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Abstract

Pyrrolizidine scaffolds are having many biological activities in plants as well as in human body;
hence these scaffolds are of great interest on synthetic perspectives. A base facilitated 5-endo-dig
cyclization strategy has been developed to obtain the pyrrolizidine scaffold. This protocol
allowed us to approach a diverse range of alkyl and aryl substituted pyrrolizidine scaffolds in
moderate yields from N-propargyl-L-proline ester derivatives under mild conditions. Synthesis
of indolizidine alkaloid from N-propargyl-L-pipecolinic esters using this strategy was also
attempted.



CHAPTER 1
Introduction:

1.1 Overview

Indolizidine and pyrrolizidine alkaloids are large classes of natural products.' A
common feature of these compounds is that they contain a bicyclic ring with nitrogen
at the bridging position. Pyrrolizidines contain two five membered rings whereas

indolizidines comprise of a five and a six membered ring (Fig. 1).

oSS

Pyrrolizidine Core Indolizidine Core
Figure 1. Pyrrolizidine and indolizidine core

Pyrrolizidine alkaloids (PAs) encompass a large family of natural products.'
They exhibit various biological properties. Generally, PAs are hepatotoxic hence
cause damage to liver and related organs."? Although these alkaloids are found to be
toxic, few of them have shown some applications in the cancer treatment and viral
infections like human immunity virus (HIV).? Some of the PAs exhibit anti-feedant
activity, i.e. it prevents herbivores to eat the various parts of the plant, thus used in the
agricultural industry as an insecticide.” For example, PAs 1 and 2 isolated from
Achusa Strigosa exhibit antifeedant activity against the Spodoptera Exigua herbivore

insect (Fig. 2).

HO HO

Figure 2. Pyrrolizidine alkaloids isolated from Achusa Strigosa.



Some of the important pyrrolizidine and indolizidine alkaloids are shown in
Figure 3. Lasiocarpine 3 and europine 4, which are extracted from Heliotropium
Bovei, also function as deterrents to insect feeding (Fig. 3).> Alexine 5, isolated from
Alexa Canaracunensis, was found to have some potential in the treatment of HIV.*
Casuarine 6, which was isolated from Casuarina Equisetifolia and FEugenia
Jambolana, had shown good activity for the treatment of breast cancer, bacterial

. . . 4.5
infections, and diabetes.™
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Figure 3. Various pyrrolizidine and indolizidine alkaloids; lasiocarpine (3), europine
(4), alexine (5), casuarine (6), pumiliotoxin A (7), indolizidine 205A (8),

castanospermine (9), swainsonine (10).

Indolizidine alkaloids generally work as an alleochemical deterrent to
herbivores due to their bitter taste. They exhibit biological activity in insects,
mammals and humans. Pumiliotoxins, found in many frog species like Dendrobates,
Minyobae, Mantella etc (Fig. 3). Pumiliotoxin A (7) is toxic and has a LD 50 value of
2.5 mg/kg ®. Indolizidine 205A 8 were also isolated from the frog species Mantella.
These contains 5,8-disubstituted indolizidine moiety. These alkaloids are found to be
quite toxic and their therapeutic use is still under investigation. Castanospermine 9,
isolated from Castanospermum Austral, and is a powerful inhibitor of several
glucosidases. Swainsonine 10 is another example of an indolizidine alkaloid which
also works as a glycosidase inhibitor, and has anti-tumor properties.'

There has been a great interest in these compounds and their derivatives,

because of their biological activities described above. Extraction of these compounds



from plant sources is expensive, time consuming and low-yielding. Hence a simple

and efficient synthetic route to these privileged molecules is highly desired.
1.2 Synthetic strategies toward pyrrolizidine core:

Many synthetic strategies for the construction of the bicyclic core of these molecules
have been reported in the literature. The first synthesis of (+)-retronecine, which
contains the pyrrolizidine core, was performed by Geissman and Waiss in 1962.” This
approach involves Geissman lactone 12 as an intermediate for the synthesis of the
bicyclic core (Scheme 1). Since many synthetic steps are involved in the approach,

less yield of final product was obtained.

O\]\\/>_\ 0) H OH
R \_H -
N\ COOEt E%N ®OClI —_— E’\%j/\OH
COOEt
13

11 12

Scheme 1. Pyrrolizidine core synthesis using Geissman lactone

In another approach, ring closing metathesis (RCM)® was used as a key step
for the construction of the bicyclic core (Scheme 2). This strategy has been elaborated

to the synthesis of few pyrrolizidine natural products.

)
&NK/:/\ Grubbs Catalyst §;"(\>
RCM
= (RCM) 4
14 15

Scheme 2. Synthesis of pyrrolizidine core using ring closing metathesis

[3+2] cycloaddition strategy has also been reported for the assembly of
bicyclic core. Panday and co-workers reported an efficient method for building the
bicyclic core 17 by [3+2]- cycloaddition of non-stabilized azomethine ylide with a

terminal alkyne (Scheme 3).?
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Scheme 3. Synthesis of pyrrolizidine core using [3+2] cycloaddition

Free radical Cyclization strategy was utilized by Hart and co-workers for the
assembly of bicyclic core.!" Treatment of phenylthiolactam 19 with tri-n-butyltin
hydride and AIBN gave mixtures of reduction and cyclization products. Both
indolizidinones and pyrrolizidinones cores were obtained depending upon the
terminal alkyne substituent. When the terminal substituent was a trimethylsilyl group,
pyrrolizidinone 20 was obtained and indolizidinone 22 was obtained when the
terminal group was a methyl group 21 (Scheme 4).
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Scheme 4. Synthesis of pyrrolizidine core by free radical cyclization

Sarkar and co-workers described an intramolecular allylsilane ring closure
strategy for the formation of the bicyclic core of pyrrolizidine alkaloids 25

(Scheme 5)."
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Scheme 5. Synthesis of pyrrolizidine core using intramolecular allylsilane ring

closure

Transition metal catalysts including gold, copper and platinum were also
employed in order to get the pyrrolizidine core. Backwall’s group has reported
palladium-catalyzed tandem cyclization of 4,6- and 5,7-diene amides which opened a

new route toward the pyrrolizidine and indolizidine alkaloids 27 (Scheme 6)."

\)\/\/ﬁ Pd(OAc),, CuCl,, O,
P N

THF, 60 °C

26

Scheme 6. Synthesis of pyrrolizidine core using palladium-catalyzed tandem

cyclization

Dieter’s group has synthesized scalemic 2-pyrrolidinylcuprates 28, generated
via asymmetric deprotonation of N-Boc pyrrolidine followed by treatment with
CuCN.2LiCl, and reacted with functionalized vinyl halides to give 2-alkenyl-N-Boc-
pyrrolidines. N-Boc deprotection and cyclization via intramolecular N-alkylation
generated the pyrrolizidine or indolizidine skeletons 30 and 31 (Scheme 7)."*

X= (CHz)zBr H

I
CulLi X
CuLi _— N
S O/) 30
N N
\ H
Boc Boc  x=CH,0Si'BuMe,
28 29 N
31

Scheme 7. Copper catalyzed synthesis of pyrrolizidine core



Kinderman and Hiemstra reported a reaction sequence involving the addition
of propargylsilanes to lactam-derived N-acyliminium ion 32 followed by gold-
catalyzed cyclization is applied in the syntheses of pyrrolizidine alkaloids 33 (Scheme

8)15

32 33

Scheme 8. Gold catalyzed synthesis of pyrrolizidine core

Tilve’s group has achieved the synthesis of (S)-pyrrolam A 37 starting from N
(benzyloxycarbonyl)-L-prolinol 35 through primary alcohol oxidation—Wittig reaction

sequence (Scheme 9) .'°

COOEt
— H

OH >

/0" Poc, Naore, WHQ' 10% PAIC.,
COOH Ph;P=CHCO,Et N EtOH N
R —
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34 35 36 37

Scheme 9. Synthesis of pyrrolizidine core using domino oxidation—Wittig reaction

1.3 Synthetic strategies toward indolizidine core:

Several synthetic approaches toward indolizidine core have been reported in the
literature. Weinreb’s group has reported the synthesis of indolizidine core 40 from
diene amide 39 via an intramolecular imino Diels-Alder reaction (Scheme 10).17 The

indolizidine skeleton was synthesized with required stereochemistry.

it
OSi'BuMe, Me,'BuSiO,,
07N COOMe 0
N\
39 40

Scheme 10. Synthesis of indolizidine core using Diels-Alder reaction



Honda and co-workers reported a competent synthesis of indolizidine core 43

by applying domino enyne metathesis as a key step (Scheme 11)."®

\L
H 0 // HO. )
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Scheme 11. Synthesis of indolizidine core using domino enyne metathesis

Polniaszek et al. has reported a 10 step synthesis of indolizidine core 46
starting from (S)-(-)-a-phenethylamine.'” This method involves intramolecular imine

formation followed by addition of cyanide (Scheme 12).

O
H
O
N
o
NC
44 46

Scheme 12. Synthesis of indolizidine core using intramolecular imine formation
Lhommet’s group has developed a highly diastereoselective synthesis of

indolizidine (-)-209B 48 through diastereoselective alkylation of a chiral cyclic B-

amino ester 47 (Scheme 13).%°

COOEt

Ph
47

Scheme 13. Synthesis of indolizidine core using diastereoselective alkylation



CHAPTER 2

Experimental Section:

2.1 General Methods: All reactions were carried out under inert atmosphere. All the
reagents used were purchased from commercial sources and used as such. 'H and "*C
NMR spectra were recorded in CDCl; using 400 MHz and 100 MHz Bruker FT-NMR
spectrometer respectively. Chemical shift values are reported in parts per million
relative to TMS. High resolution mass spectra (HRMS) were recorded on a waters-Q-
Tof spectrometer. IR spectra were recorded on a Brucker FT-IR spectrometer. Thin
layer chromatography was performed on Merck silica gel 60 F»ss TLC plates using
EtOAc/Hexane mixture as an eluent. Chromatographic separation was carried out

through neutral alumina column.
2.2 General procedure for the synthesis of N-propargyl proline ester Derivatives:

Formaldehyde (0.25 mmol), Terminal alkyne (0.25 mmol), sodium bicarbonate (0.2
mmol), and CuCl (0.02 mmol) were stirred over night with proline methyl ester
hydrochloride (0.2 mmol) at 35°C under argon. After completion, the reaction mixture
was directly loaded on a silica gel column and purified using hexane/EtOAc mixture

(15%) as an eluent.
Methyl -1-(3-cyclopentylprop-2-yn-1-yl)pyrrolidine-2-carboxylate (49):

o}
/
0
N

70% Yield; light yellow liquid; FT IR 2358 (C=C), 1747 (C=0) cm™'; '"H NMR (400
MHz, CDCl3) §3.71 (s, 3H), 3.52 (d, J = 2.0 Hz, 2H), 3.39 (dd, J = 9.0 Hz, 6.4 Hz,
1H), 3.06-3.01 (m, 1H), 2.70-2.55 (m, 2H), 2.17-2.07 (m, 1H), 2.00-1.85 (m, 4H),
1.80-1.75 (m, 1H), 1.72-1.64 (m, 2H), 1.60-1.47 (m, 4H); °C NMR (100 MHz,
CDCl;) 6174.5,90.1, 73.8, 62.9, 52.4, 52.1, 42.0, 34.2, 30.3, 29.9, 25.0, 23.5; HRMS
(ESI) calculated for C14H,,NO,236.1650, found 236.1651 [M+H]".



Methyl-1-(3-(p-tolyl)prop-2-yn-1-yl)pyrrolidine-2-carboxylate (50):

o
o
N F

93% Yield; brown liquid; FT IR 2367 (C=C), 1745 (C=0) em’'; 'H NMR (400 MHz,
CDCL) §7.31 (d, J = 8.0 Hz, 2H), 7.09 (d, J = 7.9 Hz, 2H), 3.78 (d, J = 1.7 Hz, 2H),
3.72 (s, 3H), 3.50 (dd, J = 9.1 Hz, 6.5 Hz, 1H), 3.15-3.10 (m, 1H), 2.80-2.74 (m, 1H),
2.33 (s, 3H), 2.22-2.13 (m, 1H), 2.02-1.81 (m, 3H); °C NMR (100 MHz, CDCL3) &
174.4, 138.3, 131.7, 129.1, 120.0, 85.6, 83.4, 63.0, 52.6, 52.2, 42.4, 29.8, 23.5, 21.5;
HRMS (ESI) calculated for C16HaoNO, 258.1494, found 258.1497 [M+H]".

Methyl-1-(4-(4-bromophenoxy)but-2-yn-1-yl)pyrrolidine-2-carboxylate (51):

0 p Br
« LT
N/\ ©

60% Yield; light yellow liquid; FT IR 2348 (C=C), 1740 (C=0) cem™; "TH NMR (400
MHz, CDCls) 67.40 (d, J=9.1 Hz, 2H), 6.84 (d, J=9.1 Hz, 2H), 4.68 (t, /= 1.9 Hz,
2H), 3.70 (s, 3H), 3.60 (t, J = 1.9 Hz, 2H), 3.31 (dd, J = 9.0 Hz, 6.6 Hz, 1H), 3.03-
3.00 (m, 1H), 2.60 (m, 1H), 2.11-2.01 (m, 1H), 2.00-1.82 (m, 2H), 1.77-1.70 (m, 1H);
C NMR (100 MHz, CDCls) § 174.1, 156.7, 132.3, 117.0, 113.8, 82.8, 79.8, 62.7,
56.4,52.4,52.1,41.5, 29.6, 23.3; HRMS (ESI) calculated for C¢H;9BrNO3 352.0548,
found 352.0549 [M+H]".

Methyl-1-(3-(4-methoxyphenyl)prop-2-ynyl)pyrrolidine-2-carboxylate (52):

~N
o
N F

54% Yield; Light yellow liquid; FT IR 2355 (C=C), 1738 (C=0) cm™; "H NMR (400
MHz, CDCl3) 67.33 (d, J = 8.9 Hz, 2H), 6.90 (d, J = 8.9 Hz, 2H), 3.78 (s, 3H), 3.76
(d,J=1.9 Hz, 2H), 3.71 (s, 3H), 3.48 (dd, J = 6.5 Hz, 3.3 Hz, 1H), 3.14-3.09 (m, 1H),
2.79-2.72 (m, 1H), 2.21-2.12 (m, 1H), 2.03-1.88 (m, 2H), 1.86-1.77 (m, 1H); “C
NMR (100 MHz, CDCl;) 6 174.4, 159.5, 133.2, 115.2, 113.9, 85.3, 82.6, 63.0, 55.3,
32.6, 42.3, 29.8, 23.4; HRMS (ESI) calculated for CisH)NOs3 274.1443, found
274.1440 [M+H]".



Methyl-1-(3-(trimethylsilyl) prop-2-ynyl)pyrrolidine-2-carboxylate(53):

o)
o Sli/
~N

N/

52% Yield; Light yellow liquid; FT IR 2355 (C=C), 1738 (C=0) cm™'; "H NMR (400
MHz, CDCls) 6 3.72 (s, 3H), 3.58 (s, 2H), 3.40 (dd, J = 9.1 Hz, 3.3 Hz, 1H), 3.08-
3.03 (m, 1H), 2.73-2.66 (m, 1H), 2.19-2.09 (m, 1H), 2.02-1.85 (m, 2H), 1.83-1.75 (m,
1H), 0.16 (s, 9H); *C NMR (100 MHz, CDCl3) §174.3, 100.8, 90.1, 62.8, 52.5, 52.1,
42.6, 29.8, 23.5, 0.2; HRMS (ESI) calculated for C;2H2NO,Si 240.1420, found
240.1427 [M+H]".

Methyl-1-(4-(biphenyl-4-yloxy)but-2-ynyl)pyrrolidine-2-carboxylate(54).

45% Yield; light yellow liquid; FT IR 2349 (C=C), 1739 (C=0) cm™; "H NMR (400
MHz, CDCls) §7.55-7.51 (m, 4H), 7.44-7.39 (m, 2H), 7.33-7.28 (m, 1H), 7.04 (d, J =
8.8 Hz, 2H), 4.76 (t, J = 1.8 Hz, 2H), 3.70 (s, 3H), 3.64 (t, J = 1.8 Hz, 2H), 3.37 (dd, J
=9.0 Hz, 6.6 Hz, 1H), 3.05-3.00 (m, 1H), 2.67-2.60 (m, 1H), 2.11-2.02 (m, 1H), 1.98-
1.82 (m, 2H), 1.76-1.70 (m, 1H); *C NMR (100 MHz, CDCls) §174.2, 157.2, 140.8,
134.6, 128.9, 128.2, 126.9, 126.9, 115.4, 82.5, 80.2, 62.7, 56.3, 52.4, 52.1, 41.6, 29.7,
23.3; HRMS (ESI) calculated for C2,H,4NOj3 350.1756, found 350.1756 [M+H]".

Methyl-1-(4-(2,4-dichlorophenoxy)but-2-ynyl)pyrrolidine-2-carboxylate(55):

o cl

65% Yield; light yellow liquid; FT IR 2337 (C=C), 1739 (C=0) cm™'; '"H NMR (400
MHz, CDCl3) §7.38 (d, J= 2.6 Hz, 1H), 7.19 (dd, J = 8.8 Hz, 2.6 Hz, 1H), 7.00 (d, J
= 8.8 Hz, 1H), 4.79 (t,J= 1.9 Hz, 2H), 3.71 (s, 3H), 3.60 (t, J = 1.9 Hz, 2H), 3.30 (dd,
J=19.0 Hz, 6.6 Hz, 1H), 3.03-2.98 (m, 1H), 2.60-2.54 (m, 1H), 2.12-2.03 (m, 1H),
1.98-1.85 (m, 2H), 1.81-1.71 (m, 1H); *C NMR (100 MHz, CDCl;) & 174.1, 157.0,

10



130.2, 127.5, 126.8, 124.3, 115.5, 83.6, 79.2, 62.8, 57.5, 52.5, 52.2, 41.6, 29.7, 23.3;
HRMS (ESI) calculated for CsH;9CI,NOs3 342.0664, found 342.0666 [M+H]".

Methyl-1-(4-(3-methoxyphenoxy)but-2-ynyl)pyrrolidine-2-carboxylate (56):

48% Yield; light yellow liquid; FT IR 2344 (C=C), 1738 (C=0), cm™'; 'H NMR (400
MHz, CDCl3) §7.12-7.07 (m, 1H), 6.49-6.44 (m, 3H), 4.61 (t, J = 1.9 Hz, 2H), 3.67
(s, 3H), 3.63 (s, 3H), 3.54 (t, J= 1.8 Hz, 2H), 3.26 (dd, J = 9.2 Hz, 2.4 Hz, 1H), 2.98-
2.91 (m, 1H), 2.56-1.52 (m, 1H), 2.03-1.94 (m, 1H), 1.90-1.74 (m, 2H), 1.69-1.61 (m,
1H); °C NMR (100 MHz, CDCl3) §174.1, 160.8, 158.9, 129.9, 107.2, 107.0, 101.7,
82.4,80.2, 62.6, 56.2, 55.3, 52.3, 52.0, 41.6, 29.7, 23.3.

Methyl-1-(3-(pyridin-2-yl)prop-2-ynyl)pyrrolidine-2-carboxylate(57):

Q =

o’ [

n. # N
48% yield, FT IR 2350 (C=C), 1739 (C=0) cm™'; "H NMR (400 MHz, CDCl;) 58.56
(d, J=4.9 Hz, 1H), 7.64 (td, J = 7.8 Hz, 1.9 Hz, 1H), 7.40 (d, J = 7.8 Hz, 1H), 7.23
(ddd, J=7.6 Hz, 4.9 Hz, 1.2 Hz, 1H), 3.68 (d, J = 2.8 Hz, 2H), 3.72 (s, 3H), 3.56 (dd,
J=09.1 Hz, 6.8 Hz, 1H), 3.13-3.11 (m, 1H), 2.87-2.80 (m, 1H), 2.24-2.14 (m, 1H),

2.05-1.87 (m, 2H), 1.86-1.79 (m, 1H); *C NMR (100 MHz, CDCls) & 173.9, 149.6,
142.6, 136.5, 127.3, 123.3, 84.8, 84.8, 62.5, 52.3, 52.1, 41.5, 29.5, 23 .2.

2.3 General procedure for the synthesis of N-propargyl pipecolinic ester derivatives:

Formaldehyde (0.50 mmol), phenylacetylene (0.25 mmol), sodium bicarbonate (0.2
mmol) and CuCl (0.02 mmol) were stirred over night with pipecolinic methyl ester
hydrochloride (0.2 mmol) at 35°C under argon. After completion, the Reaction
mixture was directly loaded on a silica gel column and purified using Hexane/EtOAc

mixture (15%) as an eluent.

11



Methyl-1-(4-ethoxy-4-oxobut-2-ynyl)piperidine-2-carboxylate (58):

CO,Me

o/COOEt
/\

N

40% yield; Light yellow liquid; FT IR 2362 (C=C), 1738 (C=0), 1730 (C=0) cm';
'H NMR (400 MHz, CDCl3) §4.21 (q, J = 7.2 Hz, 2H), 3.72 (s, 3H), 3.59 (dd, J =
67.7 Hz, 18.1 Hz, 2H), 3.23 (dd, J = 10.2 Hz, 3.4 Hz, 1H), 2.87 (dt, J = 11.3 Hz, 3.5
Hz, 1H), 2.56-2.50 (m, 1H), 1.93-1.88 (m, 1H), 1.73-1.59 (m, 4H), 1.38-1.31 (m, 1H),
1.29 (t, J = 4.2 Hz, 3H); *C NMR (100 MHz, CDCls) §173.5, 153.4, 82.6, 78.2, 63.0,
52.1, 51.5, 44.6, 30.1, 25.2, 22.8, 14.1; HRMS (ESI) calculated for C;4Hy3NO,
254.1392, found 254.1393 [M+H]".

Methyl-1-(3-(3-fluorophenyl)prop-2-ynyl)piperidine-2-carboxylate (59):

CO,Me

SV an

52% vyield; Light yellow liquid; FT IR 2363 (C=C), 1738 (C=0) cm; 'H
NMR (400 MHz, CDCl3) §7.27-7.18 (m, 2H), 7.1 (d, J = 9.5 Hz, 1H), 6.99 (t, J = 8.6
Hz, 1H), 3.74 (s, 3H), 3.63 (dd, J = 46.2 Hz, 17.4 Hz, 2H), 3.27 (dd, J = 10.2 Hz, 3.3
Hz, 1H), 2.98 (dt, J = 11.2 Hz, 3.8 Hz, 1H), 2.57-2.50 (m, 1H), 1.95-1.89 (m, 1H),
1.76-1.64 (m, 4H), 1.37-1.26 (m, 1H); *C NMR (100 MHz, CDCls) 6 173.8, 161.2,
129.6 (d, Jer= 8.7 Hz), 127.7 (d, Jor = 2.9 Hz), 124.9 (d, Jer = 9.5 Hz), 118.8 (d, Jc.
F=22.6), 85.0, 84.9, 63.5, 52.1, 51.6, 45.5, 30.1, 25.3, 23.1; HRMS (ESI) calculated
for C1sH19FNO, 276.1400, found 276.1403 [M+H]".

Methyl-1-(3-phenylprop-2-ynyl)piperidine-2-carboxylate (60):

CO,Me

o9

50% vyield, FT IR 2357 (C=C), 1738 (C=0) cm™’; '"H NMR (400 MHz, CDCL;) &
7.44-7.40 (m, 2H), 7.31-7.27 (m, 3H), 3.75 (s, 3H), 3.65 (dd, J = 53.4Hz, 17.4 Hz,
2H), 3.31 (dd, J = 10.3 Hz, 3.3 Hz, 1H), 3.00 (dt, /= 10.9 Hz, 3.7 Hz, 1H), 2.60-2.53
(m, 1H), 1.95-1.90 (m, 1H), 1.77-1.65 (m, 4H), 1.40-1.30 (m, 1H); °C NMR (100
MHz, CDCl;) §173.9, 131.9, 128.3, 128.2, 123.2, 86.1, 83.7, 63.5, 52.1, 51.6, 45.5,
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30.2, 25.4, 23.2; HRMS (ESI) caled for Ci¢HNO, 258.1494, found 258.1491
[M+H]".

Methyl-1-(3-(4-pentylphenyl)prop-2-ynyl)piperidine-2-carboxylate (61):

CN(COﬁe

39.4% vield, FT IR 2365 (C=C), 1738 (C=0) cm’'; 'H NMR (400 MHz, CDCL;) &
7.34 (d, J = 8.3 Hz, 2H), 7.1 (d, J = 8.3 Hz, 2H), 3.75 (s, 3H), 3.64 (dd, J = 49.8 Hz,
17.4, 2H), 3.31 (dd, J= 10.3 Hz, 3.3 Hz, 1H), 2.99 (dt, J = 11.0 Hz, 3.7 Hz, 1H), 2.58
(t, J = 7.7 Hz, 3H), 1.94-1.89 (m, 1H), 1.76-1.64 (m, 4H), 1.62-1.55 (m, 2H), 1.36-
1.28 (m, SH), 0.87 (t, J= 6.84 Hz, 3H); '°C NMR (100 MHz, CDCl3) 5174.0, 143.35,
131.8, 128.5, 120.3, 86.2, 83.0, 63.5, 60.5, 52.1, 51.6, 45.6, 35.5, 31.1, 30.2, 25.4,

23.2, 22.6; HRMS (ESI) calculated for C,;H3;)NO, 328.2276, found 328.2274
[M+H]".

Methyl-1-(3-(2,4,5-trimethylphenyl) prop-2-ynyl)piperidine-2-carboxylate (62):

CN(COZ/&a

39.4% yield, FT IR 2356 (C=C), 1739 (C=0) cm™; '"H NMR (400 MHz, CDCL;) &
7.17 (s, 1H), 6.96 (s, 1H), 3.75 (s, 3H), 3.67 (dd, J = 73.76Hz, 17.44 Hz, 2H), 3.35
(dd, J = 10.6 Hz, 3.3 Hz, 1H), 2.95 (dt, J= 11.1 Hz, 3.9 Hz, 1H), 2.65-2.58 (m, 1H),
2.35 (s, 3H), 2.21 (s, 3H), 2.18 (s, 3H), 1.94-1.86 (m, 1H), 1.77- 1.63 (m, 4H), 1.36-
1.23 (m, 1H); °C NMR (100 MHz, CDCls) & 1734.0, 137.5, 137.0, 133.7, 133.1,

131.0, 120.1, 86.2, 85.3, 63.3, 52.0, 51.6, 45.6, 30.2, 25.4, 23.3, 20.4, 19.8, 19.2;
HRMS (ESI) calcd for C1oHa6NO; 300.1963, found 300.1967 [M+H]".

2.4 General procedure for synthesis of pyrrolizidine scaffold :

A solution of LIHMDS (0.75 mmol) in hexane was added in a drop-wise manner to a
solution of N-propargyl proline ester (0.5 mmol) in dry THF (5 mL) at RT under inert
atmosphere and the resulting solution was stirred vigorously until the starting material
was completely consumed. The solvent was evaporated under reduced pressure and
the residue was purified through neutral alumina column using EtOAc/Hexane

mixture as an eluent.
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Methyl-7-cyclopentyl-2,3,5, 7a-tetrahydro- 1 H-pyrrolizine-7a-carboxylate (63):

50% Yield; light yellow liquid; FT IR 2949 (=CH), 1730 (C=0), 1452 (C=C) cm"; '"H
NMR (400 MHz, CDCl;) §5.41 (d, J = 1.5 Hz, 1H), 3.92 (td, J = 15.3 Hz, 1.6 Hz,
1H), 3.65 (s, 3H), 3.30 (td, J = 15.3 Hz, 2.0 Hz, 1H), 3.24-3.20 (m, 1H), 2.61-2.55 (m,
1H), 2.44-2.40 (m, 1H) 2.30-2.21 (m, 1H), 1.88-1.81 (m, 1H), 1.80-1.71 (m, 3H),
1.68-1.47 (m, 5H), 1.42-1.32 (m, 1H), 1.27-1.17 (m, 1H); *C NMR (100 MHz,
CDCls) & 175.6, 147.3, 120.3, 85.2, 61.6, 57.8, 52.4, 38.8, 33.2, 33.0, 26.0, 24.9;
HRMS (ESI) calculated for C;4H22NO,236.1650, found 236.1653 [M+H]+.

Methyl-7-(p-tolyl)-2,3,5, 7a-tetrahydro- 1 H-pyrrolizine-7a-carboxylate (64):

60% Yield; yellow semi solid; FT IR 2949 (=CH), 1730 (C=0), 1433 (C=C) cm™"; 'H
NMR (400 MHz, CDCl3) §7.28-7.26 (m, 2H), 7.13-7.11 (m, 2H), 6.19 (t, J = 2.2 Hz,
1H), 4.12 (dd, J = 16.5 Hz, 1.8 Hz, 1H), 3.67 (s, 3H), 3.52 (dd, J = 16.5 Hz, 2.4 Hz,
1H), 3.32-3.28 (m, 1H), 2.91 (ddd, J = 12.3 Hz, 6.8 Hz, 2.5 Hz, 1H), 2.56-2.49 (m,
1H), 2.33 (s, 3H), 2.01-1.90 (m, 1H), 1.87-1.81 (m, 1H), 1.72-1.67 (m, 1H); *C NMR
(100 MHz, CDCly) §175.2, 142.2, 137.6, 130.3, 129.4, 126.3, 123.2, 83.2, 61.4, 57.7,
52.8, 33.4, 26.5, 21.3; HRMS (ESI) calculated for C;cH2oNO, 258.1494, found
258.1492 [M+H]".
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CHAPTER 3

Results and Discussion:

For the past two decades, the 5-endo-dig cyclization strategy has been utilized as a
powerful strategy for the assembly of bicyclic core of many valuable molecules.”!
While searching for a suitable and novel method for the assembly of bicyclic core of
pyrrolizidine and indolizidine alkaloids, we thought of employing 5-endo-dig
cyclization approach for the same. Our proposed synthetic approach towards the
pyrrolizidine bicyclic core is represented in Scheme 14, which clearly reveals that the
bicyclic core of pyrrolizidine 66 could be easily assembled from N-propargyl-L-
proline ester 65 through base facilitated 5-endo-dig cyclization. The N-propargyl-L-
proline ester 65 could be readily accessed from L-proline through a precedented
method.”> To the best of our knowledge, this strategy towards pyrrolizidine core

remains unknown in the literature.

Scheme 14

Before starting the actual optimization of 5-endo-dig cyclization, we have
synthesized a wide variety of starting materials starting from L-proline and a range of
terminal alkynes following the literature procedure (Table 1).22 As one can observe
that p-tolyl propargyl group derived starting material 50 was obtained in maximum
yield. Other starting materials were formed in moderate yields. The reaction condition
was semi-neat as 40% HCHO solution was used in the reaction. N-Propargyl-L-
proline derivatives 51, 55, 54, 56 were synthesized from terminal acetylenes, which in
turn were prepared by the treatment of propargyl bromide with the corresponding

phenol under basic conditions (K,CO3, DMF).
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Table 1. Preparation of N-propargyl-L-proline derivatives

CuCl (0.1 equiv.)
COOMe NaHCO; (1 equiv.) O<COOMe
o ®NH + — R N
al H (1.2?equiv.) 40% formaldehyde solution ——R

(1.25 equiv.), 35°C

Br
COOMe COOMe C(COOMe /©/
gz (6)
7

49 12 hr. 50% 50, 12 hl’, 92% 51, 12 hr, 60%
2N COOMe
COOMe COOMe Sl_/ C(
~ /\O
q Z CS/ N_Z
52, 12 hr, 54% 53, 12 hr, 52% 54, 12 hr, 45%
cl cl cooMe [~ ]
COOMe j©/ COOMe /@\ C( N
~
N =
q o q "o o
55, 12 hr, 65% 56, 12 hr, 48% 57,12 hr, 48%

Similarly, the starting materials for the synthesis of indolizidine derivatives
were prepared using the same strategy from pipecolinic acid methyl ester. In case of
six membered ring containing starting material excess (2.5 equiv.) of formaldehyde
was used, because the pipecolinic acid methyl ester is a solid. Hence more amount of
formaldehyde was required in order to homogenize the reaction mixture. We have

made few N-propargyl pipecolinic acid derivatives, which are listed in Table 2.

The optimization studies were performed using 67 as the starting
material. Various bases and solvents were screened in order to get the final product 68
(Table 3). Our initial efforts to get the expected product 68 were discouraging as the
bases NaH, KO'Bu, Et;N and LiO'Bu did not yield any product. LDA and KO'Bu
gave either decomposed product or the complex mixtures. Many solvents like DMF,

THF, toluene, and ether were also screened. The required product 68 was observed
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when LiHMDS was used as a base in DMF with 10% yield. So the reaction was
performed under various solvents using LIHMDS as a base. Best result was obtained
when we used 1.5 equiv of LIHMDS and THF as a solvent, thus chosen as the

standard condition.

Table 2 Synthesis of N-propargyl pipecolinic ester derivatives

CuCI (0.1 equiv.)

QCOCMe NaHCO; (1 equiv.) OCOOMe
— N
N~ ' R

40% formaldehyde solution \ R

S H (1.25equiv.) - (5 5 equiv.), 35 °C
COOMe COOMe
COMe ookt P E Z
N\/\ o N__F N~
58, 12 hr, 40% 59, 12 hr, 52% 60, 12 hr, 50%

COOMe COOMe
@ = G\l/ Z

61, 12 hr, 39% 62, 12 hr, 43%

The structure of 68 was characterized via various characterization techniques like
NMR, FTIR and HRMS. Since the concept of ‘memory of chirality’ is often observed
in a-alkylation chemistry of amino acids, we expected transfer of chirality in our
products also. But, unfortunately, we did not observe any optical rotation in the final
product. It has been well documented in the literature that the phenomena of ‘memory
of chirality’ was observed, when the experiments were performed at low
temperatures. But in our case, all reactions were carried out at room temperature
hence we observed racemic mixtures only. When we carried out the experiment at -78
°C using LDA or LiHMDS as a base in THF, we did not observe product 68 even
after 12 hours. This observation clearly denotes that at this low temperature the
enolate didn’t react with the alkyne as it is not sufficiently electrophilic at lower

temperature.
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Table 3 Optimization studies

OMe
m Base, Solvent MeOOC

N O

— RT N\

— N

67 68

S. No. Base(Equiv.) Solvent Temperature(°C) Yield

1 NaH (1.2) DMF RT 0
2 KO'Bu (1.2) Toluene RT Decomposed
3 LDA (1.2) THF -40°C-RT Complex mix.
4 Et:N (1.5) THF RT NR
5 LiHMDS (1.5) ETHER RT 50
6 LiHMDS (2.5) DMF RT 10
7 LiHMDS (1.5) THF RT 70

Having this optimized condition in hand, we shifted our attention towards
synthesis of pyrrolizidine and indolizidine core. In this regard, two N-propargyl-L-
proline derivatives 71, 72 containing aliphatic and aromatic substituent at the alkyne
were tested for the cyclization reaction. In both the cases 71, 72 the required products
were obtained in moderate yields (Table 4). Although, in both the cases, the
conversion was more than 90% (by TLC), the products were isolated only in moderate
yields after purification through column chromatography. It is well documented in the
literature that pyrrolizidine derivatives are prone to undergo decomposition during
column chromatography.” This explains the reason for getting lower yield of

products in our case after chromatographic purification.

The similar reaction condition was applied for the synthesis of indolizidine
derivative 58, 60 using as a starting material. Unfortunately, the required product was
not observed, and the reaction mixture was decomposed in most conditions. The

optimization is still under progress.

18



Table 4. Base promoted 5-endo-dig cyclization

. . COOMe
LiIHMDS (1.5 equiv.) R
MeoOC” "N THF, RT N |
/
9

R
6 70
MeOOC { MeOOC
f A\
N
71, 2 hr, 50% 72, 2 hr, 60%

3.1 Conclusion:

An efficient, base promoted 5-endo-dig cyclization strategy has been developed for
the synthesis of bicyclic core of pyrrolizidine alkaloids. A diverse range of N-
propargy-L-proline esters, prepared from aliphatic and aryl substituted terminal
alkynes, underwent smooth conversion to the respective cyclized products under the
reaction conditions. Further exploration of this methodology to prepare indolizidine

core is currently under investigation.
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Chapter 4
Spectral Data



'H and °C NMR spectra for 49 COOMe
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COOMe
'H and >C NMR spectra for 50 CN( /©/
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'H and ">C NMR spectra for 52 o
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'"H and °C NMR spectra for 54
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'H and °C NMR spectra for 55
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'H and "°C NMR spectra for 56
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'H and °C NMR spectra for 57
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'H and ">C NMR spectra for 58
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'H and C NMR spectra for 59
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'H and >C NMR spectra for 60
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'H and "C NMR spectra for 61
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'H and C NMR spectra for 62
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'H and C NMR spectra for 71
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'H and C NMR spectra for 72
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High resolution mass spectrum for 51
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High resolution mass spectrum for 53
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High resolution mass spectrum for 58

Electrospray ionisatioin-MS WATERS-Q-Tof Premier-HAB213 16:59:1327-Mar-2013
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High resolution mass spectrum for 61

Electrospray ionisatioin-MS WATERS-Q-Tof Premier-HAB213 11:51:5028-Mar-2013
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High resolution mass spectrum for 60

Electrospray ionisatioin-MS

WATERS-Q-Tof Premier-HAB213

12:24:1728-Mar-2013
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