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Abstract

We live in a very complex and dynamical world. From minuscule molecules to

giant human social network we can clearly see each single unit in these system is

interacting among themselves as well as units from outside the system. And these

collective interaction among the units of these systems gives rise to the fascinating

phenomenon that we see in our surrounding. To understand this phenomenon from

mathematical perspective we have used the framework of Networks in my thesis as

we are not just looking at individual units but also the different interactions among

them. A network is the framework that comprises of set of nodes or individual units

in the system and interactions among those units. Since the real world network are

complex and different nodes may have different kind of interactions, we have to ex-

tend this idea of Network to Multilayer Network where in each layer nodes are having

an unique intralayer interactions and while doing so they are also interacting from

one layer to another in a totally separate way by interlayer interactions. For exam-

ple, in a cell proteins are interacting among themselves but also interacting with DNA.

I have worked on the this same Protein-DNA system and to describe effect of

perturbation in protein-protein interaction network I have used the model give in

the paper ”Propagation of large concentration changes in reversible protein-binding

networks”[MI07] and how proteins regulate gene transcription I have used Hill func-

tion. The aim of my thesis is to come up with a multilayer network model to see how

perturbations in protein-protein interaction network can affect transcription activity

of gene.
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Chapter 1

Networks

1.1 Introduction

To understand complexity and dynamics of cellular molecular network, I will be using

the framework of multilayer networks. In this chapter I have tried to explain very

basic idea of how multilayer networks can be understood mathematically.

1.2 Graphs,Adjacency Matrix and Adjacency list

Mathematically a network can be understood as a graph. A graph G formally defined

as an ordered pair G = (V,E) where V is set of vertices and E is set of edges which

is subset of V × V .[New09].

1.2.1 Adjacency Matrix

Adjacency matrix is one of the mathematical representation of graphs. Entries of

Adjacency matrix are defined as [New09]:

Aij =

1, if i is connected to j

0, otherwise

If the the graph is directed then:
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Aij =

1, if there is an edge from j to i

0, otherwise

The Adjacency matrix helps us define very basic structure of graph. If in a graph

an edge connecting any two nodes have some weight associated with it then instead

of 1 that weight can be an entry in the adjacency matrix. Such an adjacency matrix

representing weights of the edges of the graph is called as weighted adjacency matrix.

If the graph is undirected then the matrix is symmetric and if it is directed the it is

not symmetric as in that case Aij 6= Aji.

1.2.2 Adjacency List

An adjacency list representation for a graph associates each vertex in the graph with

the collection of its neighboring vertices or edges[New09].
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1.3 Multilayer Networks

Multilayer networks are basically extension of simple planer networks. Consider two

social network websites Facebook and twitter. Users are nodes in these networks.

These nodes can be same in both networks or one layer may have more nodes than

the other. In each layer users share information in different way therefore the inter-

actions or edges on each network are different called as intralayer interactions. These

users can share content of one layer to other that is there are also some interlayer

interactions. Together these two layers form a multilayer network[BBC+14].

I will be using this concept of multilayer network to describe how dynamical changes

in protein-protein interaction network can affect gene’s transcription activity in DNA

network(layer 2) because of protein-DNA interlayer connections.

A multilayer network is a pair M = (G, C) where G = {Gα;α ∈ {1, 2, ...,M}} is a

family of(directed or undirected, weighted or unweighted) graphs.

Gα = (Xα, Eα) (called layers of M) and

C = {Eαβ ⊆ Xα ×Xβ ;α, β ∈ {1, 2, ...,M , α 6= β}
is the set of interconnections between nodes of different layers Gα and Gβ with α 6= β.
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Figure 1.1: Adjacency matrix for multilayer network

The elements of C are called crossed layers , and the elements of each Eα are called

interlayer connections ofM in contrast with the elements of each Eαβ that are called

interlayer connections[BBC+14].

The adjacency matrix representation of multilayer network is given in Fig(1.1)

where A11 is Adjacency matrix for layer 1,

A22 is adjacency matrix for layer 2,

C12 is Adjacency matrix for connections from layer 1 to layer 2.

C21 is Adjacency matrix for connections Connection from layer 2 to layer 1.
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Chapter 2

Protein-Protein Interaction

Networks

In Transcription network interactions among proteins is very important dynamical

aspect. In the model that I have developed each individual node in protein-protein

interaction network represent individual proteins and their weights on the nodes rep-

resent the concentration associated with the nodes. Before we move on to gene reg-

ulatory network, first let’s capture the dynamics of Protein-Protein interaction(PPI)

networks. Here in my thesis I have analyzed two models of PPI networks:

1) Propagation of perturbation using communicating vessel model [SC13]. And

2) Propagation of large concentration changes in reversible protein-binding networks

[MI07]

2.1 Propagation of perturbation using communi-

cating vessel model[SC13]

The basic idea behind the model was that intensive physical variables (e.g. temper-

ature) tend to perform an equalization-like dynamics behaving like communicating

vessels. For example in a thermodynamical network system,it explains how tempera-

tures of nodes will get redistributed to an equilibrium if any of the nodes’ are heated.

Therefore this model can also be thought of as a heat equation equivalent. It can also

be viewed as network for water containers connected through pipes. If one containers

water content is increased, all others show increase in level of water till all come to

equilibrium. In the communicating vessels model network nodes represent the vessels

and edges represent their connecting pipes. The algorithm of the model is as follows:
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in each time step, every node transfers a proportion of its available energy through

every available edge, proportional to 1) the duration of the time-step; 2) the weight

of the edge ; and 3.) the difference of the weight of the nodes on the two ends of the

edge at that time instant (corresponding to pipe pressure). A very important dynam-

ical aspect of these systems is that a constant amount of available energy could be

dissipated in environment during diffusion.

dS

dt
= −

l∑
i=1

(
S − Si

2
wi

)
−Do

where S is the energy of the current node,

l is the number of edges of the current node, wi is the weight of the ith edge, Si is the

current energy of the node on the other end of the ith edge and

D0 is a parametere that defines energy dissipated in that time step. An important

practical restriction is that: -1 ≤ ∆t
l∑

i=0

wi ≤ 1.

Given below is the undirected graph with six nodes with equal edge weight of 0.2

and concentration defined on each node at t=0 are: 4.5, 3.0, 6.6, 2.6, 8.0, 5.0.

0

1

2

3

4

5

Figure 2.1: Network to implement Communicating vessel model

After implementing communicating vessel model on this network and perturbing

2nd node by +10 (here we have assumed D0 = 0) we observe following:
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Figure 2.2: Dynamics of communicating vessel model

I implemented this model using Python programming language. t=1 concentration

of node 2 is perturbed from from 6.6 to 16.6. For later time instances, concentration

of node 2 decreases exponentially, whereas nodes which are directly connected to node

2 which are nodes 0,1,3,4 show rapid increase in concentration over successive time

iteration before whole system comes to an equilibrium due to overall increase of con-

centration of system. Node 5 which is not directly connected to perturbed node 2

show relatively slow rate of increase in concentration. Around t=1559 the whole sys-

tem attains an equilibrium concentration where concentration on each node is 6.655

units.

While communicating vessel model provides an insight into the dynamics of concen-

tration change on a network it fails to capture many other real world molecular biology

parameters.
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2.2 Propagation of large concentration changes in

reversible protein-binding networks[MI07].

This model is derived using law of mass action. What I find very interesting about this

model is that,unlike turbine model, if a node’s concentration is increased, free con-

centration of adjacent nodes of it does not necessarily show increase in concentration.

Some free concentrations go up and some go down. Consider free concentration of two

proteins i and j to be [Fi] and [Fj] respectively. The main equation of equilibrium in

reversible protein binding reaction is [Sne06]:

[Fi][Fj] = kij[Dij]

which expresses the free concentration for two proteins i and j in terms of their het-

erodimerDij. kij is dissociation constant. In this model kij is defined asmax(Ti, Tj)/20

because PPI data sets lack information on dissociation constant of each individual

interaction[MI07]. Each free concentration Fi, is in turn related to its total concen-

tration Ti by:

[Ti] = [Fi] +
∑

dimers

[Dij] = [Fi] +
∑

dimers

[Fi][Fj ]

kij

where the sum run overs all links in the protein-protein network. Thus the sum takes

into account all dimers in the network. The above equation can be solved iteratively:

[Fi] =
[Ti]

1 +
∑

dimers

[Fj ]

kij

(2.1)

starting with Fi=Ti for all i.

When we implemented model with the help of a Cytoscape module called Perturba-

tion Analyzer on a small modelled network we found the change in free concentration

of proteins after perturbing node 2 as shown in Fig(2.3).

Here we have perturbed total concentration of node 2 by 2 fold. We can clearly

see the here from the Figure(2.3), free concentration on the nodes 2,4,5 and 6 has

increased while on remaining nodes it has gone down. After perturbation free concen-

tration on nodes 1,2,3,4,5,6 and 7 changed by 0.922693795509693, 5.210974874370512,

0.5094650501304583, 1.433574490863499, 1.0218143432286024, 1.0342504224417308,

0.5698561556035878 fold respectively.

In my thesis I will be using this Protein perturbation model to describe PPI dynamics

and to calculate bound concentration.
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Figure 2.3: Change in Free Concentration
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Chapter 3

Transcription Network

3.1 A Brief Idea

Because of the complexity of the environment that cells live in they are exposed to

variety of signals including physical parameters such as temperature and osmotic pres-

sure, biological signaling molecules from other cells, harmful chemical etc. In response

to these signal they produce appropriate proteins that act upon the internal or exter-

nal environment. The cell uses special proteins call transcription factors to represent

these environmental states. Transcription factors transit rapidly from active and in-

active molecular state. Each active transcription factor can bind the DNA to regulate

the rate at which a specific gene are read and translated into messenger RNA(mRNA).

These mRNA molecules later play a very important role in producing proteins which

act upon environment.The rate at which gene is transcribed is controlled by the pro-

moter, a regulatory region of DNA that precedes the gene. Transcription factor can

act as a activator that increase the transcription rate of gene or a repressor that re-

duce the transcription rate[Alo06]. Fig.3.1 shows the transcription network and its

elements.

3.2 Input Function

The effect of the environmental signals on gene’s transcription activity by transcription

factors is captured by the Input Functions[Alo06]. Lets consider first the production

rate of protein Y controlled by a single transcription factor X. When X regulates Y ,

represented by X → Y . the number of molecules of Y produced per unit time is a
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function of bound concentration of X in its active form, X∗ :

Rate of production of Y = f(X∗)

Figure 3.1: Transcription Network

Typically the input function f(X∗) is a monotonic, S-shaped function. When X is an

activator, it is a increasing function. The function that I will be using in my model

describes many real gene input functions is called the Hill function.

3.2.1 Hill Function

f(X∗n) =
βX∗n

Kn +X∗n

The Hill function given above has three parameters, . The first parameter, K is

termed as activation coefficient. This parameter has units of concentration. It defines

concentration of active X needed to significantly active expression[Alo06]. The sec-

ond parameter in input function is the maximal expression level of the promoter β.

Maximal expression is reached at high activator concentration. The last parameter is

12



the Hill coefficient governs the steepness of Hill function. The larger the n value, the

more step like the input function. Like many functions in biology, the Hill function

also reaches saturation at high levels of X∗. This saturation of Hill function at higher

values of X∗.

Figure 3.2: Hill Function

3.2.2 Logic Input Function

The idea behind this input function is transition from low value to high when the

variable crosses characteristic threshold value K. Therefore logic input functions are

step like approximation for the smoother Hill function. In this approximation the

gene is either in OFF state, f(X∗) = 0 or in ON state, f(X∗) = β. The threshold of

approximation is K[Alo06]. For activator the logic function can be described by using

a step function θ that makes a step when X∗ exceeds K. :

f(X∗) = βθ(X∗ > K)

13



There are many instances where a gene is regulated by more than one transcrip-

tion factor. Let’s consider the gene regulated by two activators. Many genes re-

quire binding of both activators proteins to the promoter in order to show significant

expression[Alo06]. This is similar to AND gate:

F (X∗
A, X

∗
B) = βθ(X∗

A > KXA
)θ(X∗

B > KXB
) ∼ X∗

A AND X∗
B

3.3 Dynamics of Transcription Network

In my thesis I have made an attempt to develop a model in which a gene requires

two activators. To do so, the function that I have used follows the logic that, it will

have the basic characteristic of AND gate and individual functions are Hill functions.

Therefore input function here will be:

F (X∗
A, X

∗
B) = f(X∗

A)f(X∗
B)

where f is Hill function and X∗
A and X∗

B are bound concentration of activator.

The network that I have used here is a subnetwork of PPI netwok and Protein-

DNA interaction network of mouse embryonic stem cell(Fig.3.3) The target genes are

yellow nodes while rest is PPI network.

3.4 Analysis

In my thesis, I have used the data sets available for mouse embryonic stem cells. PPI

network data and Protein-DNA interaction data is readily available [XAS+14][XBD+13].

In the analysis I have perturbed protein nodes by layer. Layers are defined by protein

distance from target genes. Proteins which are one hand shake distance away from

gene are in layer 1, proteins at distance two are in layer 2 and so on. I have made anal-

ysis till distance 4. As I am dealing with the subnetwork here,there are only 7 target

genes which I will be considering(Yellow nodes in Fig.3.3). This whole PPI network

mode and its effect on gene regulation is implemented using Python programming

language.
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Figure 3.3: Subnetwork View
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3.5 Results

3.5.1 Gene: ESRRB

POU5F1 and PHC1 are the transcription factors which are directly interacting with

target gene and as we can see from Figur(3.4), perturbation in those nodes shows

significant positive transcription activity. In perturbation in layer two in the node

TCFCP2L1 show significant positive transcription activity. Whereas MTA1 pertur-

bation is showing down regulation of gene but with relatively slower rate. In layer 4

MYC is showing positive transcription activity but ACTL6A is getting down regulat-

ing gene at much more faster rate.

Figure 3.4: layer 1 perturbation
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Figure 3.5: layer 2 perturbation

Figure 3.6: layer 3 perturbation
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Figure 3.7: layer 4 perturbation
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3.5.2 Gene: GP5

For gene GP5, when perturbation is made in layer 1, only transcription factors which

are directly interacting with gene ESRRB and NANOG showed significant positive

transcription activity. In layer 2, MTA1 is showing positive transcription activity but

with very slower rate whereas SALL1 is deregulating with significantly higher rate.

In layer 3 and 4, TCFCP2L1 and MYC is showing negative transcription activity

significantly.

Figure 3.8: layer 1 perturbation
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Figure 3.9: layer 2 perturbation

Figure 3.10: layer 3 perturbation
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Figure 3.11: layer 4 perturbation
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3.5.3 Gene: PDE4A

For gene PDA4A apart from the transcription factors KLF4 and SOX2 which are di-

rectly interacting with the gene, KLF4 is also showing positive transcription activity

with relatively lower rate. In layer 2 TCFCP2L1 is showing positive transcription ac-

tivity and SALL1 and MTA1 down regulation. Perturbation layer 4 shows significant

down regulation by XPO4 and ACTL6A.

Figure 3.12: layer 1 perturbation
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Figure 3.13: layer 2 perturbation

Figure 3.14: layer 3 perturbation
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Figure 3.15: layer 4 perturbation

24



3.5.4 Gene: CXXC4

Here in layer 1, SALL4 and NACC1 are showing significant transcription activity

whereas perturbation in other nodes in layer 1 is redundant. In layer 2 TCFCP2L1 is

showing significant Down regulation but with slower rate. In layer 4, there is positive

transcription activity due to ACTL6A.

Figure 3.16: layer 1 perturbation
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Figure 3.17: layer 2 perturbation

Figure 3.18: layer 3 perturbation

26



Figure 3.19: layer 4 perturbation
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3.5.5 Gene: AFG3L1

For gene AFG3L1, in layer 1, the transcription factors which are binding directly to

gene show positive transcription activity when perturbed. In layer 2, there is both

positive and negative regulation by SOX2 and SALL1 respectively. In layer 4, there

significant down regulation by ACTL6A and XPO4.

Figure 3.20: layer 1 perturbation

28



Figure 3.21: layer 2 perturbation

Figure 3.22: layer 3 perturbation
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Figure 3.23: layer 4 perturbation
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3.5.6 Gene: PRDM14

For gene,PRDM binding factors DNMT3B and HELLS are significant transcription

activity. In layer 2, MTA1 shows down regulation at a slow rate. Perturbation in

NR6A1 and ACTL6A show rapid down regulation of gene.

Figure 3.24: layer 1 perturbation
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Figure 3.25: layer 2 perturbation

Figure 3.26: layer 3 perturbation
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Figure 3.27: layer 4 perturbation

33



3.5.7 Gene: CFL1

For gene CFL1 there is significant transcription activity only one of the binding factor’s

perturbation: DNMT3B. In layer 2, TCFCP2L1 is showing significant down regulation

of gene. Perturbations in layer 3 are redundant. In layer4, ACTL6A is showing very

positive transcription activity.

Figure 3.28: layer 1 perturbation
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Figure 3.29: layer 2 perturbation

Figure 3.30: layer 3 perturbation
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Figure 3.31: layer 4 perturbation
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3.6 Conclusion

From this model we can see the perturbation in layer even at a layer 4 can have sig-

nificant effect on Transcription activity of the gene. But the more important question

is will this model help us understand further the unexplained cellular/disease pheno-

types, which do not correlate with corresponding genotypes?

So far I have worked on a very small subset of network. But if we can extend this

model to a the whole network then it would be a great step forward toward solving

this problem. To make this model more fitting to real world gene regulatory network

we also need to consider interactions among gene regulatory network and try to reduce

back propagation.
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