch
as marked in the legend. We find that at very large scales dark energy becomes
more and more dominant with time, as is expected for the background model that
is dominated by dark energy at present. However, within the collapsed region,
the relative role of dark energy diminishes strongly at late times. We see that
even before virialisation, the energy density of dark energy drops to less than a
few percent of its background value near the centre of the perturbation. Thus in
terms of the local contribution to the energy budget, dark energy plays a negligible
role inside the perturbation.

We plot the density contrast for dark energy as a function of scale for the same
model used above 2.8. We find that the density contrast for dark energy grows in
response to the dark matter perturbation, however its amplitude remains small as
compared to unity through the non-linear evolution of dark matter perturbations.
Thus we do not expect any significant impact of dark energy density contrast and
its variations on observables at small scales.
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Figure 2.10: Density contrast for dark energy as a function of scale r for a void,
i.e., a matter under-density from simulation UD1. This is plotted at multiple
epochs. We find that dark energy perturbations grow but the amplitude remains
small in absolute terms. The left panel is for V ∝ ψ2 while the right panel is for
V ∝ exp(−ψ).
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Figure 2.11: Equation of state parameter w as a function of scale r for a void, i.e.,
a matter under-density for simulation UD1. This is plotted at multiple epochs.
We find that w inside the void is smaller than at large scales. The left panel is for
V ∝ ψ2 while the right panel is for V ∝ exp(−ψ).

A surprising feature that may have implications for observations and hence
work as a diagnostic for dynamical dark energy models is the spatial variation in
the equation of state parameter w. We already know from background evolution
and our choice of initial conditions that w = −1 at early times and it increases
slowly with time. We show variation of w as a function of r in Figure 2.9. This
is shown for four epochs leading up to the epoch of virialisation. We find that w
increases more rapidly in regions around the collapsing dark matter perturbations.
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2.3.2.2 Under dense Profile

So far we have discussed the evolution of matter over densities. We now turn our
attention to the evolution of under densities, or voids. The large scale of voids
coupled with the fact that the magnitude of the spatial variation of w is larger for
perturbations at large scales makes these a potential test bed for observing the
effects of dynamical dark energy.

We show results for a model with σ0 = 150 and σ1 = 250, thus the characteristic
length scale of the perturbation is 250. We find that the dark energy contributes
a very significant fraction to the total energy budget mainly due to depletion of
matter. This becomes clear in figure 2.10 that shows the density contrast in dark
energy as a function of scale r. We find that the amplitude of density contrast is
very small compared to unity at all scales and at all times.

We have plotted the variation of w, the equation of state parameter, as a
function of scale at different epochs in figure 2.11. We find that the increase in
w with time slows down in under dense regions. This is mainly due to the faster
than average expansion rate in the voids. We find that the differential in w is
larger for larger voids. The variation with the initial density contrast for matter
is less significant, but a larger initial under density leads to a larger differential in
w.

Voids may be the optimal sites for testing changes in w. This is primarily
because dark energy dominates in terms of the overall energy budget.

2.3.2.3 Comparison with Linear Perturbation Theory

We have seen that the density contrast in dark energy remains much smaller
than unity in all cases considered here. This makes it possible to consider density
fluctuations in dark energy at a perturbative level. We compare the rate of growth
of dark energy perturbations in our simulations with the rate of growth expected
in linear perturbation theory. Such a comparison is useful as it allows us to assess
the significance of non-linear dark matter perturbations that our model takes into
account.

Before carrying out the comparison, we note that the growth of dark energy
perturbations has been studied and it has been found that the growth of pertur-
bations is stunted at small scales. It has been shown that at very large scales
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Figure 2.12: A comparison of the evolution of dark energy perturbations. Left
panels are for V ∝ ψ2 while right one are for V ∝ exp(−ψ). At very large scales
the linear theory prediction for the magnitude of dark energy perturbations scales
as (1 + w)δdm. We have plotted this combination for linearly evolved δdm for
two scales: 1 Mpc (cross) and 10 Mpc (dashed line). Linear evolution of dark
energy density contrast for the two scales is also shown here as triangles (1 Mpc)
and dotted line (10 Mpc). We find that the linear evolution for dark energy
perturbations is slower at small scales as compared to the expected variation at
large scales. All points pertaining to linear evolution are normalised to unity at
the left corner.

δDE ∝ (1+w)δDM , which is the expected relation for adiabatic perturbations. For
thawing models, w ' −1 at early times and increases slowly over time. Thus the
rate of growth of dark energy perturbations in such models can be much larger
than the rate of growth of perturbations of dark matter perturbations. However,
same studies indicate that the rate of growth of dark energy perturbations at small
scales is slower than the rate at large scales. Specifically, it has been shown that at
scales much smaller than the Hubble radius, the linear growth rate is independent
of scale.

In figure 2.12, we show the growth in density contrast for a particular co-
moving radius for non-linear spherical case and the corresponding Fourier space
amplitude (δk) for two length scales 1 Mpc and 10 Mpc. We show results from
simulation UD1. The curves are normalised at the left corner to avoid crowding
and facilitate comparison. This also subsumes an offset required due to different
initial conditions (growing mode vs. comoving initial conditions for the two cal-
culations) used in the two different calculations. We find that the rate of growth
in the two calculations differs. In particular, at late times, the growth rate of
density perturbations in dark energy in the simulation increases and the final am-
plification factor is higher than expected in the linear perturbation theory. Also,
we find that the linear evolution for dark energy perturbations is slower at small
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Figure 2.13: In this figure we explore the leading cause of variation of equation of
state parameter w for simulation UD1. We show the variation computed by retain-
ing only the local Hubble expansion terms in the equation of motion and compare
it with the full simulation. In the former case, we ignore the gradient term. We
find that the variation of w is fairly strong and has some localised features when
the gradient terms are ignored. The localised features are not present in the full
simulation indicating that the gradients of the scalar field are suppressed in the
evolution, and the local Hubble expansion is not the only determining factor.

scales as compared to the expected variation at large scales. Thus the non-linear
evolution of density fluctuations in dark matter leads to a more rapid growth of
perturbations in dark energy.

2.3.2.4 Exploring dark energy perturbations

The variation in w around a dark matter over density is caused mainly by the
slower expansion rate that leads to a more rapid rolling down of the scalar field.
In case of under dense regions, the faster expansion slows down the rolling of the
field further. We test this conjecture by running a simulation with only the local
Hubble flow terms retained. The field equation in this case reduces to:

ψ̈ = −c2∂V

∂ψ
−
(
Ḃ + 2Ṙ

R

)
ψ̇ (2.22)

where we have dropped the terms related to ψ′ and ψ′′. We find that evolving the
system with this equation gives rise to sharp features that are not seen in the full
simulation as shown in Figure 2.13. We surmise that in addition to the variation
in expansion rate, there is also a suppression of gradient of the scalar field.

The variation of w around matter perturbations is interesting and we investi-
gate it further. This is important in order to ascertain the possibility of constrain-
ing models using observations. Specifically, we explore the magnitude of variation
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Figure 2.14: In this figure we explore the dependence of the variation of w on the
scale of perturbations in dark matter and also on the amplitude of initial density
contrast for dark matter. We plot the variation of w with scale for three overdense
(upper panel) models (OD1, OD2 and OD3) and underdense cases (UD2, UD3 and
UD4) in lower panel. Two of the models are for the same initial density contrast in
matter but for different scales of perturbation. The third model has the same scale
of perturbation as our fiducial model, but has a significantly higher amplitude of
the initial matter perturbation. We find that the variation of w is strongest in
the model with the larger scale but same amplitude as the fiducial model. The
variation with the change in amplitude of perturbation is much smaller. This is
evident from bigger void simulations (lower panel). The left panel is for V ∝ ψ2

while the right panel is for V ∝ exp(−ψ).
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Figure 2.15: In this figure we study the impact of the equation of state parameter
w for the background on the growth of dark energy perturbations and the radial
variation of the equation of state parameter. Here we show perturbation growth
in two different background models for V ∝ ψ2. Curves are labeled by present
day values of w for the background model. We see that the perturbations have a
larger amplitude and w has a larger variation for a larger 1 + w0. The left panel
here is for an over-density (OD1) and the right panel is for a void (UD5). We
see that the effect is strongly pronounced for under density partly because larger
scales are involved. The curves for over density are plotted for z = 1.5, before
virialisation of the innermost shells. Curves for UD5 are plotted at z = 0.

as a function of the amplitude of perturbation, i.e., δi, and also as a function of
the scale of perturbation.

We find that the effect of the scale of perturbation is much more important
than the effect of the amplitude of initial perturbation in matter. In Figure 2.14,
we see that for two perturbations with the same amplitude, variation of the scale
of perturbation has more pronounced effect than variation of amplitude of pertur-
bation for same scale of perturbation.

We note that we have explored the parameter space for models in the vicinity of
the cosmological constant by requiring w ∼ −1 through the evolution. In models
that deviate strongly from the cosmological constant, the perturbations in dark
energy become more significant. Example in figure 2.15 illustrates this where we
compare perturbations in models with different present values of the equation of
state parameter w(z = 0). The amplitude of density contrast in dark energy as
well as the radial variation in w is much stronger in the model with the larger
1 + w. We also see that the spatial variation of w for the void is very significant
when the present day value for the background deviates strongly from −1.
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2.4 Discussion

We have presented results of our analysis of spherical collapse of dark matter and
dark energy for a canonical scalar field model. Now we summarize and discuss few
implications.

We find that the turn around & virial characteristics and evolution of dark
matter density contrast is not significantly affected by dark energy perturbations.
This is demonstrated by comparing the evolution in our model with an equivalent
model with the same background evolution and no perturbations in dark energy.
This result provides justification for ignoring the role of dark energy perturbations
while studying collapse of dark matter perturbations. This also implies that there
is no significant effect of dark energy perturbations on structure formation. Such
effects have been studied earlier in effective models, e.g., [128].

We have shown that the evolution of dark energy perturbations outside the
virial radius is insensitive to the scheme used to evolve dark energy perturbations
within the virial radius. We have used the approximation of treating the scalar
field as a test field inside the virial radius, patching up with the self consistent
evolution outside the virial radius. In all plots we have either restricted ourselves
to epochs prior to virialisation, or we have plotted functions at scales larger than
the virial radius.

We find that the dark energy perturbations remain small, i.e., |δDE| � 1 at all
scales and times. This is not to say that there is no effect of non-linear evolution
of dark matter perturbations. We show, by comparing with the expected linear
growth rate for dark energy perturbations, that the rate of growth of dark energy
perturbations is strongly enhanced in the vicinity of non-linear dark matter per-
turbations. This is encouraging and we plan to study collapse in other dark energy
models to explore if dark energy perturbations grow to a significant amplitude in
some cases.

This finding encourages us to explore approximations between linear pertur-
bation theory and full non-linear collapse, where we may consider the dark energy
to have small perturbations but dark matter may be allowed to have large over
densities. It may be possible to relax the restriction of spherical collapse in a
suitable approximation scheme.

The most remarkable finding of our work is that the equation of state parameter
w becomes a function of space. This has been reported for fluid based models
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where the equation of state parameter and the effect speed of sound for dark
energy perturbations are not the same [129].

The evolution of w in the models being studied here shows a steady increase
from the initial value that is close to −1 for the background. In the vicinity of over
dense regions, this value increases at a faster rate as the local Hubble expansion
is slowed down and halted. In voids, the local Hubble expansion is faster than the
background and the change in w away from w = −1 is slowed down. As a result,
w takes on larger values around collapsed halos and it takes on smaller values in
voids. Thus w becomes a weak function of over density and we get an interesting
coupling between the non-relativistic matter and dark energy sectors even though
we are working with a model with minimal coupling.

We find that the effects of dark energy clustering and spatial variation of w are
strongest for large scale perturbations. Thus the largest over-densities and voids
may be appropriate places to look for observational evidence.

We have considered two thawing models here but we expect that the variation
of w will have an opposite trend for freezing models, i.e., it will take on values
closer to −1 around collapsed halos and values away from this in voids. This
expectation follows from the evolution of the field towards the asymptotic value
of −1, which is slowed down or hastened by the variations in local Hubble flow.

We may model the relation of equation of state parameter as:

w (r, t) = w̄(t) + εf (δDM , . . .) (2.23)

where w̄ is the value for the background model, ε is a small number, and f is
a suitable function of density contrast and possibly other quantities such as the
velocity field. Such models can be used to explore the impact of spatial variation
in w on weak lensing and other physical quantities of interest. It may also be
possible to test for such variations by stacking over many objects/voids. We are
studying potential avenues for testing the variation of w in space. We study
spherical collapse for other models of dark energy in next chapters.

For any given form of the Lagrangian, we can tune the potential to produce a
suitable expansion history in the form of an a(t), where a is the scale factor. How-
ever, if we fix a(t) then we have precisely one model for each form of Lagrangian.
A comparison of perturbations in models with the same expansion history will al-
low us to explore the information that we may extract from observational probes
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of perturbations in dark energy.
We will continue along these lines in next chapters. Looking into methods of
reconstruction in next chapter, followed by simulations and comparisons of per-
turbations in tachyonic dark energy models.
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Chapter 3

Reconstruction of Dynamical
Dark Energy Potentials:
Quintessence, Tachyon and
interacting models.

This chapter is based on following published article
Manvendra Pratap Rajvanshi, J. S. Bagla, Reconstruction of dynamical dark en-
ergy potentials: Quintessence, tachyon and interacting models J Astrophys Astron
(2019) 40: 44.[arXiv:1905.01103]

3.1 Introduction

As we have seen from previous chapters, in many dark energy models, dark energy
is dynamical in the sense that its properties are a function of space and time. In
order to study the theoretical and observational implications for these theories,
we have to solve the equations describing the dark energy. Analysis of some
observations only requires the variation of scale factor with time, however other
observations can have a dependence on spatial variations in dark energy and thus
details of the model become relevant.

It is well known that if two models have the same evolution of the scale fac-
tor, tests relying only on distance measurements cannot distinguish between such
models. Therefore it is important to study growth of perturbations in matter for
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different models of dark energy with the same evolution of the scale factor. This
opens up comparison based on CMB anisotropies ([130, 131, 132]), weak lensing
([133, 134, 135]), and growth of perturbations ([136, 137]). In this context, it
is useful to have a formalism for constructing potentials for different models of
dark energy that lead to the same expansion history. In this chapter, we compute
the corresponding potentials in quintessence and tachyon models which can give
same background evolution. We reconstruct potential V (φ) assuming a particular
equation of state w(z). We give analytical expressions wherever possible, in other
cases we reduce the problem to quadrature for numerical reconstruction of V (φ).

There has been a lot of interest in recovering dark energy potential from the ob-
served expansion history ([138, 139, 140]). For example Huterer and Turner ([141]),
provide an early work on constructing potential from simulated data and inspired
further research. Li et.al ([142]) construct potential by approximating luminosity
distances and also do a comparison for reconstruction using parameterization of
equation of state w(z). A number of other attempts for reconstruction using a
parametric or a non-parametric approach have been made. See ([143, 144, 145])
for a review. We approach this problem by attempting to construct potential for
a given redshift dependence of the equation of state parameter w(z) for the dark
energy component. We do this for both quintessence and tachyon models: while
a number of solutions exist for quintessence models ([146, 147]), few solutions are
available for tachyon models. In Scherrer ([146]), a mapping between CPL param-
eters and potentials is explored while an analytic approximation for various scalar
field models is obtained by Battye & Pace ([147]).

In §3.2, we set up equations for tachyon and quintessence models. In §3.2.2
and §3.2.3, we do reconstruction of potential for w(z) = constant. In §3.3, we
outline the numerical recipe for reconstruction for any general w(z) and illustrate
it with results for some simple cases.

3.2 Basic Equations

We are interested in late time evolution of the Universe. Given observations that
indicate that the spatial curvature is consistent with zero, and that radiation does
not contribute to the expansion history at z ≤ 100, we choose to work with only
matter and dark energy. The method we outline can be generalized without any
modifications to include other cases. For illustration of the method, we work with
the CPL parameterization (Chevallier & Polarski [148]; Linder 2002[149]). The
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functional form for w(z) is defined in terms of two constants, which we call p and
q:

w = p+ q(a− ai) (3.1)

p is the value of w at some t = ti while q gives rate of change of w with scale factor.
Symbols w0 (for p) and w1 (for q) are often used while using this parameterization,
if ti is taken to be the present time t0. Continuity equation for dark energy density
ρde is:

dρde
dt

= −3(1 + p+ q(a− ai))
ȧ

a
ρde (3.2)

Using this equation, we get:

ρde = ρide

(
ai
a

)3(1+p−qai)
exp[−3q(a− ai)] (3.3)

where ρide is density at some initial time. From now on we use a scaled dimension-
less variable for time: t = tHi. Friedmann equation then takes the form:

ȧ2

a2 = α

a3 + β

a3(1+p−qai)e3qa (3.4)

where α and β are constants defined as:

α = Ωmi β = (1− Ωmi)a3(1+p−qai)
i e3qai (3.5)

These are related to the density parameter for matter and dark energy at the
initial time.

3.2.1 Tachyon field

Tachyon models for dark energy have an action of the following form:

I =
∫
d4x
√
−g

[
−V (φ)

√
1− ∂µφ∂µφ

]
(3.6)

In these models the energy density and pressure can be written as:

ρφ = V (φ)√
1− ∂µφ∂µφ

Pφ = −V (φ)
√

1− ∂µφ∂µφ

For these models the equation of state parameter is related to the time derivative
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of the field as w = −1 + φ̇2 for a homogeneous field. Thus we have:

dφ

dt
=
√

1 + p+ q(a− ai) (3.7)

Combining eq.(3.4) and eq.(3.7)

φ(a) =
∫ √

a(1 + p+ q(a− ai))√
α + β

a3p−qaie3qa

da (3.8)

Using the relation between the energy density and the potential, we can write:

V (φ) =
√
−wρde (3.9)

Since we know ρde as a function of a from eq.(3.3), we can compute V (a). The
combination of Eqn.3.8 and Eqn.3.9 gives a parametric solution for the potential as
a function of the field φ, with the scale factor a playing the role of the intermediate
parameter.

3.2.2 Tachyon field: Constant w

We start by considering the special case of w = constant, i.e., q = 0. The integral
in equation (3.8) takes following form for constant w:

φ(a) =
∫ √

a(1 + w)√
α + β

a3w

da (3.10)

Defining:
x2 = α + β

a3w (3.11)

reduces the integral to form:

φ(x) =
∫ σ

(x2 − α)k dx (3.12)

where σ and k are:
σ = −2

√
1 + w

3wβ βk, k =
w + 1

2
w

(3.13)

Integral in eq.(3.12) is trivial for w = −1
2 where we get:

φ(a) = σ
√
α + βa3/2 (3.14)
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Potential V (a) for constant w case is:

V (a)
H2
i

= 3
√
−wβ

8πGa3(1+w) (3.15)

When w = −1
2 , we get:

V (φ)
H2
i

= 3β
8πG
√

2
[
φ2

βσ2 − α
β

] (3.16)

For other values of w, integral in equation (3.10) does not have a closed form
solution. The result can be expressed in the form of hypergeometric functions:

φ(a) =2a
3

[
a (1 + w) (βa−3w + α)

α (βa−3w + α)

]1/2

× 2F1

[
1
2 ,−

1
2w ; 1− 1

2w ;−a
−3wβ

α

] (3.17)

From eq.(3.15), we have V (a), we need to invert eq.(3.17) to get a(φ) and substi-
tute it in equation (3.15) to get V (φ). Please note that for background calculations
one does not really need V (φ), V (a) contains the relevant information. However
for a study of spatial perturbations we require V (φ) as φ can take on different
values at different points at a given time. A number of numerical libraries pro-
vide routines for calculation of 2F1(a, b, c, g). GNU Scientific library has function
gsl_sf_hyperg_2F1, which computes 2F1(a, b, c, g) for |g| < 1. In case of
eq.(3.17), g < 0 and for extending to g < −1, there are standard transformations
available in literature (see Pearson’s thesis (2009) for a detailed account of compu-
tation of hypergeometric functions, we use transformations mentioned in section
4.6 of Pearson’s thesis ([150]2009)). For g = −a−3wβ

α
< −1, we use following

formulae for computing 2F1(a, b, c, g):

2F1(a, b, c, g) = 1
(1− g)a

Γ(c)Γ(b− a)
Γ(b)Γ(c− a)

2F1(a, c− b, a− b + 1,
1

(1− g))

+ 1
(1− g)b

Γ(c)Γ(a− b)
Γ(a)Γ(c− b)

2F1(b, c− a, b− a + 1,
1

(1− g))

(3.18)

Equation (3.10) can be written in the form of a differential equation which makes
its relationship with other functions clear. Let

g = −a
−3wβ

α
(3.19)
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Then eq.(3.10) can be differentiated to obtain:

g(1− g)d
2φ

dg2 +
[( 1

2w + 1
)
−
(3

2 + 1
2w

)
g
]
dφ

dg
= 0 (3.20)

It can be integrated twice to obtain φ(g) in terms of incomplete beta functions
B(g; a, b), which are related to 2F1(a, b, c, g):

φ(g) = C1B(g; 1− u, 1 + u+ v) + C2 (3.21)

where C1, C2 are constants of integration and

u =
( 1

2w + 1
)

v =−
(3

2 + 1
2w

) (3.22)

B(g; a, b) is related to 2F1(a, b, c, g) (Weisstein webpage 2018[151]) as follows:

B(g; a, b) = ga

a
2F1(a, 1− b, a+ 1, g) (3.23)

We can invert either eq.(3.17) or eq.(3.23) to obtain a(φ) and then us eq.(3.15) to
obtain V (φ). We have used the Newton-Raphson method for inversion from φ(a)
to a(φ) and then on to V (φ). This is useful in dynamically calculating V (φ) and
the derivative Vφ(φ) when φ has spatial variations in presence of perturbations.

3.2.2.1 Form of the potential for constant w

Here we plot (figure 3.1) the potential V (φ) for different values of w. We can see
from the plot that the dependence of V (φ) is close to a power law. To get insight
into this behaviour, we plot derivatives of log of potential with respect to log of
field in figure 3.2. We see that in central part there is approximate flat curve
indicating that in this region the potential can be approximated by power laws.

We can approximate potential in this flat region with form:

V (φ) = cφb (3.24)

For this form we have done fitting for different values of constant w and then we
find the relationship between constant w and b which is linear as shown in 3.3
. These fittings are crude given that evolution of w and other quantities is very
sensitive to form of potential.
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Figure 3.1: We plot tachyon potentials simulated, for constant w, using methods
described in previous section. Different panels are for different constant w values.
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Figure 3.2: We plot the slope of the potential as a function of the field. From this
log-log plot we can see that there is a almost flat plateau with deviations at two
ends. Thus the potential is close to a power law. In upper panel we plot three
cases of constant w. Lower panel is for 3-σ constrained boundaries (-1.0,-0.95)
as described in text. The shaded region is allowed set of potentials as per the
constraints found in Tripathi et al. (2017). The value of constant central part
changes with value of constant w.
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Figure 3.3: For different w = constant values, we obtain the approximate b for
central linear part (as marked in figure3.2). As shown here, b values follow a linear
relation with w. the fitted line has slope m = 2.3163 and intercept c = 2.30258.

This can potentially be used to constrain the potential for tachyon fields if
one already has observational constraints on w. We are working on a detailed
analysis of observational constraints to be presented in a forthcoming publication,
here we present an example of such an exercise. We make use of existing studies
of observational constrains on wCDM models. In one such study, Tripathi et
al. (2017) combined the results from 3 different data sets to obtain 3σ confidence
intervals for constant w and CPL w(z) models. We use confidence intervals for the
constant w while working in the regime w ≥ −1, i.e., we use the confidence interval
(−1.0,−0.95) and reconstruct corresponding potential slope in lower panel of 3.2.
This is shown as a shaded region and marks the allowed slope for the potential.
This is a simplistic approach and we are working on a detailed analysis while
accounting for possible variations of other cosmological parameters.

3.2.3 Quintessence

The action for quintessence field is:

I =
∫
d4x
√
−g

[1
2g

µν∂µφ∂νφ − V (φ)
]

(3.25)
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with effective pressure and density:

ρφ = φ̇2

2 + V (φ) (3.26)

Pφ = φ̇2

2 − V (φ) (3.27)

wφ = Pφ
ρφ

= φ̇2 − 2V
φ̇2 + 2V

(3.28)

For Quintessence models of dark energy, w is related to time derivative of the
field and the potential, and we have:

dφ

dt
=
√

(1 + w)ρφ =
√

(1 + p+ q(a− ai))ρφ (3.29)

where
V (φ) = 1

2(1− w)ρφ = 1
2(1− p− q(a− ai))ρφ (3.30)

From equations (3.3) and (3.29), we obtain:

dφ

dt
=
√

(1 + p+ q(a− ai))
3

8πG
β

a3(1+p−qai)
e−3q(a−ai) (3.31)

Equation (3.31) can be combined with eq.(3.4) to obtain dφ
da
. For potential we have

from (3.30) and (3.3):

V

H2
i

= 3
2

(1− w)
8πG

β

a3(1+p−qai)
e−3q(a−ai) (3.32)

This system of equations specifies the solution.

3.2.4 Quintessence field: Constant w

For w(a) = constant, we obtain a closed formula for V (φ) (see Sangwan et al.
(2018) and references within for previous work on this). In this case, eq.(3.31)
reduces to:

dφ

dt
=
√

(1 + w) 3
8πG

β

a3(1+w) (3.33)

and
dφ

da
=
√

3(1 + w)
8πG

√√√√√
 1
αa3w

β
+ 1

(1
a

)
(3.34)
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Defining:

λ =
√

3(1 + w)
8πG (3.35)

and
x2 = αa3w

β
+ 1 (3.36)

We have,
φ(x) = C1 + 2λ

3w

∫ dx

x2 − 1 (3.37)

here C1 is a constant of integration. The solution is :

φ(x) = − λ

3w [log(1 + x)− log(x− 1)] (3.38)

Inverting this we get:

x = e−3wφ/λ + 1
e−3wφ/λ − 1 (3.39)

Defining:
m = −3wφ

2λ (3.40)

We rewrite eq.(3.39):
x = cothm (3.41)

And we get
a3w = β

α

[
(cothm)2 − 1

]
(3.42)

Substituting this in eq.(3.32),

V (φ)
H2
i

= 3(1− w)β
16πG

[
β

α
((cothm)2 − 1)

]− (1+w)
w

(3.43)

Equivalently,

V (φ)
H2
i

= 3(1− w)β
16πG

α
β

sinh2

− 3wφ
√

8πG
2
√

3(1 + w)


(1+w)
w

(3.44)

Derivations for constants w case for quintessence and phantom models were done
by Sangwan et al. (2018[152]) and they obtain the same form for quintessence
models as in eq.(3.44). The reconstruction approach can be used to constrain
potentials from observations, as was done in Sangwan et al. (2018[152]). They
used the constrained ranges from Tripathi et al. (2017[153]), to constrain the
quintessence potentials for constant w. They also constrain the potentials for CPL
and logarithmic w(z) using some approximations. Their work can be numerically
generalized, using formalism developed in this article, to various w(z) for both
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tachyonic as well as quintessence models.

3.3 General case

For an arbitrary function w(a), continuity equation for that component is:

dρφ
ρ

= −3(1 + w)
a

da (3.45)

giving
ρφ = ρφi exp

[
−3

∫ 1 + w

a
da
]

(3.46)

Equivalently
Ωφ := 8πGρφ

3H2
i

= Ωφie
−3
∫ 1+w

a
da (3.47)

Subscript i represent values at some initial time.

Using this evolution equation for energy density we can write differential equa-
tions for tachyon and quintessence fields:

dφtach
da

=
√

1 + w√
α
a

+ a2Ωφtach

(3.48)

dφq
da

=

√
3(1 + w)Ωφq

√
8πG

√
α
a

+ a2Ωφq

(3.49)

where Ωφq and Ωφtach are quintessence and tachyon field density parameters scaled
as shown in eq.(3.47) respectively. The potentials for two fields are:

V (a)
H2
i

= 3(1− w)Ωφq

16πG (3.50)

V (a)
H2
i

= 3
√
−wΩφtach

8πG (3.51)

One can numerically integrate equations (3.47) and (3.48)/(3.49) to get φ(a) and
alongside use (3.50)/(3.51) to obtain V (a). Hence one can obtain a numerical
table of V (φ) vs φ in desired range. This table can be used for numerical fitting or
interpolation functions. For example, cubic splines (see book by Antia (2012[154]))
can be used for fitting to obtain spline coefficients which can be used for calculating
V (φ) and its gradients given a value of φ. Once we have spline coefficients and φ,
task is to find the interval in which the value of φ lies so that we can use coefficients
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corresponding to that interval. Evaluation of the function can be time consuming,
but the fact, that for background values φ there is a correspondence between φ

and a, comes to our rescue. Typically perturbations have a small amplitude and
hence deviation from background in a particular simulation domain is small, and
this can be used to guess spline interval in that region. For example, one might
be simulating a spherical collapse in real space and perturbations may be really
strong towards centre but they merge into background as one moves away from
centre. In this case for large radii, interval can be guessed from background and
then one can move toward smaller radii. In this way for each new inner point
one has to only search in the adjacent intervals for interpolation if the field is
continuous. As an example we show here CPL potentials for quintessence and
tachyon field in 3.4. The form obtained is similar to that obtained by Scherrer
(2015).

3.4 Coupled Quintessence mimicking ΛCDM

Minimally coupled quintessence models ([155, 156] ) can exactly mimic ΛCDM
only with a completely flat potential, that is no field dynamics is involved and
equations just reduce to that in case of Λ. However if energy exchange is allowed
between quintessence field and dark matter, a Λ like evolution is possible even with
field dynamics and a time varying w. In this section we consider a quintessence
model with following type of coupling (Barros et al. 2018[157]):

φT µν ,µ = Q
√

8πGφ,ν ρcdm (3.52)

cT µν ,µ = −Q
√

8πGφ,ν ρcdm (3.53)

Please note a bit different notation in this section as described below. Q is the cou-
pling constant between matter and Quintessence. Subscript lcdm denotes quan-
tity corresponding to ΛCDM and cdm subscript is for corresponding quantities
for cold dark matter in model with field, e.g. ρcdm is density for cold dark matter
in model with an interacting dark energy field while ρlcdm is cold dark matter
density as evolved within ΛCDM . Also Ωi

c is density parameter for dark matter
at initial time and Ωi

Λ is Λ counterpart. Basic equations for this type of coupled
model mimicking ΛCDM were derived in Barros et al. (2018[157]). They write
the potential V (φ) in terms of other variables, and do not specify exact formula for
V (φ). Here we start from the equations derived in Barros et al. (2018[157]) and
then reconstruct the formula for potential that gives the required Λ like behaviour.
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Figure 3.4: V (φ) simulated for CPL parameterization for quintessence and tachyon
models. The shape of curve is same for quintessence and tachyon field but the
rate of evolution of field very different. Field traverses longer distances in field
space for quintessence case. This might have interesting implications in context
of Swampland criteria of String theory.
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For a field model giving same a(t) as that of ΛCDM , we have:
(
ȧ

a

)
=
(
ȧ

a

)
ΛCDM

(3.54)

Ignoring baryons and radiation we have:

ρcdm + ρφ = ρlcdm + ρΛ (3.55)

and
pφ = pΛ = −ρΛ (3.56)

Combining the two, we have:

φ̇2 = ρlcdm − ρcdm (3.57)

Continuity equation for matter is:

˙ρcdm + 3Hρcdm = −Q
√

8πGφ̇ρcdm (3.58)

giving:
ρcdm = ρicdm

a3
i

a3 e
−Q
√

8πGφ (3.59)

Using (3.57) and (3.59) along with standard Friedmann equation for ΛCDM , we
get:

dφ

da
=
√( 3

8πG

)(1
a

) √1− e−Q
√

8πGφ√
1 + ΩiΛa3

Ωica3
i

(3.60)

Arranging and integrating equation we obtain:

ω log
[√

eQ
√

8πGφ − 1 + eQ
√

8πGφ/2
]

=

log


√

1 + ΩiΛa3

Ωica3
i
− 1√

1 + ΩiΛa3

Ωica3
i

+ 1

 (3.61)

where ω = ±2
√

3
Q

(- for negative Q)
Writing a(φ) as a function of φ:

a3(φ) = 4C1Ωi
ca

3
i

Ωi
Λ

[
f(φ)ω

(1− C1f(φ)ω)2

]
(3.62)
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Figure 3.5: V (φ) for coupled quintessence mimicking ΛCDM in background kine-
matics.

with C1 taking care of any constant of integration and

f(φ) =
√
eQ
√

8πGφ − 1 + eQ
√

8πGφ/2 (3.63)

Potential V can be obtained from equations (3.56), (3.57) and (3.59):

V (φ)
H2
i

= 3Ωi
c

8πG

[
a3
i

2(a3(φ))(1− e−Q
√

8πGφ) + Ωi
Λ

Ωi
c

]
(3.64)

Where a3(φ) has a functional form as mentioned in (3.62). Form of potential is
illustrated in 3.5.

V,φ = 3Ωi
c

8πGQ√8πGe−Q
√

8πGφa3
i

2a3 − a3
i

2a6
d(a3)
df

df

dφ
(1− e−Q

√
8πGφ)

 (3.65)

Studies of perturbations in the coupled quintessence models can play an im-
portant role in distinguishing these from ΛCDM models. Our analysis of such
models will be reported elsewhere.
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3.5 Summary

In this chapter, we have described basic equations for reconstructing potentials
for quintessence and tachyon field. We have given results for w = constant case.
We show that analytical closed formulas are possible for quintessence potentials in
these cases while for tachyon fields such formulae are obtained only for w = −0.5
case. For other values of constant w, we provide formulae for numerical recon-
struction. We also find a rough approximation to these constant w potentials for
tachyon dark energy. We describe numerical methods for numerical construction
of tachyon and quintessence potentials for arbitrary w(a). From numerical cal-
culation of potentials for CPL cases for quintessence and tachyon we show that
the shape of potential is same for both of these, but the field rolls much more
in quintessence case than in tachyon case. This could motivate further investiga-
tions in context of String Swampland (Heisenberg et al. 2018[158]; Agrawal et al.
2018[159]; Akrami et al. 2018[160]). We have also studied coupled quintessence
models.

The results of this study can be used for analysis of perturbations in such mod-
els. In particular we can compare growth of perturbations in models of different
types that have the same expansion history. We use formalism developed in this
chapter to perform simulations of quintessence and tachyonic perturbations with
similar background. These are presented in next chapter.
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Chapter 4

Non-linear spherical collapse in
tachyon models and a comparison
of collapse in tachyon and
quintessence models of dark
energy.

This chapter is based on following published article

Manvendra Pratap Rajvanshi, J. S. Bagla, Non-linear spherical collapse in
tachyon models and a comparison of collapse in tachyon and quintessence mod-
els of dark energy. Classical and Quantum Gravity, Volume 37, Number 23
doi:10.1088/1361-6382/abbb63 [arXiv:2003.07647]

4.1 Introduction

In most of the models, well constrained by data, the dynamics of the Universe ap-
proximates the cosmological constant in order to reproduce accelerated expansion.
Present observations allow for small deviations from the cosmological constant
model. Thus, there are qualitative and quantitative differences in the dynamics,
though each model can be tuned to produce the expansion history required by
observations within some reasonable constraints.
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A fundamental difference between the cosmological constant and other models
is that the cosmological constant does not vary with time or location, whereas
other dark energy models allow for such variations. In all other models the dark
energy component is allowed to vary and respond to variations in the gravitational
field. A number of studies have been carried out to study dynamics and pertur-
bations in various dark energy models [43, 44, 63, 64, 127, 161, 162, 163, 164].
The key result of these studies, obtained using linear perturbation theory or other
approximations, is that the perturbations in dark energy remain very small. How-
ever, perturbation theory is valid only at early times or at very large scales at
late times. Thus it cannot be used to study dark energy perturbations and their
interplay with highly non-linear dark matter perturbations at small scales.

In previous chapters, we have studied fully non-linear evolution of spherically
symmetric perturbations in quintessence models of dark energy [136, 137]. We
found that the amplitude of dark energy perturbations remains small in all cases.
We also found that the effective equation of state parameter of dark energy be-
comes a function of coordinates and this variation is correlated with the density
contrast of dark matter.

Here we use the same methodology and study tachyon models for dark energy.
There are low energy effective theories that arise from string theory that contain
tachyon fields [165] with Lagrangian:

L = −V (ψ)
√

(1− ∂µψ∂µψ) (4.1)

Here ψ is tachyon field and V (ψ) is potential. As an analogy, if one sees quintessence
a field form of classical particle Lagrangian (kinetic term+ potential part), then
tachyon Lagrangian is field form of Lagrangian for relativistic particle. Tachyon
models and their characteristics have been studied in detail[43, 44]. As shown in
[44], some potentials (particularly exponential potential V ∝ e−ψ) have interest-
ing asymptotic future behavior with the possibility to avoid future horizon. There
have also been some attempts to unify dark matter and dark energy in terms of
a single tachyon field [62]. Here, inverse square potential (V ∝ ψ−2) as a function
of field ψ averaged over some scale gives a dark matter like behaviour at certain
scales. While quintessence models have been extensively studied in context of var-
ious types of perturbations, tachyonic models have not been studied in as much
detail (see [64] for study of linear perturbations in tachyon models). Different
theoretical motivations/insights might lead to different class of models, but there
has to be framework that can be used to distinguish different type of models. It is
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in this context, that we carry on from our previous work[136] where we simulated
spherical collapse for quintessence, modify the formalism for tachyonic field and
do a systematic comparison. We study two potentials ( V ∝ ψ−2 and V ∝ e−ψ)
that have been proposed and studied for tachyon models because of their inter-
esting features as discussed above (see [43, 44]). Further, in order to explore the
dependence of the growth of perturbations on the class of models, we compare
the evolution of perturbations in quintessence models and tachyon models for the
same expansion history.

We describe the formalism and equations in §4.2. Details of the expansion
history in models to be studied is discussed in §4.3 for two potentials studied here
for tachyon models. Evolution of perturbations for dark matter and dark energy
in these cases is described in §4.4. We then proceed to compare quintessence
and tachyon models by working with potentials that give us the same expansion
history. These are discussed in §4.5. Results are summarised in §4.5.1 and §4.5.2,
dealing with dark matter properties and dark energy properties respectively.

4.2 Equations and Formalism

We follow the scheme set out in Rajvanshi and Bagla [136, 137] (and chapter 2 in
this thesis) and refer the reader to the paper for more details.

We assume spherical symmetry and treat dark matter as a pressure-less fluid.
Tachyon models are described by the following Lagrangian density:

L = −V (ψ)
√

(1− ∂µψ∂µψ) (4.2)

Space-time is described by the following metric:

ds2 = −e(2B)dr2 −R2(dθ2 + sin2θdφ2) + dt2 (4.3)

where B(r, t) and R(r, t) are unknown functions of comoving radial coordinate r
and time t.

These allow us to obtain dynamical equations for all the variables in the system.

Note: We work in units where speed of light c and gravitational constant G,
both are unity. V denotes potential as a function of ψ and V,ψ represents gradient
of this potential with respect to ψ. The full set of equations along with Einstein’s
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equations is:

B̈ = −e−2BR
′2

R2 + 1
R2 + Ṙ2

R2 − Ḃ
2 − 4πρdm + 4πV

[
e−2Bψ′2 − ψ̇2
√

1− u2

]
(4.4)

R̈

R
= 4πV√

1− u2

[
1− u2 − e−2Bψ′2

]
− 1

2
Ṙ2

R2 + 1
2

[
e−2BR

′2

R2 −
1
R2

]
(4.5)

ψ̈RV (e2B + ψ′2) = 2e−2BV R′ψ′3 − 2V Ṙψ̇ψ′2 + 2V R′ψ′(1− ψ̇2)−RV,ψψ′2

−RV B′ψ′(1− ψ̇2) +RV ψ′′(1− ψ̇2)− 2RV ψ̇Ḃψ′2

+2RV ψ̇ψ′ψ̇′ −RV,ψe2B(1− ψ̇2)

−V ψ̇(1− ψ̇2)(RḂ + 2Ṙ)e2B (4.6)

˙ρdm = −
(
Ḃ + 2Ṙ

R

)
ρdm (4.7)

where u2 = ∂µψ∂µψ and ρdm represents dark matter density.
Here a prime represents a partial derivative with respect to r and a dot represents
a partial derivative with respect to t.

We study evolution of perturbations for two potentials with tachyon models,
details of the potentials are given in the following discussion.

In order to compare evolution of perturbations in tachyon models with quintessence
models, we work with potentials that lead to the same expansion history. Methods
for computing the potential given an expansion history have been developed for a
variety of models [148, 149]. This process is often called reconstruction of poten-
tials. We have done these calculations for w = constant and Chevallier-Polarski-
Linder (abbreviated as “CPL” from here on, see equation 4.9) parametrization for
quintessence and tachyon models, details of the approach are given in [166].

4.2.1 Computational Methods

We consider a 1-d discrete grid in radial variable r, and the dependent variables
(fields and their first time derivatives) are simulated on this grid as a function of r
which are evolved in time using fourth order Runge-Kutta scheme (RK-4). At each
time instant ti we calculate all spatial derivatives using finite difference schemes,
this allows us to write all first order time derivatives (including derivatives of 1st
time derivatives i.e. accelerations) of dependent variables as functions of quantities
at ti. These functions allow us to get prediction for 1st sub-step of RK-4 scheme
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and temporary values of all dependent variables which are used for calculations
of further sub-steps. This process is repeated until the time for the final intended
output is reached. We check for numerical stability and convergence by running
for different time steps. The computational methodology is described in detail in
paper I[136] (see appendix A).

4.3 Results: Background Evolution

We use two potentials for tachyon models that have been studied extensively. We
study the background evolution for potentials V ∝ ψ−2 and e−ψ. Figure 4.1 shows
the evolution of density parameters for the tachyon field and dark matter, and
the equation of state parameter (w). Although each of these potentials has a
unique asymptotic behaviour[44], here we have tuned the parameters such that
they satisfy observational constraints [63]. Both the models shown here have a
thawing behaviour. These plots illustrate the generic behaviour in tachyon models
that is consistent with observations. More details for background evolution and
comparison with observations can be found in the detailed study by Singh et. al
[63].

4.4 Evolution of perturbations

We study perturbations in dark matter and dark energy for two potentials: the
exponential potential and the inverse square potential. The initial conditions are
set such that the dark matter does not have any peculiar velocities at the initial
time. Dark matter has an initial density perturbation. This initial density per-
turbation has a compensated profile i.e. δdm integrated from center to outermost
radius comes out to be zero, so that average density contrast is 0. Please see [136]
for details of initial profile. Dark energy is set to have no perturbations at the
initial time. We find that such an initial condition quickly leads to the expected
adiabatic mode at early times. We start at zini = 103 and evolve the system to-
wards lower redshifts. We first study the evolution of an over-density. A note for
figures: In figures we often use scientific notation for quoting numbers i.e. format
a x 10b with exponent part quoted on top of figure, so any no. that is quoted
on top left of figure has to be multiplied to y-axis values to get actual values.
Exponents are in powers of 10. For example, in figure 4.3, one has to multiply
10−9 to y values. Figure 4.2 is a plot of dark matter density contrast at the time
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Figure 4.1: Energy densities (Upper Panel) contribution of dark matter and dark
energy as a function of redshift (z). Bottom panel show the evolution of equation
of state (w) of tachyon field. Both backgrounds are very similar in terms of
observations with slight difference in effective equation of state parameter (w).

when the inner regions begin to virialize at z ' 1.5.

The overdensity has been evolved from z ∼ 1000. This is for an initially over-
dense (OD) system. This is shown for the two potentials we are studying and it
can be seen that the dark matter density contrast in these two cases is indistin-
guishable. This similarity results from an almost identical expansion history.

Corresponding plots for density contrast in dark energy are shown in Figure 4.3.
This is for initially overdense (OD) system. At the start of simulation (z ∼
1000) there was no perturbation in dark energy field, but metric perturbations
induce perturbations in dark energy sector which grow with time. We see that the
perturbation in dark energy is very small for the two cases, but there are apparent
differences in the two curves.

The dark matter perturbation reaches maximum radius, called the turn around
radius, before collapsing back and eventually reaching dynamical or virial equi-
librium. The ratio of virial to turn around radius is plotted in Figure 4.4. It is
apparent from this plot that there is no discernable difference in the values for the
two potentials mainly because of a similar expansion history.
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Figure 4.2: Dark matter density con-
trast as a function of comoving radius
at z ∼ 1.5. The two curves correspond
to two different dark energy potentials.
Label ’insq’ refers to V ∝ φ−2 and ’exp’
refers to V ∝ exp.
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Figure 4.3: Dark energy density con-
trast as a function of comoving radius
at z ∼ 1.5. Label ’insq’ refers to V ∝
φ−2 and ’exp’ refers to V ∝ exp.

We now turn our attention to evolution of an under-dense region. While an
under-dense region is limited to δdm ≥ −1, whereas the density contrast for an
over-dense region can be very large. On the other hand, a realistic over-dense
region with a large density contrast cannot be arbitrarily large in size, whereas
underdense regions can easily be tens of Mpc across. In terms of analysis, we also
avoid loosing information inside the virialized region as the equations cannot be
solved self consistently in this region [136, 137].

The dark energy perturbations are shown in Figure 4.5. The density contrast
is significant over the scale of the under-dense region. We also observe a rapid
growth of dark energy perturbations at late times, even though the amplitude of
perturbations remains small at all times. We see some variation between the two
potentials but it remains at a few percent level and this can be attributed to the
difference in expansion history.

We note that the qualitative behaviour of perturbations in dark matter and
dark energy closely follows that seen for quintessence models studied earlier [136,
137]. In the following discussion we focus on a comparison of quintessence and
tachyon models for the same expansion history.
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Figure 4.4: Ratio of virial radius to turn around (maximum) radius as a function
of initial matter overdensity averaged over interior r till that particular r. The
ratio tends toward Einstein-DiSitter value of 0.5 as the initial overdensity tends
to infinity i.e. dark energy effects on perturbation become less significant as dark
matter perturbation become stronger.

4.5 Results: Evolution of Perturbations in Quintessence
vs Tachyon Models

In order to compare perturbations in tachyon vs quintessence models of dark
energy, we reconstruct potentials in both models that correspond to the same
expansion history. We codify the expansion history by the variation of the equation
of state parameter for dark energy with the scale factor w(a). Details of the
procedure adopted for computing the potential are given in [166]. We work with
two different forms for w for this comparison: w = constant and CPL [148, 149].
We choose three values of constant w for comparison and numerically reconstruct
the corresponding potentials for quintessence and tachyonic fields,

w = −0.5, w = −0.9 and w = −0.975 (4.8)
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Figure 4.5: Dark energy (DE) density contrast as a function of comoving radius
at two different redshifts. Here the initial matter perturbation was underdense.
There was no perturbation in DE at initial time, but metric perturbations induce
perturbation in DE field. This perturbation grows stronger with time as can be
seen from curves at 2 different redshifts.

and for CPL parametrization[148, 149] with form w(a):

w = w0 + wa(1−
a

a0
) (4.9)

we have w0 = −0.9 and wa = ±0.09. That is, the present day equation of state
parameter is −0.9 in both the cases but in one case it decreases as we go to earlier
epochs, and in the other it increases as we go to earlier epochs. In figures we
represent cases with wa = +0.09 with notation “cpl+” and wa = −0.09 model with
“cpl-”. We investigate turn around and virialization characteristics for overdense
regions for these cases.

4.5.1 Dark Matter Perturbations

We have run our simulations setting initial conditions in the early universe (at
z ∼ 1000) for underdense and overdense dark matter perturbations. We start with
an unperturbed dark energy (see [136, 137] for details of initial conditions). The
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density contrast at present time is shown in figure 4.6 for constant w for underdense
initial condition. We see that the density contrast for different expansion histories
differs from each other but there is no difference in the profile for quintessence and
tachyon models. This clearly implies that the choice of dark energy model (tachyon
or quintessence) has no discernable impact on dark matter density profiles in an
underdense region as long as the expansion history is the same. Next we proceed
to study the same in the two cases for the CPL parameterization. We refer to
models by the sign of the term wa and w0 is same in the two cases (w0 = −0.9).
The two cases differ as we have wa = ±0.09. We show the dark matter density
profile for the same initial condition as above in Figure 4.7. Again, we find that
there are distinctions between the two cases with a different expansion history but
there is no discernable difference in the dark matter density profile for the two
different models of dark energy. This is remarkable. Note that bump in contrast
around 150 Mpc is because of the compensating overdense region at edge of void
to ensure that we go over to an FLRW universe at large r.
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Figure 4.6: Underdense cases constant w comparison: Dark matter density con-
trast evolved to z ∼ 0. “q” refers to quintessence models while “t” for tachyonic
models. “wbg” is constant value of background w. Curves are clustered by back-
ground histories with quintessence and tachyonic models with same background
having indistinguishable matter perturbation dynamics.

We now turn our attention to growth of overdensities in dark matter. In these
cases the perturbations collapse to form virialized halos if the initial density is
higher than a critical value as in the case for ΛCDM [98]. Results for the two CPL
parameterizations are shown here. We show the characteristics of perturbations
at turn around in Figure 4.8. Variation of the turn around radius as compared
to the expected value in the Einstein-deSitter model as a function of the initial
overdensity is shown in the left panel. The right panel shows the density contrast
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Figure 4.7: Underdense cases CPL:Dark matter density contrast evolved to z ∼ 0
. cpl+ denotes wa = +0.09 case and cpl- represents wa = −0.09. “quint” stands
for quintessence and “tach” stands for tachyonic. As with constant w cases, it is
background evolution that is distinguishing the models rather than field dynamics
Lagrangian being quintessence or tachyonic type.

at turn around as a function of the initial dark matter overdensity. Note that the
overdensities are always volume averaged, so as to facilitate comparison with the
Einstein-deSitter and the ΛCDM models. The qualitative behaviour seen in the
two panels is very similar to what is known for the ΛCDM model in that the turn
around radius becomes very large as we approach the critical initial overdensity
from above. The density contrast also increases in this limit as the time taken to
reach turn around increases and the background also increases and the average
density of the universe decreases to give us an enhanced density contrast. The two
CPL models representing two different expansion histories lead to different curves.
However, there is no obvious difference between the tachyon and quintessence
models for a given expansion history.

We present the characteristics of virialization in Figure 4.9. We have plotted
the ratio of the virial radius to the turn around radius in the left panel as a
function of the initial density contrast. The expected value for this ratio is 0.5
in the Einstein-deSitter model. In case dark energy clusters significantly and also
participates in the virialization process, the expected value is above 0.5, and if dark
energy clustering is not relevant to the virialization process then the expected value
is below 0.5 [96]. In the right panel we have plotted the density contrast at the
time of virialization. Here, virialization is defined by the epoch at which

< T > +1
2 〈RFR〉 = 0 (4.10)
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here T is the kinetic energy, R is the radius of the shell and FR is the radial
force on the shell, see [136] for details. Thus the volume averaged overdensity
within a virialized shell is expected to be around 145 in Einstein-deSitter model.
In the ΛCDM model, the expected value is higher as perturbations take a longer
time to collapse. Further, as we approach the critical density contrast for collapse
from above, the density contrast at virialization shoots up. Similar behaviour
is observed for quintessence models [136, 137]. We see that the qualitative be-
haviour for the two CPL cases is similar to that for ΛCDM and that seen for some
quintessence models. The ratio of virial radius to the turn around radius varies
almost in the same manner for the two CPL models with small differences for large
initial density contrast. There are no systematic differences between tachyon and
quintessence models for a given CPL prescription for the equation of state param-
eter. Curves for the two CPL models differ clearly from each other in the right
panel but again, there are no differences between tachyon and quintessence models
for a given set of CPL parameters.

These results are remarkable in that it appears that we can ignore the precise
choice of dark energy model and use any convenient prescription as long as we
get the same expansion history. This can be done if our interest is restricted to
perturbations in dark matter.
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Figure 4.8: Turn around characteristics for CPL case. Left panel shows turn
around radius in the combination Rta〈δdm〉i/Ri as a function of the initial density
contrast. Right panel shows density contrast at turn around as a function of the
initial density contrast. quint denotes quintessence and tach represents tachyonic
field. cpl+ denotes wa = +0.09 and cpl- represents wa = −0.09.
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Figure 4.9: Virial characteristics for CPL case. Left panel shows ratio of virial
radius to turn around radius as a function of the initial density contrast in dark
matter. Right panel shows Density contrast at virialisation as a function of the
initial density contrast in dark matter. “quint” denotes quintessence and “tach”
represents tachyonic field. cpl+ denotes wa = +0.09 and cpl- represents wa =
−0.09.

4.5.2 Perturbations in Dark Energy

We now turn our attention to perturbations in dark energy. We study two physical
quantities, density contrast for dark energy δde and the equation of state parameter
w. These are shown as a function of radius for an initially underdense matter
perturbation. We have plotted δde as a function of r for constant w cosmologies in
Figure 4.10 (upper panel). Curves are plotted at z = 0 and refer to the simulations
used in Figure 6. We see that density contrast in dark energy remains small at
all scales. The amplitude of dark energy perturbations is higher when the model
deviates significantly from ΛCDM: we see that the amplitude is highest for the
model with w = −0.5 and decreases for models with a smaller w. We see that
the curves for each w are distinct. We also note that the tachyon models and
quintessence models differ from each other and this difference is larger for models
with a larger w. We have shown in earlier work that w becomes a function of
space for dynamical dark energy models. Variations from the expected value in
the background for constant w models is shown in Figure 4.10 (lower panel) as a
function of r.

We see that for an underdensity in matter, w is smaller than the value in
the background model. Deviations are larger for models that deviate significantly
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from the ΛCDM models. Differences between tachyon models and quintessence
models can be seen and these are larger for the models with a larger w.

Plots for CPL models are given in Figure 4.11. Both the models here are
consistent with most low redshift observations [153]. We keep w0 = −0.9 and
wa = ±0.09, we refer to these models as cpl+ or cpl− depending on the sign of
wa. These figures refer to the simulations used for Figure 7. Quantities are plotted
at z = 0. We see that there are differences between the tachyon and quintessence
models for each CPL model but the differences remain small at all scales.

Unlike dark matter, we find that dark energy perturbations do carry an imprint
of the model. Differences between tachyon and quintessence models for the same
expansion history become larger for models with large deviations from the ΛCDM
model. Differences are small for constant w models allowed by observations.

4.6 Summary

We have presented results of our study of evolution of perturbations in dark matter
and tachyon models of dark energy. We find that differences across models arising
from different potentials are small. As different potentials correspond to different
expansion history, it is difficult to delineate the dependencies.

In order to study the dependence of evolution of perturbations on the class of
models, we construct potentials in quintessence and tachyon models corresponding
to constant equation of state w for dark energy and CPL parameterization. This
allows us to address the question of the dependence of evolution of perturbations
on the class of models.

We study spherically symmetric perturbations using a self-consistent relativis-
tic code. We study evolution of regions where dark matter is underdense/overdense.

We find that evolution of dark matter perturbations depends only on the ex-
pansion history. There is no discernible imprint of the dark energy model on the
evolution of dark matter perturbations.

Dark energy perturbations remain small in all cases studied here. The am-
plitude of dark energy perturbations depends on the expansion history as well
as the dark energy model (tachyon/quintessence). Thus in principle there is an
observable signature of the class of dark energy models, though the differences are
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Figure 4.10: Underdense case: (Upper panel) Dark energy density contrast
evolved to z ∼ 0 . q denotes quintessence and t represent tachyonic field. wbg
for constant value of background equation of state for dark energy field. This is
for initially underdense case (UD1). Lower panel: Equation of state comparison
for three constant equation of state cases.

very small. These differences are larger for models that deviate significantly from
the ΛCDM model in terms of the expansion history.

While the results follow from well defined theoretical models and numerical cal-
culations, it is useful to have some physical insight. One can argue from continuity
that as one goes towards the ΛCDM limit of w = −1, all models should converge
to Λ like behaviour. One crucial point to check here is for the deviations of w
from −1, that are allowed by observations, can different models be distinguished
by perturbations? In this chapter, we have done nonlinear calculations to probe
this question. One of the key takeaways from our work is that the two classes
of models considered here are indistinguishable not only for cases very close to Λ
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Figure 4.11: Underdense CPL case: (Upper Panel) Dark energy density contrast
evolved to z ∼ 0 . q denotes quintessence and t represent tachyonic field. cpl+
denotes wa = +0.09 and cpl- represents wa = −0.09. This for initially underdense
case (UD1cpl). Lower Panel: Equation of state (w) evolved to z ∼ 0. This is for
initially underdense case (UD1cpl).

limit, but are so even for scenarios which are significantly different from Λ limit.
The above statement applies to characteristics of dark matter perturbations. We
believe that this is due to matter being the dominant component for much of the
expansion history and matter dominating over dark energy in regions with high
overdensity of matter. While this has been pointed out in studies based on lin-
ear theory or heuristic arguments, we believe that the calculations presented here
establish this for the first time with self consistent and relativistic calculations in
the non-linear regime.

The useful conclusion that we can draw from this study is that we may choose
any dark energy model to reproduce the appropriate expansion history as the
evolution of dark matter perturbations is insensitive to the specifics of the dark
energy model other than the expansion history.

At the same time, the very small magnitude of differences of dark energy
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perturbations indicate that it will be almost impossible for us to discover the
true dark energy model from measurements of distances or characteristics of dark
matter perturbations.
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Chapter 5

Tachyonic vs Quintessence dark
energy: prospects of
distinguishing them using linear
perturbations and CMB data

This chapter is based on following article

Manvendra Pratap Rajvanshi, Avinash Singh, H.K. Jassal, and J.S. Bagla,
Tachyonic vs Quintessence dark energy: linear perturbations and CMB data.

arXiv:2104.00982

5.1 Introduction

Previous chapters looked at the evolution and comparisons of perturbations in
scalar field dark energy models in nonlinear, but spherically symmetric space-
times. Although the nonlinear treatment offered by spherically symmetric case
is useful in exploring deviations from linear growth, spherical symmetry is very
restrictive assumption. It can be shown that small deviations from spherical sym-
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metry lead to quick divergence from symmetry[98]. Linear theory calculations
do not assume any symmetry, but are valid for small perturbations only. Dark
energy models, in general, have a scale-dependent response to perturbations in
the matter. Linear theory of cosmological perturbations [69, 70, 71] is used for
studying the evolution of fluctuations in dark energy. These can be used to com-
pute transfer functions, cosmic microwave radiations anisotropies [68], and other
observables.

Dark Energy perturbations have been studied in detail for quintessence [127,
130, 164, 167, 168]. Perturbation theory employs a split between background
and perturbations over that background. Comparisons of dynamical dark energy
models with standard ΛCDM show deviations in expansion history. Dark energy
perturbations also induce differences in the power spectrum, CMB anisotropies,
and other observables. For models allowing perturbations, the evolution is pa-
rameterized by a combination of background evolution (or expansion history) and
characteristics of the model. This point needs careful consideration when compar-
ing dark energy models. Their potentials often have tunable parameters that can
be adjusted to get the same expansion history so that any observation based on
background cosmology (e.g. supernova data) cannot be used to distinguish these.
In that case, a question that can be asked is if perturbations-based observations
show any difference between such models? We address this question from the
perspective of linear theory. Further, we constrain tachyonic models with CMB
data. Tachyonic models have been constrained with low redshift observations by
Singh et. al [63, 64]. Here we use data from Planck 2018 data in addition to other
observational datasets to constrain tachyonic models.

We present the results for quintessence and tachyonic models where we com-
pare the growth of perturbations in linear theory. In the next two sections, we
describe the formalism for writing perturbation equations that demonstrate ex-
plicitly that the difference between these two models diminish as we go towards
w = −1. Specifically, it depends on factor (1+w), where w is the equation of state
parameter. We demonstrate that differences between the two classes of models are
suppressed by the factor (1+w) and hence diminish rapidly as we approach closer
to the cosmological constant. We also relate our formalism with earlier work as
well as the fluid description. In section 5.4, we present the numerical results. In
section 5.5, we use an approximate parametric representation for quintessence and
tachyonic models to use CMB data to see if these can be distinguished by cur-
rent data. We find that if the respective potentials for tachyonic and quintessence
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models are chosen such that the background evolution is identical then it is not
possible to distinguish these with present observations. Finally, in section 5.6, we
constrain two tachyonic models with CMB data. We summarize in the last section
5.7.

5.2 Perturbation Theory

We consider scalar metric perturbations in the Newtonian gauge with the following
form of the metric:

ds2 = (1 + 2ψ)dt2 − (1− 2ξ)a2(dx2 + dy2 + dz2) (5.1)

The problem of dark energy perturbations and its relevance for observables has
been studied by many authors [64, 127, 130, 164, 167, 168, 169, 170, 171, 172].
Often, a fluid form for dark energy is assumed. This fluid at the background level
is characterized by the equation of state parameter (w̄(z)). For properly treating
perturbations in fluid, one needs to know how energy density perturbations as
well as pressure perturbations evolve. One can obtain dynamical equations for
density perturbations and velocity perturbation either directly from Lagrangian
density or from continuity equations (see Kodama & Sasaki [69], Bean & Dore
[170] or Mukhanov [70], Ma & Bertschinger [71]). The set of equations derived in
this manner is complete if additional information is provided for term δp/δρ. In
Newtonian gauge, ignoring anisotropic stress, we have [71]:

δ̇ = −3H
[(
δp

δρ

)
− w̄

]
δ + 3(1 + w̄)ψ̇ − 1 + w̄

a
θ (5.2)

θ̇ = −(1− 3w̄)Hθ −
˙̄w

1 + w̄
+ k2ψ

a
+ k2δ

(1 + w̄)a

(
δp

δρ

)
(5.3)

where δ is the fluid energy density contrast, θ is defined as:

θρ̄(1 + w̄) = −ikj(δT )0
j (5.4)

For adiabatic perturbations in fluids, there exists a relation between pressure per-
turbations and density perturbations. Using this relation we can eliminate pres-
sure perturbations and solve for density perturbations. In general, one has to
solve for both perturbations. In cases where density and pressure are effective
quantities, e.g., scalar fields, the underlying system of equations has to be solved.
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A common approach is to quantify the variation of pressure perturbations using
a gauge-invariant quantity called the effective speed of sound c2

s. In an arbitrary
gauge, pressure perturbations are written as [170, 173]:

(δp) = c2
s(δρ) + 3ȧ(1 + w̄)(c2

s − c2
a)ρ̄

θ

k2 (5.5)

There are a few subtle points that need to be considered while using this definition:

• In order to ensure gauge invariance, c2
s is defined in terms of δp/δρ in a frame

comoving with fluid, i.e., frame in which θ is zero. Then from eq.(5.5), c2
s is

just δp/δρ but in the frame comoving with fluid.

• In general, there are entropy perturbations as well. The gauge invariant
amplitude of entropy perturbation is [69, 170]:

w̄Γ = (c2
s − c2

a)δ (5.6)

where c2
a is a quantity determined by quantities related to evolution of the

model background:

c2
a = w̄ −

˙̄w
3H(1 + w̄) (5.7)

For adiabatic perturbations, Γ vanishes, and ca = cs.

• Equation (5.5) can be derived [170] starting from eq.(5.6). δ in general is
not gauge invariant, but δ in the frame comoving with the fluid is a gauge
invariant quantity. δ and θ can be combined to form a gauge invariant
quantity:

δrf = δ + 3ȧ(1 + w̄) θ
k2 (5.8)

In eq.(5.6), the left hand side is gauge invariant implying that combination on
the right-hand side is gauge invariant too. Now we define c2

s as δp/δρ in the
rest frame of fluid meaning each term on the right-hand side is individually
gauge-invariant in the context of this definition. Then in any frame we
can substitute for rest frame δ using the quantity in eq.(5.8) in eq.(5.6)
and then obtain eq.(5.5). For multicomponent systems, there can be an
additional entropy perturbation besides intrinsic entropy perturbations [69].
This can be due to difference in dynamics (different c2

a) or due to non-minimal
coupling. In such cases, working in terms of field variables is simpler and
less prone to ambiguities.

• For scalar fields [49], let L(X,φ) be the Lagrangian density, where X =
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1
2∂µφ∂

µφ is the kinetic term while φ is the field. Rest frame for field is
defined as the one in which (δφ) vanishes. In an arbitrary frame:

(δp) = ∂p

∂X
(δX) + ∂p

∂φ
(δφ) (5.9)

with similar equation for (δρ). In rest frame:

(δp) = ∂p

∂X
(δX) (5.10)

Combining equations for (δp) and (δρ) in rest frame, we get

c2
s = (δp)

(δρ) = p,X
ρ,X

(5.11)

where p,X is partial derivative wrt X.

Earlier work [49, 169, 170, 171, 172, 174] along these lines has assumed some form
for c2

s and then constrained c2
s and other parameters. These forms are assumed

independent of w̄(z), thus the model is described by two functions. One gen-
eral result from these studies is that the effects of different c2

s but same w̄(z) on
observables are significant only in cases where dark energy has some significant
contribution (at least a few percent) at time of recombination [49, 171]. But this
itself means that w̄(z) should be of such a form that dark energy has a signifi-
cant contribution at early times. For scalar fields, given the form for Lagrangian
density, there is no need of using any ad-hoc approximate form for c2

s. Equa-
tions for systems with scalar field perturbations can be written entirely in terms
of field perturbations (gauge-invariant) and perturbations in other constituents.
But studies with effective parametrization of c2

s are useful because they provide
a general framework to compare different type of Lagrangian densities. Different
Lagrangian densities may have different effective speeds of sound. For example,
canonical scalar field Lagrangian of form:

L = X − V (φ) (5.12)

always have c2
s = 1, while k-essence ones with the form:

L = V (φ)F (X) (5.13)

can have a time-dependent c2
s.

In this work, we consider the question whether two different scalar field La-
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grangians (tachyonic and quintessence) with the same background evolution can
be distinguished at the level of linear perturbations. Instead of working with an
assumed form of c2

s and using fluid equations, we directly work with scalar fields
and their perturbations. Our model space is limited as we choose two specific
Lagrangians, but our calculations are concrete with few assumptions. Our choice
of formalism is well motivated by the question: all observations sensitive to back-
ground cosmology (only) give us a certain evolution of background quantities, then
that can be explained by both quintessence and tachyonic models with correspond-
ing reconstructed potentials. We explore if these models can be distinguished by
observations sensitive to linear perturbations?

5.3 Basic equations for scalar fields with effec-
tive fluid approach

In this section, we derive equations for quintessence and tachyonic fields. For
establishing correspondence between field description and the effective fluid de-
scription we define a new perturbation quantity: u which is the deviation in the
equation of state from background homogeneous fluid. The fluid description we
employ is slightly different from the standard approach but is useful in highlighting
differences in quintessence and tachyonic models. We also give relations between
standard fluid variables and the variables used here.

Let Φ be the field for a scalar field representing dark energy. Then its stress
energy tensor can be written as:

Tµν = (ρ+ P )vµvν − Pgµν (5.14)

where
vν = ∂νΦ√

∂αΦ∂αΦ
(5.15)

We define first order quantities, density contrast and the corresponding variation
in the equation of state parameter.

ρ = ρ̄(1 + δ) W = w̄(1 + u) (5.16)

where variables with a bar are background quantities dependent on time only,
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while the first order variations (δ & u) can vary in space-time. We also define

ω = 1 + w̄ (5.17)

Effective pressure (P ) for a scalar field theory (with identification of P as per
equation eq.(5.14)) is the Lagrangian (LΦ) of field while the effective density ρ is:

ρ = 2gµν ∂LΦ

∂gµν
− LΦ (5.18)

Writing the field as the sum of background and perturbation:

Φ = φ+ (δφ) (5.19)

and substituting it in equation eq.(5.14), retaining only the first order terms, we
get the first order stress energy tensor using metric eq.(5.1):

T 0
0 = ρ̄δ

T ij = ρ̄(u+ δ)(1− ω) for i = j

T 0
j = ρ̄ω

φ̇

∂(δφ)
∂xj

(5.20)

Off-diagonal spatial components of stress-energy tensor of both dark matter and
field vanish at this order, hence the two metric potentials can be taken to be equal.
We choose to work with ψ. The first order Einstein equation

G1
1 = 8πGT 1

1 (5.21)

can be used to obtain

ψ̈ + 4 ȧ
a
ψ̇ + ψ

[
2ä
a

+ ȧ2

a2

]
= −4πGρ̄(u+ δ)(−w̄) (5.22)

We obtain the dynamical equations for δ and u by requiring that the four diver-
gence of stress energy tensor vanishes, i.e.

T µν;µ = 0 (5.23)

δ̇ = 3u(1− ω) ȧ
a

+ ω

[
3ψ̇ + ∇

2(δφ)
a2φ̇

]
(5.24)
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Making use of the following off-diagonal Einstein equation:

ȧ

a

∂ψ

∂xj
+ ∂ψ̇

∂xj
= 4πGρ̄ω

φ̇

∂(δφ)
∂xj

+ 4πG dmT 0
j (5.25)

with dark matter stress energy contribution as

dmT 0
j = −a2ρ̄dm

∂U

∂xj
(5.26)

where U is dark matter velocity potential, we rewrite equation (5.24) as:

δ̇ = 3uȧ
a

(1− ω) + 3ψ̇ω + 1
4πGρ̄a2∇

2
[
ȧ

a
ψ + ψ̇

]
+ ρ̄dm

ρ̄
∇2U (5.27)

We also get a constraint equation for u

(−1+ω) ∂u
∂xj

= (1−ω) ∂δ
∂xj

+ω
φ̇

∂(δφ)
∂xj

[
3 ȧ
a

+
˙̄ρ
ρ̄

+ ω̇

ω

]
+ω
φ̇

[
− φ̈
φ̇

∂(δφ)
∂xj

+ ∂( ˙δφ)
∂xj

]
−ω ∂ψ

∂xj

(5.28)
We observe that equations (5.22) and (5.27) do not have explicit dependence on
particular details of scalar field (whether it is quintessence or tachyonic), but
equation 5.28 does have such a dependence. Therefore any differences between
models will arise from this equation. We rewrite these equations in a less “field-
specific" form and find that the equations in one of the theories have more terms.
For tachyonic field, equation (5.28) can be written as:

(−1 + ω)
2

∂u

∂xj
= (1− ω) ∂δ

∂xj
+
[
3(1− ω) ȧ

a
+ ω̇

2ω

]
[

1
4πGρ̄

(
ȧ

a

∂ψ

∂xj
+ ∂ψ̇

∂xj

)
+ a2 ρ̄dm

ρ̄

∂U

∂xj

]
(5.29)

While quintessence has extra terms in addition to those present in equation (5.29):

(−1 + ω)
2

∂u

∂xj
= (1− ω) ∂δ

∂xj
+
[
3(1− ω) ȧ

a
+ ω̇

2ω

]
[

1
4πGρ̄

(
ȧ

a

∂ψ

∂xj
+ ∂ψ̇

∂xj

)
+ a2 ρ̄dm

ρ̄

∂U

∂xj

]

+ω
[

3ȧ
8πGρ̄a

∂

∂xj

(
ȧ

a
ψ + ψ̇

)
+ 3ρ̄dmȧa

2ρ̄
∂U

∂xj
+ 1

2
∂δ

∂xj

]
(5.30)

Observing the third line in the above equation and comparing it with the equation
for tachyonic counterpart (5.29), we find that the difference between two models
is encoded in the terms multiplied by ω = (1 + w̄). For the models constrained
by observations, this number is small, much smaller than unity. Effectively this
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makes the differences between two models a second order term.

We relate u to familiar quantities:

(u+ δ)w̄
δ

= (δp)
(δρ) (5.31)

The effective “velocity" perturbation (coming from 5.4) for scalar field is:

θ = k2(δφ)
aφ̇

(5.32)

and the effective speed of sound is:

c2
s =

(u+ δ)w̄ + 3 ȧ
a
(1 + w̄)c2

a
(δφ)
φ̇

δ + 3 ȧ
a
(1 + w̄) (δφ)

φ̇

(5.33)

As stated earlier, we do not need to incorporate an effective c2
s while working

with fields because we have an analytical expression that can be evaluated. But
for comparison of models, we derive approximate effective c2

s for tachyonic field.
Please note that c2

s for quintessence is unity.

For tachyonic field the Lagrangian density is:

L(X,Φ) = −V (Φ)
√

1− 2X (5.34)

In the comoving frame of a scalar field:

c2
s = p,X

ρ,X
= L,X
L,X + 2L,XXX

(5.35)

In case of tachyonic field:

c2
s = (1− 2X) = −w̄ − (1 + w̄)(δg00)rf ≈ −w̄ (5.36)

In linear theory approximation c2
s is just −w̄ as (1+ w̄)� 1 for models allowed by

observations and the second term in eq.(5.36) is effectively of second order. Most
of the comparisons of c2

s in literature are between very different values of c2
s like

between 1, 0.1, 0.01,0, etc. While we see that for models allowed by background
observations, tachyonic c2

s is not very different from quintessence value of 1.

In the following sections, we study the differences in the two models in linear
theory using field perturbations. Note that one can either directly use equations
derived from field perturbations or the fluid perturbations (u and δ) equations
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derived in this section as these are equivalent approaches.

5.4 Results for field-based comparisons

We divide our discussion here into 2 subsections. In first we show comparisons for
quantities, that influence observables, like metric potential (ψ) and its derivative
(ψ̇). In the second subsection, we show differences in dark energy perturbations.

5.4.1 Influence on observables

All observables are affected by metric coefficients. The influence of these coeffi-
cients on dark matter linear growth rate is used in calculating observational effects
like matter clustering, σ8, growth index, etc. Rate of change of potential (ψ̇) affects
CMB photons and causes observable effects like ISW [105, 130].

We present ψ and ψ̇ for the following background evolutions (characterized by
w̄(a)):

• Constant w̄(z) for values: - 0.5 and -0.975

• Chevallier-Polarski-Linder (CPL) paramterization [148, 149]

w̄ = w0 + wa(1−
a

a0
) (5.37)

w̄(z) with parameters: w0 = −0.9 and wa = −0.099

Since differences in growth rate of perturbations with scale has been seen mainly
at very large scales [127, 136, 137] we present results for length-scales: 2000 Mpc
and 10000 Mpc. The differences between two models peak approximately around
10000 Mpc length-scales. At small scales, the growth of perturbations is sup-
pressed, and at very large scales the growth rate is independent of the speed of
sound. It is only in the transition region that we can expect to capture some
differences between models with the same expansion history but a different c2

s.

We show ψ and ψ̇ in figures 5.1,5.2 and 5.3. In the notation used to annotate
the curves, we use ‘quin’ for quintessence models and ‘tach’ for the tachyon models.
Also, we use red color for quintessence and black for the tachyonic field. The length
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scales are mentioned alongside. We find that tachyonic and quintessence models
for w̄ = −0.975 and CPL cases are almost indistinguishable with differences of
the order 0.01% in most cases. Corresponding differences for w̄ = −0.5 are more
significant. These differences grow in a monotonic and continuous manner as
we moves away from w = −1. We plot one extreme case w̄ = −0.5 that is
observationally ruled out but gives an indication of the order of differences between
the two classes of models. CPL and w̄ = −0.975 are observationally allowed
[153, 175] but differences between the models are extremely small at all scales.
For w = −0.5, differences in potentials and its time derivatives can be of the order
10%. w = −0.975 case shows negligible differences of the order 0.01% while CPL
case has differences around 0.1%.
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Figure 5.1: This figure shows the potential ψ and its time derivatives for w̄ = −0.5.
The potentials have been normalized by their present day value. The difference
in different models is higher for λ ∼ 10k.
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Figure 5.2: The plots show the potential ψ and its time derivatives for w̄ = −0.975
case. Clearly, the relative differences are much smaller than in the case of w =
−0.5.

5.4.2 Scalar fields

While dark energy perturbations show more differences (figures 5.4, 5.5 and 5.6)
than potentials, their effects on observables are not very significant as shown in
the previous subsection. Fluctuations are stronger for cases that are significantly
removed from w = −1. Since dark energy perturbations are not directly observ-
able, the significance of fluctuations can only be evaluated through observables as
in the last subsection. We have shown comparisons for dark energy perturbations
in figures 5.4, 5.5 and 5.6. Although there are visible differences (between tachyon
and quintessence cases) in the evolution of DE perturbations but these differences
remain insignificant because the amplitude of perturbations is very small.
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Figure 5.3: Here potential ψ and its time derivatives are plotted for the CPL
model. Differences are much smaller than w = −0.5 and slightly stronger than
w = −0.975 case. This is because in comparison to w = −0.975, the background
evolution for the CPL model has a larger deviation from w = −1.

5.5 Constraining models with CMB anisotropy
data

There are two popular public codes available for CMB anisotropy calculations:
CAMB [176] and CLASS [177, 178, 179]. Both have support for implementing
fluid models with effective c2

s. Here we use CLASS to calculate CMB anisotropy
power spectra for effective c2

s corresponding to tachyon models and quintessence
models. This requires some minor tweaks in the default CLASS code as the
standard version does not have time-dependent c2

s. We modified the code to allow
for a time-varying form of c2

s for tachyon models. There are various ways tachyonic
models can be included in CLASS. We can write effective potentials for the tachyon
field in terms of a chosen background DE (particular w(a)), or we can have an
effective fluid description with c2

s as derived in eq.(5.36). While the former is a
more apt and clean approach, the latter is easier to implement and is expected to
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Figure 5.4: Dark energy (DE) density contrast for w̄ = −0.5 case. It shows growth
of DE normalized by present value.

give same results for (1 + w̄)� 1, which anyway is the region already constrained
by background cosmology probes. In cases where one has well-motivated forms
for potentials, these tachyonic models can be implemented in CLASS with some
more effort. We do this in the next section where we constrain tachyon models for
two well-studied potentials.

We adopt following parametric form for c2
s:

c2
s = c1 ∗ w + c0 (5.38)

This is the simplest form that can capture both quintessence and tachyonic models.
For quintessence, we have c1 = 0 and c0 = 1 and for tachyonic models c1 = −1
and c0 = 0. We then do an MCMC sampling using CLASS with MontePython
[180, 181]. We use CMB (Planck 2018 high-l TT,TE,EE, low-l EE, low-l TT,
lensing) [182] and BAO data (Boss Data Release 12 [183, 184], small-z BAO data
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Figure 5.5: Dark energy (DE) density contrast for w̄ = −0.975 case. Relative
differences between quintessence and tachyonic models are small in comparison
with w = −0.5 case.

from 6dF Galaxy Survey [185] and SDSS DR7 main Galaxy sample [186]). We
find that the two parameters c1 and c0 remain unconstrained. In fig 5.7, we
show triangle plots for 2d marginalized credible intervals. Parameters relating
to DE speed of sound are unconstrained. This result is similar to analyses with
constant c2

s have obtained earlier [169, 170, 171, 172]. While the previous work
deals with either constant c2

s or some particularly chosen form, here we have chosen
an explicit parameterized form for it, which encapsulates both quintessence and
tachyonic field. In figure 5.8, we plot the marginalised posteriors.
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Figure 5.6: Dark energy (DE) density contrast for the CPL case. Curves are neatly
clustered here by field type. This suggests that for this particular background
evolution, tachyonic field and quintessence field evolve similarly for a particular
lengthscale.

5.6 CMB data and tachyonic models

We modify CLASS to implement tachyonic models as a scalar field at linear level,
where equations are obtained from Lagrangian corresponding to tachyonic dark
energy (The equations and modifications related information is provided in B).
Two potentials which we code in CLASS are:

• Exponential potential
V (φ) = V0 exp(− φ

φa
) (5.39)

• Inverse Square Potential

V (φ) = n

4πG

(
1− 2

3n

) 1
2 1
φ2 (5.40)

These two potentials have some interesting features and have been studied in
detail [43, 61]. These potentials have been constrained using low red-shift data
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Figure 5.7: Triangle plot: While background cosmological parameters like density
parameters, H0, w0,etc. are well constrained, perturbation related parameters like
c2
s remain unconstrained.

in [63, 64]. In [63], tachyonic models were constrained using low redshift data
from supernova, Hubble parameter measurements, and BAO data. Evolution of
perturbations was considered in [64] and redshift space distortion data was used for
model comparisons. These models have not yet been constrained using CMB data.
We use CLASS with MontePython to constrain the tachyonic models (with the
above-mentioned potentials) using Planck 2018 data [187]. We use the following
combinations of data:

• CMB (Planck 2018 high-l TT,TE,EE, low-l EE, low-l TT, lensing) [182]

• BAO (Boss Data Release 12 [183, 184], small-z BAO data from 6dF Galaxy
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Figure 5.8: 1-dimensional posterior distributions. Vertical dashed lines mark half-
maximum x-coordinates while the limits quoted at top are 2σ limits.

Survey [185] and SDSS DR7 main Galaxy sample [186])

• Combination of the above-mentioned CMB and BAO data.

• JLA data [188].
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Figure 5.9: 2-d plots for present day matter density parameter Ωcdm and Hubble
parameter (h). Left panel is for exponential potential while right one is for inverse
square. Red lines show the best-fit values for ΛCDM model from Planck 2018
[182]. CMB data, as already known, shrinks the constrained region. H0 tension is
not resolved by tachyonic models considered here.
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Figure 5.10: Triangle plot using four combinations of data, for exponential po-
tential. Potential parameter φa is slightly constrained to be greater with certain
minima. While φa appears to have nonlinear correlations with w0, w0 is con-
strained be close to −1.

5.6.1 Results

We first consider constraints on parameters that only concern background evolu-
tion and are needed irrespective of potentials: density parameter for dark matter
and the Hubble constant. In figure 5.9, we plot contours for present-day matter
density contrast (Ωcdm) and dimensionless Hubble constant (h). CMB data pro-
vides tight constraints. The best fit values of these parameters, from the ΛCDM
model based CMB constraint in Planck 2018 cosmo parameters paper, is repre-
sented by red lines in the figure. We find that the best-fit value (2-d) lies in the
1-sigma region of the JLA data, but it is out of 2-sigma regions for CMB and
BAO data constraints. While h is consistent (within 2-sigma regions), it is Ωcdm,
which is lower for these tachyonic field based cosmological models. So, inference of
dark matter content of the Universe shows dark energy model dependence, when
considering extensions beyond Λ. In figure 5.10, we present the triangle plot for
exponential (exp) potential with potential parameter φa and present-day equation
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Figure 5.11: Triangle plot using four combinations of data, for inverse square
potential. Results are somewhat similar to that for exponential case as potential
parameter n is slightly constrained and is correlated to w0. A particular value of
w0 is favoured, which is not −1, but is close to it.

of state w0, included along with density and Hubble parameter. w0 is constrained
to be close to −1. The potential parameter φa is not constrained by any of the
used data. Triangle plot for inverse-square (insq) potential is presented in figure
5.11. Again, potential parameter n is allowed a very wide region and w0 is very
close to −1. Plots with σ8 are shown in figures 5.12 and 5.13. The constraints for
σ8 for two potentials agree with each other as well as with that for ΛCDM . This
is again a manifestation of the fact that the models which have same background
evolution and are close to Λ are extremely difficult to distinguish.
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Figure 5.13: Triangle plot with σ8 for the inverse square potential. The constraints
are comparable with those for exponential potential as well as ΛCDM
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5.7 Summary

We have studied the prospects of using linear perturbation theory to distinguish
two different models of dark energy: quintessence and tachyonic field. Specif-
ically, we investigate the differences in dynamics of perturbations for the same
background expansion in both models. This helps us separate the effects coming
from different background expansions and differences due to perturbations.

We recast linear theory equations in a form that provides insight into how the
systems of perturbations differ in two theories. We show that when the equations
for both are written in fluid terms, substituting for corresponding field terms, one
of the equations has extra terms for quintessence. These first-order terms are
multiplied by ω ≡ (1 +w). This implies that if the background expansion is close
to w = −1, differences between the two models diminish.

We calculated and showed the evolution of quantities like ψ and its deriva-
tive, which affects the observables. These numerical calculations demonstrate the
theoretical dependence on the factor of (1 + w).

We find that the differences between models while being small at all scales are
largest around the scale of 10000 Mpc. We believe that this is due to the difference
between the effective speed of sound in two models and that this difference is seen
in the transition scales from suppression of perturbations at small scales to growth
at large scales.

We used the definition of effective c2
s for two models to write a parametric

form for c2
s(≡ c1 ∗w+ c0) which incorporates both fields as instances of particular

values of the parameters. We then used CMB data to constrain this parametric
form to see if we can distinguish two models and find that two parameters c0 and
c1 remain unconstrained.

We modified the CMB anisotropy code CLASS to incorporate tachyon models.
We then used it to constrain common tachyonic potentials: V ∝ exp(− φ

φa
) and

V ∝ φ−2 using CMB and other data. We find that the parameters are very weakly
constrained.

We have shown that it is very difficult to distinguish between these two classes
of models at large scales where linear perturbation theory is applicable. We have
also shown that this is primarily because only models with (1+w)� 1 are allowed
and in this regime, the differences between the two classes of models are effectively
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of second order. Combined with our earlier work where we have explored these
models at small scales using spherical collapse, it appears that there are no obvious
observables available at present that may be used to distinguish between these two
classes of models if the expansion history is the same. We can conclude that at
least for these two classes of dark energy, as also for a fluid model of dark energy,
the choice of class of models is irrelevant and calculation of observables may be
done in any model. On one hand, this is a potential simplification of calculations,
on the other hand, it means that we cannot know which of the models is the true
model for dark energy.
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Chapter 6

Summary and Prospects

This chapter summarizes this thesis, highlights main results and touches upon
future prospects.

6.1 Summary

The work in this thesis was done for studying the effects of perturbations in
scalar field dark energy models. We simulated cosmological models with dark
matter and dark energy perturbations. First we studied nonlinear perturbations,
in spherical symmetry, with dark energy represented by canonical scalar field called
“quintessence”. Then we developed the techniques for numerical reconstruction of
potentials in quintessence and tachyonic models, given some background cosmol-
ogy. This was followed by spherically symmetric simulations with tachyonic dark
energy and subsequent comparison with quintessence for same background expan-
sion. Comparisons make use of reconstruction techniques developed in previous
part. Next, we did comparative studies of perturbations in two models using (lin-
ear) cosmological perturbation theory. Further we used CMB data to check the
prospects of distinguishing two models. Also, we tried to constrain cosmology
with tachyonic dark energy using CMB and other data sets.

The main results of these studies are:

• For both, tachyonic fields and quintessence, perturbations in dark energy
field are induced by metric perturbations. These grow in time.
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• The induced perturbations remain small, even when the matter perturba-
tions have become highly nonlinear.

• Scale of perturbations is very important for growth of dark energy pertur-
bations. Larger perturbations with small amplitudes evolve to be stronger
than those with bigger amplitudes but smaller lengthscales.

• Even though dark energy perturbations are induced and they grow with
time, their effect on dark matter or metric is insignificant. This can be at-
tributed to the fact that background, for the most part of expansion history,
is dominated by dark matter, while dark energy domination is a relatively
recent phenomenon.

• Rate of growth of dark energy perturbations is higher (particularly at late
times) in nonlinear evolution as compared to linear calculations.

• Effective equation of state (w) becomes a function of space-time.

• Dynamics of DE perturbations is stronger in large voids and these can be
plausible systems for diagnostics of DE perturbations. This is because dark
energy component dominates over dark matter in these regions. Further
these are large and dark energy perturbations have an opportunity to grow.

• Comparing linear as well as nonlinear perturbations in tachyonic models
and quintessence models, we find that the differences in perturbations are
dependent on relative differences in background. We simulated perturbations
in two models with exactly same background. For backgrounds close to
ΛCDM (w ∼ −1), differences are small and increase as we go away from
w = −1. Dark matter/metric perturbations do not exhibit any significant
differences for two different Lagrangians. Dark energy fluctuations do show
differences, but these differences diminish as background expansion is tuned
closer to w = −1. For background expansion history (or w) constrained by
current observations, observables do not show any significant distinguishing
features.

• We used linear theory formalism to provide insight into how differences de-
pend on background expansion. Specifically, there is an extra term in equa-
tions for quintessence which contains terms of linear order and is prefixed
by (1 + w). Effectively this makes the difference between quintessence and
tachyon models as second order if (1 + w)� 1.

• We used effective speed of sound (of dark energy: c2
s) formalism to constrain

a parametric form of c2
s using CMB data (Planck 2018 data release). We find
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that the parameters are not constrained well enough to distinguish tachyonic
models from quintessence.

• We also constrained cosmology for two specific tachyonic models: Inverse-
square potential and exponential potential. Parameters of potentials are
weakly constrained, while value of Ω’s is different from what one would
obtain from ΛCDM parameter estimation. This demonstrates the fact the
parameter values are dependent on dark energy model assumed.

6.2 Prospects

Most of the cosmological simulations are based on a split of space-time into
background and perturbations. Perturbations may be treated in linear ap-
proximation or in some other approximation (e.g. symmetry). In such cal-
culations, large perturbations of a component, which is not dominant at
background level, do not affect the space-time evolution significantly . At
all times there is an assumption about uniform background’s composition.
On the contrary, in a more realistic situation there may be possibilities of
regions where a particular component comes to domination, but is not the
most significant in terms of global averaging. This calls for simulations that
avoid this splitting and which simulate space-time as a whole. Further sim-
ulations need to be developed which are based on relativistic formulations
rather than Newtonian approximations or linear equations. There are some
efforts in this direction[86, 87, 88]. Further investigations and work would
be needed for these types of simulations to evolve and achieve multiphysics
capacity as achieved by traditional N-body simulations.
Along these lines, in future work, we would be exploring relativistic N-body
simulations and cosmological simulations based on numerical relativity for-
malism. Also, there is possibility of extending the linear theory calculations
comparing perturbations in different Lagrangians of dark energy by assuming
a general form for Lagrangian and then expanding it around its homogeneous
and isotropic form.
Study of voids dominated by dark energy and formation of dark energy ha-
los is another prospect that can be explored particularly using gravitational
lensing.
Working out forecasts to find out the sensitivity of observations required to
differentiate between the class of models. This will help us know if upcoming
surveys would be capable of distinguishing between these models.

123



124



Appendix A

Methods for Chapter 2

A.1 T µν for scalar field

In order to get Einstein’s equation in the familiar form, we define the stress-energy
tensor as follows:

Tµν = −2c
[
∂Lψ
∂gµν

− 1
2Lψgµν

]
(A.1)

Owing to spherical symmetry we get the following non-vanishing components.

Tµν = c [∂µψ∂νψ − Lψgµν ] (A.2)

T 0
0 = c

[
ψ̇2

2c2 + e−2Bψ′2

2 + V

]
(A.3)

T 1
1 = −c

[
ψ̇2

2c2 + e−2Bψ′2

2 − V
]

(A.4)

T 2
2 = T 3

3 = −c
[
ψ̇2

2c2 −
e−2Bψ′2

2 − V
]

(A.5)

T 1
0 = −ce−2Bψ̇ψ′ (A.6)

T 0
1 = ψ̇ψ′

c
(A.7)

Vanishing of four divergence of stress energy tensor gives us the equation of
motion for the scalar field:

T µ0 ,µ = cψ̇

[
e−2B

(
B′ψ′ − ψ′′ − 2R

′

R
ψ′
)

+ Ḃψ̇

c2 + 2ψ̇Ṙ
Rc2 + ψ̈

c2 + V,ψ

]
= 0 (A.8)
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A.2 Einstein Equations

Variation of Einstein-Hilbert action gives us:

δIEin−Hilb = c3

16πG

∫
(drdθdφdt)

√
−g

[
Rµν −

1
2gµνRE

]
δgµν

where Ricci scalar is represented as RE to distinguish it from metric coefficient
R. Combining this variation with the stress- energy tensor for ψ in previous
sub-subsection, we get Einstein’s equations

Gµ
ν = Rµ

ν −
1
2δ

µ
νRE = 8πG

c4 T µν

(1
1) component

[
1
R2 − e

−2BR
′2

R2 + Ṙ2

c2R2 + 2R̈
c2R

]
= −8πG

c3

[
ψ̇2

2c2 + e−2Bψ′2

2 − V
]

(A.9)

(2
2) and (3

3) component

e−2B
[
R′B′

R
− R′′

R

]
+ 1
c2

[
ṘḂ

R
+ R̈

R
+ Ḃ2 + B̈

]
= −8πG

c3

[
ψ̇2

2c2 −
e−2Bψ′2

2 − V
]

(A.10)
(0
0) component

−e−2B

(R′
R

)2

− 2R′B′
R

+ 2R′′
R

+ 1
R2 + Ṙ2

c2R2 + 2ṘḂ
c2R

=

8πGρ
c2 + 8πG

c3

[
ψ̇2

2c2 + e−2Bψ′2

2 + V

] (A.11)

(1
0) and (0

1) components yield same equation

R′Ḃ − Ṙ′ = 4πG
c3 ψ̇ψ′R (A.12)

Combining equations for (0
0),(1

1) and (2
2) components, we obtain:

B̈ = 8πG
c

[
e−2Bψ′2 + V + ρc

2

]
+ 2e−2Bc2

[
R′′

R
− R′B′

R

]
− 2ḂṘ

R
− Ḃ2 (A.13)

or equivalently we can obtain

B̈ = −c2e−2BR
′2

R2 + c2

R2 + Ṙ2

R2 − Ḃ
2 − 4πGρ− 8πG

c

[
ψ̇2

2c2 − e
−2Bψ

′2

2

]
(A.14)
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and from (1
1), we already have eqn.(A.9). Rewriting it again

R̈

R
= −4πG

c

[
ψ̇2

2c2 + e−2Bψ′2

2 − V
]
− 1

2
Ṙ2

R2 + c2

2

[
e−2BR

′2

R2 −
1
R2

]
(A.15)

A.3 Numerical Methods

Three second order partial differential equations, eq (2.3),(2.4) and (2.5), can be
written as 6 first order partial differential equations and we have two first order
partial differential equations for ρ and R′ giving us total of 8 first order partial
differential equations.

ẋi(r) = fi [x1(r), x2(r), .., x8(r), x′1(r), x′′1(r), x′3(r)] (A.16)

{x1, x2, x3, x4, x5, x6, x7, x8} =
{
ψ,R,B, ψ̇, Ṙ, Ḃ, ρ, R′

}
(A.17)

But solving these equations using time ’t’ as parameter turns out to be time con-
suming, so we switch to background scale factor ’a(t)’ as independent parameter.
Switching from ’t’ to ’a’ requires simultaneously solving two more equations for ȧ
and ä:

Having structured equations in above form, we used a RK4 algorithm to solve
the equations in following flow:

• Initialise all variables

• Loop over "a" begins

Calculate spatial derivatives

RK4 first predictor step to calculate xik1’s

Calculate spatial derivatives

RK4 second predictor step to calculate xik2’s

Calculate spatial derivatives

RK4 third predictor step to calculate xik3’s

Calculate spatial derivatives

RK4 fourth predictor step to calculate xik4’s and correction.

• Loop over "a" ends
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We have tested the algorithm for numerical convergence by varying ∆t and ∆r.
Further, the epoch of virialisation scales correctly with initial density contrasts.
We have also solved the equations in the case of ΛCDM and compared with the
solutions obtained using the first integral. These tests have been used to validate
the code.
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Appendix B

Linear Theory Equations for
modification of CLASS for
Chapter 5

B.1 Equations in Synchronous Gauge

Here we present the equations required for modification of CLASS for tachyonic
field. Since synchronous gauge is the default gauge in CLASS, we write the equa-
tions in this gauge. Quintessence with some potentials are already implemented
in CLASS, one can simply follow the same structure for incorporating the tachy-
onic models. Here, we present equations for both quintessence and tachyonic field
because this helps on modifications comparing with quintessence implementation.

Note: In this section, we use conformal time and prime represents derivative
wrt to conformal time.

Field dynamics equation: For tachyonic models

(δφ)′′ =
[
1− φ′2

a2

] [
a2(δφ)

{
(V,φ)2

V 2 −
(V,φφ)2

V 2

}
+∇2(δφ)− φ′h′

2

]

+(δφ)′
[
−2a′
a

+ 9a
′

a

φ′2

a2 + 2
V,φ
V 2 φ

′2
]

(B.1)

For quintessence

(δφ)′′ = −a2(δφ)(V,φφ)− φ′h′

2 − 2a′
a

(δφ)′ +∇2(δφ) (B.2)
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Density (δρ) and pressure perturbations (δp): For tachyonic field

(δρ) =
(δφ)(V,φ)√

1− φ′2

a2

+ V φ′(δφ)′

a2
[
1− φ′2

a2

]3/2 (B.3)

(δp) = −(δφ)(V,φ)
√

1− φ′2

a2 + V φ′(δφ)′

a2
√

1− φ′2

a2

(B.4)

For quintessence
(δρ) = (δφ)(V,φ) + φ′(δφ)′

a2 (B.5)

(δp) = −(δφ)(V,φ) + φ′(δφ)′
a2 (B.6)

Effective velocity perturbations:
For tachyonic field

(ρ̄+ p̄)θ = ikj(δT )0
j = φ′

a2k
2(δφ) V√

1− φ′2

a2

(B.7)

For quintessence
(ρ̄+ p̄)θ = φ′

a2k
2(δφ) (B.8)
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