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Abstract

We model certain real systems using classical spins with some suitable spin inter-
action Hamiltonian. In all the simulations, Classical Monte Carlo method is used
to extract expectation value of observables like Energy, Magnetisation, Specific
Heat and Susceptibility from a large periodic spin lattice at a particular temper-
ature. The spins interact via a particular model as if they are mimicing a corre-
sponding real system (some Magnetic material). In the initial chapters we discuss
how the Classical Monte Carlo method is the preferable one. Then in the later
chapters we mainly deal with two types of models on large periodic spin lattices:

1. Triangular lattice model with site distortions: Here, we apply the Heisen-
berg model on triangular lattice. This model also demonstrates geometrical
frustration. We divide this discussion into two parts, one with lattice distor-
tion and the other without lattice distortion.

2. Heisenberg Kitaev model (Honey Comb lattice): Here, we deal with spin
interactions on Honeycomb lattice. We see variation in the magnetic or-
der of the ground state spin configuration with the relative variation of the
parameters values of the model.

Under a particular model of spin interations, we see how the magnetic phase of
our lattice makes transitions with changes in temperature. The task is to find the
values of the parameters of a given model and temperatures for which the system
attains magnetic ordering i.e. it settles to a phase.
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Chapter 1

Introduction

The diversity of systems and phenomena available for study makes Condensed
Matter physics the most active field of contemporary physics[1][2]. We know that
Condensed Matter Physics deals with the physical properties of condensed phases
of matter[13]. The most familiar condensed phases are solids and liquids.

Of the various physical properties, magnetic properties of systems are of signifi-
cant importance and have wide applications. Materials with magnetic properties
are understood mostly through spin models.

We use suitable classical spin models to study such systems. Also, magnetic phase
transition is a very common phenomena in such systems. We track the magnetic
ordering of our system at various temperatures using structure factor calculations.
This gives us idea about the manner in which phase change is happening with
temperature. We also look at the ground state spin configurations of our system
for different values of the model parameters to get further insight about the real
systems. This enables us to make better predictions about the behaviour of real
systems under different conditions.

In this chapter we understand what are models and how they are important in Con-
densed Matter Physics. We further discuss how computer simulations are of great
help nowadays.

1.1 Models
As we know, the way science understands nature is by giving a theory in the form
of some model and applying it to nature. We need to understand the functioning
of the real systems involved to explain a physical phenomena. A good model can
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represent the physical system to a great extent. A model consist of parts which
interact in certain ways. For example, Ising model, which is a spin model, is used
to study phase transition in Ferromagnets.

Models are often systems for which certain quantities can be computed exactly or
atleast can be reduced to simpler forms. Such techniques are very specialized and
only work in certain special cases[7].

We, in particular, deal with spin models. Many real systems can be modelled in
terms of classical spins on different types of lattices. Examples,

• AEMnO3: In such materials, Mn moments sits on Cubic lattice.

• RE2M2O7: In such materials, magnetic moments sits on Pyrochlore lattice.

1.2 Computer Simulations
Physics was first known as ‘natural philosophy’ historically. Pure theoretical (or
philosophical) investigation was the way of doing research. Whether a given the-
ory really applies to nature or not was not known. This lack of real knowledge
limited the true progress. Experimental investigation, eventually, became an ac-
cepted form of research. Although physicist’s ability to prepare a sample for study
or to devise techniques to probe for the desired properties always limited it.

Direct comparison between analytical theory and experiment is inconclusive in
numerous situations. For example, the theory of phase transitions in condensed
matter must begin with the choice of a Hamiltonian, and to what extent a par-
ticular model actually represents a real material on which experiments are done
is seldom clear. Since mathematical approximations are also usually required in
analytical treatments, whose accuracy is difficult to control or assess, one does not
know whether discrepancies between theory and experiment should be attributed
to the approximations, shortcomings of the model, or both.

With the advent of computers it became possible to carry out simulations of mod-
els which were intractable using ‘classical’ theoretical techniques. In many cases
computers have enabled physicists to invent new models for various aspects of
nature and to solve those same models without substantial simplification. Com-
puter power has increased quite dramatically in recent years. Access to computers
is becoming both easier and more common (e.g. with personal computers and
workstations) and computer simulation methods have also been steadily refined.
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As a result computer simulations have become another way of doing physics re-
search. In some cases simulations provide a theoretical basis for understanding
experimental results, and in other instances simulations provide ‘experimental’
data with which theory may be compared[8].
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Chapter 2

Method and Simulation of the Spin
System

In this chapter we introduce the main concept of Metropolis algorithm which in-
volves Classical Monte Carlo method. We also discuss how the method and algo-
rithm are implimented in our simulation programs.

2.1 Classical Monte Carlo Method
If we want to find the expectation value of an observable A for a system that has
a discrete number of states, we could, using a computer, calculate A for each state
and weight these values by their Boltzman factors.

〈A〉 =

∑
r Are−βEr∑

r e−βEr
, (2.1)

where Ar is the value of A for the state r.

This might be feasible for a system with a small number of states, but if we have
a 20×20 spin lattice interacting via the Ising model, there are 2400 states, so we
cannot possibly examine all of them. We can also approximate the calculation by
sampling some of the states.

Here “Monte Carlo” part comes in. Named for the Mediterranean casino town,
a Monte Carlo method is any algorithm that involves a pseudorandom number
generator[9].
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2.2 Metropolis Algorithm
One way of using random numbers would be to randomly pick a lot of states,
measure A for each of them, and weight these values of A by their Boltzman
factors. If we sample a lot of states we might get close to the right answer, but it
would take a lot of time calculating A for states that contribute very little to the
final result. It is because an Ising lattice at very high temperature is less likely to
be in the state with all spins pointing in one direction.

Instead of sampling (measuring parameters like A for) a lot of states and then
weighting them by their Boltzman factors, it is better to choose states based on
their Boltzman factors and to then weight them equally. This is known as the
Metropolis algorithm and it is an important sampling technique[9].

For our system lying in a particular spin configuration, as shown in figure 2.1, one
pass through the algorithm is as follows:

1. A trial configuration is made by choosing one spin and randomly modifying
it, i.e., assigning a new value.

2. The energy difference of this trial state (i.e., the new configuration with the
modified spin) relative to the initial state, δE is calculated.

3. If δE ≤ 0, the trial state is accepted as it is energetically favorable. Other-
wise, a random number 0 ≤ η ≤ 1 is generated, and the new state is only
accepted if e−βδE > η. This condition can be rewritten as −βδE > log η,
which is used in the code[9].

2.3 Program Outline
In the program we have a general m × n spin lattice. The spins at each lattice site
can, in general, point in a direction, discretely, in 3-D space. We initialize our
system with some spin configuration.

Starting at the given high temperature, our system is continuously modified by
reassigning a new value to one spin at a time, i.e. one pass through the Metropo-
lis algorithm as discribed in section 2.2. We move to next spin keeping all the
previous changes whether accepted or rejected. Whenever we modify any spin,
as needed by the Metropolis algorithm, we calculate and compare the energy of
the whole system, i.e., of all spins in total, of the modified state with the previ-
ous state. When this spin-by-spin updation process, beginning from the first spin,
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Figure 2.1: A random spin configuration on a 20 × 20 lattice

reaches the last spin of the configuration of m × n spin lattice, it is refered to as
one simulation step in the program. In other words, updating the whole spin lat-
tice one spin at a time is a single simulation step.

So, starting from the given high temperature, or at any temperature in general,
the system goes through 1000 such steps of updation without other calculations
besides energy which is a requirement of the algorithm. But these energies are not
recorded. These simulation steps are refered to as equilibration steps.

After these 1000 equilibration steps it is expected that the spin configuration
would be reflection the spin state of the real system we are modeling. So now,
for the next 1000 steps, we calculate observables like Energy and Magnetisation.
These simulation steps are refered to as averaging steps because at the end of
these 1000 steps we take the averages of these observables to calculate the expec-
tation values of Energy, Magnetisation, Specific heat and Susceptibility.

The calculation of the Energy depends on the type of model under consideration.
A particular model has a specific hamiltonian which accounts for the interation of
a spin with its neighbouring spins. The interactions can be either magnetic or due
to their relative positions or both.
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After these 1000 equilibration and 1000 averaging steps, the temperature param-
eter is reduced by a fixed amount and similar simulation process is repeated again
at this temperature. This process continues till the system reaches the given low
temperature. At the end of last 1000 + 1000 steps at the lowest temperature the
state of the system is refered to as ground state and is ploted in the later chapters.

2.4 Key Observables
Mainly we are concerned with Energy, Magnetisation, Specific heat and Suscep-
tibility of the system at some temperature. We can measure the magnetization by
taking the sum of all the spins in the lattice, and we can calculate the energy by
determining the energy for each spin and dividing by two for double counting.
Other quantities can be calculated using the following formulae:

Specific Heat,

CV =
β

T
[〈E2〉 − 〈E〉2] (2.2)

Susceptibility,
χ = β[〈M2〉 − 〈M〉2] (2.3)

7



Chapter 3

Heisenberg Model on Square Lattice

Now lets work out a basic model, the Heisenberg model. In this model, spins can
orient in 3D space and are fixed on their lattice sites. The Hamiltonian for the near
neighbour spin interactions is given by,

H = J
∑
〈i j〉

−→
S i ·
−→
S j (3.1)

The program is run for the following parameters:

• J = 1 which is for a antiferromagnet.

• 10 × 10 spin lattice

• High temperature = 6J, Low temperature = 0.25J

• Temperature step size = 0.25J

• Equilibration steps = 2500, Averaging steps = 2500

Following are the results and the plots of the key observables, as shown from table
3.1 to figure 3.4
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THE MAIN PROPERTIES
T Eavg Mavg CV χ

6 -0.352593 0.120496 0.000619643 0.00135794
5.75 -0.370344 0.126728 0.000719426 0.00160135
5.5 -0.383642 0.126568 0.00077537 0.00155246
5.25 -0.399834 0.129408 0.000857852 0.00179112
5 -0.428004 0.135304 0.000980088 0.00206686
4.75 -0.451999 0.14052 0.00108136 0.00239695
4.5 -0.477965 0.149288 0.00131892 0.00277512
4.25 -0.511748 0.155288 0.00146137 0.00309777
4 -0.554348 0.171256 0.00178541 0.00413061
3.75 -0.59083 0.17688 0.00216569 0.00452776
3.5 -0.659974 0.196768 0.00229074 0.00602949
3.25 -0.723313 0.225672 0.0033828 0.00826355
3 -0.81461 0.263575 0.00395837 0.0110699
2.75 -0.949633 0.354264 0.00661012 0.0185852
2.5 -1.19539 0.546353 0.0108968 0.0255181
2.25 -1.48033 0.754822 0.0130588 0.0192151
2 -1.74234 0.910735 0.00742561 0.00347927
1.75 -1.86959 0.960717 0.00446141 0.00103082
1.5 -1.94924 0.985801 0.0020824 0.000314633
1.25 -1.98127 0.995109 0.00101227 9.88007e-05
1 -1.99133 0.99779 0.00071907 5.1558e-05
0.75 -1.99237 0.998079 0.00114441 5.82536e-05
0.5 -1.99307 0.998247 0.00246716 8.51154e-05
0.25 -1.99231 0.998071 0.0105515 0.000178099

Table 3.1: Observables–Energy, Magnetisation, Specific Heat and Susceptibility,
for Heisenberg Model on a 10 × 10 lattice, for J = 1
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Figure 3.1: Energy as a function of Temperature, for Heisenberg Model on a
10 × 10 lattice, for J = 1

Figure 3.2: Magnetization as a function of Temperature, for Heisenberg Model on
a 10 × 10 lattice, for J = 1
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Figure 3.3: Specific Heat as a function of Temperature, for Heisenberg Model on
a 10 × 10 lattice, for J = 1

Figure 3.4: Susceptibility as a function of Temperature, for Heisenberg Model on
a 10 × 10 lattice, for J = 1

The program is also run for 10 × 10, 40 × 40 and 80 × 80 spin lattices with the
following parameters:

• J = 1 which is for a antiferromagnet.
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• High temperature = 2, Low temperature = 0.05

• Temperature step size = 0.05

• Equilibration steps = 10000, Averaging steps = 10000

The following plot, figure 3.5, is the Magnetisation versus Temperature plot for
different lattice sizes. It shows that phase transition is sharp for bigger lattice
sizes.

Figure 3.5: Magnetization as a function of Temperature, for Heisenberg Model on
10 × 10, 40 × 40 and 80 × 80 lattices, for J = 1

12



Chapter 4

Triangular lattice Model

In this chapter we deal with the triangular lattice model with and without lat-
tice distortions. Examples of real systems where such models can be applied are
LiMnO2 and NiGaS 4.

Figure 4.1 shows the actual triangular lattices and figure 4.2 shows how it can be
interpreted while making a program. In other words, a triangular lattice can be
modeled as a square lattice with an extra diagonal interaction.

Figure 4.1: Triangular lattice Figure 4.2: Equivalent square
lattice

Thus, Hamiltonian for this model is similar to Heisenberg model but here i and j
also goes over one of the diagonal neighbouring spins.

H = J
∑
〈i j〉

~S i · ~S j (4.1)

Also we only deal with the case when spins can only be in a plane. So we are
having an X − Y model. An important point to notice for such model is that if
we take J as -1, i.e., as in ferromagnetic case, then ground state is obviously a
ferromagnet. Because in ferromagnetic configuration, all spins in one direction is

13



the favourable case with minimum energy.

But if we take J as +1, then ground state cannot be an antiferromagnet due to
an apparent strain that any spin can feel because of the neighbouring spins at
triangular position. Figure 4.3 shows how spin-a cannot anti-allign with either
of spin-b and spin-c, as in one case it minimizes energy but in other case that
orientation costs too much energy.

Figure 4.3: Demonstration of frustration on a triangle of spins

Hence J = +1 is an interesting case to see which is what we see in the following
sections. This case serves to demonstrate geometrical frustration. Geometrical
frustration is one of the key concepts in modern condensed matter theory. It is
related to the impossibility of simultaneously minimizing the energy for all con-
stituents of a system due to geometrical constraints[10].

In one section spins in their ground state minimizes energy by orienting in a trian-
gular fashion and in the next section we see that besides orienting this way, they
also try to move to other locations to minimize energy.

We also calculate the Structure factor in the program. Lets first understand what it
is. For a periodic lattice like ours, structure factor is simply the squared modulus
of the Fourier transform of the lattice, and it is itself a periodic arrangement of
points, known as the reciprocal lattice.

14



In single expression it can be written as,

S ~q =
∑
〈i j〉

(~S i · ~S j)ei~q·(~ri−~r j) (4.2)

where ~q is the change in the wave vector or the scattering vector M k as in the
context of X-ray diffraction by a crystal.

Structure factor can also be written as,

S ~q = fx · f ∗x + fy · f ∗y + fz · f ∗z (4.3)

where f ′s are given by,
fx(qx, qy) =

∑
i

S x
i ei~q·~ri , (4.4)

fy(qx, qy) =
∑

i

S y
i e

i~q·~ri , (4.5)

fx(qx, qy) =
∑

i

S z
i e

i~q·~ri (4.6)

4.1 Triangular lattice without lattice distortion
If we are considering our lattice cannot distort, then the ground state results into
spins aligned at 120◦ with the neighbouring spins as shown in figure 4.4. The
program is run for the following parameters:

• J = 1

• 20 × 20 spin lattice

• High temperature = 5J, Low temperature = 0.1J

• Temperature step size = 0.1J

• Equilibration steps = 1000, Averaging steps = 1000

From the data file generated, for T = 0.2J (near ground state temperature), we
get highest S ~q value as 0.4287 for (qx, qy) = (2.19911, 2.19911) and (-2.19911,
-2.19911). This corresponds to the 2π

3 or 120◦ angle with which each spin is al-
ligned to the neighbouring spin in the ground state.

Plots for CV and S ~q are also shown below.
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Figure 4.4: Ground state spin configuration, for Triangular lattice X − Y model
without distortion on a 20 × 20 lattice, for J = 1

Figure 4.5: Specific Heat as a function of Temperature, for Triangular lattice X−Y
model without distortion on a 20 × 20 lattice, for J = 1
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Figure 4.6: Structure factor at T = 2, plotted against the reciprocal lattice coordi-
nates, for Triangular lattice X − Y model without distortion on a 20 × 20 lattice,
for J = 1

Figure 4.7: Structure factor at T = 0.6, plotted against the reciprocal lattice coor-
dinates, for Triangular lattice X − Y model without distortion on a 20 × 20 lattice,
for J = 1
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Figure 4.8: Structure factor at T = 0.2, plotted against the reciprocal lattice coor-
dinates, for Triangular lattice X − Y model without distortion on a 20 × 20 lattice,
for J = 1

4.2 Triangular lattice with lattice distortion
If our lattice is allowed to distort, i.e., if spins can move by little amounts around
their lattice sites, then we get our ground state which is a combination of both spin
orientation in a nearly triangular fashion and spins shifted from their positions. We
can also find the pattern of the spin shifts by finding the Structure factor for spin
positions in the same way as it is calculated for spin directions. But this work is
yet to be done and is in its partial stage.

The Hamiltonian in this case is given by,

H =
∑
〈i j〉

Ji j ~S i · ~S j +
1
2

k
∑

i

|ui|
2, (4.7)

where,

• Ji j = J(1 − ui j)

• ui j is the increment in the distances between the two spins.

• ui is the distance of the spin from its lattice site.

The program is run for the following parameters:
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• J = 1

• 20 × 20 spin lattice

• High temperature = 5J, Low temperature = 0.1J

• Temperature step size = 0.1J

• Equilibration steps = 1000, Averaging steps = 1000

Figure 4.9 and 4.10 shows the ground state after the simulations.

Figure 4.9: Ground state spin configuration, for Triangular lattice X − Y model
with distortion on a 20 × 20 lattice, for J = 1

Figure 4.10: Close view of ground state spin configuration, for Triangular lattice
X − Y model with distortion on a 20 × 20 lattice, for J = 1
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Chapter 5

Heisenberg Kitaev model

This chapter deals with Heisenberg Kitaev model in which our lattice is of the
form of honeycomb, figure 5.1, but it can also be modeled in the form of a square
lattice as in figure 5.2 for the simulation purpose. An example where this model
is applicable is for Na2IrO3.

Figure 5.1: Honeycomb lattice Figure 5.2: Equivalent square
lattice

The interaction Hamiltonian has two kind of terms. One is the usual interation
term with a coefficient α and other is the Kitaev term with coefficient β. The
Hamiltonian is given as,

H = α
∑
〈i j〉

~S i · ~S j − β
∑
〈i j〉

(S x
i S x

i+x + S y
i S

y
i+y + S z

i S
z
i+z) (5.1)

In this model, as is shown in figure 5.1, there are three types of bonds– x, y and z
and the pattern is repeated in a similar fashion. So if a bond is x-type, then, as in
our Kitaev term, it interacts with the neighbouring spin via x component of spin.
And similar are the interactions along y-type and z-type bonds. In this model,
unlike triangular lattice model, spins are allowed to orient in 3-D space.

Figures from 5.3 to 5.11 are the Structure factor plots and the ground state spin
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configurations for different values of α and β. The simulations were done for the
following parameters:

• 20 × 20 spin lattice

• High temperature = 5J, Low temperature = 0.1J

• Temperature step size = 0.1J

• Equilibration steps = 1000, Averaging steps = 1000

Figure 5.3: Structure factor for α = 1, β = 0 and at T = 0.1, plotted against the re-
ciprocal lattice coordinates, for Heisenberg-Kitaev model on a 20×20 honeycomb
lattice

Figure 5.4: Structure factor for α = -1, β = 0 and at T = 0.1, plotted against the re-
ciprocal lattice coordinates, for Heisenberg-Kitaev model on a 20×20 honeycomb
lattice
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Figure 5.5: Structure factor for α = 0, β = 1 and at T = 0.1, plotted against the re-
ciprocal lattice coordinates, for Heisenberg-Kitaev model on a 20×20 honeycomb
lattice

Figure 5.6: Structure factor for α = 0.1, β = 1 and at T = 0.1, plotted against the
reciprocal lattice coordinates, for Heisenberg-Kitaev model on a 20 × 20 honey-
comb lattice
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Figure 5.7: Ground state spin configuration for α = 1 and β = 0, for Heisenberg-
Kitaev model on a 20 × 20 honeycomb lattice

Figure 5.8: Ground state spin configuration for α = -1 and β = 0, for Heisenberg-
Kitaev model on a 20 × 20 honeycomb lattice
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Figure 5.9: Ground state spin configuration for α = 0 and β = 1, for Heisenberg-
Kitaev model on a 20 × 20 honeycomb lattice

Figure 5.10: Ground state spin configuration for α = 0.1 and β = 1, for
Heisenberg-Kitaev model on a 20 × 20 honeycomb lattice
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Figure 5.11: Top view of ground state spin configuration for α = 0.1 and β = 1,
for Heisenberg-Kitaev model on a 20 × 20 honeycomb lattice

Figures from 5.12 to 5.18 are the Structure factor plot and the ground state spin
configurations for other different values of α and β. The simulations were done
for the following parameters:

• 20 × 20 spin lattice

• High temperature = 3J, Low temperature = 0.05J

• Temperature step size = 0.05J

• Equilibration steps = 5000, Averaging steps = 5000
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Figure 5.12: Structure factor for α = 0.1, β = 1, and at T = 0.05, plotted against
the reciprocal lattice coordinates, for Heisenberg-Kitaev model on a 20 × 20 hon-
eycomb lattice. Identical plots were obtained for α = 0.2, 0.3, 0.4, 0.5, 0.6 and
rest being the same.

Figure 5.13: Ground state spin configuration for α = 0.1 and β = 1, for
Heisenberg-Kitaev model on a 20 × 20 honeycomb lattice
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Figure 5.14: Ground state spin configuration for α = 0.2 and β = 1, for
Heisenberg-Kitaev model on a 20 × 20 honeycomb lattice

Figure 5.15: Ground state spin configuration for α = 0.3 and β = 1, for
Heisenberg-Kitaev model on a 20 × 20 honeycomb lattice
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Figure 5.16: Ground state spin configuration for α = 0.4 and β = 1, for
Heisenberg-Kitaev model on a 20 × 20 honeycomb lattice

Figure 5.17: Ground state spin configuration for α = 0.5 and β = 1, for
Heisenberg-Kitaev model on a 20 × 20 honeycomb lattice
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Figure 5.18: Ground state spin configuration for α = 0.6 and β = 1, for
Heisenberg-Kitaev model on a 20 × 20 honeycomb lattice
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Chapter 6

Summary

From the models we have discussed so far it is clear that using Monte Carlo
method with Metropolis algorithm is a very effective sampling technique.

In chapter 3, Heisenberg model on square lattice, we learn how the various ob-
servables can be calculated for a spin system at some temperature. We also see
how the magnetic phase transition occurs as our system size grows.

In chapter 4, Triangular lattice model, we apply the Heisenberg model on triangu-
lar lattice. We construct an equivalent spin interaction structure of triangular lat-
tice on square lattice for simulation purpose. Triangular lattice model also serves
as a good example to demonstrate the possibility of geometrical frustration in spin
systems. In the first part we do not allow lattice distortion. The structure factor
calculations reveals that the ground state has a magnetic order in which adjacent
spins align at 120 degree angle. In the second part, where we allow the lattice to
distort, we observe that to minimize energy the spins also move from their loca-
tions, within the allowed limits.

In chapter 5, Heisenberg Kitaev model, we have different interaction between dif-
ferent neighbouring spins located on Honeycomb lattice. Again we construct an
equivalent structure for square lattice and do the simulations for various parameter
values of the model. We observe from the ground state spin configurations how
the relative variation in the parameter values of the model affects the magnetic
order of the system in the ground state.
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