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Preface

Algebraic topology is a branch of mathematics where algebra is uses

to study topological spaces. The basic goal is to find algebraic invariants

that classify topological spaces up to homeomorphism, though usually

most classify up to homotopy equivalence.

The material in the thesis based on my undestanding mainly from the

text: ‘Algebraic topology by Allen Hatcher’. I tried my best to provide

direct reference to any other sources I have used in bibliography.

Here are the brief introdution to the chapters.

In chapter 1, I have given some basic definition which I use in later

chapters. Brouwer fixed point theorem, Homotopy extension and at

the end Cell Complexes.

Chapter 2, it starts with the definition of path and path homotopy

and contains very standard material must be learn to develope basics

in algebraic topology. It contains some classical Theorems like ‘Fun-

damental theorem of algebra’ where we using algebraic tools to proof

a algebraic result, Brouwer fixed poin theorem, and very well known

theorem in algebraic topology ‘The van Kampen Theorem’.

Chapter 3, this chapter in more about how to use algebra for proving

results in topology, using tools from this chapter we can proof Brouwer

fixed point theorem for general case in a very elegant way.

Manoj Upreti

IISER Mohali
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Notation

Z, Q, R, C: The integers, rational, real, and complex

Zn: The integers mod n

Rn: n-dimensional Euclidean space

Cn: Complex n-space

I=r1, 0s: The unit interval

Sn: The unit sphere in Rn`1, all vectors of length 1

Dn: The unit disk or ball in Rn, all vectors of length ď 1

BDn: Sn´1: The boundary of the n-disk

1: The identity function from the set to itself

\: Disjoint union of sets or spaces

x,[: Product of sets, group, or spaces

A Ă B or B Ą A: Set-theoretic containment, not necessarily proper

iff: if and only if
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Chapter 1

Some Basic Notions

1.1 Homotopy and Homotopy Type

Definition. If f and f 1 are continuous maps of the space X into the space Y , we say

that f is homotopic to f 1 if there is a continuous map F : X ˆ I Ñ Y such that

F px, 0q “ fpxq and F px, 1q “ f 1pxq for each x. The map F is called a homotopy

between f and f 1 and we write f » f 1.

Remark. If f » f 1 and f 1 is a constant map, we say that f is nulhomotopic.

Definition. A retraction of X onto A is a map r : X Ñ X such that rpXq “ A and

r|A=1.

Definition. A deformation retraction of a space X onto a subspace A is a family

of maps ft : X Ñ X, t P I such that f0 “ 1, f1pXq “ A and ft|A “ 1 for all t.

The family ft should be continuous in the sense that the associated map X ˆ I Ñ X,

px, tq Ñ ftpxq is continuous.

Definition. A map f : X Ñ Y is called a homotopy equivalence if there is a

map g : Y Ñ X such that fg » 1 and gf » 1. The space X and Y are said to be

homopopy equivalent or to have the same homotopy type denoted as X » Y .

Definition. A space having the homotopy type of a point is called contractible.
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1.2 Homotopy extension property

Suppose one is given a map f0 : X Ñ Y , and on a subspace A Ă X one is also

given a homotopy ft : A Ñ Y of f0|A that one would like to extend to a homotopy

ft : X Ñ Y of the given f0. If the pair (X,A) is such that this extension problem can

always be solved, one say that pX,Aq has the homotopy extension property.

Definition. pX,Aq has the homotopy extension property if every map Xˆt0uY

Aˆ I Ñ Y can be extended to a map X ˆ I Ñ Y .

Example. The pair pDn, Sn´1q has the Homotopy extension property suppose given a

homotopy ft : Sn´1 Ñ Y and a map g0 : Dn Ñ Y such that g0|S
n´1 “ f0. We assemble

these to form a map h : D2 Ñ Y from the double size disk D2 “ x P Rn : ||x|| ď 2

by setting
$

’

&

’

%

g0pxq ||x|| ă 1

f||x||´1

´

x
||x||

¯

for 1 ď ||x|| ď 2

.

The desire homotopy gt : Dn Ñ Y is then just gtpxq “ hpp1` tqxq.

Example. (A closed subspace that does not have the homotopy extension property

) pI, Aq where A “ t0u Y t 1
n
|n “ 1, 2, ¨ ¨ ¨u does not have the homotopy extension

property since I ˆ t0u Y Aˆ I is not a retract of I ˆ I.

Proposition. If the pair pX,Aq satisfy the homotopy extension property and A is

contractible, then the quotient map q : X Ñ X{A is a homotopy equivalence.

Another application of the homotopy extension property, is the following.

We finish this chapter with a technical result whose proof will involve several

applications of the homotopy extension property.

Proposition. Suppose pX,Aq and pY,Aq satisfy the homotopy extension property

and f : X Ñ Y is a homotopy equivalence with f |A “ 1. Then F is a homotopy

equivalence rel A.

Corollary. If pX,Aq satisfy the homotopy extension property and the inclusion A ãÑ

X is a homotopy equivalence, then A is a deformation retract of X.

Definition. For a map f : X Ñ Y , the mapping cylinder Mf is the quotient space

of the disjoint union pX ˆ Iq Y Y obtained by identifying each px, 1q P X ˆ Y with

fpxq P Y .
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Corollary. A map f : X Ñ Y is a homotopy equivalence iffX is a deformation retract

of the mapping cylinder Mf . Hence two spaces X and Y are homotopy equivalent iff

there is a third space containing both X and Y as deformation retract.

1.3 Cell Complexes

CW complex is a space X constructed in the following way:

(1) Start with a discrete set X0, where points are regarded as 0-cells.

(2) Inductively form the n-skeleton Xn from Xn´1 by attaching n-cells enα via maps

ϕα : Sn´1
Ñ Xn´1

.

This means that Xn is the quotient space of the disjoint union Xn´1 \α D
n
α of Xn´1

with a collection of n-disks Dn
α under the identification x „ ϕαpxq for x P BDn

α . Thus

as a set Xn “ Xn´1 \α e
n
α where each enα is an open n-disk.

(3) One can either stop this inductive process at a finite stage, setting X “ Xn for

some n ă 8, or one can continoue indefinitely, setting X “ YnX
n. In the latter case

X is given the weak topology: A set A P X is open (or closed) iff AXXn is open (

or closed) in Xn for each n.

A space X constructed in this way is called a cell complex or CW complex. If

X “ Xn for some n, then X is said to be finite dimensional, and the smallest such n

is the dimension of X.

Definition. Each cell enα in a cell complex X has a characteristic map Φα : Dn
α Ñ X

which extends the attaching map ϕα and is a homeomorphism from the interior of Dn
α

onto enα, namely we can take Φα to be the composition Dn
α ãÑ Xn´1YαD

n
α Ñ Xn ãÑ X

where the middle map is the quotient map defining Xn.

Example. The space Sn has the structure of a cell complex with just two cells, e0

and en, the n-cell being attached by the constant map Sn´1 Ñ e0. This is equivalent

3



to regarding Sn as the quotient space Dn{BDn.

In the canonical cell structure on Sn described in above example, a characteristic

map for the n-cell is the quotient map Dn Ñ Sn collapsing BDn to a point.

Definition. A subcomplex of a cell complex X is a closed subspace A P X that is

a union of cells of X. Since A is closed, the characteristic map of each cell in A has

image contain in A, and in particular the image of the attaching map of each cell in

A is contained in A so A is a cell complex in its own right.

Definition. A pair pX,Aq consisting of a cell complex X and a subcomplex A will

be called a CW pair.

Example. Each skeleton Xn of a cell complex X is a subcomplex.

Now we state a proposition about compact subspace of a CW complex.

Proposition. A compact subspace of a CW complex is contained in a finite subcom-

plex.

Proposition. CW complexes are normal, and in particular, Hausdorff.

Proposition. Each point in a CW complex has arbitrarily small contractible open

neighborhoods, so CW complexes are locally contractible.

Remark. In particular CW complexes are locally path connected. So a CW complex

is path connected iff it is connected.

Product of CW complexes

Let X be a topological space and Aα are collection of subspaces such that X “ YAα

these subspaces generate a possibly finer topology on X by defining a set A P X to

be open iff AX Aα is open in Aα @α.

In case tAαu is the collection of compact subsets of X, we write Xc for this new

compactly generated topology. If X is compact, or even locally compact, then X “

Xc, that is, X is compactly generated.

Theorem. For CW complexes X and Y which chracteristic maps Φα and Ψβ the

product maps Φα ˆ Ψβ are the characteristic maps for a CW complex structure on

pX ˆ Y qc. If either X or Y is compact or more generally locally compact, then

pX ˆ Y qc “ X ˆ Y . Also, pX ˆ Y qc “ X ˆ Y if both X and Y have countably many

cells.

4



Proposition. If pX,Aq is a CW pair, then X ˆ t0u YAˆ I is a deformation retract

of X ˆ I, hence pX,Aq has the homotopy extension property.

Remark. Most application of the homotopy extension property can be seen easily

using above proposition.

Proposition. If pX,Aq is a CW pair and we have a attaching maps f, g : A Ñ X0

that are homotopic, then X0 \f X1 » X0 \g X1 rel X0.

Proposition. Collapsing a contractible subcomplex is a homotopy equivalence.

5
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Chapter 2

Fundamental group

2.1 Path and Homotopy

Definition. A path in a spaceX is a continuous function f : I Ñ X, where I “ r0, 1s.

Definition. If in a space X we have two paths say f0 and f1 we say that f0 and f1

are path homotopic if they have the same initial point x0 and the same final point

x1

and if there exist a continuous map F : I ˆ I Ñ X such that F ps, 0q “ fpsq and

F ps, 1q “ f 1psq F p0, tq “ x0 and F p1, tq “ x1 for each s P I and t P I. If f1 is path

homopotic to f0, we write f0 »p f1.

Example. Any two paths say f0 and f1 in Rn with same endpoints x0 and x1 are path

homotopic since we can give path homotopy between them as follows: F : Iˆ I Ñ Rn

F ps, tq “ p1´ tqf0pSq ` tf1psq.

Remark. More generally for any convex subspace X P Rn result holds good.

Proposition. The relation of homotopy on paths with fixed endpoints in any space

X is an equivalence relation.

7



Definition. For two paths say f, g : I Ñ X such that fp1q “ gp0q then we can define

a composition or product path f ¨ g as follows:

f ¨ gpsq=

$

’

&

’

%

fp2sq 0 ď s ď 1
2

gp2s´ 1q 1
2
ď s ď 1

Definition. Let f be a path in X such that fp1q “ fp0q where f : I Ñ X is a path

then f is called a loop.

Notation π1pX, x0q ={The set of all homotopy classes rf s of loops f : I Ñ X at

the basepoint x0u.

Proposition. π1pX, x0q is a group with respect to the product rf srgs “ rf ¨ gs.

Proof. We will only check for the well definedness of the operation defined above

i.e., we claim that if f » f 1 and g » g1 then f ¨ g » f 1 ¨ g1 where f , f 1, g, and g1 are

all loops based at x0 in X.

Let F : I ˆ I :Ñ X be a path homotopy between f and f 1 and G : I ˆ I Ñ X is the

homotopy between g and g1.

Define H : I ˆ I Ñ X such that

Hps, tq=

$

’

&

’

%

F p2s, tq s P r1, 1{2s

Gp2s´ 1, tq s P r1{2, 1s

Now since F p1, tq=x1=Gp0, tq @ t “ñ the map H is well-defined, and H is continuous

by using the following result.

Proposition. (Pasting lemma) Let X “ A Y B, where A and B are closed in X.

Let f : A Ñ Y and g : B Ñ Y be continuous. If fpxq “ gpxq for every x P A X B,

then f and g combine to give a continuous function h : X Ñ Y , defined by setting

hpxq “ gpxq if x P A, and hpxq “ gpxq if x P B.

Now Hps, 0q “ f ¨ g and Hps, 1q “ f 1 ¨ g1 and Hp0, tq “ F p0, tq “ x0 Hp1, tq “

Gp1, tq “ x0

“ñ H is the required homotopy between f ¨ g and f 1 ¨ g1.

Remark. The identity element for the group π1pX, x0q is the homopoty class of con-

stant loop based at x0.

8



Example. For a convex subspace X of Rn we have π1pX, x0q “ 0 since any two loop

f0 and f1 based at x0 are homotopic with the homotopy ftpsq “ p1´ tqf0psq ` tf1psq.

Dependence of π1pX, x0q on the choice of basepoint

As by definition π1pX, x0q involves only the path-component of X containing x0, so

we find a relation between π1pX, x0q and π1pX, x1q for two base points x0 and x1 only

if x0 and x1 are in same path-component of X.

Let h : I Ñ X be a path from x0 to x1 then we define inverse of path h by h̄psq “

hp1 ´ sq which is a path from x1 to x0. Then corresponding to each loop f based at

x1 there is a loop h.f.h̄ based at x0.

Proposition. The map βh : π1pX, x1q Ñ π1pX, x0q defined by βhrf s “ rh.f.h̄s is an

isomorphism.

Remark. It follows that for a path connected spaceX, the fundamental group π1pX, x0q

is, up to isomorphism, independent of the choice of basepoint x0.

Definition. A space X is called simply connected if

a) It is path connected.

b) It has trivial fundamental group.

The following is a nice characterization of simply connected spaces.

Proposition. A space X is simply connected iff there is a unique homotopy class of

paths connecting any two point in X.

9



Now we are going to discuss some applications of fundamental group.

Proposition. π1pS
nq “ t0u if n ě 2. Hence Sn is simply connected for n ě 2.

Will discuss a proof using van Kampen theorem later.

Example. For a point x in Rn, the compliment Rn´x is homeomorphic to Sn´1ˆR

“ñ π1pRn ´ txuq « π1pS
n´1q ˆ π1pRq

“ñ π1pRn ´ txuq “ Z for n “ 2 and 0 for n ą 2.

Corollary. R2 is not homeomorphic to Rn for n ‰ 2.

2.2 Fundamental theorem of algebra

Theorem. Every nonconstant polynomial with coefficients in C has a root in C.

Proof. Suppose we have a polynomial qpzq “ zn ` a1z
n´1 ` ...` an let if possible say

qpzq has no roots in C, then for each real number r ě 0 the formula

frpsq=
qpre2πis{qprq
|qpre2πisq{qprq|

defines a loop in S1 P C based at 1. If we varies r, fr will be

homotopy of loos based at 1 as f0 is trivial loop.

“ñ rfrs P π1pS
1q is zero @r now we fix some large value of r such that r ą |q1| `

|q2| ` ...` |qn| and r ą 1 then for |z| “ r we have

|zn| “ rn “ r.rn´1 ą p|a1| ` ...` |an|q|z
n´1| ě |a1z

n´1 ` ...` an|

“ñ |zn| ą |a1z
n´1 ` ...` an|

“ñ polynomial qtpzq “ zn` tpa1z
n´1` ...`a1q has no root on the circle |z| “ r when

0 ď t ď 1.

Replacing p by pt in the formula for fr above and letting t go from 1 to 0, we get a

homotopy from the loop fr to the loop wnpsq “ e2πins where wn represents n times a

generator of the infinite cyclic group π1pS
1q since we have shown that rwns “ rfrs “ 0

“ñ n “ 0

“ñ q is a constant polynomial “ñ the only polynomial without roots in C are

constants.

10



2.2.1 Brouwer fixed point theorem in 2-dimension

Theorem. Every constant map h : D2 Ñ D2 has a fixed point, that is, a point x

with hpxq “ x.

Proof. Let if possible hpxq ‰ x @x P D2, then consider the map

r : D2 Ñ S1 by letting rpxq be the point of S1 where the ray in R2 starting at hpxq

and passing through x leaves D2.

Explicitly rpxq “ hpxq ` kpxqpx´ hpxqq where kpxq ě 0.

Claim: rpxq is continuous, in order to show that rpxq is continuous it would be

enough to show kpxq is continuous now consider, r1pxq “ hpxq1 ` kpx1 ´ hpxq1q and

r2pxq “ hpxq2 ` kpx2 ´ hpxq2q where subscripts denote coordinates also as rpxq P S1

“ñ rr1pxqs
2 ` rr2pxqs

2 ´ 1 “ 0

“ñ rhpxq1 ` kpx1 ´ hpxq1qs
2 ` rhpxq2 ` kpx2 ´ hpxq2qs

2 ´ 1 “ 0 p˚q

Since the above polynomial is quadratic in k, it has two roots, which in view of

the geometric context in which k arose, are both real and in fact one is positive and

other is negative, or both are 0.

Let k ě 0

“ñ kpxq is well defined rational function in x1 and x2 by solving equation and

calculating coefficient of k2 we have px1´hpxq1q
2`px2´hpxq2q

2 setting this coefficient

equal to zero give x1 “ hpxq1 and x2 “ hpxq2 i.e, x “ hpxq but this is the contradiction

to the hypothesis that the map h had no fixed point

“ñ leading coefficient of p˚q is not zero

“ñ k is continuous

“ñ rpxq is continuous

Also note that rpxq “ x if x P S1

“ñ r is retraction of D2 onto S1.We will show that no such retraction can exist.

let f0 be any loop in S1.in D2 there is a homotopy of f0 to a constant loop, i.e,

11



ftpsq “ p1 ´ tqf0psq ` tx0, where x0 is the basepoint of f0. Since the retraction r is

the identity on S1, the composition r ˝ ft “ f0 to the constant loop at x0.

We will give a more general version of above theorem in Chapter 3.

2.2.2 Borsuk-Ulam theorem in 2-dimension

Theorem. For every continuous map f : S2 Ñ R2 there exist a pair of antipodal

points x and ´x in S2 with fpxq “ fp´xq.

Corollary. Whenever S2 is expressed as the union of three closed sets A1, A2 and

A3 then at least one of these sets must contain a pair of antipodal points tx,´xu.

Proof. Define d1, d2, d3 : S2 Ñ R2 as follows

dipxq “ infyPAi |x´ y|

this is continuous function, so using Borsuk-Ulam theorem to the map S2 Ñ R2 given

by xÑ pd1pxq, d2pxqq

“ñ we will have a pair of antipodal points x and ´x with d1pxq “ d1p´xq and

d2pxq “ d2p´xq.

If either of these two distance is zero, then x, ´x P A1 or x, ´x P A2 since A1 and A2

are closed But if d1px,A1q ą 0 and d2px,A2q ą 0 then x, ´x P A3.

2.2.3 Fundamental group of product of subspaces

Proposition. π1pX ˆ Y q is isomorphic to π1pXq ˆ π1pY q if X and Y are path con-

nected.

Proof. First recall that a map f : Z Ñ X ˆ Y is continuous iff the maps g : Z Ñ X

and h : Z Ñ Y given as fpzq “ pgpzq, hpzqq are both continuous

“ñ a loop f in X ˆ Y based at px0, y0q is equivalent to a pair of loops g in X and h

in Y based at x0 and y0 respectively. Similarly, a homotopy ft of a loop in X ˆ Y is

equivalent to a pair of homotopies gt and ht of the corresponding loops in X and Y

“ñ we have a bijection and rf s Ñ prgs, rhsq is a group homomorphism

“ñ π1pX ˆ Y q « π1pXq ˆ π1pY q.

12



Example. Using above result we can compute fundamental group of torus.

π1pS
1 ˆ S1q “ π1pS

1q ˆ π1pS
1q “ Zˆ Z.

2.3 Induced homomorphism

Consider the mpa ϕ : X Ñ Y such that ϕpx0q “ y0 or write ϕpX, x0q Ñ pY, y0q then

define ϕ˚ : π1pX, x0q Ñ π1pY, y0q as follows ϕ˚prf sq “ rϕf s then ϕ˚ is well define

since a hamotopy ft of loops based at x0 yields a composed homotopy ϕft of loops

based at y0 so ϕ˚rf0s “ rϕf0s “ rϕf1s “ ϕ˚rf1s also, ϕ˚ is a homomorphism since

ϕpf ¨ gq “ pϕfq ¨ pϕgq, both function have value ϕfp2sq for 0 ď s ď 1
2

and the value

ϕgp2s´ 1q for 1
2
ď s ď 1. Two basic properties of induced homomorphism are :

a) pϕψq˚ “ ϕ˚ψ˚ for a composition pX, x0q
ψ
Ñ́ pY, y0q

ϕ
Ñ́ pZ, z0q.

b)1˚ “ 1.

Proposition. If a space X retract onto a subspace A, then the homomorphism i˚ :

π1pA, x0q Ñ π1pX, x0q induced by the inclusion i : A ãÑ X is injective. If A is a

deformation retract of X, then i˚ is an isomorphism.

Proposition. If ϕ : X Ñ Y is a homotopy equivalence, then the induced homomor-

phism ϕ˚ : π1pX, x0q Ñ π1pY, ϕpx0qq is an isomorphism @x0 P X.

Remark. Thus fundamental group is not a complete invariant of topological spaces.

2.4 Free product of groups

Let tGαuαPλ be a collection of groups then we construct a group ˚αGα will be called

the free product of the groups tGαu. ˚αGα which as a set consist of all words g1g2¨¨¨¨gm

of arbitrary finite length m ě 0 where gi P Gαi for some αi P λ and gi ‰ eαi (identity

element of Gαi) and adjacent letters gi and gi`1 belong to different groups i.e., if

gi P Gαi and gi`1 P Gαi`1
then αi ‰ αi`1 words satisfying these conditions are called

reduced.

Remark. a) Unreduced words can always be simplified to reduced words by writing

adjacent letter that lie in the same group Gαi as a single letter and by canceling trivial
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letters.

b)The empty word is allowed, and will serve as identity element of ˚αGα.

Now we define group operation on ˚αGα

Group operation in ˚αGα is juxtaposition i.e., take any two reduced words say pg1g2 ¨

¨¨¨gmq and ph1h2 ¨¨¨¨hnq then g¨h is defined as pg1g2 ¨¨¨¨gmqph1h2 ¨¨¨¨hnq=g1 ¨¨¨¨gmh1 ¨¨¨¨hn.

Remark. This product may not be reduced. If gm and h1 belong to the same Gα, they

should be combined into a single letter pgmh1q according to the multiplication in Gα

and if this new letter happens to be the identity of Gα, it should be canceled from

the product. This may allow gn´1 and h2 to be combined and possibly canceled too.

Repetition of this process eventually produces a reduced word.

Next we varyfy associativity of above defined multiplication. Let W be the set

of reduced words g1 ¨ ¨ ¨ ¨gm as above including the empty word. To each g P Gα we

associate the function Lg : W Ñ W as Lgpg1 ¨ ¨ ¨ ¨gmq “ gg1 ¨ ¨ ¨ ¨gm where we combine

g with g1 if g1 P Gα to make gg1...gm a reduced word. A key property of the asso-

ciation g Ñ Lg is that Lgg1 “ LgL
1
g for g, g1 P Gα i.e., gpg1pg1...gmqq “ pgg

1qpg1...gmq

this special case of associating follows rather trivially from associativity in Gα. The

formula Lgg1 “ LgL
1
g

implies that Lg is invertible with pLgq
´1 “ Lg´1 therefore the association g Ñ Lg

defines a homomorphism from Gα to the group P pW q of all permutation of W . More

generally, define L : W Ñ P pW q by Lpg1 ¨ ¨ ¨ ¨gmq “ Lg1 ¨ ¨ ¨ ¨Lgm for each reduced word

g1 ¨ ¨ ¨ ¨gm. This function L is injective since the permutation Lpg1 ¨ ¨ ¨ ¨gmq send the

empty word to g1 ¨ ¨ ¨ ¨gm. The product operation in W corresponds under L to com-

position in P pW q, because Lgg1 “ LgL
1
g. Since composition in P pW q is associative,

we conclude that the product in W is associative.

Remark. a)Gαi ãÑ ˚αGα @αi.

b) Association implies that any two sequences of reduction operation performed on

the same unreduced word always yield the same reduced word.

c)Suppose we have any collection of homomorphism ϕα : Gα Ñ H then we can extend

uniquely to a homomorphism ϕ : ˚αGα Ñ H by the following process

the value of ϕ on a word g1 ¨ ¨ ¨ ¨gn with gi P Gαi must be ϕα1pg1q ¨ ¨ ¨ ¨ϕαnpgnq since the
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process of reducing an unreduced product in ˚αGα does not affect its image under ϕ,

so ϕ is well defined. One can easily check that ϕ is a homomorphism.

2.5 The van Kampen Theorem

Suppose a space X is decomposed as the union of a collection of path-connected

open subsets Aα, and x0 P Aα @α by the above remark c the homomorphism jα :

π1pAαq Ñ π1pxq induced by the inclusion Aα ãÑ X extends to a homomorphism

Φ : ˚απ1pAαq Ñ π1pXq.

Remark. a) The van kampen theorem will say that Φ is very often surjective.

b)But we can expect Φ to have a nontrivial kernel in general.

c)For if iαβ : π1pAα X Aβq Ñ π1pAαq is the isomorphism induced by the inclusion

Aα X Aβ ãÑ Aα then jαiαβ “ jβiβα, both these composition being induced by the

inclusion Aα X Aβ ãÑ X, so the kernel of Φ contains all the elements of the form

iαβpwqiβαpwq
´1 for w P π1pAα X Aβq.

Theorem. (van Kampen theorem) If X is the union of path-connected open sets Aα

each containing the basepoint x0 P X and if each intersection Aα X Aβ is path con-

nected, then the homomorphism Φ : ˚απ1pAαq Ñ π1pXq is surjective. If in addition

each intersection Aα XAβ XAγ is path connected, then the kernel of Φ is the normal

subgroup N generated by all elements of the form iαβpwqiβαpwq
´1, and so Φ induces

an isomophism π1pXq » ˚απ1pAαq{N .

Proof. Let we are given a loop f : I Ñ X at the basepoin x0 since by definition f is

continuous

“ñ for each s P I there exist open neighborhood Vs in I mapped by f to some Aα.

We may infact take Vs to be an interval whose closure is mapped to a single Aα.

Since I is compact so finite number of these intervals cover I, so the endpoint of this

finite set of intervals then define a partition 0 “ s1 ă s1 ă ¨ ¨ ¨¨ ă sm “ 1 of I such

that each subinterval rsi´1, sis is mapped by f to a single Aα.

Let denote Aα containing fprsi´1, sisq by Ai, and let fi be a path obtained by

restricting f to rsi´1, sis. Then f is composition f1 ¨ ¨ ¨ ¨fm with fi a path in Ai since

we assume AiXAi`1 is path connected we may choose a path gi in AiXAi`1 from x0 to
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the point fpsiq P AiXAi`1 consider the loop pf1 ¨ḡ1q¨pg1 ¨f2 ¨ḡ2q¨pg2 ¨f3 ¨ḡ3q¨¨¨¨pgm´1 ¨fmq

which is homotopic to f This loop is a composition of loops each lying in a single

Ai, the loop indicated by the parentheses. Hence rf s is in the image of Φ, and Φ is

surjective.

Now before proceeding further we will introduce some terminology by a factoriza-

tion of an element rf s P π1pXq we shall mean a formal product rf1s ¨ ¨ ¨ ¨rfks where

a) Each fi is a loop in some Aα at the basepoin x0, and rfis P π1pAαq is the homotopy

class.

b)The loop f is homotopic to f1 ¨ ¨ ¨ ¨fk in X.

A factorization of rf s is thus a word in ˚απ1pAαq possibly unreduced, that is mapped

to rf s by Φ. Surjectivity of Φ implies that every rf s P π1pXq has a fatorization now

we move our focus toward the uniqueness of factorizations. Call two factorization of

rf s equivalent if they are related by a sequence of the following two sorts of moves or

their inverses:

a’) Combine adjacent terms rfisrfi`1s into a single term rfi ¨ fi`1s if rfis and rfi`1s lie

in the same group π1pAαq.

b’) Regard the term rfis P π1pAαq as lying in the group π1pAβq rather that π1pAαq if

fi is a loop in Aα X Aβ.

The first move does not change the element of ˚απ1pAαq defined by the factorization

since all elements in ˚απ1pAαq are already reduced.

The second move does not change the image of this element in the quotient group

Q “ ˚απ1pAαq{N , by the definition of N . So equivalent factorization give the same

element of Q.

Consider the map Ψ : QÑ π1pXq induced by Φ. i.e., Ψprf1s¨¨¨¨rfksNq “ Φprf1s¨¨¨¨rfksq
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Claim: This map Ψ is injective under the hypothesis that any two factorization of

rf s P π1pXq in ˚απ1pAαq are equivalent which we will prove

let Ψprf1s ¨ ¨ ¨ ¨rfksNq “ Ψprg1s ¨ ¨ ¨ ¨rgtsqN

“ñ Φprf1s ¨ ¨ ¨ ¨rfksq “ Φprg1s ¨ ¨ ¨ ¨rgtsq “ rf s P π1pXq

“ñ rf1s¨¨¨¨rfks and rg1s¨¨¨¨rgts are factorization of rf s so by our hypothesis rf1s¨¨¨¨rfks

and rg1s ¨ ¨ ¨ ¨rgts are equivelent hence Ψ is injective.

“ñ kerΨ “ N

Next we claim: kerΦ “ N

since Φpiαβpwqiβαpwq
´1q “ jαpiαβpwqqjβpiβαpwq

´1q “ jαiαβpww
´1q “ rx0s the second

equality follow since jαiαβ “ jβiβα and jαiαβ is a homomorphism.

“ñ N Ď kerΦ

Next let rg1s ¨ ¨ ¨ ¨rgns P kerΦ

“ñ Ψprg1s ¨ ¨ ¨ ¨rgnsNq “ Φprg1s ¨ ¨ ¨ ¨rgnsq “ rx0s

“ñ rg1s ¨ ¨ ¨ ¨rgnsN P kerΨ

“ñ rg1s ¨ ¨ ¨ ¨rgns P N

implies kerΦ Ď N

hence kerΦ “ N

and the proof will be completed so now we prove our hypothesis that any two factor-

ization of rf s are equivalent.

Let say rg1s ¨ ¨ ¨ ¨ ¨ rgks and rg11s ¨ ¨ ¨ ¨ ¨ rg
1
ls be two factorization of rf s. Then the composed

paths g1 ¨ ¨ ¨ ¨ ¨ gk and g11 ¨ ¨ ¨ ¨ ¨ g
1
l are homotopic so let F : I ˆ I Ñ X be a homotopy

from g1 ¨ ¨ ¨ ¨ ¨ gk to g11 ¨ ¨ ¨ ¨ ¨ g
1
l. There exist partitions 0 “ s0 ă s1 ă ¨ ¨ ¨ ă sm “ 1 and

0 ă t0 ă t1 ă ¨ ¨ ¨ ă tn “ 1 such that each ractangle rsi´1, sis ˆ rtj´i, tjs is mapped by

F into a single Aα, which we label Aij.

Note: These partitions may be obtained by covering Iˆ I by finitely many rectangles

ra, bs ˆ rc, ds each mapping to a single Aα using a compectness argument, then parti-

tioning I ˆ I by the union of all the horizontal and vertical lines containing edges of

these rectangles we may assume the s-partition subdivides the partitions giving the

products g1 ¨ ¨ ¨ ¨ ¨ gk and g11 ¨ ¨ ¨ ¨ ¨ g
1
l. Since F maps a neighborhood of Rij to Aij, we

may perturb the vertical sides of the rectangles Rij so that each point of I ˆ I lies

in atmost three R1ijs we may assume there are at least three row of rectangles, so we

may do this perturbation just on the rectangles in the intermediate rows, leaving the
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top and bottom rows unchanged let us relabel the new rectangles R1, R2, ¨ ¨ ¨ ¨ ¨Rmn,

ordering them as in the figure.

If γ is a path in I ˆ I from the left edge to the right edge, then the restriction

F |γ is a loop at the basepoint x0 since F maps both the left and the right edges of

I ˆ I to x0 let γr be the path separating the first r rectangles R1, ¨ ¨ ¨¨, Rr from the

remaining rectangles. Thus γ0 is the bottom edge of I ˆ I and Γmn is the top edge.

We pass from γr to γr`1 by pushing across the rectangle Rr`1 let us call the corners of

the R1rs vertices. For each vertex v with F pvq ‰ x0, let gv be a path from x0 to F pvq.

We can choose gv to lie in the intersection of the two or three A1ijs corresponding to

the R1rs containing v since we assume the intersection of any two or three A1ijs is path

connected. If we insert into F |γr the appropriate paths ḡvgv at successive vertices, as

in the proof of surjectivity of Φ, then we obtain a factorization of rF |γrs by regarding

the loop corresponding to a horizontal or vertical segment between adjacent vertices

as lying in the Aij for either of the R1ss containing the segment. Different choice of

these containing R1ss change the factorization of rF |γrs to an equvalent factorization.

Furthermore the factorization associated to successive paths γr and γr`1 are equiva-

lent since pushing γr across Rr1 to γr`1 changes F |γr to F |γr`1 by a homotopy within

the Aij corresponding to Rr`1, and we choose this Aij for all the segments of γr and

γr`1 in Rr`1. We can arrange the factorization associated to γ0 is equivalent to the

factorization rg1s ¨ ¨ ¨ ¨rgks by choosing the path gv for each vertex v along the lower

edge of I ˆ I to lie not just in the two A1ijscorresponding to the R1ss containing v but

also to lie in the Aα for the fi containing v in its domain. In case v is the common end

point of the domain of two consecutive f 1is we have F pvq “ x0 so there is no need to

choose gv. In similar way we may assume that the factorization associated to the final
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γmn is equivalent to rg11s ¨ ¨ ¨ rg
1
ls. Since the factorizations associated to all the γ1rs are

equivalent, we conclude that the factorization rg1s¨¨¨rgks and rg11s¨¨¨rg
1
ls are equivalent.

Example. Let pX, x0q and pY, y0q be two topological spaces we define their wedge

sum as X _ Y :“ X \ Y {x0 „ y0 let Vx0 , Vy0 be disc neighbourhoods of x0, y0 so

that X _ Y “ U1 \ U2 with U1 “ rX \ Vy0s and U2 “ rVx0 \ Y s we conclude that

π1pX _ Y q “ π1pXq˚ π1pY q. In particular π1pS
1 _ S1q “ Z˚ Z “ F2.

Example. We will show that Sn for n ą 1 are simply-connected. Let decompose Sn

as two hemispheres H1 H2, then H1 XH2 “ Sn´1 so all these are connected

“ñ π1pS
nq “ π1pH1q˚π1pSn´1q π1pH2q is the trivial group since both H1 and H2 are

contractible.

Example. Let tXiu
n
i“1 such that each Xi is a connected space with a basepoint

which has contractible neighborhood we get π1p_
n
i“1Xiq “ ˚n

i“1π1pXiq. For example,

the fundamental group of a bouquet of n-circles is the free group on n-generators.

Example. (Infinite mug) We will calculate fundamental group of topological cylin-

der S1ˆR with a handle attached (the handle can be thought as a segment of a curve).

Let call this space X. Note X retract into S1YY by deformation, where Y is a segment

of curve, therefore up to homotopy this space is S1_S1 so π1pXq » π1pS
1_S1q » Z˚Z.

2.6 Covering spaces

Definition. A covering space of a space X is a space X̃ together with a map p : X̃ Ñ

X satisfying the following condition:

There exist an open cover tUαu of X such that for each α, p´1pUαq is a disjoint union

of open sets in X̃, each of which is mapped by p homeomorphically onto Uα.

Remark. We do not require p´1pUαq to be nonempty, so p need not be surjective.

2.6.1 Fundamental group of S1

Definition. Let p : E Ñ B be a covering map; let b0 P B choose e0 so that ppe0q “ b0.

Given an element rf s of π1pB, b0q, let f̃ be the lifting of f to a path in E that be-
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Three different coverings of a 2-sphere with a diameter attached

gins at e0. Let φprf sq denotes the end point ˜fp1q of f̃ . Then φ is a well-defined set map

φ : π1pB, b0q Ñ p´1pb0q

we call φ the lifting correspondence derived from the covering map p. It depends

of course on the choice of the pint e0.

Theorem. Let p : E Ñ B be a covering map; let ppe0q “ b0 if E is path connected,

then the lifting correspondence φ : π1pB, b0q Ñ p´1pb0q is surjective. If E is simply

connected, it is bijective.

Proof. If E is path connected, then given e1 P p
´1pb0q there is a path f̃ in E from e0

to e1. Then f “ p ˝ f̃ is a loop in B at b0, and φprf sq “ e1

“ñ φ is surjective.

Next we show that if E is simply connected then φ is bijective. Since simply connected

space is also path connected by definition so φ is surjective so it only remains to show

φ is injective.

Let rf s and rgs P π1pB, b0q be any such that φprf sq “ φprgsq

“ñ ˜fp1q “ ˜gp1q

where f̃ and g̃ be lifting of f and g, respectively to paths in E that begin at e0 now,

as E is simply connected

“ñ there is a path homotopy F̃ in E between f̃ and g̃. Then p˝F̃ is a path homotopy

in B between f and g.

Theorem. The fundamental group of S1 is isomorphic to the additive group of inte-

gers.
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Proof. Let p : RÑ S1 be the covering map given by ppxq “ pcos 2πx, sin 2πxq

let e0 “ 0 and let b0 “ ppe0q then p´1pb0q “ Z. Since R is simply connected the lifting

correspondence φ : π1pS
1, b0q Ñ Z is bijective. We will show φ is a homomorphism

then it will follows that π1pS
1, b0q « Z let rf s, rgs P π1pB, b0q, let f̃ and g̃ be their

respective lifting to paths on R beginning at 0 let n “ ˜fp1q

m “ ˜gp1q

then φprf sq “ n and φprgsq “ m, let ¯̄g be the path ¯̄gpsq “ n` ¯gpsq on R since we have

ppn ` xq “ ppxq@x P R the path ¯̄g is a lifting of g; it begins at n. Then the product

f̄ ˚ ¯̄g is defined and it is lifting of f ˚ g that begins at 0. The end point of this path is

¯̄gp1q “ n`m

“ñ φprf s ˚ rgsq “ n`m “ φprf sq ` φprgsq

“ñ φ is bijective and isomorphism

“ñ π1pS
1, b0q » Z.

Definition. A lift of a map f : Y Ñ X is a map f̃ : Y Ñ X̃ such that the following

diagram commute.

Y X̃

X

f̃

f
p

i.e., p ˝ f̃ “ f

2.7 Lifting Properties

2.7.1 Homotopy lifting property

Proposition. Given a covering space p : X̃ Ñ X, a homotopy ft : Y Ñ X and a

map f̃0 : Y Ñ X̃ lifting f0, then there exists a unique homotopy f̃t : Y Ñ X̃ of f̃0

that lifts ft.

Remark. Taking Y to be a point gives the path lifting property for a covering p : X̃ Ñ

X, which says that for each path f : I Ñ X and each lift x̃0 of the starting point

fp0q “ x0 there is a uniqe path f̃ : I Ñ X̃ lifting f starting at x̃0.
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Remark. Taking Y to be I we will get path lifting homotopy.

The following proposition is an application of homotopy lifting.

Proposition. The map p˚ : π1pX̃, x̃0q Ñ π1pX, x0q induced by a covering space

p : pX̃, x̃0q Ñ pX, x0q is injective. The image subgroup p˚pπ1pX̃, x̃0q in π1pX, x0q

consists of the homotopy classes of loops in X based at x0 whose lifts to X̃ starting

at x̃0 are loops.

Definition. If p : X̃ Ñ X is a covering space, then the cardinality of the set p´1px0q

is locally constant over X. Hence if X is connected, this cardinality is constant as x

ranges over all of X. It is called number of sheets of the covering.

Proposition. The number of sheets of a covering space p : px̃, x̃0q Ñ pX, x0q with X

and X̃ path-connected equals the index of p˚pπ1pX̃, x̃0q in π1pX, x0q.

2.7.2 Lifting criterion

Proposition. Suppose given a covering space p : pX̃, x̃0q Ñ pX, x0q and a map

f : pY, y0q Ñ pX, x0q with Y path connected and locally path-connected. Then a lift

f̃ : pY, y0q Ñ pX̃, x̃0q of f exists iff f˚pπ1pY, y0qq Ă p˚pπ1pX̃, x̃0qq.

The importance of Y to be locally path-connectd can be made clear by following

example.

Example. Let Y be the quasi-circle shown in the figure, a closed subspace of R2

consisting of a portion of the graph of y “ sin p1{xq, the segment r´1, 1s in the

y ´ axis, and an arc connecting these two pieces.

Collapsing the segment of Y in the y ´ axis to a point gives a quotient map

f : Y Ñ S1. Show that f does not lift to the covering space R Ñ S1, even though

π1pY q “ 0. Thus local path–connectedness of Y is a necessary hypothesis in the lifting
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criterion.

Let p : R Ñ S1 be given by pptq “ pcos 2πt, sin 2πt let l be the segment on the

y ´ axis without loss of generality assume that fplq “ t1u and let f̃ : Y Ñ R is a

lifting of f Now as Y {l is connected

“ñ f̃pY {lq is connected

“ñ f̃pY {lq must be the component of p´1pfpY {lqq “ R{2πZ say p0, 2πq since f is

surjective.

“ñ f̃pY {lq=p0, 2πq since Y is compact

“ñ f̃pY q Ą r0, 2πs

“ñ t0, 2πu Ă f̃pLq.

Now since L is connected “ñ f̃pLq should be connected but f̃pLq Ă 2πZ is a discrete

set containing at least two points.

2.7.3 Unique lifting property

Proposition. Given a covering space p : X̃ Ñ X and a map f : Y Ñ X with two

lifts f̃1, f̃2 : Y Ñ X̃ that agree at one point of Y , then if Y is connected, these two

maps must agree on all of Y .

The proof of above proposition is very easy. Now we move towards classification

of covering spaces.

2.8 The classification of covering spaces

Definition. A space X is semilocally simply-connected if for each x P X has a

neighborhood U such that the inclusion-induced map π1pU, xq Ñ π1pX, xq is trivial.

Definition. A covring space p : X Ñ B is called a universal cover of B if X is simply

connected.

Theorem. Suppose B is path connected and locally path connected space; then a

universal cover of B exists iff B is semilocally simply connected.

Remark. In all the results of the remaining part or this section we will assume that all

of the spaces have the following properties; path connected, locally path connected,
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and semi locally simply connected. Because this gives a good classification of covering

spaces.

Proposition. Suppose X is path-connexted, locally path-connected, and semilocally

simply-connected. Then for every subgroup H Ă π1pX, x0q there is a covering space

p : XH Ñ X such that p˚ pπ1pXH , x̃0q “ H for a suitably chosen basepoint x̃0 P XH .

Having taken care of the existence of covering spaces of X corresponding to all

subgroups of π1pXq, we turn now to the question of uniqueness. More specifically,

we are interested in uniqueness up to isomorphism, where an isomorphism between

covering spaces p1 : X̃1 Ñ X and p2 : X̃2 Ñ X is a homeomorphism f : X̃1 Ñ X̃2

such that p1=p2f .

Proposition. If X is path-connected and locally path connected, then two path-

connected covering spaces p1 : X̃1 Ñ X and p2 : X̃2 Ñ X are isomorphic via an

isomorphism f : X̃1 Ñ X̃2 taking a basepoint x̃1 P p
´1
1 to a base point x̃2 P p

´1
2 iff

p1 ˚ pπ1pX̃1, x̃1qq “ p2 ˚ pπ1pX̃2, x̃2qq.

We can conclude the first half of the following classification theorem:

Theorem. Let X be path-connected, locally path-connected, and semilocally simply-

connected. Then there is a bijection between the set of basepoint-preserving isomor-

phism classes of path-connected covering spaces p : pX̃, x̃0q Ñ pX, x0q and the set of

subgroups of πpX, x0q, obtained by associating the subgroup p ˚ pπ1pX̃, x̃0qq to the

covering space pX̃, x̃0q. If basepoint are ignored, this correspondence gives a bijec-

tion between isomorphism classes of path-connected covering spaces p : X̃ Ñ X and

conjugacy classes of subgroups of π1pX, x0q.

2.9 Deck Transformation and group action

Definition. For a covering space p : X̃ Ñ X the isomorphism X̃ Ñ X̃ are called

deck transformation or covering transformation.

Definition. A covering space p : X̃ Ñ X is called normal if for each x P X and each

pair of lifts x̃, x̃1 of x there is a deck transformation taking x̃ to x̃1.
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Proposition. Let p : pX̃, x̃0q Ñ pX, x0q be a path-connected covering space of

the path connected, locally path-connected space X, and let H be the subgroup

p˚pπ1pX̃, x̃0q Ă π1pX, x0q. Then:

a) This covering space is normal iff H is a normal subgroup of π1pX, x0q.

b)GpX̃q is isomorphic to the quotient NpHq{H where NpHq is the normalizer of H in

π1pX, x0q in particular, GpX̃q is isomorphic to π1px, x0q{H if X̃ is a normal covering.

Hence for the universal cover X̃ Ñ X we have GpX̃q « π1pxq.
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Chapter 3

Homology

3.1 Simplicial and singular homology

We start with the following motivating examples:

a) Torus can be obtained from a square by identifying opposite edges in the way

indicated by the arrows in the figure below:

b) Similarly projective plane RP 2, and the klein bottle K can be obtained.

If we cut the square along a diagonal, we get two triangles so each of these surfaces

can also be constructed from two triangles by identifying certain pair of edges. In

the same way, a polygon with any number of sides can be cut along diagonals into
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triangle, In fact all closed surfaces can be constructed from triangles by identifying

edges.

That is we have a single building block, the triangle, from which all surfaces can

be constructed using only triangles we could also construct a large class of 2 ´

dimensional spaces that are not surfaces in the strict sense, by allowing more than

two edges to be identified together at a time.

Remark. 4-Complexes are a generalization of this idea, using the n ´ dimensional

analog of the triangle.

Definition. n´simplex, this is the smallest convex set in Rn`1 containig n`1 points

v0, v1, ¨ ¨ ¨¨, vn that do not lie in a hyperplane of dimension less than n.

Example. 0´ simplex is a point.

Example. 1´ simplex is just a line.

Example. 2´ simplex is a triangle.

Example. 3´ simplex is a Tetrahedron.

Definition. A face of a simplex rv0, ¨ ¨ ¨¨, vns is the subsimplex with vertices any

nonempty subset of the v1is. The subset need not be a proper subset, rv0, ¨ ¨ ¨¨, vns is

regarded as a face of itself.
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Definition. 4 ´ complex is a quotient space of a collection of disjoint simplices

obtained by identifying certain of their faces via the canonical linear homeomorphisms

that preserve the ordering of vertices.

3.2 Simplicial Homology

Let 4npXq be the free abelian group with basis the open n ´ simplices enα of X

elements of 4npXq called n ´ chains. n ´ chains can be written as finite formal

sums
ř

α nασα where σα : 4n Ñ X is the characteristic map of enα. The boundary of

the n ´ simplex rv0, ¨ ¨ ¨, vns consists of the various pn ´ 1q ´ dimensional simplices

rv0, ¨ ¨ ¨, v̂i, ¨ ¨ ¨, vns, where the ‘hat’ symbolˆover vi indicates that this vertex is deleted

from the sequence v0, ¨ ¨ ¨vn.

Definition. For a general 4´ complex X, a boundary homomorphism given as

follows:

Bn : 4npXq Ñ 4n´1pxq

Bnpσαq “
ř

ip´1qiσα|rv0, ¨ ¨ ¨¨, v̂i, ¨ ¨ ¨¨, vns.

Proposition. The composition 4npXq
Bn
Ñ́ 4n´1pXq

Bn´1
´́ Ñ́ 4n´2pXq is zero.

¨ ¨ ¨ Ñ 4npXq
B
Ñ́ 4n´1pXq Ñ ¨ ¨ ¨
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So define simplicial homology groups to be H4
n “ KerBn{ImBn`1.

Example. X “ T , the torus with the 4´ complex struture pictured earlier, having

one vertex, three edges a, b, and c, and two 2-simplices U and L. As in the figure

give at the starting of chapter, B1 “ 0 so H4
0 « Z. Since B2U “ a ` b ´ c “ B2L and

ta, b, a ` b ´ cu is a basis for 41pT q, it follows that H4
1 « Z ‘ Z. Since there are no

3-simplices, H4
2 is equal to KerB2, which is infinite cyclic generated by U ´ L since

BppU ` qLq “ pp` qqpa` b´ cq “ 0 only if p “ ´q.

Thus

H4
n pT q«

$

’

’

’

’

’

&

’

’

’

’

’

%

Z‘ Z n “ 1

Z n “ 0, 2

0 n ě 3

3.3 Singular Homology

A singular n ´ simplex in a space X is by defintion just a map σ : 4n Ñ X. Let

CnpXq be the free abelian group with basis the set of singular n ´ simplex in X.

Elements of CnpXq, called n´chains, or more precisely singular n´chains, are finite

formal sums
ř

i niσi for ni P Z and σi : 4n Ñ X and boundary map is defined as

Bn : CnpXq Ñ Cn´1pXq

Bnpσq “
ř

ip´1qiσ|rv0, ¨ ¨ ¨¨, v̂i, ¨ ¨ ¨¨, vns.

The proof of the lemma also hold good here i.e., BnBn`1 “ 0 so we can define singular

homology group HnpXq “ KerBn{ImBn`1.

Proposition. Corresponding to the decomposition of a spaceX into its path-components

Xα there is an isomorphism of HnpXq with the direct sum
À

αHnpXαq.

Proposition. A If X is nonempty and path-connected, then H0pXq « Z hence for

any space X, H0pXq is a direct sum of Z1s, one for each path-component of X.

Corollary. Thus H0pXq is a free abelian group and rank(H0pXq) is equal to the

number of path component of X.

Proposition. If X is a point, then HnpXq “ 0 for n ą 0 and H0pXq « Z. Sine

C0pXq « Z and CnpXq “ 0 for n ě 1.
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3.4 Reduced homology groups

Reduced homology groups H̃npXq is defined to be the homology groups of the aug-

mented chain complex

¨ ¨ ¨ Ñ C2pXq
B2
Ñ́ C1pXq

B1
Ñ́ C0pXq

ε
Ñ́ ZÑ 0

where εp
ř

i niσiq “
ř

i ni

since εB1 “ 0, ε vanishes on ImB1, and hence induces map H0pXq Ñ Z with

Kernel “ H̃0pXq

so, H0pXq “ H̃0pXq ‘ Z. And HnpXq « H̃npXq for n ą 0.

3.5 Homotopy Invariance

For a map f : X Ñ Y , and induced homomorphism f#pσq “ fσ : 4n Ñ Y , then

extending f# linearly via f#p
ř

i niσiq “
ř

i nif#pΣiq “
ř

i nifσi. Also note

f#Bpσq “ f#p
ř

ip´1qiσ|rv0, ¨ ¨ ¨, v̂i, ¨ ¨ ¨, vnsq “
ř

ip´1qifσ|rv0, ¨ ¨ ¨, v̂i, ¨ ¨ ¨, vns “ Bf#pσq.

Thus we have diagram on next page.

The fact that the maps f# : CnpXq Ñ CnpXq satisfy f#B “ Bf# is also express by

saying that the f 1#s define a chain map from the singular chian complex of X to that

of Y also f#B “ Bf#

“ñ f# takes cycles to cycles since Bα “ 0

“ñ Bpf#αq “ f#pBαq “ 0 and f# takes boundaries to boundaries since f#pBβq “

Bpf#βq.

Hence f# induces a homomorphism f˚ : HnpXq Ñ HnpY q

Thus we have proved the following proposition.

Proposition. A chain map between chain complexes induces homomorphisms be-

tween the homology groups of the two complexes.

Properties:

a)pfgq˚ “ f˚g˚.
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b)1˚ “ 1.

Theorem. B If two maps f , g : X Ñ Y are homotopic, then they induce the same

homomorphism f˚ “ g˚ : HnpXq Ñ HnpY q.

The following is an immediate consequence.

Corollary. The maps f˚ : HnpXq Ñ HnpY q induced by a homotopy equivalence

f : X Ñ Y are isomorphisms for all n.

Definition. Given a homotopy F : X ˆ I Ñ Y from f to g, we can define prism

operators P : CnpXq Ñ Cn`1pY q by P pσq “
ř

ip´1qiF ˝pσˆ1q | rv0, ¨ ¨ ¨, vi, wi, ¨ ¨ ¨, wns

for σ :Mn Ñ X , where F ˝ pσ ˆ 1q is the composition Mn ˆI Ñ X ˆ I Ñ Y , this

prism operators satisfy the relation BP “ g# ´ f# ´ PB

i.e, BP`PB “ g#´f#. This relationship is expressed by saying P is a chain homotopy

between the chain maps f# and g#. Theorem B then follows from:

Proposition. Chain homotopic chain maps induce the same homomorphism on ho-

mology.

3.6 Relative homology groups

Relative homology groups are defined in the following way. Given a space X and

a subspace A Ă X, let CnpX,Aq be the quotient group CnpXq{CnpAq. Since the

boundary map B : CnpXq Ñ Cn´1pXq takes CnpAq to Cn´1pAq, it induces the quo-

tient boundary map B : CnpX,Aq Ñ Cn´1pX,Aq. Letting n vary, we have a sequence

of boundary maps

¨ ¨ ¨ Ñ CnpX,Aq
B
Ñ́ Cn´1pX,Aq Ñ ¨ ¨ ¨

The relation B2 “ 0 holds for these boundary maps since it holds before passing to

quotient groups. so we have chain complex, and the homology groups KerBn{ImBn`1

of this chain complex are by definition the relative homology group HnpX,Aq.

Theorem. The sequence of homology groups

¨ ¨ ¨¨ Ñ HnpAq
i˚
Ñ́ HnpBq

j˚
Ñ́ HnpCq

B
Ñ́ Hn´1pAq

i˚
Ñ́ Hn´1pBq Ñ́ ¨ ¨ ¨¨ is exact.
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Example. In the long exact sequence of reduced homology groups for the pair

pDn, BDnq the maps HjpD
n, BDnq

B
Ñ́

∼
Hj´1pS

n´1q are isomorphism for all ją0 since

the remaining terms
∼
HjpD

nq are zeros for all j.

Hence we have

HjpD
n, BDnq «

$

’

&

’

%

Z for j “ n

0 otherwise

Example. Applying the long exact sequence of reduced homology groups to a pair

pX, x0q with x0 P X yields isomorphismsHnpX, x0q «
∼
HnpXq for all n since

∼
Hnpx0q “

0 @n.

Proposition. If two maps f, g : pX,Aq Ñ pY,Bq are homotopic through the maps of

pair pX,Aq Ñ pY,Bq, then f˚ “ g˚ : HnpX,Aq Ñ HnpY,Bq.

3.7 Long exact sequences in homology

Definition. A sequence of homorphisms

¨ ¨ ¨Ñ́ An`1
αn`1
´́ Ñ́ An

αn
Ñ́ An´1

αn´1
´́ Ñ́ ¨ ¨ ¨ is said to be exact if kerαn“ Imαn for each n.

The following chain is called long exact sequence of homology groups:

¨¨¨ Ñ HnpAq
i˚
Ñ́ HnpXq

j˚
Ñ́ HnpX,Aq

B
Ñ́ Hn´1pAq

i˚
Ñ́ Hn´1pXq Ñ ¨¨¨ Ñ H0pX,Aq Ñ 0

3.8 Excision theorem

Theorem. Given subspaces Z Ă A Ă X such that the closure of Z is contained in

the interior of A, then the inclusion pX ´ Z,A ´ Zq ãÑ pX,Aq induces isomorphism

HnpX ´ Z,A´ Zq Ñ HnpX,Aq for all n.

Equivalently, for subspaces A, B contained in X whose interiors cover X, the inclusion

pB,AXBq ãÑ pX,Aq induces isomorphism and HnpB,AXBq Ñ HnpX,Aq for all n.

Proposition. For good pairs pX,Aq, the quotient map q : pX,Aq Ñ pX{A,A{Aq

induces isomprphism q˚ : HnpX,Aq Ñ HnpX{A,A{Aq «
∼
HnpX{Aq @ n.

Theorem. If X is a space and A is nonempty closed subspace that is a deformation

retract of some neighbourhood in X, then there is an exact sequence
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¨ ¨ ¨ Ñ
∼
HnpAq

i˚
Ñ́

∼
HnpXq

j˚
Ñ́

∼
HnpX{Aq

B
Ñ́

∼
Hn´1pAq

i˚
Ñ́

∼
Hn´1pXq Ñ́ ¨ ¨ ¨ Ñ́

∼
H0pX{Aq Ñ́ 0 where i is the inclusion A ãÑ X and j is the quotient map X Ñ X{A.

Definition. Pair of spaces pX,Aq satisfying the hypothesis of the theorem will be

called good pairs.

Corollary.
∼
HnpS

nq ≈ Z and
∼
HjpS

nq “ 0 for j ‰ n

Corollary. BDn is not a retract of Dn. Hence every map f : Dn Ñ Dn has a fixed

point.

Proof. Let if possible r : Dn Ñ BDn is a retraction then using defination of retraction

we have ri=1 where i is the inclusion map i : BDn ãÑ Dn now corresponding to map

r and i we can induce maps r˚ : H̃n´1pBD
nq Ñ H̃n´1pBD

nq and i˚ : H̃n´1pBD
nq Ñ

H̃n´1pBD
nq since by property we defined earlier we have priq˚ “ r˚i˚ “ 1˚ “ 1 “ priq

that means the composition H̃n´1pBD
nq

i˚
Ñ́ H̃n´1pD

nq
r˚
Ñ́ H̃n´1pBD

nq is then the

identity map on H̃n´1pBD
nq « Z.But both i˚ and r˚ are 0 since H̃n´1pD

nq “ 0 and

we have a contradiction.

Definition. The local homology groups of a space X at a point x P X are defined to

be the groups HnpX,X ´ txuq.

Theorem. If nonempty open sets U Ă Rm and V Ă Rn are homeomorphic then

m “ n.

The above theorem is an application of result of Brouwer known as ‘invariance of

dimension,’ which tells us Rm is not homeomoephic to Rn if m ‰ n.

3.9 The equivalence of simplicial and singular ho-

mology

There is a canonical homomorphism from H4
n to HnpX,Aq induced by the chain map

4npX,Aq Ñ CnpX,Aq ending each n-simplex of X to its characteristic map. The

possibility A “ ∅ is not excluded, in which case the relative group reduce to absolute

groups.

Theorem. The homomorphisms H∆
n pX,Aq Ñ HnpX,Aq are isomorphisms for all n

and all ∆-complex pairs pX,Aq.
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3.10 Computations and applications

Definition. For a map f : Sn Ñ Sn, the induced f˚ :
∼
HnpS

nq Ñ
∼
HnpS

nq is a

homorphism from an infinite cyclic group to itself and so must be of the form f˚pαq “

dα for some integer d depending only on f . This integer is called the degree of f ,

with the notation deg f .

Now we first define action of a group on a space X then give a application of

degree map. An action of a group G on a space X is a homomorphism from from

G to the hroup Homeo(X) of homeomorphism h : X Ñ X, and action is free if the

homeomorphism corresponding to each nontrivial element of G has no fixed points.

Example. Z2 is the only nontrivial group that can act freely on Sn if n is even.

Since the degree of homeomorphism must be 1 or ´1, an action of a group G on

Sn determines a degree function d : G Ñ t`1,´1u. This is a homomorphism since

degfg=degfdegg. If the action is free, then d sends every nontrivial element of G to

p´1qn`1. Thus when n is even, d has trivial kernel, so G Ă Z2.

3.11 Cellular homology

Theorem. If X is a CW complex, then

(a) HkpX
n, Xn´1q is zero for k ‰ n and is free abelian for k “ n, with a basis in

one-to-one correspondence with n-cells of X.

(b) HkpX
nq “ 0 for kąn. In particular, if X is finite-dimensional then HkpXq “ 0

for k ądimX

(c) the inclusion i : Xn ãÑ X induces an isomorphism i˚ : HkpX
nq Ñ HkpXq if

kăn.

With the help of above result we define cellular homology groups of a CW

complex X. Let X be a CW complex. Using above theorem, portions of the long

exact sequences for the pair pXn`1, Xnq, pXn, Xn´1q, and pXn´1, Xn´2q fit into a

diagram
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where dn`1 and dn are defined as dn`1 “ jnBn`1 and dn “ jn´1Bn. Since the

composition dndn`1 includes two successive maps in one of the exact sequences, hence

is zero. The horizontal row in the diagram is a chain complex, called the cellular

chain complex of X. The homology group of this cellular chain complex are called

the cellular homology groups of X.

36



Bibliography

[1] Allen Hatcher. Algebraic Topology. Cambridge University Press, 2002.

[2] James R. Munkres. Topology. 2000 Pearson Education Inc., Upper Saddle River,

New Jersey 07458, S.S.A.

[3] Anant R. Shastri. Basic Algebraic Topology. CRC Press.

[4] Joseph J. Rotman. An introduction to Algebraic Topology. 1988 by Springer-Verlag

New York Inc.

[5] William S. Massey. A Basic Course in Algebraic Topology. 1991 by Springer-Verlag

New York Inc.

[6] Satya Deo. Algebraic Topology A Primer. 2003, Hindustan Book Agency (lndia).

[7] Wikipedia.com, relevant pages on mathematics. en.wikipedia.org.

37




