Local Class Field Theory

Damanvir Singh Binner

MP15017

A dissertation submitted for the partial fulfilment
of MS degree in Science

IN PURSUIT OF KNOWLEDGE

Indian Institute of Science Education and Research Mohali
April 2018






Certificate of Examination

This is to certify that the dissertation titled “Local Class Field Theory ” submitted by Mr.
Damanvir Singh Binner (Reg. No. MP15017) for the partial fulfilment of MS degree pro-
gramme of the Institute, has been examined by the thesis committee duly appointed by the
Institute. The committee finds the work done by the candidate satisfactory and recommends
that the report be accepted.

Dr. Abhik Ganguli Dr. Aribam Chandrakant Dr. Chetan Balwe
(Supervisor)

Dated: April 19, 2018






Declaration

The work presented in this dissertation has been carried out by me under the guidance of
Dr. Abhik Ganguli at the Indian Institute of Science Education and Research Mohali.

This work has not been submitted in part or in full for a degree, a diploma, or a fellowship
to any other university or institute. Whenever contributions of others are involved, every
effort is made to indicate this clearly, with due acknowledgement of collaborative research
and discussions. This thesis is a bonafide record of original work done by me and all sources
listed within have been detailed in the bibliography.

Damanvir Singh Binner
(Candidate)
Dated: April 19, 2018

In my capacity as the supervisor of the candidate’s project work, I certify that the above
statements by the candidate are true to the best of my knowledge.

Dr. Abhik Ganguli
(Supervisor)

iii






Acknowledgement

It gives me an immense pleasure to thank my advisor Dr. Abhik Ganguli for his priceless guidance
and for giving me so much of his time.

I would like to thank my research progress committee members Dr. Aribam Chandrakant and
Dr. Chetan Balwe for their support and encouragement.

I take this opportunity to thank the Head of the department and faculty members for provid-
ing a lively atmosphere for research. I am thankful to the non-academic staff of the department for

helping me with administrative formalities.

I want to thank my classmates especially Manpreet Singh and Manoj Upreti for their constant
support.

I owe the greatest debt to my parents for their emotional support in some of the tough times.






Contents

1 Introduction

2 The Cohomology of Groups

2.1 G-Modules . . . . . . e e e e
2.2 Induced Modules . . . . . . . .. e
2.3 Definition of Cohomology Groups . . . . . . . . . . . . . ...
2.4 Description of Cohomology Groups by means of Cochains . . . . . . ... ... ...
2.5 Shapiro’s Lemma . . . . . . . .. oL
2.6 Cohomology of finite Galois extensions . . . . . . . . . . . . . .. ... ... ...
2.6.1 Hilbert’s Theorem 90 . . . . . . . . . . . . e
2.6.2 Cohomology of L . . . . . . . .. .
2.7 The Cohomology of Products . . . . .. .. .. ... .. .. . .
2.8 Functorial Properties of the Cohomology Groups . . . . . ... ... ... .. ....
2.8.1 Examples . . . . . . .. e e
2.8.2 Relations among functorial maps . . . . . . .. ..o
2.9 Homology . . . . . . . e
2.10 The Group Hi(G,Z) . . . . .« e
2.11 Tate Groups . . . .« v v o v o e e
2.12 Alternative approach to Tate Cohomology . . . . . . . .. . ... ... ... .....
2.12.1 Cohomology groups . . . . . . . . o o it e
2.12.2 Dimension Shifting . . . . . . . . ...
2.12.3 Functorial Maps . . . . . . . . .
2.12.4 Cup Products . . . . . . . .
2.12.5 Properties of Cup Products . . . . . . . . . . ..o
2.13 The Cohomology of Finite Cyclic Groups . . . . . . . . .. ... ... ... ...,
2.14 Tate’s Theorem . . . . . . . . . . . . e
2.15 Another proof of Tate’s Theorem . . . . . . . . . . . . . .. ... ... ... .....
2.16 Galois Cohomology . . . . . . . . . . . . e
2.16.1 Profinite groups . . . . . . . .. L
2.16.2 Cohomology of Profinite Groups . . . . . . . . . . . ... ...
3 Local Class Field Theory
3.1 Recap of Local Fields . . . . . . . . . . . . . .
3.2 Properties of Frobenius Element . . . . .. .. ... ... o oo
3.2.1 Finite Extensions . . . . . . . . . . ..
3.2.2 Infinite Extensions . . . . . . . . ... L
3.3 The Cohomology of Unramified Extensions . . . .. . ... ... ... ........

vii

18
20
26
29
29
30
31
32
34
36
39
42
44
o1
o1
93
56
99
62
68
72
78
80
80
82



3.4

3.5
3.6
3.7
3.8
3.9

Invariant Map and Local Artin Map . . . . . . . . . ... ... ... .. ... ... 95

3.4.1 Finite Extensions . . . . . . . . . ... 95
3.4.2 Infinite Extensions . . . . . . . . . . ... 98
Ramified Extensions . . . . . . . . . .. .. 103
The Fundamental Class . . . . . . . . . . . . . . . 110
The Local Artin Map . . . . . . . . . e e e 114
The Hilbert Symbol . . . . . . . . . . 121
The Existence Theorem . . . . . . . . . . . . . . . . . . . 121

viii



Chapter 1

Introduction

The central theme of this thesis is to understand Local Class Field Theory which classifies the finite
abelian extensions of a local field. We have taken the cohomological approach closely following the
expositions by Milne ([1]) and Neukirch ([2]). By a local field, we mean a field K that is locally
compact with respect to a nontrivial valuation (cf. Lemma 36 for details). In what follows, we
assume that K is a local field of characteristic 0 which means K is a finite extension of (),. We
note in passing that the main theorems also hold for local fields with characteristic p.

In the second chapter, we have described the cohomology of groups. Firstly, we focus on finite
groups. We begin with the study of standard group cohomology theory like Induced Modules,
Shapiro’s Lemma, restriction, inflation and corestriction maps, Hilbert’s Theorem 90. We move on
to study some properies of Homology groups and describe how long exact sequences for Homology
and Cohomology can be spliced together to give a very long exact sequence for Tate Cohomology.
Then we describe an alternative approach to Tate Cohomology which makes it possible to define
the functorial maps and cup products directly on Tate Cohomology groups. After that we focus on
the Tate cohomology of finite cyclic groups. Finally, we give two proofs of Tate’s Theorem.

Theorem 1. (Tate’s Theorem) Let G be a finite group and let C' be a G-module. Suppose that for
all subgroups H of G,
1. HY(H,C) =0, and
2. H*(H,C) is a cyclic group of order equal to (H : 1). Then, for all v, there is an isomomorphism

H"(G,Z) — H (G, C)

depending only on the choice of generator for H*(G,C).

The first one is the original proof by Tate which involves the construction of the splitting module
for the chosen generator v of H?(G,C). The second proof shows that the isomorphism is given
by cup product with the generator v. Then we discuss the cohomology of profinite groups which
allows us to study the cohomology of infinite galois extensions.

In the third chapter, we describe the Local Class Field Theory using the techniques developed
in the second chapter. Firstly we describe finite unramified extensions. These extensions are cyclic
and thus allow us to use the cohomology of finite cyclic groups. This leads us to the invariant map

invy i« H(L/K) — Q/Z



which is an isomorphism onto ﬁZ/ Z. This shows that the second condition in the hypothesis of
Tate’s Theorem is satisfied. The first condition is satisfied because of Hilbert’s Theorem 90. Thus
the Tate’s Theorem gives us the isomorphism

H"(G,7) — H" (G, L*)
for all r € Z. In particular for r = —2, it gives us the isomorphism

The inverse of this isomorphism is known as the Local Artin Map. Then we show using the first proof
of Tate’s Theorem that the Local Artin Map for the finite unramified extensions has a very simple
description namely it takes the class of uniformizer to the Frobenius element in Gal(L/K). Then
the definition of invariant map is extended to infinite unramified extensions to get the following
isomorphism

invg : H*(K""/K) — Q/Z
Furthermore, we show that the inflation map
HY(K"/K) — H*(K“/K)

is an isomorphism. These isomorphisms help us to prove that for finite ramified extensions also,
there is an isomorphism

invy i+ H*(L/K) — 77

1
[L: K]
Thus the hypothesis of Tate’s Theorem is satisfied in the general case also and we get the isomor-
phism

Gal(L/K)™ — K*/Nmp (L)

The inverse of this isomorphism induces the surjective map
¢r/k t K* — Gal(L/K)™

The second proof of Tate’s Theorem tells us that this map is given by cup product with a chosen
generator of H?(L/K) (which we call the Local Fundamental Class). The properties of cup products
and invariant maps help us to show the following Theorem :

Theorem 2. Let L O E D K be local fields with both L and E Galois over K. Then the following

diagram commutes :

K — M Gal(L/K)™

lid l (1.1)

K* ——=— Gal(E/K)%®
where the map m is induced by the surjective map Gal(L/K) — Gal(E/K) given by o — 0.
Theorem 2 implies that if L. D E D K is a tower of finite abelian extensions of K, then V a € K*,
br/k(a) 1E = dp/k(a)
This compatibility helps us to define the Local Artin Map ¢
or : K* = Gal(K/K)



to be the homomorphism such that for every finite abelian extension L/K,

¢k (a) L= b1k (a)
This definition leads us to the following Theorem which is known as the Local Reciprocity Law.
Theorem 3. For every local field K, there exists a homomorphism (Local Artin Map)
or : K* = Gal(K/K)

with the following properties :

(a) for every prime element w of K, ¢ (m) [gun= Froby ;

(b) for every finite abelian extension L of K, Nmp k(L") is contained in the kernel of a
oK (a) [L, and ¢ induces an isomorphism

The explicit description of the corestriction map in dimensions 0 and —2 helps us to prove the
following Theorem :

Theorem 4. (Norm Limitation Theorem) Let L be a finite extension of K, and let E be the largest
abelian extension of K contained in L; then

Nmpg(L*) = Nmg, g (E”)
Using the definition of the local Artin map, we can define a pairing known as the Hilbert Symbol
K*/K™ x K*/K™ = up,
The properties of the Hilbert Symbol help us to prove the following Theorem :

Theorem 5. Let K be a local field containing a primitive nt* root of 1. Any element of K* that
is a norm from every cyclic extension of K of degree dividing n is an n' power.

A subgroup N of K* is known as a norm group if there is a finite abelian extension L/K such that
Nmp (L") =N

Theorem 5 and the properties of norm subgroups of K* helps us to prove the Existence Theorem :

Theorem 6. (Ezistence Theorem) Every open subgroup of finite index in K* is a norm group.

Theorem 2 and the Existence Theorem classify the finite abelian extensions of a local field K since
they immediately imply the following Theorem :

Theorem 7. Let K be a local field. For every finite abelian extension L of K, the map

is an order-reversing bijection from the set of finite abelian extensions of K to the set of subgroups
of K* of finite index.



Theorem 73 is known as the Existence Theorem because its crucial assertion is that given an
open subgroup I of finite index in K*, there exists an abelian extension L/K whose norm group
Nmyp g (L*) = I. This field L is uniquely determined and is called the class field associated with
1.

The Norm Limitation Theorem (Theorem 4) shows that there is no hope of classifying nonabelian
extensions of a local field in terms of the norm groups since the nonabelian extensions do not gen-
erate any extra norm subgroups.

The Existence Theorem provides a topological characterization of norm groups, but there is also
an arithmetic description of these groups :

The norm groups of K* are precisely the groups containing
U I(? ) x (m)!

for some n > 0 and some f > 1. Here U = Uy, 7 is a prime element of K, and (7)/ is the
subgroup generated by 7.

The collection of Local Artin Maps

as L runs through the finite abelian extensions of K gives a homomorphism between the inverse
systems K*/Nmyp g (L*) and Gal(L/K) thereby inducing the isomorphism :

ox : K* = Gal(K™/K)
where K* denotes the completion of K* with respect to the topology for which the norm groups

form a fundamental system of neighborhoods of 1. This topology on K* is called the norm topology
(see Remark 27 for details).

Since intersection of the norm groups is trivial, so K* embeds into K* ie. the natural map
K* — K* is injective. Moreover, the image of K* under this map is dense.



Chapter 2

The Cohomology of Groups

2.1 G-Modules

Definition 1. Let G be a group. A G-module is an abelian group M together with a map
(gym)—gm:Gx M — M
such that for all g,9' € G, m,m' € M,

(a) g(m +m') = gm + gm' ;
(b) (gg")ym = g(g'm), Im = m.

Definition 2. A G-module homomorphism is a map o : M — N such that
(a) a(m +m') = a(m) + a(m’) (i.e. a is a homomorphism of abelian groups)
(b) a(gm) = g(a(m)) for allge G, m € M.

We write Homg (M, N) for the set of G-homomorphisms M — N.

Remark 1. The group algebra Z[G] of G is the free abelian group with basis the elements of G and
with the multiplication provided by the group law on G. Thus the elements of Z|G] are the finite

sums
> nigi, ni€Z, geG
i

and

(Z W) > gy | =D minj(gig))
i J i,J

A G-module structure on an abelian group extends uniquely to a Z[G]-module structure, and a
homomorphism of abelian groups is a homomorphism of G-modules if and only if it is a homomor-

phism of Z[G] modules.

If M and N are G-modules, then the set Hom(M, N) of homomorphisms ¢ : M — N (M and N

regarded only as abelian groups) becomes a G-module with the structures
(¢ +¢')(m) = ¢(m) + ¢/(m)
(99)(m) = g¢(g~'m)



To verify this, observe that

(9(p+9"))(m) = g((p+¢") (g~ 'm)) = gd(g~'m)+9¢' (g7 'm) = (9¢)(m)+(9¢")(m) = (96+9¢)(m)
Hence

9(6+¢') =90+ g
Moreover,

((99)(#))(m) = gg'(¢(g g7 "'m)) = g(g'd(g' " g~'m) = g(g'd) (g™ 'm) = (9(¢'9))(m)

Hence
(990 = 9(d'9)

and so we are done.

2.2 Induced Modules

Let H be a subgroup of G. For an H-module M, we define Ind% (M) to be the set of maps (not
necessarily homomorphisms) ¢ : G — M such that ¢(hg) = h¢(g) for all h € H. Then Ind% (M)
becomes a G-module with the operations

(¢ +¢')(z) = ¢(z) + ¢'(x)
(99)(x) = ¢(zg).
Firstly we need to verify that ¢ + ¢’ and g¢ so defined are actually elements of I ndg(M ). We have
(¢ +¢')(hg) = d(hg) + ¢(hg) = he(g) + h¢'(9) = h(d + ¢')(g)

and
(90)(hg") = o(hg'g) = ho(g'g) = h((g9)(d'))

Now we need to verify that Ind% (M) is a G-module with these operations.

(9(¢+¢))(x) = (¢ + ¢')(xg) = d(zg) + &' (xg) = (90)(x) + (9¢')(x) = (9¢ + 9¢')(z)

Hence
9(¢+¢) = (9¢ + 9¢')
Moreover
((99")9)(x) = d(zgg") = (9'¢)(xg) = (9(g'¢))(x)
Therefore

(99" )0 = (9(d'9))

Lemma 1. A homomorphism o : M — M’ of H-modules defines a homomorphism
n: Ind$ (M) — IndS (M)

of G-modules where n(¢) = a o ¢.



Proof. Firstly we need to show that if ¢ € Ind$% (M), then a o ¢ € Ind%(M'). We have

(a0 @)(hg) = a(p(hg)) = a(hd(g)) = h(a((9))) = k(o ¢)(g)

Note that in the second last equality, we have used that « is a H-module homomorphism. Now
observe that

(n(d1+¢2))(x) = (@o(d1+¢2))(z) = a1 (x) +d2(x)) = a(d1(x)) +a(p2(x)) = n(d1(x)) +n(P2(z))

Note that in the second last equality, we have used the fact that o is a homomorphism of abelian
groups. Hence

n(é1 + ¢2) = n(d1) + n(d2)

Moreover,
(n(g99))(x) = a((g8)()) = a(d(zg)) = (n($))(zg) = (9(n(¢))(z)
Thus
n(g¢) = 9(n(¢))

Theorem 8. For every G-module M and every H-module N,
Home (M, Ind$(N)) = Hompg (M, N)
as abelian groups. This relation is known as Frobenius reciprocity.

Proof. Note that M is an H module as well and so Homg (M, N) is defined.

Define the map
m : Homg(M, Ind$(N)) — Homy (M, N)

such that for any G-module homomorphism « : M — Ind%(N), we have n;(a) : M — N given by
(m(a))(m) = (a(m))(1c)

We have to verify that 71 («) is an H-module homomorphism. For any h € H,

m(a)(hm) = a(hm)(l) = (ha(m))(1e) = a(m)(1gh) = a(m)(hle) = h(a(m)(1a)) = h(m(e)(m))

Note that in the second equality, we have used that « is a G-module homomorphism and in the
second last equality, we have used that a(m) € Ind%(N).
Now define the map

n2 : Homp (M, N) — Homg(M, Ind%(N))

such that for any H-module homomorphism 3 : M — N, we have 12(8) : M — Ind%(N) given by
(m2(8))(m)(g) = B(gm)

Firstly we need to check that for any m € M, (12(B))(m) is actually an element of Ind%(N). For
any he€ H, g € G,

(m2(8))(m)(hg) = B(hgm) = h(B(gm)) = h(n2(B))(m)(g)



Note that in the second equality, we have used that 3 is an H-module homomorphism.

We also have to verify that ny(3) is a G-module homomorphism. For any ¢’ € G,

((n2(8))(g'm))(g) = Blgg'm) = (n2(8))(m)(gg") = (¢'(n2(8))(m))(9)
Thus
(m2(B))(g'm) = g (n2(B)(m))

and we are done.

It is straightforward to check that 7; is a homomorphism of abelian groups. The only thing left to
show is that 7; and 72 are inverses of each other. For that, we will show that 7y o 1o and 12 0y
are the identity maps.

Firstly consider the map naomn; : Homg (M, Ind$(N)) — Homg(M, Ind$(N)). For any G-module
homomorphism o : M — Indg(N), g€ G, m e M, we have

n2(m(@))(m)(g) = (m(a@))(gm) = a(gm)(la) = (g(a(m)))(1c) = (a(m))(lag) = a(m)(g)
Thus 12 o 71 is the identity map.

Next consider the map nyony : Hompg (M, N) — Hompg (M, N). For any H-module homomorphism
B : M — N, we have

m(n2(8))(m) = (n2(8))(m)(1g) = f(1gm) = B(m)
Thus 11 o 72 is the identity map as well. O

Let @ : Indg(N) — N be the map such that ¢ — ¢(1g). Then ® is an H-module homomorphism
because

®(he) = (hd)(1c) = ¢(1ch) = ¢(hlc) = ho(la) = h(®(9))
Note that the second equality follows from the action of G on Ind$(N) and the second last equality

holds because ¢ € Ind%(N). The isomorphism 7; in the proof of Theorem 8 can now be viewed in
terms of ®. For any a € Homg (M, Ind$(N)) and m € M, we have

(m(a))(m) = (a(m))(1g) = (a(m))
ie ni(a)=Poa.
Corollary 1. (Ind%(N),®) satisfies the following universal property :

For any H-module homomorphism B : M — N from a G-module M to N, there exists a unique
G-module homomorphism o : M — Indf](N) such that ® o = [ i.e. the following diagram

commutes :
la \ (2.1)
o



Proof. The surjectivity of the isomorphism 7, implies that 8 = 1, () for some o € Homg (M, Ind%(N)).
Then 8 = ® o a by the above discussion.

Now let ai,as € Homg(M,Ind%(N)) be such that ® o a; = ® o az = B. Then we have
m(a1) = m(az). Then injectivity of 1, shows that oy = ag and we get the uniqueness of «
such that the diagram commutes. O

Theorem 9. For any exact sequence of H-modules

0MASNE P

the sequence of G-modules

0= IndS M s IndSN 25 [ndS P — 0

is also exact where the maps o', B' are as defined in Lemma 1 i.e. o/(¢) = ao¢ and §'(1p) = o)

Proof. Firstly we will prove that o/ is injective. Let o/(¢) = 0 which means that o/(¢)(g) =0V
g € G. Thus a(¢p(g)) =0 and so ¢(g) =0V g € G by the injectivity of a. Therefore ¢ = 0 and we
are done.

Next we will show that Ker(s') = Im(a/). We already know that Ker(8) = Im(a). In par-
ticular, S o o = 0. Now

(B od')(¢) =pF(a0g)=pfo(aod)=(Boa)od=0

and so I'm(a/) C Ker(f3').

Let ¢ € Ker(8'), then 5'(¢)) = 0, so 8(¢(g)) =0V g € G. This implies that ¥ (g) € Ker(8) =
Im(c) and thus 3 my; € M such that a(my) = 1¥(g). Define ¢ : G — M such that ¢(g) = m,.
Therefore,

U(g) = a(d(9)) = ((¢))(9) Vg € G
and so ¢ = o/(¢). For any h € H, g € G, we have 1(hg) = hi)(g) since ¢ € Ind$N. Thus

a(¢(hg)) = h(a(¢(g)) = a(h(g))

This implies that ¢(hg) = hé(g) by the injectivity of a and so ¢ € Ind4GM. Now ¢ = o/(¢) €
Im(a/). Hence Ker(8') C Im(ca’) and we are done.

Finally we will prove that 8’ is surjective. Let ¢ € Ind%P. Now let S be a set of right coset
representatives of H in . Then every element of G can be written uniquely in the form hs for
some h € H and some s € S. (The uniqueness follows from the fact that any two distinct cosets
are disjoint). Since the map 5 : N — P is surjective, for each s € S, we can choose some n(s) € N
such that B(n(s)) = ¢(s). Now define a map ¢ : G — N such that ¢/'(hs) = h(n(s)). Suppose
we are given some hy € H, g1 € G. Moreover, we know that g; = hgso for some unique hy € H,
s9 € S. Then we have

@' (h1g1) = ¢'(hihase) = hihon(s2) = hi¢'(has2) = hid'(g1)



and so ¢’ € IndgN. Let g € G, then we know that g = hs for some unique h € H, s € S. Then
¢(g) = ¢(hs) = ho(s) = hB(n(s)) = B(h(n(s))) = B(¢'(hs)) = B'(¢/ (hs)) = B'(¢'(9))
Hence ¢ = f'(¢') € Im(3') and we are done. O

When H = {1}, an H-module is just an abelian group. In this case, we drop the H from the
notation Ind%(N). Thus
Ind® (M) = {¢: G — My}

where ¢ is a map and not necessarily a homomorphism.

Lemma 2. Ind%(My) = Hom(Z[G], My) as abelian groups where Hom(Z[G], My) denotes homo-
morphisms of abelian groups.

Proof. Define the map 1 : Hom(Z[G], My) — Ind® M, such that x1(¢)) = ¢ |g. Clearly &1 is a
homomorphism of abelian groups.

Now consider the map ks : Ind® Mo — Hom(Z[G], My) such that

) (Z nigi) = an¢(gz)

We have to show that k2(¢) is actually a homomorphism of abelian groups. Let Zle n;g; and
Zf L nig; be two arbitrary elements of Z[G]. Firstly suppose that the sets {gi,g2,...,gr} and
{91, 95, ..., 9}, } are disjoint. Define gr4; = ¢, and npy; = n, V1 < i < k. Then Zle n;g; +

% k+k'
i nbgh =577 nig; and so

k! k! . %
(Z nigi + Z nzgz> (r2(9)) (Z mgi) = Z ni¢(gi) = Zniéf?(gz’) + Z nid(g;)

i ) i

(2.2)

Thus the proof is complete in this case.

Now suppose that the sets {g1,g2,...,gr} and {g,95,...,9;,} have some common elements. Re-
arrange g; and g} such that the common elements are g1, g2, .....g: and g; = g, V 1 <4 < t¢. Then

angz—l—znzgz Z 7’LZ+7’L gz+ Z n;ig; + Z nzgz

i=t+1 1=t+1

10



and so

(angz —l—ngZ) )) (Z n; —|—TL gz + Z n;g; + Z anz)
=1

i=t+1 i=t+1
t k K
Z ni+n)e(g:) + > melg) + »_ nidlg))
=1 i=t+1 i=t+1
. ] 9 (2.3)
' i=t+1 i=t+1

_ Zm(p i) + Zn o(g)) (Z nzgz> (Z nzgz>

Thus we have shown that r2(¢) is an element of Hom(Z[G|, M) and so kg is well defined.

The only thing left to show is that x; and ko are inverses of each other. From the definition
of Ko, it is clear that (k2(¢)) [¢= ¢. Thus k1(ka(@)) = ¢. Also ka(k1(¥)) = k2(¥ [¢) and so

() e (£)

since v is a homomorphism of abelian groups. Thus k2(k1())) = ¢ and we are done.

INDUCED MODULES
Definition 3. A G-module M is said to be induced if M = Ind®(My) for some abelian group M.

Theorem 10. Let G be a finite group. Then for any abelian group My,
Ind® My = Z[G)] ®7 My
Here Z|G] @z My is endowed with the G-structure such that
g(z®@m)=gz®@m.

Proof. Define the map
o : Ind® My — Z|G) @7 My

such that

(@)= g®é(g "

geG

Clearly « is a homomorphism of abelian groups. For any gy € G,

a(god) = Y 92(g08)(97") = Y 9997 90) = D _ (909" )®(g™ ) = g0 [ D 9 @ 6(d™") | = go(a(9))

geqG geqG g'eG g'eG

where we changed the index of summation by taking g, lg=¢

Thus
a(god) = go(a(9))

11



and « is also a G-module homomorphism.
Let us label G = {g1, g2, .., gn }

Now define the map
B Z|G] x My — Ind® My

such that

n n
Y (z nigh m) S it
i=1 =1

where ¢g, ;m(g) =m if g = g7 and ¢g, m(g) = 0if g # g; .

o4 ((Z nigi + Z ”;gz> ,m> =f ((Z(nz + ”2)%) 7m>

n

= Z(nz + 1) Ggim = B <Z nigi, m) + 4 <Z nigi, m)
i=1 i=1

=1

We have,

Moreover, for any m,m’ € M, ¢g, mim/(9) = m+m’ if g = (¢;) 7" and ¢y, mrm(9) = 0if g £ (g;) 7L
Thus ¢y, m+m’ = Gg;m + Pg; m for any m,m’ € M.

Therefore,

n n n
5 (z . m) S by = 3 g )

=1 =1 i=1
(2.5)

n n n n
S b+ S ity — B (z . m> g (z - m>
=1 =1 =1 =1

Hence ' is a Z-bilinear map and so it induces the linear map

B : Z|G] ®z My — Ind® My
such that

g ((Z m‘gz) ® m) = nidg.m
i=1 =1

The only thing left to prove is that @ and [ are inverses of each other.

12



We have,
a S /B ((Z anz) ® m) =« (Z nzﬁ gz ® m > = Znia((bgi,m)
=1

and,

(Gg,m) Zg;@qﬁgz, (g;) =gi®m

7j=1

since gbgi,m(gj_l) # 0 only if g; = (gj_l) ie. if g; = g; and ¢y, m(g; “H=m.

Thus,

o () o) o)

and so o [ is the identity map.

Since ( is a linear map,

(Boa)(y) =5 (Zgwwl)) =) Blg@p(g

geG geG

Thus for any gg € G,
(Boa)(@)(g) = Zﬂ( ®Y(g Z¢g,d) g1 (90)
geG geG

1

Now, ¢g.4(4-1)(90) # 0 only if g7 = go in which case it is equal to Y(g™Y) = ¥(go).

Hence (80 a) (¥)(g0) = ¥(g0) ¥ go € G and so (Boa) (¥) = 1 ¥V ¢ € Ind®My. Thus we have
shown that 8 o « is also the identity map and so we are done. ]

Remark 2. Let M and N be G-modules. Then the rule
g(m®n) = gm gn

defines a G-module structure on M ®z7 N. Let Mg be M regarded as an abelian group. Then the
map 1 : Z|G) @z My — Z|G) @z M such that Y ;_; n;g; — > .4 ni(gi ® gim) is an isomorphism of
G-modules.

Proof. Define the map
77,1 : Z[G] X My — Z[G] ®z M

such that
m (Z nigi, m) = Z ni(gi ® gim)
and
17/2 : Z[G] X M — Z[G] ®7 My
such that

) (Z nigi7m> = ni(gi®g'm

13



Arguing in the same way as in the proof of Lemma 2, it is easy to check that both 7} and ), are
Z-bilinear and thus induce the linear maps

m : Z[G] @z My — Z|G] @z M

such that
m ((Z niQi) ® m) = ni(gi ® gim)
and
n - Z[G] Rz M — Z[G] ®7 My
such that

2 ((Z niQi) ® m) = nilgi @ g, 'm)
Now we want to show that 7; and 7o are inverses of each other.
2 (771 ((Z nigi) ® m)) =12 (Z ni(g; ® gim)) = Z ni(n2(g: ® gim))
= nilgi ®g; gm) =Y _ni(gi@m) = (Z m%) ®m

Hence 12 o 71 is the identity. Similiarly 77 o 1y is also the identity. The only thing left to show is
that 71 is a G-module homomorphism.

(2.6)

For any g € G,
m (9 ((Z niQi) ® m)) =m ((Z ni(QQi)) ® m) = Zni(ggi ® ggim)
(2.7)
= niglg; @ gim) = g (Z ni(g; @ gim)) =g (m ((Z mgi) ® m))
Thus 7, is a G-module isomorphism. O

Remark 3. If G is a finite group and M is a G-module, then Z|G|®z M with the diagonal G-action
becomes an induced module.

Proof. 1t follows directly from Theorem 10 and Remark 2.
O

Theorem 11. Let G be a finite group. A G-module M is induced if and only if there exists an
abelian group My C M such that

M= @ g Mo
geG

where the direct sum is as abelian groups.

Proof. If M is an induced G-module M, then by Theorem 10, we have
M = 7G| @ My

for some abelian group My € M. But we know that

Z|G) = P gz

geG

14



Therefore,

ZIG) @ My = (P 9Z ® My = (P 9(Z @ Mo) = (P gMo
geG geG geG

M= @QMO

geG

Thus

Conversely, let there exists an abelian group My C M such that

M = @QMO

geG

Label G = {¢1, ..., gn} and define the map

m : Ind® My — @ gM
geG

such that
m(®) = (916091 "), 9nd(g, "))

Clearly 77 is a homomorphism of abelian groups. We want to show that it is also a G-module
homomorphism. For any g € G, we have

m(g9) = (91(90) (g1 "), - 9n(98) (9 ) = (916(97 ' 9); - gn (91 9))

and

9 () = 991691 ")s - 9nd(95 ) = (9916(91 ") -+ 9gn (g5 ))

In the last term we should rearrange the terms so that g; comes in the first place, go in the second
and so on. Therefore,

m(g99) = (916(g;,"), - 9n0(g;,"))

where g;, is given as gg;, = g; and so gj:_l = g;lg. Thus,

m(gd) = (910(9:"9), - gn (95 9))

Hence

m(ge) = g(m(e))

Thus we have shown that n; is a G-module homomorphism. Now define the map

79 : @QM() — IndGMo
geG

such that n2(g1my, ..., gnmy,) = ¢ where ¢(g;) = m; and j is defined by g; = g; .
It is straightforward to check that n; and 7 are inverses of each other.

Hence 71 is a G-module isomorphism and we are done. O

Theorem 12. Let M be an induced G-module and H be a subgroup of M, then M is induced as a
H-module. If H is normal in G, then M is an induced G/H module.

15



Proof. Let M = @, . 0D. Then,
M = @@UTD = @O’ (EBTD)
occH T ocH T

where 7 runs over a set of coset representatives of H in G. Hence M is also induced as an H-module.

Now we define an action of G/H on MY as
(gH)m = gm

To show that it is well defined, we have to check that for any g € G, gm € M if m € MH. But
we have for any h € H,

h(gm) = (hg)m = (gh1)m = g(him) = gm

where in the second equality we have used that H is normal in G and in the last equality that
m € MH. Thus we have shown that M is a G/H module. Since M is an induced G-module,

therefore
M=oD
oceG

for some abelian group D C M. By the previous theorem, it suffices to show that

MY = @ r(Nu(D))

T€G/H

Clearly Ny (D) ¢ M and so

P ~(u(D) c M
Te€G/H

Conversely, suppose m € M. Then m has a unique representation in the form

m:ZTdT

TG

with d; € D. For any 0 € H, we have

m=o(m) = Z oTd;

TeG

since m € M* . But note that we can also write

m = Z Td; = Z oTdyr

TG TG

since as 7 runs over GG so does o7. Thus by uniqueness of the expression for m, we get
dT = dO'T
for all 0 € H and all 7 € G. Since H is normal in G, so = 7o = 017 for some 07 € H and so we get

dTO' = dT
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for all 0 € H and all 7 € G. Thus we have

m=>Y 1d;=Y_ > T0dig=)»_ > TOd-=> T (Z odT> => 7Ny(d,)

TeG TeESoceEH T€ESocEH TES oceH TES
and so
M"Pc @ T(Nu(D))
T€G/H
Thus
M" = P 7(Nu(D))
Te€G/H
and we are done. O

INJECTIVE G-MODULES

A G-module [ is said to be injective if every G-module homomorphism from a submodule of a
G-module extends to the whole module. In other words, if N is a submodule of a G-module M,
then every homomorphism « : N — I extends to M i.e. there is a G-module homomorphism
B : M — I such that the following diagram commutes :

N—"' s M

la/ =
8

I

Equivalently, I is injective if Hom( ,I) is an exact functor.

Lemma 3. Every abelian group can be embedded into an injective abelian group

Proof. For an abelian group M, let MV = Hom(M,Q/Z); choose a free abelian group F mapping
onto MV ; then M emebeds into MYV which embeds into F'V'. Hence M embeds into F¥ which
is an injective abelian group because it is the dual of a projective Z-module since free modules are
projective and dual of projective modules is injective. (Projective modules will be discussed in the
section on Homology) O

Theorem 13. Every G-module M can be embedded into an injective G-module.

Proof. Let My be M regarded as an abelian group. By Lemma 3, My can be embedded into 1.
Then Ind® My can be embedded into Ind®I since Ind® takes exact sequences to exact sequences
and thus injective maps to injective maps. We also know that My embeds into Ind“ M, through
the map m — ¢,,, where ¢,,,(g) = gm. Hence M embeds into Ind“I. It only remains to show that
IndCT is an injective module if I is an injective abelian group. We prove a slightly general result
in the next Lemma. O

Lemma 4. If I is an injective H-module, then Ind%[ s an injective G-module.



Proof. We know by Frobenius Reciprocity (Theorem 8),
Homg (M, Ind$T) = Homy (M, T)

as abelian groups. Let
e

0= M SMS M o

be an exact sequence of G-modules. Since I is an injective H-module, the following sequence is
exact : ,
0 — Homp(M', 1) %5 Homp(M,I) 25 Homg(M",I) = 0

It is straightforward to check that the following diagram commutes :

00— Homy(M',]) ——* s Homp(M,I) — Homp(M",I) — 0

- - :

1

0 ——— Homg(M', Ind$.1) —— Home(M, Ind$1) —— Home(M", Ind$T) —— 0
(2.9)
This shows that the sequence

0 — Homg(M', IndST) % Home(M, IndS.T) 2 Home(M”, IndS 1) — 0
is exact as well. Hence Homg(.,Ind$I) is an exact functor and so Ind% I is an injective G-
module. O
2.3 Definition of Cohomology Groups

For a G-module M, define MG ={m c M :gm =m VY g € G}

Lemma 5. If
0= M %M%M =0
s exact, then
(R VICRUE VA VAl
is also exact where o' and B’ are just the restriction maps of o and 3 respectively.

Proof. Firstly we need to show that a(M'¢) ¢ MY and B(MY) Cc M”% in order to show that o
and 3’ are well defined.

Let m € M'C, then gm =m V ¢g € G. Since « is a G-module homomorphism, so

g(a(m)) = a(gm) = a(m)

and thus a(m) € M©. Similarly we can show (M%) c M”C.
Since « is injective and o’ is just the restriction of «, so o/ is also injective.

We also know that 8 oo’ =0 since o« = 0. Thus Im(a’) C Ker(8'). Now let m € Ker(f3') i.e.
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m € MY such that B(m) = 0, thus m € Ker(8) = Im(a) i.e. m = a(m’) for some m’ € M’. We
need to show that m’ € M’¢. For any g € G,

a(gm’) = ga(m') = gm =m

since m € M. Thus
algm’) =m = a(m’)

Then injectivity of o shows that gm’ =m/ V¥V g € G, so m’ € M'® and we are done.

An injective resolution of a G-module M is a long exact sequence
0 1 s
(I VY LN SN £ N (I Lo S
such that I’ is an injective module for each i > 0.
Theorem 14. For a G-module M, there exists an injective resolution of M.
Proof. By Lemma 3, there is an exact sequence
ao 0
0—-M—1

for some injective module I°. Let B! be the cokernel of . Again by Lemma 3, B! can be
embedded into an injective module I'. Then the sequence

0 1
0— M 2502yt

is exact. Now let B? = coker(a!) and continue in this fashion.

Now let M be a G-module, and choose an injective resolution
0 d° ;1 dt o d?
O—-M-—=1I"—>1 —1"— ..
of M. By Lemma 5, we know that there are restriction maps of d"(which we again denote by d")
ie (IMY z, (I"t1)E for all r > 0. Then,

0L (196 Ly (06 oy L I (G Ly (G

is still a complex i.e. d'od'~! =0V i > 0. However it need no longer be an exact sequence and we
define the 7" cohomology group of G to be

- 5

Theorem 15. H" (G, M) is independent of the choice of the injective resolution (upto an isomor-
phism) and is thus well-defined.

Proof. See Appendix A.3, [10]. O

Cohomology groups have the following basic properties :
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Lemma 6. H°(G, M) = M¢

Proof. We know by Lemma 5 that the sequence
0— ME 5 (199 &, (1)@

is exact, and thus

er 0
HY(G, M) = m = Ker(d®) = Im(i) = M¢

since Im(d~!) = 0 and i is injective. O
Lemma 7. If I is an injective G-module, then H"(G,I) =0 for all r > 0

Proof. Firstly observe that 0 is an injective module because if N is a submodule of a G-module
M, then any homomorphism « : N — 0 can clearly be extended to a homomorphism 8 : M — 0.
Then,

O—>I£>I—>0—>O—>...

is an injective resolution of I. The resulting cohomology complex becomes
—1 0 1
045719 %050 ..

Then Ker(d") =0V r>0and Im(d"~*) =0V r>0. Thus H"(G,I) =0V r > 0.

2.4 Description of Cohomology Groups by means of Cochains

Let P, be the free Z-module with basis the (r 4+ 1)-tuples (go, g1, ..., g») of elements of G. Define
the action of G on P, as

9(90, 915 -, 9r) = (990,991, - 99r)
Define a map d, : P, — P,_1 by the rule that

r

d?‘(g()a g1y ey gT‘) = Z(_l)z(g()a g’n ey g?“)
i=0

where the symbol ¢; means that g; is omitted. Then d,. is a homomorphism of G-modules.
Lemma 8. " lod =0V r>1

Proof.

s T

(90,91, -+ 9r) = Y (=1)'(90s -++» Gir s 90) = Y _(=1)'(Go, s Gr1)

i=0 i=0
where G; = g; if j <iand G; = gjq1 if j > ¢.
Hence

T r r—1

A Nd (g0, 91, 90)) = D _(=1)'d"(Go, ... Gr1) = > _(=1)"Y (=1)(Go, .., .Gy, .., Gr 1)
i=0 =0 Jj=0
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Note that
(G(]’ 3] ij "7GT71) = (g(]a "'79}7 glv "'7.97“)

if j <4 and
(Goy ey Gy oy Gr1) = (G0s oo Gis +-Gjt1s s Gr)
if § > 4. Thus
r—1 i—1 r—1
S (Goroes G s Grot) = (G0, ooy G bty oes G) + > (905 s Giy ool 1s s Gr)
7=0 7=0 Jj=t
Therefore,
r oi—1 r r—1
A" Hd" (g0, g1y s gr)) = (=)™ (goy s G oons i ooegr) + DD (1) (g0, oes Gy G415 s )
i=0 j=0 i=0 j=i

We should change index in the second summation by taking j + 1 = J and thus

r r—1 T "
Z Z(_l)H‘] (907 v Gis "'gj—l-l: ey gr) = Z Z (_1)Z+J(QO> vy Giy oG5 oees gr)
=0 j=i =0 J=i+1

Hence the previous equation can be rewritten as
r
A Nd (90,91, 90)) = DD (=1 (goycoes Gisoors G ooge) — D> (=1 (g0, s Gis s G -0r)
i=0 j<i i=0 j>i
To prove that the RHS is zero, it suffices to show that
H{i,j}:0<i,j<rand i<j}={{i,j}:0<4,j <r and j<i}
which is obvious. O
Let ¢ : Py — Z be the map such that g+— 1V g € G

Lemma 9. The complex
Ry N Y

1S exact.

Proof. Firstly we need to show that this is indeed a complex. After Lemma 8, we only have to
prove that € o d; = 0. But we find that

e(d1(g0,91)) = €(g1 — g0) = €(g1) —€(go) =1—-1=0

Thus it is indeed a complex. To show that it is exact as well, we need to prove that Ker(d,) C
Im(dy41) for all r > 1.

Choose any element o € (G, and define the map
kr : PT — PT+1

such that
kr(g()agl?"'?.gr) = (Oa 90, 91, "'791")
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We want to show that d,y; o k, + ky—1 o d, is the identity function. Let (go, g1, ..., gr) € Pr. Then

k?“(g()ag:b "'791”) = (07905917 "'791”) = (GOale "‘7GT‘+1)

where Gy = 0 and G; = g;_1 for i > 1. We have

r4+1 r+1
dr11(Go, s Gri1) = Y (1) (Go, s Giy ooy Grg1) = (Goyoos Grg1) + D> _(=1)(Go,Gr,y oo, Gy ey Gyt
i=0 i=1
r+1 ' T '
= (Gorr ) + S (10,900 Gt s Gr) = (Goserrgr) = S (=1)(0, Gos s Gis o 91)
i=1 =0
(2.10)
Thus .
dr+1(kr(907gla"'7gr)) = (907"'ag7“) - Z(_l)i(omg()a"'agia">gr)
i=0
Now we have
kr—1(dr(g0s s 9r)) = kr—1 <Z(_1)i(90: ey Jis "'797’))>
. = (2.11)
= (—1)%,,_1(90, ceey g}, couy gr) = Z(—l)i(o, g0, ---, g}, ...,gr)
i=0 i=0
Therefore,
dT-l—l(kT‘(gOagl7"'7gT)) + k?"—l(d’f‘(g()7"'7g’f‘)) = (907917-"7.97")
and so dyy1 0 ky + ky—1 0 d, is the identity function.
Now if x € Ker(d,), then z = dy41(kr(z)) € Im(d,+1) and so we are done.
]

Define the maps
d.: Homg(P-, M) — Homg(Pry1, M)

such that
d;((ﬁ) = ¢odr1

Theorem 16. For every G-module M,
H"(G,M) = H"(Homg(P,, M))

Proof. This follows from the general theory of Ext groups and right derived functors (See Example
A.14, page 93, [1]).
O

Let C"(G, M) denote the abelian group

{o: G = M : d(g90,... 997) = 9(¢(g0, .-, 9r)) ¥ 9,90, -, gr € G}

The elements of C"(G, M) are called homogeneous r-cochains of G' with values in M.
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Lemma 10. Homg(P,, M) = C"(G, M) as abelian groups.

Proof. Recall that P, is a free Z-module with basis G™ .

Define the map 7, : Homg (P, M) — C"(G, M) such that

m(Y) = [gr+

and the map B
kr: C"(G,M) — Homg(P,, M)

such that
(kr(9)) (Zni(go,-.-,gr)) = Zni¢(goa-~-79r)

Then we can proceed as in Lemma 2 to show that k, is well-defined and that 7, and x, are inverses
of each other. ]

It is straightforward to check that there is a commutative diagram :

Home(Po, M) ——* s Homea(Prir, M)
Jnr J’ﬂr-’—l (212)
C7(G, M) a CrHY(G, M)

Therefore, we have ~
Ker(d,) ., Ker(d")

Im(d_,)  Im(@ )
This combined with Theorem 16 shows that

H'(G, M) = H"(Homg(Pe, M)) = If;‘z;(/drf) ~ f;e&(i))

Hence we have proven the following the following theorem :

Theorem 17. H" (G, M) = Ifﬂigﬁ)

Let C"(G, M) denote the set of functions {¢ : G" — M} which is an abelian group under addition
of functions. The elements of C" (G, M) are called the inhomogeneous r-cochains of G with values
in M. Set the convention G° = {1} and so C°(G, M) = M.

Define the map
%@, M) - cl(G, M)

such that
(dm)(g) = gm —m

and for any r > 0,
d":C"(G,M) — C"\(G, M)

such that

(d"(8)(91, 925 Gr+1) = G16(92, w0y Gr1) + D (=1) (91, 11, 91, s rr1) + (=1) 691, -, 97)
j=1
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Lemma 11. C"(G, M) = C" (G, M)
Proof. Define the map 3, : C"(G, M) — C"(G, M) such that

Br() (915 -, 9r) = ¥(1, 91,9192, ---, 9192---Gr)

Then S, is clearly a homomorphism of abelian groups. Now we will show that [, is injective. Let
¥(1, 91,9192, -, g192...gr) = 0 for all g1,...,9, € G. Then for any g1,...,g9, € G, let G; = 91_192,

GQ = 951937 (XY} GT = g;jlgr
Since 1 € C"(G, M), so we have

@ZJ(gl, ---gr) = gng...grw(l,Gl,Gz, ...,GT) = 0

Thus ¢ = 0 and we get that the map §, is injective. A similar argument shows that g, is also

surjective.

It is straightforward to show that the following diagram commutes :

Ccr(G, M) —T 5 Y@, M)

Js [

cr(G,M) —L 5 cmI(@, M)

This lemma shows that _
Ker(d") _ Ker(d")

Im(dr=1)  Im(d—1)

Combined with Theorem 17, we get

(G = T

Define
Z"(G,M) = Ker(d")

This is known as the group of r-cocycles. Also, define
B"(G, M) = Im(d"™")

This is known as the group of r-coboundaries.

DESCRIPTION OF H'(G, M)

A map ¢ : G — M is said to be a crossed homomorphism if V 0,7 € G,

¢(o7) = 0(7) + ¢(0)

In particular the condition implies that, for e the identity element of G,
d(e) = p(ee) = eg(e) + d(e) = 2¢(e)
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and so ¢(e) = 0. For every m € M, the map o — om — m is a crossed homomorphism since
¢(o1) = (o7)m —m = (o(tm) — om) + (om —m) = o(r(m) —m) + (cm —m) = o(¢(7)) + ¢(0)
and is called a principal crossed homomorphism.

Note that
(d"(9))(0,7) = a((1) — d(o7) + ¢(0,T)

and
(d°(m))(c) = om —m

for some m € M. Thus ¢ is a crossed homomorphism < d!(¢) = 0 < ¢ € Ker(d!).
Hence Ker(d!) = {crossed homomorphisms G — M }.
Moreover, 1) is a principal crossed homomorphism < 1 = d°(m) for some m € M < ¢ € Im(d).

Hence Im(d®) = { principal crossed homomorphisms G — M}.

1 _ Ker(d) _ {crossed homomorphisms G— M}
Therefore, I (G’ M) — Im(d®) — {principal crossed homomorphisms G—M}

If the action of G on M is trivial , then crossed homomorphisms become homomorphisms (as
abelian groups) since

P(o7) = 09(7) + ¢(0) = &(7) + d(0) = ¢(0) + ¢(7)
and principal crossed homomorphisms are zero since
¢p(o)=c(m)—m=m—-m=0

Thus, in this case
HY(G, M) = Homgz(G, M)

Theorem 18. A short exact sequence

0—>M —-M-—M -0
of G-modules gives rise to a long exact sequence
0— HYG, M) — HY (G, M) — ... —» H"(G, M) — H"(G, M) — H"(G, M") > H™ ™ (G, M) — ...
Proof. See Theorem 1.2.11, page 9, [6]. O

Remark 4. Let A
0-MSNSP—0

be an exact sequence of G-modules. The proof of Theorem 18 shows that the boundary map
§": H"(G,P) — H (G, M)

has the following description :
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Let v € H"(G,P) be represented by the r-cocycle ¢ : G" — P. Since 7 is a surjective map,
we can choose a lift ¢’ : G" — N of ¢ i.e. ¢’ is a map such that

W(¢/(g1’ ) gT)) = qb(glv ) gT)

Since ¢ is a r-cocycle, d"(¢) =0 and so

W(dr(¢/(91) ’gT))) = dr(ﬂ(¢/(gl7 ’g’f‘))) = dT(¢(gl7 ’gT‘)) = 0

where in the second equality, we have used that m is a G-module homomorphism. Moreover, we
have Ker(r) = Im(i) and so d"(¢'(g1,..-,9r)) € M. Then, d"(¢) is the cocycle representing 0" (7).

2.5 Shapiro’s Lemma

Let M be a G-module, and regard Z as a G-module with trivial action i.e. gm = m V g € G,
m € Z.

Lemma 12. Homg(Z, M) = M

Proof. Define the map
m : Homg(Z, M) — MC

such that

m(¢) € MC because for any g € G, we have

(906(1)) = ¢(g1) = &(1)

The first equality holds because ¢ is a G-module homomorphism and the second equality holds
because G has trivial action on Z.

Clearly 77 is a homomorphism of abelian groups. It is also a G-module map since

m(ge) = (96)(1) = g(o(g~'1)) = g(6(1)) = g(m())

In the second equality we have used the action of G on Homg(Z, M) and in the third equality we
have used that G has trivial action on Z.

Now define
ne: MY — Homg(Z, M)

such that
na(m)(k) = km

Moreover, n1(n2(m)) = (n2(m))(1) = m Thus 11 (n2(m)) = m and we have n;on; is the identity map.

Also, m2(m1(9))(k) = m2(p(1))(k) = ké(1) = ¢(k). Thus n2(n1(¢)) = ¢ and we have g o ny is
the identity map.

Hence 71 is a G-module isomorphism. O

Remark 5. HY(G, M) = Homg(Z, M)
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Proof. 1t follows directly from Lemma 6 and Lemma 12. O

Theorem 19. (Shapiro’s Lemma) Let H be a subgroup of G. For every H-module N, there is a
canonical isomorphism

H"(G,Ind%(N)) — H"(H,N)
for allr > 0.

Proof. Firstly we prove it for the case r = 0. By Theorem 8, we know that
Homg(Z, Ind%(N)) = Homy(Z, N)
This, combined with Remark 5 gives us that
H°(G, Ind%(N)) = H(H, N)
and we are done for this case. Now let r > 0.
Choose an injective resolution of N
|G VNG LAy S RCENG R LN (I
where each I" is an injective H module. Since [ ndff is an exact functor by Theorem 9, so
0 — Ind%(N) = Ind$(1°) — Ind$(I') — ...Ind$G(I") — Ind$ (1) — ...

is an exact sequence. We also know that if I is an injective H-module, then [ nd%([ ) is an injective
G-module. Thus this sequence is an injective resolution of I ndg(N ). Then the corresponding
cohomology sequence becomes

0 % (1nd$ (19)¢ L5 (Ind$,(1Y)C — ...(Ind5 (1) L (Ind§(I"+1))C = ...
We also know that the cohomology sequence for N is
0 L5 (196 Ly (he 4 (126 S

Thus we get a diagram which can be shown to be commutative by direct verification :

r— d/r—l r dl'r -
(IndG(I"1)% ——— (Indf(I")% —— (Indg(I"*"))¢
Mr—1 Nr Nr+1 (214)
(Irfl)G dr—! y (IT)G dr y (IrJrl)G

where the vertical maps 7; are isomorphisms given by the case r = 0 above. The commutativ-
ity of the diagram gives us

Ker(d™) _ Ker(d")

Im(d™1) — Im(d 1)
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and thus
H"(G,In%(N)) = H"(H,N)
This completes the proof of Shapiro’s Lemma. O
Corollary 2. If M is an induced G-module, then H" (G, M) =0 for all v > 0.
Proof. Since M is an induced G-module, so M = Ind%(My) for some abelian group My. Then
H'(G, Ind®(My)) = H" ({1}, Mo)
To complete the proof of the corollary, we need the following lemma. O

Lemma 13. If G = {1} and M is an abelian group (hence also a G-module), then H" (G, M) =0

Proof. Let
0—=M—=1°=T1"— ..

be an injective resolution of M. In our case, G = {1} and M% = M for any abelian group M.
Thus the cohomology sequence

-1 0 1
04 (19 L (1YY L (12)¢ L.
simply becomes
—1 1
oiL oL p e,
Since . )
J ANy RN N

is a part of the injective resolution and thus is exact, so Ker(d") = Im(d"~!) whenever r > 0
(though not for r = 0) and thus H"(G, M) = 0 whenever r > 0. O

Remark 6. Consider the exact sequence
O—+M-—=J—=N=0
of G-modules. If H"(G,J) = 0 for all r > 0, then
H"(G,N) = H (G, M)
forall T > 1.
Proof. The cohomology sequence (Theorem 18) gives the exact sequence
.= H"(G,J) = H"(G,N) - HNG,M) - H(G,J) — ...
for each r > 0. But we are given that H"(G,J) = 0 for all » > 1. Thus we get the exact sequence
0— H"(G,N) 2 H™(G, M) — 0

for each » > 1. The exactness of the sequence shows us that Ker(d,) = 0 and Im(6,) = H™ (G, M)
which show that d, is injective and surjective respectively. Hence 4, is an isomorphism and we get

H"(G,N) = H(G, M)

for all » > 1.
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Let M be a G-module and My be M regarded as an abelian group. We know that M can be
embedded into Ind® M, through the map M — Ind® (M) given by m +— ¢, where ¢,,(g) = gm.
Let’s denote Ind“(My) by M, and define M; = M, /M. Then we get the exact sequence

0— M — M, — M; —0
Thus by Remark 6, we find that

H™(G,My) = H™(G, M)

2.6 Cohomology of finite Galois extensions

2.6.1 Hilbert’s Theorem 90

Let L be a finite Galois extension of a field K, and let G = Gal(L/K). Then L, regarded as a group
under addition is a G-module. L*, regarded as a group under multiplication is also a G-module.

Theorem 20. (Hilbert’s Theorem 90) Let L/K be a finite Galois extension with Galois group G.
Then HY(G,L*) = 0.

Proof. Let ¢ : G — L* be a crossed homomorphism. In multiplicative notation, this means that
for all 0,7 € G,

¢(o7) = o ((7))o(0)
For any a € L*, let

b= ¢(o)(ca)

oceG
Suppose b # 0. Then

T(b) =7 <Z ¢(0)(0a)> = 71(é0)(oa) =Y 1(¢(0))r(0a) = Y _(¢(r)) " (r0)((0)(a))

ceG ceG oeG ceG

where the last equality holds because

¢(ro) = 7(¢(0)) (¢(7))
since ¢ is a crossed homomorphism. But then
7(b) = (&(r)) " Y ¢(r0)((10)(a)) = (¢(7))"" D d(0)(0(a)) = (¢(7)) b
celG oeG

where the second equality holds because as o runs over G, so does 7o for any 7 € G.
Thus, 7(b) = (¢(7))"1b and so

(b)) bt

+ which shows that ¢ is a principal crossed homomorphism and we are done.

The only thing left to be shown is that 3 @ € L* for which b # 0. Let’s assume to the con-
trary that b =0 for all a € L*. ie. Y o ¢(0)(ca) =0V a c L*

Recall the Dedekind’s Theorem on the independence of characters :
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Let L be a field and H a group; then every finite set {f;} of distinct homomorphism H — L*
is linearly independent over L i.e.

Yaifila)=0 Yae H = ai=a=..=a,=0

Now we apply this theorem with H = L*, the homomorphisms ¢ : L* — L*, ¢ € G and the
equation ) .~ ¢(0)(ca) =0V a € L*, we find that V 0 € G, ¢(0) = 0 which is a contradiction
because ¢(o) € L*. Hence 3 a € L* for which b # 0 and we are done. O

2.6.2 Cohomology of L

Theorem 21. Let L/K be a finite Galois extension with Galois group G. Then H"(G,L) =0V
r > 0.

Proof. By the Normal Basis Theorem, 3 o € L such that {ca : 0 € G} is a basis for L as a K-vector
space. Then we get a map
n:K[G] — L

such that

n (Z ag(;) =Y a0()

ceG oeG

Clearly 7 is a well defined homomorphism of abelian groups. 7 is injective since {oa : 0 € G} is
linear independent over K and 7 is surjective since {o« : 0 € G} generates L over K. Finally for
any 7 € (G, we have

(5] 2o () = e = (o) o o ()

Hence 7 is a G-module isomorphism. The following lemma combined with Corollary 2 will complete
the proof of the theorem. O

Lemma 14. Let L/K be a finite Galois extension with Galois group G, then K[G] = Ind®K as
G-modules.

Proof. Since G is a finite group, we can label it as G = {71, 72, ...... ,Tn}. Now define the map
m : Ind°K — K[G]
such that .
b (g g
i=1
The inverse map
ny : K[G] = Ind“K

is given by
n
Z a;T; —r gb
i=1

where ¢(7;) = a; and j is defined as 7; = Tz»_l It is straightforward to show that 7y is a G-module
homomorphism and that the maps n; and 7y are actually inverses of each other. O
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2.7 The Cohomology of Products

A product M = [[, M; of G-modules M; becomes a G-module under the diagonal action i.e.
O'(..., my, ) = (...,ami, )

Theorem 22. For any G-modules M;, H"(G,[[, M;) = [, H" (G, M;).

Proof. Firstly we will prove that a product of exact sequences is exact.
Let
O%Ai&)BiiCi%O

be exact V i € I where I is some indexing set.

We need to prove that
0— H A —— H B, —— H Ci —0
is also an exact sequence.

Note that

Ker (H ﬁz) = { T)ier (H 51) T)ier = 0} ={(®i)ier : (Bi)(w:)) =0V iel} = HKCT(@')

Hence
Ker (H &) = [[&er(8)

Similarly we can prove,

Ker <H Oz¢> = HK@T‘(O@), Im (H 51’) = Hlm(ﬁi) and Im (H a,-) = Hlm(ai)

Then we are done by the exactness of the individual short exact sequences.

Now we will prove that
=[x
i
of injective G-modules I; is again injective.

Let
0—-M —-M-—M"—0

be an exact sequence of G-modules. Since I; is injective, so

0 — Homg(M',I;) — Homg(M, I;) = Homg(M",I;) — 0

is exact V 7. Hence,

0= [[Homa(M', L) — [ Homa(M, L) — [[ Homa(M", 1) — 0
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is exact. It is easy to verify that for any G-module N,
Homg(N,I) = [ [ Homa(N, I,)
through the natural map. Hence,
0 — Homg(M',I) — Homg(M,I) — Homg(M",I) — 0
is exact and thus [ is injective.

Let M; — I? be an injective resolution of M;. Then [[, M; — [[, I’ is an injective resolution
of [[; M; by the above discussion and thus by the definition of cohomology groups,

o))

Moreover, it is easy to check that

)

G
(T02) -
and so

)

(o) () (1)

Then the fact that Kernels and Images commute with direct products (which we proved above)

gives us
H' (H <I;>G) =L aran®

i

Therefore,
H (G, HMi) =[[H ) =] H"(G, M)
where the last congruence holds by the definition of cohomology groups.

In particular for any G-modules M ,N,

H'(G,M & N) = H"(G, M) ® H"(G, N)

2.8 Functorial Properties of the Cohomology Groups

Let M be a G module, M’ be a G’ module and let « : G’ — G be a group homomorphism.

Note that M naturally becomes a G’ module via a.
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Let
B:M — M

be a homomorphism (only as abelian groups).

a and 3 are said to be compatible if V ¢ € G’V m € M
Blalg)ym) = g'(B(m))

Observe that this condition exactly means that 8 is a G’ module homomorphism.

Then for each non-negative integer r, we get
n: C"(G, M) — C"(G', M")
such that
¢ Bogoa”

i.e.

ne (P91, -, gr)) = B(d(algr), ..., algr)))

Consider the diagram :

cr-4G, M) £ o7 (G, M)

lmfl l"" (2.15)

Crfl(Gle/) Q (G, M)

Direct calculation shows that this diagram commutes i.e. Vrr € N
Ny 0 dr—l — d/r—l o Np_1
Note that the compatibility condition is required in the proof of this fact.

Now
e dr—l _ d/T'—l o M_1

which implies that
ne(Im(d"= 1)) € Im(d" 1)
and
Nr+10 d"=d"on,
and so
n-(Ker(d")) C Ker(d™)

Thus 7, induces a group homomorphism (which we again denote by 7,)

~ Ker(d") Ker(d™)
T (a1 T Tm(dr1)

i.e. a group homomorphism
n-: H'(G,M) — H"(G', M")
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2.8.1 Examples

1. Shapiro’s Lemma Let H be a subgroup of G and let « be the inclusion map from H to G
and g : [ nd%M — M such that ¢ — ¢(1). Compatibility condition is satisfied and by the above
procedure we get the group homomorphism

H"(G,Ind$M) — H"(H, M)

This group homomorphism is infact an isomorphism which gives another proof of the Shapiro’s
lemma (Theorem 19). This is a fact which we will see in a later section (Theorem 37) but we are
assuming it for now.

2. Restriction maps Let H be a subgroup of G and let a be the inclusion map from H to
G and (8 be the identity map on M. Then by the above procedure we obtain the restriction homo-
morphism

Res: H"(G,M) — H"(H, M)

There is another way of describing the restriction homomorphism.

Let a be the identity map on G and § : M — IndgM be the map such that m — ¢,, where
¢m(g) = gm. This gives us the homomorphism

H" (G, M) — H"(G, Ind$ M)

Composing this homomorphism with the isomorphism of Shapiro’s lemma (in Example 1 above),
H"(G, IndGM) — H"(H, M), we get the required restriction map.

3. Inflation maps Let H be a normal subgroup of G. Then M is a G/H module as seen
in the proof of Lemma 12. Let a be the quotient map G — G/H and 3 be the inclusion M — M.
This induces the inflation homomorphism :

Inf:H"(G/H,M") - H"(G, M)

4. Corestriction maps Let H be a subgroup of finite index in GG, and let S be a set of left coset
representatives for H in G. Let a be the identity map on G and 5 : I ndgM — M such that

B(g) = so(s™)

sES

In order to show that 3 is well-defined, we have to show that the sum quﬁ(s*l) is independent of

seS
the choice of set of left coset representatives. Let S = {s1,...,s,} and T = {t1,...,t,} be two sets

of left coset representatives of H in G. We need to show that

n

D sio(si) =) tio(ti )
i=1

i=1
Since we can interchange S and T, so it suffices to show that

n

sig(sih) < ) tio(th)
i =1

=1
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Any s; € S is in some coset t;H and so we have s; = t;jh;; for some h;; € H. This shows that

1 _ 3-1,-1
s, = hij tj and so

o(si ') = olhy;'t;) = hij o (t; )
Note that in the last equality, we have used that ¢ € Ind$(M). Thus
sid(s; 1) = tihighi o) = tio(t5)
Hence we have shown that every element s;¢(s; ') is of the form tjqﬁ(tj_l) for some j. This implies

that . .
D sio(si) <) tip(tih)
=1

=1

and so we are done. Thus [ is a well defined map and induces the homomorphism
H" (G, IndM) — H"(G, M)

Composing this homomorphism with the inverse of isomorphism of Shapiro’s lemma (in Example
1 above), we get the corestriction homomorphism :

Cor:H'(H,M) — H"(G,M)

Remark 7. It is important to see the description of corestriction maps in dimension 0. Let G be
a finite group. For every G-module M, define the norm map

Nmg: M —- M

mHng

By the proof of Shapiro’s Lemma (Theorem 19), we know that the isomorphism

such that

H°(H, M) — H°(G, Ind$, M)
is given by m v ¢, where ¢ (g) =m Y g € G. The map
HYG, Ind$ M) — H(G, M)

takes ¢y, to

ngi)m(s_l) = Z sm = Nmg/gm

seS seSs

Hence the corestriction map in dimension 0 is
corg : M 5 MC

given by

corg(m) = Z sm = Nmg/gm
seS

Thus the corestriction map is given by the norm map tn dimension 0.
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2.8.2 Relations among functorial maps

Theorem 23. Let H be a subgroup of G of finite index. The composite
CoroRes: H (G,M) — H"(G, M)

is multiplication by (G : H).

Proof. Note that while taking the composition, the isomorphism of Shapiro’s Lemma (in Example
1) and its inverse cancel with each other (We are using the alternate description of the restriction
map).

CoroRes: H(G,M) — H"(G, M)

is then simply the induced map on cohomology taking « to be the identity on G and 8 to be the
composite
M — Ind$;M — M

such that

m e o, qubm(sfl) = Zs(silm) =(G:H)m

ses ses

Now since 1,.(¢) = fo¢oa” and « is the identity; thus 7,(¢) = B o ¢. Since 8 is multiplication by
(G : H); so n, is also multiplication by (G : H). O

Corollary 3. If (G :1) =m, then mH"(G,M) = 0.
Proof. 1f we take H = {1}, by Theorem 23, we get mH" (G, M) = (Cor o Res)(H" (G, M)
Res: H"(G,M) — H"({1}, M) is the zero map since H" ({1}, M) = 0. Hence
mH"(G,M) = (Cor o Res)(H"(G,M) = Cor(Res(H"(G,M))) = Cor(0) =0
0

Theorem 24. Let H be a normal subgroup of G, and let M be a G-module. Then the inflation
restriction sequence

0 — HY(G/H, M"y s gya, ary B g, M)

1s ezxact.
Proof. Firstly we will prove that the Inf map is injective.

Let ¢1 and ¢o be crossed homomorphisms from G/H to M* such that

Inf(¢1) = Inf(p2)

in H(G, M). Thus
Inf(¢1) = Inf(¢2) +1

where 7 : G — M is such that n(g) = gmo — mo V g € G for some my € M. Therefore, V g € G,
¢1(9H) = ¢2(gH) + (gmo — mo)
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In particular V h € H,
hm(] = 1my

Thus 7 is zero on H and mg € M. Define the map n' : G/H — M given by n/'(¢H) = n(g).
Firstly we will show that 7 is well-defined. Let g1 H = goH. This means that g; = goh for some
h € H. Thus

n(g1) = n(g2h) = gan(h) +n(g2) = n(g2)

and so 1’ is well-defined. Since gmg — mg = (gH)mg — myg, so 1’ is a principal crossed homomor-
phism from G/H to M. Hence, ¢; = ¢ and Inf is injective.

Exactness at HY(G, M) :
Firstly we will prove that Im(Inf) C Ker(Res).

Let = Inf(¢) where ¢ € H'(G/H, M) ie. ¢ is a crossed homomorphism from G/H to M.
Then ) is represented by a crossed homomorphism ¢ from G to M such that ¢¥(g) = ¢(gH).

7 = Res 1 is represented by a crossed homomorphism 7 from H to M such that
n(h) =(h) = ¢(hH) = ¢(H) = 0
Thus Res(1)) = 0, so 1 € Ker(Res) and we are done.

Now we will prove that Ker(Res) C Im(Inf).

Let ¢ € Ker(Res) i.e. ¢ is a crossed homomorphism from G to M such that the restriction
of ¢ to H is a principal crossed homomorphism i.e.

(Z)(h) :hmo—mo
for some mg € MV h € H.

Define ¢ : G — M such that
¢ (9) = ¢(g) — (gmo — mo)
Then
¢ (g192) = d(g192) — (g1g2mo — M)

Since ¢; is a crossed homomorphism,

P(9192) = g190(92) + ¢(91)

It follows that
¢ (9192) = 910 (92) + ¢ (91)

Hence ¢ is also a crossed homomorphism which is in the same class as ¢ in H'(G, M)
Note that ¢ (h) =0V h € H.

Define ¢ : G/H — M such that ¢ (¢H) = ¢ (g).
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We will show that ¢ is well defined.

Let 1H = goH. Then gglgl € H ie. g = hgy for some h € H and so g1 = g2h; for some
h1 € H since H is normal in G.

Since gb/ is crossed, / / / /
¢ (91) = 920 (h1) + ¢ (92) = ¢ (92)
and thus

1"

¢ (91H) = ¢ (92H)
Now we will prove that for any g € G, ¢"(gH) € M*. Note that for h € H and g € G, we have
¢ (hg) = he' (9) + ¢ ()
and thus,
h¢ (9) = ¢ (hg) — ¢ (h) = ¢ (hg) = ¢ (gh1)

for some hy € H since H is normal in GG. Therefore,

’

he'(9) = 90 () + ¢ (9) = ¢ (9)
Hence,
h¢'(9)=¢'(9) YV heH
which shows that,
¢ (gH) = ¢ (g9) € M"

and hence we are done.

. "o, .
Finally ¢ is a crossed homomorphism because,

"

¢ (9L H)(92H)) = ¢ ((9192H) = ¢ (9192) = 010 (92) + &9 = (q1H)¢ (92 H) + ¢ (g1 H)

Hence we have shown that the inflation restriction sequence is exact. ]

Using the description of the boundary map, it is straightforward to show that the following results
hold :

Theorem 25. Let
0—-A—-B—>C—=0

be an exact sequence of G-modules, then the diagram
H"(G,C) —— H™(G, A)
res resri1 (2.16)
H"(H,C) —%— H™1(H, A)

commutes for all v > 0.
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Theorem 26. Let
0-A—-B—>C—0

be an exact sequence of G-modules, then the diagram
H"(H,C) —— H"™1(H, A)

cory cory41 (2 1 7)

H"(G,C) —2— H™Y(G, A)

commutes for all r > 0.

Theorem 27. Let
0—-—A—-B—-C—=0

be an exact sequence of G-modules, and let H be a normal subgroup of G. If the sequence
0 A% - BH 5 50
1s also exact, then the diagram
H"(G/H,cH) —°% 5 H™+Y(G/H, AT)

infr infrit (2.18)

H(G,C) —2 5 H(G, A)
commutes for all r > 0.

The main step in the proof of each of these theorems is the observation that these functorial maps
commute with the maps
d:C"(G,M) — C"\(G, M)

2.9 Homology

For a G-module M, let Mg be the largest quotient of M on which G acts trivially. Thus M is the
quotient of M by the subgroup My generated by

{gm —m:9g€e G,m e M}

Lemma 15. If

M M5 Mo
is an exact sequence of G-modules, then

i

ML 25 Mg 25 MU — 0

1s also exact.
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Proof. The map oy : M/, — Mg is defined as m’ — a(m/). To show that oy is well defined we have
to show that a(M))) C My. But this is true since for any m’ € M’, we have

algm’ —m') = algm’) - a(m') = gla(m')) — a(m’) € Mo

Similarly 81 : Mg — M/, such that m — B(m) is a well-defined G-module homomorphism. Clearly
p1 is surjective since f is. Since Ker(8) = Im(«), so we have S(a(m’)) = 0 for any m' € M'.
Therefore, Im(ay) C Ker(51). Conversely let m + My € Ker(f1) for some m € M. This means
that B(m) = gm” —m” for some m” € M". Since 3 is surjective, so m"” = §(m;) for some m; € M.
Therefore,

gm” —m" = gB(m1) — f(m1) = B(gm1 —m)

Hence 8(m) = B(gm1—mq) and so m—(gmi1—m1) € Ker(8) = Im(«). Therefore, m—(gmi—mq) =
a(m') for some m’ € M’ which shows that m — a(m’) € My Hence m + My = a(m’) + My. This
shows that Ker(81) C Im(ay) and we are done. O

Definition 4. A G-module P is said to be projective if for every surjective G-module homomor-
phism m : N — M and every G-module homomorphism « : P — M, there exists a G-module
homomorphism B : P — N such that 8 om = « i.e. the following diagram commutes :

B . (2.19)

Equivalently, P is projective if Hom(P, ) is an exact functor.

Lemma 16. Fvery G-module is a quotient of a projective G-module.

Proof. We know that every G-module is a quotient of a free G-module. By the universal property
of free modules, it follows that every free G-module is projective, so every G-module is a quotient
of a projective G-module. O

Definition 5. A projective resolution of a G-module M is a long exact sequence
do dy do
. > P =P —FP)—M—0

such that P; is a projective module for each i > 0.

We had shown that for any G-module M, there is an injective resolution. With a similar approach,
one can show that

Theorem 28. For a G-module M, there exists a projective resolution of M.

Definition 6. Met M be a G-module, and choose a projective resolution

s Py p By p B g
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of M. The complex
d d d
e (PQ)G —2> (P1)G —1> (PO)G’ —O> 0

need no longer be exact and we define the r* homology group

_ Ker(d,)
H,.(G,M) = Tm(drin)

Theorem 29. H,.(G, M) is independent of the choice of the projective resolution (upto an isomor-
phism) and is thus well defined.

Proof. See Theorem 6, page 782, [7]. O
Lemma 17. Hy(G,M) = Mg

Proof. Since
Ph—>FP—>M-—=0

is an exact sequence, so by Lemma 15, the following sequence is also exact :

(PO 2 (Po)e 2 Me — 0

Therefore,
_ Ker(dy)  (Po)e _ (Po)e

Ho(G M) = 0y = Tmtay) ~ Rer(yy = ™) = Mo
O
Lemma 18. If P is a projective G-module, then H.(G,P) =0 for all > 0
Proof. This follows from the fact that
o= 0=2>P =P =0
is a projective resolution of P. O

Theorem 30. A short exact sequence
0—-M —-M-—M"—0
of G-modules gives rise to a long exact sequence
0 — Ho(G, M') — Ho(G, M) — ... — H.(G, M) — H,(G, M) — H.(G,M") % H,,1(G, M) — ...

Proof. See page 789, [7]. O
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2.10 The Group H,(G,Z)

Define the augmentation map
n: Z|G] — Z|G]

n (Z nigi) = Z ng

Ig = Ker(n) is called the augmentation ideal.

such that

The set
{9—1:9€ G and g # 1}

generates I as a Z module since,

k k
an‘gi = Zni(gi —1)
i1 =1

because Y n; = 0. Moreover,

M
HO(GvM) = Mg = ﬁo

where My is the submodule of M generated by all elements of the form gm — m where ¢ € G and
m € M. But gm —m = (g — 1)m and thus, My = I M which shows that Hy(G, M) = IGLM
Consider the augmentation sequence :

0I5 Z[G) B Z 0

The G-module Z[G] is projective because it is a free Z[G] module and so H, (G, Z[G]) = 0 But we
have an exact sequence which is a part of the long exact sequence for the homology groups.

Hl(G,Z[G]) — Hl(G, Z) — Ho(G, IG') — H()(G,Z[G]) — Ho(G,Z) —0

We also know that

Hy(G,Z)=17
since the action of G on Z is trivial. Moreover, we have
ZIG] _ Z[G]
Hy(G,Z|G)) = = —
and,
el el
Hy(G,Ig) = —— = =
Hence we get an exact sequence
Ie + Z|G
O—>H1(G,Z)—>—§i>g—>2—>0
IZ Ia
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The map

I & Z[G]
2 g

is induced by the map I SN Z|G] and is thus the zero map as we are evaluating the image of an
element of I modulo .

Hence we have the exact sequence

Ie o Z[G
0—>H1(G,Z)i>—§ﬂ>LiZ—>o
2 Ig

We already knew that « is injective and S is surjective but by this exact sequence, we also have
that Im(a) = Ker(0) and Im(0) = Ker(f).

Thus Im(a) = 1§ and Ker(8) = 0.

- 72
IG

This shows that « is surjective and 3 is injective. Hence a and (8 are both bijections and thus
isomorphisms.

Therefore, we have
(2.20)

and

Remark 8. Z is the largest quotient of Z[G] on which G acts trivially.

Remark 9. 1% is the Z-submodule of Z[G] generated by elements of the form (g — 1)(g —1) where
9.9 €G

Lemma 19. Let G¢ be the commutator subgroup of G, so that G/G€ is the largest abelian quotient
of G. Then the map

such that

P(9G) = (g— 1)+ I

s an isomorphism.

Proof. Firstly consider the map ¢ : G — 5—5" such that g — (g — 1) + I2
G

For g,¢' € G, we have

d(gg) =99 — D)+ 1&=(-Dg -+ (-1 + (g - 1)+ 1& =d(g9) + ¢(g)

since (g —1)(¢’ — 1) € I% and thus ¢ is a group homomorphism. Then we have for given g1, g2 € G,

D(919291 ' 95 ") = d(g1) + d(g2) + D97 ") + d(g5 ') =0
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because % is abelian. Hence there is a well defined homomorphism
G

G 1
X b G
$: G e

such that
D(9G) = (9— 1)+ I3

Similarly one can verify that there is a well defined homomorphism

1
v —g — G
IG
such that
V(g —1) +13) = gG°
Clearly ® and ¥ are inverses of each other. Thus, %’ >~ Gab 0
G

Theorem 31. H,(G,Z) = G®

Proof. This follows directly from equation 2.20 and Lemma 19.

Remark 10. From the proof of Theorem 31, it follows that the isomorphism Hy(G,7) = G is
the composition of the isomorphisms H\(G,Z) = I /13 and I/I% = G®™. This description would
be required later.

O

2.11 Tate Groups

Throughout this section, we assume that G is a finite group.

For every G-module M, define the norm map

Nmg: M — M

mHng

geG

such that

Let ¢’ € G. Since we have

g Nmg(m) = g'ng = Zg'gm = ng = Nmg(m)

geG geG geG

so Im(Nmg) € M€, Similarly IcM C Ker(Nmg)

Hence the norm map can be extended to Nmg : IGLM — M¢
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Ker(Nmg)

Since the Kernel of the norm map is T and the cokernel is #C;M), so we get an ex-

act sequence

G
R Ker(Nmg) R M Nmg, ME M

0 50
ToM IoM Nma(M)
This can also be expressed as
0 BertNme) gy ey g ) _ME
IoM 0L ’ Nme(M)

Ker(Nmg)

Thus the Kernel of the norm map is Toi

. MG
and the cokernel is Ning (M)
We define Tate groups Hj (G, M) (—oo <r < o0) as
H"(G,M) r>0
MY /Nmg(M) r=20

KET(ng)/IgM r=—1

| H 1 (G, M) r<-—1

Note that in view of these definitions, our exact sequence can be rewritten as
0 — Hy' (G, M) = Ho(G, M) X1 HO(G, M) — HX(G, M) =0 (2.21)
Thus the kernel of the norm map is H;'(G, M) and cokernel of the norm map is H(G, M).

This interpretation will be useful in the next section.

Theorem 32. For every given short exact sequence
0—-M —-M-—M"—0
there is a very long exact sequence for Tate Cohomology groups
. > HH(G, M) - Hy(G, M) - Hy (G, M") S HIPY(G, M) — ...
Proof. To prove this Theorem, we have to firstly describe the maps o : H=2(G, M") — H=Y(G, M"),

n: H:Fl(G,M”) — HY%(G,M') and 15 : HY(G,M") — H:(G, M') as these maps had not been de-
fined till now.
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Consider the commutative diagram :

Ho(G, M"Y —L s Hy(G, M) —— Hy(G,M") —— 0

Nmg Nmg Nmg (2.22)

0 — HY(G,M') — HY(G, M) —X— H°(G,M") —— HY(G,M")

where the upper row is the long exact homology sequence and the lower row is the long exact
cohomology sequence. We can apply the extended snake lemma to get an exact sequence.

0 — Ker(f) — H NG, M) 2 BN (G, M) — H (G, M) L m7Y(G, M)

p (2.23)
— HY(G, M) 2 HYNG, M") 225 Coker(g) — 0

In particular, it shows that Ker(f) C H: (G, M').

Note that the map 7 : H:'(G,M") — H9(G, M’) has been defined automatically by the Ex-
tended Snake Lemma.

Observe that by equation 2.21, we have
H7YG,M") € Ho(G, M)
We also have the long exact homology sequence :
oo Hy (G, M"Y — Hi(G, M) — Hy(G, M") % Ho(G, M) L Ho(G, M) — H(G, M") — 0

which shows that
Im(6) = Ker(f) Cc H: (G, M)

Thus we can define
ne: H72(G,M") — H Y (G, M)

to be the map
6 Hl(G, M”) — Ho(G, M/)

since Im(0) ¢ H=Y(G, M").
Now we want to define the map 705 : HA(G, M") — HA(G, M").

By equation 2.23, we have a surjective map
Ko : HYG, M") — Coker(g)
Moreover, we have the long exact cohomology sequence
H(G,M') - H (G, M) L HO (G, M") = HY (G, M) 2 HY(G, M) - HY (G, M") — ...
which gives us an injective map

w1 : Coker(g) — HY(G, M")
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induced by k3 since Ker(ks) = Im(g). We define
ns + Hp (G, M") = Hp(G, M)

such that
75 = K1 © K2

Now we will prove the Theorem.

By the long exact cohomology sequence, we know that the following sequence is exact :
H(G, M) - H (G, M) L H (G, M") =& HY (G, M") 2 HY(G, M) - HY (G, M") — ...
In particular we get that the following sequence is exact :
HAG, M) L HL(G, M) — H-G, M") — ... (2.24)
By the long exact homology sequence, we know that the following sequence is exact :
o Hy (G, MY — Hi(G, M) — Hy(G,M") % Ho(G, M) L Ho(G, M) — HY(G, M") — 0
This can be rewritten as :
= HR2(G, M) = H72(G, M) — H7 (G, M) S Ho(G, M) L Ho(G, M) — HY(G, M) — 0
In particular we get that the following sequence is exact :
= Hp2(G,M') = H2(G, M) — H*(G,M") (2.25)

In order to prove the Theorem, by equations 2.24 and 2.25, it suffices to prove the exactness of the
following sequence :

H;2(G, M) ™ H2(G,M") 2 g (G M) 2 H NG, M) — HY(G, M)

(2.26)
— HYG,M") — HNG, M) & 5Y(G, M") L 7L(G, M) L HL(G, M)

By equation 2.23, we only need to show exactness of this sequence at H;*(G,M"), H7 (G, M'),
HY(G,M") and H:(G, M).
By long exact homology sequence, we have that the following sequence is exact :

o — Hy(G,M") — H{(G, M) o, Hi(G,M") LN Ho(G, M) ER Hy(G,M) — H*(G,M") = 0

Therefore, Im(n;) = Ker(d) but we have Ker(d) = Ker(nz) by definition of ny. So Im(n;) =
Ker(n).

Thus we have shown exactness at H,2(G, M").
Now by equation 2.23, we have Ker(ns) = Ker(f). But we have by the exact sequence for

homology, we have Ker(f) = Im(d). Moreover, Im(d) = Im(n2) by definition of 79. Therefore,
Ker(ns) = Im(nz) and so we have exactness at Hy' (G, M’).
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Now Ker(ns) = Ker(kg) since 15 = k1 o kg and k1 is injective. Moreover, we have Ker(ka) =
Im(ny) by equation 2.23. Therefore, Im(ny) = Ker(ns).

Thus we have shown exactness at HY(G, M").

Moreover, we have Im(ns) = Im(k1) as n5 = k1 o ke and kg is surjective. But Im(ky) = I'm(ks)
by definition of k1. Furthermore, we have the long exact cohomology sequence :

H(G, M) - H(G, M) L HO(G, M") =& HY (G, M) % HY(G, M) — HY (G, M") — ...

which shows that I'm(k3) = Ker(ng). Thus we have Im(ns) = Ker(ng) which shows the exactness
at H+(G, M’). This completes the proof of the Theorem. O

Remark 11. The map n: H7 (G, M") — HY(G, M) can be obtained by the diagram 2.22. Since
kernel of the map Nmq : Ho(G,M") — H°(H,M") is equal to Hy'(G,M") and cokernel of
the map Nmg : Ho(G, M) — H°(G, M') is equal to HY(G,M') by equation 2.21, so we get the
commutative diagram :

Hyp ' (G, M)
7
Ho(G M) — s Hy(GLM) —*— Hy(G.M") — 5 ¢
Nmg Nmg Nmg (2.27)

0 — HYG,M") SN HY(G,M) —L— HY(G,M") ——— H'(G, M")

HY(G, M)

Now since we have defined n by Extended Snake’s Lemma, to take the image of an element of
Hfl(G, M") under the map n, we have to first take its image under i, then take some preimage
under «, then take its image under the map Nmg, then take the preimage under 5 and finally take
its image under .

This description of the map 7 : Hfl(G, M") — HY%(G, M'") would be required later.

We would need the following Lemma several times :

Lemma 20. If
05XS5Y5HZ—0

is an exact sequence of free Z-modules and A is an arbitrary Z-module, then the sequence

0 XA yed™h 70450

is also exact.
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Proof. Since we know that the tensor product is right exact, so we only have to show that the map
a ® 1 is injective. Since Z is a free module, so by the universal property, there exists a map S such
that the following diagram commutes :

Y
B lﬂ (2.28)
z

g id

i.e. mwo B =1id. Now we will show that

Y =Im(pB) @ Ker(n)
Firstly assume that y € Im(8) N Ker(r). Thus y = B(z) for some z € Z and 7(y) = 0. Therefore

z=m(B(2)) =m(y) =0
and so y = (0) = 0. Thus we have shown that

Im(B) N Ker(m) =0
which means that it suffices to show that

Y = Im(p) + Ker(n)

Clearly
Im(B)+ Ker(m) CY

Now for any y € Y, we have

m(y — B(n(y))) = 7(y) = w(B(7(y))) = 7(y) —w(y) =0
where in the second equality, we have used the fact that w o 8 = id. Thus we have shown that

Y =Im(pB) @ Ker(n)
Therefore,
Y®Z=(ImB)®Z)d (Ker(r)® Z) = Im(B®1)) @ (Ker(r) ® Z)

which implies that the map 8 ® 1 is injective. O
Theorem 33. If M is induced as a G-module, then H,(G,M) =0V r € Z.

Proof. For r > 0, it was already proved in previous sections.
Now we prove it for the case r = 0.

Recall that M = Z[G] ® X for some abelian group X. So it suffices to show H7.(G,Z[G]® X) =0

Lemma 21. Every element of Z|G] @ X can be written uniquely in the form Zg ® Ty
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Proof. Let
m n
Z 9i ® Tg; = Z Im+j L gy
i=1 j=1
such that g; # g; if 1 <7< j <mand gm4i # gm+j if 1 <i < j<n.

Apply the isomorphism 3 : Z[G] ® X — Ind“X (decribed in the proof of Theorem 10) on both
sides to get,

m n
E , ¢gi71’gi = E , ¢gm+i,$gm+i
i=1 =1

L.H.S. is non-zero on the set {gfl, g;l, .......... g1} and R.H.S. is non-zero on the set {g;blﬂa 9;112, .......... g;lﬁrn}
Hence {g1, -....... Im} = {Gm+1y e Gm+n}. In particular m = n, and so {g1, ........ Im} = {Gmt1seeen 92m }
Rearrange g; such that gn,4; = ¢; V1 <7 < m and we are done. O

Now we continue our proof of the case » = 0 of Theorem 33.

Any element m of M can be written uniquely in the form }° g®z,. If ¢’ fixes m, then ¢’ (Zg g® xg> =

> 9®xgandso Y gg@xy =73 g®z, Comparing the terms having ¢’ in the first coordinate,
we get ¢ @z, = ¢’ @2y V ¢’ € G. Thus xj = x, again by Lemma 21.

Now let © € M, then gr = # V g € G, which implies that rg = T ¥V g € G by the observa-
tion in the preceding paragraph. Then

szg@xQ:ZgQ@xe:Zg(e@xe):Nm(e®me)
9 9 9

Therefore, MY C NmgM and so H%(G, M) = 0
Next we will prove the Theorem for the case r = —1.

If>,9®x4 € KerNmg, then Nmg(3_, 9 ® 24) = 0 and so
29D 98a=0
9 g

which implies that

ZZg'g@xg:()
9 g

Calculating terms having 1 in the first coordinate (i.e. ¢’ = g~1), we get

by Theorem 21. Then

Zg@xg22(9—1)®x9+21®m922(g—1)®%elgM

g g g g



Hence we have proved that Ker(Nmg) C IgM and so H_1(G,M) =0
Finally we prove the Theorem for the case r < —1.

Let M = Z|G] ® X. Write X as a quotient of a free abelian group Xy. Then we have a sur-
jective map Xo — X. The kernel of this map X; is also a free abelian group because every
subgroup of a free abelian group is free abelian.

Hence we have an exact sequence

0—-X1—>Xg—>X—>0

where Xy and X are free abelian groups.

Since Z[G] is a free Z-module, so it is flat and therefore, upon tensoring with Z[G], we get an
exact sequence,

0—>M — My— M —0

where M; = Z[G] ® X1 and My = Z|G] ® Xy. By the previous cases, we know that H}.(G, M) =
HE(G, M) =0V r > —1.

But M is a free G-module since X; is a free abelian group. Similarly My is a free G-module.
Hence My and M are projective as G-modules and thus H, (G, My) = H,.(G, M;) =0 for all » > 0
which means that H.(G, My) = H.(G, M) = 0 for all r < —2. Since we already know by the previ-
ous cases that (G, My) = H.(G,M;) = 0 for all r > —1, so we get H-(G, My) = H} (G, M;) =0
for all r € Z. Now by Theorem 32, we know that the Tate cohomology sequence

. = HNG, My) — H}(G, M) — H3YG, M) — ..

is exact which shows that H7.(G, M) = 0 for all r € Z. O

2.12 Alternative approach to Tate Cohomology

Now we describe an alternate description of Tate cohomology as described in [2]. In the later
sections, we will use both the descriptions interchangeably. All cohomology groups will be Tate
and we will drop the subscript T

2.12.1 Cohomology groups

Throughout this section, we will assume that G is a finite group. For ¢ > 1, we consider all g-tuples
(01, ...,04), where the o; run through the group G. We use these g-tuples to generate G-modules
X, i.e. we define

Xo=X_q1=EPZG)(o1,...,59)

For ¢ = 0, we put
Xo=X_1 =Z[G]
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where we choose 1 € Z[G| as the generator. In particular, the modules
s X9, X1, Xo, X1, Xo, ...
are free G-modules. For any G-module A, we set
Ay = Homg (X, A)

There is an exact sequence

d_ d_ d d d d
Ry GPELE GNP (NPLIN LN SPLE

which induces the complex

o_ 0_ O 0 0 0:
B A, TN A B A A B4, Sy

Contrary to the first sequence, the second sequence need not be exact.
Definition 7. For all ¢ € Z, we define the factor group

HYG, A) = Ker(0g41)/1m(0q)
is called the ¢ cohomology group with coefficients in A.

Theorem 34. If
0-A—->B—-C—=0

is an exact sequence of G-modules, then there exists a canonical homomorphism
6, HI(G,C) — HIT(G, A)

Detailed description of the maps d, , 9; and J, can be found on page 13, 16 and 21 respectively of
[2].
Theorem 35. If

0 A L . p—"1 C 0
f g h (2.29)
0 y A’ LN > 7 y O 0

is a commutative diagram of G-modules with exact rows, then the following diagram is also com-
mutative :

HY(G,C) — s gotl(@q, A)

hq fq+1 (230)

HY(G,C") —2 s got(@, A"

where ﬁq is the map induced by h and fq+1 is the map induced by f on the cohomology groups of
dimension q and (q + 1) respectively.

Proof. The proof follows immediately from the description of d,. See Proposition 3.5, Page 24, [2]
for details. 0
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2.12.2 Dimension Shifting

From now onwards, we denote the element ) .~ o of Z[G] by Ng. By Ng(a), we would mean

> ocq 0a. Define the homomorphism
€:Z|G] = Z

with

{Z%Q=Z%

ceG oeG

and the homomorphism
w:Z — Z|G|

such that u(n) = nNg We denote by Ig the augmentation ideal (Kernel of €) of Z[G] and Jg the
factor module Z[G]/ZN¢. Then we get the exact sequences (which are known as the augmentation
and coaugmentation sequence respectively)

0—Ig—Z[G] S 7Z—0,

025 7[G] = Jg—0
All terms in these exact sequences are free Z-modules (See Proposition (1.2), page 4, [2] for proof).
Lemma 22. For all G-modules A, we have the exact sequences

0-2IcA—ZG®A—A—0

and
0-A—-Z[G®A—Jc®A—0

Proof. 1t follows directly from Lemma 20. O

We know by Theorem 10 that Z[G] ® M is an induced module and so by Theorem 33, for every ¢
and every subgroup H € G. we have isomorphisms

§: HI7Y(H, A" — HI(H, A)

where Al = Jo ® A and
S~ HIYH,ATY — HY(H, A)

where A™! = I ® A. We can iterate this process.

For every m € Z such that m > 0, set
A" =Je®Jg®..0Jg® A

where the number of times Jg appears in the tensor product is m.

For every m € Z such that m < 0, set

A" =IR1® .0 Ic ® A
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where the number of times I appears in the tensor product is |m/|.

Composition of the isomorphism & (or §~1) with itself |m| times gives us the isomorphism
0" HT™(H,A™) — HY(H, A)

This technique will help us to reduce many definitions and proofs to the case of zero-dimensional
cohomology which we understand better. This method is called the method of dimension shifting.

We demonstrate an immediate application of dimension shifting.

Lemma 23. Let G be a finite group of order n and A be a G-module. Then
nHY(G,A) =0

forallq € Z.

Proof. If ¢ = 0, then na = Ng(a) for any a € A® and so n(a + NgA) = na + NgA = 0. This
proves the Lemma for ¢ = 0 case. The general case now follows from the commutative diagram :

HO(G, A7) — 5 HI(G, A)

n n (2.31)

HO(G, A7) — 5 HY(G, A)
OJ

Definition 8. An abelian group A is said to be uniquely divisible if for every a € A and every
natural number n, the equation nx = a has a unique solution.

Corollary 4. A uniquely divisible G-module A has trivial cohomology.

Proof. Let n = |G|. Since A is uniquely divisible, the map A — A given by x +— nx is bijective
and therefore induces an isomorphism

HY(G, A) — HY(G, A)

given by ¢ — n¢. Therefore,
HY(G,A) =2nHI(G,A) =0

O]

With the help of the dimension shifting technique, we can get an analogue of the inflation restriction
exact sequence (Theorem 24) for higher dimensions though only under certain conditions.

Theorem 36. Let A be a G-module and H is a normal subgroup of G. If H(H,A) = 0 for
0<i<qandq>1, then the sequence

0 — HYG/H, ATy L go(@, A) 7% HI(H, A)

15 exact.
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Proof. We prove this by induction on g. The base case ¢ = 1 has already been proved (Theorem
24). Now assume ¢ > 1 and set B = Z|G] ® A and C = Jz ® A. We have an exact sequence

0A—-B—-C—=0
By the hypothesis of the theorem, we have
HY(G,A) =0

and thus the long exact sequence for cohomology (Theorem 18) shows that the following sequence

is also exact :
0— Al - BH 5 CcH 0

Now by Theorem 27 and Theorem 25, we have the following commutative diagram :

0 ——— HTY(G/H M) "L oL@, c) "= HV(H,C)
s 5 5 (2.32)
0 — HIG/H, AT — " gaG, A) — " HI(H,C)

Since B is an induced G-module by Theorem 10, so the middle vertical map is an isomorphism.
Moreover by Theorem 12, B is an induced H-module and B is also an induced G/H module.
Therefore, the first and third vertical maps are also isomorphisms.
Since the third vertical map is an isomorphism, so

H'(H,C) = H™" (H,A) =0

for all 0 < i < g — 1. Thus C satisfies the hypothesis of the Theorem for (¢ — 1) and therefore by
the induction hypothesis, the sequence in the top row of the commutative diagram is exact. Since

all the vertical maps are isomorphisms, so the sequence in bottom row is also exact and we are
done. O

Theorem 37. (Shapiro’s Lemma) Let

A:@UD

oceG/H

for some H-module D C A. Then the composition of homomorphisms
HYG, A) ™ HI(H,A) I HY(H, D)
is an isomorphism where T is induced by the natural projection A = D.

Proof. See Theorem 4.19, Page 43, [2]. O

If we take A = Ind%M and D = M, we know by proof of Theorem 11 that

Then by Theorem 37, we have
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2.12.3 Functorial Maps

We now see how the compatibility condition of Theorem 25 enables us to give a definition of
restriction map on the whole Tate cohomology.

Definition 9. Let G be a finite group and H a subgroup of G. Then restriction is the uniquely
determined family of homomorphisms

resq : HY(G,A) - HY(H, A)
with the properties :

1. If ¢ =0, then
reso : HY(G, A) — H°(H, A)

s given by
a +NgA —a+ NHA

2. For every exact sequence 0 - A — B — C — 0 of G-modules, the following diagram is commu-
tative :

H'(G,C) —2— H™(G, A)
resq TeSq+1 (233)
H"(H,C) —%— H™1(H, A)

for all g € Z.

Condition 2 in the definition means that we have to define the res;, map by the commutative dia-
gram :

HO(G, A7) — 5 HY(G, A)

reso TeSq (2.34)
HO(H, A7) —" 5 HI(H, A)

By Condition 1, we know the restriction maps resy in dimension 0. Since the horizontal maps in
the diagram are isomorphisms, so we get unique maps res; in dimension gq.

Similarly we will define corestriction maps on the whole of Tate cohomology.

In case ¢ = —1, we define the corestriction homomorphism
cor_y: HY(H,A) - HY(G, A)

given by
a+IgA—a+ 1A
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Lemma 24. Let 0 > A — B — C — 0 be an exact sequence of G-modules. Then the following
diagram is commutative :

H-Y(H,C) —2— HO(H, A)

cor_q corg (235)

1(@,0) —2— H(G, A)

Proof. This can be shown by using the description of the corestriction map in dimension 0 given in
Remark 7 and the description of the map H~!(H,C) — H°(H, A) provided in Remark 2.21. [

Definition 10. Let G be a finite group, and let H be a subgroup of G. Then corestriction is the
uniquely determined family of homomorphisms

corq : HI(H,A) — HY(G, A)
with the properties :

1. If ¢ =0, then
corg : H'(H, A) — H°(G, A)

s given by
a+ NgA— NG/Ha—i-NgA

2. For every exact sequence 0 - A — B — C — 0 of G-modules, the following diagram is commu-
tative

H"(H,C) —%— H™(H, A)
corg COTq+1 (236)
H'(G,C) —— H™(G, A)

for all g € Z.

Condition 2 in the definition means that we have to define the cor, map by the commutative dia-
gram :

HO(H, A7) —%" 5 H9(H, A)

corg corg (237)

HO(G, A7) — 5 HY(G, A)
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Theorem 38. Let H C G be a subgroup. The homomorphism
ki H® — Qg

induced by the corestriction homomorphism cor_o : H-2(H,Z) — H~%(G,Z) coincides with the
canonical injective homomorphism c H¢ — oG°€.

Proof. We have the exact sequence
0—Ic—ZG—-Z—0

By condition 2 in the definition of corestriction maps, we have a commutative diagram :
H2(H,7) RN & YH,Ig)
cor_o cor_q (238)

H%(G,7) —>— H VG, Ig)

Moreover by Theorem 35, we get the commutativity of the following diagram :
H™%(H,7Z) —>— H™Y(H, Iy)
id fo1 (2.39)
H™2(H,7) —°%— HY(H, I¢)

where f_; is the map induced by the inclusion map Iy — Ig. Composition of these two diagrams
gives us the following commutative diagram :

H2(H,7Z) —°>— HY(H, Iy)
cor_2 cor_iof_1 (240)
H2(G,Z) —>— H (G, I¢)

By the description of cor_; and f_1, we have cor_j o f_ is just the inclusion map IH/IIQJ — I(;/I%.
By the proof of Theorem 31, we know that the following diagram commutes :

H2(H,7) —*— HY(H,Iy) —— H™®
cor—z cor_jof_1 ( (2.41)
H2(G,Z) —>— HYG,Ig) —— G®

Thus the map H*® — G induced by cor_s is same as that induced by cor_; o f_; which is the
inclusion map. O
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Definition 11. For any abelian group A and prime number p, we define the p-primary component
A(p) of A to be the subgroup consisting of all elements killed by a power of p.

Theorem 39. Let H C G be a subgroup. Then the composition
HY(G,A) == HI(H,A) 5 HY(G, A)
1S given as :
corores = (G: H)id

Proof. We have already shown this for all cohomology groups and hence it can be shown for all
Tate cohomology groups using dimension shifting. O

Corollary 5. Let G be a finite group, and let G, be its Sylow p-subgroup. For every G-module M,
the restriction map
Res: H"(G,M) — H"(G,, M)

is injective on the p-primary component of H" (G, M).
Proof. By Theorem 39, we know that the composite
CoroRes: H" (G,M) - H"(Gp, M) — H" (G, M)

is multiplication by (G : G,). Let v be in the p-primary component of H"(G, M) such that
Cor(Res(v)) = 0. This means that (G : Gp)y = 0. But also p*y = 0 for some k € N since v
is in the p-primary component of H"(G, M). Since G, is the Sylow p-subgroup of G, so p does
not divide (G : Gp). This shows that ged(p®, (G : G,)) = 1, so there exist integers a and b such
that ap® + b(G : G,) = 1. Since p*y = (G : Gp)y = 0, so v = 0 and thus Cor o Res is injective
on the p-primary component of H"(G, M) which in particular means that Res is injective on the
p-primary component of H" (G, M). O

2.12.4 Cup Products

Let A and B be G-modules. Then A ® B is a G-module, and the map (a,b) — a ® b induces a
canonical mapping
A x BY = (Ax B)Y

which maps NgA X NgB to Ng(A ® B). Hence the tensor product induces a bilinear mapping
HY(G,A) x H*(G,B) - H°(G,A® B)
given by ~ L
(@b)—a®b
We call the element a ® b € H°(G, A® B) the cup product of a € H°(G, A) and b € H'(G, B), and

denote it by B
aUub=a®b

Now we will show how the cup product extends to arbitrary dimensions just from this case.

99



Definition 12. There exists a unique family of bilinear mappings
H?(G, A) x HY(G, B) — HPT1(G,A® B)

defined for all G-modules A and B and all p,q non-negative integers satisfying the following con-
ditions :

1. For p=q =0, the pairing is given by
(@b) —a®b

2. If
0 A=A A 50

18 an exact sequence of G-modules such that

0 sA®B A ®B—-A"®B—=0

is also exact, then

§a" Ub=6d(a" Ub)

where o' € HP(G,A"),b € HY(G,B) and § denotes the connecting homomorphisms

HP(G,A") — HP(G, A)

and

HP(G, A" @ B) — HPMYY (G, A® B)

3. If
0—B—>B —-B —0

is an exact sequence of G-modules such that

0 5 A®B > A®B - A®B =0

is also exact, then

aUdh = (—1)P5(aUb’)
where a € HP(G,A),b" € H1(G,B")

We will use these three conditions to give the definition of cup product in arbitrary dimensions
(p,q). We know the cup product map in the dimension (0,0) by Condition 1. The strategy is to
go from (0,0) to (p,0) through Condition 2 and then from (p,0) to (p,q) through Condition 3.

To go from (p,0) to (p,q), we would need the identification (A ® B)? with (A ® BY). To see
this, observe that if ¢ > 0, then

qujg®Jg®...Jg®B
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and so
ARBI=AR Jo®Jag® ..Joc®B

which is naturally identified with
Je®Je® .Jc ®(A®B) = (A® B)?

Similarly if ¢ < 0, then
B1 :Ig®lg®...lg®3

and so
AQBI=AQ IR 1Ic® .. Ic® B

which is naturally identified with
Ic®Ig®.Ic®(A® B)=(A® B)!

Hence in either case, (A ® B)? can be identified with (A ® BY).
Similarly we can identify (A® B?)P with AP ® B?. This would be required to go from (0, 0) to (p, 0).
For any b € H°(G, BY), condition 2 of the definition gives us the commutative diagram :
HO(G, APy —2b 5 HO(G, AP @ B)
&» 5v (2.42)
H?(G,A) —2° 5 HP(G, A ® BY)

Since we know the map in the (0,0) level (upper row), so we obtain a unique map in the (p,0) level
(lower row).

For any a € HP(G, A), condition 3 of the definition gives us the commutative diagram :
H%(G,BY) —*2— HP(G,(A® B)9)
54 (~1)page (2.43)
HY(G,B) —*2— H"9(G, A® B)

Since we know the map in the (p,0) level (upper row) by the previous diagram, so we get a unique
map in the (p, q) level (lower row).

Note that here we get the factor (—1)P? because on applying § once we get a factor of (—1)P
by Condition 3 of the definition and here we are applying it |g| times.

Remark 12. We have shown how these three conditions uniquely determine the cup product but
we still need to show that the cup product so defined satisfies condition 2 and 3. This is a natural
but lengthy check. Please refer to Page 46, 47, [2] for details.
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2.12.5 Properties of Cup Products

Theorem 40. If we denote by a, p-cocycles of A and by b, q-cocylces of B, and by @, and b, their
respective cohomology classes, then

%UFq:ao®bq

and B
@Ubozap®b0

Proof. This will follow directly from a more general description of cup product for all cohomology
groups i.e. ¢ > 0. This description is provided at the end of this section. ]

Lemma 25. Let A,B be G-modules, and let H be a subgroup of G. If a € HP(G,A) and b €
HY(G, B), then B )
res(aUb) = res(a) Ures(b) € HT9(H, A ® B)

Proof. Firstly, we prove this for the case p = ¢ = 0. By condition 1 in the definiton of restriction
map (Definition 9), we know that res(a) = res(a+ NgA) = a+ NgA and res(b) = res(b+ NgA) =
b+ Ny B. Therefore by condition 1 in the definition of cup product (Definition 12), we have

res(a) Ures(b) = (a®b) + Ng(A® B) =res(aUb)

Thus in the (0,0) level, we have proved that the following square commutes :
HY(G, AP) —Y s HO(G, AP @ BY)

res res (2 44)

HO(H, Ap) U (resb)

HC(H, AP @ BY)
We can extend this square to a cube of which this square becomes the bottom face. The top face
is constructed as :

HP(G, A) —YP s HP(G, A BY)

TeES Tes (245)

U (resb)
_—

HP(H, A) HP(H,A® B)

The vertical maps in the cube are all boundary maps used for dimension shifting (going from
dimension 0 to dimension p) and are thus isomorphisms. The vertical squares also commute because
we know that the diagram 2.42 commutes. This shows that the top squares also commute which
means we have proven the theorem for the (p,0) case. Similarly, one can extend this proof for (p, q)
level using the commutativity of diagram 2.43. 0

Lemma 26. Let A,B be G-modules, and let H be a subgroup of G. If a € HP(H,A) and b €
H1Y(G, B), then ) B
cor(aUresb) = aU cor(b) € HPT(G,A® B)

62



Proof. We will prove this for p = ¢ = 0 and then we would be done by dimension shifting. By
condition 1 of definiton of restriction maps (Definition 9), we have a = a + NgA, b = b+ NgB and

so res(b) = b+ Ny B which implies
auU(resb) =a®b+ Ny(A® B)
Thus

cor(aU (resb)) = cor(a®b+ Ny(A® B)) = Z o(a®b)+ Ng(A® B)
oceG/H

by condition 1 of definition of corestriction maps (Definition 10). But we have
gla®b)=o0(a)®@0o(b) =a®ac(b)

since ¢ € G and a € AY. Therefore,

cor(aU (resb)) = Z a®0(b)+ Ng(A®B)=a® Z o(b) | + Nog(A® B) =aUcorb
ceG/H oc€G/H

O
Lemma 27. Leta € H?(G,A), b€ HY(G,B), and ¢ € H"(G,C). Then
aub=(-1)*(bUa)
and B B
(@ub)Uc=auU(bUc)
where we are using the natural identification of A® B with B&A and (A® B)®C with A®(B®C).

Proof. We will prove this for p = ¢ = 0 and then we would be done by dimension shifting. By
condition 1 of definition 12, we know that

aUb=a®b=bRa=bUa

where we have used the identification of A ® B with B ® A given by a ® b +— b ® a. Similarly, we
have B B

(@ub)Uc=auU(bUc)
by the associativity of the tensor product. O

Remark 13. More precisely, one should say that (—1)P4(b U a) is the image of @ U b under the
canonical isomorphism HPTY(G,A ® B) =2 HPTY(G,B ® A) induced by A ® B & B® A, and
stmilarly for the second formula. This description is required for the dimension shifting step.

Now we want to compute some explicit formulas for the cup product in low dimensions. These
would turn out to be very useful in Local Class Field Theory. Now we denote by a, the p-cocycles
of A and by a, their cohomology classes in HP(G, A). Similarly we denote by b, the g-cocycles of
B and by b, their cohomology classes in HY(G, B).

Lemma 28. a; Ub_| = 79 € H*(G, A® B) where

To = Z a1 (1) ® bt

TEG
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Proof. Consider the coaugmentation sequence
0—-Z—Z|G] = Jag—0
Then by Lemma 20, we get the following exact sequences
0-A—-ZG®A—Jc®A—0

and
0-A®B—-ZG®A®B) = Jec®(A®B) =0

We denote Z[G] @ A by A" and Jg ® A by A”. Therefore, we can rewrite the exact sequences as

T

0A—->A S A" S0

and
0>ARB—-A®B—>A"®B—0

We think of A embedded in A’ and A® B embedded in A’® B. Since a; is a 1-cocycle in C(G, A),
so aj is also a 1-cocycle in C*(G, A’). Since H'(G, A’) =0, so a; is a coboundary in C*(G, 4) i.e.
Jaj € A such that V7 € G

a1 (r) = 7(ap) — ag

Let afj = 7(a}) Now @; = d(al]

) and therefore
a1 Ub_y = d(ag) Ub_1 = d(ag Ub_1) = d(ag © b_1)
Now we need the description of the boundary map
H2(G,A"®B) - H YG, A® B)
described in Remark 11.

Firstly note that a,®b_; is a preimage of aj®b_; in A’®@ B. Then we need to calculate Ng(ay®@b_1).
We have

Ng(ag®@b_1) = Z 7(ap) @ T(b—1) = Z(al(T) +aj) @ Th_1 = Z ar1(T) @ Tb—_1 + af, @ Ngb_1
TEG TG TEG

By definition of b_1, we know that b_; € Ker(N¢g) and so Ngb_1 = 0. Thus

Nelag@bo1) =Y ar(r) ©7b_y
TEG
Since it is already in A, its preimage in A is itself, so we get

ai Ug_l = (5(a8®b_1) =g

where

xozzal(T)®Tb_1

TEG

and so we are done. O
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Now we restrict our attention to the case B = Z and identify A ® Z with A under the map
a @ n — na. Recall that we have the isomorphism

H %G, 7)=G®
If 0 € G, let & be the element in H2(G,Z) corresponding to cG¢ € G
Lemma 29. a1 Uc = ai(c) € H (G, A)

Proof. The first thing we have to verify is that a;(0) € Ker(N¢g) because then only we can talk
about its cohomology class in H (G, A). To see this, note that

Ng(ai(0)) = ) m(ar(o)) = Y m(o(ap) —ap) = Y ro(ap) = Y 7(ap) =0

e TeG T€G T€G
where a(, is as in Lemma 28. Consider the augmentation sequence
0—-Iag—Z[Gl—7Z—0
By Lemma 20, we get that the following sequence is also exact :
0>ARIg > ARZIG] - A—0
Since A ® Z|G] is an induced G-module, so we get the isomorphism
§: H G, A) — HYG, A Ig)

Therefore, it suffices to show that
(a1 U7) = 6(ax(0))

To calculate, d(a;i(0)), we again need the description of the boundary map
H2G,A"®B) - H G, A® B)

described in Remark 11.

Firstly observe that aj(c) ® 1 is a preimage of a;(¢) in A ® Z[G]. Now we take its norm which is

Y r(a()®1)=> (o) @7
TeG TeG
Finally we have to take a preimage of
S (o) @
T€EG

in A® Ig. Note that

Y (@) @r=>Y t@@)e(r—1)+> 7(a(0) ®1

TEG TeG TeG

Y rla(o) @1 = (Z T(al(a))) ®1=Ng(a1(o)®1=0

TG TG
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since a1(0) € Ker(Ng). Therefore,

Y ra@)er=Y ra@)e@r-1) el

TEG TEG

and thus ) .~ 7(a1(0)) ® 7 is a preimage of itself in A ® I and so we have

where

Now we will calculate é(a; U7).

From the proof of Theorem 31 and the definition of &, we have
0(c)=0—-1

Thus
§(aruo)) =—-(@ui@)=—(amuo—1)=5

By the previous lemma, we have

yoz—Zal(T)(X)T(J—l):Za1(7)®7—2a1(7)®70

TG TG TeG

Since a; is a cocycle, so a1(7) = a1(70) — 7(a1(0)), and therefore,

Z a1 (1)@ T0 = Z a1 (10) @ To — ZT(al(a)) ®T0 = Zal(T) T — ZT(al(a)) QTO

TEG TEG TEG TG TEG
Hence
Yo = Z T(a1(0)) @ To = Z T(a1(0) ® o)
TG TG
Thus
yo— w0 =Y _7(a1(0) ® (o —1)) = Ng (a1(0) @ (0 — 1))
TEG
which means
Yo = To
and so we are done. O

In fact for cohomology groups (i.e. ¢ > 0), one can give an explicit description of the cup product.

Define the cup product pairing as
®: H(G,M)x H*(G,N) = H(G,M @ N)

such that
(m,n) — mUn

where m U n is defined as follows.
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Let ¢ be a cocycle representing m and 1 be a cocycle representing n.
Then m U n is represented by the cocycle n of H™(G, M @ N) where 7 is given as :

n:G" > M®N

such that
7](917 "7g7‘+$) = ¢(917 3 gT) ® (gla "7g7"¢(g7’+17 "7gT+S))

Firstly we will prove that 7 is infact a cocycle i.e. d"*%(n) =0 We have

r+s
(@)1 920003 r4050) = 92 s ree) + DG s 9i 050w grrin)
=1 :
+(=1)"* (g1, ey Gras)
Now
91192, s Gras1) = g1(A(g2, -, gri1) @ 92 Gr11(V(Gra2, -0 Grast1)))
(2.47)
= 91(¢(92> e 9r+1)) ® 91---gr+1¢(gr+2, ---,gr+s+1)
and
r+s r

Z(_l)JT/(glv cey gjgj-‘rla (AR g’r‘-‘rs-‘rl) - Z(_l)J(;S(gl) "'7gjgj+17 cey gr—i—l) ® gl"'gr+l¢(g1“+27 tey gr-i—s-i—l)
j=1 j=1
r+s

+ > (1691, 90) ® g1 Get (Gt 1, +-Gi G415 oo Grts)
j=r+1
(2.48)

Making a change of variables j = J + r in the second summation, we get

r4s T

Z(—l)jﬁ(gl, <395954+15 -5 gr+s+1) = Z(_l)j¢(91, 39595415 -5 gr+1) & gl--~gr+1¢(gr+27 ooy gr+s+1)
j=1 j=1
s

+ (=D (17091, s 9r) @ g1 Gr(Gri s - Gr b j Gt g 415 -oos Grts)
j=1

(2.49)

Combining these equations together, we get

(d*10)(91, 925 s Gras+1) = G1(P(g25 oy Gr+1)) @ g1 Gr 410 (Grt2s ovs Grtst1)

T

S 1Y 31 935415 s Gr1) @ G1Gr i1 (B(Gr 124 s Grvssn)) + (—1) (g1, 00)
j=1

s

g1.--9r Z(_l)j¢(91» s 9r) @ g1 G- (Gri1, v Gr4i G4+l eees Grts) + (_1)$+1¢(gr+17 vy Grts)
j=1
(2.50)
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The term in the big paranthesis becomes equal to

_gr-i-l?/)(gr-l—% ooy gr+s+1)

since 1) is a cocycle. Therefore, we get (d"*1)(g1, 92, -, Grist1) =

(gl(d)(gz,. 5 9r+1 +Z gl)' 7gjgj+17"'ag7“+s+1 + (_1)T+1¢(g17"'ag7“)) (2 51)

® g1---Gr410(Gr42s s Gryst1)

which is 0 since ¢ is also a cocycle.

Condition 1 is an immediate consequence of the definition of the cup product and the identifi-
cation C°(G, M) with M. Conditions 2 and 3 can be proven by a direct but very lengthy check.

2.13 The Cohomology of Finite Cyclic Groups

Q,Z and Q/Z are regarded as G-modules with trivial action.

Lemma 30. For every finite group G.
1. H}(G, Q)—OVrEZ
2. HY(G,Z) = e )Z
3. HL(G,Z) =0
HA(G,Z) = Hom(G,Q/2)

Proof. Statement 1 is an immediate consequence of Corollary 4 since Q is a uniquely divisible group.

Clearly
VA Z

Hp(G.2) = NmaZ  (G:1)Z

We also know that
HLG,7) = HY(G,Z) = Hom(G, Z)

Let ¢ : G — 7Z be a homomorphism. Take any g € G. Then ¢g" = e where n = |G|. Thus,
#(g") = np(g) = 0 which means that ¢(g) = 0V g € G. Therefore, ¢ = 0 and we get H'(G,Z) = 0.

Consider the exact sequence
0-Z—-Q—Q/Z—0

This sequence gives rise to a very long exact sequence
. — HYG,Q) — HY(G,Q/Z) — H*(G,Z) — H*(G,Q) —
Since H'(G,Q) = H?(G,Q) = 0, we get

H%*(G,z) = HY(G,Q/Z) = Hom(G,Q/Z)

68



Theorem 41. Let G be a cyclic group of finite order. A choice of a generator for G determines

isomorphisms
Hy (G, M) — HP(G, M)

for all G-modules M and all r € Z.
Proof. We have the augmentation sequence
0—=1Ig—Z[Gl—Z—0
Therefore by Lemma 20, we get that the sequence
0—=>Ig@M —ZGloM - M — 0

is also exact.

For any generator o of G, it is straightforward to show that the sequence
02 7Z[G] B Ig — 0
is also exact where 71(n) = nNg = > . gn and na2(z) = (o(z) — ) for all z € Z[G].

Therefore by Lemma 20, we get that the sequence

0 M2 71610 M 225 Ih @ M — 0

is also exact. Now we know that
Z|Glo M

is an induced G-module by Theorem 10 and so has trivial Tate cohomology by Theorem 33 i.e.
Hp(G,Z|Gl@ M) =0
for all r € Z. From these two exact sequences, we get the isomorphisms
§: Hp(G, M) — HiPYG, I ® M)
and
§: HitY(G, 1 @ M) — HiP2(G, M)
Combining these two isomorphisms, we get
Hy(G, M) = HP(G, M)
for all r € Z. O

Let G be a finite cyclic group and let M be a G-module. If the cohomology groups H" (G, M)
are finite (which means that all Tate cohomology groups are finite by Theorem 41), we define the
Herbrand quotient of M to be

_ |HP (G, M)

"M =16y
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Theorem 42. Let
0—->M —-M-—->M'—0

be an exact sequence of G-modules. If any two of the Herbrand quotients h(M"), h(M) and h(M")
are defined, then the third is also defined and

h(M) = h(M")h(M")
Proof. By Theorem 32, we know that there is a very long exact sequence
o = HZY (M) — HY(M") — HY(M') — HY(M) — HY(M") - HY(M') - H (M) — H*(M") — ...
The first statement in the proof now follows immediately.

We can truncate this sequence to get another exact sequence
0— K — HMNM') — HY(M) - HNM") - H' (M) - H'(M) - H' (M") = K' =0
where K is the cokernel of the map
Hy (M) = Hy'(M")

and K’ is the cokernel of the map
Hp(M) = Hp(M")

We know by Theorem 41 that Hy'(M) = HL(M) and H:'(M") = HL(M"). Under the same
isomorphism, we get K = K.

To complete the proof of the second statement, we need a helping lemma :

Lemma 31. Let
Ayg— A1 —....— A. =0

be an exact sequence of finite groups. Then

[Ao| [A2| [Ad] ... _

=1
|A1] |As| |As] ...

Proof. Firstly we prove it for r = 2 i.e. for short exact sequences.

Then we are given an exact sequence
0— Ag— A1 = A3 =0

Thus

which shows that

and we are done.
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Now we prove the result in generality.

Note that if
Aoa—())Al ﬂ)...%Ar71%—71>Ar—>0

is exact, then cokernel of the map «;_1 is
A; A
Im(a;_1)  Ker(a;)

which by the first isomorphism theorem is isomorphic to

Im(a;) = Ker(a;+1)

Hence for each 1,
Coker(a;—1) = Ker(a;+1)

We denote it by C; i.e.
C; = Coker(a;—1) = Ker(ait1)

The exact sequence can be broken into short exact sequences,
0—-A4)— 41 —-C;—0
0—-C; — Ay —Cy—0

and so on till
0—-Cr1—>A_1—A4.—0

We have
| — Aol [Ci] _ [Ao| |4
| Ay | A1| [Co
since |Cy| = %. Similarly
| = Aol [42] G5
| Ax| A3

and so on. This completes the proof of Lemma 31.
Now we continue our proof of Theorem 42. Applying this Lemma 31 to the exact sequence
0— K — HXM') — HY(M) - HX(M") - H'(M') - H'(M) - H' (M") - K' -0
we find that,
[HY(M)| [HQM)| [ (M)] K| = |K| [HYOM)| [H (M) B (0M")]
Since K = K', so |K| = |K'| and the equation reduces to
[HQ(M)| [HM(M")| [H(M)| = [HN(M)| [H (M)] |H (M")]

Thus,
| Hp(M)| |Hp(M")| _ |Hp(M)]
[HY (M| [HY (M) [HY(M)]

Therefore,
h(M) = h(M") h(M")

and we are done.
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Theorem 43. If M is a finite module, then h(M) = 1.

Proof. 1t is easy to verify that the sequence
0—-M%5H M ZL MT Mg —0

is exact where ¢ is the inclusion map and 7 is the projection map. By Lemma 31, we obtain
IM©| = |Mg|. By the section on Tate groups (Equation 2.21), we know that there is an exact
sequence

0 — H7 (M) — Mg 2% M% - HY(M) -0
By Lemma 31 again, we get |H,'(M)| = |[H).(M)|.

Hence h(M) = 1. O

Corollary 6. Let o : M — N be a homomorphism of G-modules with finite kernel and cokernel.
If either h(M) or h(N) is defined, then so also is the other, and they are equal.

Proof. Note that since Ker(a) and Coker(«) are finite, so h(Ker(a)) = h(Coker(a)) = 1. Suppose
that h(N) is defined. Consider the short exact sequence

0— a(M)— N — Coker(a) =0

Since h(N) and h(Coker(a)) are defined, so h(a(M)) is also defined and is equal to h(N) by
Theorem 42. Also the following sequence is exact

0— Ker(a) > M — a(M) =0

Since h(a(M)) and h(Ker(«)) are defined, so h(M) is also defined and equal to h(N) by
Theorem 42. O

2.14 Tate’s Theorem

From now onwards all cohomology groups will be Tate groups and so we drop the subscript T
except for the main statements.

Theorem 44. Let G be a finite group and let M be a G-module. If H'(H,M) = H"\(H,M) =0
for all subgroups H of G for some i € Z, then Hi.(G,M) =0V r € Z.

Proof. If G is cyclic, this follows directly from Theorem 41 as H"(G, M) = H'(G, M) if r is odd
and H"(G, M) = H?(G, M) if r is even.

Now let us assume that G is solvable. We will prove the theorem in this case by induction on
|G|. Since G is a finite solvable group, so G has a finite composition series G = Gy D G1 D ... D G,
such that G,4; is normal in G; and G;/G,41 is abelian for all i. Moreover, we can choose a re-
finement of the composition series such that G;/G;y1 is a simple group for every i. Since a finite
simple abelian group is cyclic, so G;/G;+1 is a cyclic group for all i.

Therefore, G contains a proper normal subgroup H such that G/H is cyclic. Since |H| < |G,
H"(H,M) =0V r € Z by the induction hypothesis. Now we have the restriction - inflation exact

sequences V r € N

0 — H(G/H, M) s gra, vy B g, )
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Since HY(G, M) = 0 and H*(G,M) = 0, so H(G/H, M) and H*'(G/H, M*") are also 0.
Moreover, G/H is cyclic, thus H"(G/H, M") =0V r € Z. Also since H"(H,M) =0V r € Z, so by
the exact sequence we get H"(G, M) =0V r € N. Now we will show that H%(G, M) = 0. Firstly
we will use Nmg = Nmg g oNmy to prove this fact. Then we will prove Nmg = Nmg/goNmy .

We know that
%G, M e
H = —
Take any z € MY, we want to show that x € Nmg(M). We know that HY(G/H, M) = 0. So,
(M) = Ny M™
Note that
(MG — fm e M gm =m Vge G} = M®
Thus, M = ng/HMH and so x € NmG/HMH. Therefore, x = Nmg,py for some y € MH
Now MH = NmgM since H°(H, M) =0 and so y = Nmpgz for some z € M. Hence,
r=Nmg/pNmpz= Nmgz € Nmg(M)
since Nmg/g o Nmpy = Nmg,

Now we will prove Nmg,g o Nmyg = Nmg

We have,

Nmg/gNmyz = Nmg/g th :Zthz:ZZshz:Zgz:ngz

heH seS h inH seSheH geG

where S is a set of coset representatives of H in G.
Now we have proved H"(G,M) =0V r > 0.

We have the exact sequence
0+ M = ZIGI@M— M —0

from the previous section. Since Z[G] ® M is induced as a G-module, so it is also induced as an
H-module by Theorem 12, thus V r € Z and for all H' subgroup of G,

H(H',Z|G) ® M) =0
by Theorem 33. Thus V r € Z and for all H' subgroup of G,
H'(H',M) = H""(H', M)

Since HY(H',M) = H*Y(H',M) = 0, so H*Y(H,M') = H""2(H, M') = 0 and thus M’ satisfies
the hypothesis of the theorem.

Therefore, H"(G,M') = 0 for all » > 0 because we had proved that whenever G is a solvable
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group and (G, M) satisfy the hypothesis of the Theorem, then H" (G, M) =0V r > 0.

The isomorphism now proves that whenever G is a solvable group and (G, M) satisfy the hy-
pothesis of the Theorem, then H"(G,M) =0V r > —1.

Again since (G, M') satisfies the hypothesis, so H"(G,M’) = 0 V r > —1. But using the iso-
morphism again, we get H" (G, M) =0V r > —2 and so on. Hence we have proved the theorem in
the case when G is solvable.

Now consider the case of an arbitrary group G. Let G, denote a Sylow p-subgroup. We know
that G, is solvable. If (G, M) satisfy the hypothesis of the theorem, so do (G, M) V p since sub-
groups of G, are also subgroups of G. Hence by Corollary 5, we know that p-primary component
of H'(G, M) is 0 V p. But since H" (G, M) has finite order as |G|H" (G, M) = 0 by Theorem 23, so
H"(G,M) =0V r e Z and we are done.

O

Theorem 45. (Tate’s Theorem) Let G be a finite group and let C' be a G-module. Suppose that

for all subgroups H of G,

1. HY(H,C) =0, and

2. H?(H,C) is a cyclic group of order equal to (H : 1). Then, for all r, there is an isomomorphism
H™(G,Z) — H™ (G, )

depending only on the choice of generator for H*(G,C).

Proof. Choose a generator v for H?(G, C). We will show that Res(v) generates H2(H,C) for any
subgroup H of G.

For any i < |H|, we have i(G : H) < |G| and thus
Cor(iRes(vy)) = iCor(Res(v)) =i(G : H)y #0
since v is a generator for G. This shows that for any i < |H|,

iRes(y) #0

so Res(v) is a generator for H2(H, C) since we are given in the hypothesis that H2(H, C) is a cyclic
group of order equal to (H : 1).

Let ¢ be a cocycle representing .

Define
C(¢) = C Co(o)

where Cy(¢) is the free abelian group having basis symbols x, one for each ¢ € G, 0 # 1 and
extend the action of G on C to an action on C(¢) as :

0%y = Tor — To + P(0,T)
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The symbol x; is to be interpreted as ¢(1,1). By this statement we mean that as o, T vary over G
(t #£ 1), if o7 = 1, then z,, is defined as ¢(1,1). Also, if o0 = 1, then z, is defined as ¢(1,1). We
will show that C'(¢) is a G-module. We have

p(027) = p(Tor — 25 + P(0,7))

But
P(Tor) = Tpor — Tp+ G(p,0T)
and
p(To) = Tpo — o + ¢(p, 0)
Hence

p(0T7) = Tpor — Zps + G(p,07) — ¢(p,0) + p(¢(0, 7))
Since ¢ is a cocycle,
p(¢(o,7)) + d(p,07) = ¢(p,0) + ¢(po,T)
Thus
p(0) = Tprr — 2o+ Dlp0, T) = (p0)(27)
Also
le; =z, —z1+ ¢(1,1)

Since 7 is interpreted as ¢(1,1), so 1z, = x;.
We will show that ¢ is coboundary of a 1-cochain in C(¢). Define
Y :G— C(p)

such that
¢(U) = Lo

Then we get the map
d: G* — C(¢)
such that
d'(o,7) = 09(1) = (o7) + P(0) = 07 — &or + x5 = $(0,7)

Therefore, ¢ = d'p € Im(d') and so ¢ = 0 in H?>(G,C(¢)) which means that v +— 0 under the
natural map H?(G,C) — H%(G,C(#)). That is why C(¢) is called the splitting module for 7.
We will now show that the hypothesis of the theorem implies that

H'(H,C(¢)) = H*(H,C(¢)) =0
for all subgroups H of G.

We have the exact augmentation sequence
0—Ic—ZG—-Z—0

Z|G] is an induced G-module as Z[G] = Z]|G]|®zZ and hence also an induced H-module by Theorem
12 which shows that V r € Z,
H'(H,Z|G]) = 0
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by Theorem 33. Hence by the very long exact sequence for Tate groups,

H'(H,Ig) = H(H,Z)

and
H2(H7[G) = Hl(Haz)
Thus
Hl(H T ) ~ i

and

H*(H,Ig) =0
by Lemma 30. Define the map

a:C(¢) — Z[G]

such that
a(C)=0, a(z,) =0—-—1VoeG, o#1

Clearly a(C(¢)) C Ig. We will show that
0=C—C(p) S Ig—0

is an exact sequence. We only need to prove that Ker(a) = C. Clearly C C Ker(«)

Now let
K
« <c + anxgl> =0
i=1
Then

K
ale) + « (Z nixm) =0
i=1

K
o (Z nixgi> =0
i=1

which means that Zfil n;a(r,,) = 0 and so Zfil ni(c —1) = 0. Since I is a free Z module with
basis {c —1:0 € G and 0 # 1}, so n; = 0 V i and hence Ker(a) C C. This completes the proof
that

and therefore by definition of «,

0=-C—=C(¢p) S Ig—0

is an exact sequence. The short exact sequence leads to a very long exact sequence, a part of which
is as follows

H'(H,C) = H'(H,0(¢)) = H'(H,Ig) — H*(H.C) — H*(H,C(¢)) — H*(H, Ic)

Since by the hypothesis, H'(H, () = 0 and we have shown that H?(H, Ig) = 0
Thus the exact sequence reduces to

0 — HY(H,C(¢)) — H'(H,1c) % H*(H,C) L HX(H,C(8)) = 0
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It is straightforward to check that the following diagram commutes :
H*(G,C) ——— H*(G,C(¢))

Tes TES (252)

H?*(H,C) ——— H*(H,C(¢))
where the horizontal arrows are induced by the inclusion map C' — C(¢).

Since we already know that v + 0 under the map H?(G,C) — H?*(G,C(¢)), so Res(y) — 0
under the the map H?(H,C) — H?(H,C(¢)). Since H?(H,C) is generated by Res(v), thus 3 is
the zero map and so 7 is onto.

But we also know that H'(H,Ig) = ﬁ and therefore, |H'(H,Ig)| = (H : 1). Since we are

also given in the hypothesis that |H?(H,C)| = (H : 1), so |H'(H, I¢)| = |H?(H,C)| and the map
71 is infact an isomorphism.

Hence Ker(n) = Coker(n) =0 i.e,
H'(H,C(¢)) = H*(H,C(¢)) =0

Thus by Theorem 44,V r € Z
H'(G,C(¢)) =0

We have two exact sequences

0C—=C(¢p) S Ig—0

0—>IGL>Z[G]—>Z—>0
Now H"(G,C(¢)) = H"(G,Z|G]) =0V r € Z,
The second exact sequence gives us the isomorphism
§:H"(G,Z) — H™ (G, 1g)
while the first exact sequence gives us the isomorphism
§: HYG, Ig) — H (G, 0)
Composing these maps, we get the isomorphism

H"(G,7) — H (G, 0)

77



2.15 Another proof of Tate’s Theorem

Using the alternative approach to Tate cohomology, we can obtain another description of the
isomorphism in Tate’s Theorem using cup products which would be very useful for Local Class
Field Theory.

Theorem 46. Let A be a G-module with the following properties. For each subgroup H of G, we
have

1. H-Y(H, A) =0,
2. HY(H, A) is a cyclic group of order |H]|.

If a generates the group HY(G, A), then the cup product map

aU: HYG,Z) — HI(G,A)

given by
r—alUx
is an isomorphism for all q € 7.
Proof. Define
B = A& Z[G]

Consider the short exact sequence
0545 BL7ZIGl—0
Since Z[G] is cohomologically trivial, so the map
i: HY(H,A) — HY(H,B)
is an isomorphism. Choose ag € A® such that a9 + NgA = a. Define the map f : Z — B such that
f(n) =nag + nNg
Note that f is injective since nNg = 0 clearly implies that n = 0.

f induces the homomorphism
f:HYH,Z) — H(H,B)

We want to show that the following diagram is commutative :
HY(G,7) —*=— HI(G, A)

i : (2.53)

HY(G, B)
By Theorem 40, we know that cup with a is same thing as tensoring with a. But the tensor product

of ap with an element n of Z is the same thing as nag (i.e. via action of n € Z on ag € A). Thus the
only thing left is to show that nNg is a coboundary and thus 0 in H4(G, B). But nNg is a g-cocycle

78



in C%(G,Z|G]) and is thus a (¢ —1)-coboundary in CY(G, Z[G]) since Z[G] is cohomologically trivial
and thus nNg is a (¢ — 1)-coboundary in CY(G, B).

Hence, to prove Theorem 46, it suffices to show that f is bijective.

Since the map f : Z — B is injective, so there is an exact sequence of G-modules

0—>Zi>B—>C—>0

for some G-module C. Now by the hypothesis,
H'(H,A) =0

which immediately implies that
H™Y(H,B)=0

since the map 7 is an isomorphism. Moreover by Lemma 30, we know that
HY(H,Z) =0

Therefore the very long exact sequence of Tate Cohomology groups (Theorem 32) shows that the
following sequence is exact :

0— H-Y(H,0) — H(H,Z) L H(H, B) — H(H,C) — 0 (2.54)
If ¢ = 0, then we will show that f is injective. We have f : Z/|H|Z — B" /Ny B given by
f(n) = nag + nNg

f(n) = 0 means that nag = Nyaj for some a; € A. This shows that res(na) = nres(a) = 0 in
HY(H, A). Since res(a) is a generator for H°(H, A) (as shown in the proof of Theorem 45) and
|HO(H, A)| = |H|, so n is a multiple of |H|. Thus f is injective.

Moreover, by Lemma 30 and the hypothesis of this theorem, we have
H(H,Z) = |H| = H°(H, B)

Therefore, f is bijective and
H™Y(H,C)=HH,C)=0

By Theorem 44, we get
HY(H,C)=0

for all ¢ € Z. The very long exact sequence for Tate Cohomology (Theorem 32) gives us the exact
sequence

HY(G,C) — HY(G.Z) L HY(G, B) — HY(G,C)
But since H1(G,C) = 0 for all ¢ € Z, so we have the exact sequence

0— HYG,Z) L HY(G,B) = 0
which shows that f is bijective and we are done. O
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Theorem 47. (Tate’s Theorem) Assume that A is a G-module with the following properties :
For each subgroup H of G, we have

1. HY(H,A) =0,
2. H?(H, A) is a cyclic group of order |H]|.

If a generates the group H?(G, A), then the cup product map
aU: HYG,Z) — H™(G, A)

given by
r—aldzx

18 an isomorphism for all q € Z.

Proof. For all g € Z and for each subgroup H of GG, there is an isomorphism
6% HY(H, A*) — HT%(H, A)

as used in the section on dimension shifting. For any subgroup H of G, Condition 1 shows that
H~1(H,A?) = 0 and Condition 2 shows that H°(H, A?) is a cyclic group of order |H|. Thus the
hypothesis of Theorem 46 is satisfied. Moreover (by taking H = G and ¢ = —2), we have an
isomorphism

6% H2(G, A*) — H°(G, A)
This shows that §72(a) is a generator of H(G, A%). Therefore by Theorem 46, the map

HY(G,7) 220Y gav2(q, A2)
is an isomorphism. Moreover, we will show that the following diagram commutes :
HI(G,Z) 220V [g9(G, A?)

id 52 (2.55)

HY(G,Z) —*2— H2(G, A)
To see this, take any z € H4(G,Z). Then we have
620 2aUzx) = 0%(6 %(a)) Uz =aUx

and so we are done. Since the map ¢ 2aU is an isomorphism, so the map aU is also an
isomorphism. O

2.16 Galois Cohomology

2.16.1 Profinite groups

In this subsection, we state the important properties of profinite groups. For detailed proofs, please
refer to Section 2.1, [6].
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Definition 13. A topological group G is group endowed with a topology with respect to which both
the multiplication map G X G — G and the inversion map G — G that takes an element to its
1NVErse are continuous.

Definition 14. A homomorphism ¢ : G — G’ between topological groups G and G’ is a topological
isomorphism if it is both an isomorphism and a homeomorphism.

Lemma 32. Let G be a topological group and g € G. Then the map my : G — G with mgy(a) = ga
for all a € A is a topological isomorphism.

Lemma 33. Let G be a topological group. Then any open subgroup of G is closed and any closed
subgroup of finite index in G is open.

Lemma 34. FEvery open subgroup of a compact group G is of finite index in G.
Recall the definitions of a directed set, inverse system, and the inverse limit.

Definition 15. A directed set I = (I,>) is a partially ordered set such that for everyi,j € I, there
exists k € I such thatk > i and k > j.

Definition 16. Let I be a directed set. An inverse system (G, ¢; ) of groups over the indexing
set I is a set

{Gi:iEI}

of groups and a set
{Qﬁi’j:Gi—)Gj:i,jEI,iZj}

of group homomorphisms such that for any ¢ > j > k, we have
Pije = Pjk © Pij
and ¢;; = id.

Definition 17. Let (G;, ¢; ;) be an inverse system of groups over an indexing set I. Then the
inverse limit of the system is given as the group

G= {(gi)i e [[Gi:diil9) = 93}
icl

and the maps m; : G — G; for i € I are the compositions of G — [[,c; Gi — G; of inclusion
followed by projection. Moreover, for any i > j, we have

Tj = Mij oM
We may endow an inverse limit of groups with a topology as follows :

Definition 18. Let (Gj, ¢;j) be an inverse system of groups over an indexing set I. Then the
inverse limit topology on the inverse limit G is the subspace topology for the product topology on

Hie[ Gi.

Definition 19. A profinite group is an inverse limit of a system of finite groups, endowed with the
inverse limit topology for the discrete topology on the finite groups.

Theorem 48. A profinite topological group is compact, Hausdorff and totally disconnected
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Theorem 49. A compact Hausdorff and totally disconnected topological group has a basis of neigh-
borhoods consisting of open mormal subgroups.

Corollary 7. A profinite topological group has a basis of neighborhoods consisting of open normal
subgroups.

Theorem 50. Let G be a profinite group, and let U be the set of all open normal subgroups of G.
Then the canonical homomorphism
G — lim G /N
NeU

s also a homeomorphism.

Definition 20. A subset S of a topological group G is said to be a topological generating set of G
if G is the closure of the subgroup generated by S.

Definition 21. We say that a topological group is (topologically) finitely generated if it has a finite
set of topological generators.

2.16.2 Cohomology of Profinite Groups

In this section, G will denote a topological group.

Definition 22. A topological G-module A is an abelian topological group such that the map GX A —
A defining the G-action on A is continuous.

Definition 23. A G-module A is a discrete module if it is a topological G-module for the discrete
topology on A.

For the proofs of Theorem 51, Lemma 35 and Theorem 52, please refer to Section 2.2, [6].

Theorem 51. Let G be a profinite group, and let A be a G-module. The following are equivalent :

1. A is discrete.
2. A =Upcy, where U is the set of open normal subgroups of G.
3. The stabilizer of each a € A is open in G.

Definition 24. For a topological G-module A and i € Z, the group of continuous i-cochains of G
with A-coefficients is
Ci

cts

(G,A)={f:G"— A, fiscontinuous}.

Lemma 35. Let A be a topological G-module. The usual differential d* on C*(G, A) restricts to a
map

d,. : C’gts

cts

Thus, (Cas(G, A),dets) is a cochain complex.

cts

(G,A) = CFL(@, A)

cts

Definition 25. Let G be a profinite group and A a discrete G-module. The i*" profinite cohomology
group of G with coefficients in A is

H'(G,A) = H'(C2,(G, A))

where A is endowed with the discrete topology.
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Theorem 52. Suppose that
0-AS5BLC—0

is a short exact sequence of discrete G-modules. Then there is a long exact sequence of abelian
groups

0 HG,A) L BYG,B) ™ HY(G,0) s HYG, A) - ...

Theorem 53. Let G be a profinite group, and let U be the set of open normal subgroups of G. For
each discrete G-module A, we have an isomorphism

C7(G, A) = lig C"(G/N, AY)
NeU

Proof. Let N1, Ny € U, we define N1 < Ny by No C Nj.

For Ni1,Ny € U, we have Ny N Ny € U. Also we have Ny < Ny NNy and Ny < Ni N Ns.
Thus (U, <) is a directed set. Let
Gy = C"(G/N, AN)

and for N; < Ny (i.e. N3 C Ny), we have the natural map
ANy Ny - GN1 — GN2

Also we have the natural maps
apn : G N — S

We define
S = hﬂ Gn
NeU
and
T = Ciy(G, A)

Also we have the inflation maps
B : C"(G/N, AY) = Ci,, (G, A)

It is straightforward to check that for Ny < Na, By, = BN, 0 an, N, -

Hence by the universal property of the direct limit, there exists a unique map 5 : S — T such
that BN = ,B o apn.

Firstly we will show that j is surjective.

Let f : G — A be a continuous map. Since G is compact, so is f(G). But we are given that
A has the discrete topology. Since compact subset of a discrete space is finite, we get Im(f) is
finite. Also we know that since A is a discrete module, so

A:UAN

NeU

Hence for any a € Im(f), 3 M, € U such that a € AMe,

Therefore,
Im(f) c AM
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where
M= (] M
acIm(f)
Note that M is open since I'm(f) is finite. Also M is normal in G. Hence M € U.

For any = € G%, continuity of f implies that V' = f~'{f(x)} is open in G* and f is constant on V
(Infact f(V) = {f(z)}). Let V4 = 271V. Then V] is an open subset of G because multiplication by
a fixed element is a homeomorphism for topological groups. Hence V; is an open neighborhood of 1.

Since G’ has the product topology, V; is a product of sets open in G and containing 1 (i.e. neigh-
borhoods of 1¢). Also since the open normal subgroups form a neighborhood base for 1, so V3
contains a neighborhood of the form H;Zl H;(z) where Hj(x) is an open normal subgroup of G.
Define

H(z) = () Hy(x)
j=1

H(z) is again an open normal subgroup of G. Since
A i
xH(z)' Cx HHJ(J:‘) caVi=V
j=1

so f is constant on zH (z)".

Now G® is covered by the xH(x)! for x € G* since H(x) contains 1g. Since G is a profinite
group, thus G is compact and hence so is G*. Thus there is a finite subcover of zH (x)* correspond-
ing to some 1, .., 2, € G

Now define "
H= () H(x)

k=1

For any y € G, we have y € x,,H (x})* for some k. Since H C H(x,) and H(zy) is a subgroup of
G, thus yH C x,H(x))" and f is constant on yH since it is constant on z H (z)*. Hence f factors
through (G/H)'.

We have shown that f is the inflation of a map (G/H)* — AM (Since we had earlier shown
that Im(f) ¢ AM). Now if we take N = H N M, then N ¢ H and AM c AN. Hence f factors
through a map (G/N)* — AN and we are done.

Now we will prove that /3 is injective. Let ® be an element of S such that 5(®) = 0. We know that

@ = an(¢n)

for some N € U. Thus B(an(¢n)) = 0 for some N € U and so

Bn(én) =0

since B o ay = By by the universal property of direct limit.
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It is straightforward to check that the inflation maps Sy are injective (though the inflation maps
at the level of cohomology need not be injective but they are injective at the cochain level).

Hence ¢y = 0 and so ® = a(¢y) = 0. Thus S is injective as well and so  is an isomorphism. [J

Theorem 54. Let G be a profinite group, and let U be the set of open normal subgroups of G. For
each discrete G-module A, we have an isomorphism

H'(G,A) = lim H'(G/N,A")
NeU
where the direct limit is taken with respect to inflation maps.

Proof. We know that the following diagram commutes :
d"‘
C"(G/N,AN) — X C™*+Y(G/N, AN)

o’ r+1 (256)

N,N' CN N
! dT/ !
C”(G/N’,AN) S\ N C”H(G/N’,AN)
This shows that
ayn (Ker(dy)) C Ker(d})

and
QN N’ (Im(d}"\,)) C Im(d’]\})

Therefore Ker(dy) and Im(d}) form direct systems.

Moreover, a, N induces the map

Ker(dy) . Ker(dy,)
NN Tmdyy) T Tm(dy,)

i.e. the map
ann 2 H'(G/N, AN) — H"(G/N', AN')

Thus H"(G/N, AN) also forms a direct system. Now we have an exact sequence
0 — Im(dy ') — Ker(dy) — H"(G/N,AN) =0
Since direct limit preserves exactness, so

0 — lim Im(dy ') — lim Ker(dy) — lim H'(G/N,AY) = 0
NeU NeU NeU

is also exact and we have

li Ker(d'\
lim H"(G/N, AN) = —eNey (ﬂ)
NeU hﬂNGU Im(dN )
Since diagram 2.56 commutes, so there exists a map

lim djy : lim C"(G/N, AY) — lim C"*1(G/N, AY)
NeU NeU NeU
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such that the following diagram commutes :

C"(G/N, AN) I CmH(G/N, AN)
a;‘\f a’;\?—l (257)

i d’
: T E NET T
lig, , C"(G/N, AN) === lim, . C™*(G/N, AN)

Moreover by the previous theorem, we have
C"(G, A) = lim C"(G/N, A")
NeU
This shows that
Ker(ligNeU d’)
Im(hﬂNeU =)
Thus to complete the proof of the theorem, it suffices to show that
Ker(limy o, dy) _ limy, Ker(dy)
il e ) gy T )

H' (G, A) =

We have an exact sequence

d’l‘
0 — Ker(d) — c™(G/H,MT) 2 c™*Y(G/H, M)
Since direct limit preserves exactness,

0 — lim Ker(dy) — lim C"(G/H, M™) —3& lig C™*Y(G/H, M™)

HeU HeU HeU
is exact and thus
Ker(liny dy) = liny Ker(dj)
HeU HeU
Similarly we have an exact sequence

CT(G/H, MH) L, crtiG/H, M) I Coker(dy;) —
Again passing to the direct limits, we get an exact sequence

lim C"(G/H,M") 3”;"> lim C™(G/H, M) E*IH%U lig Coker(dj;) = 0

HeU HeU HeU

Thus we get
m(h_n} dy) = Ker( lim TH) = lim Ker(mp) = lim Im(dy)
HeU HeU HeU HeU
Note that the second equality follows from the fact that kernels commute with direct limits which
we had already shown above.

Hence
Ker(lim, , dy) 1y, Ker(dy)
Im(limy, , di ") Ly, Im(dy )
This completes the proof that H"(G, A) = lim . H"(G/N, AN) O
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Chapter 3

Local Class Field Theory

3.1 Recap of Local Fields

Throughout this chapter, we would use several properties of local fields which we state here. Easy
and detailed proofs of these results can be found in Ch. 4 and Ch. 7 of [9]. Ch.7 of [3] is also a
good reference.

Definition 26. A local field K is a field which is locally compact with respect to a nontrivial
valuation.

Lemma 36. Let K, || be a non-archimedean local field. Then the following are equivalent :
1. K is a local field.

2. Ok 1is compact.

3. K is complete, w.r.t || which is discrete and the residue field k = O /my is finite.

Lemma 37. Let K be a non-archimedean local field, then Ok is compact and the residue field
k = Ok /mg is finite and since || is discrete, so my is a principal ideal.

Theorem 55. If K is a non-archimedean local field such that char(K) = 0, then K is a finite
extension of Q.

Theorem 56. Suppose K, || is a complete non-archimedean field and L is a finite extension of K
such that [L : K] = n. Then there is a unique absolute value ||, on L extending || on K, and
L is complete non-archimedian with respect to this valuation. FEzplicitly |x|; = ]NmL/K(x)P/”.
Also || is discrete < ||, is discrete. This (along with Lemma 36) shows that if K is a discrete
non-archimedian local field, then so is L.

Theorem 57. Finite,unramified extensions of a local field K are in one to one correspondence
with finite extensions of the residue field k.

Lemma 38. Suppose L/K is a finite, unramified extension. Then L/K is Galois if and only if l/k
is Galois, and in this case Gal(L/K) = Gal(l/k).

Theorem 57 implies that any local field K has a unique unramifed extension of degree n which
is L, = K(ppn—1) and this shows that there is a maximal unramified extension K"" obtained by
adjoining (to K) n'" roots of unity for all n coprime to the characteristic of the residue field k.
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3.2 Properties of Frobenius Element

3.2.1 Finite Extensions
For a local field K, we denote the cardinality of its residue field by gx. For an extension L/K, we

denote the Frobenius element by o7, /-

Let E D L D K be a tower of finite unramified extensions of local fields. Then we have the
following properties :

Lemma 39. 01/ = 0p/x [1= 0g/xGal(E/L) € Gal(L/K)

Proof. We know that o,/ is the unique element of Gal(L/K) such that o,/ (z) = 29% (mod mp,)
V 2 € Or. Now note that op i [1€ Gal(L/K) and we have o/ () = 2% (mod mg) ¥V x € Op
and hence also V z € Op. Now for any z € O, we have og/k(v) € L (since L is galois over K).

Thus UE/;;( @) € LNmg =myg ie op/g(r) =29 (mod mpr). By the uniqueness for oy /x, we get
L)k = O0E/K |L-

Since we have the isomorphism

Gal(E/K)

— L/K

Gal(E/L) - G/ K)
which is given by

TGal(E/L) — T [,
for any 7 € Gal(E/K). So
op/kGal(E/L) = og/k [L= 01Kk

and thus we can say og/k [1= op/kGal(E/L) € Gal(L/K). O

Lemma 40. o/, = a%}?

Proof. We know that %‘ = [L : K], so (0p/xGal(E/L) NILE] is identity in Gal(( //L)) e
%/? € Gal(E/L). Now for any = € Op, we have o/ (r) = 2% (mod mg) and thus 0[;/? (x) =

% (mod mpg) since qr, = qg( K] By the uniqueness for o/, we get o/, = a%/:?. O

3.2.2 Infinite Extensions

Let L be a galois extension of K and let K1, K5 be finite galois subextensions of L over K. Then
K K> is again a finite galois extension of K. Thus the finite galois subextensions of L over K form
a directed set. For K1 C K>, define

BKl,KQ : GCLZ(KQ/K) — Gal(Kl/K)
to be the restriction maps. Thus we get an inverse system (Gal(K'/K), B+ k). Let

Ky - @Gal(K’/K) — Gal(K1,K)
K/
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be the projection map. Then for any K1 C K>, we have [k, i, © Bk, = Bk,- Now let vg :
Gal(L/K) — Gal(K'/K) be the restriction map. Then for any K1 C K,

BKl,K2 CVK, = VK
Thus by the universal property of inverse limits, we get a map

B : Gal(L/K) — lim Gal(K'/K)
K/

such that
Brro B =K

By infinite galois theory, it can be shown that the map 3 is infact an isomorphism of topological
groups.

Thus for an infinite galois extension L/K, we have

Gal(L/K) = lim Gal(K'/K)
o

where K’ runs over finite galois extensions of K in L. Note that

00 = (0r /KK’

is a well-defined element in the inverse limit because if K1 C K5, then

Br1 i, (0K k) = Oy /K K1 = Oy K
Now we can define the Frobenius element o7, x € Gal(L/K) to be the unique preimage of op under

this isomorphism S.

Let E D L D K be a tower of unramified (possibly infinite) extensions.
Lemma 41. UL/K = UE/K rL: O'E/KGCLZ(E/L) S GQZ(L/K)
Proof. Let x € L. Thus z € K for some finite subextension of L over K. Since

BrroB=yk
SO
Br(Blor/k)) = vx(or/K)

which implies that

Br(00) = o)k K7
ie.

oLk |K'=0K1/K

Hence

UL/K(l‘) = O'K’/K(x)

Since L C E, so x € L. Then by repeating the whole argument, we have
UE/K(:E) = O-K’/K(:E)
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Thus we have shown that for any x € L,

UL/K(@ = UE/K(»’U)

Hence
OL/K =0p/K L
Finally
og/k L= 0g/kGal(E/L)
follows in exactly the same way as in the proof of Lemma 39. O

Theorem 58. The subgroup generated by oy in Gal(L/K) is dense.
Proof. We will use a result from infinite galois theory :

Let L be galois over K with Galois group G. Then for any subgroup H of G, Gal(L/LY) is
the closure of H. (see Proposition 7.11, page 94, [5] for proof)

In our case H = < oy /i >.

Thus it suffices to show that L¥ = K. Let € L such that or/k () = x. Again, let z € K’
for some finite subextension of L in K. Then

UK'/K(x) = UL/K(x) =z
Thus z is in the fixed field of Gal(K’/K) which is K and we are done. O

Lemma 42. Let L be a finite extension of K of degree n. Let o denote the Frobenius element

of the extension K“"/K and oy denote the Frobenius element of the extension L“"/L. Then

oy, rKun,: O'{(

Proof. We know that o (x) = 29 (mod mpun) for all z € Opun and ox(x) = 9% (mod Mmgun)

for all x € Ogun. Therefore op(z) = U};(x) (mod mpun) for all x € Ogun which shows that

oy, rKun: O'f( O]
3.3 The Cohomology of Unramified Extensions

Let K be a discrete non-archimedean local field and let L be a finite extension of K. Then we know
that there is a unique extension of valuation of K to valuation of L. Also under this valuation,
L is a discrete non-archimedean local field by Theorem 56. Since L and K are local fields, so the
residue fields | = Op/mp and k = Ok /my are finite. Let |k| = p and |I| = ¢ where ¢ is some power
of p. All cohomology groups will be Tate cohomology groups and the subscript T" will be dropped.

Since [/k is a finite extension of a finite field, L/K is Galois and Gal(L/K) is a cyclic group
generated by the Frobenius element Frobr,  which is characterized uniquely by

o(a) =a? (mod mr)
For a Galois extension L/K of fields, we set

H?*(L/K) = H*(Gal(L/K), L")
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Theorem 59. Let L/K be a finite unramified extension with Galois group G, and let Uy, be the
group of units in L. Then H"(G,UL) =0V r.

Proof. Since L is a non-archimedian field, Oy, is a local ring with unique maximal ideal my. Simi-
larly Og is a local ring with unique maximal ideal mg. Since L and K are discrete, so my, and mg
are principal ideals. Thus my is an ideal generated by some prime m € Og. Then since L/K is
an unramified extension, 7 remains prime in Oy, and hence is also a generator for my. Thus every
element o of L* can be written uniquely in the form « = un™ for some v € Uy, and m € Z

Define f : L* — Uy, x Z such that
flum™) = (u,m)

f is well defined because of uniqueness of the expression un™. f is clearly one-one and onto.
Moreover,

F((urm™) (ugm™2)) = f(uguam™T™2) = (uyug, my +ma) = (uy,my) * (ug, ma)
Thus f is a homomorphism of abelian groups.

Now for any 7 € G, we have

fr(um™)) = f(r(u)™) = (7(u),m) = (7(u), 7(m)) = 7(u,m) = 7(f (uz™))

The first equality follows from the fact that 7 € K and is hence fixed by any 7 € Gal(L/K). The
third equality follows from the fact that G acts trivially on Z.

Hence f is a G-module homomorphism and thus a G-module isomorphism. Therefore by The-

orem 22, for any r > 0,
H"(G,L")= H"(G,Ur) ® H"(G,Z)

By Hilbert’s Theorem 90 (Theorem 20), we know that H'(G, L*) = 0 and thus H'(G,Uy) = 0.
Because G is cyclic, we know that cohomology groups are periodic with periodicity 2 by Theo-

rem 41. Hence to prove our theorem, it suffices to show that H°(G,Uy) = 0 which will follow from
the next few lemmas.

Lemma 43. Form > 0, let U[® = 1+m['. Then UL/US) =" and Ul(lm)/UjgmH) = | as G-modules.
Proof. Note that Uém) ={l4+ar™:a€O0L}.
Define the map ¢y, : U, — [* such that ¢(u) = u+ my.

Since U, = O — myp, we know ¢r, is well-defined. Now ¢y, is also surjective because for any
x € Or, such that 7 # 0 (i.e. * € my), we have x € UL again because of Uy = Or, — my, and thus

x+mp = ¢r(z).

¢, is also a G-module map since

¢r(r(u) = 7(u) + mp = 7(u+mz) = 7(¢r(u))
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Moreover,

Ker((ﬁL):{ueUL;a:i}:1+mL:U£1)

Hence we get an isomorphism @, : Ur, /U S) — [* of G-modules.
Similarly define the maps vy, : Uém) — [ such that ¥(1 +an™) =a+mr.

¢, is well defined because if 1 + an™ = 1 + bx™ for some a,b € Oy, then (a — b)7™ = 0 and
thus a = b (since 7 is invertible in K though not in Ok) and so a +my, = b+ my .Moreover,

V(14 an™) (1 +b1™)) = (1 + (a + b)7™ + abr®™) = (1 + (a + b+ 7™ab)7™)
=a+b+7n1"ab+mr=a+b+mp=v¢r(1+ar™)+Yr(1+0b1™)

Note that in the second last equality, we have used that m € m.

(3.1)

Thus vy, is a group homomorphism. For any 7 € G, we have
YL(r(l+ar™)) = (1 + 7(a)7™) = 7(a) + mr = T(a+mr) = 7(Yr(1 + ax™))
Hence 91, is a G-module homomorphism. Now
Ker(Yr)={1+ar™:acmpy={1+br™ :bc O} = U£m+1)

Thus we get an isomorphism ¥y, : U ém) JU £m+1) — [ of G-modules.

Lemma 44. H"(G,lI*) =0V r € Z. In particular the norm map I* — k* is surjective.

Proof. By Hilbert’s Theorem 90, H'(G,1*) = 0. We know that [* is finite and so the Herbrand
quotient h(I*) = 1. Hence H'(G,1*) = 0 and so H"(G,I*) = 0 V r € Z by the periodicity of the
Tate cohomology for cyclic groups. In particular H°(G,1*) = 0 and thus (1*)¢ = Nmy i (17).

Since 1/k is galois, (I*)¢ = k* and so Nmyy,(1*) = k* which implies that the norm map [* — k* is
surjective. 0
Lemma 45. H"(G,l) =0V r € Z. In particular, the trace map | — k is surjective.

Proof. We know that H"(G,l) = 0V r > 0 by Theorem 21. Hence H"(G,L) = 0V r € Z by
Theorem 41. In particular H°(G,1) = 0 and so [ = Tr(1).

Since I/k is galois, so I = k and we get Tr(l) = k which implies that the trace map [ — k is
surjective. 0

Theorem 60. For every finite unramified extension L/K, the norm map Nmp g UL = Uk is
surjective.

Proof. For all m > 0, the following diagrams commute :

¢

U, ——— I* U,gm) SN
Nmp k Nmyy, Nmp Trye (3.2)
U —25 5 k> plm ey
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Consider u € Ug. Then ¢x(u) € k*. Because the norm map [* — k* and ¢ are surjective, 3
vg € Uy, such that
Nmp,r(¢r(vo)) = ¢k (u)

Since the diagram commutes, we get
¢x (Nm(v)) = o (u)

Since Ker(¢x) = U[((l), we get
u

Nm(vg)
Similarly commutativity of the diagram and surjectivity of the trace map I — k imply that 3
v € US) such that

eUy

u
Nm('Ul) = W(UO) mod Ul(?)

Continuing in this fashion, we obtain a sequence of elements vy, v1, ..., v; € U}j) such that

u (i+1)
Nm(vp...v;) € Uk

Consider the sequence [, v;.

Now
m+1 m

m
ij — H v H (1 = vpmy1)| < |m/™H
=0 =0

since |v;| =1V i (as v; € Up) and |1 — vppp1| < |7]™F (as vppq € U = 14 mHh.

Since L is non-archimedian, the above analysis shows that the sequence H;n:[) vj; is cauchy. More-
over L is a locally compact field, so it is complete and the sequence H;n:() v; converges.

Let v = limy—o00 H}":O vj. Since L is non-archimedean, we have

m

m m
|v| < max U—ij, ij = max U—ij,l VmeN
- =0

Also we know that for large enough m,

m
U—ij <1
§=0

since v = lim,;,— 00 H;”ZO vj. Thus |v| <1 and so v € Or. Moreover,

m m

ij < max ij—v,|v| VmeN
=0 =0

This shows that |v| > 1 and hence |v| =1 i.e. v € Ur. We also have

_u
Nmp, g (v)

u _ u
NmL/K(v) NmL/K<’U0...UZ')

u
NmL/K(UO--'vi)

—1‘§max<

—1‘) VieN
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It is easy to show that
lim 4 = “
imoo Nmyp g (vo...vi)  Nmpg(v)

and so

u u
lim - =0
1—00 NmL/K(U) NmL/K(’UQ...’Ui)

Now we have u

c Ui—i—l
NmL/K(UO'-"Ui) k
SO u
—1e mi-i—l
NmL/K(UO-"Ui) k
and thus
u .
— 1| < |7 i+1
Nmp, g (vo...v;) ' !
Hence
U
li —-1=0
imro0 Nmp i (vo...v;) ‘
Combining all these together, we get
U
———1|=0
Nmp g (v) ‘

and thus
u=Nmp,(v)

which implies that the norm map is surjective and we are done. O
O
Theorem 61. Let L/K be an infinite unramified extension with Galois Group G. Then H"(G,Ur) =
OV r>o0.

Proof. The field L is a union of finite extensions K’ of K. Thus L is a discrete Gal(L/K) module
and by Theorem 54, we get

H'(Gal(L/K),Uk) = lim H™(Gal(K'/K), Uy)
X

Since L is unramified, any finite subextension K of L is also unramified by definition of an infinite
unramified extension. By the above result, we know that H"(Gal(K'/K),Uy) = 0V K'. Thus
H"(G,Ur) =0 for all » > 0. O
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3.4 Invariant Map and Local Artin Map

3.4.1 Finite Extensions

Let L be a finite unramified extension of K with [L : K| = n, and let G = Gal(L/K). Consider

the short exact sequence

0= U = L* 2% 7 50

where the ordy, map is given by
ordr,(ur™) =m

Since Uy, is cohomologically trivial, we get an isomorphism
H*(G,L*) — H*(G,7)

An explicit description of this map as well as its inverse would be required later.
The map n; : H*(G,L*) — H*(G,Z) is given as ¢ + 1) where
¥(g1,92) = ordr(d(g1, 92))
The inverse map 1 : H?(G,Z) — H*(G,L*) is given by ¥ +— ® where
®(g1,92) = 7Y (91.92)

We want to verify that the maps 77; and 7o are inverses of each other. It is clear that n; o 79 is the
identity map on H?(G,Z). The proof that 7 o7y is the identity map on H?(G, L*) is somewhat

more intricate. (12 0 11)(¢) = ¥ where
(91, 92) = rordr(¢(g1,92))

To show that ¢ = 7, it suffices to show that 1 := ¢/~ is d'(x) for some 1-cochain x. But note that
Im(y) C Up. Tt can be directly verified that ¢ is a cocycle in C?(G,Uy). Since Uy, is cohomologi-
cally trivial, ¢ is infact a 1-coboundary in C*(G,Uy) and hence also in C1(G, L*).

The short exact sequence
0-Z—->Q—-Q/Z—0

gives rise to the isomorphism
HY(G,Q/Z) — H*(G,Z)

since Q is cohomologically trivial by Lemma 30. We also know that H' (G, Q/Z) = Homus(G,Q/Z).
Let o be the Frobenius element (which is a generator of G).

Now define a map
Y Homes(G,Q/Z) — Q/Z

such that
(f) = flo)
Note that 1 is an injection and Im(z)) = 1Z/Z because

T n

and thus ¢(f) € 1Z/Z.
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Definition 27. The composite of the maps

HX(L/K) 2% H(G,Z) *= Homa,(6,0/2) 2217, gz (33)
1$ called the invariant map.
invg i H*(L/K) = Q/Z (3.4)

Remark 14. Infact invy, i is an isomorphism from H?(L/K) onto 1Z/Z.

Definition 28. The local fundamental class is the element of H*(L, K) mapped to the generator
% + Z under the invariant map invy, g .

Remark 15. Let H be a subgroup of G and E be its fized field. Then H = Gal(L/E) and L is
a galois extension of E. Thus by Hilbert’s Theorem 90 (Theorem 20), we have H'(H,L*) = 0.
Also H?(H,L*) is a cyclic group with order equal to [L : E] = |H| because of Remark 14. Thus
hypothesis of the Tate’s theorem (Theorem 45) is satisfied.

Remark 16. By Tate’s Theorem (Theorem 45), ¥ r € Z, there is an isomorphism H"(G,Z) —
H™2(G, L*) which is cup-product with the local fundamental class. In particular for r = —2, we
get the isomorphism H=2(G,Z) — H(G,L*) i.e. an isomorphism G — K*/Nm(L*) .

Definition 29. By Remark 16, there is an isomorphism G — K*/Nm(L*) given by cup product
with the local fundamental class. The inverse isomorphism

K*/Nm(L*) - G
is known as the Local Artin Map.

We now compute the Local Artin Map explicitly using the proof of Tate’s theorem. To achieve
this goal, we have to firstly find an explicit description of the local fundamental class (because the
proof of Tate’s theorem requires us to know a generator of H2(L/K)). Firstly we need to find a
map f: G — Q/Z such that f(o) = % + Z. But then the map f is uniquely characterized by this
condition.

Now we have to find the image of f under the boundary map §. We will use the explicit de-
scription of the boundary map provided in Remark 4. We first need to choose a lift of f to
I-cochain f : G — Q. Define f : G — Q such that f(o) = % Clearly f is a lift of f. Then
§f € H?*(G,7Z) such that

57(0",0%) = o Fo7) = F(o™) + f(o")

Since G acts trivially on Q, we get 6 f(0%,07) =
0 t4+j5<n
1 i+32>2n

Now let us get back to H 2(@, L*) from H?(G,Z) via the inverse map 72. The local fundamental
class is the image of §(f) in H?(G,L*). Thus the local fundamental class u;, /K 1s Tepresented by
the cocycle ¢ in H%(L/K) where ¢(o?,07) =

1 t4+j5<n
T 1+j3>n
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Remark 17. Let m; and ma be two different primes in Og. This means that they both generate
the same ideal mg in Ok . Thus they are associates i.e. w1 = umy for some u € Ug. By Theorem
60, we know that v = NmL/Ku’ for some u' € Up. Therefore m and wo have the same class in
Nmp, g (L*). Hence the class of uniformizer is independent of the chosen prime element 7.

Theorem 62. Under the inverse of Local Artin Map G — K*/Nmyp, i (L*), the Frobenius element
o € G maps to the class of m in K*/Nmp g (L").

Proof. We will basically trace through the isomorphisms in the proof of Tate’s theorem.

Firstly we need to find the image of o in H~'(G,Ig). Recall from the proof of Theorem 32
that the map H2(G,Z) — H (G, I) is given as the boundary map n : H1(G,Z) — Ho(G,Ig)

corresponding to the short exact sequence
0—-Ia—ZG)—-Z—0
Also by Remark 10, the map G% — H;(G,Z) is given by composing the maps G% — I/I% and
-1
Ig/13 1— Hi(G,Z).

1

Thus for finding the image of o under the map G — H~!(G,Ig), the maps 1 and n~! cancel

and we just get the image of o in I /I3 which is (o — 1) + I3.

Now we need to calculate the image of (o0 — 1) + IZ under the map H (G, Is) — H%(G,L*)
which was described in Remark 11. Consider the following diagram :

H-YG,I)

l (3.5)

Firstly we have to find a preimage of (0 — 1) + IZ under the map

(L*())a — I/ 1

Consider the element z, + [gL*(¢) € L*(¢)g. Then under this map (which we called a during the
proof of Tate’s theorem),
To + 1L (¢) > (0 — 1) + Ig/IE
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Now we want to find the image of this element under the norm map L*(¢)g — L*(¢)® (which is
given by Nmg = Z?:_ol o' ) i.e. the image is equal to Z?:_ol o'r,. But the way action of G is
defined on L*(¢), we get

0 (25) = Tyit1 — Tpi + G0, 0)

Thus
n—1 ) n—1 '
Z o'r, = Z olot,o)=m
=0 1=0

by the description of ¢ given just before Remark 17. Note that in the last equality, we have used
the fact that L* is a group under multiplication. So the symbol + actually means multiplication.

Since 7 is infact an element of K*, thus 7 is the preimage of m under the inclusion K* — L*(¢)“ and
the image of 7 under the map K* — HY(G, L*) is m Nmp x (L*) which completes the proof. [

Corollary 8. Under the Local Artin Map K*/Nmp, i (L*) — G, the class of the uniformizer maps
to the Frobenius element.

Now we want to define the invariant map for infinite unramified extensions as well. We need to be
careful about the definition of the ordy,.

Let 7 be a generator of the maximal ideal mg of Og. Then for any z € L, z € K  for some
finite extension K’ of K (eg. take K = K(z)). Then K  is also unramified over K and we get
x = urn" for some u € Uy and some n € Z. Hence every element of L can be written in the form
un™ for some u € U, and some n € Z. Uniqueness of this expression is also immediate. Now we
can define the ordy, map in the same way as for finite unramified extensions as we have got a short
exact sequence

0= U, =L 7% 7 0

3.4.2 Infinite Extensions

Consider a tower of field extensions

EDLDOK

with both F and L unramified over K. Then F and L are also Galois over K because F is unram-
ified over K means that any finite subextension of E over K is unramified which is then also galois
(infact cyclic). Since E is a union of its finite subextensions, so E is a union of Galois extensions
which shows that FE is also Galois over K.

We denote G = Gal(E/K), H = Gal(E/L) is a subgroup of G. By infinite galois theory, we
know that G/H = Gal(L/K). For convenience, we denote G/H by G.

Theorem 63. The following diagram commutes :

invL/K

H*(L/K) Q/z

JI nf sz (3.6)

in

HYE/K) —% 5 /7.
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Proof. To check the commutativity of this diagram, one has to check the commutativity of the
following diagram :

H2(L/K) — % 126y, 7) o HY(G1,Q/2) 929001/K), 0/z
l]nf Jlnf llnf Jld (3_7)
HY(B/K) —"— H(G,Z) L HYG,Q/7) —22272) , /7,

We want to show the commutativity of the first square. Let ¢ : G — L* be a 2-cocycle.

Then Inf(ordr(¢))(g1,92) = ordp(¢(gi1H,g2H)). Now Inf(¢)(g1,92) = ¢(91H,g2H) and thus
ordg(Inf(é(g1,92))) = orde(¢p(g1H, g2H)) = ordr(¢p(g1H, goH)) since ¢(g1H,g2H) € L* and E is
unramified over L.

Now we want to show the commuativity of the second square. Note that we have already shown
that the following diagram commutes :

HY(G1,Q/Z) — 22— H(G1,Z)

Jmfl J’"h (3.8)

HY(G,Q/7) — = —— Q/Z

Hence we have Infso0d;, = g o Inf; which implies 551 olnfo=1Infio 521 by precomposition with
551 and postcomposition with 5;1 . This completes the proof of commutativity of the second square.

Finally we will show the commutativity of the third square. Let ¢ € Hom(G1,Z). Then for
any 7 € G, we have (Inf(¢))(7)) = ¢(7H) and thus by Lemma 41,

Inf(¢) — (Inf($))(op/k) = ¢(op/kH) = ¢(or/K)
This completes the proof of commutativity of the third square. O

Theorem 64. There exists a unique isomorphism
invg : H* (K" /K) — Q/Z, (3.9)

with the property that, for every L C K“" of finite degree n over K, invg induces the isomorphism

invg i H*(L/K) — 77 (3.10)

1
[L: K]

Proof. We have already shown that invy x : H 2(L/K) — ﬁZ /Z is an isomorphism. Moreover,
by Theorem 63, we have a commutative diagram :

i?’LUL/K

H*(L/K) Q/zZ
llnf Jld (3.11)
HY(K"/K) — ™5 Q/Z
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Suppose that invg is not surjective. Hence there exists £ € Q such that X + Z ¢ Im(invg). Take

L to be the unramified extension of K of degree n. Since % +7Z€ %Z/Z = Im(invy k), s0  +7Z €
Im(invg) by the commutativity of diagram which is a contradiction. Hence invg is surjective.

Now we will prove that invy is injective. Let ¢ € H>(K“"/K) such that invg(¢) = 0.

For any L finite unramified over K, we have Inf(H?(L/K)) C H*(K*"/K). We also have that
for any finite unramified extensions L; and Lo of K, Inf(H?*(L1/K)) C Inf(H?*(L1Ls/K)) and
Inf(H*(Ly/K)) C Inf(H*(L1L2/K)). This follows from the commutativity of the following dia-
gram (which can be verified directly) :

H*(Ly/K)

llnf’ Inf (3.12)

H2(LiLo/K) — s 12 (kv K

Hence we have
HA(K™ /K) 2 limg HX(L/K) = liny Inf(HX(L/K)) = | Inf (HX(L/K))
L L L

The second congruence follows from the fact that the inflation map is injective and thus for each
L, we have H?(L/K) = Inf(H?(L/K)). For the last congruence, see Ex. 17, Ch. 2, page 33 of [12].

Thus for any ¢ € H?*(K“"/K), we have ¢ = Inf(z) for some ¢y € H?(L,K) for some finite
unramified extension L over K.

Therefore by commutativity of diagram 3.11, we have

invg k() = invg(Inf (1)) = invg(¢) =0
Since invy,/k is an isomorphism, so ) = 0 and thus ¢ = 0. This completes the proof that invy is
injective. Thus we have shown that :

There exists an isomorphism

invg - HA(K""/K) — Q/Z, (3.13)

with the property that, for every L C K"" of finite degree n over K, invg induces the isomorphism
. 1

invr it H*(L/K) — mZ/Z (3.14)

given as invr g = invk o Inf. O

Now we have to check the uniqueness of such an isomorphism invg. Let
Uy H(K"/K) - Q/Z

be an isomorphism with the property that, for every L C K“" of finite degree over K, W induces
the isomorphism

invy i+ H*(L/K) — 7] 7. (3.15)

1
[L: K]
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Le. vy g =Vgolnf.

We know that for any ¢ € H?(K“"/K), we have ¢ = Inf(¢) for some ¢ € H*(L, K) for some
finite unramified extension L over K. Hence

VUi (¢) = Vr(Inf(¢)) = invy k() = invg (Inf(¢)) = invi (¢)

for any ¢ € H?(K""/K). Thus invg = ¥ which completes the proof of uniqueness of the isomor-
phism.

Theorem 65. Let L be a finite extension of K of degree n, and let K*" and L“" be the largest
unramified extensions of K and L. Then the following diagram commutes :

H2(K'/K) —8¢  g2(Len /L)

J@'nv;{ JinvL (316)

Q/zZ . Q/Z

Proof. Since L"" = LK"", so the map Gal(L""/L) — Gal(K""/K) given by 7 — T [gun is in-
jective. Hence we can treat Gal(L“"/L) as a subgroup of Gal(K""/K) and obtain the restriction
maps H?(K""/K) — H?(L""/L). Note that these maps are not strictly restriction maps according
to our earlier definitions as the modules are different, but since K*™* C L“™*  they are essentially
restriction maps and we will see that they satisfy all properties of restriction maps.

To ease the notation, let’s denote Gal(K*"/K) by I'k and Gal(L""/L) by I'.

We have to check the commutativity of the following diagram :

—1

HA(K"K) —% 12Ty, 7) — 5 BT, Q/2) 2, gz
JR@S leRes leRes Jrfe (317)
2/ Tun ordr, 2 521 1 g—g(or)
H*(L""/L) H*T},Z) ——— H (I'1,Q/Z) ———— Q/Z

where e is the ramification degree and f is the residual class degree.

In order to prove the commutativity of the first square, note that the following diagram com-
mutes :

ordg

K’U/{l* Z

. (3.18)

ordy,

LUTL* Z
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Let my be generated by a prime element mx € Op. Since ramification index for L/K is e, we
have 7xOr, = m$. Now let 7, be a generator for mz. Thus my = 7;Or, and so 1xOp, = 770
ie. Mg = mFug for some ug € Ur. Now let x € K*"*. Thus x = unf for some v € Ogun and some
m € Z. The above discussion shows that = u(uo7n§)™. Thus ordr(z) = em = eordi(z) and we
are done.

Now we use this diagram to prove the commutativity of the first square. Let ¢ : F% — Ku

be a 2-cocyle representing an element of H2(K“"/K). Then ord(¢) is represented by a 2-
cocycle ¥ : T'% — Z where (01.02) = ordk (¢(o1,02)).Then Res(1)) is represented by a 2-cocylce
n : I'? — Z where n(01,02) = ordg(¢(o1,02)) and thus (eRes)(¢)) is represented by a 2-cocylce
n F% — Z where

1 (01,02) = e(ordg (§(01,02))) = ordr(¢(o1,02))

by the commutativity of the above diagram. Also R_es(@ is represented by a 2-cocycle k : F% —
L' where k(01,02) = ¢(01,02) and so ordy,(Res(¢)) is represented by a 2-cocycle 8 : I's — Z
where f(01,09) = ordr(¢(o1,02)). This shows that

(eRes)(ordg(¢)) = ordr(Res(¢))

i.e. eResoordyx = ordyp o Res and thus completes the proof of commutativity of the first square.

Now we want to show that the second square commutes. We have already shown that restric-
tion map commutes with the boundary map and thus the following diagram is commutative :

H' (T, Z) — % 5 H2(Tg,Z)

Res Res (3 19)

HY(Tp,Z) —2 s H2(T1,7Z)

Multiplying both the vertical arrows by e does not affect the commutativity of the diagram i.e. we
get a commutative diagram :

H' (T, Z) — % 5 H2(T,7Z)

eRes eRes (320)

HY(T1,Z) — % H2(T'1,7)

i.e. (eRes)o dx = 01 0 (eRes). Again precomposition with ;' and postcomposition with d;*
gives us 521 o (eRes) = (eRes) o 5;(1. So we have shown that the second square also commutes.

Now we want to show that the third square commutes. Consider the following diagram :
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Hom(Tg,Q/z) —2299%), q/z
g—glry, f (3.21)

Hom(T't,Q/Z) —=4%), gz

Let g be a continuous homomorphism from I' to Q/Z. To show the commutativity of this diagram,
we have to show that fg(ox) = ¢ [r, (or) but this is true since o, [gun= O'{( by Lemma 42.
Multiplying the vertical maps with e does not disturb the commutativity of the diagram and we
get that the third square also commutes. O

3.5 Ramified Extensions

Let F D L D K be a tower of Galois extensions. Note that F is automatically Galois over K
since E is Galois over K. Also let G = Gal(E/K),H = Gal(E/L). Then G/H = Gal(L/K). By
Hilbert’s Theorem 90, we know that H'(H, E*) = H'(Gal(E/L), E*) = 0 (by treating L as the
base field instead of K'). Hence by the inflation - restriction exact sequence (for r = 2), we get that

the sequence

0— H2(L/K) 20 m2(B/K) 2 H2(B/L)

is exact. In particular, the Inf map in this setting is injective. This general setting would be used
again and again in this section by taking different fields F, L and K.

Theorem 66. For every local field K, there exists a canonical isomorphism
invg : H*(KY/K) — Q/Z.

Moreover, if L is a finite extension of K with [L : K] = n, then the diagram

00— HAL/K) —2 s m2(kel k) —Bes g2kl /L)
VK vy, (322)
0— 172/ ——— Q/z n Q/Z

commutes. Furthermore, if L/K is Galois, then there is an isomorphism
1
invy i+ H*(L/K) — EZ/Z
such that
invg o Inf =invp

Remark 18. At the first sight, it might seem that there is a discrepancy in the notation invy as
one would expect it to denote invy : H*(L"/L) — Q/7Z instead of invy, : H> (K /L) — Q/Z but
this problem is easily overcome by the the observation that L% =2 K% since L ¢ K% and so K% is
also an algebraic closure for L.
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Remark 19. m} = B(0, |71|") is an open neighborhood of 0. Moreover, if U is an open set con-
taining 0, then U contains some ball B(0,r). Choose n such that |wp|" < r and thus B(0, |rp|") C
B(0,7) C U. Thus {m7} : n € N} is a neighborhood base at 0. Similarly {U;' : n € N} is a
neighborhood base at 1 where Ul =14+ m} = B(1, |7L|").

Note that the top row is obtained by taking the tower of Galois extensions K% > L D K. The
proof will require a few lemmas which we now prove.

Lemma 46. If L/K is Galois of finite degree n, then H*(L/K) contains a subgroup canonically
isomorphic to 1Z/Z.
Proof. Consider the diagram :
0 — Ker(Res) —— HX(K"/K) —8¢ , g2(Luwn /L)
n Inf Inf (3.23)

00— HX(L/K) — s m2(ket/K) — By g2k

It is straightforward to show that the diagram commutes (since all the maps are canonical).

Note that the inflation maps H?*(K*"/K) — H?*(K%/K) and H?>(L*"/L) — H?*(L%/L) are
injective. This can be shown by taking the tower of Galois extensions K% > K% > K and
L 5> L' 5 L respectively.

Since the first square is commutative and the maps ¢ and Inf are injective, so 7 is injective as

well. Thus H?(L/K) contains a subgroup which is isomorphic to Ker(Res). In Theorem 65, we
have proved that the following diagram commutes :

H2(Kvn /K) —fe  g2(pun /L)

Jrlan l]mm (324)

Q/zZ - Q/z

Since invk and invy, are isomorphisms, Ker(Res) = Ker(n) = %Z/Z. O

In order to prove Theorem 66, we need to show that H*(L/K) is infact isomorphic to 2Z/Z. Due
to Lemma 46, it suffices to prove that |H?(L/K)| < n.

Lemma 47. Let L be a finite Galois extension of K with Galois group G. Then there exists an
open subgroup V' of O, such that H"(G,V) =0 for all r > 0.

Proof. By Normal Basis Theorem, there exists a basis {rx : 7 € G} of L over K. Since G is a finite
group, min(ordy (7z)) € Z, say m = min(ordy(rx)). Choose n > |m|, then V 7 € G,

ordr(t(rkx)) = ordr(rk7(x)) >0
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which means that 7} 7(z) € Or, V 7 € G. Since
{r(n"x) : 7 € G}

is also a basis of L over K, without loss of generality we can assume that the basis {rx : 7 € G} of
L over K is inside Oj,. Define
V = Z T (.ZC)OK

T€G
Clearly V is a subgroup of O, which is stable under G. Then V' = Ok [G] where the map V' — Og[G]

is given as
Z T(2)ur — Z TUr

TEG TEG

where u; € O. This map is well defined because of the linear independence of the basis {Tx : 7 €
G} of L over K. Since G is a finite group, we can label it as

Now Ok[G] = Ind“Ok given by the noncanonical map 1 : O [G] — Ind“Of such that S°1 | uir;
¢ where
¢(7i) = u;

and j is defined as 7; = 7, *. The inverse map n : Ind“Ox — Ok[G] is given by
n
b > (g g
i=1

It is straightforward to show that the maps n and 1’ are actually inverses of each other. The map
7 is also a G-module map since

n n
ni| 7T Z’u,]‘Tj =N ZZL]‘(TT]‘) :(;5
j=1 i=1

1 1

’ . — . _ —
where ¢ (7;) = uy, where k is defined as 77, = 7; Lie =71 7, " and

T D || =7)
j=1

Now (7(¢))(7i) = ¢(7i7) = w; where [ is defined as 7, = (r;7)"" = 777,71, Hence 7, = 7 which
means that k£ = and so u = v;.

Therefore the map 7 is a G-module isomorphism. Thus Ok[G] is an induced G module and so
H"(G,0k|G]) =0V r > 0 which implies that H"(G,V) =0V r > 0.

We are only left to prove that V' is open in Op. It suffices to show that V is open in L.

Since L is a finite dimensional vector space over K with basis {7i(x),...,7n(z)}, so we have a
K-vector space isomorphism

¢o:L— [[K

TG
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given by
n
Z ain(x) — (041, ceny Ozn)
i=1
Let | |o be a metric on [] .- K defined such that

(1, oy ) |00 = 11;1%531 |cvi

Then ¢ is a homeomorphism between ([[,co K, | o) and (L, | [). This follows from a basic fact
in Functional Analysis which says that any two norms on a finite dimensional Banach space are

equivalent. Now observe that
¢ <H OK) =V

T€G
Since [] . Ok is an open subset of [[ ., K, so V' is open subset of L and we are done. O

Lemma 48. Let L, K and G, be as in the last lemma. Then there exists an open subgroup V of
Uy, stable under G such that H"(G,V) =0V r > 0.

Proof. We prove this only for the case char(K) = 0. We know that m} = U én) as abelian groups

whenever n > %(?_ The isomorphism m7 — Uén) is given by

o xn
T exXpr = Z ]
n=0
with the inverse map U én) — mY given by
oo
x—logx = Z(—l)("_l):z;”
n=1

It is infact a G-module isomorphism because the action of G is continuous and so

olexpr) =0 (nh_{glo f:) = nh_)rglo (az f:) = nh_}rglo (Z (Uj)z> = exp(o(z))
) — il !

=0 1=0

Choose an open subgroup V' of Oy, stable under G such that H"(G,V') =0V r > 0. Choose M
such that M > %@. Then 7V is stable under G since (k) = 7. Moreover, we have

W%V/ = WEMV/

Also V' is an open neighborhood of 0, so V' = U,m% which implies that 7V’ = Unmz+eM is
also an open subgroup of Oy. Moreover, there is a G-module isomorphism V' — ﬂ'% V' such that
x — M2 with the inverse map 7 V' — V' given by 7z +— z. Thus H" (G, 7 V') 2 H"(G,V) =

0. Since
ord(p)

ord(mMV'y =M + ord(V') > M > =1

so we can take the exponential
V = exp(r$MV)
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under the isomorphism exp : miM - U ]EM). It is easy to verify that V is stable under G. Also
H"(G,V) = 0since H" (G, 7$M V") = 0. Moreover, we had 7¢M V' = U,m}™M and so

V = exp(rMV’) = U, exp(m M) = u,UpteM
is an open subgroup of Uy,. O

Lemma 49. Let L/K be a cyclic extension of degree n; then h(Ur) =1 and h(L*) = n.

Proof. Let V' be an open subgroup of Uy, with H"(G,V) =0V r € Z as in Lemma 48. Take the
cosets of V' in Ur. We have U, = |Jg gV where S is a set of coset representatives of V' in Upr,. Since
V is open, so is each gV because the map "multiplication by ¢” is a topological isomorphism. Since
Uy is compact, there must be a finite subcover i.e. S is finite. Hence U, /V is finite, which implies
h(Ur/V) =1 by Theorem 43. Since

h(Uz) = h(V)W(UL/V)
by Lemma 42, so h(Ur) = h(V'). But note that

|H(G, V)| _ 1
hV)=i—""——===-=1
V= ey T 1
Also we have the exact sequence 0 — Uy — L* — Z — 0. Thus
. |H°(G,Z)] _n

Lemma 50. Let L be a finite Galois extension of order n, then H*(L/K) has order n.

Proof. We prove by induction on [L : K|. Clearly the base case (n = 1) is true. Now let L be an
extension of K such that L # K. If L/K is cyclic we are done by Lemma 49 and periodicity of
cohomology groups. So we assume that L/K is not cyclic. We know that the group Gal(L/K) is
solvable, thus it has a finite composition series

G=GyD G DGa..... D Gy ={1}

where each G;/G;41 is nontrivial, finite abelian and simple (so cyclic). Note that since G is not
cyclic, son # 1 i.e. n > 2 and thus G contains a proper nontrivial normal subgroup G;. By Galois
theory, there exists a Galois extension K’ C L over K such that K’ # K and K’ # L.

Thus we can apply the induction hypothesis to conclude that H?(K'/K) = [K'/K] and H*(L/K') =
[L: K']. Since we have an exact sequence

0— H*(K'/K) - H*(L/K) — H*(L/K)

w (LK)

’H2(K’/K)| < |H2(L/K,)|

ie.

[H*(L/K)| < [H*(K'/K)| |[H*(L/K")| = [K": K] [L: K| = [L: K]

and thus we are done since by Lemma 46, we know that |[H?(L/K)| > n.
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Proof. Now let us complete the proof of Theorem 66. We know by the proof of Theorem 64 that
H*(K“/K) = JInf(H*(L/K))

where L runs over finite extensions of K. We now want to show that it suffices to take the union
over finite Galois extensions of K. Let €2; be the collection of all finite extensions of K and 3 be
the collection of all finite Galois extensions of K. We want to show that

U Inf(H*(L/K)) = | Inf(H*(L/K))

Ley LeQy

Since 9 C Q7 so it is clear that

U Inf(HXL/K)) ¢ | Inf(H(L/K))

LeQo Le

Conversely if we take L to be any finite extension of K, then we can take a finite Galois extension
L’ over K containing L. We know that the following diagram commutes :

H2(L/K)
Ing’ n (3.25)

H2(L)K) — s 52 (ke k)

This shows that
Inf(H*(L/K)) C Inf(H*(L'/K))

Thus we have that
U mmfE*(L/K) c | Inf(H*(L/K))

LeQ LeQy

This completes the proof that
HAK/K) = Inf(H(L/K))
where L runs over finite Galois extensions of K. Hence an arbitrary element ¢ of H*(K¥/K) is
of the form Inf(v) for some ¢y € H?(L/K) for some L galois over K. Now again consider the
diagram :
0 — Ker(Res) —— HX(K"/K) —8¢ , g2(Luwn /L)
U Inf Inf (3.26)

Inf

0 —— H*(L/K) H2(K9/K) —Be y g2(Ka /L)

We have shown that 7 is an isomorphism. Thus (¢) = n(R) for some & € Ker(Res).
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Hence ¢ = Inf(n(k)) = (Inf oi)(k) = Inf(i(r)). This proves that the map Inf : H*(K*"/K) —
H?(K%/K) is surjective as well and is thus an isomorphism.

Recall that we have also proved the commutativity of the following diagram (Theorem 65) :

H2(K"n/K) —fe y g2(pen /L)

Jrlnv;( llnvL (327)

Q/Z . Q/Z

This in turn proves the commutativity of the following diagram :

0 — Ker(Res) —— HX(K"/K) —5¢ , g2(Luwn /L)

J Jlan Jlnw‘ (3'28)

0 —— 12/2 ———— Q/Z n Q/Z

All the vertical maps are isomorphisms.

We can combine the diagram 3.28 to the diagram 3.26 which means to compose diagram 3.28 with
the inverse of diagram 3.26 to get the following commutative diagram :

00— HXAL/K) —20 s m2(Kel/K) —Bes y g2(K9)L)

VLK MUK inuy, (329)

0— 17/ —— Q/z n Q/Z

In particular, the invg : H*(K*/K) — Q/Z and invy : H?>(K*/L) — Q/Z maps are also
isomorphisms. Then we can say that for any finite Galois extension L of K, invg induces the
isomorphism invy, /g = invk o Inf. O

Remark 20. Note that the diagram in the Theorem 66 commutes even if L/ K is not Galois because
to show that this diagram commutes, it suffices to show that the right square in the diagram 3.23
and the diagram 3.27 commute. The condition L/K is Galois is required only to prove that the
left square in the diagram 3.23 commutes and hence is not required for the commutativity of the
diagram in the Theorem 66.
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3.6 The Fundamental Class

Definition 30. Let L be a finite Galois extension of K with Galois group G. By Section 3.5, there
are isomorphisms

nv 1
Ker(Res) — ~Z]7Z
n

and
Ker(Res) & H*(L/K)

Composition of these isomorphisms gives us the isomorphism
1
H*(L/K) - ~Z]7
n

This isomorphism is known as the invariant map invr, k.

Definition 31. Let L be a finite Galois extension of K with Galois group G. We define the
fundamental class ur,/x of H?(L/K) such that

. 1
vaL/K(”L/K) = W—FZ (330)
Since diagram 3.29 commutes and the map Inf : H>(L/K) — H?(K%/K) is injective, up/k is
also uniquely determined as :
1

invi(Inf(ur k) = m—i—Z (3.31)

Since the Inf map is injective, we may identify Inf(ur, k) with uy,x and the above condition is

written as 1

[L: K]

ian(uL/K): +Z
Theorem 67. Let L O F D K with L/K galois. Then

ReS(UL/K) =Uur/E

(3.32)
Cor(up/p) = [E : Klug /i

Moreover if E/K is Galois,
Inf(ug/rk) =[L: Elup/k

Proof. There is a commutative diagram by Theorem 66 :

H2(K/K) 25 g2(K/E)
\LiTwK linvE (333)

Q/z —EX — Q/z

There is also a commutative diagram :
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H2(K9/E) By f2(Kel /L)
J/inv;( l@'m}E (334)

L:E
Q/Z ———— Q/zZ
Combining the two diagrams together, we get a commutative diagram :

H(K9/K) By g2k E) B g2(K9/L)

Jinox Jinvs Jin (3.35)

Q/z —Z% — @z —EE— Q/z

Now we need a helping lemma which can be proved by direct verification.

Lemma 51. If we have a commutative diagram such that the rows are exact
Al ,p_9 ¢

m n2 n3 (3.36)

then the following diagram is also commutative with exact rows :

Ker(fi) —2% Ker(gyo f1) —— Ker(g)

m m 72 (3.37)

Ker(fa) —2% Ker(gyo fo) —— Ker(gy)

where the map "incl.” is the inclusion map.

Remark 21. The fact that the rows are exact is a part of the Kernel - Cokernel lemma which
comes from the FExtended Snake Lemma.

Now we will apply Lemma 51 to our diagram. In our situation, we have f; = Res : H>(K%/K) —
H*(K“/E), g1 = Res : H*(K%/E) — H?>(K®/L)) and gj0 f1 = Res : H*(K%/K) — H*(K"/L).

Then by exactness of the inflation-restriction sequence (Theorem 36), we get Ker(f1) = Inf1(H?(E/K)),
Ker(gi o f1) = Info(H?*(L/K)) and Ker(g1) = Infs(H?(L/E)) where Inf; is the inflation map
Inf: H}E/K) — H?>(K%/K), Infs is the inflation map Inf : H*(L/K) — H*>(K®/K) and Infs

is the inflation map Inf : H3(L/E) — H*(KY/E).

Moreover, the maps 7; are just the invariant maps. Thus by Lemma 51, we get the commuta-
tive diagram with exact rows :
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Infi(H*(E/K)) —— Info(H*(L/K)) —"“— Infs(H*(L/E))

TNV K INVEK mnur, (338)

(E:K)

incl.
(EilK) Z/Z ’ (L:lK) Z/7, (L;lE) Z|Z

It is easy to verify that the following diagram commutes :

HX(B/K) — g nK) —— B B2(L/E)

Infi Inf Infs (3.39)

Infi(HX(E/K)) —— Infy(H*(L/K)) —2%— Inf3(H*(L/E))
Combining these two diagrams, we get the following commutative diagram :

H2(B/K) —" g2(L/K) —Be s g2(L/E)
invgolnfi invgolnfo invpolnfs (340)

(E:K)

incl.
(E:lK) Z|Z ’ (L:lK) Z|Z ’ (L:lE) Z]Z

Now by the diagram 3.29, we know that invk o Infy = invy ), invk o Infi = invg gk and
invy, /g = invg o Infs. Hence we get the following commutative diagram :

Inf

H2(E/K) H2(L/K) —Z=  H2(L/E)

MUE /K invp invp /g (341)

(E:K)

incl.
(EZIK) Z/z (L:IK) Z/Z > (L;IE) Z|Z

The commutativity of the second square shows that

invyp(Res(ur k) = [E: K] invy g (up/k)
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but we already know that

. 1
ZTLUL/K(UL/K) = m +Z
Thus we get
1 1
) = . == Z
invy p(Res(up/k)) = [E: K] <[L K] —|—Z> ([L ¥ + )
But also )
invy p(ur/p) = 8 +Z
Hence

invy p(Res(ug k) = invp p(up/g)
Since invr,/p is an isomorphism, so

ReS(UL/K) =Uur/E

Thus
Cor(ur/g) = Cor(Res(ur/k)) = [E : K] up/K

Similarly, the commutativity of the first square in diagram 3.41 shows that

invp g (Inf(ug k) = invg k(e K)

We know that

. 1
Z”UE/K(UE/K) = K] +7Z
Thus
. 1
va/K(Inf(uE/K)) = m +7
But
1 1 . ' .
[E : K] +Z= [L:E] [L: K] +Z)=I[L:E] ”WL/K(UL/K) = ZnUL/K([L L E] UL/K)
Therefore,
invg g(Inf(ug/k)) = invp kg ([L: Bl ug /)
and so

Inf(ug/k) =[L: Elup/k
since invr, /i is an isomorphism.
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3.7 The Local Artin Map

Remark 22. Let L be a finite Galois extension of K with Galois group G. Let H be a subgroup
of G and E be its fized field. Then H = Gal(L/E) and L is a Galois extension of E. Thus by
Hilbert’s Theorem 90 (Theorem 20), we have H'(H, L*) = 0. Also H?(H, L*) is a cyclic group with
order equal to [L : E] = |H| because of Theorem 66. Thus hypothesis of Tate’s theorem (Theorem
45) is satisfied.

Definition 32. By Tate’s Theorem, for every finite Galois extension of local fields L/ K with Galois
group G and r € Z, the homomorphism

Hy(G,Z) — Hi*(G, L¥)

defined by x — x Uwur, i is an isomorphism. When r = —2, this becomes an isomorphism
G = K* /Nmy, k(L")
where G = G/G¢ is the abelianization of G. The inverse isomorphism
bryi t K*/Nmyp (L) = G?
is known as the Local Artin Map ¢ k-
Remark 23. The Local Artin Map naturally induces the map
K* = Gal(L/K)®™

This is a surjective map with kernel Nmy, i (L*). We will denote this map also by ¢r,r. Though
there is some ambiguity in this notation but the notation will be clear from the context.

Lemma 52. Let L D E D K be a tower of local fields with L/K Galois. Then the following
diagram commutes :

$L/E

E* Gal(L/E)®
K — 25 Gal(L)K)

where the map i is the map induced by the inclusion map Gal(L/E) — Gal(L/K) and the map
¢/ is induced by the Local Artin map E*/Nmyp p(L*) — Gal(L/E)®. Similarly b1k is induced
by the Local Artin map K*/Nmy i (L*) — Gal(L/K)™.

Proof. By transitivity of the norm map, it is clear that the following diagram commutes :

K* ——— K*/Nmpg, g (E*)
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Thus it suffices to prove that the following diagram commutes :

E*/Nmy, p(L*) PLE L, Gal(L)E)™

JNmE/K J (3.44)

K*/Nmpg(E*) UK Gal(L)K)®

To prove

i1o¢r/p=¢r/xk o Nmpg/Kk
it suffices to show that

¢Z/1K o i=Nmpgo ¢Z/1E
i.e. the following diagram commutes :

-1
L/E

Gal(L/E)™ E*/Nmp (L)
Ji JNmE/K (3.45)
Gal(L/K)® /K K*/Nmp, g (E*)

We know that the map qﬁz/l 18 given by cup product with the local fundamental class uy,/; and the

map gbz/lE is given by cup product with the local fundamental class ur,/p. Moreover, by Remark 7
and Theorem 38, the maps i and Nmpg/,; are nothing but the corestriction maps in dimension —2
and 0 respectively. Thus we are just required to show

Cor(xUur, g) = Cor(r) Uur/k
But we know a standard property of cup products (Lemma 26)
Cor(aU Res(b)) = Cor(a)Ub
which tells us that
Cor(x U (Res(ur/k)) = Cor(z) Uur i
But by Theorem 67, we know that Res(ur,x) = ur,p and so we are done. O

Lemma 53. For every k € H(Gal(L/K),Q/Z) and a € K*, we have

k(91 K (a)) = invk(aUdk)

Proof. To ease notation, we set 04 = ¢k (a) and 7, the element of H~?(G, Z) which corresponds
to ¢1,/k (a) under the isomorphism H~%(G,Z) = G. We denote by @ the class of a in H(G, L*).
Since ¢Z/1K . H2(G,7Z) — H°(G, L*) is given by cup product with the local fundamental class
ur K, S0 we have

ooUuL /g =a

Thus



since we know that bUa = (—1)P?(a U b). Therefore,
@U ok = (up g Uoq) Udk = up /g U (0qg Udk) = up /g U6(0, Uk)

since d(a Ub) = (—1)P(aU§(b)). By Lemma 29, we have

1
T2 Uk = r(og) = % +Z e ~Z/Z=H'(G,Q/2)

for some r where n = |G|. Note that the last equality follows from the fact that G has trivial action
on Q/Z which means that the Kernel of norm map is 1Z/Z and I5(Q/Z) = 0. Now we want to
find §(k(0,)). We have to again use the description of the map H—(G,Q/Z) — H°(G,Z) provided
in Remark 11.

Firstly note that I itself is a preimage of = 4 Z under the map Q — Q/Z. Since G has triv-
ial action on @, so norm of © is equal to n(;) = r. Again 7 itself is a preimage of r under the
inclusion map Z — Q. Thus we have

(72 U k) = 8(r(0a)) :6(%+Z) = r+nZ e Z/nZ = HY(G,Z)

Therefore,
aU ok =up/g U(r+nZ)

Note that ur,/x U (r +nZ) need to be calculated through the map
H*(G,L*) - H*(G,L* ® Z) = H*(G, L*)
where the last isomorphism is induced by the isomorphism
L*®Z— L*
given by x ® n +— x™. Thus under this composite map, we have
UL K PP UL R QT UZ/K

where the first step is because of Theorem 40. Hence

invg (up g U(r+nZ)) = invg (up ) = invg (ug ) =7 (; + Z) = %4‘2 = k(0a) = k(o K (a))

O]

Theorem 68. Let L O F D K be local fields with both L and E Galois over K. Then the following
diagram commutes :

K — 2 Gal(L/K)™
lid J (3.46)
K — 55 Gal(B/K)

where the map m is induced by the surjective map Gal(L/K) — Gal(E/K) given by o — op.
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Proof. As usual we denote Gal(L/K) by G, Gal(L/E) by H and then G/H = Gal(E/K). For any
character K € H'(G/H,Q/7Z), we have inf(x) € H(G,Q/Z). Then by definition of inflation map,
for any g € G, we have

(inf(r))(9) = k(gH) = k(n(g))
Therefore,

k(@K (@) = (inf (k) (Pr/K(a) = invy K (@U 6(infr))

by Lemma 53. Since we know that inflation maps commute with the boundary map (Theorem 27),
SO
invy g(@Ud(infr)) = invy g (@Uinf(dk)) = invy g (inf(@U ok)) = invg k(@ U dk)

because invg,x = invr g o inf by diagram 3.41. But
invg/k(@Udk) = k(dp/k(a)))
by Lemma 53. Hence for every x € H'(G/H,Q/Z), we have

k(m(¢r/K(a)) = k(PE/K(a))

which shows that
(¢ (a)) = ¢p/K(a)
O

Remark 24. Theorem 68 immediately implies that if L D E D K is a tower of finite abelian
extensions of K, thenV a € K*,

br/x(a) [E = ¢p/K(a)
Definition 33. We define the Local Artin Map ¢x
oK K* — Gal(K™/K)
to be the homomorphism such that for every finite abelian extension L/K,
oK (a) L= ¢r/k(a)
Theorem 69. For every local field K, there exists a homomorphism (local Artin map)
or : K* = Gal(K/K)

with the following properties :

(a) for every prime element w of K, ¢ () [gun= Frobg ;

(b) for every finite abelian extension L of K, Nmp k(L") is contained in the kernel of a +
oK (a) [, and ¢k induces an isomorphism

Proof. (b) is clear from the diagram :

K* — % Gal(K®/K)
‘/id lﬂ (347)
bL/K

K* Gal(L/K)®
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To prove (a), observe that for any finite unramified extension L of K (which is then cyclic and
hence abelian), we have

¢r(m) [L = ¢k (m) = Froby k

and thus
(ZSK(T() rKun: FTObK

O

Theorem 70. (Norm Limitation Theorem) Let L be a finite extension of K, and let E be the
largest abelian extension of K contained in L; then

Nmyp k(L") = Nmpgr(E")

Proof. Note that L D E D K. Thus we have the transitivity of the norm map (proved earlier),
Nmpx = Nmg/gxoNmp /g

which shows that

Nmp (L") C Nmg/k(E")

Therefore, we have a surjective map

’r] ' K* % K*
" Nmypg(L*)  Nmpg(E*)

such that
v+ Nmpg(L*) = 2+ Nmp/g(E")

Firstly suppose that L/K is Galois. We will prove that in this case,

Gal(E/K) = Gal(L/K)®

We know that for any galois extension F' of K in L,

Gal(L/K)

(F/K)Y ———=

GallF/K) = G @ m

We know from basic group theory that for a normal subgroup H of G,
G/H is abelian < H D G°

where G¢ denotes the commutator subgroup of G. Thus F is abelian if and only if Gal(L/F) D
Gal(L/K)¢ and Gal(L/F) is normal in Gal(L/K).

Also, we know that for Fy C F,, we have Gal(L/Fy) D Gal(L/F,). Since E is the largest
abelian extension of K in L, so Gal(L/E) is the smallest normal subgroup of Gal(L/K) con-
taining Gal(L/K)¢ which is infact equal to Gal(L/K)¢. Let Fy be the fixed field of Gal(L/K)°.
Then by the Fundamental Theorem of Galois Theory, we have Fy = E. Thus

Gal(L/E) = (Gal(L/K)")
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Hence we get that

Gal(L/K) Gal(L/K) b
Gal(F/K) = = = Gal(L/K)*
ME/K) = G@/E) ~ Garr)y ~ CUEE)
This shows that
| Gal(E/K) | = | Gal(L/K)™ |
Now the isomorphism of local Artin map shows that
Gal(L/K) ab) |~
el LK = 2
and K
Gal(E/K —GalEK“b— _
Gal(B/ 1) = Gal (/)" = | 7
All these equations can be combined to conclude that
K* ‘ B K* ’
Nmp, g (L*) Nmp g (E*)

Thus 7 is also an injection and we get Ker(n) is trivial which means that

Nmpg/g(E*) C Nmp/x(L7)

and so
Nmgk(E*) = Nmp (L")

Now consider the general case (L/K need not be Galois).

We are going to assume char(K) = 0. Let L’ be a finite Galois extension of K containing L
(Such an extension can be constructed by adjoining all the roots of minimal polynomials of a prim-
itive element of L over K which is the splitting field of a seperable polynomial and hence Galois).
Let G = Gal(L'/K) and H = Gal(L'/L).

For any Galois extension F' of K inside L', we have

Gal(L'/K)

Gal(F/K) = Gal(L'/F)

Thus F is an abelian extension of K inside L' if and only if Gal(L'/F) D G¢ and Gal(L'/F) is
normal in Gal(L'/K). Moreover F' is contained in L if and only if Gal(L'/F) D Gal(L'/L) = H

Hence F' is an abelian extension of K inside L if and only if Gal(L'/F) > G°H and Gal(L'/F) is
normal in Gal(L'/K).

Also, we know that for Fy C Fy, we have Gal(L/Fy) D Gal(L/Fs). Since E is the largest abelian
extension of K in L, so Gal(L/FE) is the smallest normal subgroup of Gal(L/K) containing G°H
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which is infact equal to G°H. Let Fj be the fixed field of G°H. Then by the Fundamental Theorem
of Galois Theory, we have Fy = E. Hence we know that

Gal(L'/E) = G°H

and thus Galll! /) o
a
Gal(E/K) = =
WER) S Gal(DB) ~ Gl
Take any a € Nmpg/x(E*). We have to show that a € Nmy, (L) (since we already know that
Nmp g (L*) C Nmpg/g(E*)). Consider the commutative diagram obtained by combining the dia-

grams in Lemma 52 and Lemma 68 :

L)L

L* H/H®
Nmp/x incl.
KKy /Ge (3.48)
id proj.
Ko e

Note that the inclusion map H/H¢ — G/G¢ is induced by the inclusion map H — G (since
HNG®= H° and is given by hH¢ — hG® and the projection map G/G¢ — G/G°H is given by
gG°¢— gG°H.

Since a € Nm(E™), so ¢k (a) = 1. By the commutativity of the lower square, we get ¢/ /x (a) = 1
under the projection map. We want to show that ¢ (a) is in the image of the inclusion map. It
suffices to show that whenever an element of G/G® maps to 1 under the projection map, then it is
in the image of the inclusion map.

Let ¢G¢ +— 1 under the projection map. Then g € G°H and so g = gih for some g; € G
and some h € H. Thus
9G® = g1hG® = hg2G* = hG® = incl.(hH")

and so we are done. Note that we have used that gih = hgo for some g2 € G° since G¢ is a normal
subgroup of G. Hence ¢//x(a) is in the image of inclusion map, say ¢,k (a) = incl.(hH®). Since
b1 /1 is surjective, so hH® = (L' /L)(b) for some b € L*). Thus ¢k (a) = ¢(L'/L)(incl.(b)). The
commutativity of the upper square then implies that

br/x(a) = ¢rk(Nmp k(b))

Thus a
—— € Ker(¢p, = Nmys (L™
and so “
—— = Nmj,
NmL/K(b) mp, /K(C)
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for some ¢ € L*. Again, transitivity of norms show that Nmp, g (c) = Nmp g (Nmps,p(c)) and
thus

a=Nmpg(b) Nmpg(c) = Nmp k() (Nmpg(Nmpyp(c))) = Nmp (b Nmpyp(c))

Hence a € Nmyp k(L") and we are done. O

3.8 The Hilbert Symbol

In order to prove the Existence Theorem, we need a result from the theory of Hilbert Symbol.

Theorem 71. Let K be a local field containing a primitive n'™ root of 1. Any element of K* that
is a norm from every cyclic extension of K of degree dividing n is an n** power.

Proof. We will require the following standard result in the theory of Hilbert Symbols.
Theorem 72. The Hilbert Symbol has the following properties :

(a). It is bi-multiplicative, i.e.

(b). It is skew symmetric, i.e.

(c). It is non-degenerate, i.e.
(a,b) =1 forallbe K*/K™ — a€ K™

(a,b) =1 forallaec K*/K™ — be K™
(d). (a,b) =1 if and only if b is a norm from Kl[a'/™].

Proof. See Theorem 4.4, page 112, [1]. O

Now we prove Theorem 71 with the help of Theorem 72. Let a be an element of K* which is a
norm from every cyclic extension of degree dividing n. By part (d) of Theorem 72, it follows that
(a,b) =1 for all @ € K* which means that b € K*" by part (¢) of Theorem 72 and thus b is an n'*
power. ]

3.9 The Existence Theorem

Let K be a local field.

Definition 34. A subgroup N of K* is known as a norm group if there is a finite abelian extension
L/K such that Nmp, (L") = N

If N is a norm subgroup, then K*/N = Gal(L/K), and so N is of finite index in K*.
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Lemma 54. If L and L' are abelian extensions of K, then
L C r <~ NmL/K(L*) D) NmL//K(L'*)

and
NmLL//K((LL/)*) = NmL/K(L*) N NmL//K(L/*)

Proof. If L C L', then transitivity of the norm map tells us that
NmL/K(L*) D) NmL//K(L’*)

Hence, in particular
Nmppg((LL)*) € Nmp (L")

and
Nmpp((LL)*) C Nmp (L)

since L C LL' and L' C LL'. Therefore,
Nmpp ((LL)*) € Nmp g (L*) 0 Nmp g (L)

Conversely, let a € Nmp i (L*) N Nmp /g (L), then

or/x(a) =1=¢px(a)

But

drryi(a) L= ¢ k(a) =1
and

brryk(a) 1= o /k(a) =1
by Lemma 68. Since the map

o (01,0 ) @ Ga(LL'/K) = Gal(L/K) x Gal(L' /K)

is injective, thus we get ¢rr//k(a) =1 and so a € Nmpp g ((LL')*). This completes the proof
that
Nmyppg((LL)*) = Nmp g (L") " Nmp g (L)

Finally let Nmy x(L*) D Nmp g(L™). Then by the above result, we have
NmLL’/K((LL/)*) = NmL/K(L*) N NmL’/K(L/*) = NmL’/K(L,*)
But we also know by the local Artin map that
[K* : Nimpse(L)] = [ : K]

and
(K™ : Nmppye((LL)")] = [LL": K]

Hence [LL' : K] = [L' : K|. Since L' C LL', thus L' = LL' which means L C L’ and so we are
done. O

Lemma 55. Every subgroup of K* containing a norm group is itself a norm group.
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Proof. Let N be anorm groupi.e. N = Nmp, (L") for some abelian extension L/K and let I O N.
Then ¢,/ (I) is a subgroup of Gal(L/K) and let M be its fixed field. Thus Gal(L/M) = ¢r,/x (1)
by Galois Theory and ¢y, /x maps I onto Gal(L/M). Consider the commutative diagram :

K — 2 Gal(L/K)

‘/id Jw (3.49)

PM/K

K* ———— Gal(M/K)
The kernel of ¢/ i is Nmyg/(M*). On the other hand, the kernel of
K* — Gal(L/K) — Gal(M/K)

is given as

¢Z/1K(Gal(L/M)) = ¢Z}K(¢L/K(I)) =1

To see the last equality, let = € qbz/lK(gbL/K(I)), so ¢r/k(v) = ¢k (i) for some i € I. Thus
2 € Ker(¢r/x) = Nmp/g(L*) =N C I and so x € I and we are done. O

Lemma 56. Let L be a field extension of K. Then Nmyp i (L") is an open subgroup of finite index
mn K*.

Proof. 1t suffices to show that Nmp g (UL) is an open subgroup of K* since we know that if a
subgroup of a topological group contains an open subgroup, then it is itself open (because it is a
union of open cosets). The group Uy, is compact. Since the norm map is continuous, Nmy, / x(Ur)
is a compact subset of K*. In particular, Nmy,, k(Ur) is a closed subset of K*. We know that

Nmyp(UrL) C Nmy (L") N Uk

Let x € Nmp (L") NUk. Then x = Nmy i (y) for some y € L* and = € Uk i.e. |z| = 1. Since
|z| = |y|", so |y| =1 as well i.e. y € Uz, and so z € Nm(Up). Therefore we have shown

Nmyp (L") NUx C Nmp g(UrL)
Combining these relations together, we get
Nmp (Ur) = Nmp (L") N Uk
Thus we get an injective map
i: U /Nmpg(Ur) = K*/Nmp k(L)

which shows that Nmp g (UL) has finite index in Ug. Since Nmpx(UL) is closed in K*, so it is
closed in Uy as well. Therefore, Nmpx(UL) is a closed subgroup of finite index in Uy . Since the
complement of Nmp g (Ur) (w.r.t. Uk) is given by union of finitely many cosets, each of which is
closed, so Nmypx(Uz) is open in Uy. Since

1
UK:{:CEK*: |x|<}ﬂ{x€K*: |z| > |7k|}
K|

so Uk is open in K™ and thus Nmyp, g (UL) is open in K*. d
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We also need to recall a basic result in topology.

Recall that a collection A of subsets of a set X is said to have the finite intersection property
(FIP) if the intersection over any finite subcollection of A is nonempty.

Lemma 57. If X is a compact topological, then a collection of closed sets of X having the finite
intersection property has non-empty intersection.

Theorem 73. (Existence Theorem) Every open subgroup of finite index in K* is a norm group.

Proof. We will need a few helping lemmas.

Lemma 58. For any finite L/ K, the norm map L* — K* has closed image and compact kernel.

Proof. Since the image Nm(L*) has finite index (i.e. K*/Nm(L*) is finite), so it is open by
Lemma 56 and thus closed. Since a singleton set is closed in every metric space and the norm map
is continuous, so kernel of the norm map is closed. Moreover, we have

ordr,(Nm(a)) = [L : K] ordr(a)

since all conjugates have the same order. Thus if a € Ker(Nm), then ord(a) =0 and so a € Up.
Hence we have shown that Ker(Nm) is a closed subset of Uy,. Since Uy, is compact, so Ker(Nm)
is also compact. O

Let Dx = N Nmp k(L") where L runs over the finite extensions of K. Note that by Theorem
70 (Norm Limitation Theorem), we get Dx = N Nmp, /i (L*) where L runs over the finite abelian
extensions of K.

Lemma 59. For each finite extension K'/K, Nmp gDk = Dk

Proof. Let a € Dgs, and let L be a finite extension of K’. Then a € Nmyp g/(L*) , say a =
Nmp g (b) for some b € L*. Then Nmgi/g(a) = Nmgrg(Nmpg(b)) = Nmpg(b) by the
transitivity of norms. Thus we have shown that a € Nmp k(L") for any finite extension L/K'.
Now let L be any finite extension of K. Then by what we have shown a € Nmpg /g ((LK')*) but
by Lemma 54, we know that Nmpg//x((LK')*) C Nmyp (L) and so a € Nmyp (L") for any
finite extension L/K. Hence we have shown that

NmK//KDKr C Dk
Conversely let a € Dg, and consider the sets
Nmp, g (L*) N Nm]_(}/K(a), L/K' finite

Firstly we will show that all these sets are nonempty. Since a € D, so or any finite extension L/K’,
a = Nmpk(b) for some b € L*. Thus a = Nmg /g (Nmp, g (b)) and so Nmp, g (b) € Nm]_(}/K(a).
Since we have Nmp g:(b) € Nmp, g (L*), so Nmpgi(b) € Nmp g (L*) N Nm;{}/K(a) and thus
we are done.

Let [K'/K] = n. Note that Nmf_{}/K(a) is a closed subset of K" since the norm map is con-

tinuous. Since Nm 7!

K/ (@) is nonempty, we can choose an zg in N mt,(a). Observe that

K'|K
Nmy g(a) = {z € (K') : Ny () = Nmgor e (20)} € {z € (K')": |z| = |aol} = 2oUx
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which is compact and so Nmp, g/ (L*) N N mf_(} / (@) is contained in a compact set for all finite
extensions L/K. We know that the norm group Nmp g/ (L*) is closed in K. le_(}/K(a) is
also a closed subset of K™ since the norm map is continuous. Thus, Nmy g (L*) W N m;(} / w(a)
is also a closed subset of K’ which is contained in the compact set xoUg. Moreover for any
two finite extensions Ly, La of K, we know by Lemma 54 that Nmp . g ((LL)*) = Nmp g (L*) N
NmL//K(L’*) and thus the intersection of any two sets of the collection Nmy, /g (L*) N Nm[_(}/K (a)

is another set in the collection. This shows that this collection has the finite intersection property.
Hence by Lemma 57, the collection

Ny (L*) 0 Nmiy, (@), L/K'finite

has nonempty intersection. Let b be an element in this intersection. Then b lies in Ny Nm, /g (L*) =
Dy and has norm a since it is also in Nm;;/K(a). Thus a = Nmg /i (b) € Nmgr /g D and we
are done. O

Lemma 60. The group Dy is divisible.

Proof. Let n > 1 be an integer. We have to show that D} = Dg (since Dg is a multiplicative
group). Let a € Dg. For each finite extension L of K containing a primitive n* root of 1, define
the set

E(L)={be K" :b"=a, be Nmp (L")}

Firstly we will show that E(L) is nonempty for all L. We have a € Dk and so by Lemma 59,
we have a = Nmyp g (a’) for some ¢’ € Dr. But o' € Dy means that o’ is a norm from all finite
extensions of L and hence in particular ¢’ is a norm from all cyclic extensions of order dividing n.
Thus by Theorem 71, a’ is an n'* power i.e. o’ € (L*)" which means a’ = ¢" for some ¢ € L*.
Therefore,

a= NmL/K(a/) = NmL/K(Cn) = (NmL/K(C))n

Thus Nmyp,/k(c) € E(L) and so E(L) is nonempty. For each finite L/K,
E(L)c{be K*:b" =a}

Note that {b € K* : b" = a} is a finite subset of K* and thus compact. Each E(L) is a finite subset
of K* and thus closed (since it is a union of singletons) and so each E(L) is a non-empty closed

subset of a compact set. Moreover, for any finite extensions L, L’ of K containing a primitive n'®
root of 1, we have Nm((LL")*) € Nm(L*) N Nm(L™) and so

E(LL) c E(L)n E(L)

This shows that the collection E(L) where L is a finite extension of K containing a primitive
n" root of 1 satisfies the finite intersection property. Hence by Lemma 57, this collection has a
nonempty intersection. Let by be an element in the intersection. Then bf = a and by € Nmy,, x(L*)
for every finite extension L of K containing a primitive n** root of 1. Now let L' be any finite
extension of K. Then consider the smallest extension L” of L' containing a primitive nt" root of
1. Clearly L" is finite over L’ and hence also over K. Then we have by € Nmpu g ((L")*). But by
Lemma 54, we get
Nmpnk((L")") € Nmpyr((L')7)

and so bg € Nmy i ((L')*) for any finite extension L'/K. Thus by € Dy . Since a = bf, so a € D,
and we are done. O
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Lemma 61. Fvery subgroup I of finite index in K* that contains Uk is a norm subgroup.

Proof. Consider the map
ordg : K* = Z

We know that ordg is a homomorphism, thus ordg(I) is a subgroup of Z, so ordg(I) = nZ for
some n € N. Thus ord' (nZ) = ordy' (ord(I)) D I. Now let « € ordy' (nZ) and so ordk (z) € nZ
which implies ordg(x) = ordg(i) for some i € I. Thus ordg(z/i) = 0 which means x/i € Uk.
Since I D Uk, so x/i € I and thus x € I.

Thus we have shown that if T is a subgroup of K* that contains U, then I = ord'(nZ) for
some n € N where n is determined by the equation ordg (I) = nZ.

Let K, be the unramified extension of degree n over K. Then Nmy, /x(K},) is a subgroup of K*

which contains Uy by Theorem 60 and ordx (Nmg, ,x (K;)) = nZ because ordx (Nmg, k() =

[Ky, : K] ordg, () = nordg, (z) and the map ordg, : K — Z is surjective. Thus by the remark
in the above paragraph, we get [ = Nmg, Kk (K) and so we are done. O

Lemma 62. Let {U; : ¢ € I} be a family of finite sets such that the following conditions are satisfied

L (Nies Ui = {1}
2. For each i,j € I, there exists some k € I such that U; N U; = Uy,.

Then there is some i € I such that U; = {1}.

Proof. Let Uy = {1,z1,22,...,xy,} for some ng € N. By condition 1 in the hypothesis, there
exists 71 € [ such that z; ¢ U;;. Then by condition 2, there exists some j; € I such that
Ui N U;, DUj,. Then Uj, C {1,22,...,2,,}. We can iterate this process to get some jy, € I such
that U;, = {1}. O

Jng

We now complete the proof of Theorem 73. Let U be the set of norm groups in K*, so that
Dk = Nyey N- Let I be a subgroup of K* of finite index. Then I D (K*)" where n = [K* : I.
Since D C K*, so I D DY%. Moreover, since Dy is divisible, so I D Dg. Therefore,

m(NﬂUK)CDKCI
NeU

By Lemma 58, we know that N is closed in K*. Therefore N N Uy is closed subgroup of Ux which
is compact. Hence each group N N Uk is compact. Consider the projection map 7 : K* — K*/I.
Take the family

{n(NNUg): NeU}

Clearly this is a family of finite sets (since K*/I is finite). The condition

(N (NNUk)CT
NeU

shows that

w(ﬂ <NmUK>> — {1

NeU
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which precisely means that the intersection of all the sets of this family is {1}. Moreover since
intersection of two norm groups is a norm group, so the hypothesis of Lemma 62 is satisfied and
we get m1(NNUgk) = {1} for some N € U. Thus we have shown that there is a norm group N such
that N N Uk C I. We want to strengthen this condition to say

NN (Ug(NNI)) CI

Let y € NN (Ux(NNI)). Thus y = y1y2 where y; € Uk, y2 € N N I. Moreover y € N. Since
y,y2 € N, soy;s € N. Thus y1 € NNUg C I. Thus y; € I. Therefore, y = y1y2 € I and we
are done. Hence N N (Uxg(N N1I)) C I. Since N is a norm group, so K*/N is finite by the local
reciprocity law. Moreover, I is given to be a subgroup of finite index in K* so K*/I is also finite.
Now consider the natural injection

K*/(NNI)— K*/N x K*/I

given by t + (NNI)— (z+ N,z +I). Thus K*/(N N1I) is also finite. Furthermore, consider the
natural surjection

K*/(NNI) = K*/(Ug(N N 1))

given by  + NN I — x+ Ug(NNI). Thus K*/(Ux(N N1I)) is also finite which means that
Uk (N NT) is a subgroup of finite index in K™* that contains Ux and so is a norm group by Lemma
61. Now N NUgk(N NI) being an intersection of two norm groups is also a norm group. Therefore
I contains a norm group and so is itself a norm group by Lemma 55. O

Theorem 74. Let I be a subgroup of K*, then the following conditions are equivalent :

(1). I is a norm group.

(2). I is an open subgroup of finite index.
(3). I is a closed subgroup of finite index.
(4). I is of finite index in K*.

Proof. We have (1) implies (2) by Lemma 56. (2) is clearly equivalent to (3). Moreover, by Theorem
73, we have (2) implies (1). Hence we only need to show that (3) implies (4). We know that if I is
of finite index m in K*, then I D K*™, but since K*™ is open (see Corollary 3.6, page 81, [2]), so
I is open in K*™ and we are done. O

Corollary 9. D = {1}.

Proof. Choose a prime element 7 of K. Let V,,,, = U jg(m) x . Then Vin,n is a subgroup of K*
of finite index which means that it is also open by Theorem 74. But by Theorem 73, V,, 5, is also
a norm group. Thus Dg C Vi, for all m and n. Since Ny, Vinn = {1}, so D = {1}. O

Remark 25. Theorem 73 is known as the Existence Theorem because its crucial assertion is that
given an open subgroup I of finite index in K*, there exists an abelian extension L/K whose norm
group Nmp i (L*) = I. This field L is uniquely determined (because of Lemma 54) and is called
the class field associated with 1.

The Existence Theorem provides a topological characterization of norm groups, but there is also
an arithmetic description of these groups :
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Remark 26. The norm groups of K* are precisely the groups containing

Ugl) x (m)f
for some n > 0 and some f > 1. Here U% = Uk, 7 is a prime element of K, and (7)7 is the
subgroup generated by w. (see Theorem (6.4), Page 97, [2] for proof.)

Remark 27. K*/NmL/K(L*) form an inverse system as L runs through the finite abelian exten-
sions of K wvia the natural transition maps

bij: K*/Nmp, (L))" = K*/Nmp, g (L2)*

for any Loy C Ly. Also, Gal(L/K) form an inverse system as L runs through the finite abelian
extensions of K, ordered by restriction. Moreover, we have a family of homomorphisms (infact
isomorphisms)

br/k  K*/Nmp (L") — Gal(L/K)

between these inverse systems such that for any Ly C Ly, the following diagram commutes (by
Theorem 68) :

K* /Ny, g(L7) —2 Gal(Ly/K)
x . (3.50)
K* [N, jie(L3) —2 Gal(La/K)

Therefore we get the map

G im K*/Nmye(L7) — lim Gal(L/K)
NeU NeU

Since the inverse limit functor is left exact (see Proposition 10.3, page 164, [11]), the map éS\K 18
injective. Note that

lim Gal(L/K) = Gal(K™/K)

NeU

Since intersection of any two norm groups is a norm group, so they become a local base for a topology
i.e. there is a topology for which the norm groups form a fundamental system of neighborhoods of 1.
This topology on K* is called the norm topology. Let K* denote the completion of K* with respect
to this topology. Then we know that

NeU

(see page 103, [12]). Hence we get an injective map
oK K* — Gal(K®/K)
But since the maps ¢r,/ic are isomorphisms, so we can work with QSZ}K instead of ¢1,/k and repeat

the above procedure to get the inverse of the map qu

Therefore, g/b\K 1s infact an isomorphism of topological groups.

Remark 28. Since intersection of the norm groups is trivial by Corollary 9, so K™ embeds into K+
i.e. the natural map K* — K* is injective. Moreover, the image of K* under this map is dense.
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