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Chapter 1

Introduction

In chemical physics, molecular potentials or potential energy hypersurfaces (PES)

play an important role in understanding structure and dynamics of complex sys-

tems such as proteins[1]. These energy surfaces are in general complicated func-

tions of several variables and are evaluated on a finite grid by ab-initio quantum

mechanical methods or empirical force fields. Traditionally, these grid poten-

tials are then fitted to obtain analytic expressions to evaluate functions and its

derivatives. However, with continuing advances in software and computational

power, nowadays it is possible to obtain potential and derivatives on the fly using

ab-initio methods. Molecular potentials have a large number of critical points

(maxima, minima and saddle points) which correspond to equilibrium geometries

and transition states. Important information about reaction dynamics can also

be extracted by determining classical trajectories on PES connecting these points.

Because regions of PES away from stable structures are not accessible experimen-

tally, theoretical study of PESs provide great insights about molecular structure

and dynamics and a number of numerical methods have been developed to locate

and analyze critical points on PES.

A critical point x0 ≡ (x1, x2, .., xn) of a function of several variables, f(x1, x2, .., xn)

is a point where first order partial derivative with respect to each variable vanishes

i.e. gradient ~∇f of the function vanishes at point x0.

∇f ≡


∂f
∂x1
∂f
∂x2
...
∂f
∂xn

 = 0 (1.1)

1
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A critical point corresponds to either a minimum or maximum or a saddle point on

the PES. Nature of a critical point can be determined by evaluating the Hessian

matrix [∇2f ], at that point and diagnolizing it to obtain its eigenvalues.

∇2f ≡


∂2f
∂x21

∂2f
∂x1∂x2

. . . ∂2f
∂x1∂xn

∂2f
∂x1∂x2

∂2f
∂x22

...
...

. . .
∂2f

∂x1∂xn
. . . ∂2f

∂x2n

 (1.2)

If none of the eigenvalues is zero, the critical point is called nondegenerate and is

characterized by the rank (R) of the Hessian matrix which is equal to number of

nonzero eigenvalues and algebraic sum of signs of eigenvalues known as signature

(S). For a function of three variables, four different types of critical points are

possible: a minimum (3,+3), a maximum (3,-3) and two kinds of saddle points

(3,+1) and (3,-1) in the (R,S) representation[2].

1.1 Problem of Unconstrained Optimization

In mathematics, the problem of finding minima of a real function f : Rn → R
with no restraints on its arguments x ∈ Rn is called unconstrained optimization

problem. Maximum of a function corresponds to minimum of negative of that

function and can be found in the same way. Numerical procedures which find

minima are called optimizers. In practice often a global minimum is required

and is selected from the set of solutions however there also exist algorithms and

heuristics1 called global optimizers that tends to find a global minimum by avoiding

unnecessary minima. Other methods which finds minima or maxima in a nearby

region are called local optimizers. Unconstrained optimization problems broadly

fall in two categories[3,4]:

1A heuristic is a procedure designed to find approximate solutions of a problem when exact
methods are too slow or not available.



3

-1.6
-0.8

 0
 0.8

 1.6 -1.6
-0.8

 0
 0.8

 1.6

 0
 2
 4
 6
 8

 10
 12

x

y
-30

-20
-10

 0
 10

 20
 30 -30

-20
-10

 0
 10

 20
 30

-30
-20
-10

 0
 10
 20
 30

x

y

-400
-200

 0
 200

 400 -400
-200

 0
 200

 400

 0

 1x10
6

 2x10
6

 3x10
6

 4x10
6

 5x10
6

x

y
-4

-2
 0

 2
 4 -4

-2
 0

 2
 4

-100

 0

 100

 200

 300

x

y

-300
-150

 0
 150

 300-300

-150

 0

 150

 300

 0

 5x10
13

 1x10
14

 1.5x10
14

x

y
 0

 2
 4

 6  0

 2

 4

 6

 0

 40

 80

 120

 160

 200

x

y
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1. Test Problems: These are artificial problems designed to understand and

study the performance of an algorithm in diverse circumstances often encoun-

tered in real life situations such as long narrow valley, flat surface, problems

with large number of local minima etc. They are also useful to identify type

of problems for which a particular method is suitable or not. Extensive lists

of such problems are given in [3-5].

2. Real Life Problems: These optimization problems arise in tackling real

life problems such as problem of finding critical points on PES mentioned

earlier. Such problems often also arise in physics, chemistry, engineering,

astronomy, economics etc. Usually significant amount of algebra and data

processing is required before solving these problems. Real life problems are

hard to find and solving them requires considerable amount of time. Often,

one has to devise appropriate ways of combining more than one method to

solve the problem completely.

Various properties of test problems such as convexity, modality, differentiablity and

separability affect the performance of optimization methods and forms the basis

for classification of these problems. Few test functions with diverse properties are

shown in Fig 1.1.

1.2 A Brief Survey of Methods for Unconstrained

Optimization

There exists many algorithms for solving unconstrained optimization problems and

it is often the case that an algorithm is suitable for a certain class of problems.

In practice, it is always good to solve a problem using more than one method

or a combination of methods. Many optimization algorithms fall in one of two

important categories discussed below:

1. Search Methods: Search methods evaluate f(x) at a grid of points x(1),x(2)...

and compare them to generate the next point. These methods do not make

use of gradient or curvature information and are suitable for situations where

function or its derivatives are not continuous and differentiable or other

methods have failed to yield a solution. Direct search using a rectangular or

any other grid is a simple example.
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2. Gradient Methods: At a point x ∈ Rn the (minus of) gradient vector

~∇f points along the direction of (minimum) maximum increase of f(x) i.e

towards a (minimum) maximum. Gradient methods make use of gradient

and higher order derivatives to reach towards a minimum. All gradient

methods have an iterative scheme of the form[6]

x(n+1) = x(n) − αH∇f |x(n) (1.3)

where x(n) is the value of x after n iterations, α is a parameter and H is

exact or approximate Hessian.

Complexity of optimization problems increase with dimensionality of function as

it becomes more difficult to specify an optimum search direction and most op-

timization algorithms face the difficulty of getting trapped in a local solution.

In practice, there are no efficient methods to find a global minimum. Recently,

methods such as simulated anneling and genetic algorithms have been highly suc-

cessful in finding global minima using stochastic approches but these methods are

slow and computationally expansive. In practice, when the function landscape is

smooth, gradient based methods are more efficient. Present work is motivated by

the fact that use of complex variables in classical equations of motion leads to

tunneling like phenomena as described in the next section and can be useful for

optimization problems.

1.3 Classical Tunneling and Complex Classical

Mechanics

Inspired by success of non Hermitian quantum mechanics, which studies quan-

tum mechanics of complex non Hermitian Hamiltonians, Asiri Nanayakkara ana-

lytically studied classical dynamics of these systems and identified periodic, un-

bounded and chaotic trajectories in the complex plane [7]. Hermitian operators in

quantum mechanics are linear operators with real eigenvalues and are associated

with observable quantities such as energy of a system. Later, based on numerical

studies, Bender and coworkers showed that simple complexified classical systems

can exhibit interesting phenomena such as tunneling and delocalized conduction

observed previously only in quantum mechanical systems [8]. Complex solutions
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of classical equations of motion for various systems are studied in [7− 13].

Since the Hamiltonian and thus energy in classical mechanics is a function of po-

sition and momentum coordinates, this implies that position and momentum are

also complex numbers. Such a particle moves deterministically in complex plane

and its position and momentum at any instant of time can be found by solving

Hamilton’s equations of motion in the complex potential. The complex potentials

are obtained by analytically continuing the potential along real axis to the complex

plane. In practice, whenever analytic expression of the real potential is known,

this can be achieved by replacing the real variables by complex variables.

1.3.1 Some Theorems for Analytic Functions[14]

Theorem 1.1. Let f = u + iv be defined on a domain D in the complex plane

where u and v are real valued. Then f(z) is analytic on D if and only if u(x, y)

and v(x, y) have continuous first order partial derivatives that satisfy the Cauchy

Riemann equations i.e.

∂u

∂x
=
∂v

∂y
and

∂v

∂x
= −∂u

∂y
(1.4)

Cauchy Riemann conditions are a consequence of the fact that derivative of an

analytic function
df

dz
= lim
4z→0

f(z +4z)− f(z)

4z
(1.5)

has the same value regardless of the way in which we choose4z. Putting4z = 4x
we get,

df

dz
=
∂u

∂x
+ i

∂v

∂x
(1.6)

Theorem 1.2. If f = u+iv is analytic and the functions u and v have continuous

second order derivatives, then u and v are harmonic functions.

Harmonic functions satisfies Laplace’s equation, ∇2Φ = 0. Interesting property

of harmonic functions is that they do not have any local maxima or minima and

value of function at any point is arithmetic average of function values at points

around it.
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Table 1.1: Real and imaginary parts of a few analytic functions of one variable.

No. f(z) u(x,y) v(x,y)
1 z2 x2 − y2 2xy
2 z4 − z2 x4 + y4 − 6x2y2 − x2 + y2 4x3y − 4xy3 − 2xy
3 cos z cosx cosh y − sinx sinh y
4 sin z + sin 10z

3
sinx cosh y + sin 10x

3
cosh 10y

3
cosx sinh y + cos 10x

3
sinh 10y

3

1.3.2 Classical Equations of motion in Complex plane

Consider motion of a particle in complex plane under the influence of some analytic

potential f(z) where z = x+ iy is a complex number. Classical equation of motion

with one complex variable would have the form

mz̈ = −df
dz

(1.7)

We use 1.6 and 1.4 to obtain

mz̈ = −
(
∂

∂x
− i ∂

∂y

)
u(x, y) (1.8)

where u(x, y) and v(x, y) are real valued functions satisfying Cauchy Riemann

equations. We expand z̈ = ẍ+ iÿ and compare real and imaginary parts to obtain

mẍ = −∂u
∂x

and mÿ =
∂u

∂y
(1.9)

Equation 1.9 implies that motion is downhill along x axis and uphill along y axis

on the surface of u(x, y) which means that fixed points of motion will correspond

to saddle points of u(x, y). On the other hand, classical motion in Euclidean plane

is downhill in both the directions and fixed points corresponds to maxima and

minima on potential surface. Using Cauchy Riemann equations we can also write

2.7 in terms of v alone.

mẍ = −∂v
∂y

and mÿ = −∂v
∂x

(1.10)

Since f and its argument z both are complex numbers, naturally we need four

dimensions to visualize any complex function which is not physically possible in

our three dimensional world and there exists many techniques to visualize and

study the behaviour of an analytic function. In complex classical mechanics, since
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Figure 1.2: Real parts (u(x, y)) of complex potentials for one dimensional
harmonic oscillator and double well potential extended in the complex plane

are shown in a and b respectively.

equations of motion can be written in terms of u(x, y) alone, complex classical

behaviour of a system can be understood by looking at u(x, y) alone.

1.3.3 Simple Complex Classical Systems

1.3.3.1 One dimensional Harmonic Oscillator

Classical motion of a particle in one dimensional oscillator

V (x) =
1

2
x2 (1.11)

is governed by the equation of motion

ẍ = −x (1.12)

and is well understood. For sake of simplicity, m and k are taken unity.

In the complex oscillator

V (z) =
1

2
z2 (1.13)

Equations of motion along real and imaginary axis will be

ẍ = −x and ÿ = −y (1.14)
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which are equivalent to a two dimensional oscillator in real space.

1.3.3.2 Double Well Potential

A double well potential along one dimension

V (x) = x4 − x2 (1.15)

is shown in Fig 1.3(a). For different energies, classical trajectories in phase space

are plotted in Fig 1.3(b). A negative energy classical particle in this potential

will remain bounded in one of two wells. In quantum mechanics however, there

is a finite probability for a negative energy particle to be on the other side of the

potential barrier.

We now consider the complex extension of this potential

V (z) = z4 − z2 (1.16)

Equations of motion in complex plane are obtained using 1.9 and u(x, y) from

Table 1.1,

ẍ = −4x3 + 12xy2 + 2x and ÿ = 4y3 − 12x2y + 2y (1.17)
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Trajectories in complex plane with real energies are closed and periodic whereas

those for complex energies are open and non periodic[8] and are shown in Fig 1.4

and 1.5 respectively.

Bender and Hook discussed that in the classical limit (~→ 0), the time indepen-

dent Schrodinger equation is singular because it is not possible to impose boundary

or initial conditions on wavefunction at ~ = 0. Because of this singular nature,

some interesting features of quantum mechanics such as tunneling and discreetness

of energy levels get lost abruptly in the classical limit. Using complex energy as

a regulator, they showed that classical tunneling probabilities persists even when

ImE → 0 [9].

1.3.3.3 Periodic Potential

In numerical studies classical trajectories in complex plane of one dimensional pe-

riodic potential (V (x) = cos x), it was found that for most complex energy values,

complex trajectories are open and non periodic, spiralling around critical points

and randomly hopping to critical points on left or right. However, there also exists

a small set of energy values for which complex trajectories move unidirectionally
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on the real axis, a behaviour similar to delocalized conduction.

In the complex potential

V (z) = cos z (1.18)

equations of motion would be

ẍ = − sinx cosh y and ÿ = cosx sinh y (1.19)

Complex classical trajectory of a complex energy particle and u(x, y) for above

potential are shown in Fig 1.6.

1.4 Goals and Objectives

In last section, it was shown that Hamiltonian systems with complex variables ex-

plore classically forbidden regions in the coordinate space by taking an alternate

path through complex plane. This property can be useful for optimization algo-

rithms in escaping a local minimum and can be utilized to improve their efficiency.

In the present work, a local optimizer called Newton Raphson method is used to

show that other dynamical systems with complex variables also exhibit tunneling

like behaviour and develop a modified Newton Raphson method for finding critical

points using complex scaled variables. A set of two variable test functions is used

to compare the performance of new NR method over ordinary NR method.



Chapter 2

Results and Discussion

In previous chapter, it was shown that Hamiltonian systems with complex energies

spirals around fixed points of motion. Hamilton’s equations constitues a second

order dynamical systems and are not suitable to be used as optimizers as such

because though motion of a particle approaches the CPs of potential, it does not

converge to a CP. However by choosing appropriate energy values, they can be

used to escape from a local minima in global optimizers. However, as discussed

before other otimization methods can also benefit from extended function topol-

ogy in complex space.

To test the hypotheses presented in the previous chapter, we choose a simple and

efficient local optimizer called Newton Raphson method. This method provides

us the best approximation to zero of gradient from a given point, by making use

of curvature information and is suitable for situations where both gradient and

Hessian matrices are readily available. In this chapter, we develop a modified NR

method based on complex scaled variables.

2.1 Newton Raphson (NR) method for finding

critical points

Newton Raphson method is a widely used first derivative method to find zeros of a

function which converges to a root provided the guess point lies close to the root.

This method converges quadratically to all types of critical points[15]. However

13
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convergence is not guaranteed if the guess point lies far away from the root. This

means that one needs some information about function and its CPs beforehand.

Newton Raphson method is used to find critical points of a function by finding

zeros of the gradient ∇f and is suitable for situations when both gradient and

Hessian matrices are available. To obtain the Newton Raphson (NR) step, first

∇f is expanded as a Taylor series around the initial guess point, say x

[∇f(x+h)] = [∇f(x)] + [∇2f(x)]h + ϑ(h2) (2.1)

and put [∇f(x+h)] = 0 to get

h = −[∇2f(x)]−1[∇f(x)] (2.2)

Here [∇f(x)] and [∇2f(x)] are gradient and Hessian matrices of f at x. Now a

better estimate to the root would be

x = x+h (2.3)

These two steps are repeated until a suitable convergence criteria is satisfied.

Newton’s method is one of the fastest converging algorithms with number of correct

decimal places doubling each time[16].

2.2 Complex Scaled Newton Rapson (csNR) method

2.2.1 Complex Potentials

The complex potentials used in previous chapter were obtained by simply replac-

ing the real variable by a complex variable. In this section, a parametrized way

of obtaining complex potentials known as complex scaling method is described.

While complex scaling, every argument of f is rotated in the complex plane by a

fixed angle θ to obtain the analytically continued function[17].

xi → xie
iθ (θ = constant) (2.4)

f(x)→ f(xeiθ) (2.5)
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First and second derivatives of f will transform in the complex plane

∂f

∂xi
= eiθ

∂f

∂zi
(2.6)

∂2f

∂x2i
= e2iθ

∂2f

∂z2i
(2.7)

The task of analytic continuation becomes more difficult when analytic expression

of functions is not known as is the case with molecular potentials or PESs which are

calculated on a finite grid by ab-initio quantum calculations in unscaled coordinate

space. However, in quantum theory of resonances, complex scaled Hamiltonians

are needed to calculate resonance widths and energies and there exist several meth-

ods for complex scaling of ab-initio molecular potentials and can be found in [17].

2.2.2 Complex Scaled Newton Raphson Method

Let f : Cn → C is an analytic function of complex scaled variables z = xeiθ with

continuous first and second derivatives. Since θ is constant, the complex scaled

function can be expanded as a Taylor series of the form

f(xeiθ + h) = f(xeiθ) + [∇xf(xeiθ)]h + [∇2
xf(xeiθ)]

h2

2
+ ϑ(h3) (2.8)

where [∇xf(xeiθ)] and [∇2
xf(xeiθ)] are gradient and Hessian matrices of partial

derivatives with respect to variables xi. Since at critical points gradient, [∇xf ] = 0,

we expand [∇xf ] as a Taylor series at some initial point xeiθ = z,

[∇xf(xeiθ+h)] = [∇xf(xeiθ)] + [∇2
xf(xeiθ)]h + ϑ(h2) (2.9)

using 2.6 and 2.7, this becomes,

[∇zf(xeiθ+h)] = [∇zf(xeiθ)] + eiθ[∇2
zf(xeiθ)]h + ϑ(h2) (2.10)

and putting [∇zf(xeiθ+h)] = 0, we get the Newton Raphson step,

h = −e−iθ[∇2
zf(xeiθ)]−1[∇zf(xeiθ)] (2.11)

When f is a function of more than one variables, above equation is not the best

way to compute NR step since it involves inverting n×n Hessian matrix. If we can
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first diagonalize the Hessian and compute its eigenvectors and eigenvalues, they

can be used to simplify 2.11 without inverting the Hessian. To do that, first we

write 2.11 as

eiθ[∇2
zf(xeiθ)]h = −[∇zf(xeiθ)] (2.12)

and use the similarity transformation to diagonalize the Hessian,

eiθS−1[∇2
zf(xeiθ)]Sh = −S−1[∇zf(xeiθ)]S (2.13)

Here S is the eigenvector matrix such that S−1[∇2
zf(xeiθ)]S = Λ is a diagonal

matrix whose diagonal elements are the eigenvalues λis of [∇2
zf(xeiθ)] and columns

of S are eigenvectors of [∇2
zf(xeiθ)]. Since, Hessian is symmetric, S−1 = S∗T .

Equation 2.13 now becomes

eiθΛh = −S∗T [∇zf(xeiθ)]S (2.14)

Equation 2.14 gives us n values for h, one maximizing or minimizing along each

Hessian eigendirection. Best step to move towards a critical point in n-dimensional

space would be the one that minimize or maximize along all n direction which is

equal to sum of each h’s i.e.

h = −e−iθ
n∑
i=1

(u∗Ti .[∇zf(xeiθ)])ui
λi

(2.15)

For real functions, an equivalent expression of NR step is given in [2,14].

2.3 Dynamics of csNR in Complex Plane

In previous section while deriving NR step for complex scaled functions we assumed

that we have a complex analytic function f : Cn → C of complex scaled variables

which is not the case in practice. In other words, we assumed that we have θ

such that f(xeiθ) is an analytic function. To obtain the scaling parameter θ, we

studied the dynamics of csNR in complex plane for functions of one variable listed

in Table 2.1 and then decide to obtain θ using a simple search strategy.

Beginning from same initial point on real line, trajectories of csNR in complex

plane for different values of complex scaling parameter θ are shown in Fig 2.1

for functions of one variable listed in Table 2. We found that as θ is increased,
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Figure 2.1: Trajectories of csNR in complex plane for one variable test func-
tions listed Table 2.1 for different values of θ.. Red, θ = 0. Green, θ = π

8 .
Violet, θ = π

4 . Brown, θ = 3π
8 . As θ is increased, csNR approaches more critical

points in the nearby region and converges to different CPs for different θ.
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Figure 2.2: Trajectories of csNR in real function space for f(x) = sinx+sin 10x
3

for different values of θ showing dependence of convergence of method on the
scaling parameter θ. a. θ = 0. b. θ = π

8 . c. θ = π
4 . d. θ = 13π

40 . e. θ = 14π
40 . f.

θ = π
2 . As θ is increased, csNR takes more steps to converge to a CP.
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Table 2.1: One variable test functions used to study the behaviour of csNR
in complex plane.

No. f(x)
1 x4 − x2
2 sinx+ sin 10x

3

3 −(x+ sinx)e−x
2

4 −x sinx
5 e−3x − sin3 x

6
∑6

k=1 k sin((k + 1)x+ k)

csNR move in the complex plane around a critical point eventually converging or

escaping towards another nearby critical points.

A good comparison of csNR with ordinary NR method is obtained from Fig 2.2

where real parts of complex variable z is plotted against the real function value

at that point for f(x) = sinx+ sin 10x
3

for different values of θ. These trajectories

show that as θ → π
2
, csNR takes more steps to converge and the extent of tunneling

increases and at θ = π
2

it goes all the way to infinity which is in accordance with

Eq 2.15. Similar behaviour was observed for other functions also.

Figure 2 and 3 show that as θ is increased, extent of tunneling increases taking

the method to previously unexplored regions in coordinate space, but number of

steps to converge to a root also increases. This implies that there is a trade off

between tunneling and convergence in csNR and we can not choose θ arbitrarily.

In the optimization algorithm we developed, for different θ values, starting from

a small number of initial random points, we retained θ returning largest number

of critical point as optimum value of θ for that function.

2.4 Comparing csNR with ordinary NR method

In previous section, it was shown that Newton Raphson method can be used to find

critical points of complex scaled functions. However, in deriving equation 2.15, it

was assumed that we have an analytic function f : Cn → C of complex scaled vari-

ables z = xeiθ or in other words we have a good value of scaling parameter θ. We

first study the dynamical behaviour of complex scaled Newton Raphson method

in complex plane and come up with a way of obtaining the scaling parameter for

csNR and than test and compare the csNR method with ordinary NR method for
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Table 2.2: Two variables test function for optimization along with θopt for each
function. θopt for each function was determined by running csNR subroutine
in Appendix A for θ values in (0, π50 ,

π
25 , ..,

π
2 ) for 1000 initial points chosen

randomly in xi ∈ [−100, 100].

No. f(x,y) θopt
1 cosx sin y − x

y2+1
0.000

2 sinxe(1−cos y)
2

+ cos ye(1−sinx)
2

+ (x− y)2 0.000
3 x2 + 2y2 − 0.3 cos(3πx)− 0.4 cos(4πy) + 0.7 0.063
4 x2 + 2y2 − 0.12 cos(3πx) cos(4πy) + 0.3 0.126
5 x2 + 2y2 − 0.3 cos(3πx+ 4πy) + 0.3 0.000

6 (y − 5.1x2

4π2 + 5x
π − 6)2 + 10(1− 1

8π ) cosx+ 10 1.005

7 (y − 5.1x2

4π2 + 5x
π − 6)2 + 10(1− 1

8π ) cosx cos y ln(x2 + y2 + 1) + 10 0.126

8 2x2 − 1.05x4 + x6

6 + xy + y2 1.005

9 (4− 2.1x2 + x4

3 )x2 + xy + 4(y2 − 1)y2 1.005
10 − 0.001

0.0012+(x−0.4y−0.1)2 −
0.001

0.0012+(2x+y−1.5)2 1.382

11 − 0.001
0.0012+(x2+y2−1)2 −

0.001
0.0012+(x2+y2−0.5)2 −

0.001
0.0012+(x2−y2)2 1.382

12 x2 − 12x+ 11 + 10 cos(πx2 ) + 8 sin(5πx2 )−
√

1
5e
−0.5(y−0.5)2 0.817

13 [1− | sin(π(x−2) sin(π(y−2))
π2(x−2)(y−2) |5][2 + (x− 7)2 + 2(y − 7)2] 0.440

14 105x2 + y2 − (x2 + y2) + 10−5(x2 + y2)4 1.005

15 − cosx cos ye−(x−π)
2−(y−π)2 0.754

16 x2 + y2 + 25(sin2 x+ sin2 y) 0.063
17 (x− 13 + ((5− y)y − 2)y)2 + (x− 29 + ((y + 1)y − 14)y)2 0.880
18 [1 + (x+ y + 1)2(19− 14x+ 3x2 − 14y + 6xy + 3y2)]

×[30 + (2x− 3y)2(18− 32x+ 12x2 + 48y − 36xy + 27y2)] 1.005
19 (x2 + y − 11)2 + (x+ y2 − 7)2 1.005

20 [sin(x− y) sin(x+ y)]2/
√
x2 + y2 0.000

21 sin(x+ y) + (x− y)2 − 1.5x+ 2.5y + 1 0.000

22

√∣∣∣cos
√
|x2 + y2|

∣∣∣+ 0.01(x+ y) 1.382

23

√∣∣∣sin√|x2 + y2|
∣∣∣+ 0.01(x+ y) 1.382

24 {sin2[(cosx+ cos y)2] + cos2[(sinx+ sin y)] + x}2 + 0.01(x+ y) 0.000
25 −ln{{sin2[(cosx+ cos y)2] + cos2[(sinx+ sin y)] + x}2}+

0.01[(x− 1)2 + (y − 1)2] 0.000

26 0.001
{
|x10 − 20x9 + 180x8 − 960x7 + 3360x6 − 8064x5 + 1334x4

−15360x3 + 11520x2 − 5120x+ 2624| ×
∣∣y4 + 12y3 + 54y2 + 108y + 81

∣∣ }2
0.000

27 cosx2 + sin y2 0.000

28 − exp{
∣∣∣∣cosx cos y exp{|1−

√
x2+y2

π |}
∣∣∣∣−1} 0.063

29 1 + sin2 x+ sin2 y − 0.1e−x
2−y2 0.000
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30 100(y − x)2 + 6
[
6.4(y − 0.5)2 − x− 0.6

]2
1.005

31 (2x3y − y3)2 + (6x− y2 + y)2 0.942

32 74 + 100(y − x2)2 + (1− x)2 − 400 exp{− (x+1)2+(y+1)2

0.1 } 0.000
33 −xy(72− 2x− 2y) 1.382

34 −
∣∣∣∣cosx cos y exp{|1−

√
x2+y2

π |}
∣∣∣∣−1 0.000

Table 2.3: Optimization results for two dimensional test functions listed in
Table 2.2. Number of distinct critical points found for θ = θopt and θ = 0 are
respectively shown in columns 2 and 5. CPU time and number of total number
of steps in two cases are listed in columns 3,4 and 6,7. In columns 8,9,10 are
given percentage changes in these quantities. For functions not listed in this

table but listed in Table 2.2, θopt is zero.

Sr. θ = θopt θ = 0.0 % change in
No. NCP TIME STEPS NCP TIME STEPS NCP TIME STEPS

3 3227 1.324 164359 2828 1.499 210654 14.11 -11.64 -21.98
4 4965 6.947 789936 4502 4.839 564774 10.28 43.57 39.87
6 174 3.854 566865 115 0.195 27844 51.3 1878.26 1935.86
7 3065 1.612 143734 2629 2.454 240598 16.58 -34.32 -40.26
8 10 9.355 1723771 5 0.484 96450 100 1833.11 1687.22
9 31 6.502 1219397 8 0.502 100647 287.5 1195.18 1111.56
10 171 6.96 1252091 94 4.306 841535 81.91 61.62 48.79
11 123 12.714 2146247 124 6.165 1121291 -0.81 106.21 91.41
12 934 1.408 215282 74 0.619 108797 1162.16 127.59 97.87
13 278 27.43 2823928 1 0.089 10004 27700 30745.23 28127.99
14 18 9.319 1702973 5 0.375 75661 260 2381.85 2150.79
15 569 27.635 2636703 141 0.227 29705 303.55 12077.16 8776.29
16 3221 1.312 155478 2733 9.806 1303796 17.86 -86.62 -88.07
17 8 2.732 530238 3 0.439 89437 166.67 522.66 492.86
18 36 6.931 1222514 13 0.909 167076 176.92 662.44 631.71
19 28 6.615 1307434 8 0.304 61356 250 2072.77 2030.9
22 1641 22.203 3738494 555 26.753 4703671 195.68 -17.01 -20.52
23 1578 22.548 3780624 528 27.027 4720017 198.86 -16.57 -19.9
28 108 0.782 76350 55 0.681 74674 96.36 14.84 2.24
30 19 5.481 1072393 5 0.431 88619 280 1172.99 1110.12
31 45 17.129 3006828 17 1.447 273801 164.71 1083.45 998.18
33 107 10.763 2118632 4 0.176 35422 2575 6029.34 5881.12
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Table 2.4: Comparison of performance of csNR over conventional NR method
for quantities shown in Table 2.3

NCP STEPS CPU TIME
Increased 21 17 16
Decreased 0 5 5

Remains same 13 12 13

finding critical points.

To test and compare the performance of csNR method over conventional NR

method we selected a set of two variable continuous, differentiable and multi-

model test functions suitable for Newton Raphson method from Jamil and Yang’s

extensive list of test functions for unconstrained optimization [3]. These test func-

tions are listed in Table 2.2 alongwith θopt for each function. We found that θopt

equals zero for 12 functions which means that for these functions complex scaling

does not offer any advantage and instead csNR would end up using extra storage

for complex numbers.

For remaining 22 functions test results obtained in the two cases are shown in Ta-

ble 2.3 and conclusions are briefly summarized in Table 2.4. We see that except in

one case, csNR method found more number of critical points however often taking

more steps to reach a critical point and requiring more computational resources

than ordinary NR method. Though this is not always true and there are instances

where an increase in critical points is observed alongwith a decrease in number of

steps as we can see from Tables 2.3.

2.5 Conclusions and Future Possibilities

From previous studies of complex classical systems and our study of csNR method,

we conclude that use of complex variables provides extra degrees of freedom to

the dynamical systems which allow it to explore previously unexplored regions in

real coordinate space by making use of extended complex space. We showed that

for csNR method the extent of this exploration depends directly on the complex

scaling parameter θ. This happens at the cost of convergence which depends in-

versely on θ and becomes diverging when θ = π
2
. Test results show that csNR

finds more CPs for almost two-third of continuous, differentiable and multimodel
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test problems of two variables.

Future work plan is given below:

• Devise a global optimizer using search strategies and memory structures.

• Develop complex potential energy surface for ethane molecule and optimize

it using csNR.
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Appendix A

Fortran90 Program for comparing

csNR with NR

This program is devided into four parts briefly described below

1. program nr2varcs main: It first evaluates θopt for a function and then

finds critical points using the two methods.

2. subroutine csNR: This is a the complex scaled Newton Raphson subrou-

tine which takes θ and initial guess and converges to a critical point. It calls

subroutine clsfiy to determine the type of critical point.

3. subroutine sort: It stores distinct critical points based on their type.

4. subroutine clsfiy: This subroutine determines the type of critical point by

evaluating hessian matrix and diagonalizing it.

program nr2varcs_main

implicit none

integer,parameter::n0=2

real*8,parameter::pi=4.d0*atan(1.d0)

complex*16,parameter::io=complex(0.d0,1.d0)

integer::ii,i,j,keyn, numb, nmax, nmin, nsdd, numcp

integer:: step, topt, tzero, numcp0, n, numcpo

real*8:: theta,optheta,x(n0,1),y(n0,1)

real*8::t1,t2,t3,perct,percp,percs,xr(n0,1)

real*8,allocatable:: mxima(:,:), mnima(:,:), sddle(:,:)

27
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character(len=200)::fmt1

fmt1 = ’(1f7.3,a1,i5,a1,1f7.3,a1,i9,a1,i5,a1,1f7.3,a1,i9,a1,1f8.2,a1,1f8.2,a1,1f8.2,a2)’

open(121,file=’mnima’)

open(122,file=’mxima’)

open(123,file=’sddle’)

open(124,file=’best’)

OPEN(2,file=’thetas’)

open(3,file=’output’)

!%%%%%FINDING THETA_OPTIMUM%%%%%

numcpo = 0

do 20 i = 0,24

theta = i*pi/50

nmin = 0 !no of minima found

nmax = 0 !no of maxima found

nsdd = 0 !no of sddles found

numb = 0 !no of initial points that converged

n = 1000

allocate(mxima(n,n0), mnima(n,n0), sddle(n,n0))

do 21 j = 1,n

do 22 ii = 1,n0

x(ii,1) = -100+200*rand() !random initial guess

22 enddo

call csNR(x,theta,y,keyn,step) !calling csNR subroutine.

if (keyn .ne. 2) then !csNR converged.

numb = numb + 1

call sort(y,keyn,mnima,mxima,sddle,nmin,nmax,nsdd)

endif

21 enddo

numcp = nmin + nmax + nsdd !no of distinct CPs found

deallocate(mxima, mnima, sddle)

write(2,’(1F11.4,A1,i8,a1,i8,a1,i8,a1,i8,a1,i8,a2)’) theta, ’&’, nmin, ’&’, &

& nmax, ’&’, nsdd , ’&’, numcp, ’&’, numb, ’\\’

if (numcp .gt. numcpo) then

numcpo = numcp

optheta = theta

endif

20 enddo

write(124,’(1f8.3)’) optheta

!%%%%%COMPARING csNR AND NR%%%%%
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call cpu_time(t1)

topt = 0 !total steps in csNR

tzero = 0 !total steps in NR

do i = 0,0

theta = optheta

nmin = 0

nmax = 0

nsdd = 0

numb = 0

n = 5000

allocate(mxima(n,n0), mnima(n,n0), sddle(n,n0))

do j = 1,n

do ii = 1,n0

x(ii,1) = -100+200*rand()

enddo

call nrcs2var(x,theta,y,keyn,step)

topt = topt + step

if (keyn .ne. 2) then

numb = numb + 1

call sort(y,keyn,mnima,mxima,sddle,nmin,nmax,nsdd)

endif

enddo

numcp = nmin + nmax + nsdd

deallocate(mxima, mnima, sddle)

enddo

call cpu_time(t2)

do i = 0,0

theta = 0.d0

nmin = 0

nmax = 0

nsdd = 0

numb = 0

n = 5000

allocate(mxima(n,n0), mnima(n,n0), sddle(n,n0))

do j = 1,n

do ii = 1,n0

x(ii,1) = -100+200*rand()

enddo

call nrcs2var(x,theta,y,keyn,step)

tzero = tzero + step

if (keyn .ne. 2) then

numb = numb + 1
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call sort(y,keyn,mnima,mxima,sddle,nmin,nmax,nsdd)

endif

enddo

numcp0 = nmin + nmax + nsdd

deallocate(mxima, mnima, sddle)

enddo

call cpu_time(t3)

percp = 100.d0*(numcp-numcp0)/numcp0

perct = 100.d0*((t2-t1)-(t3-t2))/(t3-t2)

percs = 100.d0*(topt-tzero)/tzero

write(3,fmt1) optheta,’&’,numcp,’&’,t2-t1,’&’,topt,’&’,numcp0,’&’,t3-t2,’&’, &

& tzero,’&’,percp,’&’,perct,’&’,percs,’\\’

end program nr2varcs

!======================================================================

SUBROUTINE csNR(xr,theta,y,keyn,step)

!Newton Raphson routine for two dimensional complex scaled functions.

implicit none

integer,parameter::n0=2,n=1000

integer :: ii, i1, i2, info, keyn, i, k1, key1, step

real*8,parameter::pi=4.d0*atan(1.0d0),eps=1.0d-4,h=0.001

real*8::xr(n0,1),theta,rwork(2*n0),rex(n0,1),fr1,y(n0,1),eval(n0),hugee,abdx(n0,1),magdx

complex*16,parameter::io=complex(0.d0,1.d0),hc=complex(0.001,0.001)

complex*16::fc1,x(n0,1),h1(n0,1),h2(n0,1),h3(n0,1),grd(n0,1),hess(n0,n0),w(n0),dum(1,1)

complex*16::vl(n0,n0),vr(n0,n0),work(4*n0),dx(n0,1),dummy(n0,1),rvec(n0,1),lvec(1,n0)

character(len=30)::format1

format1 = "(1f10.8,2f16.6,i5,11f16.6,)"

open(19,file=’path’)

open(20,file=’file’)

hugee = huge(0.0d0)

keyn = 0

do 10 ii=1,n0

h1(ii,1) = 0.d0

h2(ii,1) = 0.d0

h3(ii,1) = 0.d0

10 enddo

do ii=1,n0
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x(ii,1) = cdexp(io*theta)*xr(ii,1)

enddo

do 11 i=1,n

step = i

!EVALUATING GRADIENT AND HESSIAN MATRICES.

do 12 i1 = 1,n0

h1(i1,1) = hc

grd(i1,1) = cdexp(io*theta)*(fc1(x+h1)-fc1(x-h1))/(2.d0*hc)

!print*, ’grad(i)’, i1, grd(i1,1)

h1(i1,1) = 0.d0

do 13 i2 = 1,n0

h2(i1,1) = hc

h3(i2,1) = hc

hess(i1,i2)=((fc1(x+h2+h3)-fc1(x-h2+h3)-fc1(x+h2-h3)+fc1(x-h2-h3))/(4.d0*hc*hc))*

& cdexp(2.d0*io*theta)

!print*, ’hess’, i1,i2, real(hess(i1,i2)), aimag(hess(i1,i2))

h2(i1,1) = 0.d0

h3(i2,1) = 0.d0

13 enddo

12 enddo

!CHECKING HESSIAN FOR NAN AND INFINITY

do i1 = 1,n0

do i2 = 1,n0

if(isnan(real(hess(i1,i2))).or.abs(real(hess(i1,i2))).gt.hugee)then

k1 = 0

exit

else if(isnan(aimag(hess(i1,i2))).or.abs(aimag(hess(i1,i2))).gt.hugee)then

k1 = 0

exit

else

k1 = 1

endif

enddo

if (k1 .eq. 0) exit

enddo

if (k1 .eq. 0) then

keyn = 2 !METHOD DIVERGED

exit

endif

!DIAGONALIZING HESSIAN

call zgeev(’v’, ’v’, n0, hess, n0, w, vl, n0, vr, n0, work, 4*n0, rwork, info)
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if (info .ne. 0 ) then

print*, ’ZGEEV failed to find all eigenvalues and eigenvectors’

exit

endif

!EVALUATING NR STEP

do 14 ii=1,n0

dx(ii,1) = 0.d0

14 enddo

do 15 ii=1,n0

do i1 = 1,n0

dummy(i1,1) = conjg(vl(i1,ii))

rvec(i1,1) = vr(i1,ii)

enddo

lvec = transpose(dummy)

dum = (1/w(ii))*matmul(lvec,grd)

dx = dx + dum(1,1)*rvec

15 enddo

!EVALUATING ||dz||

magdx = 0.d0

do ii=1,n0

abdx(ii,1) = real(dx(ii,1))**2 + aimag(dx(ii,1))**2

magdx = magdx + abdx(ii,1)

enddo

magdx = sqrt(magdx)

do 17 ii=1,n0

if (magdx .lt. eps) then

key1 = 1 !METHOD CONVERGED

else

key1 = 0 !NOT CONVERGED YET

exit

endif

17 enddo

!DETERMINING NATURE OF CP IF CONVERGED

if (key1 .eq. 1) then

do ii =1,n0

y(ii,1) = real(x(ii,1))

enddo

call clsfiy(y,eval,keyn) !CALLING CLASSIFIER.

exit

else

x = x - dx
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endif

11 enddo

end subroutine nrcs2var

!=======================================================================

subroutine sort(y,keyn,mnima,mxima,sddle,nmin,nmax,nsdd)

!b_k sept 14,2017

implicit none

integer,parameter::n0=2

integer::nmin,nmax,nsdd,k1,ii,i,keyn

real*8,parameter::eps=1.0d-4

real*8::y(n0,1),mxima(1000,2),mnima(1000,2),sddle(1000,2),ss,fr1

if (keyn .eq. 1) then

if (nmin .eq. 0) then

k1 = 1

else

do i = 1,nmin

do ii = 1,n0

ss = mnima(i,ii) - y(ii,1)

if (abs(ss) .lt. eps) then

k1 = 0

else

k1 = 1

exit

endif

enddo

if ( k1 .eq. 0) exit

enddo

endif

if ( k1 .eq. 1) then

nmin = nmin + 1

do ii = 1,n0

mnima(nmin,ii) = y(ii,1)

enddo

write(121,’(3f15.5)’) (y(ii,1),ii=1,n0),fr1(y)

endif

elseif (keyn .eq. -1) then

if (nmax .eq. 0) then

k1 = 1

else

do i = 1,nmax

do ii = 1,n0

ss = mxima(i,ii) - y(ii,1)
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if (abs(ss) .lt. eps) then

k1 = 0

else

k1 = 1

exit

endif

enddo

if ( k1 .eq. 0) exit

enddo

endif

if ( k1 .eq. 1) then

nmax = nmax + 1

do ii = 1,n0

mxima(nmax,ii) = y(ii,1)

enddo

write(122,’(3f15.5)’) (y(ii,1),ii=1,n0),fr1(y)

endif

endif

elseif (keyn .eq. 0) then

if (nsdd .eq. 0) then

k1 = 1

else

do i = 1,nsdd

do ii = 1,n0

ss = sddle(i,ii) - y(ii,1)

if (abs(ss) .lt. eps) then

k1 = 0

else

k1 = 1

exit

endif

enddo

if ( k1 .eq. 0) exit

enddo

endif

if ( k1 .eq. 1) then

nsdd = nsdd + 1

do ii = 1,n0

sddle(nsdd,ii) = y(ii,1)

enddo

write(123,’(3f15.5)’) (y(ii,1),ii=1,n0),fr1(y)

endif

endif

end subroutine sort
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!===============================================

subroutine clsfiy(x,eval,keyn)

!EVALUATES AND DIAGNOLIZE THE HESSIAN MATRIX AT THE CRITICAL POINT.

implicit none

integer,parameter::n0=2

integer::ii,i1,i2,info,keyn

real*8,parameter::h=0.001

real*8::fr1,x(n0,1),eval(n0),h2(n0,1),h3(n0,1),hess(n0,n0),work(3*n0-1)

do 112 i1 = 1,n0

do 113 i2 = i1,n0

h2(i1,1) = h

h3(i2,1) = h

hess(i1,i2) = (fr1(x+h2+h3)-fr1(x-h2+h3)-fr1(x+h2-h3)+fr1(x-h2-h3)) &

&/(4.d0*h*h)

h2(i1,1) = 0.d0

h3(i2,1) = 0.d0

113 enddo

112 enddo

CALL DSYEV(’V’,’U’, N0, HESS, N0, eval, WORK ,3*N0-1, INFO)

if (eval(1) .gt. 0) then

if (eval(2) .gt. 0) then

keyn = 1 !minima

else

keyn = 0 !saddle

endif

else

if (eval(2) .gt. 0) then

keyn = 0 !saddle

else

keyn = -1 !maxima

endif

endif

end subroutine clsfiy

!==============================================
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