
Application of Inverse Problem
Theory and Markov Chain Monte

Carlo Technique

Vinay Krishna Gade

A dissertation submitted for the partial fulfilment of

BS-MS dual degree in Science

Indian Institute of Science Education and Research Mohali

April 2013

Certificate of Examination

This is to certify that the dissertation titled “Application of Inverse Problem

Theory and Markov Chain Monte Carlo Technique” submitted by Mr.

Vinay Krishna Gade (Reg. No. MS08020) for the partial fulfillment of

BS-MS dual degree programme of the Institute, has been examined by the

thesis committee duly appointed by the Institute. The committee finds the

work done by the candidate satisfactory and recommends that the report

be accepted.

Dr. Lingaraj Sahu Prof. Sudeshna Sinha Prof. Somdatta Sinha

(Supervisor)

Dated: April 26th, 2013

Declaration

The work presented in this dissertation has been carried out by me under

the guidance of Prof. Somdatta Sinha at the Indian Institute of Science

Education and Research, Mohali.

This work has not been submitted in part or in full for a degree, a diploma,

or a fellowship to any other university or institute. Whenever contributions

of others are involved, every effort is made to indicate this clearly, with due

acknowledgement of collaborative research and discussions. This thesis is a

bonafide record of original work done by me and all sources listed within

have been detailed in the bibliography.

Vinay Krishna Gade

Dated: April 26th, 2013

In my capacity as the supervisor of the candidate’s project work, I certify

that the above statements by the candidate are true to the best of my

knowledge.

Prof. Somdatta Sinha

(Supervisor)

Acknowledgment

First, I would like to thank my project guide for giving me such wonderful

opportunity to learn. She was very patient and kind enough to help me and

constantly pushing my limits to do my best. During this one year of thesis

I not only improved my knowledge by bounds but also learned the art of

scientific research from her. This has been a great experience for me and I

hope it will be really helpful for my future. Next, I would like to thank Dr.

Amit Apte, TIFR-CAM who has been constantly guiding me through out

this project. He taught me Inverse Problem theory and MCMC techniques

which is the center part of my project. I learnt a great deal of things from him

especially some good techniques in scientific programming. I am infinitely

grateful for him for going through my long messy programs and debugging

them, which is really a difficult job. He is my role model when it comes to

way of learning things. Thank you once again, Amit sir. I would also like

to thank my colleague Mr. Ashutosh Srivastava, who gave regular inputs

about current research and interesting problems, which helped a great deal

in keeping my enthusiasm. And finally I would like to thank the IISER

community at large especially the IISER, Library and computation facility.

Thank you.

Vinay Krishna Gade

iv

List of Figures

2.1 Ellipse with a=1.3 and b=0.4 . 14

2.2 Plot of Ellipse Data . 14

2.3 Frequency of accepted ’a’ values . 18

2.4 Frequency of accepted ’b’ values . 18

2.5 Convergence in ’a’ . 18

2.6 Convergence in ’b’ . 18

v

vi

Contents

1 Introduction 3

1.1 Inverse Problem Theory . 3

1.1.1 Data and Model Spaces . 3

1.1.2 Forward Problem . 4

1.1.3 Inverse Problem . 5

1.1.4 Solution of an Inverse Problem 5

1.2 Markov Chain Monte Carlo (MCMC) 8

1.2.1 Markov Chain . 8

1.2.2 Monte Carlo Methods . 10

1.2.3 The algorithm for MCMC - Metropolis Hastings 11

2 Results 13

2.1 The Ellipse Problem . 13

2.2 Inverse Problem for Lorenz system . 19

3 Conclusions 21

Bibliography 23

A Ellipse Problem 25

vii

viii

Abstract

Determining the model space parameters from given data is an important research

area in Mathematics and Statistics having applications in Physics, Chemistry, Biology

and Engineering. In this thesis we consider having data on the observable variables for

a certain model having multiple parameters, and attempt to do parameter estimation

for the model parameters using the data and some given information. We proceed to

solve the problem treating it as an inverse problem, and build the probability den-

sity functions for the model and data parameters. The probability functions we have

constructed using the system equations, can’t be fully determined due to mathemat-

ical complexity. So, we use the Markov Chain Monte Carlo (MCMC) method for

estimating the model parameters. We do various kinds of analysis of the estimated

parameters by substituting back into the system equations, trying to verify whether

they are consistent with the model or not. In this thesis, first we describe the model

space and data space, give a basic introduction to some probability and inverse theory,

and then discuss the MCMC approach. Finally, we apply the concepts and methods of

inverse problem theory and MCMC techniques on an example problem called Ellipse

model (with two parameters), and give detailed analysis of the parameter estimation

procedure. We then consider the Lorenz model, which is known to display a variety

of dynamics, stable to chaotic, for different values of its three parameters, and give a

brief description of how to do it’s parameter estimation.

1

2

Chapter 1

Introduction

1.1 Inverse Problem Theory

1.1.1 Data and Model Spaces

Let us consider some physical system or process. To describe this system mathemati-

cally, we need to define the properties and the relations between these properties using

mathematical expressions or equations. This is termed as the ”model” for the process

under study. These model system equations are derived from the initial knowledge we

have about the process/system. Since this knowledge may be incomplete, especially

in case of complex systems, these relations could be explaining the actual system

only to an extent and not completely. They have uncertainties, which need to be

determined. To verify the model, we do experiments and collect some data of the

observables describing the properties of the physical process/system. For example, to

measure the gravity of earth we use a device, which can measure the distance traveled

by the body. If the device is attached to a vertically falling body (with a certain

initial velocity, u), then measurements of distance can be taken, using the device, for

n times at {t1, t2, t3, . . . tn}. We also have a initial condition that initial velocity is

u. So, the data collected is {s1, s2, s3, . . . sn} at times {t1, t2, t3, . . . tn}. The system

equation for this process is known to be, s = ut+ gt2/2, where g is the gravitational

constant. We can calculate the value of g from this simple expression if we know s at

different t. On the other hand, we can substitute the data we have, and see what the

g value comes out to be for the given data set. The analysis, how the g is determined

will be discussed later.

Let us classify the various parameters we have. The set D = {s1, s2, s3, . . . sn} is the

3

data collected, so these are called the ’data parameters’ in the ’data space’. The set

{t1, t2, t3, . . . tn} is taken as the ’prior information’ which is bound to be known well

or measured with good certainty. We also need to determine the initial velocity u and

gravitational constant g values. These are called the ’model parameters’ in the model

space M = {u, g}. Hence, ’data space’ or ’data parameters’ consists of the experi-

mental data we have with us after performing the experiment. Where as the model

parameters are the parameters in the system equations which define the properties

of the physical system or a process. But it is important to note that most physical

systems have several properties which are observable, and as the observations change

the ’data space’ also changes. This will result in re-parametrization of the system

equations with a new ’model space’. So, model space is akin to conventional type of

space, since it depends on what properties of the physical system we choose to observe.

Usually, of all the possible parametrizations the minimal set of model parameters is

chosen. This reduces the mathematical rigor of the inverse problem. And, also any

two parametrization are equivalent if they are bijective. This description can be put

in more abstract manner, taking every set of values for model parameters as a point

in the n-dimensional parameter space, where n is the number of parameters. Here

each point represents a model, that may or may not fit the system equations, for a

given set of data.

1.1.2 Forward Problem

A simple definition of a forward problem would be, to predict the values of the ob-

servable parameters D, by constructing the system equations. So, the major part of a

forward problem would consist of formulating the system equations. These equations

are constructed based on the earlier knowledge that we possess about the problem.

So, the steps to describe the forward problem for a physical system or process would

be to identify the data and model space first, and then proceed to formulate a theory

and state the postulations, which would be the system equations. So, mathematically,

if the d ∈ D Data space, then we try to derive a function g(m) = d, where m ∈ M ,

the Model space. To put it precisely, g(m) consists of the vector m and the ’prior

information’ as variables. Therefore, deriving the mathematical equations from the

postulations/assumptions and from the previous knowledge we had about the problem

is involved in solving a Forward Problem.

4

1.1.3 Inverse Problem

The Inverse problem is about the model parameter estimation. In this case we are

given the data, which are experimental observations, and also possess some knowledge

about the theory and postulations, i.e the system equations representing the system.

What we need to do is estimate the model parameters that best fit the data. In the

example described previously in 1.1.1, we defined the model and data space. The data

space is the experimental observations, and we also have the system equations. Based

on the two we try to derive the model parameters from the data space. The final

set of estimations we get for the model space is the solution for the inverse problem.

In the next section, we describe a set of tools required to do the above, and discuss

about how to derive a solution for an Inverse Problem.

1.1.4 Solution of an Inverse Problem

The Data and Model space (or manifold) are determined and we also have derived

the system equations. A joint manifold is constructed from these two manifolds,say

W . Such a manifold is useful when we try to do a probabilistic interpretation of the

data and model space. We construct the probability density functions in the space of

W = D×M , which is the cross product of the two spaces. If d = (d1, d2, d3, . . . dr) ∈ D

and m = (m1,m2,m3, . . .ms) ∈ M , then w = (d1, d2, . . . dr,m1,m2, . . .ms) ∈ W . We

can now build a joint probability density function for the manifolds D and M . Once,

the parameters and spaces are determined, all we need to do is do a probabilistic in-

terpretation for them. To proceed from here, we suppose that the forward problem is

not completely true and the system equations are not deterministic and thereby could

be given an estimation as some probability. If we introduce some kind of uncertainty

in the system equation d = g(m), say ζ, then the system equations would be

d = g(m) + ζ (1.1)

ζ is the uncertainty in the system equations, therefore –

d− g(m) = ζ (1.2)

So, the above difference is the uncertainty in the system equations. What one can do

now is to assign a distribution for the uncertainty. This implies that the probability

that we have for a given amount of uncertainty, is now given by a function over ζ.

5

This distribution could be Guassian or any other kind, suitable for the purpose. This

tells us that, for a given point in the model space, how valid is a data point in the

data space. This is equivalent to putting a conditional probability for a point in data

space for a given model space point. Next we define a joint probability density, which

describes the physical postulations about the system and also explains the uncertain-

ties in the mathematical modeling.This joint probability density, say Θ(d,m), is called

the theoretical probability density, which is given as –

Θ(d,m) = θ(d|m) µM(m) (1.3)

where θ(d|m) is the conditional probability as described above and µM(m) is a marginal

homogeneous probability density function in the model space as given below –

µM(m) =

∫
D

µ(d,m) dd (1.4)

where the µ(d,m) is the joint homogeneous probability distribution over the joint

manifold W . Constructing and calculating the theoretical probability density solves

most of the problem. The θ(d|m) in the theoretical probability signifies the uncer-

tainty in the system equations i.e how good is the data space for a given point in

model space. Therefore, θ(d|m) is a distribution for uncertainty in the system equa-

tions, hence

θ(d|m) = δ(ζ). (1.5)

But, what we should not neglect is the initial idea or estimation about the both data

and model parameters. This information, which we possess before conducting the

experiment or trivial things that can be inferred from the data, is called ’A Priori’

information. A priori information on data parameters is basically dependent on the

efficiency of instrument in calculating the observables. We can interpret them as the

error analysis on the data, i.e., errors caused due to inaccuracies in the instrument

measurements. Where as for the model parameters, we build a distribution which

could be a possible estimation for the model parameter values. This is usually done

using the data or some kind of intuitive guess. And also, the observable errors are

large or small depend relatively on the modelizaton errors.

Let ρM(m) and ρD(d) represent the A priori information over the model and data

manifolds respectively. Assuming these both states of information are independent

6

from each other, we can give the joint prior information as –

ρ(d,m) = ρD(d) ρM(m) (1.6)

Once the theoretical and joint A priori probability densities are calculated all we need

to do is take conjunction of them, which will result in the posterior probability density,

given as –

σ(d,m) = κ
ρ(d,m) Θ(d,m)

µ(d,m)
(1.7)

Done that, now we have to determine a probability distribution, which explains how

well a model point fits the data point, which is the set of observables we have at hand.

Such a function is called Likelihood function, denoted as L(m). Likelihood function is

the solution of the inverse problem, which gives a probabilistic interpretation how the

model points are distributed for given data. Therefore, Likelihood function is directly

proportional to the posterior information we have in the model space. Therefore –

σM(m) = κ ρM(m) L(m) (1.8)

where, L(m) =

∫
D

ρD(d) θ(d|m)

µD(d)
dd (1.9)

is the solution of the inverse problem. Mathematically the above posterior information

over the model space represents the solution of the inverse problem but it is not really

helpful until we determine the normalization constant κ, which is mathematically a

rigorous derivation especially when the dimension of the model space is large. So, we

use this function in a different manner by calculating its value at random samples of

the model space. Hence, we need a methodology to estimate the model parameters by

randomly sampling the model space. For this same purpose we are going to introduce

the technique Monte Carlo Markov chain (MCMC). For the simulations in the MCMC

we will be using much lighter version of the likelihood function. It is taken as directly

proportional to the product of the prior on model space and the probability distribu-

tion over the errors in modelization which is θ(d|m). This much simpler function will

serve the purpose or not will depend on the nature of the problem whether it accepts

the simplification and gives solutions nearer to full rigorous models. Therefore, the

Likelihood function we are going to use is given as,

7

L(m) = θ(d|m) ρM(m) (1.10)

Once, the Likelihood function is constructed, we are ready to run the MCMC.

1.2 Markov Chain Monte Carlo (MCMC)

1.2.1 Markov Chain

A Markov chain can be described as a stochastic process such that the future states

are independent of the past states given the present state. Mathematically, if we have

a sequence of independent and identically distributed (i.i.d) random variables {Xi}i≥0

which take values from a state space {ai}i≥0 such that

P (Xi+1 = ai+1|Xi = ai, Xi−1 = ai−1, . . . , X0 = a0) = P (Xi+1 = ai+1|Xi = ai) (1.11)

then we say that, {Xi}i≥0 is a Markov chain. Here, we notice that the process is

a discrete time process. Most of the real data experiments using markov chains are

discrete time step process. The state space can be continuous or discrete depending

on the model space we are using. We will be working on discrete-time discrete-state

processes, so any markov chain mentioned in future is a discrete step process unless

pointed out specifically. Now, where does markov chains leads us to. Before doing

that let us define a transition matrix M for a state space. It is a matrix which consists

the transition probabilities of going from any given state to every other state. So, if

{ai}i≥0 is the state space from which Xi’s take values, then any element mkl ∈ M is

the transition probability of going from state al to ak. Therefore, for a discrete state

space of size n,

M =


m00 m01 . . . m0n−1

...
...

...
...

mn−10 mn−11 . . . mn−1n−1

 where, mkl = P (k → l). (1.12)

These probabilities in the transition matrix are calculated using various factors in

the physical system that influence transition between states. From an inverse problem

point of view, these states represent the model state space and the solution we are

trying to acquire is a distribution for these states. So, here is how we derive such

8

a distribution using a Markov chain. We take some initial distribution for the state

space, say π(0). Therefore,

π(0) = (π
(0)
0 π

(0)
1 . . . π

(0)
n−1) (1.13)

Since the conditional distribution of Xi+1 given Xn, Xn−1, . . . , X0 depends only on Xn,

in the next time step using the transition matrix we try to calculate the distribution

π(1), which is given as –

π(1) = π(0)M and (1.14)

π(k) = π(k−1)M therefore, (1.15)

π(k) = π(0)Mk (1.16)

Now the above equation for larger k, we will need π(k) to converge to some distribution

which is independent of the initial distribution π(0). Such that,

π = π M (1.17)

This would happen if a certain set of conditions are put on the state space. There are

three such conditions and they go as follows –

• Aperiodic - If Xi = a ∈ A then there exists no k, such that Xi+k = a, then we say state

a is aperiodic. If ∀a ∈ A are aperiodic, then A is aperiodic.

• Irreducible - If all states in the state space A communicate i.e mij > 0 ∀ i, j < n

then we say A is irreducible.

• Positive - Let us define for any a ∈ A, Ta = inf {i : Xi = a, i ≥ 1 |X0 = a}.
Recurrent Now, a state a is recurrent if Pa(Ta < ∞) = 1, where Pa is a probability

distribution over {Xi}i≥0 with X0 = a. A recurrent state is called positive

recurrent if Ea(Ta) < ∞, where Ea is the expectation value with respect

to the probability distribution Pa.

9

1.2.2 Monte Carlo Methods

In this section we would give brief introduction to monte carlo methods and how

this numerical technique is useful for practical purposes and brings simplicity to com-

plex problems. As described earlier, to evaluate the likelihood function one needs to

determine the normalization constant but since the function is higher dimensional,

integrating it would be a rigorous problem. To bypass such a situation we adopt

monte carlo methods. Monte carlo methods involves randomly sampling the state

space and calculating the function value at that point and sum it. This would give

us an ample idea what would be the integrated value of the function, even though it

is a mere estimation. Anyways, in the present problem we are dealing with we would

not try integrate the likelihood function we would use something similar i.e random

sampling. We try to calculate the values of the likelihood function at different points

in the model space, if the state space is aperiodic, irreducible and positive recurrent

then assuming the sequence to be a markov chain should converge to a stationary

distribution. The process of this will be explained more clearly in the algorithm for

MCMC. Let us see how are we using the monte carlo methods in distribution. Now

suppose {Xi}ni=0 is a sequence of i.i.d random variables such that they converge to an

i.i.d X in distribution. Point to note here is, the sequence of random variables are

technically simulated for the purpose, which will converge to a stationary distribution.

Define,

µ̂ =
1

n+ 1

n∑
i=0

Xi (1.18)

If X has a mean µ and standard deviation σ, then by Central limit theorem we have

the sample mean µ̂ converges to µ and the estimated variance given as,

σ̂2 =
1

n+ 1

n∑
i=0

(Xi − µ̂)2 (1.19)

converges to the σ. So in our problem we are going to use monte carlo to simulate

random variables which converge to the stationary distribution we need.

10

1.2.3 The algorithm for MCMC - Metropolis Hastings

The Metropolis Hastings algorithm is quite simple. Before going there let me define a

function called proposal density function. The proposal density function is where the

samples from state space for the simulation are picked up. The choice of this function

is purely dependent on the problem and how much information we have on the model

parameters. For this same purpose we need to have an initial idea how the model

parameter values look like, this would increase the efficiency of the simulation highly.

Let us see how they really work. A proposal density function q has two arguments

in the function, the present state a0 and a newly generated state a. Now, it is con-

structed such that, either q(a|a0) or q(a0|a) is greater depending on which of between

a and a0 is nearer to our estimation. But such a construction is quite difficult to do

since these functions are not usually normal distributions which makes it difficult to

understand them. If q(a|a0) and q(a0|a) are not equal then we say it is an asymmetric

type of proposal density else symmetric. Metropolis Hastings algorithm would be

using asymmetric type of proposal density function. The algorithm for running an

MCMC simulation would be like this –

• Step 1 - Start with some initial seed xold = x0 and calculate Lold = L(x0).

• Step 2 - Generate a new state x.

• Step 3 - Calculate the Hastings ratio r = L(x) q(x|x0)
Lold q(x0|x) .

• Step 4 - Generate a random number u between 0.0 and 1.0.

• Step 5 - If (u ≤ r)

put xold = x and Lold = L(x).

• Step 6 - Goto Step 2.

So the above sequence of steps is a simple representation of the Metropolis Hastings

algorithm. This algorithm is used for running MCMC programs for all problems ex-

plained in this report. In the algorithm every state is randomly sampled from the

proposal density function. As seen we start with an initial seed, then we start a loop

equal to the number of time steps we want to run the simulation. Inside the loop we

generate a new state and calculate the Hastings ratio between the two states. Next,

we generate a random number u between 0.0 and 1.0. Then we do the ratio test, if

the new state passes the test then we replace the old state variable with the new state

value, similarly for the likelihood function value. After the ratio test the loop goes

11

back and generates a new state. During this all process we need to check whether

the distributions are really converging. This is done by testing for convergence in

mean of all accepted states at every time step, which will help us to note when the

sequence starts converging in distribution. A point to note here is that, whenever a

state is rejected then for calculating the mean the old state is used at that time step.

Hence, only then the mean converges to the right values of the state space, which is

the solution to our problem. Next thing we are concerned during a MCMC simulation

is the acceptance rate. The acceptance rate is the percent of states that are accepted.

A check for acceptance rate could be done at every time step, this helps in seeing

which parts of the state space have higher probabilities. Also, a good MCMC simula-

tion would have a overall acceptance rate of around 20 percent. Using the acceptance

rate and likelihood function values at every time time step we can tweak the proposal

density function so that jumps could be made accordingly if the simulation got stuck

between a certain range of state space values.

12

Chapter 2

Results

We now apply the methods and techniques described in the earlier chapters to two

specific problems whose models are known. The first one - the Ellipse Problem -

estimates the two parameters describing an ellipse from a set of data of the two

variables. We show the analysis in detail. The second one - the Lorenz Equation - is

a model to describe fluid flow, is known to display a variety of dynamics, stable to

chaotic, for different values of its three parameters. We give a brief description of how

to do the estimation of its three parameters from the chaotic orbits.

2.1 The Ellipse Problem

Here we apply the inverse problem theory and the MCMC technique on the simple

problem of estimating the parameters a and b of an elliptic orbit motion. So, we

have n co-ordinate points {(xi, yi)}ni=1, which is the data or observables. The forward

problem in this case would be determining the system of equations, which in this case

is a simple parametric equation for an ellipse, given as –

x2

a2
+

y2

b2
= 1 (2.1)

Using the above equation we can determine the value of, say x at a given y for differ-

ent values of a and b. This would be the forward problem solution. For the inverse

problem we generate data taking a = 1.3 and b = 0.4, then the ellipse would like as

shown in Figure 2.1

13

-0.4

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

0.4

-1.5 -1 -0.5 0 0.5 1 1.5

Y

X

Figure 2.1: Ellipse with a=1.3 and b=0.4

During an experiment the data always has some noise or deviation from the actual

values. So, the data we get through a real experiment would have noise in it. To gen-

erate some synthetic data for this problem, we pick some data points from the ellipse

and add noise to the co-ordinate points. And, this data set, given in the Table A.1,

would be used for the inverse problem. The data points,when plotted, is shown in

Figure 2.2 –

-0.5

-0.4

-0.3

-0.2

-0.1

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

-2 -1.5 -1 -0.5 0 0.5 1 1.5 2

Y

X

"./Ellipse Data"

Figure 2.2: Plot of Ellipse Data

When compared to Figure 2.1, it is clear that the data exhibits stochasticity and the

elliptic orbit is not as clearly defined as in Figure 2.1.

14

In an inverse problem we are given the data set (x and y) and the system equa-

tions, and we need to determine the values of a and b. In a forward problem, given a

y, one can determine the value of x for a certain a and b. We take the y′is as a priori

information, which means that the values of y component are deterministic values (or,

with no error), and use the x component in the data set as the observables. So the

data space consists of {xi}ni=1 as the only data. So, the system equation d = g(m)

would look like –

xi = ± a

√
1− y2i

b2
(2.2)

Clearly the model space is a two dimensional space with its components represented

as (a, b). Once the system equations, the data space and the model space are deter-

mined we are ready to solve the inverse problem.

First, we need to determine the Prior density distribution for the model space.

This is done by observing the range of distances between any two points, which will

give estimates for the a and b values. If the data set is spread evenly through the

orbit motion, we can get the maxima and minima of the distances as the a and b

estimates nearly to the right values. This shows that the prior density function is

mostly dependent upon how good the data set is. Hence, a good data set will give

good estimates for the inverse problem, and a bad data set will make bad estimation.

The prior density function for the model space, taken as guassian distribution, would

look like –

ρ(a, b) =
1

2π σaσb

exp

(
−(a− â)2

2σ2
a

+
−(b− b̂)2

2σ2
b

)
. (2.3)

where â and b̂ are the estimates for a and b values,

σa and σb are the standard deviations.

Next, what we need to determine is the theoretical probability density function

Θ(d,m) ∝ θ(d|m), which is given as –

15

θ(d|m) =
n∏

i=1

δ

(
|xi| −

∣∣∣∣∣a
√

1− y2i
b2

∣∣∣∣∣
)
. (2.4)

=
1

(2π)n/2 σn

n∏
i=1

exp

−
(
|xi| −

∣∣∣∣a√1− y2i
b2

∣∣∣∣)2

2 σ2

 (2.5)

where σ is the standard deviation of the data set {xi}ni=1.

Once the prior and theoretical probabilities are constructed we have the likelihood

function given as –

L(a, b) =
exp

(
−(a−â)2

2σ2
a

+ −(b−b̂)2

2σ2
b

)
(2π)(n+2)/2 σnσaσb

n∏
i=1

exp

−
(
|xi| −

∣∣∣∣a√1− y2i
b2

∣∣∣∣)2

2 σ2

 (2.6)

Since in the algorithm we would be using the likelihood function for calculating the

Hastings ratio, where the normalization constants get canceled, so normalized con-

stants can be ignored, similarly any probability function we try using in the simulation

need not be normalized like the proposal density function. The proposal density func-

tion for any MCMC simulation is manipulated such that the samples are picked up

near our estimated values. But it should also not be biased at the same time by

making the range of values too narrow. This would defeat the whole purpose. So, the

proposal density function in the case of ellipse problem is quite simple. It is as follows –

Q(m|m0) = Q(a, a0, b, b0) (2.7)

=
1

2π∆a∆b

exp

(
−(a− βaa0)

2

2∆2
a

+
−(b− βbb0)

2

2∆2
b

)
(2.8)

where ∆a and ∆b are standard deviations for parameters a and b in

the proposal density function, βa and βb are some constants which

give asymmetry for the function Q.

16

Now, determining the values of βa,βb,∆a and ∆b is the major part of constructing the

proposal density function, which influence the kind of samples that are picked up and

also control the acceptance rate. Since we have used an asymmetric function for the

proposal, the values of Q(m|m0 and Q(m0|m) will not be equal. So for calculating

the later function Q(m0|m) value the variables can be interchanged as follows –

Q(m0|m) = Q(a0, a.b0, b) (2.9)

This kind of construction of the proposal density function makes operating on it quite

flexible. Even though more complex and accurate functions can be used but not easy

to handle inside a simulation.

Now once the data set is available to us we are ready to run the simulation. The

pseudo code for the simulation would look like as follows –

DEFINE: double Q(double, double, double, double) { }
DEFINE: double L(double, double) { }
START : main() {

Enter the initial seed aini = a0 and bini = b0;

Calculate (double) Lold = L(a0, b0);

for(i=0;i<rounds;i++) {
Generate a new state a and b from Q(βaaini; ∆a) and Q(βbbini; ∆b);

Calculate L(a, b), Q(a, aini, b, bini) and Q(aini, a, bini, b);

Calculate the Hastings ratio r;

Generate a random number u between 0.0 and 1.0;

if(u ≤ r) {
put aini = a,

bini = b and

Lold = L(a, b); } // END OF IF

} // END OF FOR

} // END OF MAIN

he C program for the simulation of ellipse problem are given in the Appendix.

The data available to us is plotted in Figure 2.2. The results of the MCMC analysis

with this data set, and the system of equations given in Equation 2.2, for parameter

17

0

100

200

300

400

500

0 0.5 1 1.5 2 2.5
a

Figure 2.3: Frequency of accepted ’a’ values

0

200

400

600

800

1000

1200

0 0.5 1 1.5 2 2.5 3 3.5

fr
eq

ue
nc

y

b

Figure 2.4: Frequency of accepted ’b’ values

 1

 1.1

 1.2

 1.3

 1.4

 1.5

 1.6

 1.7

 1.8

 1.9

 2

 0 50000 100000 150000 200000 250000 300000 350000 400000 450000 500000

a

time step

Convergence of ’a’ in mean

Figure 2.5: Convergence in ’a’

 0.5

 0.55

 0.6

 0.65

 0.7

 0.75

 0.8

 0.85

 0.9

 0.95

 1

 1.05

 0 50000 100000 150000 200000 250000 300000 350000 400000 450000 500000

b

time step

Convergence of ’b’ in mean

Figure 2.6: Convergence in ’b’

estimation are shown as plots. Figure 2.3 and Figure 2.4 give the distribution of ac-

cepted states for a and b. Figure 2.5 and Figure 2.6 give the corresponding estimated

(converged) values of a and b on MCMC analysis. The estimated values of a and b

from MCMC analysis are 1.22 and 0.77. Note that the converged values of a and b are

not exactly the same as the actual values 1.3 and 0.4. This is expected as the MCMC

estimation of parameters would depend strongly on the data set and the probability

distributions involved.

18

2.2 Inverse Problem for Lorenz system

Here we give a brief mathematical description of how to construct the inverse problem

for the Lorenz system of equations.

The system of equations due to Lorenz are given as follows –

dx

dt
= α(x− y) (2.10)

dy

dt
= x(ρ− z)− y (2.11)

dz

dt
= xy − βz (2.12)

The three parameters are - α, β and ρ. Now, using the above equations we build an

discrete set of equations assuming that Lorenz is a non-linear discrete system, which

are given as follows –

Xn+1 = α(Xn − Yn)∆T +Xn (2.13)

Yn+1 = (Xn(ρ− Zn)− Yn)∆T + Yn (2.14)

Zn+1 = (XnYn − βZn)∆T + Zn (2.15)

These above set equations can be represented as a vector. So, in g(m) = d the g is a

vector containing three components - Xn+1, Yn+1 and Zn+1, which we will represent

them as g1,g2 and g3.

Clearly the model space M = α, β, ρ,X0, Y0, Z0, which includes the initial conditions

and the data space will be the (x, y, z) co-ordinates, therefore D = {(xi, yi, xi)}ni=1.

Once we have constructed the system equations as a vector ~g(m) = (g1(m), g2(m), g3(m)),

we define a matrix S as follows –

S =


~g(1) − ~d(1)

~g(2) − ~d(2)

...
~g(n) − ~d(n)

 (2.16)

19

Now once we have the matrix S, then we have –

θ(d|m) =
1

(2πn|C∆|)1/2
exp

(
−STC−1

∆ S

2

)
. (2.17)

where the C∆ is the co-variance matrix.

Now once the θ(d|m) is constructed we have the likelihood function given as,

L(m) = θ(d|m)ρM(m), (2.18)

where the ρM(m) is the prior information over the model space, generally some guas-

sian distribution for each parameter in the model space. Now we are ready to run a

MCMC simulation for estimating the parameters in the model space.

20

Chapter 3

Conclusions

Many physical and biological processes can be represented using a mathematical model

by abstracting a large number of processes into mathematical functions. These models

are useful in understanding the behaviour of the system under different conditions,

which are generally performed by changing the parameters. When these real systems

are subjected to experimentation, one gets data on the observables (variables) under

different conditions. It is an important task to extract the parameters from the data

set that may be responsible for the behaviour observed in experiments. Here we

have studied a well established and complex mathematical and statistical approach

for determining the model space parameters from given data. The approach involves

Inverse Problem Theory and application of the Monte Carlo Markov Chain (MCMC)

techniques. We have described the methods involved and then applied them to two

examples of increasing complexity. First we study the simple problem of estimating

two parameter of an Ellipse from a given dataset and some prior information about the

possible values of the parameters. Our results show convergence to good estimated

parameter values on MCMC analysis. Then we applied the problem of estimation

to the complex system of the Lorenz equations, which shows a variety of complex

dynamics - from equilibrium to chaotic - for different parameter values. We have

given the theoretical methodology involved in the estimation and further work is

in progress to extract reasonable parameter values from the data. We have also

attempted to apply the method on a highly nonlinear coupled discrete system of

equations describing the population dynamics of insects, which involves 7 parameters.

Work is in progress in that area too.

21

22

Bibliography

[AS09] S R Athreya and VS Sunder, Measure and Probability, Universities Press

(India) Private Limited, 2009.

[BN06] Krishna B.Athreya and Soumendra N.Lahari, Probability Theory, Hindustan

Book Agency (India), 2006.

[Tar05] Albert Tarantola., Inverse Problem Theory, Society for Industrial and Applied

Mathematics, Phildelphia, 2005.

23

24

Appendix A

Ellipse Problem

/∗
In fo rmat ion f o r about t h e p l o t s c r e a t e d . . .

There are f ou r p l o t s t h a t are o b t a i n ed

a f t e r running t h e code . . .

1)The l i k e l i h o o d p l o t . t x t f o r t h e l i k e l i h o o d

f un c t i o n . . . z=l i k e l i h o o d (a , b)

2)The t ime s t e p p ro c e s s f o r parameter a . . .

which i s a t . t x t mcmc p l o t f o r a . . .

3)The t ime s t e p p ro c e s s f o r parameter b . . .

which i s b t . t x t mcmc p l o t f o r b . . .

4)The p l o t f o r r , a and b

which i s c a l l e d s t a t i o n a r y d i s t r i b u s t i o n p l o t . t x t . . .

which i s not r e a l l y t h e s t a t i o n a r y

d i s t r i b u t i o n bu t j u s t t o make o b s e r v a t i o n s . . .

which in t h i s case l o o k s l i k e k ind o f gau s s i an . . . ! !

∗/

#include<s t d i o . h>

#include<math . h>

#include” jvrand . h”

#define rounds 100000

// number o f rounds (or) t h e number o f t imes t h e a and b are f e t c h e d randomly . . .

#define beta 0 .3

// b e t a i s a con s t an t used in fun Q to avo id t h e symmetry in t r a n s i t i o n p r o b a b l i l i t y . . .

#define robs 1

// rob s i s t h e s tandard d e v i a t i o n ob s e r v ed in t h e measurement o f x co−o r d i n a t e v a l u e

#define delta Q 1

// s tandard d e v i a t i o n f o r t h e fun Q d e n s i t f u n c t i o n

#define pi 3 .14159

// p i c on s t an t as u sua l . . .

#define mean a 1.81463

// mean a i s t h e mean va l u e f o r ’ a ’ used in t h e nu M M i s t h e model space . . .

// note : nu () f u n c t i o n i s not in t h e program . . i t i s t h e p r i o r p r o b a b i l i t y d e n s i t y

// f un c t i o n j u s t wrote down in the r e t u rn va l u e o f t h e l k l h o o d f u n () which i s d e f i n e d in t h e program . . .

#define mean b 0.503165

// mean b i s t h e mean va l u e f o r ’ b ’ used in t h e nu M . .

#define de l t a a pow (0 . 5 , 2)

// d e l t a a i s s t andard d e v i a t i o n f o r ’ a ’ . . . a c t u a l l y t h e va r i ance . . .

#define de l t a b pow (0 . 2 , 2)

// d e l t a b i s s t andrad d e v i a t i o n f o r ’ b ’ a c t u a l l y t h e va r i ance . . .

#define beta a 2

// t e s t v a l u e s f o r fun Q

#define beta b 2

// t e s t v a l u e s f o r fun Q

double data [1 0 0] ;

// f o r t h e co−o r d i n a t e s in t h e i n p u t F i l e . . . a l l even data [] ’ s are x co−o r d i n a t e s and odd are y

25

// co−o r d i n a t e s change t h e array parameter acco rd ing to t h e inpu t

double fun Q (double next a , double a , double next b , double b)

// the d e n s i t y f u n c t i o n from which t h e ’ a ’ and ’ b ’ samples are p i c k ed randomly . . .

// (a , b) i s t h e p r e s en t s t a t e . . . (nex t a , n e x t b) i s t h e nex t s t a t e to be choosen or not . . .

{
return exp(−pow((next a −(beta∗a)) , 2)/2∗pow(delta Q , 2))∗ exp(−pow((next b−(beta∗b)) , 2)/2∗pow(delta Q , 2)) ;

}

double l k lhood fun (double A, double B)

// the l i k e l i h o o d f un c t i o n which i s d i r e c t l y p r o p o r t i o n a l t o t h e produc t o f t h e p r i o r i

// in f o rma t i on (nu M fun c t i o n) and p o s t e r i o r p r o b a b i l i t y (t h e t h e t a f un c t i o n) . .

{
double sum ;

sum = −0.5∗pow((abs (data [0]) − abs (A∗(sq r t (abs (1−(pow(data [1] , 2) / pow(B, 2))))))) , 2) / pow(robs , 2) ;

// data [] i s g l o b a l l y d e c l a r e d

// t h e abs (x)−abs (.) i s used , so no need to worry about t h e s i g n o f t h e abs (.) .

int j ;

for (j =2; j <=98; j+=2)

{
sum =sum + (−0.5∗pow((abs (data [j])− abs (A∗(sq r t (abs (1−(pow(data [j +1] ,2)/pow(B, 2))))))) , 2) / pow(robs , 2)) ;

}
return exp (sum)∗ exp ((−(pow(A−mean a , 2)) /2∗ de l t a a)+(−pow(B−mean b ,2)/2∗ de l t a b)) ;

// exp (sum) i s t h e p o s t e r i o r p r o b a b i l i t y

// and the r e s t i s t h e p r i o r p r o b a b i l i t y d e n s i t y

}

main ()

{
i f (remove (” l i k e l i h o o d p l o t . txt ”)!=0 && remove (” a t . txt ”)!=0 &&

remove (” b t . txt ”)!=0 && remove (” s t a t i o n a r y d i s t r i b u t i o n p l o t . txt ”) !=0)

pe r ro r (” the old output f i l e s could not be de l e t ed or does not e x i s t \n”) ;

else

p r i n t f (” the old output f i l e s are de l e t ed \n”) ;

FILE ∗ fp1 ;

double c ;

fp1 = fopen (” e l l i p s e d a t a 3 . txt ” , ” r ”) ;

do {
c = f s c an f (fp1 , ”%l f ” , data) ;

} while (c != EOF) ;

f c l o s e (fp1) ;

double ar ray a [rounds] , a r ray b [rounds] ;

// s t o r i n g t h e v a l u e s o f ’ a ’ and ’ b ’ f o r f u r t h e r use a c t u a l l y t h ey are t h e v a l u e s

// f o r n e x t a and n e x t b s u b j e c t e d to t e s t

double a , b ;

// t h e s e r e p r e s e n t t h e p r e s en t s t a t e o f t h e model space a t any po i n t o f t h e program . . .

int accepted a b=0;

// to keep count o f number o f s t a t e s a c c ep t ed

p r i n t f (” ente r the i n i t i a l va lue f o r a : ”) ;

s can f (”%l f ” ,&a) ;

p r i n t f (”\n”) ;

p r i n t f (” ente r the i n i t i a l va lue f o r b : ”) ;

s can f (”%l f ” ,&b) ;

p r i n t f (”\n”) ;

FILE ∗ fp2 ,∗ fp a ,∗ fp b ,∗ fp 3d ;

int i ;

double z ;

// v a r i a b l e f o r t h e l i k e l i h o o d f un c t i o n

for (i =0; i<=rounds ; i++)

{
ar ray a [i] = jvrand normal (beta∗a , delta Q) ;

// g en e r a t i n g n e x t a from fun Q where ’ b e t a ∗a ’ i s mean . . .

array b [i] = jvrand normal (beta∗b , delta Q) ;

26

// g en e r a t i n g n e x t b .

z=lk lhood fun (ar ray a [i] , a r ray b [i]) ;

// c a l c u l a t i n g t h e v a l u e o f l i k e l i h o o d f un c t i o n a t g ene ra t ed a and b v a l u e s

fp 3d =fopen (” l i k e l i h o o d p l o t ” , ”a”) ;

f p r i n t f (fp 3d , ”%l f \ t%l f \ t%l f \n” , a r ray a [i] , a r ray b [i] , z) ;

f c l o s e (fp 3d) ;

double r=(lk lhood fun (ar ray a [i] , a r ray b [i])∗ fun Q (ar ray a [i] , a , ar ray b [i] , b))

/(l k lhood fun (a , b)∗ fun Q (a , a r ray a [i] , b , ar ray b [i])) ;

// the r a t i o t e s t . . . and i t i s s t o r e d as ’ r ’

double u ;

u =jvrand uni form (0 . 0 , 1 . 0) ;

// g en e r a t i n g random number between 0 and 1

p r i n t f (”%d\ t%l f \ t%l f \n” , i , a , b) ;

i f (r>=u)

// the t e s t t o a c c ep t n e x t a and n e x t b or not

// i f t r u e . . update them as t he new p r e s en t s t a t e s

// f o r ’ a ’ and ’ b ’

{ a=array a [i] ;

b=array b [i] ;

accepted a b++;

fp2= fopen (” s t a t i o n a r y d i s t r i b u t i o n p l o t . txt ” , ”a”) ;

f p r i n t f (fp2 , ”%l f \ t%l f \ t%l f \n” , a , b , r) ;

f c l o s e (fp2) ; }

f p a= fopen (” a t . txt ” , ”a”) ;

f p r i n t f (fp a , ”%d\ t%l f \n” , i , a) ;

f c l o s e (fp a) ;

fp b= fopen (” b t . txt ” , ”a”) ;

f p r i n t f (fp b , ”%d\ t%l f \n” , i , b) ;

f c l o s e (fp b) ;

}

int p ;

double sum a= array a [0] ; // f o r t h e mean o f ’ a ’ . . .

for (p=1;p<=rounds ; p++)

{
sum a=sum a+array a [p] ; }

double sum b= array b [0] ; // f o r t h e mean o f ’ b ’

for (p=1;p<=rounds ; p++)

{
sum b=sum b+array b [p] ; }

p r i n t f (”%l f \ t%l f \ t%d\ t%d\n” , a , b , accepted a b , rounds) ;

p r i n t f (”%l f \ t%l f \n” , sum a/rounds , sum b/ rounds) ;

return 0 ;

}

27

x y x y

1 1.5938954e+00 2.2174030e-01 26 -1.1943160e+00 3.5405783e-01

2 6.1403762e-01 4.5206091e-01 27 -1.1750244e+00 3.7408274e-01

3 1.2195540e+00 3.7615132e-01 28 -1.4051071e+00 3.0978135e-01

4 1.1826470e+00 3.8581423e-01 29 -1.3233742e+00 3.2793660e-01

5 4.4391760e-01 4.8555695e-01 30 -7.7593299e-01 4.4837960e-01

6 3.7849652e-01 4.8337576e-01 31 -9.9006673e-01 4.1055471e-01

7 9.4754608e-01 4.2207883e-01 32 -1.1725107e+00 3.5885129e-01

8 1.6396159e+00 2.1231935e-01 33 -4.5375706e-01 4.8739075e-01

9 7.1057859e-01 4.6429053e-01 34 -8.2210386e-01 4.5303999e-01

10 1.0779016e+00 4.0783013e-01 35 -8.7541459e-01 4.5265500e-01

11 5.3571791e-01 4.9446092e-01 36 -3.2420950e-01 4.8674291e-01

12 1.3269006e+00 3.3979654e-01 37 -1.2712415e+00 3.5680347e-01

13 5.8264267e-01 4.5169798e-01 38 -5.6419966e-01 4.7513810e-01

14 9.5893558e-01 4.1474297e-01 39 -5.6940636e-01 4.8766024e-01

15 1.2486151e+00 3.4659810e-01 40 -1.1293312e+00 4.0062098e-01

16 1.5363549e+00 2.4979990e-01 41 -8.4826754e-01 4.3749544e-01

17 1.6389371e+00 1.9712228e-01 42 -1.5862186e+00 2.3933216e-01

18 1.0208233e+00 4.1057570e-01 43 -1.6190748e+00 2.1824588e-01

19 4.0793666e-01 5.0135726e-01 44 -9.0380367e-01 4.2978101e-01

20 4.2394101e-01 4.6632541e-01 45 -5.3124915e-01 4.6022513e-01

21 5.8626238e-01 4.7075937e-01 46 -2.9898397e-01 4.9591078e-01

22 1.4610759e+00 2.7995270e-01 47 -1.5051407e+00 2.8253415e-01

23 5.8142327e-01 4.4411720e-01 48 -8.4676451e-01 4.5101213e-01

24 1.4214272e+00 3.1501050e-01 49 -9.9591404e-01 4.0493180e-01

25 5.6528745e-01 4.8849318e-01 50 -1.6821469e+00 1.7261179e-01

Table A.1: Data- Ellipse XY co-ordinates

28

