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Notations

• G : is a finite group with order |G|.

• F : a field such that Char(F ) - |G|.

• GL(n, F ) : group of invertible n× n matrices with entries in F .

• e : exponent of the group G.

• Let C1, · · · , Ck be the k distinct conjugacy classes of G with representatives g1, · · · , gk
respectively, then:

hr = |Cr|, be the size of the conjugacy class Cr.

ρ1, · · · , ρk be the k irreducible representations of G.

χi , be the character of the irreducible representation ρi.

di = χi(1), be the degree of the character (or representation) of χi (or ρi).

χir = χi(Cr), the value attained χi over the conjugacy class Cr.

• M(G): the set of all minimal normal subgroups of G.
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Introduction

In this expository report, the objects of our interest are algorithms for the computation

of character table and the primitive central idempotents in the rational group algebra of

nilpotent groups. The report consists of five chapters. The first chapter contains notions

of representation theory that are required for the subsequent chapters. Chapters two and

three discuss algorithms available for the computation of the character table, namely, the

Burnside’s algorithm and Dixon’s modification of Burnside’s method. In chapter four we

introduce the concept of group rings and use their properties to compute the idempotents

in the rational group algebra.

Nowadays, there are many algorithms for the computation for the character tables. The first

algorithm discussed in the report was given by by Burnside in 1911[Bur04]. Appendix A

gives the program for the GAP implementation of the Burnside’s algorithm. Although, the

method is extremely tedious, but for groups of higher order (|G| ≈ 500) the complexity

involved in the computation is too great. Dixon’s modification[Dix67] helped reduce the

complexity by performing the computations involved in Burnside’s algorithm in a finite

field Fp (for some suitable p) instead of the complex field. This modification helps avoid

the round-off error encountered in case of complex field, makes the computation faster. Ap-

pendix B gives the GAP implementation of Burnside-Dixon algorithm.

The algorithms discussed above give us the complex characters of a group, but the rational

characters or representations of a group cannot be computed in a straight forward way. In

case of the rational group algebras, the primitive central idempotents can be used to find

the decomposition of semisimple group algebras into simple algebras, which in turn give us

the rational representation of the group, thereby giving the rational characters of the group.

In the second part of this report, we first discuss about group rings and their semisimplicity

and use these notions to study the idempotents in the rational group algebras. We finally

discuss the primitive central idempotents of the rational group algebras of nilpotent groups

as described in [EJ03]. The primitive central idempotents of QG, where G is a nilpotent

group can be obtained from the subgroups of G which satisfy certain conditions as mentioned
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in the theorem below.

Theorem 5.1 Let G be a finite nilpotent group. The primitive central idempotents of QG
are precisely all elements of the form∑

g

(ε(Gm, Hm))g,

(the sum of all G-conjugates of ε(Gm, Hm)), where Hm and GM are subgroups of G that

satisfy all of the following properties:

1. H0 ⊆ H1 ⊆ · · · ⊆ Hm ⊆ Gm ⊆ · · · ⊆ G1 ⊂ G0 = G,

2. for 0 ≤ i ≤ m, Hi is a normal subgroup of Gi and Z(Gi/Hi) is cyclic,

3. for 0 ≤ i < m, Gi/Hi is not abelian, and Gm/Hm is abelian,

4. for 0 ≤ i < m, Gi+1/Hi = CGi/Hi
(Z2(Gi/Hi)),

5. for 1 ≤ i ≤ m, ∩x∈Gi−1/Hi−1
Hx
i = Hi−1.

For the computation of the primitive central idempotents using GAP, many algorithms are

available, most using the package wedderga. We have made an attempt to use the above

mentioned theorem to compute the primitive central idempotents of QG, when G is a finite

nilpotent group. Appendix C gives the code for computing the primitive central idempotents

in GAP.
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Part I

Computing the character table
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Chapter 1

Representation and Character

theory of finite groups

Characters of finite abelian groups have been used since the time of Gauss, but it was only

after Frobenius that the use of characters was extended to finite non-abelian groups. In this

chapter we record the basics of representation theory and the associated group characters.

Let G be a finite group and F a field, such that Char (F ) - |G|. Also, let GL(n, F ) be the

group of invertible n× n matrices with entries in F .

Definition 1.1. A representation of a group G over a field F is a homomorphism

ρ : G→ GL(n, F ),

for some n. The degree of representation ρ is given by the integer n.

A representation ρ of G is said to be faithful, if Ker ρ = {1}. Representations can also be

viewed in terms of FG-modules which are defined below.

Definition 1.2. Let V be a vector space over F and let G be a group. Then V is called

an FG-module if a multiplication vg (v ∈ V, g ∈ G) is defined, satisfying the following

conditions for all u, v ∈ V, λ ∈ F and g, h ∈ G :

1. vg ∈ V ;

2. v(gh) = (vg)h;

3. v1 = v;

4. (λv)g = λ(vg);

5



5. (u+ v)g = ug + vg.

Note that for a fixed g ∈ G the function v → vg (v ∈ v) is an F -endomorphism of V .

Definition 1.3. Let V be an FG-module and let β be a basis of V . For each g ∈ G, we

denote by [g]β the matrix of the F -endomorphism v → vg (v ∈ v), with respect to the basis

β.

Definition 1.4. Let V be an FG-module. A subset W of V is said to be an FG-submodule

of V if W is a F -subspace of V and wg ∈W for all w ∈W and all g ∈ G.

Thus an FG-submodule of V is a subspace of V which is also an FG-module.

Definition 1.5. An FG-module V is said to be irreducible if it is non-zero and it has no

FG-submodule apart from {0} and V .

Definition 1.6. Let V and W be FG-modules. A function θ : V → W is said to be an

FG-homomorphism if θ is a linear transformation and

θ(vg) = (θv)g for all v ∈ V, g ∈ G.

Thus, if θ sends v to w then it sends vg to wg.

Next we discuss two important results on irreducible FG-modules, namely the Maschke’s

theorem and Schur’s lemma.

Theorem 1.1. Maschke’s Theorem

Let G be a finite group, let F be R or C, and let V be an FG-module. If U is an FG-

submodule of V , then there is an FG-submodule W of V such that

V = U ⊕W.

Proof. We already have that U is an FG-submodule of V and choose a F -subspace Wo of

V such that

V = U ⊕Wo.

To get Wo take a basis v1, · · · , vm of U and extend it a basis v1, · · · , vm, vm+1, · · · , vn of V

and let Wo be the span of vm+1, · · · , vn. For v ∈ V , we have v = u + w, for unique u ∈ U
and w ∈Wo. Define φ : V → V setting φ(v) = u. Clearly, φ is a projection of V with kernel

Wo and image U . We modify φ to get an FG-homomorphism from V to V with image U .

Define ψ : V → V by

ψ(v) =
1

|G|
∑
g∈G

φ(vg)g−1 (v ∈ V ).

6



It clear that ψ is an endomorphism of V and Im (ψ) ⊆ U . Take v ∈ V and x ∈ G, then

ψ(vx) =
1

|G|
∑
g∈G

φ(vxg)g−1

=
1

|G|
∑
h∈G

φ(vh)h−1x

=

(
1

|G|
∑
h∈G

φ(vh)h−1

)
x

= ψ(v)x.

Thus, ψ is an FG-homomorphism. Next, we need to show that ψ2 = ψ. For u ∈ U, g ∈
G, we have ug ∈ U , so φ(ug) = ug. This gives us,

ψ(u) =
1

|G|
∑
g∈G

φ(ug)g−1 =
1

|G|
∑
g∈G

(ug)g−1 =
1

|G|
∑
g∈G

u = u.

Now, let v ∈ V , then ψ(v) ∈ U , so by the above equation ψ(ψ(v)) = ψ(v). Therefore,

ψ2 = ψ, thus ψ : V → V is a projection and an FG-homomorphism. Moreover, the above

equation gives us Imψ = U . Let W = Kerψ, then W is an FG-submodule of V and

V = U ⊕W, which completes the proof.

Theorem 1.2. Schur’s Lemma

Let V and W be irreducible CG-modules.

1. If θ : V → W is a CG-homomorphism, then either θ is a CG-isomorphism, or

θ(v) = 0 for all v ∈ V.

2. If θ : V → V is a CG-isomorphism, then θ is a scalar multiple of the identity

endomorphism 1V .

Proof. (1) Suppose that θ(v) 6= 0 for some v ∈ V . Then Im θ 6= {0}. As Im θ is a

CG-submodule of W , and W is irreducible, so we have Im θ = W . Also Ker θ is a CG-

submodule of V and V is irreducible, so Ker θ = {0}. Thus θ is invertible, and hence is a

CG-isomorphism.

(2) Let λ ∈ C be an eigenvalue of the endomorphism θ, so Ker (θ − λ1V ) 6= {0}. Thus

Ker (θ − λ1V ) is a non-zero CG-submodule of V , V being irreducible give us that Ker (θ −
λ1V ) = V . Therefore

v(θ − λ1V ) = 0 , ∀ v ∈ V.

Thus, θ = λ1V , as required.

7



We now begin the discussion about the character theory of finite groups.

Definition 1.7. Let V be a CG-module and β be a basis of V . Then the character of V is

the function χ : G→ C defined by

χ(g) = tr[g]β (g ∈ G).

Remark 1.1. It should be noted that if β and β′ are two bases of V , then there is an

invertible matrix T , such that [g]β′ = T−1[g]βT . Therefore, the character χ is independent

of the choice of basis of V .

Definition 1.8. If χ is the character of a CG-module V , then the dimension of V is called

the degree of χ.

We now discuss some elementary results about groups characters.

Proposition 1.1. If x and y are conjugate elements of the group G, then χ(x) = χ(y), for

all characters χ of G.

Proof. Assume that x and y are conjugate elements of G, so x = g−1yg, for some g ∈ G.

Let V be a CG-module with basis β, then

[x]β = [g−1yg]β = [g−1]β[y]β[g]β.

Hence, we have tr[x]β = tr[y]β. Therefore χ(x) = χ(y), where χ is the character of V .

Proposition 1.2. Let χ be the character of a CG-module V . Suppose that g ∈ G and g has

order m. Then

1. χ(1) = dimV,

2. χ(g) is a sum of mth roots of unity,

3. χ(g−1) = χ(g),

4. χ(g) is a real number if g is conjugate to g−1.

Proof. See Proposition 13.9 of [JL93].

Definition 1.9. We define the inner product of two functions χ and ψ from G × G to C
as,

〈χ, ψ〉 =
1

|G|
∑
g∈G

χ(g)ψ(g).

8



Let CG(gi) denote the set of all centralizers of gi in G, i.e.

CG(gi) = {y ∈ G : ygi = giy}.

Proposition 1.3. Assume that G has exactly k distinct conjugacy classes, with represen-

tatives g1, g2, · · · , gk. Let χ and ψ be characters of G. Then

〈χ, ψ〉 =
k∑
i=1

1

|CG(gi)|
χ(gi)ψ(gi).

Proof. Let Ci be the conjugacy class of G containing gi. Since characters are constant on

conjugacy classes we get, ∑
g∈giG

χ(g)ψ(g) = |Ci|χ(gi)ψ(gi).

Also G =
⋃k
i=1 Ci and |Ci| = |G|/|CG(gi)|. Therefore,

〈χ, ψ〉 =
1

|G|
∑
g∈G

χ(g)ψ(g)

=
1

|G|

k∑
i=1

∑
g∈Ci

χ(g)ψ(g)

=
k∑
i=1

|Ci|
|G|

χ(gi)ψ(gi)

=

k∑
i=1

1

|CG(gi)|
χ(gi)ψ(gi).

For irreducible characters of a group G, we have the following results (for proofs refer [JL93],

Ch-14):

Theorem 1.3. 1. Let U and V be non-isomorphic irreducible CG-modules, with char-

acters χ and ψ, respectively. Then

〈χ, ψ〉 = 0.

2. Suppose that V and W are CG-modules, with characters χ and ψ, respectively. Then

V and W are isomorphic if and only if χ = ψ.

3. Let χ1, · · · , χk be the irreducible characters of G. Then χ1, · · · , χk are linearly inde-

pendent vectors in the vector space of all functions from G to C.

9



We next state an important theorem giving us the number of irreducible characters of a

group G.

Theorem 1.4. The number of irreducible characters of G is equal to the number of conju-

gacy classes of G.

Proof. Refer Theorem 15.3 of [JL93].

1.1 Character Tables

Definition 1.10. Let χ1, · · · , χk be the irreducible characters of G and let g1, · · · , gk be

representatives of the conjugacy classes of G. The k × k matrix whose ijth-entry is χi(gj)

(for all i, j with 1 ≤ i, j ≤ k), is called the character table of G.

We set χ1 = 1G, the trivial character and g1 = 1, the identity element of the group G.

In the character table, the rows are indexed by irreducible character of G and the columns

by the conjugacy classes. Since the irreducible characters of G and hence the rows of the

character table are linearly independent, we get that:

Proposition 1.4. The character table of G is an invertible matrix.

1.1.1 Orthogonality relations

Theorem 1.5. Let χ1, · · · , χk be the irreducible characters of G, and let g1, · · · , gk be

representatives of the conjugacy classes of G. Then the following relations hold for any

r, s ∈ {1, · · · , k}.

1. The row orthogonality relations:

〈χr, χs〉 =

k∑
i=1

χr(gi)χs(gi)

|CG(gi)|
= δrs.

2. The column orthogonality relations:

k∑
i=1

χi(gr)χi(gs) = δrs|CG(gr)|.

Proof. Row orthogonality relation. We already have established that, 〈χr, χs〉 = δrs, for

χr and χs in {χ1, · · · , χk}, the irreducible characters of G. This can be written in terms of

rows of character table as
k∑
i=1

χr(gi)χs(gi)

|CG(gi)|
= δrs.

10



Column orthogonality relation. Now for 1 ≤ s ≤ k let ψs be a class function satisfying

ψs(gr) = δrs (1 ≤ r ≤ k). We have ψs =
∑k

i=1 λiχ
i, where λi = 〈ψs, χi〉 =

1
|G|
∑

g∈G χ
s(g)χi(g). Also χs(g) = 1 if g is conjugate to gs and ψs(g) = 0 otherwise.

Since there are |G|/CG(gs) elements of G which are conjugate to gs, so

λi =
1

|G|
∑
g∈G

ψs(g)χi(g) =
χi(gs)

|CG(gs)|
.

Therefore,

δrs = ψs(gr) =

k∑
i=1

λiχ
i(gr) =

k∑
i=1

χi(gr)χi(gs)

|CG(gs)|
,

and the column relation holds.
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Chapter 2

Burnside’s algorithm

In this chapter we will discuss the computation of the character table of a group G in a

completely deterministic process, using the Burnside’s algorithm.

The very first method to systematically compute the character table was given by Burnside

in 1911 in his book titled “Theory of Groups of Finite Order”[Bur04]. Even though the

method is extremely tedious to do in practice, but for groups of large order (say 500) the

complexity involved is often too great.

Lemma 2.1. If ρ is any irreducible representation of G and C is a conjugacy class in G,

then ∑
g∈C

ρ(g)

is a scalar multiple of identity.

Proof. For all g ∈ G, we have

ρ(g).

∑
y∈C

ρ(y)

 =

∑
y∈C

ρ(gyg−1)

 .ρ(g) =

∑
y∈C

ρ(y)

 .ρ(g).

Hence, by Schur’s lemma 1.2 we that
∑

y∈C ρ(y) is a scalar.

By the above lemma we get that
∑

g∈C ρ(g) = λI, where λ is a scalar. Taking trace on

both sides we get,

Tr

∑
y∈C

ρ(y)

 =
∑
y∈C

Tr[ρ(y)] = |C|χ(y) = λχ(1).

13



Therefore,

λ =
|Cr|χi(g)

χi(1)
(g ∈ G). (2.1)

From now onwards, let C1, · · · , Ck be the k conjugacy classes of G with representatives

g1, · · · , gk respectively. Also, let ρ1, · · · , ρk be the irreducible representations of G with

χ1, · · · , χk being their associated complex characters and let χij be the value attained by

character χi over the conjugacy class Cj , (i, j = 1, 2, · · · , r). With the notation defined

above, Equation 2.1 ca be re-written as:

λ =
|Cj |χij
χi(1)

=
hjχ

i
j

di
.

Definition 2.1. We define the class sum C+r for a conjugacy class Cr (r = 1, · · · , k) as the

formal sum
∑

x∈Cr x.

Definition 2.2. We define the class multiplication coefficients of G as integers crst, where

crst = |{(gr, gs) ∈ Cr × Cs : grgs = gt, for any fixed gt ∈ Ct}|.

It should be noted that crst is independent of the choice of gt ∈ Ct.

Proposition 2.1. For the class sums C+r and C+s of the conjugacy classes Cr and Cs, re-

spectively, we have

C+r C+s =

k∑
t=1

crstC+t (2.2)

where each crst is a non-negative integer[CR62].

Proof. In the left hand of the above equation, we know that both C+r and C+s are formal

sums of elements of G, so C+r C+s is also formal a sum of elements of G, each occurring a non-

negative integral number of times. So, each crst is a non-negative constant. We interpret

{crst} as the structure constants connecting the conjugacy classes of G. If we let CrCs denote

the collection of products {xy : x ∈ Cr, y ∈ Cs} counted according to multiplicities, then

each element of Ct occurs exactly crst times in CrCs.
In other words, if we fix an element gt ∈ Ct, then crst is the number of solutions (gr, gs) of

grgs = gt, gr ∈ Cr, gs ∈ Cs.

We have for 1 ≤ i ≤ k,

χi(C+r ) =
∑
gr∈Cr

χi(gr) = hrχ
i
r.

14



Since C+r lies in the center of the group algebra FG ([LP10], Proposition 12.22), we have

that ρi(C+r ) commutes with {ρi(x) : x ∈ FG}. From Lemma 2.1 we deduce that ρi(C+r ) is a

scalar matrix, say,

ρi(C+r ) = ωirI, ωir ∈ F, 1 ≤ i, r ≤ k.

Taking the traces gives

hrχ
i
r = diω

i
r,

so that

ωir =
hrχ

i
r

di
, 1 ≤ i, r ≤ k. (2.3)

Now applying ρi to both sides of Equation 2.2

ρi(Cr)+ρi(C+s ) =
k∑
t=1

crstρ
i(C+t )

which yields

ωirω
i
s =

k∑
t=1

crstω
i
t. (2.4)

From Equation 2.3 and Equation 2.4 we get the following result.

Lemma 2.2. For any two conjugacy classes Cr and Cs of G, we have

(
hrχ

i
r

di

)(
hsχ

i
s

di

)
=

k∑
t=1

crst
htχ

i
t

di

where crst is as defined above.

Definition 2.3. For r = 1, · · · , k, let Mr be the k×k integer matrix with (s, t)th entry crst.

The matrix Mr is known as the class multiplication matrix.

Observe that, from Lemma 2.2, we get that the k column vectors

(h1χ
i
1/di, h2χ

i
2/di, · · · , hkχik/di) (i = 1, · · · , k) (2.5)

are the common eigenvectors for the matrices Mi (i = 1, · · · , k). From the orthogonality

relations of characters we get that the vectors in Equation 2.5 are linearly independent.
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Corollary 2.1. For i = 1, · · · , k, the vector

h1χ
i
1/di

.

.

.

hkχ
i
k/di


is an eigenvector for each of the matrices Mr and the corresponding eigenvalue is hrχ

i
r/di.

Proof. Let v be the column vector as given in the above equation. From the definition of

Mr, it is of the form

Mr =



cr11 .. cr1k

. · · · .

. · · · .

. · · · .

crk1 .. crkk


So we have, 

cr11 .. cr1k

. · · · .

. · · · .

. · · · .

crk1 .. crkk


.



h1χ
i
1/di

.

.

.

hkχ
i
k/di


=



∑k
t=1 cr1t

htχi
t

di

.

.

.∑k
t=1 crkt

htχi
t

di


Using lemma 2.2 we write,

cr11 .. cr1k

. · · · .

. · · · .

. · · · .

crk1 .. crkk


.



h1χ
i
1/di

.

.

.

hkχ
i
k/di


=
hrχ

i
r

di



h1χ
i
1/di

.

.

.

hkχ
i
k/di


.

This gives us that v is a right eigenvector of Mr having eigenvalue hrχi
r

di
.

Definition 2.4. For each conjugacy class Cj of G, we define

Cj′ = {g−1 : g ∈ Cj}.

Clearly Cj′ is a conjugacy class, as x ∈ Cj′ ⇒ x−1 ∈ Cj . So g−1x−1g ∈ Cj , ∀g ∈ G. Then,

g−1xg = (g−1x−1g)−1 ∈ Cj′ . From our knowledge of character theory, we have that χj′ = χj .
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Therefore, we get

k∑
j=1

hjχ
i
jχ

i
j′

d2i
=

1

d2i

k∑
j=1

hj |χij |2

=
|G|
d2i
〈χi, χi〉

=
|G|
d2i
.

2.1 The Algorithm

Burnside’s algorithm for the computation of the character table is a direct result of Lemma

2.2 and Corollary 2.1. The steps included in it are:

Step 1. Calculate the group elements of G and the conjugacy classes, C1, · · · , Ck.

Step 2. Calculate the class multiplication coefficients crst and the matrices Mr (r = 1, · · · , k).

Step 3. For the matrices M1, · · · ,Mk find the set of k linearly independent vectors vi =

(vi1, · · · , vik) for i = 1, · · · , k. Each of which is an eigenvector for the matrix Mr. We

normalize these vectors i.e. vi1 = 1 for each i by setting C1 = {1} as h1χ
i
1/di = 1.

Step 4. We are now in the position to compute the degrees of the k irreducible representations

of G. Now
k∑
j=1

vijvij′

hj
=

k∑
j=1

hjχ
i
jχ

i
j′

d2i
.

Using Equation 2.5 and Equation 2.4, we get the degrees di for i = 1, · · · , k.

Step 5. Once we get the degrees di, the character values χij can be simply computed using

χij =
vijdi
hj

(i, j = 1, · · · , k).

See Appendix A for the implementation of the above mentioned algorithm in GAP.

17





Chapter 3

Dixon’s Modification of Burnside’s

algorithm

We have seen the Burnside’s algorithm for the computation of the character table. In this

chapter we will discuss about the modifications made to Burnside’s algorithm by Dixon

which enable us to compute the character table for groups of higher order without any

round-off error.

3.1 Remarks about Burnside’s algorithm

The main steps involved in Burnside’s algorithm for the computation of character table are:

• Computation of the class multiplication constants crst.

• Calculating the eigenvalues and eigenvectors associated with the class matrix Mi.

If the whole group and its conjugacy classes are known then the first step is easy, but for

a large group this involves a computation of lots of data. The second step is the main

hindrance in computation, as the exact computation of eigenvectors for a large matrix is

extremely difficult and often results in significant round-off errors. Also, it should be noted

that for theoretical investigations, character values are required to be in their algebraic form

instead of their numerical values.

3.1.1 Implications of Dixon’s modification

If we transpose the problem of computation of group characters from the field of complex

numbers into field of integers modulo p, for some suitable prime p, then we can not only avoid

round-off errors but also have faster computation of the character values. This translates the
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problem from numerical computation to symbolic computation, which helps in the following

ways,

• Exact calculation of eigenvalues and eigenvectors, as there are no round-off errors.

• There are only p possibilities 0, · · · , p− 1 for the eigenvalues.

Using this, Dixon[Dix67] was able to achieve faster computation of character tables for

groups of order up to 1000 or so.

3.2 Transposing the problem to Zp

Let e be the exponent of G. If g ∈ G is of order m, then from Proposition 1.2, we have that

each character of g is the sum of m-th roots of unity. In particular, each character value is

a sum of e-th roots of unity (e ≥ m). If ζ is a primitive e-th root of unity, then all character

values of G lie in Z[ζ], the ring of polynomials in ζ with integer coefficients.

From Dirichlet’s theorem [Vin54] on primes in an arithmetic progression we have that there

is a prime p such that e divides p − 1, and then we can find an integer z such that ze ≡ 1

(mod p).

We define a ring homomorphism θ : Z[ζ]→ Zp, defined by

f(ζ) 7→ f(z) (mod p)

The homomorphism θ allows us to transpose our problem from C into the finite field Zp.
We also have that hi, di (i = 1, 2, · · · , k) divide |G|. Therefore none of them is divisible by

p. Thus we get that θ maps the set of the k vectors (h1χ
i
1/di, · · · , hkχik/di) i = 1, · · · , k

into a set of k vectors linearly independent over Zp. Since θ is a homomorphism it sends

the matrices Mr ( r = 1, · · · , k ) to M
Zp
r ( r = 1, · · · , k ) and also that image of the

k linearly independent vectors under θ will be the common eigenvectors for the matrices

M
Zp

1 , · · · ,MZp

k . The i-th of these eigenvectors has the eigenvalue θ(hrχ
i
r/di) for the matrix

M
Zp
r (r = 1, · · · , k). Hence, we can conclude that the Step 3 of Burnside’s algorithm can be

carried out in Zp. Futher, Steps 4 and 5 are carried out in the finite field and final step of

Dixon’s algorithm is concerned with getting χij (i, j = 1, · · · , k) from θ(χij).

3.3 Details of Dixon’s method

In Dixon’s algorithm, the calculations involved in the computing the eigenvectors are car-

ried out in Zp. Let V be the vector space of all column k-vectors in Zp. Starting with a

matrix, say M
Zp
r , we compute the null space of M

Zp
r − λI for λ = 0, 1, · · · , p − 1, and if
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the null space is nonzero, we calculate a basis for it. In general, at the j-th stage, we have

already calculated subspaces V1, · · · ,Vs of V where each Vi is a set of common eigenvectors

of the matrices M
Zp

1 , · · · ,MZp

k−1, together with the zero vector. Moreover, V is the direct

sum V1 ⊕ · · · ⊕ Vs. Then, for each Vi of dimension > 1 consider the action of M
Zp

j − λI on

Vi for λ = 0, 1, · · · , p− 1, and hence reduce Vi to sum of eigenspaces of M
Zp

j . This process

terminates at the r-th stage if each Vi has dimension 1, and this always happen for some

r ≤ k. When this stage is reached we define vi as the basis element of the one-dimensional

space Vi with vi normalized so that the first component is 1.

In order to compute the degree d2i (mod p) of the character χi, it is required that p > 2di (i =

1, · · · , k), so as to uniquely determine di. This condition can be satisfied if we set

p > 2
√
|G|

as we know that |G| =
∑

i d
2
i .

3.3.1 Recovering the complex characters

Let ζ be a fixed primitive e-th root of unity, and suppose that ρ is an irreducible represen-

tation of G with character χ of degree d. Now, for each g ∈ G, χ(g) is the sum of the d

eigenvalues of ρ(g), which are all e-th roots of unity. So we get that,

χ(g) = ζα1 + · · ·+ ζαd

and also

χ(gn) = ζnα1 + · · ·+ ζnαd for n = 0, 1, · · · .

Lemma 3.1. If ζ is any fixed primitive e-th root of unity, then for t = 0, 1, · · · , we have

that
e−1∑
j=0

ζjt =

e if e divides t

0 otherwise

Proof. Writing t as, t = ae+ r, for some non-negative integers a and r. Then, we have that

ζt = ζae.ζr = ζr (0 ≤ r < e).

Case I. If r = 0 then e|t, and from the above relation we get that ζt = 1. So we have

e−1∑
j=0

ζjt =
e−1∑
j=o

1 = e.
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Case II. If r 6= 0, then

e−1∑
j=0

ζjt = 1 + ζr + ζ2r + · · ·+ ζ(e−1)r

=
ζe − 1

ζr − 1
= 0

Using lemma 3.1 we get that ζα is an eigenvalue with multiplicity m(α) in ρ(g), with

m(α) = (1/e)
e−1∑
n=0

χ(gn)ζ−αn. (3.1)

Therefore,

χ(g) =

e−1∑
α=0

m(α)ζα

where m(α) is as defined above. Under the homomorphism θ, as defined in the previous

section we get

m(α) ≡ (1/e)
e−1∑
n=0

θ(χ(gn))ε−αn (mod p), (3.2)

where ε is the e-th root of unity in Zp. As p > 2
√
|G|, we get that m(α) is uniquely defined

by Equation 3.2 and the condition that 0 ≤ m(α) ≤ d < p. Thus, recovering the complex

characters involves finding integers mijα such that 0 ≤ mijα ≤ p and

mijα ≡
(

1

e

) e−1∑
n=0

θ(χij(n))ε
−αn (mod p)

(i, j = 1, 2, · · · , k; s = 0, 1, · · · , e− 1) where j(n) is defined by g ∈ Cj ⇔ gn ∈ Cj(n). Then

χij =
e−1∑
α=0

mijαζ
α (i, j = 1, 2, · · · , k). (3.3)

3.4 The Burnside-Dixon algorithm

From the above discussion the Burnside-Dixon algorithm for the computation of character

tables can be summed as:

Step 1. Calculate the group elements and the conjugacy classes of the group G and let C1 = 1.

Step 2. Compute the integral constants crst and the class matrices Mr(r = 1, · · · , k).
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Step 3. Find a prime p such that p > 2
√
|G| and e ≡ 1(mod p).

Step 4. Let MF
r be the matrix Mr mod p, a k × k matrix in Fp. Find the set of k linearly

independent eigenvectors for each MF
r

Step 5. Find the character degrees using the k eigenvectors computed in step 4.

Step 6. Get the character values in the finite field Fp.

Step 7. Recover the complex values of the characters.

Refer to Appendix B for the implementation of the above described algorithm in GAP.
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Part II

Group Ring and central

idempotents
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Chapter 4

Group Rings

In this chapter we shall introduce the notion of group rings and study some of its proper-

ties. Algebraically, group ring is a free module and a ring at the same time, which can be

constructed from any given group any given ring.

Let G be a group and R a ring. We denote by RG the set of all formal linear combinations

of the form

α =
∑
g∈G

agg

where ag ∈ R and ag = 0 almost everywhere, that is, only a finite number of coefficients are

different form 0 in each of these sums. The element α of RG, is also written as:

α =
∑
g∈G

a(g)g.

It should be noted that we have not taken G to be necessarily a finite group, but all the

sums have been assumed to be finite.

Definition 4.1. For an element α =
∑

g∈G agg we define the support of α to be the subset

supp (α) of elements in G such that

supp (α) = {g ∈ G : ag 6= 0}.

It can be observed that two elements α =
∑

g∈G agg and β =
∑

g∈G bgg of RG are equal if

and only if ag = bg, ∀g ∈ G.
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Let α =
∑

g∈G agg and β =
∑

g∈G bgg be two elements in RG, then their sum α+ β in RG

is defined component wise as:∑
g∈G

agg

+

∑
g∈G

bgg

 =
∑
g∈G

(ag + bg)g.

Given two elements α =
∑

g∈G agg and β =
∑

h∈G bhh in RG, we define the product

αβ =
∑
g,h∈G

agbhgh =
∑
u∈G

cuu,

where

cu =
∑
gh=u

agbh.

With the above defined operations, we get that RG is a ring with a unit, namely the element

1 =
∑

g∈G ugg where the coefficient corresponding to the unit element of the group is 1 and

ug = 0 for every other element g ∈ G. We can also define the product of an elements in RG

by elements λ ∈ R as

λ

∑
g∈G

agg

 =
∑
g∈G

(λag)g.

Thus we get that, RG is an R-module. Moreover, if R is commutative then RG is an algebra

over R.

Definition 4.2. The set RG, with the operations defined above, is called the group ring of

G over R. If R is commutative, then RG is also called the group algebra of G over R.

Consider the embedding ı : G → RG which assigns to each element x ∈ G the element

ı(x) =
∑

g∈G agg, where ax = 1 and ag = 0 if g 6= x. With the embedding ı, G may

be regarded as a subset of RG. Moreover, we can also say that, G is a basis of RG over

R. Similary, the ring R can be regarded as subring of RG, by considering the mapping

ν : R→ RG given by ν(r) =
∑

g∈G agg, where a1G = r and ag = 0 if g 6= 1G.

Definition 4.3. The homomorphism ε : RG→ R given by

ε

∑
g∈G

agg

 =
∑
g∈G

ag

is called the augmentation mapping of RG and its kernel, denoted by 4(G), is called the

augmentation ideal of RG.
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An element α =
∑

g∈G agg of RG belongs to 4(G), if

ε(α) = ε

∑
g∈G

agg

 =
∑
g∈G

ag = 0.

Thus α can be written as:

α =
∑
g∈G

agg −
∑
g∈G

ag =
∑
g∈G

ag(g − 1).

Clearly, all elements of the form g − 1, g ∈ G belong to 4(G). Thus, we get that the set

{g − 1, g ∈ G, g 6= 1} is a set of generators of 4(G) over R. Since the elements in the set

{g − 1, g ∈ G, g 6= 1} are linearly independent we get that:

Proposition 4.1. The set {g − 1, g ∈ G, g 6= 1} is a basis of 4(G) over R.

Thus, we have that, 4(G) = {
∑

g∈G ag(g − 1) : g ∈ G, g 6= 1, ag ∈ R}, where finitely many

coefficients ag are different from 0.

4.1 Augmentation Ideals

Let I(RG) be the set of all left ideal of the group ring RG.

Definition 4.4. Let H be a subgroup of G, then we denote by 4R(G,H) the left ideal of

RG generated by {h− 1 : h ∈ H}.

4R(G,H) =

{∑
h∈H

αh(h− 1) : αh ∈ RG

}
.

In case, the ring R is fixed, then we omit R and denote 4R(G,H), simply as 4(G,H).

Observe that, 4(G,G) is same as 4(G).

Let H be a subgroup G, then a transversal(denoted by τ) of H in G is a set of representatives

of the left cosets of H in G. If τ = {qi}i∈I , then every element g ∈ G can be written uniquely,

as g = qihi, qi ∈ τ, hi ∈ H.

Proposition 4.2. The set BH = {q(h − 1) : q ∈ τ, h ∈ H,h 6= 1} is a basis of 4R(G,H)

over R.
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Proof. First we show that the set BH is linearly independent over R. Consider the linear

combination
∑

i,j rijqi(hj − 1) = 0, rij ∈ R. We write

∑
i,j

rijqihj =
∑
i

∑
j

rij

 qi.

For all values of j, we have that hj 6= 1, thus all the members in the above equation

have disjoint support. As elements of G are linearly independent over R, therefore, all the

coefficients must be 0, that is, rij = 0, for all i, j.

For g ∈ G, g = qihj , for some qi ∈ τ and some hj ∈ H. Then

g(h− 1) = qihj(h− 1) = qi(hjh− 1)− qi(hj − 1).

Thus we have established that every element of the form g(h − 1), with g ∈ G, h ∈ H can

be expressed as a linear combination of elements in BH .

For a normal subgroup H of G the canonical homomorphism ω : G→ G/H, we can extended

to ω∗ : RG→ R(G/H) such that

ω∗

∑
g∈G

a(g)g

 =
∑
g∈G

a(g)ω(g).

Proposition 4.3. With the above defined notations, Ker (ω∗) = 4(G,H).

Proof. The inclusion 4(G,H) ⊂ Ker (ω∗) holds trivially.

Now, consider the transversal τ of H in G. Then every element α ∈ RG can be written as

α =
∑

i,j rijqihj , rij ∈ R, qi ∈ τ, hj ∈ H. Let q̄i be the image of qi in G/H, then we have

that

ω∗(α) =
∑
i

∑
j

rij

 q̄i.

Now, α ∈ Ker (ω∗) if and only if
∑

j rij = 0 for each i. So for α ∈ Ker (ω∗), we have

α =
∑
i,j

rijqihj −
∑
i

∑
j

ri,j

 qi

=
∑
i,j

rijqi(hj − 1) ∈ 4(G,H).

Thus, Ker (ω∗) ⊂ 4(G,H).
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Remark 4.1. For a normal subgroup H of G, 4(G,H) is a two sided ideal of RG and

RG

4(G,H)
∼= R(G/H).

Now given a left ideal I ∈ I(RG), consider the set

∇(I) = {g ∈ G : g − 1 ∈ I}.

Observe that ∇(I) is a subgroup of G. If g, h ∈ ∇(I) then we can write gh− 1 as,

gh− 1 = g(h− 1) + g − 1 ∈ I,

thus, gh ∈ ∇(I). Also if g ∈ ∇(I) then

g−1 − 1 = −g−1(g − 1) ∈ I

therefore g−1 ∈ ∇(I).

Moreover, if I is a two sided ideal then ∇(I) is a normal subgroup of G.

We have established two mappings between the set of subgroups of G, S(G) and the set

I(RG). One using 4(G,H) and the other using ∇(I). The following gives the relationship

between the two mappings.

Proposition 4.4. If H ∈ S(G), then ∇(4(G,H)) = H.

Proof. For h ∈ H, we have that h − 1 belongs to 4(G,H). So h ∈ ∇(4(G,H)), hence

H ⊂ ∇(4(G,H)).

Set 1 6= g ∈ ∇(4(G,H)), then g − 1 ∈ 4(G,H) and thus can be written as,

g − 1 =
∑
i,j

rijqi(hj − 1).

As 1 appears in the left hand side of the inequality it must also appear in the right hand

side of the above equation. Therefore, one of the qi must be equal to 1, say q1 = 1. From

similar argument, we have that there is an element of the form r1j(hj − 1) in the right hand

side of the equality.

As all elements of G in the right hand side of the equation are pairwise different, we must

have g = hj ∈ H. Hence, ∇(4(G,H)) ⊂ H.

It should be noted that with an ideal I ∈ I(RG), 4(G,∇(I)) ⊂ I. To verify that equality

need not hold, set I = RG, then∇(RG) = {g ∈ G : g−1 ∈ RG} = G, hence4(G,∇(RG)) =

4(G) 6= RG.
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4.2 Semisimplicity of Group Rings

In this section we would discuss about the simplicity and semisimplicity of group rings. We

will give the necessary and sufficient conditions on R and G for the group ring RG to be

semisimple.

Definition 4.5. Given a group ring and a subset H of the group G. Then we shall denote

by H̃ the following element of RG:

H̃ =
∑
h∈H

h.

If |H| is invertible in R then we shall denote by Ĥ the following element of RG:

Ĥ =
H̃

|H|
.

Definition 4.6. Let X be a subset of a group ring RG. The left annihilator of X is given

by,

Annl (X) = {α ∈ RG : αx = 0, ∀x ∈ X}.

The right annihilator of X is defined as

Annr (X) = {α ∈ RG : xα = 0, ∀x ∈ X}.

Lemma 4.1. Let H be a subgroup of G and let R be a ring. Then Annr (4(G,H)) 6= 0 if

and only if H is finite. In this case,

Annr (4(G,H)) = H̃.RG

Furthermore, if H C G then the element H̃ is central in RG and we have

Annr(4(G,H)) = Annl (4(G,H)) = RG.H̃.

Proof. First assume that Annr (4(G,H)) 6= 0 and choose α =
∑

g∈G agg 6= 0 in Annr (4(G,H)).

For each h ∈ H, we have (h− 1)α = 0, which gives hα = α. Thus, we get

α =
∑
g∈G

agg =
∑
g∈G

aghg.

Now, take go ∈ supp(α), then ago 6= 0, so the above equation shows that hgo ∈ supp(α) for

all h ∈ H. Since supp(α) is finite, this clearly gives us that H must be finite. From the

above argument, we get that, for go ∈ supp(α), then the coefficient of every element of the
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form hgo is equal to the coefficient of go, hence α can be written as:

α = agoH̃go + ag1H̃g1 + · · ·+ agtH̃gt = H̃β, β ∈ RG.

Thus, if H is finite, then Annr (4(G,H)) ⊂ H̃.RG.

The reverse inclusion follows trivially, since hH̃ = H̃, thus, we have, (h − 1)H̃ = 0, for all

h ∈ H.

Now, if H C G, then for any g ∈ G, we have that g−1Hg = H, therefore, g−1H̃g =∑
x∈H g

−1xg =
∑

x∈H x = H̃. Thus H̃g = gH̃, for all g ∈ G. Hence H̃ is central in RG.

Consequently, RG.H̃ = H̃.RG and the result follows.

Remark 4.2. Putting H = G in the above lemma, we get

Annl (4(G)) = Annr (4(G)) = R.G̃. (4.1)

Lemma 4.2. Let I be a two-sided ideal of a ring R. Suppose that there exists a left ideal J

such that R = I ⊕ J (as left R-modules). Then J ⊂ Annr (I).

Proof. Take arbitrary elements x ∈ J, y ∈ I. Since J is a left ideal and I is two-sided, we

have that yx ∈ J ∩ I = (0). Consequently, yx = 0 and thus x ∈ Annr (I).

Lemma 4.3. If the augmentation ideal 4(G) is a direct summand of RG as an RG-module

then G is finite and |G| is invertible in R.

Proof. Assume that4(G) is a direct summand of RG. The from the previous lemma, we get

that Annr (4(G)) 6= 0, and so G is finite. Also Annr (4(G)) =Annl (4(G)) = Ĝ.RG = Ĝ.R.

Writing RG as RG = 4(G)⊕ J with J ⊂ RG̃ and 1 = e1 + e2, with e1 ∈ 4(G) and e2 ∈ J .

Now

1 = ε(1) = ε(e1) + ε(e2).

Since ε(e1) = 1 as e1 ∈ 4(G) = Ker ε and e2 = aĜ, for a ∈ R and aε(Ĝ) = 1, therefore,

a|G| = 1. This gives us that |G| is invertible in R, with a = |G|−1.

We now state Maschke’s Theorem, which gives the conditions for the group ring RG to be

semisimple. The proof is similar to the one in Theorem 1.1, (for details see [SM02] Pg-141).

Theorem 4.1. Maschke’s Theorem Let G be a group. Then the group ring RG is

semisimple if and only if the following conditions hold.

1. R is semisimple.

2. G is finite.
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3. |G| is invertible in R.

If R = K, then we have that K is always semisimple and |G| is invertible in K if and only

if |G| 6= 0 in K, that is , if and only if char(K) - |G|. Thus we have that:

Corollary 4.1. Let G be a finite group and let K be a field. Then KG, is semisimple if

and only if char(K) - |G|.
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Chapter 5

Primitive central idempotents of

rational group algebras

The primitive central idempotents of CG are given by χ(1)
|G|
∑

g∈G χ(g−1)g, where χ is an

irreducible character of G and 1 is the identity of G. In this chapter we will discuss about

finding the primitive central idempotents in the rational group algebra of nilpotent groups

G, using the some series of subgroups of G, as given by Jespers [EJ03], without using the

character table.

5.1 Idempotents of RG

Recall that, if e is a central idempotent in R, then R can be decomposed as a direct sum

R = Re ⊕ R(1− e).

We now observe the construction of central idempotents in the group ring RG.

Lemma 5.1. Let R be a ring with unity and let H be a subgroup of a group G. If |H| is

invertible in R, then eH = 1
|H|H̃ is an idempotent of RG. Moreover, if H C G then eH is

central.

Proof. In order, to show that eH is an idempotent, consider the product

eHeH =
1

|H|2
H̃H̃ =

1

|H|2
(
∑
h∈H

h)H̃ =
1

|H|2
∑
h∈H

(hH̃)

=
1

|H|2
∑
h∈H

H̃ =
1

|H|2
|H|H̃ = eH .

In lemma 4.1, we have already established that eH = Ĥ is central in RG if H C G.
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In order to compute idempotent eH in GAP we first construct the embedding of a group G

into the group ring RG given by

o:=Embedding(G,RG);

Once we have the embedding then eH = Ĥ is defined as:

Function Hat to compute the idempotent eH = Ĥ

Hat:=function(H,emb)

local x;;

return Sum(List(Elements(H), x-> x^emb))/Order(H);;

end;

We now give the decomposition of RG using one of the idempotent.

Proposition 5.1. Let R be a ring and H be a normal subgroup of G. If |H| is invertible

in R, then we have

RG = RGeH ⊕ RG(1− eH)

where

RGeH = R(G/H) and RG(1− eH) = 4(G,H).

Proof. From the above lemma, we have shown that eH is central in RG, so it is clear that

RG = RGeH ⊕ RG(1− eH).

In order to see RGeH = R(G/H), we shall first show that G/H ' GeH . Consider the

map φ : G → GeH given by g 7→ geH . Clearly, φ is a group homomorphism, with

Ker (φ) = H, and therefore GeH ' G/H. As GeH is a basis of RGeH over R, we have

that RGeH ' R(G/H).

From Lemma 4.2, we get that RG(1− eH) is the annihilator of RGeH and from Lemma 4.1,

we get that Ann (RGeH) = 4(G,H).

Definition 5.1. Let R be a ring and G be finite group, such that |G| is invertible in R. The

idempotent eG = 1
|G|
∑

g∈G g = 1
|G|G̃ is called the principal idempotent of RG.

Using eG in the previous proposition, we get that

RG = R ⊕ 4(G). (5.1)
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Lemma 5.2. Let R be a commutative ring and let I be an ideal of a group algebra RG.

Then, the quotient ring RG/I is commutative if and only if 4(G,G′) ⊂ I, where G′ is the

commutator subgroup of G.

Proof. Let I be an ideal in RG such that RG/I is commutative. Then ∀g, h ∈ G we have

that gh − hg ∈ I, so hg(g−1h−1gh − 1) ∈ I. Since hg is invertible in RG, we get that

g−1h−1gh− 1 = (g, h)− 1 ∈ I. Thus, we get that 4(G,G′) ⊂ I.

Conversely, gh − hg = hg((g, h) − 1) ∈ 4(G,G′), if 4(G,G′) ⊂ I, then we have that

gh = hg (mod I), for all g, h ∈ G and hence RG/I is commutative.

We use the above result to give the decomposition of the semisimple group algebra RG using

the idempotent eG′ .

Proposition 5.2. Let RG be a semisimple group algebra. Then we can write RG as a direct

sum

RG = RGeG′ ⊕ 4(G,G′),

where RGeG′ is the sum of all commutative simple components of RG and 4(G,G′) is the

sum of all the others.

Proof. From Proposition 5.1, we already have that RG = RGeG′ ⊕ 4(G,G′), and that

RGeG′ ' R(G/G′). Clearly RGeG′ is commutative, in order to complete the proof, it is

enough to show that there is no commutative simple components in 4(G,G′).

We prove this by way of contradiction, suppose that we can decompose 4(G,G′) as,

4(G,G′) = A ⊕ B, where A is a commutative simple component and B is its comple-

ment. Then, RG = RGeG′ ⊕ A⊕ B so we have that RG/B ' RGeG′ ⊕ A is commutative.

Now using Lemma 5.2, we get that 4(G,G′) ⊂ B, which gives us a contradiction.

5.2 Idempotents in the rational group algebra of

finite nilpotent groups

If e is a primitive central idempotent of QG, then Ge = {g ∈ G : eg = e}. Observe that,

Ge is a normal subgroup of G, as from the centrality of e we have that for any h ∈ G and

g ∈ Ge, we have

e.h−1gh = h−1(eg)h = h−1eh = e.

Also,

eĜe =
1

|Ge|
∑
g∈Ge

eg = e,
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therefore we get that e is a primitive central idempotent of (QG)Ĝe ∼= Q(G/Ge).

If G 6= {1}, then we define

ε(G) =
∏

M∈M(G)

(1− M̂),

where M(G) is the set of all minimal normal subgroups of G and set ε({1}) = 1.

For a normal subgroup N of G, let M be subgroup of G containing N and M denote the

factor group M/N . Now, if N 6= G, then we write

ε(G,N) =
∏

M∈M(G/N)

(N̂ − M̂) = N̂
∏

M∈M(G/N)

(1− M̂).

With the above notation, we agree that ε(G,G) = Ĝ. Thus we get,

ε(G,N) =

Ĝ if N = G

N̂
∏
M∈M(G/N)(1− M̂) ifN 6= G.

Remark 5.1. Both ε(G) and ε(G,N) are central idempotents of QG.

This can be implemented in GAP using the Hat function defined in section 5.1 by defining

a function Epsilon having parameters: the group G, the normal subgroup N of G, the

algebra QG and the embedding of the group G into QG.

Function Epsilon to compute ε(G,N)

Epsilon:=function(G,N,emb,alg)

local H, min,MinG, ele, M,phi,list;

if N = G then

return Hat(N,emb);;

else

H:=FactorGroup(G,N);;

list:=[Hat(N,emb)];;

min:=MinimalNormalSubgroups(H);;

MinG:=MinimalNormalSubgroups(G);;

phi:=NaturalHomomorphismByNormalSubgroup(G,N);;

for M in MinG do

if ImagesSet(phi,M) in min then

Add(list,(One(alg) - Hat(M,emb)));;

fi;;

od;;

return Product(list);;
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fi;;

end;

Using Proposition 5.1, we get (QG)N̂ ∼= Q(G/N), it is clear ε(G,N) is the pre-image of

ε(G/N) in Q(G/N). Expressing a primitive central idempotent e of QG as an orthogonal

sum e = eN̂ + e(1− N̂), gives us, e = eN̂ or e = e(1− N̂), because of the primitivity of e.

Clearly, e = eN̂ if and only if N ⊆ Ge.
We now begin to construct primitive central idempotents of QG, using the method discussed

in [EJ03].

Lemma 5.3. Let e be a primitive central idempotent of QG, where G is a finite group. Then

Ge = {1} if and only if ε(G)e = e. Moreover, G has a faithful irreducible representation if

and only if ε(G) 6= 0.

Proof. Assume that Ge = {1}, then ε(G)e 6= 0 is a central idempotent of QGe. Since e is a

primitive central idempotent, it is the only central idempotent in QGe, so ε(G)e = e.

Conversely, assume ε(G)e = e, then ε(G) 6= 0. Now, for all M ∈ M(G), eM 6= e. Thus, for

all M ∈ M(G), M * Ge. Since Ge is a normal subgroup of G and G is finite, Ge, has to

be {1}, for otherwise Ge should be either minimal itself or either contain a minimal normal

subgroup.

We now prove the second part of the lemma. Let {e1, · · · , en} be the primitive central

idempotents of CG, with CGei = Li1⊕· · ·⊕Liri , direct sum of CG-modules. The irreducible

representation ρ : G → GL(Li1) given by g 7→ (αei 7→ αeig) is faithful if and only if

Gei = {1}. Also, ε(G)
∑n

i=1 ei = ε(G) 6= 0 if and only if there exists a primitive central

idempotent ei of CG such that ε(G)ei 6= 0. Since ei is the only central idempotent of

CGei, so the previous statement is true if and only if ε(G)ei = ei. This holds if and only if

Gei = {1}, which is equivalent to ρ being faithful.

Let Z(G) be the center of group G and Zi(G) be the ith center of G. We now determine

the condition when ε(G) 6= 0.

Proposition 5.3. If G has a faithful representation, then Z(G) is cyclic.

Proof. See Proposition 9.16 of [JL93]

Lemma 5.4. Let G be a finite group. If ε(G) 6= 0, then Z(G) is cyclic. The converse holds

if G is a finite nilpotent group.

Proof. If ε(G) 6= 0 then by Lemma 5.3, G has a faithful representation. Now Proposition

5.3 gives us that Z(G) is cyclic.

39



Conversely, assume that G is nilpotent and Z(G) is cyclic with size m. As ε(1) = 1, we may

also assume that G 6= {1}. Let A1, · · · , An be the minimal normal subgroups of G. Since

for nilpotent groups, any non trivial normal subgroup intersects the center non trivially.

Thus each Ai is also the minimal normal subgroup of Z(G). So each Ai has to be cyclic

of prime order and central, so Ai = 〈go(g)/pi〉, where pi is a prime divisor of o(g). Now

ε(G) =
∏n
i=1(1− Âi) 6= 0. If ε(G) = 0, then

ε(G) =
∏
p|m

1− 1

p
− g

m
p

p
− · · · − g

m(p−1)
p

p

 = 0,

which gives us that the coefficient of identity in G must be 0. But∏
p|m

p− 1

p
6= 0

and

g
k1m
p1 · · · g

kjm

pj = g
∑j

i=1
kim

pi

never equals the identity since m is not a divisor of
∑j

i=1
kim
pi

.

We now give the description of the primitive central idempotents in the rational group

algebra of a finite abelian group.

Corollary 5.1. Let G be a finite abelian group. The primitive central idempotents of QG
are precisely all the elements of the form ε(G,N), where N a subgroup of G such that G/N

is cyclic. Further, if e is a primitive idempotent of QG, then Supp(e) is a subgroup of G,

and e is a linear combination of idempotents of the form Ĥ, where H is a subgroup of G.

Proof. First, we verify the result for finite cyclic groups. Let A = 〈a〉, be a finite cyclic

group, then ε(A) is a central idempotent of QA. Now, QAε(A) = Q(aε(A)) 'φ Q(ξ|A|),

where φ is given by aε(A) 7→ ξ|A|, (ξ|A| is a |A|th-primitive root of unity). Therefore, QAε(A)

is a field and ε(A) is primitive central idempotent of QA.

Now for a finite abelian group G, if N is a subgroup such that G/N is cyclic, then ε(G,N)

is a primitive central idempotent of Q(G/N) ' (QG)N̂ . Therefore, all elements of the form

ε(G,N) with N a subgroup of G such that G/N is cyclic are primitive central idempotents

of QG.

If e is a primitive central idempotent of QG, then by Lemma 5.3 and 5.4, ε(G/Ge)e = e and

Z(G/Ge) = G/Ge is cyclic, where e is the image of the idempotent e in QGĜe ∼= Q(G/Ge).

Thus, we have that ε(G/Ge) is a primitive central idempotent of Q(G/Ge), hence e is central

idempotent in Q(G/Ge)ε(G/Ge). Thus, e = ε(G/Ge). Hence, it follows that e = ε(G,Ge).
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Now, let e be a primitive central idempotent of QG, then e = ε(G,N), for some subgroup

N of G such that G/N is cyclic. Thus, e is Z-linear combination of elements of the form

N̂M̂1 · · · M̂n, with Mi/N ∈ M(G/N), so Mi ∩ Mj = N . Let Ti be the transversal for

N in Mi. Since N̂N̂ = N̂ , it is easy to see that N̂M̂1 · · · M̂n = 〈 ̂N, T1, · · · , Tn〉, where

〈N, T1, · · · , Tn〉 is a subgroup of G.

We now consider supp(e). Suppose M(G/N) = {M1, · · · ,Mm}, we claim that supp(e) =

〈N, T1, · · · , Tn〉, a subgroup of G. It is clear that supp(e) is a subset of 〈N, T1, · · · , Tn〉.
Since Ti are the transversals for N of groups which coincide only in N , so terms of the form

nt1 · · · tm ∈ 〈N, T1, · · · , Tn〉 cannot disappear in the summand of e. It can be shown that by

induction on m that if, nt1 · · · tm = n′t′1 · · · t′m, then necessarily n = n′, t1 = t′1, · · · , tm =

t′m.

Implementing the above corollary using GAP

Computing the primitive central idempotents of QG, G being a finite abelian group

GetPrimCenIdem:=function(G, list, emb, alg)

local GModNCyclic, N, idem;;

GModNCyclic:=[];;

idem:=[];;

for N in list do

if IsCyclic(G/N) then

Add(GModNCyclic,N);;

fi;

od;;

for N in GModNCyclic do

Add(idem,Epsilon(G,N, emb, alg));;

od;

return idem;

end;

Here we aim to show the generalization of the above corollary to all nilpotent groups. Let

Cg be the conjugacy class of an element g ∈ G, it is known that the elements Ĉg g ∈ G form

the Q-basis of the center of QG. Also let (g, h) = g−1h−1gh be the commutator of g and h

in G and CS(G) be the centralizer of a subset S of a group G.

Lemma 5.5. Let G be a finite group and g ∈ G. If g−1Cg ∩ Z(G) 6= {1}, then G contains

a central element z of prime order so that Ĉg = Ĉg 〈̂z〉.

Proof. By assumption there exists h ∈ G and 1 6= z ∈ Z(G) so that h−1gh = zg. So,

for any positive integer we have that h−nghn = zng. It then follows that 〈z〉Cg ⊆ Cg.
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Thus, 〈z〉Cg = Cg, therefore, Ĉg = Ĉg 〈̂z〉. Clearly, we may replace z with any power of z, if

necessary, we may assume that z has prime order.

Proposition 5.4. Let G be a finite group and e ∈ QG. If e is a primitive central idempotent

of QG with Ge trivial then e is the sum of all G-conjugates of a primitive central idempotent

e1 in QG1, where G1 = CG(Z2(G)), and ∩g∈G((G1)e1)g = {1}. The converse holds if G is

nilpotent. In particular, for any primitive central idempotent e with Ge trivial, Supp(e) ⊆
CG(Z2(G)).

Proof. Suppose e ∈ QG is a primitive central idempotent with Ge = {1}. Write e =∑
g∈G αgĈg, with each αg ∈ Q. Using Lemma 5.5, we have that for any g ∈ G with

g /∈ CG(Z2), there exists a non-trivial central element wg ∈ G of prime order such that

Ĉg = Ĉg 〈̂wg〉. As wg is of prime order, we get that 〈wg〉 is a minimal normal subgroup of G,

so 〈wg〉 ∈ M(G). Then

ε(G)〈̂wg〉 =

 ∏
M∈M(G)

(1− M̂)

 .〈wg〉 = 0.

Thus e can be expressed as

e =
∑

g∈CG(Z2)

αgĈg +
∑

g/∈CG(Z2)

αgĈg 〈̂wg〉.

Since Ge = {1}, Lemma 5.3 gives us that e = eε(G) and ε(G)〈̂wg〉 = 0 we get that

e = eε(G) =
∑

g∈CG(Z2)

αgĈgε(G).

We have thus established that

e = eε(G) =
∑

g∈CG(Z2)

αgĈg.ε(G).

So we have shown that Supp(e) ⊆ G1 = CG(Z2(G)). Note that e is not necessarily a

primitive central idempotent of QG1. We have that e is a central idempotent in QG1.

Therefore e can be expressed as a sum of primitive central idempotents of QG1. Writing e

as

e = e1 + · · ·+ ek,

where ei (1 ≤ i ≤ k) is a primitive central idempotent in QG1. Now from the standard

argument we get that

e = eg11 + · · ·+ egn1 ,
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the sum of all G-conjugates of a primitive central idempotent e1 ∈ QG1. Since e1 is

a primitive central idempotent of QG1, for h ∈ (G1)e1 , we have he1 = e1h, therefore

gi(he1)gi = g−1i e1gi = egi1 , which gives us ((G1)e1)gi = (G1)egi1
. Hence, it follows that

∩ni=1((G1)e1)gi = Ge = {1}, which proves the necessity of the conditions.

Conversely, assume that G is a finite nilpotent group and suppose e1 is a primitive cen-

tral idempotent of QG1 with G1 = CG(Z2(G)) and assume ∩g∈G((G1)e1)g = {1}. Let

e = eg11 + · · · + egn1 be the sum of all G-conjugates of e1. It is clear that e is a central

idempotent of QG and Ge = {1}. We write e = f1 + · · · + fk, a sum of primitive central

idempotents of QG. Note that for any non-trivial central subgroup N of G, either N̂e1 = 0

or N̂e1 = e1. However the latter is possible as it implies N ⊆ (G1)e1 and thus

N ⊆ ∩g∈G((G1)e1)g = {1}.

So we get that N̂e1 = 0 and thus ε(G)e1 = e1. Consequently, ε(G)e = e and thus ε(G)f1 =

f1. Therefore Gf1 = {1} and thus by the first part of the proof, f1 ∈ QG1.

Hence e = f1 is a primitive central idempotent of QG.

We now move on to give the main result of [EJ03].

Theorem 5.1. Let G be a finite nilpotent group. The primitive central idempotents of QG
are precisely all elements of the form∑

g

(ε(Gm, Hm))g,

(the sum of all G-conjugates of ε(Gm, Hm)), where Hm and GM are subgroups of G that

satisfy all of the following properties:

1. H0 ⊆ H1 ⊆ · · · ⊆ Hm ⊆ Gm ⊆ · · · ⊆ G1 ⊂ G0 = G,

2. for 0 ≤ i ≤ m, Hi is a normal subgroup of Gi and Z(Gi/Hi) is cyclic,

3. for 0 ≤ i < m, Gi/Hi is not abelian, and Gm/Hm is abelian,

4. for 0 ≤ i < m, Gi+1/Hi = CGi/Hi
(Z2(Gi/Hi)),

5. for 1 ≤ i ≤ m, ∩x∈Gi−1/Hi−1
Hx
i = Hi−1.

Proof. We first aim to prove that the properties listed in the theorem are sufficient for

e =
∑

g(ε(Gm, Hm))g to be a primitive central idempotent of QG. As a consequence of

Corollary 5.1, properties (2) and (3) we get that fm = ε(Gm, Hm) is a primitive central

idempotent of Q(Gm/Hm) ∼= (QGm)Ĥm. Thus, fm is a primitive central idempotent of

QGm. It should be noted that Hm = (Gm)fm , and by property (4), Gm C Gm−1. Using
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the proof of Proposition 5.4 we get, fm−1 =
∑

g∈Gm−1
fgm (the sum of all distinct Gm−1-

conjugates of fm), is a central idempotent of QGm−1. Property of (5) gives us that,⋂
g∈Gm−1

((Gm)fm)g =
⋂

g∈Gm−1

Hg
m = Hm−1.

Proposition 5.4 and properties (2), (4) and (5) then imply that fm−1 is a primitive central

idempotent of QGm−1(Ĥm−1) ∼= Q(Gm−1/Hm−1). Therefore, a primitive central idempotent

of QGm−1. Repeating the above argument on fm−2 =
∑

g∈Gm−2
fgm−1, the sum of all Gm−2-

conjugates of fm−1 and that fm−2 is a primitive central idempotent of QGm−2. By induction,

we obtain that f0 = e is a primitive central idempotent of QG.

Conversely, let e be a primitive central idempotent of QG. Then Ge ( = H0 ) is a normal

subgroup of G0 = G. Now, e is a primitive central idempotent of QGĤ0
∼= Q(G0/H0).

Clearly (G0/H0)e = (G/Ge)e = {1}. If G0/H0 is abelian then from Corollary 5.1 we that

G0/H0 is cyclic and e = ε(G0, H0), as desired. Now suppose that G0/H0 is not abelian, then

from Lemma 5.3 and 5.4 and Proposition 5.4, Z2(G0/H0) is cyclic and e is the sum of all

G0/H0-conjugates of a primitive central idempotent e1 ∈ Q(G1/H0), where G1 is a subgroup

of G so that G1/H0 = CG0/H0
(Z2(G0/H0)) 6= G0/H0, and ∩x∈G0/H0

(H1/H0)
x
e1 = {1}, with

H1 the subgroup of G containing H0 so that H1/H0 = (G1/H0)e1 . So H1 is a normal

subgroup of G1 and Z(G1/H1) is cyclic. It should be noted that the nilpotency class of

G1/H0 is smaller than that of G. If G1/H0 is abelian then we know that e1 = ε(G1, H1)

and thus the result follows.

But if G1/H0 is not abelian then the result follows by induction on the nilpotency class of

G.

Remark 5.2. It follows from the proof that the distinct conjugates of ε(Gm, Hm) are mu-

tually orthogonal.

We have used Theorem 5.1 to compute the primitive central idempotents of QG, when G is

a finite nilpotent group. To see the implementation of Theorem 5.1 see Appendix C.
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Part III

Appendix
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Appendix A

GAP implementation of Burnside’s

algorithm

The following code demonstrates the implementation of Burnside’s algorithm. The program

computes the character table of symmetric group of order 4, S4.

#Def ine group here .#

G:=SymmetricGroup ( 4 ) ; ;

#Group Structure .#

time1 :=Runtime ( ) ; ;

n:=Order (G) ; ;

CC:= ConjugacyClasses (G) ; ;

cc := L i s t (CC, Representat ive ) ; ;

k:=Length (CC) ; ;

# Finding the s i z e o f the conjugacy c l a s s s e s .#

h : = [ ] ; ;

for i in [ 1 . . k ] do

l := S i z e (CC[ i ] ) ; ;

Add(h , l ) ; ;

od ;

# Function to f i n d the c l a s s m u l t i p l i c a t i o n c o e f f i c i e n t s .#

cmc:= func t i on ( r , s , t , cc , CC)

l o c a l z , CCl , e l s , g , gi , p , r l i s t , count ; ;

z := cc [ t ] ; ;
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CCl:=CC[ s ] ; ;

e l s :=Elements (CCl ) ; ;

r l i s t : = [ ] ; ;

for g in e l s do

g i := Inve r s e ( g ) ; ;

p:=z∗ g i ; ;

Add( r l i s t , p ) ; ;

od ;

count :=0;

for g in CC[ r ] do

i f g in r l i s t then

count := count +1; ;

f i ;

od ;

return count ;

end ;

# Function to f i n d the i n v e r s e conjugacy c l a s s .#

Inve r s eC la s s := func t i on (x ,G)

l o c a l invc l , invx , c l , g , invg ;

c l := ConjugacyClass (G, x ) ;

i n v c l : = [ ] ;

for g in c l do

invg := Inve r s e ( g ) ;

Add:=( invc l , invg ) ;

od ;

return i n v c l ;

end ;

# Computation o f the c l a s s matr i ce s M r.#

M: = [ ] ; ;

for r in [ 1 . . k ] do

m: = [ ] ; ;

i : = 1 ; ;

while i<=k do

j : = 1 ; ;

l : = [ ] ; ;

while j<=k do
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Add( l , cmc( r , i , j , cc ,CC) ) ; ;

j := j +1; ;

od ;

Add(m, l ) ; ;

i := i +1; ;

od ;

Add(M,m) ; ;

od ;

# Computing the e igen v e c t o r s for the mtr i c e s M[ 1 ] , . . . ,M[ k ] .#

e i gve c : = [ ] ; ;

for i in [ 1 . . k ] do

e := Eigenvector s ( Rat ionals , TransposedMat (M[ i ] ) ) ;

Add( e igvec , e ) ; ;

od ;

# Computing the charac t e r degree s .#

d : = [ ] ; ;

# Now take the e igen v ec t o r s o f the c l a s s matrix M[2 ] . #

e i g2 := e i gve c [ 2 ] ; ;

for i in [ 1 . . k ] do

sum : = 0 ; ;

for j in [ 1 . . k ] do

sum:=sum+( e i g2 [ i ] [ j ]∗ComplexConjugate ( e i g2 [ i ] [ j ] ) ) / h [ j ] ; ;

od ;

Add(d , Sqrt (n/sum ) ) ; ;

od ;

# Computation o f the charac t e r va lue s .#

t b l : = [ ] ; ;

for i in [ 1 . . k ] do

ch i : = [ ] ; ;

for j in [ 1 . . k ] do

c h i I J :=( e i g2 [ i ] [ j ]∗d [ i ] ) / h [ j ] ; ;

Add( chi , c h i I J ) ;

od ;

Add( tb l , ch i ) ;

od ;
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# Disp lay ing the charac t e r t a b l e .#

CharTbl := func t i on ( tb l ,CC, cc , h )

Pr int ( ”\n\n” ) ;

Pr int (CC, ”\n” ) ; ;

Pr int (h , ”\n” ) ; ;

Display ( t b l ) ; ;

end ;

CharTbl ( tb l ,CC, cc , h ) ;

time2 :=Runtime ( ) ; ;

Pr int ( ”\nEstimated runtime : ” , StringTime ( time2−time1 ) , ”\n” ) ;

For S4, the class matrices are :

[ [ 1 , 0 , 0 , 0 , 0 ] ,

[ 0 , 1 , 0 , 0 , 0 ] ,

M[ 1 ] = [ 0 , 0 , 1 , 0 , 0 ] ,

[ 0 , 0 , 0 , 1 , 0 ] ,

[ 0 , 0 , 0 , 0 , 1 ] ]

[ [ 0 , 1 , 0 , 0 , 0 ] ,

[ 6 , 0 , 2 , 3 , 0 ] ,

M[ 2 ] = [ 0 , 1 , 0 , 0 , 2 ] ,

[ 0 , 4 , 0 , 0 , 4 ] ,

[ 0 , 0 , 4 , 3 , 0 ] ]

[ [ 0 , 0 , 1 , 0 , 0 ] ,

[ 0 , 1 , 0 , 0 , 2 ] ,

M[ 3 ] = [ 3 , 0 , 2 , 0 , 0 ] ,

[ 0 , 0 , 0 , 3 , 0 ] ,

[ 0 , 2 , 0 , 0 , 1 ] ]

[ [ 0 , 0 , 0 , 1 , 0 ] ,

[ 0 , 4 , 0 , 0 , 4 ] ,

M[ 4 ] = [ 0 , 0 , 0 , 3 , 0 ] ,

[ 8 , 0 , 8 , 4 , 0 ] ,

[ 0 , 4 , 0 , 0 , 4 ] ]

[ [ 0 , 0 , 0 , 0 , 1 ] ,

[ 0 , 0 , 4 , 3 , 0 ] ,

50



M[ 5 ] = [ 0 , 2 , 0 , 0 , 1 ] ,

[ 0 , 4 , 0 , 0 , 4 ] ,

[ 6 , 0 , 2 , 3 , 0 ] ]

The above mentioned code give the character table of S4 in about 200 ms. The table is

given by:

# Conjugacy c l a s s e s o f G. #

[ ConjugacyClass ( SymmetricGroup ( [ 1 . . 4 ] ) , ( ) ) ,

ConjugacyClass ( SymmetricGroup ( [ 1 . . 4 ] ) , ( 1 , 2 ) ) ,

ConjugacyClass ( SymmetricGroup ( [ 1 . . 4 ] ) , ( 1 , 2 ) ( 3 , 4 ) ) ,

ConjugacyClass ( SymmetricGroup ( [ 1 . . 4 ] ) , ( 1 , 2 , 3 ) ) ,

ConjugacyClass ( SymmetricGroup ( [ 1 . . 4 ] ) , ( 1 , 2 , 3 , 4 ) ) ]

# S i z e o f c l a s s e s . #

[ 1 , 6 , 3 , 8 , 6 ]

# The charac t e r t a b l e as a kxk matrix .#

[ [ 1 , 1 , 1 , 1 , 1 ] ,

[ 3 , 1 , −1, 0 , −1 ] ,

[ 2 , 0 , 2 , −1, 0 ] ,

[ 3 , −1, −1, 0 , 1 ] ,

[ 1 , −1, 1 , 1 , −1 ] ]
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Appendix B

GAP implementation of

Burnside-Dixon algorithm

The following code demonstrates the implementation of Burnside-Dixon algorithm[LP10].

G:= AlternatingGroup ( 6 ) ; ;

#Group Structure .#

time1 :=Runtime ( ) ; ;

n:=Order (G) ; ;

CC:= ConjugacyClasses (G) ; ;

cc := L i s t (CC, Representat ive ) ; ;

k:=Length (CC) ; ;

e :=Exponent (G) ; ;

# Finding the s i z e o f the conjugacy c l a s s s e s .#

h : = [ ] ; ;

for i in [ 1 . . k ] do

l := S i z e (CC[ i ] ) ; ;

Add(h , l ) ; ;

od ;

# Function to f i n d the c l a s s m u l t i p l i c a t i o n c o e f f i c i e n t s .#

cmc:= func t i on ( r , s , t , cc , CC)

l o c a l z , CCl , e l s , g , gi , p , r l i s t , count ; ;

z := cc [ t ] ; ;

CCl:=CC[ s ] ; ;
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e l s :=Elements (CCl ) ; ;

r l i s t : = [ ] ; ;

for g in e l s do

g i := Inve r s e ( g ) ; ;

p:=z∗ g i ; ;

Add( r l i s t , p ) ; ;

od ;

count :=0;

for g in CC[ r ] do

i f g in r l i s t then

count := count +1; ;

f i ;

od ;

return count ;

end ;

#Computing the c l a s s matrix M2.#

M: = [ ] ; ;

for r in [ 1 . . k ] do

m: = [ ] ; ;

i : = 1 ; ;

while i<=k do

j : = 1 ; ;

l : = [ ] ; ;

while j<=k do

Add( l , cmc( r , i , j , cc ,CC) ) ; ;

j := j +1; ;

od ;

Add(m, l ) ; ;

i := i +1; ;

od ;

Add(M,m) ; ;

od ;

M2:=M[ 2 ] ; ;

Display (M2) ;

#Finding the s u i t a b l e prime.#

l i m i t :=2∗RootInt (n , 2 ) ; ;
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for pr in Primes do

i f pr > l i m i t then

i f ( pr mod e)=1 then p:=pr ; ; break ; f i ;

f i ;

od ;

F:=GF(p ) ; ;

id := I d e n t i t y (F ) ; ;

ev := Eigenva lues (F , M2∗ id ) ; ;

evecs := L i s t ( Eigenspaces (F , M2∗ id ) , GeneratorsOfVectorSpace ) ; ;

#f unc t i on to wr i t e e lements o f F as i n t e g e r s mod p>#

dom:= func t i on (p , x )

return ( Pos i t i on ( L i s t ([−(p−1)/2 . . ( p−1)/2] , i−>i ∗ id ) , x)−(p+1)/2) ;

end ;

for sp in evecs do

for c in ev do

i f sp [ 1 ] ∗M2∗ id = sp [ 1 ] ∗ c then Pr int ( ”\n” , dom(p , c ) , ” : ” ) ; f i ;

od ;

for v in sp do

Print ( L i s t (v , x−>dom(p , x ) ) , ” , ” ) ;

od ;

od ;

#Function to c a l c u l a t e the inner product o f two c l a s s f u n c t i o n s .#

scp := func t i on (v ,w)

return (Sum( L i s t ( [ 1 . . Length (CC) ] , i−> S i z e (CC[ i ] ) ∗ v [ i ]∗w[ i ] ) ) / S i z e (G) ) ;

end ;

deg : = [ ] ; ;

for v in Concatenation ( evecs ) do

d:= F i l t e r e d ( [ 1 . . ( p−1)/2] , x −> ( x∗ id )ˆ2 = scp (v , v )ˆ−1);

Pr int ( [ dom(p , scp (v , v)ˆ−1) , d ] , ” , ” ) ;

Add( deg , d ) ; ;

od ;

# Cons ider ing the 1 . and 4 . e i g en space s .#

for i in [ 1 , 4 ] do
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for a in [ 0 . . p−1] do

for b in [ a . . p−1] do

v:= evecs [ i ] [ 1 ] + a∗ evecs [ i ] [ 2 ] ; ;

w:= evecs [ i ] [ 1 ] + b∗ evecs [ i ] [ 2 ] ; ;

i f I sSubse t ( L i s t ( [ 1 . . ( p−1)/2] , x −> ( x∗ id )ˆ2 ,

[ scp (v , v ) , scp (w,w) ] ) then

d1:= F i l t e r e d ( [ 1 . . ( p−1)/2] , x −> ( x∗ id )ˆ2 = scp (v , v ) ˆ − 1 ) [ 1 ] ; ;

d2:= F i l t e r e d ( [ 1 . . ( p−1)/2] , x −> ( x∗ id )ˆ2 = scp (w,w) ˆ − 1 ) [ 1 ] ; ;

i f I s I n t ( S i z e (G)/ d1 ) and I s I n t ( S i z e (G)/ d2 ) and

scp (v ,w)=0∗Z(p) and

d1ˆ2 + d2ˆ2 < S i z e (G) − 9ˆ2 −10ˆ2 then

Pr int ( [ a , b ] , ” , ” , L i s t ( d1∗v , x−> dom(p , x ) ) , ” , ” ,

L i s t ( d2∗w, x−> dom(p , x ) ) , ”\n” ) ;

f i ;

f i ;

od ;

od ;

od ;

epsq := Z(p )ˆ ( p−1)/5 ; ;

phi :=[8 ,0 ,−1 ,−1 ,0 ,−17 ,18]∗ id ; ;

for x in g { [ 6 , 7 ] } do

m:= L i s t ( [ 0 . . 4 ] , i−>dom(p , ( 5∗ id )ˆ−1∗Sum( L i s t ( [ 0 . . 4 ] ,

j−>phi [ Po s i t i on ( c1 , ConjugacyClass (G, xˆ j ) ) ] ∗ epsqˆ(− i ∗ j ) ) ) ) ) ; ;

Pr int ( ” ch i ( g ” , Po s i t i on ( g , x ) , ”)=” ,

m∗ L i s t ( [ 0 . . 4 ] , i−>E(5)ˆ i ) , ” ” ) ;

od ;

For A6 the class matrix M2 is given by:

[ [ 0 , 1 , 0 , 0 , 0 , 0 , 0 ] ,

[ 45 , 4 , 9 , 9 , 4 , 5 , 5 ] ,

[ 0 , 8 , 9 , 0 , 4 , 5 , 5 ] ,

[ 0 , 8 , 0 , 9 , 4 , 5 , 5 ] ,

[ 0 , 8 , 9 , 9 , 17 , 10 , 10 ] ,

[ 0 , 8 , 9 , 9 , 8 , 10 , 10 ] ,

[ 0 , 8 , 9 , 9 , 8 , 10 , 10 ] ]
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A6 has 5 eigenspaces corresponding to the eigenvalues

λ = 0 ∗ Z(61), Z(61)34, Z(61)42, Z(61)12, Z(61)22

which can also be expresses as:

e i g v a l : = [ ] ; ;

for e in ev do

Add( e i gva l , dom(p , e ) ) ; ;

od ;

e i g v a l ;

[ 0 , −16, −9, 9 , 5 ] #the e i g e n v a l u e s o f M2 in mod p(p=61).#

Finally we get the table of A6 as:

1 1 1 1 1 1 1

5 1 2 −1 −1 0 0

5 1 −1 2 −1 0 0

8 0 −1 −1 0 A B

8 0 −1 −1 0 B A

9 1 0 0 1 −1 −1

10 −2 1 1 0 0 0

A = (1+ Sqrt (5 ) )/2

B = (1−Sqrt (5 ) )/2
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Appendix C

GAP implementation for finding

the primitive central idempotents

The following code demonstrates the implementation of Theorem 5.1 in GAP. The program

computes the primitive central idempotents of the rational group algebra, when G is a cyclic

group of order 12. symmetric group of order 4, S4.

#Program to f i n d the p r i m i t i v e c e n t r a l idempotents

#o f r a t i o n a l group a lgebra o f a n i l p o t e n t group .

G:= CyclicGroup ( 1 2 ) ; ;

Normal:=NormalSubgroups (G) ; ;

Q:= Rat iona l s ; ;

QG:=GroupRing (Q,G) ; ;

Id := I d e n t i t y (QG) ; ;

o:=Embedding (G,QG) ; ;

LoadPackage ( ” sonata ” ) ; ;

#l i s t o f a l l subgroups o f G.

m l i s t :=Subgroups (G) ; ;

#Def in ing Hat func t i on

Hat:= func t i on (H, emb)

l o c a l x ; ;

return Sum( L i s t ( Elements (H) , x−> xˆemb))/ Order (H ) ; ;

end ;

#Def in ing Eps i lon (G,N) .
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Eps i lon := func t i on (G,N, emb , a l g )

l o c a l H, min , MinG, e l e , M, phi , l i s t ;

i f N = G then

return Hat (N, emb ) ; ;

else

H:=FactorGroup (G,N ) ; ;

l i s t :=[ Hat (N, emb ) ] ; ;

min:=MinimalNormalSubgroups (H ) ; ;

MinG:=MinimalNormalSubgroups (G) ; ;

phi :=NaturalHomomorphismByNormalSubgroup (G,N ) ; ;

for M in MinG do

i f ImagesSet ( phi ,M) in min then

Add( l i s t , ( One( a lg ) − Hat (M, emb ) ) ) ; ;

f i ; ;

od ; ;

return Product ( l i s t ) ; ;

f i ; ;

end ;

#Pr imi t ive Centra l Idempotents o f QG for

#a f i n i t e abe l i an group .

GetPrimCenIdem:= func t i on (G, l i s t , emb , a lg )

l o c a l GModNCyclic , N, idem ; ;

GModNCyclic : = [ ] ; ;

idem : = [ ] ; ;

for N in l i s t do

i f I s C y c l i c (G/N) then

Add(GModNCyclic ,N ) ; ;

f i ;

od ; ;

for N in GModNCyclic do

Add( idem , Eps i lon (G,N, emb , a l g ) ) ; ;

od ;

return idem ;

end ;

#c on s t r u c t i ng a d i r e c t e d t r e e o f subgroups

Edge:= func t i on (G,H,K)

60



i f IsSubgroup (G,H) and IsSubgroup (G,K) then

i f H=K then return 0 ;

e l i f I sSubse t (H,K) then return 1 ;

else return 0 ;

f i ;

else return 0 ;

f i ;

end ;

#In order to get the depth f i r s t t r e e we

#need s ta ck s , which are de f ined as

Stack := func t i on ( )

l o c a l s tack ; ;

s tack := [ ] ; ;

return r e c (

push := func t i on ( value )

Add( stack , va lue ) ; ;

end ,

pop := func t i on ( )

l o c a l va lue ; ;

va lue := stack [ Length ( s tack ) ] ; ;

Unbind ( s tack [ Length ( s tack ) ] ) ; ;

return value ;

end ,

s i z e := func t i on ( )

return Length ( s tack ) ;

end ,

top := func t i on ( )

return s tack [ Length ( s tack ) ] ;

end

) ;

end ; ;

DFS:= func t i on (G, l i s t , node )

l o c a l sta , tnode , v i s i t e d , i ; ;

SortBy ( l i s t , Order ) ; ;

s ta := Stack ( ) ; ;

s ta . push ( node ) ; ;
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v i s i t e d : = [ ] ; ;

while s ta . s i z e ( ) <> 0 do

tnode := sta . pop ( ) ; ;

Add( v i s i t e d , tnode ) ; ;

#Print ( tnode , ”\n” ) ;

for i in l i s t do

i f Edge (G, i , tnode)=1 then

#i f i in v i s i t e d then continue ;

Add( v i s i t e d , i ) ; ;

DFS(G, l i s t , i ) ; ;

else continue ;

f i ; ;

od ;

od ; ;

return v i s i t e d ; ;

end ; ;

F indSub l i s t := func t i on (G, l )

l o c a l poss , i , j , k , d ; ;

poss : = [ ] ; ;

for i in [ 1 . . ( Length ( l )−1)] do

d :=[ l [ i ] ] ; ;

k:= i ; ;

for j in [ i +1. . Length ( l ) ] do

i f Edge (G, l [ j ] , l [ k ] ) = 1 then

Add(d , l [ j ] ) ; ;

f i ; ;

k:=k +1; ;

od ; ;

i f d in poss then continue ; ;

else Add( poss , d ) ; ;

f i ; ;

od ; ;

return poss ; ;

end ; ;

FindAll := func t i on (G, l i s t )
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l o c a l a l l p o s s , m, l , lpos s , i , j ;

a l l p o s s : = [ ] ; ;

for j in [ 1 . . ( Length ( l i s t )−1)] do

l :=DFS(G, l i s t , l i s t [ j ] ) ; ;

l p o s s := FindSub l i s t (G, l ) ; ;

for i in l p o s s do

i f i in a l l p o s s then continue ;

else Add( a l l p o s s , i ) ; ;

f i ; ;

od ; ;

od ; ;

return a l l p o s s ; ;

end ; ;

A d j u s t e d l i s t s := func t i on (G, l i s t )

l o c a l poss , i ;

poss := FindAll (G, l i s t ) ; ;

for i in poss do

i f Length ( i ) mod 2 <> 0 then

i f i [ 1 ] <> l i s t [ 1 ] then

Add( i , l i s t [ 1 ] ) ; ;

SortBy ( i , Order ) ; ;

f i ; ;

f i ; ;

od ; ;

return poss ;

end ; ;

ad jposs := A d j u s t e d l i s t s (G, m l i s t ) ; ;

GConjugate := func t i on ( idem ,G, a lg )

l o c a l g , sum , t , l ,K ; ;

l := L i s t ( ConjugacyClasses (G) , Representat ive ) ; ;

K:=Length ( l ) ; ;

sum:=0∗One( a lg ) ; ;

for g in l do

t := Inve r s e ( g )∗ idem∗g ; ;

sum:=sum+t ; ;

od ; ;
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sum:=sum/K; ;

return sum ;

end ; ;

Check l i s t 1 := func t i on (G, l i s t )

i f l i s t [ Length ( l i s t )]=G and Length ( l i s t ) mod 2 =0 then

return 1 ; ;

else return 0 ; ;

f i ;

end ;

Check l i s t 2 := func t i on (G, l i s t )

l o c a l i , count , k ; ;

i f Check l i s t 1 (G, l i s t )=1 then

k:=Length ( l i s t ) / 2 ; ;

count : = 0 ; ;

for i in [ 1 . . k ] do

i f IsNormal ( l i s t [ Length ( l i s t )− i +1] , l i s t [ i ] ) then

i f I s C y c l i c ( Center ( l i s t [ Length ( l i s t )− i +1]/ l i s t [ i ] ) ) then

count := count +1; ;

f i ; ;

f i ; ;

od ; ;

i f count=k then return 1 ;

else return 0 ;

f i ;

else return 0 ;

f i ;

end ;

Check l i s t 3 := func t i on (G, l i s t )

l o c a l i , k , count ; ;

i f Check l i s t 2 (G, l i s t )=1 then

count : = 0 ; ;

k:=Length ( l i s t ) / 2 ; ;

i f I sAbe l i an ( l i s t [ k+1]/ l i s t [ k ] ) then

count := count +1; ;
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f i ; ;

for i in [ 1 . . ( k−1)] do

i f I sAbe l i an ( l i s t [ Length ( l i s t ) − i +1]/ l i s t [ i ] ) then

count := count +1; ;

f i ;

od ; ;

i f count=1 then return 1 ; ;

else return 0 ; ;

f i ; ;

else return 0 ; ;

f i ; ;

end ; ;

Check l i s t 4 := func t i on (G, l i s t )

l o c a l i , k , count , GiHi ,UCS ; ;

i f Check l i s t 3 (G, l i s t )=1 then

count : = 0 ; ;

k:=Length ( l i s t ) / 2 ; ;

for i in [ 1 . . k−1] do

GiHi:= l i s t [ 2∗k−i +1]/ l i s t [ i ] ; ;

UCS:= UpperCentra lSer i e s ( GiHi ) ; ;

i f l i s t [ 2∗ k − i ] / l i s t [ i ] = C e n t r a l i z e r ( GiHi ,UCS [ 2 ] ) then

count := count +1; ;

f i ; ;

od ; ;

i f count=k−1 then return 1 ; ;

else return 0 ; ;

f i ; ;

else return 0 ; ;

f i ; ;

end ; ;

I s D e s i r e d L i s t := func t i on (G, l i s t )

l o c a l i ,m, l ,H,K, count , x ,Comp;

K: = [ ] ; ;

count : = 0 ; ;

i f Check l i s t 4 (G, l i s t )=1 then
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m:=Length ( l i s t ) / 2 ; ;

for i in [ 1 . . (m−1)] do

H:=FactorGroup ( l i s t [ Length ( l i s t )− i +1] , l i s t [ i ] ) ; ;

for x in H do

Add(K, ConjugateSubgroup ( l i s t [ i +1] , x ) ) ; ;

od ; ;

Comp:= I n t e r s e c t i o n (K) ; ;

i f Comp = l i s t [ i ] then count := count +1; ; f i ; ;

od ; ;

i f count = (m−1) then return 1 ; ;

else return 0 ; ;

f i ; ;

else return 0 ; ;

f i ; ;

end ; ;

Primit iveCentralIdempotentsUsingJLP := func t i on (G, poss , emb , a l g )

l o c a l lpos s , l ,m, i , idem , pc i ; ;

pc i : = [ ] ; ;

l p o s s := F i l t e r e d ( poss , l−> I s D e s i r e d L i s t (G, l ) = 1 ) ; ;

for l in l p o s s do

m:=Length ( l ) / 2 ; ;

idem:= Eps i lon ( l [m+1] , l [m] , emb , a l g ) ; ;

Add( pci , GConjugate ( idem ,G, a lg ) ) ; ;

od ; ;

return pc i ; ;

end ; ;

Prit iveCentral IdempotentUsingJLP (G, adjposs , o ,QG) ;
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Appendix D

Graphs and Trees

For finding the list

H0 ⊆ H1 ⊆ · · · ⊆ Hm ⊆ Gm ⊆ · · · ⊆ G1 ⊂ G0 = G,

we first make a list of all the subgroups of G.

The Subgroups function in the Sonata package of GAP gives us a list of all subgroups sorted

in an ascending order of their order. Once we have the list of all subgroups we make a a

graph with a subgroups as its vertices. For subgroups H and K, there is an edge between

the two nodes if and only if H ⊂ K. It is clear that the above mentioned graph is a directed

graph, as H ⊂ K is not equivalent to K ⊂ H.Let V be the collection all vertices and e be

the set of all the edges, then G = (V,E) is the graph of the sugroups of G.

D.1 Representing Graphs

There are two basic ways to represent graphs: by an adjacency matrix and by an adja-

cency list representation. We have used here the adjacency matrix representation. Let

G = (V,E) be a graph with number of nodes, |V | = n and m = |E|, number of edges. Let

V = {1, · · · , n} be the vertices of G, and take a n × n matrix A, where A[u, v] is equal

to 1 if the graph contains an edge (u, v) and 0 otherwise. It should be noted that we set

A[u, u] = 0. Since we are dealing with a directed graph, therefore the matrix we get is not

symmetric.

We now make the a graph for a given group G in GAP.

#function to check if there is an edge from H to K.

Edge:=function(G,H,K)

if IsSubgroup(G,H) and IsSubgroup(G,K) then
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if H=K then return 0;

elif IsSubset(H,K) then return 1;#check for IsSubgroup

else return 0;

fi;

else return 0;

fi;

end;

#---------------------------------------------------------

N:=Length(mlist);;

M:=[];;

for i in [1..N] do

tlist:=[];;

for j in [1..N] do

Add(tlist, Edge(G,mlist[j],mlist[i]));;

od;

Add(M, tlist);;

od;

#The Matrix M is the adjacency matrix representation of the graph.

Display(M);

D.2 Graph Transversal- Depth First Search

There are two algorithms for solving the problem of graph transversal, the breadth first

search(BFS) and the depth first search(DFS). We are mainly concerned with DFS for

transversal of our graph of subgroups of G. In DFS we start at a node s and try the

first edge leading out of it, to a node, say v. We then follow the first edge leading out of v

and continue in this fashion until we hit a “dead end”. We then backtrack until we get to

node with an unexplored neighbor, and resume from there on.

DFS is implemented using stacks, which is data structure from which we can select an ele-

ment in last-in, first-out (LIFO) order. The following code demonstrated the generation of

stacks in GAP.

Stack := function ()

local stack;;

stack := [];;

return rec(

push := function ( value )
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Add( stack, value );;

end,

pop := function ()

local value;;

value := stack[Length(stack)];;

Unbind( stack[Length(stack)] );;

return value;

end,

size:=function()

return Length(stack);

end,

top:=function()

return stack[Length(stack)];

end

);

end;;

Implementing DFS in GAP using stacks.

DFS:=function(G,list,node)

local sta,tnode,visited,i;;

SortBy(list,Order);;

sta:=Stack();;

sta.push(node);;

visited:=[];;

while sta.size() <> 0 do

tnode:=sta.pop();;

Add(visited, tnode);;

#Print(tnode,"\n");

for i in list do

if Edge(G, i, tnode)=1 then

#if i in visited then continue;

Add(visited, i);;

DFS(G,list,i);;
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else continue;

fi;;

od;

od;;

return visited;;

end;;
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