
Geodesic Conjugacy Rigidity of
Nonpositively Curved Surfaces

Jithin Paul M

A dissertation submitted for the partial fulfillment of

BS-MS dual degree in Science

Indian Institute of Science Education and Research Mohali

April 2013



2

Certificate of Examination

This is to certify that the dissertation titled Geodesic Conjugacy Rigid-

ity of Non positively Curved Surfaces submitted by Mr. Jithin Paul

M (Reg. No. MS08026) for the partial fulfillment of BS-MS dual degree

programme of the Institute, has been examined by the thesis committee

duly appointed by the Institute. The committee finds the work done by the

candidate satisfactory and recommends that the report be accepted.

Dr. K. Gangopadhyay Dr. Chanchal Kumar Dr. Yashonidhi Pandey



3

Declaration

The work presented in this dissertation has been carried out by me under

the guidance of Dr.Krishnendu Gangopadhyay at Indian Institute of Science

Education and Research Mohali.

This work has not been submitted in part or in full for a degree, a diploma

or a fellowship to any other university or institute. Whenever contributions

of others are involved, every effort is made to indicate this clearly, with due

acknowledgment of collaborative research and discussions. This thesis is a

bonafide record of original work done by me and all sourses listed within

have been detailed in the bibliography.

Jithin Paul M

(Candidate)

Dated: 26.4.2013

In my capacity as the supervisor of the candidate’s project work I certify that

the above statements by the candidate are true to the best of my knowledge.

Dr. Krishnendu Gangopadhyay

(Supervisor)



4

Acknowledgment

I express my deep gratitude to Prof.C.S Aravinda, who suggested me the

problem and answered all my doubts. It would have been impossible to

proceed without the useful discussions I had with him. I am thankful to him

also for reading the report and suggesting modifications.

I take this opportunity to formally thank my supervisor Dr. Krishnendu

Gangopadhyay for guiding me and giving freedom to freely explore.

Working with Latex was a difficult task which would not have been ac-

complished without the help of Ms. Krishna K.Das, who worked with

immense patience and care. I express my deep gratitude to her.

KVPY, which provided scholarship and training throughout my 5 years in

IISER has given great support to chase a dream. I am thankful to KVPY

for the whole life in IISER.

Finally, I would like to mention, thankfully, IISER Mohali library which

provided books and other reading facilities.

Jithin Paul M



Contents

Introduction 7

1 Chapter 1 9

1.1 Preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

1.1.1 Curvature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

1.1.2 Jacobi Fields . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

1.1.3 The geometry of tangent bundle . . . . . . . . . . . . . . . . . . 12

1.1.4 Jacobi field correspondence . . . . . . . . . . . . . . . . . . . . 14

1.2 Geodesic Conjugacy . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

1.3 The Contact structure on SM . . . . . . . . . . . . . . . . . . . . . . . 19

1.4 F-induced correspondences of Jacobi fields . . . . . . . . . . . . . . . . 21

2 25

2.1 Vanishing Fields . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

2.2 Proof of the main theorem . . . . . . . . . . . . . . . . . . . . . . . . . 32

3 35

3.1 Appendix A . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

3.2 Appendix B . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

5



6 CONTENTS



Introduction

It is a fundamental problem in Riemannian geometry to try and capture the geometry

of a Riemannian manifold by certain of its geometric invariants. In this thesis we

consider closed (compact without boundary) Riemannian manifolds M and the action

of the geodesic flow gtM on the unit tangent bundle SM .

It turns out that if M has negative sectional curvature then the geodesic flow gtM
has significant influence on the geometry of M ; for instance, it is a well known fact

that a typical geodesic in M is dense. This is in sharp contrast with the case of

geodesics on the unit sphere in R3, where every geodesic is a great circle; in particular

none of the geodesics is dense. The classification theorem for surfaces says that a

closed surface M in R3 is homeomorphic to either a sphere or a torus or a surface

of higher genus. The genus of a surface determines its Euler characteristic, which

is a topological invariant; more precisely, the Euler characteristic χ(M) of a surface

M of genus g is 2 − 2g. The celebrated Gauss Bonnet theorem relates the Euler

characteristic of a surface M to its Gaussian curvature K by the formula∫
M

KdA = 2πχ(M)

where dA is the area form in M . A consequence of the Gauss Bonnet formula is

that the sign of curvature on a given closed surface M , if the same sign holds at all

points of M , is restricted to a single choice. For example on a sphere S2, whose Euler

characteristic is 2, a negative sign on the curvature at all of its point is not possible,

whereas such a thing is possible on a surface of genus ≥ 2. The classical uniformization

theorem for surfaces precisely confirms this possibility. That is, a surface M of genus

≥ 2 admits a metric of constant negative curvature −1.

The main theorem discussed in this thesis concerns metrics of non positive curva-

ture on a surface M of genus ≥ 2 and proves that such metrics are determined up to

isometry by the action of the geodesic flow gtM on SM . More precisely, we will discuss

a proof of the following theorem.

7
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Theorem 0.0.1 (Croke, 1990). Let N be a closed surface of genus ≥ 2 with non pos-

itive sectional curvature and M be a compact surface whose geodesic flow is conjugate

to N via F ; i.e., F : SM 7→ SN is a C1-diffeomorphism such that F ◦ gtM = gtN ◦ F
for all t then F = gKN ◦ df , where f is an isometry from M to N and K is a fixed

number.



Chapter 1

Chapter 1

1.1 Preliminaries

1.1.1 Curvature

Let M be a smooth manifold and TpM denote the tangent space at p. Suppose for

each p ∈M we have an inner product gp on TpM which varies smoothly with respect

to p as a 2-tensor, called the metric tensor; then M is called a Riemanian manifold

with metric g. We will denote g by 〈 , 〉.
Length of a curve γ : [a, b] 7→M is defined as

∫ b
a
〈 γ̇(t), γ̇(t)〉 12dt.

Definition (Levi Civita Connection): The Levi Civita Connection ∇ is the unique

map which takes any two smooth vector fields (X, Y ) on (M, g) to another smooth

vector field ∇XY and satisfies the following properties:

1. ∇XY is R− linear in both X and Y .

2. ∇XY is C∞(M) − linear in X but obeys the following product rule for all f ∈
C∞(M) :

∇XfY = X(f)Y + f∇XY

3. ∇XY −∇YX = [X, Y ].

4. Z〈X, Y 〉 = 〈∇ZX, Y 〉+ 〈X,∇ZY 〉 where Z is also a smooth vector field.

It turns out that ∇XY (p) depends only on X(p) and value of Y along any curve

α such that α̇(p) = X(p).

Definition (Covariant derivative) : Consider a smooth curve γ and a smooth

vector field V along γ. We define the covariant derivative DtV by

DtV (t0) = ∇γ̇(t0)V

9
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The definition is meaningful because of the above remark and the fact that γ̇(t0)

and V can be extended to the whole manifold smoothly. Thus Dt has the following

properties.

1. DtV is R− linear in Y as well as the velocity of γ

2. DtfV = fV + fDtV

3. d
dt
〈X, Y 〉 = 〈DtX, Y 〉+ 〈X,DtY 〉 for any two vector fields X and Y along γ.

When there is no scope for confusion we will denote DtV simply by V
′
.

Definition (Parallel field) :We say that a vector field V along γ is parallel if V
′
= 0

everywhere on the curve. Given any v ∈ TpM where p is any point on the curve γ,

there exists a unique parallel field V such that V (p) = v. V is called the parallel

translate of v.

It should be noted that if two vectors v and w are parallelly translated, then their

length as well as the angle between them are preserved.

Definition (Geodesics) : A smooth curve γ is said to be a geodesic in M if Dtγ̇ = 0

everywhere on the curve.

Thus for a geodesic, its tangent vector field is a parallel translate and hence every

geodesic is a constant speed curve. It is a very important theorem that given any

vector v ∈ TM , the tangent bundle of M , there exist a unique geodesic γv

such that γ̇v(0) = v.

Now we will move on to the notion of curvature. We define the curvature endo-

morphism R by

R(X, Y )Z = ∇X∇YZ −∇Y∇XZ −∇[X,Y ]Z.

It induces a 4- tensor Rm called the Curvature tensor

Rm(X, Y, Z,W ) = 〈R(X, Y )Z,W 〉.

We will be dealing only with 2-dimensional Riemannian manifolds(surfaces) for which

the notions of Gaussian curvature and sectional curvature coincide. Now onwards M

is a surface. Let X and Y be smooth vector fields defined in a neighborhood of p ∈M
such that they are linearly independent everywhere in the neighborhood. Then (X, Y )

is called a local frame at p
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Definition( Curvature):

K =
Rm(X, Y, Y,X)

|X|2|Y |2 − 〈X, Y 〉2

where (X, Y ) is any local frame on M .

Definition( Isometry) : Let (M, gM) and (N, gN) be Riemannian manifolds and

f : M 7→ N be a (local) diffeomorphism such that f ?gN = gM ie. f ?gN(v, w), which is

by definition, gN(f?v, f?w) is same as gM(v, w) for all v, w ∈ TM . Then f is called an

(local) isometry. Gauss’s Remarkable Theorem states that K is an isometry invariant.

1.1.2 Jacobi Fields

We will first define Jacobi fields in terms of geodesic variation.

Let γ : (−∞,∞) 7→ M be a smooth curve on a Riemannian manifold M . In

our cases, this will be a maximal geodesic. Consider a smooth map Γ : (−ε, ε) ×
(−∞,∞) 7→ M such that Γ(0, t) = γ(t). Then Γ is said to be a variation of γ. If

for each value of s, the curve γs(t) = Γ(s, t) is a geodesic, then it is called a geodesic

variation. The curves γs(t) where t is the parameter are called main curves and the

curves γt(s) where s is the parameter are called transverse curves. We will denote

the variation also by γs(t) and the situation will always make clear whether we are

referring to the variation or a main curve. We set S = Γ∗(
∂
∂s

) and T = Γ∗(
∂
∂t

). Note

that S is tangential to transverse curves and T is tangential to main curves. Using

the cordinate description in a neighborhood around each point, it is not difficult to

prove that DsT = DtS. This is called symmetry lemma for obvious reason. For any

variation γs(t), the smooth vector field S(0, t) = Γ∗(
∂
∂s
|(s=0)) = ∂

∂s
|(s=0)γs(t) along γ is

called the variation field. Note that the variation field is tangent vectors to transverse

curves at points of γ. Now we are ready to introduce the term Jacobi field.

Definition: The variation field of a geodesic variation is called a Jacobi field

It can be proved that a vector field J along γ is a Jacobi field if and only if J

satisfies the vector equation

D2
t J +R(J, γ̇)γ̇ = 0

where R is the curvature endomorphism. Since the equation is linear, the set of all

Jacobi fields along a given geodesic γ, which will be denoted by ψ is a vector space

over R.
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As one may expect due to the presence of a second order differential equation, We

have the following theorem about the existence and uniqueness of Jacobi fields.

Theorem 1.1.1. Let γ be a geodesic in M and p = γ(a). For any pair of vectors

X, Y ∈ TpM there is a unique Jacobi field J along γ satisfying the initial conditions

J(a) = X and J
′
(a) = DtJ(a) = Y

As a corollary, it follows that along any geodesic γ, the map from ψ to TpM×TpM
which takes J to (J(a), J

′
(a)) is an isomorphism and hence the vector space ψ is of

dimension 2n. A Jacobi field J is said to be tangential(normal), if J is a multiple of

(perpendicular to) to γ̇. Two tangential Jacobi fields important to us are γ̇(t) and

tγ̇(t) and the one dimensional spaces spanned by them are denoted by ψt and ψb

respectively. Clearly, the set of tangential Jacobi fields and the set of normal Jacobi

fields (denoted by ψ⊥) are subspaces of ψ. The following lemma will provide hints to

the dimension of tangential and normal spaces.

Lemma 1.1.2. Let γ : I 7→M be a geodesic and a ∈ I.

1 . A Jacobi field along γ is normal if and only if J(a) ⊥ γ̇(a) and J
′
(a) ⊥ γ̇(a).

2 . Any Jacobi field orthogonal to γ at two points is normal.

Now, it follows easily that ψ⊥ has dimension 2n − 2 and the tangential space is

ψt +ψb. Moreover the unique decomposition of a Jacobi fields into the sum of normal

and tangential Jacobi fields can be obtained just by decomposing its initial value and

initial derivative, and taking the unique Jacobi field determined by the perpendicular

components and the one determined by the tangential components.

1.1.3 The geometry of tangent bundle

Our reference for this section is [P]. Let TM denote the tangent bundle of M and

TTM be its bundle. For θ = (x, v) ∈ TM , consider the set V (θ) = {ζ ∈ TθTM : ζ

is the initial velocity of a curve σ : (−ε, ε) 7→ TM of the form σ(t) = (x, v + tw)}. It

can be shown that V (θ) = ker(dπ(θ)) where π is the canonical projection from TM

to M .

Now for each θ ∈ TM , we define a map Kθ : TθTM 7→ TxM called the connection

map as follows.

Definition(Connection Map): Given ζ ∈ TθTM , take a curve z : (−ε, ε) 7→ TM

whose initial tangent vector is ζ. We can write z(t) = (α(t), Z(t)) where α : (−ε, ε) 7→
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M is a smooth curve and Z is a smooth vector field on α. Define Kθ(ζ) = Z
′
(0), the

co variant derivative of Z along α at t = 0.

We set H(θ) = ker(Kθ). It is not difficult to show that Kθ is well defined(

ie. independent of the curve z) and it is linear. We will prove the validity of the

definition below.

Proposition 1.1.3. Kθ is well defined.

Proof. Let ∂1, ∂2, ..., ∂n be a basis of coordinate vectors in a neighborhood of x. Let

z1(t) = (α1(t), Z1(t)) and z2(t) = (α2(t), Z2(t)) be two curves defining ζ. Let

Z1 = ai1∂i

Z2 = ai2∂i

We need to show that ∇α̇1Z1(0) = ∇α̇2Z2(0). We have ai1(0) = ai2(0) and (ai1)
′
(0) =

(ai2)
′
(0) since ż1(0) = ż2(0).

Now α̇(0) = (π ◦ z1)
′
(0) = dπ(z1(0))(z1)

′
(0) = dπ(θ)(ζ) = dπ(z2(0))(z2)

′
(0) =

(π ◦ z2)
′
(0) = α̇(0) and

Z
′

1(0) = ∇α̇1Z1(0)

= ∇α̇1(a
i
1∂i)(0)

= (ai1)
′
(0)∂i(0) + ai1(0)∇α̇1∂i(0)

= (ai2)
′
(0)∂i(0) + ai2(0)∇α̇2∂i(0)

= ∇α̇2(a
i
2∂i)(0)

= ∇α̇2Z2(0)

= Z
′

2(0)

Hence the proof is complete.

Another equivalent way of constructing H(θ) is by means of the horizontal lift.

Definition (Horizontal Lift): For θ = (x, v) ∈ TM , we define the horizontal lift

Lθ : TxM 7→ TθTM as follows. Given v
′ ∈ TxM , take a curve α : (−ε, ε) 7→ M

corresponding to v
′
. Let Z(t) be the parallel transport of v along α. Let σ : (−ε, ε) 7→

TM be the curve σ(t) = (α(t), Z(t)). Define Lθ(v
′
) = σ̇(0).

It is clear that Kθ(Lθ(v
′
)) = 0 for all v

′ ∈ TxM . We take a curve σ corresponding

to Lθ(v
′
). Let σ(t) = (α(t), Z(t)). Then Kθ(Lθ(v

′
)) = Z

′
(0) ,the covariant derivative

of Z along α at t = 0. This is zero since Z is parallel along α by definition.



14 CHAPTER 1. CHAPTER 1

Lθ has the following properties.

1 . Lθ is well defined.

2 . Lθ is linear.

3 . ker(Kθ) = image(Lθ).

4 . dπ(θ) ◦ Lθ = IdTxM , the identity map.

5 . The maps dπ(θ)|H(θ) : H(θ) 7→ TxM and Kθ|V (θ) 7→ TxM are linear iso-

mophisms.

These results establish that TθTM = H(θ)+V (θ) as follows. from 5, dim(H(θ)) =

dim(H(θ)) = dim(TxM) = n. Also H(θ) ∩ V (θ) = 0. This is because if ζ ∈ H(θ) ∩
V (θ), then we can take ζ = Lθ(v

′
) for some v

′ ∈ TxM . Then v
′

= IdTxM(v
′
) =

dπ(θ) ◦ Lθ(v
′
) = dπ(θ)(ζ) = 0. Hence ζ = L(θ)(v

′
) = 0.

Now it is quite easy to see that the map jθ : TθTM 7→ TxM × TxM defined by

jθ(ζ) = (dπ(θ)(ζ), Kθ(ζ)) is linear and injective and hence an isomorphism (since the

dimensions of domain space and codomine space are equal). Now onwards we can

write ζ as (ζh, ζv) using this isomorphism. ζh = dπ(θ)(ζ) is called the horizontal

component of ζ and ζv = Kθ(ζ) is called the vertical component of ζ. Using the

decomposition TθTM = H(θ) + V (θ) = TxM × TxM , we can define a Riemannian

metric on TM such that H(θ) and V (θ) are orthogonal. This metric is called Sassaki

metric.

Definition(Sassaki metric):

〈〈 ζ, η〉〉θ = 〈 dπ(θ)(ζ), dπ(θ)(η)〉x + 〈Kθ(ζ), Kθ(η)〉x

1.1.4 Jacobi field correspondence

Proposition 1.1.4. Let θ = (x, v) ∈ SM . A vector ξ ∈ TθTM will lie in TθSM if

and only if 〈K(ξ), v〉 = 0.

Proof. Let θ = (x, v) ∈ SM ⊆ TM and ξ ∈ TθTM . Let z(t) be the curve in TM

corresponding to ξ. We can write z(t) = (α(t), Z(t)) where Z(t) is a smooth vector

field along α.

If ξ ∈ TθSM , then we can assume z(t) ∈ SM for all t. ie , 〈Z(t), Z(t)〉 = 1 for

all t. Then
d

dt
〈Z(t), Z(t)〉 = 2〈∇α̇Z(0), v〉 = 0
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But ∇α̇Z(0) = K(ξ) by definition. This shows that 〈K(ξ), v〉 = 0 if ξ ∈ TθSM .

Conversely, let us assume that 〈∇α̇Z(0), v〉 = 0. ie d
dt
〈Z(t), Z(t)〉 = 0. Since

〈Z(0), Z(0)〉 = 〈 v, v〉 = 1, 〈Z(t), Z(t)〉 is away from zero at t = 0. So by replacing

z(t) = (α(t), Z(t)) by (α(t), Z(t)
|Z(t)|), if necessary, we can assume that z(t) ∈ SM in a

neighborhood of t = 0. Then ξ ∈ TθSM .

The dimension of TθTM is 2n. The condition 〈K(ξ), v〉 = 0 brings down the

dimension of TθSM to 2n− 1.

Given a Jacobi Field J along a geodesic γ such that J ′(0) ⊥ v = γ
′
(0), we

can identify J with ξ = (J(0), J ′(0)) ∈ TθTM . Then 〈K(ξ), v)〉 = 〈 J ′(0), v〉 = 0

and the above proposition ξ ∈ TθSM . It is clear that this correspondence is

an isomorphism. We will denote the Jacobi field corresponding to ξ ∈ TθSM
by Jξ.

1.2 Geodesic Conjugacy

Definition(Geodesic flow): Let M be a complete manifold and SM denote its unit

tangent bundle. For each t ∈ R we have a map gt : SM 7→ SM defined by

v 7→ γ
′

v(t).

The 1-parameter collection gt is called the Geodesic Flow.

It can be easily verified that

1.gt ◦ gs = gs+t

2. g0 = Identity

Thus we see that R acts on SM via the geodesic flow.

Definition (Geodesic Conjugacy): Let M and N be two complete manifolds with

geodesic flows gtM and gtN respectively. M and N are said to have conjugate geodesic

flows via F if there exists a C1− diffeomorphism F : SM 7→ SN such that

gtN ◦ F = F ◦ gtM

for all t ∈ R

Proposition 1.2.1. F takes a geodesics γ to a geodesic F (γ)
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Proof. By this we mean that F takes the tangent field of a geodesic in M to the

tangent field of a geodesic in N . Let v = γ
′
(0).

F (γ
′
(t)) = F ◦ gtM(v) = gtN ◦ F (v) = γ

′

F (v)(t)

Thus F takes γ to γF (v) which we will call as F (γ)

Definition( Geodesic Vector Field) : Let G be the vector field on SM which

generate the geodesic flow. i.e.

G(v) =
d

dt
|t=0g

t
M(v).

We call G as a geodesic (flow) vector field.

Proposition 1.2.2. Let F be a geodesic conjugacy from M to N . Then F?(GM(v)) =

GN(F (v)).

Proof.

F?(GM(v)) = (F ◦ gtM(v))
′
(0)

= (gtN ◦ F (v))
′
(0)

= GN(F (v))

Proposition 1.2.3. If M̃ is the universal covering space of M , then SM̃ is a cover

of SM .

Proof. Let P : M̃ 7→ M be the projection under which M̃ is the universal cover.

Then by the definition of the metric in M̃ , P is a local isometry. Define a map

SP : SM̃ 7→ SM by SP (x̃, ṽ) = (P (x̃), dP (ṽ)). Let (x, v) ∈ SM . Consider a

neighborhood U×S1 where U is an evenly covered neighborhood of x. Let V1, V2, ..., Vn

be the disjoint homeomorphic copies of U in M̃ . We will show that U × S1 is evenly

covered by V1 × S1, V2 × S1, ..., Vn × S1 under the map SP .

Clearly V1 × S1, V2 × S1, ..Vn × S1 are mutually disjoint since V1, V2, ....V n are so.

To show that SP−1(U × S1) ⊆ tni=1Vi× S1 let us assume that (ỹ, w̃) ∈ SP−1(U ×
S1). This means ỹ ∈ Vi for some i and w̃ ∈ S ′ since U is evenly covered and dP is a

local isometry. Then (ỹ, w̃) ∈ Vi × S1
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Conversely let (ỹ, w̃) ∈ Vi × S1. Then again P (ỹ) ∈ U and dP (w̃) ∈ S1. So that

SP (ỹ, w̃) ∈ U × S1. Thus we get SP−1(U × S1) = tni=1Vi × S1.

It remains to show that SP is surjective. This is clear since P is surjective and

dP is a local isometry

Now onwards in this chapter we will concentrate on surfaces of genus ≥ 2.

Let KM be the subgroup of π1(SM) generated by the fiber, where M is a surface

of genus ≥ 2. If M is orientable, then KM is the center of π1(SM). If M is non

orientable then KM = {a ∈ π1(SM)| bab−1 = a or a−1 for all b ∈ π1(SM)}[B −K].

Since F? is an isomorphism it is easy to see that F?(KM) = KN .

Lemma 1.2.4. F lifts to a map F̃ : SM̃ 7→ SÑ .

Proof. The condition for the lift to exist is that

(F ◦ SPM)?π1(SM̃) ⊆ (SPN) ? π1(SÑ)

. Let K̃M(resp.K̃N) be the subgroup of π1(SM̃) ( π1(SÑ) respectively) generated by

fiber. We will soon show that K̃M = π1(SM̃) ( K̃N = π1(SÑ) respectively). Hence

our lifting condition is translated to

F?(SPM)?(K̃M) ⊆ SPN?(K̃N)

ie.

F?(KM) ⊆ KN

which is true by the above remark.

Proposition 1.2.5. K̃M = π1(SM̃), (also K̃N = π1(SÑ).

Proof. Consider a loop (x̃(t), ṽ(t)) in SM̃ . We will homotope it to a loop (x̃(0), w̃(t))

in the fiber.

Consider H : [0, 1]× [0, 1] 7→ SM̃ such that

(0, t) 7→ (x̃(t), ṽ(t))

(1, t) 7→ (x̃(0), w̃(t))

We will define H(s, t) as follows. Join x̃(t) to x̃(0) by a geodesic parametrised by s

which varies from 0 to 1. Call it γt. Define H(s, t) = (γt(s), Psṽ(t)) where Psṽ(t) is

the parallel translate of ṽ(t) along γt for time s. The speed of γt varies continuously
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with dist(γ(t), x̃(0)) which in turn varies continuously w.r.t t. So H is continuous and

we get required homotopy.

Lemma 1.2.6. F̃ : SM̃ 7→ SÑ is a geodesic conjugacy.

Proof. We need to show that F̃ ◦ gt
M̃

= gt
Ñ
◦ F̃ for all t. For a given ṽ ∈ SM̃ ,

consider the geodesic γṽ in M̃ . Since dPM is a local isometry this geodesic is taken to

a geodesic γv in M by the map dPM . Clearly gt
SM̃

(v) is taken to gtM(v) because of the

same reason. F takes gtM(v) to gtN(F (v)). Now again, since dPN is an isometry, γF (v)

must come from a geodesic above, whose two tangent vectors are F̃ (ṽ) and F̃ ◦gt
M̃

(ṽ).

Thus we get that

F̃ ◦ gt
SM̃

(v) = gt
Ñ
◦ F̃ (v).

Proposition 1.2.7. F induces an isomorphism from π1(M) to π1(N).

Proof. Let α be a nontrivial element in π1(M). Since (πM)? is a surjection, α comes

from a loop α̃ in SM . α̃ cannot be in K1 since α is nontrivial. Since F?(K1) =

K2, F?(α̃) cannot be in K2. Hence (πN)? ◦ F?(α̃) is nontrivial. Define it to be

F (α). By taking F−1
? instead of F?, we can show that F is invertible. F is clearly a

homomorphism.

Thus the map F on closed geodesics induces an isomorphism of free homotopy

classes. It is known that on a manifold of non positive curvature, every free homotopy

class contains a geodesic as the shortest curve and if the class has more than one

geodesic, all of them must have the same length. Now by F , the same is true or M

also. ie. two freely homotopic geodesics has same length in M .

Lemma 1.2.8. M has no conjugate points.

Proof. By [B], closed geodesics are dense in N meaning the set of periodic vectors

{v ∈ SN : γv is a closed geodesic} is dense in SN . By F−1 closed geodesics are dense

in M also. So if we show that there are no pair of conjugate points along any closed

geodesic, by the denseness it holds for all geodesics in M. By the remark following

previous proposition, a closed geodesic γ : [0, L] 7→M is the shortest curve in its free

homotopy class. Hence the segment of the lift γ̃ from 0 to L is also minimizing( the

projection map P is isometry), It applies to iterates of γ that represent the elements

in the fundamental group which are powers of the element represented by γ as well;

hence γ̃ is minimizing for all time. Hence there are no conjugate points along γ̃. Let
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γv(0) = p and. If possible let q be a point conjugate to p along γ. Reparameterise

γ such that q = γv(1) . p is conjugate to q along a geodesic γ in M if and only

if the exponential map EM : TM 7→ M fails to be a local diffeomorphism at v.

By inverse function theorem , this is if and only if EM? at v is not invertible. But

dP ◦ EM = EM ◦ P where dP is the projection from TM̃ to TM . Taking derivative

and using the fact that γ̃ has no conjugate point , it follows that γ has no conjugate

point.

1.3 The Contact structure on SM

Definition (Contact Manifold): Let M be a 2n − 1 dimensional manifold. A 1-

form α on M is called a contact form if α ∧ (dα)n−1 is non vanishing. Then the pair

(M,α) is called a contact manifold. A flow ψt on M which preserves α, that is for

which ψ∗tα = α, is called a contact flow.

Every contact manifold (M,α) comes with a unique vector field X such that

iXα = 1

iXdα = 0

such an X is called the characteristics vector field. The flow of X is called the

characteristic flow. It can be shown that the characteristic flow preserves α.

The geodesic vector field G gives a contact structure on SM . We define α by

αv(ξ) = 〈〈 ξ,G(v)〉〉

We see that for ξ ∈ TvSM .

αv(ξ) = 〈〈 ξ,G(v)〉〉

= 〈 dπ(ξ), v〉+ 〈K(ξ), v〉

= 〈 dπ(ξ), v〉.

As shown in detailed in [P] , α is a contact form whose characteristic flow is gtM .

Hence G is the characteristic vector field of α. gtM preserves α.
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Now it is easy to see that kerα = G⊥, the 2n − 2 subspace of TvSM orthogonal

to the span of G(v). And also

dθ(ξ, η) = 〈 ξh, ηv〉 − 〈 ξv, ηh〉

It is also shown in [P] that the volume form induced by the Sassaki metric is (n −
1)!α ∧ (dα)n−1. Thus for a surface the volume form on SM is α ∧ dα.

Proposition 1.3.1. Geodesic conjugacy preserves contact and volume forms.

Proof. Let F be a geodesic conjugacy from SM to SN . We will denote the contact

forms on SM and SN by α1 and α2 respectively. Then we need to show that

F ?α2 = α1

For ξ ∈ TvSM ,

F ?α2(ξ) = α2(F?ξ)

= 〈F (v), (F?ξ)〉

= 〈F (v), (F?(aGM(v) + ξ⊥))h〉

Where we have decomposed ξ into aGM(v) and ξ⊥ ∈ G⊥M , a ∈ R.

RHS = 〈F (v), (F?(aGM(v)))h〉+ 〈F (v), F?(ξ
⊥)h〉

Now

F?(aG(v)) = aF?G(v)

= aF?(
d

dt
|(t=0)g

t
M(v))

= a
d

dt
|(t=0)(F ◦ gtM(v)

= a
d

dt
|(t=0)(g

t
N(F (v))

= aGN(F (v))

Thus F? takes span of GM to span of GN . Since F? is an isomorphism and TvSM =

〈GM〉+G⊥M and TF (v)SN = 〈GN〉+G⊥N , F? must take G⊥M to G⊥N . Thus (F?(ξ
⊥))h = 0
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and we get

F?α2(ξ) = a

On the other hand

α1(ξ) = 〈 v, ξn〉

= 〈 v, (aGM(v) + ξ⊥)h〉

= 〈 v, av〉 = a.

Now we will show that

F?dα2 = dα1

F?dα2(ξ, η) = dα2(F?ξ, F?η)

= F?(ξ)α2(F?η)− F?(η)α2(F?ξ)− α2([F?(ξ), F?(η)]

by the definition of dα.

F?(ξ)α2|F (v)(F?η) = F?(ξ)F
?α2|F−1F (v)(η)

= ξα1(η)

α2|F (v)([F?(ξ), F?η]) = α2|F (v)F?[ξ, η]

= F ?α2(ξ, η)

= α1[ξ, η]

Thus LHS = ξα1(η)− ηα1(ξ)− α1[ξ, η] which is, by definition, dα1(ξ, η).

Since F ?(α ∧ β) = F ?α ∧ F ?β for all forms of α and β, we get F ?(α2 ∧ dα2) =

α1 ∧ dα1.

Hence F is volume and orientation preserving.

1.4 F-induced correspondences of Jacobi fields

We have already seen that the space of Jacobi fields ψ along a geodesic γ splits

naturally as ψ = ψ⊥ + ψt + ψb where ψ⊥ consists of those Jacobi fields that are

perpendicular to γ, ψt is spanned by γ
′
, and ψb is spanned by tγ

′
. Although all

Jacobi fields arises from variations of geodesics, we have :
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Proposition 1.4.1. Only the Jacobi fields in ψ⊥ + ψt comes from variations of

geodesics γs which are all parametrized by arc length.

Proof. Let Γ(s, t) denotes the smooth map corresponding to the variation γs. Let

S = Γ?(
∂
∂s

) and T = Γ?(
∂
∂t

). Then by symmetry lemma, we have DsT = DtS.

Now suppose to the contrary that J ∈ ψb arises from a variation γs through unit

speed geodesics. Then 〈T, T 〉 = 1 identically. Differentiating with respect to s,

this gives 〈DsT, T 〉 = 0. By symmetry lemma, 〈DtS, T 〉 = 0 identically. At

s = 0, this implies 〈DtJ, γ
′〉 = 0. We can take J = atγ

′
where a ∈ R and then

0 = 〈DtJ, γ
′〉 = a〈 γ′ + tDtγ

′
, γ
′〉 = a〈 γ′ , γ′〉 which is clearly a contradiction.

All of our geodesics will be parametrized by arc length (unit speed) unless otherwise

stated so that we can restrict ourself to ψ⊥ + ψt.

Note that ψ⊥+ψt is exactly the subspace consisting of Jacobi fields J for which J
′

is perpendicular to γ. Hence under the correspondence ξ 7→ Jξ, ψ
⊥+ψt is isomorphic

to {ξ ∈ TvTM |〈K(ξ), v〉 = 0}. By proposition 0.1.1, this subspace is TvSM . Thus

every element J of ψ⊥ + ψt can be represented by a unique ξ ∈ TvSM

isomorphically. We will denote J by Jξ.

Definition(F?): Since F? is an isomorphism from TvSM to TF (v)SN , we readily get

an isomorphism from ψ⊥M + ψtM to ψ⊥N + ψtN . We will denote this map also by F?.

Thus

F?(Jξ) = JF?(ξ)

There is another way to go from a Jacobi field in M to a Jacobi field in N . Corre-

sponding to each J there is a geodesic variation γs. F takes γs to a geodesic variation

F (γs) in N . We define φ(J) to be the variation field of F (γs).

Is φ same as F? ? We will explore now.

Let Tγ denote the tangent field of γ. It is a smooth curve in SM . Tγs is a variation

of Tγ. Define TJ to be the variation field of Tγ.

dπ(TJ) = dπ(
d

ds
|(s=0)Tγs(t))

=
d

ds
|(s=0)(π ◦ γ

′

s(t))

=
d

ds
|(s=0)γs(t)

= J
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Now K(TJ) = ∇γ̇sγ
′
s(t)(0) where γ̇s is the derivative w.r.t s and γ

′
s(t) is that w.r.t t.

RHS = DsT at s = 0, which is, by symmetry lemma, same as DtS at t = 0. This is

nothing but J
′
.

Thus we get TJξ(0) = ξ.

Now, if we show that F?(TJ) = TφJ , it will establish that F? is same as φ.

TφJ =
d

ds
|(s=0)F (γs)

′
(t)

=
d

ds
|(s=0)F (γ

′

s(t))

= F?(
d

ds
|(s=0)γ

′

s(t))

= F?(TJ)

What we have achieved is the knowledge that we can go from J to F?(J) also by

taking variations to variations.

Definition(Stable and Unstable Jacobi fields):

We denote by ψs(resp. ψu) the subspace of ψ which consists of the Jacobi fields J

for which |J(t)|2 + |J ′(t)|2 7→ 0 as t 7→ ∞ (resp. t 7→ −∞). It is easy to see that ψs

(resp. ψu) ⊆ ψ⊥.

Definition(Weakly stable and weakly unstable Jacobi fields):

We will denote by ψws (resp. ψwu) the subspace of ψ⊥ consisting of Jacobi fields

J for which |J(t)|2 + |J ′(t)|2 remains bounded as t 7→ ∞ (resp. t 7→ −∞).

A Jacobi field Jξ in ψ⊥ + ψt corresponds to a curve ξ(t) in TSM where ξ(0) = ξ.

Since |Jξ(t)|2 + |Jξ(t)
′ |2 = |ξ(t)|2 the above definitions can be restated as Jξ ∈ ψs

(resp. ψu) if |ξ(t)| 7→ 0 and Jξ ∈ ψws (resp. ψwu) if |ξ(t)| remains bounded as t 7→ ∞
(resp. t 7→ −∞).

As |ξ(t) + cη(t)| ≤ |ξ(t)| + |c||η(t)| for any constant c, it is clear that the sets

defined above are actually subspaces of ψ.

Lemma 1.4.2. Along every geodesic γ of M , F? takes the sets ψ⊥M , ψ
s
M , ψ

u
M , ψ

ws
M , ψwuM

to the corresponding sets ψ⊥N , ψ
s
N , ψ

u
N , ψ

ws
N and ψwuN along F (γ).

Proof. Clearly ψ⊥M corresponds to G⊥M(v) ⊆ TvSM where v = γ
′
(0). We have already

seen that F?(G
⊥
M(v)) = G⊥N(F (v)). Hence F?(ψ

⊥
M) = ψ⊥N . Since F : SM 7→ SN is a C1

map between compact manifolds, there is a number a > 1 such that 1
a
|ξ| < |F?(ξ)| <

a|ξ|, for every ξ ∈ TSM . Hence |F?ξ(t)| 7→ 0 (respectively remains bounded) if and

only if |ξ(t)| 7→ 0 (respectively remains bounded). This implies F?(ψ
s
M) = ψsN and
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F?(ψ
u
M) = ψuN directly and along with the fact F?(ψ

⊥
M) = ψ⊥N , this implies F?(ψ

ws
M ) =

ψwsN and F?(ψ
wu
M ) = ψwuN .

We have |F?ξ| ≤ |F?||ξ| < (|F?|+ 1|)|ξ| and

|ξ| = |F−1
? (F?(ξ))|

≤ |F−1
? ||F?ξ|

< (|F−1
? |+ 1)|F?ξ|

where |F?| and |F−1
? | are the operator norms of F? and F−1

? respectively. These

are continuous functions on SM and SN respectively. Hence the function f(v) =

max{|F?|v, |F−1
? |F (v)} + 1 is continuous and attains a maximum a on the compact

space SM . Then 1
a
|ξ| < |F?ξ| < a|ξ| for all ξ ∈ TSM .



Chapter 2

2.1 Vanishing Fields

Now onwards our manifolds are surfaces, ie. n = 2.

In this section we will show that a normal Jacobi field vanishing in M has its

image also vanishing in N . The difference of parameters at which they vanish is of

special interest to us.

For a geodesic on a surface we can choose a parallel unit field X normal to γ
′
along

γ by parallel translating a unit vector v normal to γ at γ(0). (The other choice of X

would be the parallel translate of −v). Every Jacobi field J(t) in ψ⊥ can (and will)

be written as J(t) = j(t)X(t) where j(t) is function. We will sometimes confuse the

Jacobi field with the function j.

By lemma 2.2 of [I-H] , for any geodesic γ on N and for any v ∈ TpN where

p = γ(0), there exists a unique weakly stable Jacobi field Y1 and a unique weakly

unstable Jacobi field Y2 such that

Y1(0) = Y2(0) = v.

Note that if these two Jacobi fields are linearly dependent, then both of them are

bounded in both the directions. On a manifold of non positive curvature, a bounded

Jacobi field is necessarily parallel. ] and hence can be realized as the variation field

of a flat strip. Hence, if the geodesic γ passes through a region of negative curvature,

these two Jacobi fields are necessarily independent. Otherwise they may be the same.

Via F−1
∗ we thus see there are nontrivial elements of ψwsM and ψwuM . By scaling, if

necessary, we can choose a Jacobi field JsM ∈ ψwsM with Js1(0) = X(0). Thus, for a

fixed geodesic γ of M , we will from now on denote by JsM , the element of ψwsM with

jsM(0) = 1. Similarly we define JuM ∈ ψwuM by demanding juM(0) = 1. JsM may coincide

25
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with JuM as explained above.

We have already shown that like N , M also has no conjugate points. Along a

geodesic γ, where no pair of points on γ are conjugate, it is natural look at ψ⊥ =

ψn∪ψz where ψn consists of Jacobi fields that never vanish and ψz those that do. By

[Gre] along a geodesic without conjugate points a Jacobi field that vanishes must be

unbounded at ∞ and −∞ and hence ψws and ψwu are contained in ψn.

By the above JsM never vanishes and so we can define a new Jacobi field JzM ∈ ψzM
by

jzM(t) = jsM(t)

∫ t

0

dy

jsM(y)2
(2.1)

clearly JsM and JzM are linearly independent and since ψ⊥ is of dimension 2, any Jacobi

field in ψ⊥M is a linear combination of JsM and JzM .

For v = γ
′
(x), we let JvM be the Jacobi field along γ such that

jvM(x) = 0 and jv
′

M(x) = 1

That is to say JvM(x) = 0 and Jv
′

M(x) = X(x). By the existence and uniqueness

theorem for Jacobi fields, we know that such a JvM exists uniquely.

We see that

JvM(t) = jzM(x).JzM(t) + jsM(x)

∫ 0

x

dy

jsM(y)2
JsM(t) (2.2)

One can easily verify that jvM(x) = 0 and jv
′

M(x) = 1. Along the geodesic F (γ), we

will let JsN = F?(J
s
M). By lemma (1.4.2), we know that JsN ∈ ψwsN ⊆ ψnN . We define JzN

from JsN in the same way that JzM was defined from JsM . We know there are constants

c1 and c2 such that

F?(J
z
M) = c1J

s
N + c2J

z
N (2.3)

because F?(J
z
M) ∈ ψ⊥ which is spanned by JsN and JzN .

Lemma 2.1.1. In the above c2 = 1.

Proof. Let JsM = Jξ and JzM = Jη.
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F preserves dα

⇒ F ∗dα2(ξ, η) = dα1(ξ, η)

⇒ dα2(F∗ξ, F∗η) = dα1(ξ, η)

⇒ 〈 (F∗ξ)h, (F∗η)v〉 − 〈 (F∗ξ)v, (F∗η)h〉 = 〈 ξh, ηv〉 − 〈 ξv, ηh〉

⇒ 〈F∗(JsM)(0), F∗(J
z
M

)′(0)〉 − 〈F∗(JsM)
′
(0), F∗(J

z
M)(0)〉

= 〈 JsN(0), c1J
s
N

′
(0) + JzN

′
(0)〉 − 〈 JsN

′
(0), c1J

s
N(0) + c2J

z
N(0)〉

= jsM(0).jzM
′
(0)− jsM

′
(0).jzM(0)

In the last equality,

RHS = jsM(0).jzM
′
(0)− jsM

′
(0).jzM(0)

= jsM(0).
jsM(0)

jsM(0)2
− 0

= 1

LHS = jsN(0)(c1j
s
N

′
(0) + c2j

z
N

′
(0))− jsN

′
(0)(c1j

s
N(0) + c2j

z
N(0))

= c2(jsN(0)jzN
′
(0)− jsN

′
(0)jzN(0))

= c2(jsN(0).
jsN(0)

jsN(0)2
− 0)

= c2

Thus c2 = 1.

Definition(g): Let γ be geodesic in M with γ
′
(x) = v. We have defined JvM by

jvM(x) = 0 and jvM
′
(x) = 1. Thus JvM vanishes once and since there are no conjugate

points in M , JvM cannot vanish again. If F? takes ψzM to ψzN , then F?(J
v
M) will also

vanish exactly once say at F (γ)(t0). We will set g(v) = t0 − x.

The following lemma validates our definition of the function g : SM 7→ R and

proves that g is bounded.

Lemma 2.1.2. We have F?(ψ
n
M) = ψnN and F?(ψ

z
M) = ψzN . Further the map g is

continuous and hence bounded.(say |g(v)| ≤ g0)

Proof. Let J(t) = j(t)X(t) ∈ ψzM along γ be vanishing at γ(x). Then by the unique-

ness theorem of Jacobi fields

J = j
′
(x)JvM
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where v = γ
′
(x).

Hence to show F?(ψ
z
M) ⊆ ψzN along any geodesic, it is enough to show F?(J

v
M)

vanishes for all v ∈ SM . Using equations (2.1),(2.2),(2.3) and lemma[3.5] we see that

F?(J
v
M)(t) = jsM(x){c1j

s
N(t) + jsN(t)

∫ t

0

dy

jsN
2
}+ jsM(x).

∫ 0

x

dy

jsM(y)2
.jsN(t)

. Hence

F?(J
v
M)(t) = jsM(x)jsN(t){c1 +

∫ t

0

dy

jsN(y)2
−
∫ x

0

dy

jsM(y)2
} (2.4)

Thus F?(J
v
M) will vanish somewhere if and only if there is a tx such that

c1 +

∫ tx

0

dy

jsN(y)2
=

∫ x

0

dy

jsM(y)2
(2.5)

Since JsM and JsN are in ψws, they are bounded at∞, and hence both sides of the above

equation are monotonically increasing. So if such a tx0 exists for some x0, then it must

exists for all x ≥ x0. Since we can also pick x so that the right hand side is ≥ c1, we

see that tx exists for all large x, say x ≥ x0. In particular we can find x0 such that

tx0 = 0. Now we could have gone through the whole process above (starting just before

equation (2.1) starting with juM instead of jsM to derive the equation, corresponding

to (2.4) and (2.5) only with jsM and jsN replaced with JuM and JuN ; where c1 may be

different, because the only property of JsM that we used was that it never vanished).

In this case since juM and juN are bounded at −∞, such tx exists for all x ≤ x0.(

tx0 must exist in this case also because we have already shown that F?(J
v
M) where

v = γ
′
(x0) vanishes. Hence F?(J

u
M) vanishes for all v on γ and since γ was arbitrary

F?(ψ
z
M) ⊆ ψzN along any geodesic.

Now we will prove that g is continuous.

We have the Jacobi equation,

D2
t J +R(J, γ̇)γ̇ = 0

For J(t) = j(t)X(t)

j
′′
(t)X(t) +R(j(t)X(t), γ̇(t))γ̇(t) = 0

Since J ⊥ γ̇, they span the tangent space.
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Hence sectional curvature is given by

K =
Rm(J, γ̇, γ̇, J)

|γ̇|2|J |2 − 〈 γ̇, J〉

=
Rm(J, γ̇, γ̇, J)

|J |2

= Rm(
J

|J |
, γ̇, γ̇.

J

|J |
)

= Rm(X, γ̇, γ̇, X)

= 〈R(X, γ̇)γ̇, X〉

Now by the symmetries of Rm, Rm(X, γ̇, γ̇, γ̇) = 0 . That is 〈R(X, γ̇)γ̇, γ̇〉 = 0 which

means R(X, γ̇)γ̇ is along X. . Thus R(X, γ̇)γ̇ = 〈R(X, γ̇)X〉X = KX.

Let Kv(t) represent the curvature of the surface M0 at F (γv)(t). Then by the

above,the Jacobi equation can be transformed as follows.

D2
t J +R(J, γ̇)γ = 0

ie.

j
′′
(t)X(t) + j(t)R(X, γ̇)γ̇ = 0

ie.

j
′′
(t)X(t) + j(t)Kv(t)X(t) = 0

ie.

j
′′
(t) + j(t)Kv(t) = 0

As v varies continuously, Kv will vary continuously. Also, since Jv(0) and (Jv)
′
(0)

are continuous, F?(J
v)(0) and F?(J

v)
′
(0) varies continuously with respect to v. Since

the coefficient as well as the initial conditions are varying continuously, by the theory

of differential equations, the solution F?(J
v)(t) is continuous in both v and t. On

a surface without conjugate points Jacobi field F?(J
v) vanish exactly once. Hence

F?(J
v)(t) as a real valued function of t crosses t axis transversely and hence the zero

varies continuously with v. Thus g(v) is continuous.

Now we will show that ψzN ⊆ F∗(ψ
z
M). Let J ∈ ψzN be vanishing at t0 on a given

geodesic. We can take this geodesic to be F (γ), where γ is a geodesic on M because

F and F−1 takes geodesics to geodesics. Since g is bounded and continuous, as t

varies from −∞ to ∞, so does g(γ
′
(t)) + t taking every value; in particular taking t0.
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Let g(γ
′
(x)) + x = t0. This means F?(J

v
M), where v = γ

′
(x), vanishes at F (γ)(t0).

Since the space of Jacobi fields along a geodesic vanishing at a given point is one

dimensional,

J = aF?(J
v
M) = F?(aJ

v
M)

for some a ∈ R. This completes the proof.

Lemma 2.1.3. There is a number R > 0 such that if γ̃ and σ̃ are geodesics in M̃

such that γ̃(0) = σ̃(0) any γ̃ 6= σ̃, then F̃ (σ̃)(R) /∈ F̃ (γ̃)(−g0,∞)

Proof. Recall that F̃ : SM̃ 7→ SÑ is a geodesic conjugacy and hence we can define

F̃ (σ̃) and F̃ (γ̃).

p ∈ N and v ∈ SpN . For any ṽ ∈ Ñ which projects to v and any w ∈ SpN we

let γ̃v and γ̃w be the geodesics in Ñ starting at p̃ with initial tangent vectors that

project to v and w respectively. We can find a Jacobi field J ∈ ψz
Ñ

which arises from

a geodesic variation taking γ̃v to γ̃w. Then J must vanish at 0. Since F̃?(ψ
z
M̃

) = ψz
Ñ

,

F̃?
−1

(J) must vanish somewhere. That is to say F̃−1(γ̃v) and F̃−1(γ̃w) must intercept

at some ˜F−1(γ̃w)(t). We know that t < g0. By the continuity of g, t will be less that

g0 + 1 if γ̃
′
v(0) and γ̃

′
w(0) are sufficiently close. Since the projection dPN : SÑ 7→ SN

is a local isometry, this will happen if v and w are close say within an angle θ(v). θ(v)

must be a continuous function of v if we take θ(v) to be the supremum of such angles.

We can find a single angle θv for all v ∈ SN by taking the minimum. Choose θ such

that 0 < θ < θv. Since J can vanish only once, ˜F−1(γ̃v) and ˜F−1(γ̃w) do not intercept

for t > g0 + 1.

Now let γ̃ and σ̃ be as in the statement of the theorem. Let R be greater

than max{g0 + 1, πa
sinθ

, g0 + πa} where a as in the proof of lemma 0.3.1. Assume

F̃ (γ̃)(t0) = F̃ (σ̃)(R). By the above, since the difference between the parameters of σ̃

and F̃ (σ̃) where they vanish is R〉g0 + 1, F̃ (σ̃)
′
(R) make an angle greater than θ with

F̃ (γ̃)
′
(t0). If t0 ≥ 0, then d(F̃ (σ̃)(0), F̃ (γ̃)(0)) ≥ Rsinθ ≥ πasinθ, since Ñ has non

positive sectional curvature. If t0〈 0 for t0 ≥ −g0, the triangle inequality again gives

d(F̃ (σ̃)(0), F̃ (γ̃)(0)) ≥ R − g0〉πa. On the other hand there is a path in SM̃ from

γ̃
′
(0) to σ̃

′
(0) of length ≤ π, namely arc of the unit speed circle. By the definition

of a, its image under F in SÑ is a curve of length ≤ πa which when projected to Ñ

become a curve of length ≤ πa from F̃ (γ̃)(0) to F̃ (σ̃)(0). This contradiction yields

the lemma.
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Since F̃ is the lift of F , we can assert the same lemma for N . ie. there is a number

R > 0 such that if γ and σ are geodesic in N such that γ(0) = σ(0) and γ 6= σ, then

F (σ)(R) /∈ F (γ)[−g0,∞].

Proposition 2.1.4. In the situation of the main theorem we have for every p ∈M(we

parametrize geodesics γv so that γ
′
v(0) = v for all v ∈ SpM)

2π ≥
∫
Sp

F?(J
v)(g(v))dv

Proof. The inequality is an application of the lemma in Appendix. We parametrize Sp

as usual by θ in (0, 2π) then a(θ) will be g(θ) and R comes from the above lemma. We

define H(θ, s) = F (γθ)(s) into N . Note that the γθ(s) in the Appendix corresponds

to F (γθ(s)). To avoid any confusion, we will show that H has the required properties.

We have ∂1 = {θ, g(θ)} . If H(θ1, g(θ1)) = H(θ2, g(θ2)) then F (γθ1)(g(θ1)) =

F (γθ2)(g(θ2)). Since g(θ2) ∈ [−g0,∞] this is contradictory to the above lemma. So H

maps ∂1 in a 1-1 fashion to an imbedded circle ∂ in N which will bound a disk. γθ(s)

is a geodesic variation and if we take γθ as the central curve Jθ is the variation field

along γθ for each θ.

Recall that we can obtain F?(J
θ) also by taking the variation field of F (γθ).

F?(J
θ)(R) is the tangent vector to the transverse curve F (γθ)(R) parametrized by

θ. But this curve is ∂. Thus F∗(J
θ)(R) is tangent to ∂. Since Jθ is normal to F (γθ).

Thus F (γθ) is the geodesic normal to ∂. As s goes to ∞, F (γθ)(s) goes to ∞ and

hence eventually lies outside D.

By virtue of the above lemma F (γθ)(R,∞) ∩ ∂ = φ. Hence F (γθ)(R,∞) lies

outside D. Again by the above lemma F (γθ)(−g0, R) ∩ ∂ = φ and hence we have

F (γθ)(−g0, R) lies in D. In particular H(∂0) lies in the interior of D and property(4)

is satisfied.

For any p ∈ D, let τ be a minimizing geodesic from p to ∂. Then τ is perpendicular

to γ so than p = F (γθ)(t) for some θ and t. We need to show that g(θ) ≤ t ≤ R.

By the previous paragraph t ≤ R. Since F?(J
θ)(g(θ)) = 0 and F?(J

θ) is the variation

field of the variations of normal geodesics the usual variation argument will say that,

since τ is the shortest path from p to ∂, t cannot be < g(θ). Hence D is the image of

H and property(3) is satisfied.

Now we can apply the lemma. Again recall that γθ in the lemma is our F (γθ), J

is F?(J
θ).

∇γθ(a(θ)J(θ, s) = F?(J
θ)
′
(g(θ))
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and γ⊥θ is our X, the unit normal field. Since F?(J
θ) is normal, F?(J

θ)
′

will be

perpendicular to γθ so that the integral is just F?(J
θ)
′
(g(θ))(as a real valued function).

Thus

2π ≥
∫
Sp

F?(J
v)(g(v))dv

Here dv is just the Lebesgue measure on S1.

2.2 Proof of the main theorem

Finally, we have reached the proof of the main theorem.

Proof. Integrating the inequality of the previous lemma over M , we get

2π.V ol(M) ≥
∫
SM

F?(J
v)
′
(g(v))dv

From the invariance of the canonical measure under the geodesic flow we get for each

L > 0:

2πL.V ol(M) ≥
∫
SM

∫ L

0

F?(J
gtM (v))

′
(g(gtM(v))dtdv

For a fixed v, let γv(t) be the geodesic with γ
′
v(0) = v so that gxM(v) = γ

′
v(x). Equation

(2.4) says

F?(J
v
M)(t) = jsM(x).jsN(t){c1 +

∫ t

0

dy

jsN(y)2
−
∫ x

0

dy

jsM(y)2
}

Taking the covariant derivative along F (γ),

F?(J
gx
M(v)

M )
′
(t) = jsM(x).jsN

′
(t){c1 +

∫ t

0

dy

jsN(y)2
−
∫ x

0

dy

jsM(y)2
}+

jsM(x).jsN(t)

jsN
2(t)

By equation (2.5), at t = tx = g(v) + x,

F?(J
v
M)
′
(g(v) + x) =

jsM(x)

jsN(g(v) + x)

Plugging in gt(v) and noting that F?(J
gtM (v)) is a Jacobi field along F (γ) with param-

eter shifted by t we get, for any v ∈ SM and t,

F?(J
gtM (v))(g(gtM(v)) + x) =

jsM(t)

jsN(g(γ′(t) + t)
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Apply lemma in Appendix A with f(t) = g(γ
′
(t)) + t, j = jsM and j̄ = jsN . Equation

(5 this number is to renamed appropriately) tells that these functions satisfy

the condition of the lemma with c2 = 1. We take [a, b] = [0, L] so that

[ā, b̄] = [g(v), g(gLM(v)) + L].

Then ∫ L

0

jsM(t)

jsN(g(γ′(t)) + t)
dt ≥ L

3
2

[L+ g(gL(v))− g(v)]2

Thus we find that

2πL.V ol(M) = L.V ol(SM) ≥
∫
SM

L
3
2

(L+ g(gL(v))− g(v))
1
2

dv

Rearranging the terms we see,

1 ≥ 1

V ol(SM)
.

∫
SM

1

(1 + g(gL(v))−g(v)
L

)
1
2

dv

Jensen’s inequality says that on a measure space (Ω, µ) with µ(Ω) = 1, if g is a real

valued µ-integrable function and ψ is a convex function on R, then∫
Ω

(g ◦ ψ)dµ ≥ g(

∫
Ω

ψdµ)

Take g(x) = x
−1
2 and ψ(v) = 1 + g(gL(v))−g(v)

L
and dµ = dv

vol(SM)
so that we will get

1 ≥ [
1

V ol(SM)
.

∫
SM

(1 +
g(gL(v))− g(v)

L
)dv]

−1
2

with equality holds only if g(gL(v)) = g(v)+c(L), where c(L) is a constant depending

at most on L. On the other hand the invariance of dv under gt says,∫
SM

g(gL(v))dv =

∫
SM

g(v)dv

hence
∫
SM

c(L)dv = 0

Then since c(L) is a constant it must be zero. Hence g is constant (say K) on

the unit tangent vectors of a given geodesic. But there are dense geodesics on M , ie.

there are geodesics γ such that {γ′(t) : t ∈ R} is dense in SM . Hence we get that the

function g, on which we were contemplating so far, is just a constant(say K).
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By replacing F by gKN ◦ F , we can assume that g(v) = 0 for all v ∈ SM .

Now let x ∈ M and c(θ) be a curve in the fiber SxM . For each θ, c
′
(θ) ∈ TSM

and it correspond to a Jacobi field Jc′ (θ) along γc(θ).

Jc′ (θ)(0) = dπ(c
′
(θ))

= (π ◦ c)′(θ)

= 0

Since g(v) = 0 for all v ∈ SM , on particular g(c
′
(θ)) = 0, F∗(J

c(θ)) will vanish at

F (γ
′

c(θ))(0) for all θ

Thus F?(J
c(θ))(0) = dπ(F∗(c

′
(θ)) = (π ◦ F ◦ c)′(θ) = 0 for all θ. So π ◦ F (c(θ))

is independent of θ and hence for x ∈ M we can define a function f(x) = π ◦ F (v)

where v is any vector in the fiber SxM .

To finish the proof we need only to note that f : M 7→ N is an isometry and

df = F . Since F takes tangent vector field of γ to that of F (γ) = γF (v), f takes γ to

F (γ). In particular if γ is a minimizing geodesic from p to q then f(γ) is a minimizing

geodesic of the same length from f(p) to f(q). This shows that f is an isometry.

Finally for v ∈ SM ,

df(v) = (f ◦ γv)
′
(0)

=
d

dt
|(t=0)π ◦ F (γ

′
(t))

= (π ◦ γF (v))
′
(0)

= F (v)
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3.1 Appendix A

We will reproduce the lemma in [C].

Lemma 3.1.1. Let j and j̄ be positive real valued continuous functions defined on

intervals of R. For constants C1 and C2 with C2 > 0 define f : [a, b] 7→ [ā, b̄] by:

C2.

∫ f(t)

a

ds

j̄2(s)
+ C1 =

∫ t

a

ds

j2(s)
(3.1)

where j is assumed to be defined at least on [a, b] and j̄ on [a, b]∪ [ā, b̄]. Then we have∫ b

a

C2.j(t)

j̄(f(t))
dt ≥ [

(b− a)3.C2

(b̄− ā)
]
1
2

with equality if and only if

f(t) =
b̄− ā
b− a

(t− a) + ā and
j(t)

j̄(f(t))
= [

(b− a)

C2(b̄− ā)
]
1
2

Proof. Differentiating (3) with respect to t we see that

f
′
(t) =

j̄2(f(t))

C2.j2(t)

Hence using the substitution u = f(t) gives

∫ b

a

C2.j(t)

j̄(f(t))
dt =

∫ b̄

ā

C2
2 .j

3(f−1(u))

j̄3(u)
du

35
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(Note that C2 > 0 implies f
′
(t) > 0 and hence that f−1(u) is well defined.)A Holder

inequality applied to the right hand side, RHS, of the above yields:

[RHS]
2
3 .[b̄− ā]

1
3 ≥

∫ b̄

ā

C
4
3
2 .j

2(f−1(u))

j̄2(u)
du = C

1
3
2 .(b− a). (3.2)

The equality above comes from the substitution t = f−1(u). The inequality in 3.2

will be equality if and only if j(f−1(u))/(j̄(u)) is a constant, say F . Rearranging 3.2

yields the inequality in the lemma. If equality holds then we see that C2.F.(b− a) =

[C2(b− a)3/(b̄− ā)]
1
2 and hence F = [(b− a)/{C2(b̄− ā)}] 12 . Further our computation

of f
′
(t) yields in the equality case f

′
(t) = 1/(C2.F

2) = (b̄− ā)/(b− a). These results

plus the fact that f(a) = ā yield the equality case in the lemma.

For θ ∈ S1, let a(θ) < R be a bounded continuous function, where R is a constant,

Q = {(θ, s)|a(θ) ≤ s ≤ R} ⊆ S1 × R

Let H : Q 7→ M be a map into a two dimensional Riemannian manifold with the

following properties;

1 Each curve αθ(s) = H(θ, s) is a unit speed geodesic in M .

2 On the interior of Q, H is a C1-immersion.

3 The image H(Q) is a manifold whose boundary is the 1-1 image of ∂1.

4 The image of ∂0 lies in the interior of H(Q).

We will let J(θ, s) be the variation field H?(
∂
∂θ

). Hence for fixes θ, J(θ, s) is a Jacobi

field along αθ. We also choose a unit normal field α⊥θ along each geodesic αθ which

we assume has 〈J(θ, s), α⊥θ 〉 > 0 for all a(θ) < s < R. This can be done by initially

choosing α⊥θ such that 〈J(θ, s), α⊥θ 〉 > 0. Since H is immersion, J(θ, s) = H?(
∂
∂θ

) can

not neither vanish nor become tangential. So that 〈J(θ, s), α⊥θ 〉 never changes sign.

Lemma 3.1.2. If in the above M has non positive curvature then we have:

2π =

∫
S1

〈∇α̇θ(a(θ))J(θ, s), α⊥θ 〉dθ
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Proof. For m in M , let K(m) represent the curvature of M at m. Since H may be

more than 1 to 1, and since K(m) ≤ 1, we have∫
H(θ)

K(m)dm ≥
∫ 2π

0

∫ R

a(θ)

K(H(θ, s))〈J(θ, s), α⊥θ 〉dsdθ

Jacobi equation along αθ says

D2
sJ +R(J, α̇θ)α̇θ = 0

−〈D2
sJ, α

⊥
θ 〉 = 〈R(J, α̇θ)α̇θ, α

⊥
θ 〉

= Rm(〈J, α⊥θ 〉α⊥θ + 〈J, α̇θ〉α̇θ, α̇θ, α̇θ, α⊥θ )

By the symmetries of the curvature tensor Rm,this become Rm(〈J, α⊥θ 〉α⊥θ , α̇θ, α̇θ, α⊥θ 〉)
which is 〈J, α⊥θ 〉Rm(α⊥θ , α̇θ, α̇θ, α

⊥
θ ) But by definition

K =
Rm(α⊥θ , α̇θ, α̇θ, α

⊥
θ )

1
|α̇θ|

2|αθ|2 − 〈α⊥θ , α̇θ〉2

= Rm(α⊥θ , α̇θ, α̇θ, α
⊥
θ )

Hence the integrand on the RHS become −〈D2
sJ, α

⊥
θ 〉 which is − d

ds
〈DsJ, α

⊥
θ 〉, because

α⊥θ is parallel along αθ. Hence RHS become∫ 2π

0

〈∇α̇θ(a(θ))J(θ, s), α⊥θ 〉dθ −
∫ 2π

0

〈∇α̇θ(R)J, α
⊥
θ 〉dθ

Gauss Bonnet theorem of a surface with boundary says that∫
M

KdA+

∫
∂M

Kgds = 2πχ(M)

where Kg is the geodesic curvature of ∂M . Since the boundary component of H(Q) is

a single circle, the Euler characteristics is ≤ 1 (in our applications H(Q) will in fact

always be a disk) and hence LHS is less than or equal to 2π− boundary term, B∂, of

Gauss Bonnet. Hence the lemma follows when we see that

B∂ =

∫ 2π

0

〈∇α̇θ(R)J(θ, s), α⊥θ 〉dθ
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3.2 Appendix B

In case N has non positive sectional curvature and genus 1(ie. flat torus, by Gauss

Bonnet theorem) M must be isometric to N but F need not be of the form gK ◦ dI.

We have the following theorem in [C]

Theorem 3.2.1. If the geodesic flow of a closed surface M is conjugate to a flat torus

N , then M is isometric to N

We consider an example to exhibit that F need not to be of the form gK ◦ dI.

Example 3.2.2 Let N be a flat torus say N = R2/Γ for a lattice Γ. Let (x, y) be

standard coordinates of R2 and θ be the angle from x-axis. Then

SN = {(x, y, θ) ∈ R2/Γ× R1/2π}

Note that

gt(x, y, θ) = (x+ tcosθ, y + tsinθ, θ)

Hence the diffeomorphism F : SN 7→ SN defined by F (x, y, θ) = (x+a(θ), y+b(θ), θ)

where (a(0), b(0)) = (0, 0) and (a(2π), (2π)) ∈ Γ induce a geodesic conjugacy. It is

easy to see that gt ◦F = F ◦ gt. One can show that if (a(2π), b(2π)) ∈ Γ− (0, 0); then

F is not homotopic to a fiber preserving map so cannot be of the form gK ◦ dI. Even

if (a(2π), b(2π)) ∈ Γ − (0, 0) as long as a or b is not identically zero, F is not fiber

preserving and(except for special choice a(θ) = (1 − cosθ), b(θ) = −tsin(θ)) cannot

be made so by following a fixed amount. Hence again F is not gK ◦ dI.

It should be pointed out for general surfaces there is no theorem like the main

theorem. In particular zoll surfaces have geodesic flow that are conjugate to the

geodesic flow on the round sphere,(see[W]).
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