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Abstract

Quantum theory shows many interesting features like the uncertainty prin-

ciple, entanglement or nonlocality. In order to understand these features,

several attempts have been made to formulate quantum theory within a

more general framework of probabilistic theories. Such a framework allows

to formulate postulates and study their consequences in a general setting.

In the past, generalized probabilistic theories have mostly been studied to

understand the nonlocality of quantum theory.

In this thesis, we quantify the nonlocality of bipartite quantum states.

More precisely, when a set of measurements is performed on a bipartite quan-

tum state, it results in a joint probability distribution which characterizes

quantum correlations. We study the nature of the correlations in terms of

Bell inequalities and the Genuine inequalities that quantifies the nonlocality

of the quantum correlations.
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Chapter 1

Introduction

The introduction covers mainly the basic material, that can be easily found

in many sources. I have provided proper references for the material taken

wherever I have used them. For the quantum physics from the founda-

tional perspective, the books are Peres[Per95], Nielson and Chuang[NC00],

Bohm[Boh51] and Bell[Bel87].

1.1 Review of Quantum Mechanics

Quantum theory can be understood as the the theoretical basis or pillar of

modern physics that explains the nature and behavior of matter and energy

on the atomic and subatomic level. The physical systems at these levels are

known as quantum systems. So far a huge amount of theoretical predictions

deriving from this theory have been confirmed by very accurate experimen-

tal data. Still, even after so many decades since its birth, many problems

related to the interpretation of this theory persist: non-local effects of en-

tangled states, wave function reduction and the concept of measurement in

quantum mechanics and so on. The debate over whether quantum mechan-

ics is a complete theory or whether it is just a statistical approximation of

a deterministic theory dates to the beginning of the theory itself. Neverthe-

less, despite all these arguments quantum mechanics has proved itself to be

a correct theory and no doubts can be raised on the validity of this theory.
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It is a mathematical model of the physical world that describes the behavior

of quantum systems. A physical model is characterized by how it represents

physical states, observables,measurements and dynamics of the system under

consideration. A quantum description of a physical model is based on the

following concepts:

1.1.1 Fundamental concepts

A state is a complete description of a physical system. Quantum mechanics

associates a ray in Hilbert space to the physical state of a system. What is

Hilbert space?

• Hilbert space is a complex linear vector space associated with inner

product. In Diracs ket-bra notation states are denoted by ket vectors

|ψ〉 in Hilbert space.

• Corresponding to a ket vector |ψ〉 there is another kind of state vector

called bra vector, which is denoted by 〈ψ|. The inner product of a bra

〈ψ| and ket |ψ〉 is defined as follows:

〈ψ|{|φ1〉+ |φ2〉} = 〈ψ|φ1〉+ 〈ψ|φ1〉 (1.1)

〈ψ|{c|φ1〉} = c〈ψ|φ1〉 (1.2)

for any c ∈ C, the set of complex numbers. There is a one-to-one

correspondence between the bras and the kets.

• The state vectors in Hilbert space are normalized which means that

the inner product of a state vector with itself gives unity, i.e.,

〈ψ|ψ〉 = 1. (1.3)

Postulates of quantum mechanics

For an isolated quantum system, quantum theory is based on the following

postulates:
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• A ket vector |ψ〉 in Hilbert space gives a complete description of the

state of the physical system.

• Dynamics are specified by Hermitian operators and time evolution is

given by Schrodingers equation:

i~
∂|ψ〉
∂t

= Ĥ|ψ〉 , (1.4)

where Ĥ is the Hamiltonian operator.

1.1.2 Qubits

In two-dimensional Hilbert space an orthonormal basis can be written as

{|0〉, |1〉}. A general qubit state is then

|ψ〉 = a|0〉+ b|1〉 , (1.5)

where a, b ∈ C satisfying |a|2+|b|2 = 1. In other words, |ψ〉 is a unit vector in

two-dimensional complex vector space for which a particular basis has been

fixed. One of the simplest physical examples of a qubit is the spin -1
2

of an

electron. The spin-up and spin-down states of an electron can be taken as

the states |0〉, |1〉 of a qubit.

1.1.3 Quantum Measurement

The concept of measurement of a quantum state of many qubits is subtle and

lies at the heart of quantum theory. The measurement postulate of quantum

mechanics states:

• Mutually exclusive measurement outcomes correspond to orthogonal

projection operators {P0, P1, ....} and the probability of a particular

outcome i is 〈ψ|P̂i|ψ〉. If the outcome i is attained the (normalized)

quantum state after the measurement becomes

P̂i|ψ〉√
〈ψ|P̂i|ψ〉

. (1.6)
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Consider a measurement made on a qubit whose state vector resides in

two-dimensional Hilbert space. A measuring device has associated an or-

thonormal basis with respect to which the quantum measurement takes place.

Measurement transforms the state of the qubit into one of measuring devices

associated basis vectors. Assume the measurement is performed on the qubit

that has the state eq.(1.5). The measurement projects the state in eq.(1.5)

to the basis {|0〉, |1〉}. Now in this case the measurement postulate says that

the outcome |0〉 will happen with probability |a|2 and the outcome |1〉 with

probability |a|2 .

Furthermore, measurement of a quantum state changes the state according

to the result of the measurement. That is, if the measurement of |ψ〉 =

a|0〉 + b|1〉 results in |0〉 , then the state |ψ〉 changes to |0〉 and a second

measurement, with respect to the same basis, will return |0〉 with probability

1. Thus, unless the original state happened to be one of the basis vectors,

measurement will change that state, and it is not possible to determine what

the original state was.

Measurement made with orthogonal projection operators {P0, P1, ....} is

also called projective measurement.

1.1.4 Pure and mixed states

In quantum mechanics a pure state is defined as a quantum state that can

be described by a ket vector:

|ψ〉 =
∑
k=1

ck|ψk〉 . (1.7)

Such a state evolves in time according to the time-dependent Schrodinger

equation. A mixed quantum state is a statistical mixture of pure states. In

such a state the exact quantum- mechanical state of the system is not known

and only the probability of the system being in a certain state can be given,
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which is accomplished by the density matrix.

1.1.5 Quantum Entanglement

Entanglement is possibly the most intriguing element of quantum theory.

It plays a crucial role in quantum algorithms, quantum cryptography and

the understanding of quantum mechanics itself. It enables us to perform

quantum teleportation, as well as superdense coding.

Entanglement is a property shared by the quantum states for which Werner

gave the explicit principle of quantum inseparability: “If two systems inter-

acted in the past it is possible to find the whole system in the state that

cannot be written as a mixture of product states”. This principle leads to the

following definition of general (pure and mixed) entangled states.

A state ρ is entangled or inseparable iff it cannot be written as a

convex combination of direct-product states:

A state ρ is entangled or inseparable iff it cannot be written as a convex

combination of direct-product states:

ρ 6= piρ
i
A ⊗ ρiB , (1.8)

with ∑
i

pi = 1 . (1.9)

Conversely, bi-partite states which do allow a decomposition in terms of a

convex combination of product states are separable. The most simple exam-

ples of separable states are the direct-product states, i.e. ρ = ρA ⊗ ρB.The

convex sum of such direct-product states is the set of separable states.

Consider a pure two qubit entangled state, |ψ〉AB. is said to be separated

iff it can be written as |ψ〉AB = |ψ〉A⊗|ψ〉B with |ψ〉A ∈ HA and |ψ〉B ∈ HB.

But, if a state can not be written in this fashion then it is entangled. This

is a unique feature of quantum states. It is important to note that for a

pure entangled state say, |ψ〉AB = 1√
2
(|00〉+ |11〉) the local states of the two
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subsystems, ρA and ρA are completely mixed since,

ρA = Tr[|ψ〉AB〈ψ|] =
1

2
(|0〉A〈0|+ |1〉A〈1|) =

IA
2
, (1.10)

and, similarly for ρB. Therefore, the two local states cannot describe the

joint pure state.

1.2 The EPR and Bell’s inequalities

1.2.1 EPR Argument

The existence of entanglement follows naturally from the quantum mechan-

ical formalism. This was first made explicit in the famous paper [AER91]

by Einstein, Podolsky and Rosen (EPR), where it was used to argue that

quantum mechanics as a physical theory is incomplete. Their argument runs

as follows. Consider a particle with known position decaying into two equal

particles. Without measurement, all we know is that the particles will drift

apart with opposite momenta and that their centre of mass re- mains con-

stant throughout. Assuming that both particles are well separated, there is

no way a measurement on one of the particles can affect the other particle.

This is the famous local realism assumption, which dictates that well sepa-

rated systems can be completely and independently described. Now, mea-

suring the momentum or position of the first particle enables one to predict

either the momentum or position of the second system, without disturbing

it. In quantum mechanics position and momentum are non- commuting ob-

servables and the theory cannot predict precise values for both, hence EPR

are led to conclude that quantum mechanics is incomplete[Boh35].

In 1951 David Bohm formulated a version of the EPR argument with an

entangled spin system. Here both well separated parties (A and B) share one

half of the singlet state

|ψ−〉 =
1√
2

(|01〉 − |10〉) . (1.11)
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Measurement of the spin of the first half in any direction reveals the spin

of the other particle in that direction. By an EPR argument the quantum

mechanical description of the second half cannot be complete. It is for such

a system Bell derived his famous inequality [AAR82].

1.2.2 Local hidden variable(LHV) model

Consider a bipartite quantum system AB. Two observers Alice and Bob are

performing measurements at distant spatially separated locations A and B,

respectively . The state of the system is ρAB. From the measurement postu-

late of quantum mechanics, the probability distribution function P (a, b|A,B)

is given by:

P (a, b|A,B) = TrAB[MA ⊗MBρAB] , (1.12)

where the projection operators MA and MB constitute POVMs with ΣMA =

I and ΣMB = I, respectively. The outcomes a and b are dichotomous,

i.e. they can only take values ±1. The probability distribution function

P (a, b|A,B) for all the possible values of the outcomes a and b constitute a

set. This set is called correlation.

1.2.3 No-signaling principle:

Consider a measurement is performed by two observers Alice and Bob on the

observables A and B at spacelike separated locations with outcomes a and b.

A no-signaling correlation for two parties is a correlation such that observer 1

cannot signal to the observer 2 by the choice of what observable is measured

by party 1 and vice versa. This means that the marginals P (a|A.B) and

P (b|A.B) are independent of B and A, respectively.

ΣbP (a, b|A,B) = P (a|A,B) = P (a|A) , (1.13)
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and similarly,

ΣaP (a, b|A,B) = P (b|A,B) = P (b|B) . (1.14)

The joint probability distribution P (a, b|A.B) is written as

P (a, b|A,B) = P (a|A)P (b|B) . (1.15)

Local correlations are those that can be obtained if the parties are non-

communicating and share classical information, i.e., they only have local

operations and local hidden variables (also called shared randomness) as a

resource. We take this to mean that these correlations can be written as

P (a, b|A,B) =

∫
dλp(λ)P (a|A, λ)P (b|B, λ). (1.16)

where λ is the shared local hidden variable. Condition (1.16) is supposed to

capture the idea of locality in a hidden-variable framework and it is called

Factorisability, and models that give only local correlations are called local

hidden-variable (LHV) models.

1.2.4 Bell’s inequality

This idea came from the brilliant mind of Bell [Bel64]. In 1964, he proposed

conditions that any classical theory, i.e. any theory based on local hidden

variables, has to satisfy, and which can be verified experimentally. These

conditions are known as Bell inequalities. Intuitively, Bell inequalities mea-

sure the strength of non- local correlations attainable in any classical theory.

Non-local correlations arise as the result of measurements performed on a

quantum system shared between two spatially separated parties. Imagine

two parties, Alice and Bob, who are given access to a shared quantum state

|ψ〉 , but cannot communicate. In the simplest case, each of them is able

to perform one of two possible measurements. Every measurement has two

possible outcomes labeled ±1. Alice and Bob now measure |ψ〉 using an inde-

pendently chosen measurement setting and record their outcomes. In order
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to obtain an accurate estimate for the correlation between their measure-

ment settings and the measurement outcomes, they perform this experiment

independently many times using an identically prepared state ±1 in each

round.

Both classical and quantum theories impose limits on the strength of non-

local correlations. In particular, both should not violate the non-signaling

condition of special relativity as put forward by EPR above. That is, the local

choice of the measurement setting does not allow Alice and Bob to transmit

information. Limits on the strength of correlations which are possible in the

framework of any classical theory are the Bell inequalities. The best known

Bell inequality is the Clauser, Horne, Shimony and Holt (CHSH) inequality

[JFCH69]

〈CHSH〉c = |〈X1Y1〉+ 〈X1Y2〉+ 〈X2Y1〉 − 〈X2Y2〉| ≤ 2 , (1.17)

where X1 , X2 and Y1 , Y2 are the observables representing the measurement

settings of Alice and Bob respectively. Quantum mechanics allows for a

violation of the CHSH inequality, and is thus indeed non-classical: Quantum

states violate this inequality for specific measurement directions. For an

appropriate setting, the CHSH expression gives

〈CHSH〉q = |〈X1Y1〉+ 〈X1Y2〉+ 〈X2Y1〉 − 〈X2Y2〉| = 2
√

2. (1.18)

In the following chapter, I have discussed extensively about the violation

of Bell-CHSH inequality by quantum states. It makes use of several differ-

ent measurement settings incorporating the noncommutativity between the

measured observables. Most importantly, this violation can be experimen-

tally verified allowing us to test the validity of the theory. The first such

tests were performed by Clauser and Shimony[CS78]. and Aspect, Dalibard

and Roger [AAR82].
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1.2.5 Tsirelson’s bound

Curiously, even quantum mechanics itself still limits the strength of non-local

correlations. Tsirelsons bound [Tsi80] says that for quantum mechanics

〈CHSH〉q = |〈X1Y1〉+ 〈X1Y2〉+ 〈X2Y1〉 − 〈X2Y2〉| ≤ 2
√

2 . (1.19)

Looking at the uncertainty relations, which rest at the heart of the EPR

paradox, we might suspect that the violation of the CHSH inequality of

Alice and Bob. Indeed, it has been shown by Landau [Lan87], and Khalfin

and Tsirelson [KT87], there exists a state |ψ〉 such that depends on the

commutation relations between the local measurements

〈CHSH〉q = |〈X1Y1〉+ 〈X1Y2〉+ 〈X2Y1〉 − 〈X2Y2〉| (1.20)

=
√

4 + |〈[A1, A2]⊗ [B1, B2]〉| .

So, we observe that the commutation relations limit the violation of the Bell

inequality for the quantum states.
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Chapter 2

Monogamy of Correlations

2.1 Kinds of correlations:

The concept of correlations originates from the historic debate over the in-

completeness of Quantum Mechanics started by EPR. They made a critical

statement about the incompleteness of the quantum theory which was even-

tually disproved by John Bell. John Bell used the idea of a Local hidden

variable(LHV) model and showed that the quantum correlations cannot be

reproduced by any such theory. The probability distribution P (a, b) can be

written as

P (a, b|A,B) =

∫
dλp(λ)A(a|A, λ)B(b|B, λ) . (2.1)

2.1.1 Classical correlations:

Classical correlations are those correlations which can be reproduced by a

local hidden variable theory. From the definition of the correlation, the joint

probability distribution P (a, b|A,B) is written as

P (a, b|A,B) =

∫
dλp(λ)A(a|A, λ)B(b|B, λ). (2.2)

If all the elements of the set can be reproduced in this fashion, then such

correlations are called classical correlations. Bell inequality gives an upper

bound on the correlation outcomes which can be reproduced by any local
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hidden variable theory.

2.1.2 No-signaling nonlocal correlations:

Any theory for which the absolute value of the correlations overshoots the

upper bound of 2, is called a generalized no-signaling nonlocal theory. Such

kind of correlations are called no-signaling nonlocal correlations. Looking

at the Bell-CHSH inequality, we see that there are 4 terms and they can

algebraically add up to give a maximum value of 4. So, the correlations

ranging between 2 and 4 have to be no-signaling and nonlocal. An example

of such correlations is in the theory of PR box proposed by Popescu and

Rohlich where the correlations upto the value 4.

2.1.3 Quantum correlations:

Quantum theory is an example of a generalized no-signaling nonlocal theory

since the quantum correlations form a subset of the bigger set of no-signaling

nonlocal correaltions. Quantum correlations are the correlations between

the interating systems as per the postulates of the quantum theory. The

commutation relations which lie at the heart of quantum theory allow the

quantum correlations to reach their maximum value of 2
√

2 instead of 4. An

example would be a Bell state, which gives the maximum violation of 2
√

2.

2.2 Monogamy of correlations:

The term ‘monogamy’ in its ‘actual’ sense would mean that a person is

allowed to marry only one woman at a time. The same concept can be

applied for the no-signaling nonlocal correlations. It was coined by Ben

Toner in context of the non-local correlations associated with the quantum

states. It says that in a composite system A−B−C, if any two subsystems

are non-locally correlated with each other, then the combined system has to

be locally correlated with the third subsystem.

P (a, b, c|A,B,C) = P (a, b|A,B)P (c|C) . (2.3)
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Here, subsystem A is non-locally correlated with subsystem B. The third

subsystem C is locally correlated with the combined system AB. Mathemat-

ically, all the no-signaling correlations that violate the Bell inequality follow

a certain monogamy which follows from the inequality for a tripartite system,

|〈BAB〉|+ |〈BAC〉| ≤ 4 , (2.4)

where BAB refers to the Bell-CHSH inequality for the bipartite system

AB and similarly, BAB for the bipartite system AC.

So, with the monogamy of an generalized no-signaling nonlocal correla-

tions, Toner and Verstraete came up with an even tighter monogamy relation

for the quantum correlations and that is

〈BAB〉2qm + 〈BAC〉2qm ≤ 8 . (2.5)

This is a tighter relation and this we can understand from the fact that the

quantum correlations can reach as far as 2
√

2 as compared to any generalized

no-signaling nonlocal theory where the correlations can reach upto 4[See09].

2.2.1 Other kinds of monogamy:

The monogamy relations disscussed in this section is a part of the original

work done by me and the PhD scholar, C. Jebarathinam under the supervi-

sion of Dr. Pranaw Rungta[not published yet].

Till now, it must have been believed that the quantum nonlocality is an

intrinsic property of the two(or more) entangled subsystems under consid-

eration. That is, it does not distinguish between the two subsystems in the

sense whether subsystem 1 and 2 are in their original positions or they have

been interchanged. Actually, it is true. But, it also has some constraints.

Let us take a bipartite system consisting of two spin-1
2

particles as an ex-

ample. It is known that quantum nonlocality can be detected only by using

some specific directions which mostly makes use of the non-commutativity

of the observables. This includes the local vertical mesurements(observables
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are anti-commuting) as well. So, it is quite reasonable to assume that the

nonlocality can be detected in two different ways at the same time. One

of the ways is when the particle 1 is at location A and particle 2 is at the

location B. The other way is flip the two particles i.e. particle 1 goes to

location B and vice versa. Then , it has been found that these two particles

can never be simultanuously nonlocal in both the ways. So, this gives rise to

a new monogamy relation which can be mathematically stated as

〈BAB〉2qm + 〈B′AB〉2qm ≤ 8 , (2.6)

where B′AB refers to the Bell-CHSH inequality when the particles have been

interchanged.

For example, cosider a pure two qubit entangled state |ψ〉 = cos θ|00〉 +

sin θ|11〉. On performing a measurement on this state with the following

measurement setting:

â1 = (sin β, 0, cos β); â2 = (− sin β, 0, cos β);

b̂1 = (sin γ, 0, cos γ); b̂2 = (− cos γ, 0, sin γ).

The result is B = 2
√

2 cos γ and, B′ = 2
√

2 sin γ It is clear that the result

we got here satisfies the monogamy relation.

There is a new momogamy relation again for the bipartite systems. The

above mentioned relation was analogous to the original monogamy relation

given by Toner and Verstraete for a tripartite system. The monogamy re-

lation of local correlations, comes from the ‘genuine’ nonlocality which has

been defined in the next chapter. It is followed by only by those states which

can be reproduced classically. Therefore, the states which do not follow this

monogamy relation have to be non-locally correlated. It can be mathemati-

cally stated as

|〈SAB〉|+ |〈S ′AB〉| ≤ 2 , (2.7)

where |〈SAB〉| and |〈S ′AB〉| stand for |〈A1B2〉| + |〈A2B1〉| and |〈A1B1〉| −
|〈A2B2〉|, respectively.

14



Chapter 3

Bell Nonlocality and Quantum

Theory

3.1 Bell Nonlocality

Bell-CHSH inequality has been the only inequality to detect the quantum

nonlocality in the quantum entangled states as far as the bipartite systems

are concerned. The Bell- CHSH inequality reads as

BAB = |〈A1B1〉+ 〈A1B2〉+ 〈A2B1〉 − 〈A2B2〉| ≤ 2 . (3.1)

Now, regarding the Stern-Gerlach settings for the record, the settings

used by Bell in the SG apparatus for the systems A and B were along the

directions ~a,~b and ~b,~c. We, however would follow the general settings used

by CHSH where all the four measurement directions are different i.e. along

~a1,~a2 and ~b1,~b2 . And, thus the observables can be given as,

Observables on A :

A1, A2 → ~a1·~σ,~a2·~σ (for Alice) (3.2)

Observables on B :

B1, B2 → ~b1·~σ,~b2·~σ (for Bob) (3.3)

15



CHSH expression,

|〈B〉| = |〈A1B1〉+ 〈A1B2〉+ 〈A2B1〉 − 〈A2B2〉|. (3.4)

Cirel’son expression,

|〈W 〉ρ| =
√

4 + |〈[A1, A2]⊗ [B1, B2]〉ρ| (3.5)

To detect quantum nonlocality in the bipartite quantum states, there are

different categories of states:

• Classically correlated states : ρCC = cos2 θ|00〉〈00|+ sin2 θ|11〉〈11|

with the parameter θ varying from θ = 0 to θ = π/4.

• Werner states: ρW = p|Φ+ 〉〈Φ| + (1−p)
4

I

• Schmidt state: |ψ〉 = cos θ|00〉+ sin θ|11〉

with the parameter θ varying from θ = 0 to θ = π/4.

I have used various measurement settings to detect the nonlocality associated

with these states. The results for the Schmidt states follow:

3.2 Results

3.2.1 Trivial Cases: 1-3

1. [A1, A2] = 0 (commuting) and, [A1, A2] = 0 (commuting),

CHSH bound, |〈B〉| ≤ 2

Cirel’son bound, |〈W 〉ρ| ≤ 2

2. [A1, A2] = 0 (commuting) and, [A1, A2] 6= 0 (non-commuting),

CHSH bound, |〈B〉| ≤ 2

Cirel’son bound, |〈W 〉ρ| ≤ 2
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3. [A1, A2] 6= 0 (non-commuting) and, [A1, A2] = 0 (commuting),

CHSH bound, |〈B〉| ≤ 2

Cirel’son bound, |〈W 〉ρ| ≤ 2

3.2.2 Non-Trivial Cases: 4-7

4. [A1, A2] 6= 0 (vertical/anti-commuting) and,

[B1, B2] 6= 0 (vertical/anti-commuting),

â1 = (0, 0, 1); â2 = (−1, 0, 0);

b̂1 = (− cos γ, 0, sin γ); b̂2 = (sin γ, 0, cos γ).

CHSH bound,

|〈B〉| = [cos γ + sin γ](1 + sin 2θ) (3.6)

≤
√

2(1 + sin 2θ) (for γ =
π

4
) (3.7)

≤ 2
√

2 (for 2θ =
π

2
). (3.8)

Cirel’son bound,

|〈W 〉ρ| ≤
√

4 + 4 sin 2θ (3.9)

≤ 2
√

2. (3.10)

It is clear from Fig.(3.1), that for this measurement setting, we get the

violation of the nonlocality for all possible values of θ[PR92].

5. [A1, A2] 6= 0(vertical/anti-commuting) and,

[B1, B2] 6= 0(non-vertical/non-commuting),

â1 = (sin β, 0, cos β); â2 = (− cos β, 0, sin β);

b̂1 = (sin γ, 0, cos γ); b̂2 = (− sin γ, 0, cos γ).
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Figure 3.1: |B| (3.8) vs. θ

CHSH bound,

|〈B〉| = 2 cos β(cos γ − sin 2θ sin γ) (3.11)

≤ 2(cos γ − sin 2θ sin γ) (maximum for β = 0) (3.12)

≤ 2
√

1 + sin2 2θ (for γ = tan−1(sin 2θ)). (3.13)

Cirel’son bound,

|〈W 〉ρ| ≤
√

4 + 4 sin 2γ sin 2θ (3.14)

≤ 2
√

1 + sin 2θ (for 2γ =
π

2
) (3.15)

≤ 2
√

2. (3.16)

6. [A1, A2] 6= 0 (non-vertical/non-commuting) and,

[B1, B2] 6= 0 (vertical/anti-commuting),

â1 = (sin β, 0, cos β); â2 = (− sin β, 0, cos β);

b̂1 = (sin γ, 0, cos γ); b̂2 = (− cos γ, 0, sin γ).
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CHSH bound,

|〈B〉| = 2 cos γ(cos β − sin 2θ sin β) (3.17)

≤ 2(cos γ − sin 2θ sin β) (maximum for γ = 0) (3.18)

≤ 2
√

1 + sin2 2θ (for β = tan−1(sin 2θ)). (3.19)

Cirel’son bound,

|〈W 〉ρ| ≤
√

4 + 4 sin 2β sin 2θ (3.20)

≤ 2
√

1 + sin 2θ (for 2β =
π

2
) (3.21)

≤ 2
√

2. (3.22)
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Figure 3.2: |B| (3.13) vs. θ

From Fig(3.2), it is observed that the local vertical measurements show

some kind of hidden nonlocality. For sin θ <
√

2− 1, the nonlocality is

not observed[ea08].

7. [A1, A2] 6= 0 ( non-vertical/non-commuting) and,

[B1, B2] 6= 0 (non-vertical/non-commuting),

â1 = (sin β, 0, cos β); â2 = (− sin β, 0, cos β);

19



b̂1 = (sin γ, 0, cos γ); b̂2 = (− sin γ, 0, cos γ).

CHSH bound,

|〈B〉| = 2 cos β cos γ − 2 sin 2θ sin β sin γ (3.23)

= 2(cos γ − sin 2θ sin β) (maximum for γ = 0) (3.24)

≤ 2

√
cos2 β + sin2 2θ sin2 β (for tan β = −(sin 2θ tan β)).(3.25)

No violation.

Cirel’son bound,

|〈W 〉ρ| ≤
√

4 + 4 sin 2β sin 2γ sin 2θ (3.26)

≤ 2
√

1 + sin 2θ (for 2β = 2γ =
π

2
) (3.27)

≤ 2
√

2. (3.28)

20



3.3 Conclusions:

1. While Cirel’son bound can show(mathematically) violation of Bell’s

inequalities for every possible measurement settings for the two pairs of

observables A and B, except for any one of the pairs to be commuting(or

both), from repeated observations, it has been found that the violation

strongly depends upon some specific measurement directions chosen.

2. The Cirel’son bound |〈W 〉ρ|, always posseses the same form irrespective

of the measurement settings, which is given by,

|〈W 〉ρ| ≤
√

4 + 4 sin 2β sin 2γ sin 2θ (3.29)

where the parameters β and γ correspond to the measurement settings

of the observables A and B.

3. For local vertical measurement settings, |〈B〉| has the form,

|〈B〉| ≤
√

2(1 + sin 2θ), (3.30)

which gives the violation of the Bell’s inequalities we’ve been looking

for. For (sin 2θ <
√

2− 1), thus, it reveals the fact that if the degree of

entanglement is not enough(< 0.266), then local vertical measurements

will not violate the Bell’s inequalities.

4. For exactly one of the observables(either one of them) to be locally

vertical and the other non-vertical(but not parallel), we have the form,

|〈B〉| ≤ 2
√

1 + sin2 2θ, (3.31)

which suggests that even a hint of entanglement will also violate the

Bell’s inequalities for these measurement settings unlike the case we

had earlier where the degree of entanglement mattered so much so as

to decide whether the settings would violate the Bell’s inequalities or

not.

21



Chapter 4

Genuine Nonlocality and

Quantum theory

The genuine nonlocality disscussed in this section is a part of the original work

done by me and the PhD scholar, C. Jebarathinam under the supervision of

Dr. Pranaw Rungta[not published yet].

4.1 Limitations of Bell Nonlocality:

Although the defined Bell-CHSH inequality arising from the local hidden

variable model gives nice results at least for pure entangled states, but turns

out to be little bit stronger conditions as far as the mixed entangled states

are concerned. The possible reason for this discrepancy could be extracted

from the definition of the hidden variable model taken under consideration.

The inequality arises from the bound on the local correlations governed by

the joint probability distribution of the two observables. It does not take

into account the marginals, whether they have been produced correctly or

not. Mathematically, every element of the ‘correlation’ set can be written as

P (a, b) =

∫
dλp(λ)A(a|A, λ)B(b|B, λ) , (4.1)
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where the dichotomous outcomes a and b correspond to the observables A

and B. This is the joint probability distribution for the two observables, and

the marginals for them individually can be calculated as

P (a) =

∫
dλp(λ)A(a|A, λ) (4.2)

and,

P (b) =

∫
dλp(λ)B(b|B, λ) . (4.3)

4.1.1 Motivation for a Genuine Nonlocality:

The whole point behind the motivation for a genuine nonlocality arised be-

cause of the marginals not being considered in the derivation of the Bell-

CHSH inequality. In fact, the concept of realism seems incomplete if we

leave the marginals since alongwith the joint probability distribution, the

local correlations would account for the correct expectation values of the ob-

servables as well. Only then we can talk of the elements of reality associated

with the system as a whole.

4.2 Genuine Nonlocality

4.2.1 The role of marginals:

Let me discuss a little bit about the hidden variable model for one more

time. The joint probability distribution function P (a, b) which forms the

whole ‘Correlation’ set can be written as

P (a, b) =

∫
dλp(λ)A(a, λ)B(b, λ) . (4.4)

The marginals can individually be calculated as

P (a) =

∫
dλp(λ)A(a, λ) (4.5)
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and,

P (b) =

∫
dλp(λ)B(b, λ) . (4.6)

Now onwards whenever we talk of correlations, the set includes the marginals

as well in addition to the ususal joint probability distribution. Thus, it can

be written collectively as {P (a, b)},{P (a)} and {P (b)}. From the above

mentioned model, we can extract the required things.

P (a, b) =
∑
λ

P (a|A, λ)P (b|B, λ) , (4.7)

〈AB〉 =
∑
λ

〈A〉λ〈B〉λ , (4.8)

〈A〉 =
∑
λ

〈A〉λ , (4.9)

and,

〈B〉 =
∑
λ

〈B〉λ . (4.10)

The inequality is written as

|〈A1B2〉+ 〈A2B1〉| + |〈A1B1〉 − 〈A2B2〉| (4.11)

≤
∑
λ

pλ{|〈A1〉λ〈B2〉λ + 〈A2〉λ〈B1〉λ|

+ |〈A1〉λ〈B1〉λ − 〈A2〉λ〈B2〉λ|} (4.12)

For the density matrix,

ρ =
∑
i,j

pi,j|i〉〈i| ⊗ |j〉〈j| (4.13)
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we have the genuine inequality as

GAB =: |〈SAB〉|+ |〈S ′AB〉| − {|〈MAB〉|+ |〈M′
AB〉|} (4.14)

= |〈A1B2〉+ 〈A2B1〉|+ |〈A1B1〉 − 〈A2B2〉|

−
∑
i,j

pi,j{|〈A1〉i〈B2〉j + 〈A2〉i〈B1〉j|

+ |〈A1〉i〈B1〉j − 〈A2〉i〈B2〉j|} (4.15)

≤ 0 (4.16)

where |〈SAB〉| and |〈S ′AB〉| stand for |〈A1B2〉 + 〈A2B1〉| and |〈A1B1〉 −
〈A2B2〉| repectively.

Similarly, |〈MAB〉| and |〈M′
AB〉| correspond to

∑
i,j pi,j|〈A1〉i〈B2〉j +

〈A2〉i〈B1〉j| and
∑

i,j pi,j|〈A1〉i〈B1〉j − 〈A2〉i〈B2〉j| repectively.

Here, the positive terms correpond to the total(local + nonlocal) correla-

tions and the negative terms account only for the local correlations. From

this inequality, we can infer that the first part comprises of the local + non-

local content of the correlations. From that, we are subtracting the local

content of the correlations and thus we are left with what is called the non-

local contribution to the total correlations. Till the inequality is satisfied,

the correlations can be reproduced by a local hidden variable model but, as

it goes beyond the mark of 0, the nonlocal correlations start coming into the

picture. We shall show how exactly the inequality works using various kinds

of entangled states

4.2.2 Classically correlated states

The density matrix for the classically correlated states is

ρCC = cos2 θ|00〉〈00|+ sin2 θ|11〉〈11| , (4.17)
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with

〈AB〉 = cos2 θ 〈A〉|0〉 〈B〉|0〉 + sin2 θ 〈A〉|1〉 〈B〉|1〉 . (4.18)

The product density matrix which would contribute solely to the local cor-

relations is given by

ρ = ρA ⊗ ρB (4.19)

= cos4 θ|00〉〈00|+ cos2 θ sin2 θ{|01〉〈01|+ |10〉〈10|}+ sin4 θ|11〉〈11| .

For a suitable measurement setting

â1 = ẑ, â2 = ẑ, b̂1 = ẑ and b̂2 = ẑ we have,

GAB = 0 . (4.20)

So, the inequality obviously does not get violated as we expected from a

classically correlated state.

4.2.3 Schmidt states

The state can be written as

|φ+〉 = cos θ |00〉+ sin θ |11〉 . (4.21)

The product density matrix which would contribute solely to the local cor-

relations is given by

ρprod = ρA ⊗ ρB
= cos4 θ|00〉〈00|+ cos2 θ sin2 θ{|01〉〈01|+ |10〉〈10|}

+ sin4 θ|11〉〈11| . (4.22)
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These are some of the results for various measurement settings

1. For â1 = ẑ, â2 = x̂, b̂1 = cos tẑ + sin tx̂ and b̂2 = cos tẑ − sin tx̂

GAB = |2
√

1 + sin2 2θ| − | 2√
1 + sin2 2θ

| . (4.23)
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Figure 4.1: GAB .(4.23) vs τ

Here, the genuine inequality GAB has been plotted against τ where

τ = sin2 2θ is an entanglement measure.

2. For â1 = x̂, â2 = ŷ, b̂1 = 1√
2
(x̂− ŷ) and b̂2 = 1√

2
(x̂+ ŷ)

GAB = 2
√

2 sin 2θ . (4.24)
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Figure 4.2: GAB (4.24) vs τ

3. For â1 = x̂, â2 = ŷ, b̂1 = x̂ and b̂2 = ŷ

GAB = 2 sin 2θ . (4.25)

4. For â1 = cos θx̂+ sin θŷ, â2 = − cos θŷ+ sin θx̂, b̂1 = cos θx̂+ sin θŷ and

b̂2 = − cos θŷ + sin θx̂

GAB = 2 sin 2θ(sin 2θ + cos 2θ) . (4.26)
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Figure 4.3: GAB (4.25) vs τ

4.2.4 Werner states

The density matrix is given by

ρW = p|Φ+〉〈Φ+|+ (1− p) I
4
. (4.27)

The measure of entanglement, concurrence is

C(ρW ) = max{0, 3p− 1

2
} . (4.28)

At p = 1/2,

C(ρW ) =
1

4
.

The product density matrix comes out to be

ρprod =
I
4

(4.29)

• ∀ A1, A2, B1&B2 , GAB > 0 iff C(ρW ) > 1/4.
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Figure 4.4: GAB (4.26) vs τ

• ∀ A1, A2, B1&B2 , GAB + 1/3 > 0 iff p > 1/3.

Here are some nice results for various measurement settings to detect the

genuine nonlocality.

1. For â1 = x̂, â2 = ẑ, b̂1 = x̂ and b̂2 = −ẑ

GAB = 2p− 1 . (4.30)

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

τ

G
A

B

Figure 4.5: GAB (4.30) vs CAB

2. For â1 = ẑ, â2 = x̂, ĉ1 =
√
pẑ +

√
1− px̂ and ĉ2 =

√
1− pẑ −√px̂
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GAC = (
√
p+

√
1− p)(2p− 1) . (4.31)
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Figure 4.6: GAB (4.31) vs. CAB

3. For â1 =
√
pẑ +

√
1− pŷ, â2 = −√pŷ +

√
1− pẑ, b̂1 =

√
pẑ +

√
1− pŷ

and b̂2 = −√pŷ +
√

1− pẑ

GAB = (2p− 1)(|2
√
p(1− p)|+ |(2p− 1)|) . (4.32)

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
−1.5

−1

−0.5

0

0.5

1

1.5

τ

G
A

B

Figure 4.7: GAB (4.32) vs. CAB
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4. For â1 = ẑ, â2 = x̂, b̂1 = 1√
2
(ẑ − x̂) and b̂2 = 1√

2
(ẑ + x̂)

GAB =
√

2(2p− 1) . (4.33)

5. For â1 = x̂, â2 = ŷ, b̂1 = 1√
2
(x̂− ŷ) and b̂2 = 1√

2
(x̂+ ŷ)

GAB = 2
√

2p . (4.34)

6. For â1 =
√
px̂+

√
1− pŷ, â2 = −√pŷ +

√
1− px̂, b̂1 =

√
px̂+

√
1− pŷ

and b̂2 = −√pŷ +
√

1− px̂

GAB = 2p(|2
√
p(1− p)|+ |(2p− 1)|) . (4.35)

4.2.5 Guhne et al. states

The density matrix for this state[ea06] would be given by ,

ρ = p |ψ−〉 〈ψ−|+ (1− p)ρsep (4.36)

where ρsep = 2
3
|00〉〈00|+ 1

3
|01〉〈01| .

And, the product density matrix is given by

ρprod = {p
2
I + (1− p)|0〉〈0|} ⊗ {p

2
I + (1− p)(2/3|0〉〈0|+ 1/3|1〉〈1|)} (4.37)

The results for few of the measurement settings are as follows:

1. For â1 = x̂, â2 = ẑ, b̂1 = x̂ and b̂2 = −ẑ

GAB = |1− 7p

3
| − 1 . (4.38)
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Figure 4.8: GAB (4.38) vs p

2. For â1 = ẑ, â2 = x̂, b̂1 = 1√
2
(ẑ + x̂) and b̂2 = 1√

2
(ẑ − x̂)

GAB =
√

2(|1− 7p

3
| − 1) . (4.39)

GAB > 0 if p > 4/7 .
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Figure 4.9: GAB (4.39) vs. p

4.2.6 Discordant states

The density matrix is given by

ρAB = λ0|0〉〈0| ⊗ |+〉〈+|+ λ1|1〉〈1| ⊗ |−〉〈−|+ λ2|+〉〈+| ⊗ |1〉〈1|

+ λ3|−〉〈−| ⊗ |0〉〈0| . (4.40)

and, the product density matrix is given by

ρprod = λ0|0〉〈0| ⊗ (λ3|0〉〈0|+ λ2|1〉〈1|+ λ1|−〉〈−|+ λ0|+〉〈+|)

+ λ1|1〉〈1| ⊗ (λ3|0〉〈0|+ λ2|1〉〈1|+ λ1|−〉〈−|+ λ0|+〉〈+|)

+ λ2|+〉〈+| ⊗ (λ3|0〉〈0|+ λ2|1〉〈1|+ λ1|−〉〈−|+ λ0|+〉〈+|)

+ λ3|−〉〈−| ⊗ (λ3|0〉〈0|+ λ2|1〉〈1|+ λ1|−〉〈−|+ λ0|+〉〈+|) .(4.41)
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For â1 = ẑ, â2 = x̂, b̂1 = −ẑ and b̂2 = x̂

GAB = λ0 + λ1 + λ2 + λ3

− |λ20 + λ21 + λ22 + λ23 + 2λ0λ1 + 2λ2λ3|

− |2(λ0λ2 + λ0λ3 + λ1λ2 + λ1λ3)| . (4.42)

It is also a separable state and as expected, it also does not violate the

genuine inequality like the classically correlated state.
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Chapter 5

Conclusion

In this thesis, we have investigated various aspects of nonlocality, particu-

larly the bipartite quantum systems. Violation of Bell inequality through

performing various experiments on quantum system is a signature of nonlo-

cality. This was the main subject of the first part of my thesis. In particular,

we have mainly discussed about the no-signaling nonlocal correlations. More

specifically, we have studied quantum correlations which are actually respon-

sible for the nonlocality arising in the entangled states. Quantum Theory is

an example of any generalized no-signaling nonlocal theory and the quantum

correlations are a subset of the no-signaling nonlocal correlations. While

the nonlocal correlations in the PR Box reach as far as 4, the postulates

of quantum mechanics limit the reach of quantum correlations upto 2
√

2.

Apart from this, the historic debate over the issue of the incompleteness of

the quantum theory proposed by EPR has also been discussed.

In the following chapter, first I have discussed the known results about the

monogamy of correlations including the tighter bound on the quantum cor-

relations. Apart from the usual monogamy relations, I have tried to incorpo-

rate two new monogamy relations. The first one among them, the monogamy

relation for bipartite system deals with impossibility to achieve nonlocality

in two different ways. In this relation, I have showed that it is impossible

to violate both the Bell inequalities, |〈BAB〉| and the other Bell inequality,

|〈B′AB〉| which we get by interchanging the two observers, simultaneously.
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Either you can violate the first inequality or the other inequality, but noth

both at the same time. Moreover, if one of the inequalities is maximally

violated, then, the other inequality results in completely local correlations.

The other monogamy relation is actually a monogamy relation for the local

correlations. This relation has been generated from the genuine inequality.

And, this relation is strictly followed by the classical or local correlations.

Any state with a smallest amount of nonlocal correlations will not follow this

monogamy relation.

The following chapter is fully devoted to the nonlocality and quantum

theory. The first part of the chapter is dedicated to the understanding of

the Bell nonlocality and the quantum theory. We studied many different

classes of entangled states. From the pure Schmidt state to the different

classes of mixed entangled states like the Werner state or the Guhne et.al

state, we have tried working out various properties of the observables and

the measurement settings, be it the non-commutativity or the local vertical

measurements, we have analyzed every aspect of entanglement due to these

properties and how does it actually work to detect the nonlocality.

The last part of the thesis is devoted to the topic of genuine nonlocality and

quantum theory. The basic need to arive at this inequality comes from the

principle of realism. A local hidden variable model is assumed to reproduce

all the local correlations which include the joint probability distribution for

any given quantum state. This joint probability distribution is collectively

known as correlation. But, as a property of the hidden variable, which is

also an element of reality, it should also be able to reproduce the correct

marginals. Then only, we can surely say that the hidden variable shared

among two observers is an element of reality. While formulating the Bell

inequality, only joint probability distribution was taken into consideration

and the marginals were left as it is. So, the Bell inequality is a little stronger

condition in some sense. This statement gets easily verified when we consider

two different mixed entangled states, Werner state and the Guhne et al. state.

Bell inequality starts getting violated in both the cases at p = 1√
2

while in
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case of the genuine inequality, Werner state violates it from p = 1√
2

but the

other state starts violating the genuine inequality at p = 4
7
. So, we can easily

observe that the Bell inequality does not make any distinction between the

two states in the range of p = 4
7

to p = 1√
2
.
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