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Chapter 1

Introduction

The central theme of this thesis is to understand Local Class Field Theory which classifies the finite
abelian extensions of a local field. We have taken the cohomological approach closely following the
expositions by Milne ([1]) and Neukirch ([2]). By a local field, we mean a field K that is locally
compact with respect to a nontrivial valuation (cf. Lemma 36 for details). In what follows, we
assume that K is a local field of characteristic 0 which means K is a finite extension of Qp. We
note in passing that the main theorems also hold for local fields with characteristic p.

In the second chapter, we have described the cohomology of groups. Firstly, we focus on finite
groups. We begin with the study of standard group cohomology theory like Induced Modules,
Shapiro’s Lemma, restriction, inflation and corestriction maps, Hilbert’s Theorem 90. We move on
to study some properies of Homology groups and describe how long exact sequences for Homology
and Cohomology can be spliced together to give a very long exact sequence for Tate Cohomology.
Then we describe an alternative approach to Tate Cohomology which makes it possible to define
the functorial maps and cup products directly on Tate Cohomology groups. After that we focus on
the Tate cohomology of finite cyclic groups. Finally, we give two proofs of Tate’s Theorem.

Theorem 1. (Tate’s Theorem) Let G be a finite group and let C be a G-module. Suppose that for
all subgroups H of G,
1. H1(H,C) = 0, and
2. H2(H,C) is a cyclic group of order equal to (H : 1). Then, for all r, there is an isomomorphism

Hr(G,Z)→ Hr+2(G,C)

depending only on the choice of generator for H2(G,C).

The first one is the original proof by Tate which involves the construction of the splitting module
for the chosen generator γ of H2(G,C). The second proof shows that the isomorphism is given
by cup product with the generator γ. Then we discuss the cohomology of profinite groups which
allows us to study the cohomology of infinite galois extensions.

In the third chapter, we describe the Local Class Field Theory using the techniques developed
in the second chapter. Firstly we describe finite unramified extensions. These extensions are cyclic
and thus allow us to use the cohomology of finite cyclic groups. This leads us to the invariant map

invL/K : H2(L/K)→ Q/Z
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which is an isomorphism onto 1
[L:K]Z/Z. This shows that the second condition in the hypothesis of

Tate’s Theorem is satisfied. The first condition is satisfied because of Hilbert’s Theorem 90. Thus
the Tate’s Theorem gives us the isomorphism

Hr(G,Z)→ Hr+2(G,L∗)

for all r ∈ Z. In particular for r = −2, it gives us the isomorphism

Gal(L/K)→ K∗/NmL/K(L∗)

The inverse of this isomorphism is known as the Local Artin Map. Then we show using the first proof
of Tate’s Theorem that the Local Artin Map for the finite unramified extensions has a very simple
description namely it takes the class of uniformizer to the Frobenius element in Gal(L/K). Then
the definition of invariant map is extended to infinite unramified extensions to get the following
isomorphism

invK : H2(Kun/K)→ Q/Z

Furthermore, we show that the inflation map

H2(Kun/K)→ H2(Kal/K)

is an isomorphism. These isomorphisms help us to prove that for finite ramified extensions also,
there is an isomorphism

invL/K : H2(L/K)→ 1

[L : K]
Z/Z

Thus the hypothesis of Tate’s Theorem is satisfied in the general case also and we get the isomor-
phism

Gal(L/K)ab → K∗/NmL/K(L∗)

The inverse of this isomorphism induces the surjective map

φL/K : K∗ → Gal(L/K)ab

The second proof of Tate’s Theorem tells us that this map is given by cup product with a chosen
generator of H2(L/K) (which we call the Local Fundamental Class). The properties of cup products
and invariant maps help us to show the following Theorem :

Theorem 2. Let L ⊃ E ⊃ K be local fields with both L and E Galois over K. Then the following
diagram commutes :

K∗ Gal(L/K)ab

K∗ Gal(E/K)ab

φL/K

id π

φE/K

(1.1)

where the map π is induced by the surjective map Gal(L/K)→ Gal(E/K) given by σ 7→ σE.

Theorem 2 implies that if L ⊃ E ⊃ K is a tower of finite abelian extensions of K, then ∀ a ∈ K∗,

φL/K(a) �E = φE/K(a)

This compatibility helps us to define the Local Artin Map φK

φK : K∗ → Gal(Kab/K)
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to be the homomorphism such that for every finite abelian extension L/K,

φK(a) �L= φL/K(a)

This definition leads us to the following Theorem which is known as the Local Reciprocity Law.

Theorem 3. For every local field K, there exists a homomorphism (Local Artin Map)

φK : K∗ → Gal(Kab/K)

with the following properties :
(a) for every prime element π of K, φK(π) �Kun= FrobK ;
(b) for every finite abelian extension L of K, NmL/K(L∗) is contained in the kernel of a 7→
φK(a) �L, and φK induces an isomorphism

φL/K : K∗/NmL/K(L∗)→ Gal(L/K)

The explicit description of the corestriction map in dimensions 0 and −2 helps us to prove the
following Theorem :

Theorem 4. (Norm Limitation Theorem) Let L be a finite extension of K, and let E be the largest
abelian extension of K contained in L; then

NmL/K(L∗) = NmE/K(E∗)

Using the definition of the local Artin map, we can define a pairing known as the Hilbert Symbol

K∗/K∗n ×K∗/K∗n → µn

The properties of the Hilbert Symbol help us to prove the following Theorem :

Theorem 5. Let K be a local field containing a primitive nth root of 1. Any element of K∗ that
is a norm from every cyclic extension of K of degree dividing n is an nth power.

A subgroup N of K∗ is known as a norm group if there is a finite abelian extension L/K such that

NmL/K(L∗) = N

Theorem 5 and the properties of norm subgroups of K∗ helps us to prove the Existence Theorem :

Theorem 6. (Existence Theorem) Every open subgroup of finite index in K∗ is a norm group.

Theorem 2 and the Existence Theorem classify the finite abelian extensions of a local field K since
they immediately imply the following Theorem :

Theorem 7. Let K be a local field. For every finite abelian extension L of K, the map

L 7→ NmL/K(L∗)

is an order-reversing bijection from the set of finite abelian extensions of K to the set of subgroups
of K∗ of finite index.
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Theorem 73 is known as the Existence Theorem because its crucial assertion is that given an
open subgroup I of finite index in K∗, there exists an abelian extension L/K whose norm group
NmL/K(L∗) = I. This field L is uniquely determined and is called the class field associated with
I.

The Norm Limitation Theorem (Theorem 4) shows that there is no hope of classifying nonabelian
extensions of a local field in terms of the norm groups since the nonabelian extensions do not gen-
erate any extra norm subgroups.

The Existence Theorem provides a topological characterization of norm groups, but there is also
an arithmetic description of these groups :

The norm groups of K∗ are precisely the groups containing

U
(n)
K × (π)f

for some n ≥ 0 and some f ≥ 1. Here U0
K = UK , π is a prime element of K, and (π)f is the

subgroup generated by πf .

The collection of Local Artin Maps

φL/K : K∗/NmL/K(L∗)→ Gal(L/K)

as L runs through the finite abelian extensions of K gives a homomorphism between the inverse
systems K∗/NmL/K(L∗) and Gal(L/K) thereby inducing the isomorphism :

φ̂K : K̂∗ → Gal(Kab/K)

where K̂∗ denotes the completion of K∗ with respect to the topology for which the norm groups
form a fundamental system of neighborhoods of 1. This topology on K∗ is called the norm topology
(see Remark 27 for details).

Since intersection of the norm groups is trivial, so K∗ embeds into K̂∗ i.e. the natural map
K∗ → K̂∗ is injective. Moreover, the image of K∗ under this map is dense.

4



Chapter 2

The Cohomology of Groups

2.1 G-Modules

Definition 1. Let G be a group. A G-module is an abelian group M together with a map

(g,m) 7→ gm : G×M →M

such that for all g, g′ ∈ G, m,m′ ∈M ,

(a) g(m+m′) = gm+ gm′ ;
(b) (gg′)m = g(g′m), 1m = m.

Definition 2. A G-module homomorphism is a map α : M → N such that

(a) α(m+m′) = α(m) + α(m′) (i.e. α is a homomorphism of abelian groups)
(b) α(gm) = g(α(m)) for all g ∈ G, m ∈M .

We write HomG(M,N) for the set of G-homomorphisms M → N .

Remark 1. The group algebra Z[G] of G is the free abelian group with basis the elements of G and
with the multiplication provided by the group law on G. Thus the elements of Z[G] are the finite
sums ∑

i

nigi, ni ∈ Z, gi ∈ G

and (∑
i

nigi

)∑
j

n′jg
′
j

 =
∑
i,j

nin
′
j(gig

′
j)

A G-module structure on an abelian group extends uniquely to a Z[G]-module structure, and a
homomorphism of abelian groups is a homomorphism of G-modules if and only if it is a homomor-
phism of Z[G] modules.

If M and N are G-modules, then the set Hom(M,N) of homomorphisms φ : M → N (M and N
regarded only as abelian groups) becomes a G-module with the structures

(φ+ φ′)(m) = φ(m) + φ′(m)

(gφ)(m) = gφ(g−1m)
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To verify this, observe that

(g(φ+φ′))(m) = g((φ+φ′)(g−1m)) = gφ(g−1m)+gφ′(g−1m) = (gφ)(m)+(gφ′)(m) = (gφ+gφ′)(m)

Hence
g(φ+ φ′) = gφ+ gφ

Moreover,

((gg′)(φ))(m) = gg′(φ(g′−1g−1m)) = g(g′φ(g′−1g−1m) = g(g′φ)(g−1m) = (g(g′φ))(m)

Hence
(gg′)φ = g(g′φ)

and so we are done.

2.2 Induced Modules

Let H be a subgroup of G. For an H-module M , we define IndGH(M) to be the set of maps (not
necessarily homomorphisms) φ : G → M such that φ(hg) = hφ(g) for all h ∈ H. Then IndGH(M)
becomes a G-module with the operations

(φ+ φ′)(x) = φ(x) + φ′(x)

(gφ)(x) = φ(xg).

Firstly we need to verify that φ+φ′ and gφ so defined are actually elements of IndGH(M). We have

(φ+ φ′)(hg) = φ(hg) + φ′(hg) = hφ(g) + hφ′(g) = h(φ+ φ′)(g)

and
(gφ)(hg′) = φ(hg′g) = hφ(g′g) = h((gφ)(g′))

Now we need to verify that IndGH(M) is a G-module with these operations.

(g(φ+ φ′))(x) = (φ+ φ′)(xg) = φ(xg) + φ′(xg) = (gφ)(x) + (gφ′)(x) = (gφ+ gφ′)(x)

Hence
g(φ+ φ′) = (gφ+ gφ′)

Moreover
((gg′)φ)(x) = φ(xgg′) = (g′φ)(xg) = (g(g′φ))(x)

Therefore
(gg′)φ = (g(g′φ))

Lemma 1. A homomorphism α : M →M ′ of H-modules defines a homomorphism

η : IndGH(M)→ IndGH(M ′)

of G-modules where η(φ) = α ◦ φ.
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Proof. Firstly we need to show that if φ ∈ IndGH(M), then α ◦ φ ∈ IndGH(M ′). We have

(α ◦ φ)(hg) = α(φ(hg)) = α(hφ(g)) = h(α(φ(g))) = h(α ◦ φ)(g)

Note that in the second last equality, we have used that α is a H-module homomorphism. Now
observe that

(η(φ1+φ2))(x) = (α◦(φ1+φ2))(x) = α(φ1(x)+φ2(x)) = α(φ1(x))+α(φ2(x)) = η(φ1(x))+η(φ2(x))

Note that in the second last equality, we have used the fact that α is a homomorphism of abelian
groups. Hence

η(φ1 + φ2) = η(φ1) + η(φ2)

Moreover,
(η(gφ))(x) = α((gφ)(x)) = α(φ(xg)) = (η(φ))(xg) = (g(η(φ))(x)

Thus
η(gφ) = g(η(φ))

Theorem 8. For every G-module M and every H-module N ,

HomG(M, IndGH(N)) ∼= HomH(M,N)

as abelian groups. This relation is known as Frobenius reciprocity.

Proof. Note that M is an H module as well and so HomH(M,N) is defined.

Define the map
η1 : HomG(M, IndGH(N))→ HomH(M,N)

such that for any G-module homomorphism α : M → IndGH(N), we have η1(α) : M → N given by

(η1(α))(m) = (α(m))(1G)

We have to verify that η1(α) is an H-module homomorphism. For any h ∈ H,

η1(α)(hm) = α(hm)(1G) = (hα(m))(1G) = α(m)(1Gh) = α(m)(h1G) = h(α(m)(1G)) = h(η1(α)(m))

Note that in the second equality, we have used that α is a G-module homomorphism and in the
second last equality, we have used that α(m) ∈ IndGH(N).
Now define the map

η2 : HomH(M,N)→ HomG(M, IndGH(N))

such that for any H-module homomorphism β : M → N , we have η2(β) : M → IndGH(N) given by

(η2(β))(m)(g) = β(gm)

Firstly we need to check that for any m ∈ M , (η2(β))(m) is actually an element of IndGH(N). For
any h ∈ H, g ∈ G,

(η2(β))(m)(hg) = β(hgm) = h(β(gm)) = h(η2(β))(m)(g)

7



Note that in the second equality, we have used that β is an H-module homomorphism.

We also have to verify that η2(β) is a G-module homomorphism. For any g′ ∈ G,

((η2(β))(g′m))(g) = β(gg′m) = (η2(β))(m)(gg′) = (g′(η2(β))(m))(g)

Thus
(η2(β))(g′m) = g′(η2(β)(m))

and we are done.

It is straightforward to check that η1 is a homomorphism of abelian groups. The only thing left to
show is that η1 and η2 are inverses of each other. For that, we will show that η1 ◦ η2 and η2 ◦ η1

are the identity maps.

Firstly consider the map η2 ◦η1 : HomG(M, IndGH(N))→ HomG(M, IndGH(N)). For any G-module
homomorphism α : M → IndGH(N), g ∈ G, m ∈M , we have

η2(η1(α))(m)(g) = (η1(α))(gm) = α(gm)(1G) = (g(α(m)))(1G) = (α(m))(1Gg) = α(m)(g)

Thus η2 ◦ η1 is the identity map.

Next consider the map η1◦η2 : HomH(M,N)→ HomH(M,N). For any H-module homomorphism
β : M → N , we have

η1(η2(β))(m) = (η2(β))(m)(1G) = β(1Gm) = β(m)

Thus η1 ◦ η2 is the identity map as well.

Let Φ : IndGH(N)→ N be the map such that φ 7→ φ(1G). Then Φ is an H-module homomorphism
because

Φ(hφ) = (hφ)(1G) = φ(1Gh) = φ(h1G) = hφ(1G) = h(Φ(φ))

Note that the second equality follows from the action of G on IndGH(N) and the second last equality
holds because φ ∈ IndGH(N). The isomorphism η1 in the proof of Theorem 8 can now be viewed in
terms of Φ. For any α ∈ HomG(M, IndGH(N)) and m ∈M , we have

(η1(α))(m) = (α(m))(1G) = Φ(α(m))

i.e. η1(α) = Φ ◦ α.

Corollary 1. (IndGH(N),Φ) satisfies the following universal property :

For any H-module homomorphism β : M → N from a G-module M to N , there exists a unique
G-module homomorphism α : M → IndGH(N) such that Φ ◦ α = β i.e. the following diagram
commutes :

M

IndGH(N) N

βα

Φ

(2.1)

8



Proof. The surjectivity of the isomorphism η1 implies that β = η1(α) for some α ∈ HomG(M, IndGH(N)).
Then β = Φ ◦ α by the above discussion.

Now let α1, α2 ∈ HomG(M, IndGH(N)) be such that Φ ◦ α1 = Φ ◦ α2 = β. Then we have
η1(α1) = η1(α2). Then injectivity of η1 shows that α1 = α2 and we get the uniqueness of α
such that the diagram commutes.

Theorem 9. For any exact sequence of H-modules

0→M
α−→ N

β−→ P → 0

the sequence of G-modules

0→ IndGHM
α′−→ IndGHN

β′−→ IndGHP → 0

is also exact where the maps α′, β′ are as defined in Lemma 1 i.e. α′(φ) = α ◦φ and β′(ψ) = β ◦ψ

Proof. Firstly we will prove that α′ is injective. Let α′(φ) = 0 which means that α′(φ)(g) = 0 ∀
g ∈ G. Thus α(φ(g)) = 0 and so φ(g) = 0 ∀ g ∈ G by the injectivity of α. Therefore φ = 0 and we
are done.

Next we will show that Ker(β′) = Im(α′). We already know that Ker(β) = Im(α). In par-
ticular, β ◦ α = 0. Now

(β′ ◦ α′)(φ) = β′(α ◦ φ) = β ◦ (α ◦ φ) = (β ◦ α) ◦ φ = 0

and so Im(α′) ⊂ Ker(β′).

Let ψ ∈ Ker(β′), then β′(ψ) = 0, so β(ψ(g)) = 0 ∀ g ∈ G. This implies that ψ(g) ∈ Ker(β) =
Im(α) and thus ∃ mg ∈ M such that α(mg) = ψ(g). Define φ : G → M such that φ(g) = mg.
Therefore,

ψ(g) = α(φ(g)) = (α′(φ))(g) ∀ g ∈ G

and so ψ = α′(φ). For any h ∈ H, g ∈ G, we have ψ(hg) = hψ(g) since ψ ∈ IndGHN . Thus

α(φ(hg)) = h(α(φ(g)) = α(hφ(g))

This implies that φ(hg) = hφ(g) by the injectivity of α and so φ ∈ IndGHM . Now ψ = α′(φ) ∈
Im(α′). Hence Ker(β′) ⊂ Im(α′) and we are done.

Finally we will prove that β′ is surjective. Let φ ∈ IndGHP . Now let S be a set of right coset
representatives of H in G. Then every element of G can be written uniquely in the form hs for
some h ∈ H and some s ∈ S. (The uniqueness follows from the fact that any two distinct cosets
are disjoint). Since the map β : N → P is surjective, for each s ∈ S, we can choose some n(s) ∈ N
such that β(n(s)) = φ(s). Now define a map φ′ : G → N such that φ′(hs) = h(n(s)). Suppose
we are given some h1 ∈ H, g1 ∈ G. Moreover, we know that g1 = h2s2 for some unique h2 ∈ H,
s2 ∈ S. Then we have

φ′(h1g1) = φ′(h1h2s2) = h1h2n(s2) = h1φ
′(h2s2) = h1φ

′(g1)

9



and so φ′ ∈ IndGHN . Let g ∈ G, then we know that g = hs for some unique h ∈ H, s ∈ S. Then

φ(g) = φ(hs) = hφ(s) = hβ(n(s)) = β(h(n(s))) = β(φ′(hs)) = β′(φ′(hs)) = β′(φ′(g))

Hence φ = β′(φ′) ∈ Im(β′) and we are done.

When H = {1}, an H-module is just an abelian group. In this case, we drop the H from the
notation IndGH(N). Thus

IndG(M0) = {φ : G→M0}

where φ is a map and not necessarily a homomorphism.

Lemma 2. IndG(M0) ∼= Hom(Z[G],M0) as abelian groups where Hom(Z[G],M0) denotes homo-
morphisms of abelian groups.

Proof. Define the map κ1 : Hom(Z[G],M0) → IndGM0 such that κ1(ψ) = ψ �G. Clearly κ1 is a
homomorphism of abelian groups.

Now consider the map κ2 : IndGM0 → Hom(Z[G],M0) such that

(κ2(φ))

(∑
i

nigi

)
=
∑
i

niφ(gi)

We have to show that κ2(φ) is actually a homomorphism of abelian groups. Let
∑k

i=1 nigi and∑k′

i=1 n
′
ig
′
i be two arbitrary elements of Z[G]. Firstly suppose that the sets {g1, g2, ..., gk} and

{g′1, g′2, ..., g′k′} are disjoint. Define gk+i = g′i and nk+i = n′i ∀ 1 ≤ i ≤ k′. Then
∑k

i=1 nigi +∑k′

i n
′
ig
′
i =

∑k+k′

i=1 nigi and so

(κ2(φ))

(
k∑
i=1

nigi +
k′∑
i

n′ig
′
i

)
= (κ2(φ))

(
k+k′∑
i=1

nigi

)
=

k+k′∑
i=1

niφ(gi) =
k∑
i=1

niφ(gi) +
k′∑
i

n′iφ(g′i)

= (κ2(φ))

(
k∑
i=1

niφ(gi)

)
+ (κ2(φ))

(
k′∑
i=1

n′iφ(g′i

)
(2.2)

Thus the proof is complete in this case.

Now suppose that the sets {g1, g2, ..., gk} and {g′1, g′2, ..., g′k′} have some common elements. Re-
arrange gi and g′i such that the common elements are g1, g2, .....gt and gi = g′i ∀ 1 ≤ i ≤ t. Then

k∑
i=1

nigi +

k′∑
i

n′ig
′
i =

t∑
i=1

(ni + n′i)gi +

k∑
i=t+1

nigi +

k′∑
i=t+1

n′ig
′
i

10



and so

(κ2(φ))

(
k∑
i=1

nigi +
k′∑
i=1

n′ig
′
i

)
= (κ2(φ))

(
t∑
i=1

(ni + n′i)gi +
k∑

i=t+1

nigi +
k′∑

i=t+1

n′ig
′
i

)

=

t∑
i=1

(ni + n′i)φ(gi) +

k∑
i=t+1

niφ(gi) +

k′∑
i=t+1

n′iφ(g′i)

=

(
t∑
i=1

niφ(gi) +
k∑

i=t+1

niφ(gi)

)
+

(
t∑
i=1

n′iφ(g′i) +
k′∑

i=t+1

n′iφ(g′i)

)

=

k∑
i=1

niφ(gi) +

k′∑
i=1

n′iφ(g′i) = (κ2(φ))

(
k∑
i=1

nigi

)
+ (κ2(φ))

(
k′∑
i=1

n′ig
′
i

)
(2.3)

Thus we have shown that κ2(φ) is an element of Hom(Z[G],M0) and so κ2 is well defined.

The only thing left to show is that κ1 and κ2 are inverses of each other. From the definition
of κ2, it is clear that (κ2(φ)) �G= φ. Thus κ1(κ2(φ)) = φ. Also κ2(κ1(ψ)) = κ2(ψ �G) and so

κ2(κ1(ψ))

(∑
i

nigi

)
=
∑
i

niψ �G (gi) =
∑
i

niψ(gi) = ψ

(∑
i

nigi

)
since ψ is a homomorphism of abelian groups. Thus κ2(κ1(ψ)) = ψ and we are done.

INDUCED MODULES

Definition 3. A G-module M is said to be induced if M ∼= IndG(M0) for some abelian group M0.

Theorem 10. Let G be a finite group. Then for any abelian group M0,

IndGM0
∼= Z[G]⊗Z M0

Here Z[G]⊗Z M0 is endowed with the G-structure such that

g(z ⊗m) = gz ⊗m.

Proof. Define the map
α : IndGM0 → Z[G]⊗Z M0

such that
α(φ) =

∑
g∈G

g ⊗ φ(g−1)

Clearly α is a homomorphism of abelian groups. For any g0 ∈ G,

α(g0φ) =
∑
g∈G

g⊗(g0φ)(g−1) =
∑
g∈G

g⊗φ(g−1g0) =
∑
g′∈G

(g0g
′)⊗φ(g−1) = g0

∑
g′∈G

g′ ⊗ φ(g′−1)

 = g0(α(φ))

where we changed the index of summation by taking g−1
0 g = g′

Thus
α(g0φ) = g0(α(φ))

11



and α is also a G-module homomorphism.

Let us label G = {g1, g2, ..., gn}.

Now define the map
β′ : Z[G]×M0 → IndGM0

such that

β′

(
n∑
i=1

nigi,m

)
=

n∑
i=1

niφgi,m

where φgi,m(g) = m if g = g−1
i and φgi,m(g) = 0 if g 6= g−1

i .

We have,

β′

((
n∑
i=1

nigi +
n∑
i=1

n′igi

)
,m

)
= β′

((
n∑
i=1

(ni + n′i)gi

)
,m

)

=

n∑
i=1

(ni + n′i)φgi,m = β′

(
n∑
i=1

nigi,m

)
+ β′

(
n∑
i=1

n′igi,m

) (2.4)

Moreover, for any m,m′ ∈M , φgi,m+m′(g) = m+m′ if g = (gi)
−1 and φgi,m+m′(g) = 0 if g 6= (gi)

−1.

Thus φgi,m+m′ = φgi,m + φgi,m′ for any m,m′ ∈M .

Therefore,

β′

(
n∑
i=1

nigi,m+m′

)
=

n∑
i=1

niφgi,m+m′ =

n∑
i=1

ni(φgi,m + φgi,m′)

=
n∑
i=1

niφgi,m +
n∑
i=1

niφgi,m′ = β′

(
n∑
i=1

nigi,m

)
+ β′

(
n∑
i=1

nigi,m
′

) (2.5)

Hence β′ is a Z-bilinear map and so it induces the linear map

β : Z[G]⊗Z M0 → IndGM0

such that

β

((
n∑
i=1

nigi

)
⊗m

)
=

n∑
i=1

niφgi,m

The only thing left to prove is that α and β are inverses of each other.
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We have,

(α ◦ β)

((
n∑
i=1

nigi

)
⊗m

)
= α

(
n∑
i=1

niβ(gi ⊗m)

)
=

n∑
i=1

niα(φgi,m)

and,

α(φgi,m) =

n∑
j=1

gj ⊗ φgi,m(g−1
j ) = gi ⊗m

since φgi,m(g−1
j ) 6= 0 only if gi = (g−1

j )−1 i.e. if gi = gj and φgi,m(g−1
i ) = m.

Thus,

(α ◦ β)

((
n∑
i=1

nigi

)
⊗m

)
=

n∑
i=1

ni(gi ⊗m) =

(
n∑
i=1

nigi

)
⊗m

and so α ◦ β is the identity map.

Since β is a linear map,

(β ◦ α) (ψ) = β

∑
g∈G

g ⊗ ψ(g−1)

 =
∑
g∈G

β(g ⊗ ψ(g−1))

Thus for any g0 ∈ G,

(β ◦ α) (ψ)(g0) =
∑
g∈G

β(g ⊗ ψ(g−1))(g0) =
∑
g∈G

φg,ψ(g−1)(g0)

Now, φg,ψ(g−1)(g0) 6= 0 only if g−1 = g0 in which case it is equal to ψ(g−1) = ψ(g0).

Hence (β ◦ α) (ψ)(g0) = ψ(g0) ∀ g0 ∈ G and so (β ◦ α) (ψ) = ψ ∀ ψ ∈ IndGM0. Thus we have
shown that β ◦ α is also the identity map and so we are done.

Remark 2. Let M and N be G-modules. Then the rule

g(m⊗ n) = gm⊗ gn

defines a G-module structure on M ⊗Z N . Let M0 be M regarded as an abelian group. Then the
map η : Z[G]⊗ZM0 → Z[G]⊗ZM such that

∑r
i=1 nigi 7→

∑r
i=1 ni(gi ⊗ gim) is an isomorphism of

G-modules.

Proof. Define the map
η′1 : Z[G]×M0 → Z[G]⊗Z M

such that
η′1

(∑
nigi,m

)
=
∑

ni(gi ⊗ gim)

and
η′2 : Z[G]×M → Z[G]⊗Z M0

such that
η′2

(∑
nigi,m

)
=
∑

ni(gi ⊗ g−1
i m)

13



Arguing in the same way as in the proof of Lemma 2, it is easy to check that both η′1 and η′2 are
Z-bilinear and thus induce the linear maps

η1 : Z[G]⊗Z M0 → Z[G]⊗Z M

such that
η1

((∑
nigi

)
⊗m

)
=
∑

ni(gi ⊗ gim)

and
η2 : Z[G]⊗Z M → Z[G]⊗Z M0

such that
η2

((∑
nigi

)
⊗m

)
=
∑

ni(gi ⊗ g−1
i m)

Now we want to show that η1 and η2 are inverses of each other.

η2

(
η1

((∑
nigi

)
⊗m

))
= η2

(∑
ni(gi ⊗ gim)

)
=
∑

ni(η2(gi ⊗ gim))

=
∑

ni(gi ⊗ g−1
i gim) =

∑
ni(gi ⊗m) =

(∑
nigi

)
⊗m

(2.6)

Hence η2 ◦ η1 is the identity. Similiarly η1 ◦ η2 is also the identity. The only thing left to show is
that η1 is a G-module homomorphism.

For any g ∈ G,

η1

(
g
((∑

nigi

)
⊗m

))
= η1

((∑
ni(ggi)

)
⊗m

)
=
∑

ni(ggi ⊗ ggim)

=
∑

nig(gi ⊗ gim) = g
(∑

ni(gi ⊗ gim)
)

= g
(
η1

((∑
nigi

)
⊗m

)) (2.7)

Thus η1 is a G-module isomorphism.

Remark 3. If G is a finite group and M is a G-module, then Z[G]⊗ZM with the diagonal G-action
becomes an induced module.

Proof. It follows directly from Theorem 10 and Remark 2.

Theorem 11. Let G be a finite group. A G-module M is induced if and only if there exists an
abelian group M0 ⊂M such that

M =
⊕
g∈G

gM0

where the direct sum is as abelian groups.

Proof. If M is an induced G-module M , then by Theorem 10, we have

M ∼= Z[G]⊗M0

for some abelian group M0 ∈M . But we know that

Z[G] =
⊕
g∈G

gZ
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Therefore,

Z[G]⊗M0 =
⊕
g∈G

gZ⊗M0 =
⊕
g∈G

g(Z⊗M0) ∼=
⊕
g∈G

gM0

Thus
M =

⊕
g∈G

gM0

Conversely, let there exists an abelian group M0 ⊂M such that

M =
⊕
g∈G

gM0

Label G = {g1, ..., gn} and define the map

η1 : IndGM0 →
⊕
g∈G

gM0

such that
η1(φ) = (g1φ(g−1

1 ), ..., gnφ(g−1
n ))

Clearly η1 is a homomorphism of abelian groups. We want to show that it is also a G-module
homomorphism. For any g ∈ G, we have

η1(gφ) = (g1(gφ)(g−1
1 ), ..., gn(gφ)(g−1

n )) = (g1φ(g−1
1 g), ..., gnφ(g−1

n g))

and
g(η1(φ)) = g(g1φ(g−1

1 ), ..., gnφ(g−1
n )) = (gg1φ(g−1

1 ), ..., ggnφ(g−1
n ))

In the last term we should rearrange the terms so that g1 comes in the first place, g2 in the second
and so on. Therefore,

η1(gφ) = (g1φ(g−1
j1

), ..., gnφ(g−1
jn

))

where gji is given as ggji = gi and so g−1
ji

= g−1
i g. Thus,

η1(gφ) = (g1φ(g−1
1 g), ..., gnφ(g−1

n g))

Hence
η1(gφ) = g(η1(φ))

Thus we have shown that η1 is a G-module homomorphism. Now define the map

η2 :
⊕
g∈G

gM0 → IndGM0

such that η2(g1m1, ..., gnmn) = φ where φ(gi) = mj and j is defined by gj = g−1
i .

It is straightforward to check that η1 and η2 are inverses of each other.

Hence η1 is a G-module isomorphism and we are done.

Theorem 12. Let M be an induced G-module and H be a subgroup of M , then M is induced as a
H-module. If H is normal in G, then MH is an induced G/H module.
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Proof. Let M =
⊕

σ∈G σD. Then,

M =
⊕
σ∈H

⊕
τ

στD =
⊕
σ∈H

σ

(⊕
τ

τD

)

where τ runs over a set of coset representatives of H in G. Hence M is also induced as an H-module.

Now we define an action of G/H on MH as

(gH)m = gm

To show that it is well defined, we have to check that for any g ∈ G, gm ∈ MH if m ∈ MH . But
we have for any h ∈ H,

h(gm) = (hg)m = (gh1)m = g(h1m) = gm

where in the second equality we have used that H is normal in G and in the last equality that
m ∈ MH . Thus we have shown that MH is a G/H module. Since M is an induced G-module,
therefore

M =
⊕
σ∈G

σD

for some abelian group D ⊂M . By the previous theorem, it suffices to show that

MH =
⊕

τ∈G/H

τ(NH(D))

Clearly NH(D) ⊂MH and so ⊕
τ∈G/H

τ(NH(D)) ⊂MH

Conversely, suppose m ∈MH . Then m has a unique representation in the form

m =
∑
τ∈G

τdτ

with dτ ∈ D. For any σ ∈ H, we have

m = σ(m) =
∑
τ∈G

στdτ

since m ∈MH . But note that we can also write

m =
∑
τ∈G

τdτ =
∑
τ∈G

στdστ

since as τ runs over G so does στ . Thus by uniqueness of the expression for m, we get

dτ = dστ

for all σ ∈ H and all τ ∈ G. Since H is normal in G, so = τσ = σ1τ for some σ1 ∈ H and so we get

dτσ = dτ
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for all σ ∈ H and all τ ∈ G. Thus we have

m =
∑
τ∈G

τdτ =
∑
τ∈S

∑
σ∈H

τσdτσ =
∑
τ∈S

∑
σ∈H

τσdτ =
∑
τ∈S

τ

(∑
σ∈H

σdτ

)
=
∑
τ∈S

τNH(dτ )

and so
MH ⊂

⊕
τ∈G/H

τ(NH(D))

Thus
MH =

⊕
τ∈G/H

τ(NH(D))

and we are done.

INJECTIVE G-MODULES

A G-module I is said to be injective if every G-module homomorphism from a submodule of a
G-module extends to the whole module. In other words, if N is a submodule of a G-module M ,
then every homomorphism α : N → I extends to M i.e. there is a G-module homomorphism
β : M → I such that the following diagram commutes :

N M

I

i

α
β

(2.8)

Equivalently, I is injective if Hom( , I) is an exact functor.

Lemma 3. Every abelian group can be embedded into an injective abelian group

Proof. For an abelian group M , let MV = Hom(M,Q/Z); choose a free abelian group F mapping
onto MV ; then M emebeds into MV V which embeds into F V . Hence M embeds into F V which
is an injective abelian group because it is the dual of a projective Z-module since free modules are
projective and dual of projective modules is injective. (Projective modules will be discussed in the
section on Homology)

Theorem 13. Every G-module M can be embedded into an injective G-module.

Proof. Let M0 be M regarded as an abelian group. By Lemma 3, M0 can be embedded into I.
Then IndGM0 can be embedded into IndGI since IndG takes exact sequences to exact sequences
and thus injective maps to injective maps. We also know that M0 embeds into IndGM0 through
the map m 7→ φm where φm(g) = gm. Hence M embeds into IndGI. It only remains to show that
IndGI is an injective module if I is an injective abelian group. We prove a slightly general result
in the next Lemma.

Lemma 4. If I is an injective H-module, then IndGHI is an injective G-module.
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Proof. We know by Frobenius Reciprocity (Theorem 8),

HomG(M, IndGHI) ∼= HomH(M, I)

as abelian groups. Let

0→M ′
α−→M

β−→M ′′ → 0

be an exact sequence of G-modules. Since I is an injective H-module, the following sequence is
exact :

0→ HomH(M ′, I)
α′−→ HomH(M, I)

β′−→ HomH(M ′′, I)→ 0

It is straightforward to check that the following diagram commutes :

0 HomH(M ′, I) HomH(M, I) HomH(M ′′, I) 0

0 HomG(M ′, IndGHI) HomG(M, IndGHI) HomG(M ′′, IndGHI) 0

α′

η1

β′

η2 η3

α′′ β′′

(2.9)
This shows that the sequence

0→ HomG(M ′, IndGHI)
α′′−→ HomG(M, IndGHI)

β′′−→ HomG(M ′′, IndGHI)→ 0

is exact as well. Hence HomG(., IndGHI) is an exact functor and so IndGHI is an injective G-
module.

2.3 Definition of Cohomology Groups

For a G-module M , define MG = {m ∈M : gm = m ∀ g ∈ G}

Lemma 5. If

0→M ′
α−→M

β−→M ′′ → 0

is exact, then

0→M ′G
α′−→MG β′−→M”G

is also exact where α′ and β′ are just the restriction maps of α and β respectively.

Proof. Firstly we need to show that α(M ′G) ⊂ MG and β(MG) ⊂ M”G in order to show that α′

and β′ are well defined.

Let m ∈M ′G, then gm = m ∀ g ∈ G. Since α is a G-module homomorphism, so

g(α(m)) = α(gm) = α(m)

and thus α(m) ∈MG. Similarly we can show β(MG) ⊂M”G.

Since α is injective and α′ is just the restriction of α, so α′ is also injective.

We also know that β′ ◦ α′ = 0 since β ◦ α = 0. Thus Im(α′) ⊂ Ker(β′). Now let m ∈ Ker(β′) i.e.
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m ∈ MG such that β(m) = 0, thus m ∈ Ker(β) = Im(α) i.e. m = α(m′) for some m′ ∈ M ′. We
need to show that m′ ∈M ′G. For any g ∈ G,

α(gm′) = gα(m′) = gm = m

since m ∈MG. Thus
α(gm′) = m = α(m′)

Then injectivity of α shows that gm′ = m′ ∀ g ∈ G, so m′ ∈M ′G and we are done.

An injective resolution of a G-module M is a long exact sequence

0→M → I0 d0

−→ I1 d1

−→ I2 → ... Ir
dr−→ Ir+1 → ...

such that Ii is an injective module for each i ≥ 0.

Theorem 14. For a G-module M , there exists an injective resolution of M .

Proof. By Lemma 3, there is an exact sequence

0→M
α0

−→ I0

for some injective module I0. Let B1 be the cokernel of α0. Again by Lemma 3, B1 can be
embedded into an injective module I1. Then the sequence

0→M
α0

−→ I0 α1

−→ I1

is exact. Now let B2 = coker(α1) and continue in this fashion.

Now let M be a G-module, and choose an injective resolution

0→M → I0 d0

−→ I1 d1

−→ I2 d2

−→ ...

of M . By Lemma 5, we know that there are restriction maps of dr(which we again denote by dr)

i.e. (Ir)G
dr−→ (Ir+1)G for all r ≥ 0. Then,

0
d−1

−−→ (I0)G
d0

−→ (I1)G → ...
dr−1

−−−→ (Ir)G
dr−→ (Ir+1)G → ...

is still a complex i.e. di ◦ di−1 = 0 ∀ i ≥ 0. However it need no longer be an exact sequence and we
define the rth cohomology group of G to be

Hr(G,M) =
Ker(dr)

Im(dr−1)

Theorem 15. Hr(G,M) is independent of the choice of the injective resolution (upto an isomor-
phism) and is thus well-defined.

Proof. See Appendix A.3, [10].

Cohomology groups have the following basic properties :
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Lemma 6. H0(G,M) ∼= MG

Proof. We know by Lemma 5 that the sequence

0→MG i−→ (I0)G
d0

−→ (I1)G

is exact, and thus

H0(G,M) =
Ker(d0)

Im(d−1)
= Ker(d0) = Im(i) ∼= MG

since Im(d−1) = 0 and i is injective.

Lemma 7. If I is an injective G-module, then Hr(G, I) = 0 for all r > 0

Proof. Firstly observe that 0 is an injective module because if N is a submodule of a G-module
M , then any homomorphism α : N → 0 can clearly be extended to a homomorphism β : M → 0.
Then,

0→ I
id−→ I → 0→ 0→ ...

is an injective resolution of I. The resulting cohomology complex becomes

0
d−1

−−→ IG
d0

−→ 0
d1

−→ 0→ ...

Then Ker(dr) = 0 ∀ r > 0 and Im(dr−1) = 0 ∀ r > 0. Thus Hr(G, I) = 0 ∀ r > 0.

2.4 Description of Cohomology Groups by means of Cochains

Let Pr be the free Z-module with basis the (r + 1)-tuples (g0, g1, ..., gr) of elements of G. Define
the action of G on Pr as

g(g0, g1, ..., gr) = (gg0, gg1, ..., ggr)

Define a map dr : Pr → Pr−1 by the rule that

dr(g0, g1, ..., gr) =

r∑
i=0

(−1)i(g0, ...ĝi, ..., gr)

where the symbol ĝi means that gi is omitted. Then dr is a homomorphism of G-modules.

Lemma 8. dr−1 ◦ dr = 0 ∀ r ≥ 1

Proof.

dr(g0, g1, ..., gr) =
r∑
i=0

(−1)i(g0, ..., ĝi, ..., gr) =
r∑
i=0

(−1)i(G0, ..., Gr−1)

where Gj = gj if j < i and Gj = gj+1 if j ≥ i.

Hence

dr−1(dr(g0, g1, ..., gr)) =
r∑
i=0

(−1)idr(G0, ..., Gr−1) =
r∑
i=0

(−1)i
r−1∑
j=0

(−1)j(G0, .., .Ĝj , .., Gr−1)
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Note that
(G0, .., .Ĝj , .., Gr−1) = (g0, ..., ĝj , ...ĝi, ..., gr)

if j < i and
(G0, .., .Ĝj , .., Gr−1) = (g0, ..., ĝi, ...ĝj+1, ..., gr)

if j ≥ i. Thus

r−1∑
j=0

(G0, .., Ĝj , .., Gr−1) =

i−1∑
j=0

(g0, ..., ĝj , ...ĝi, ..., gr) +

r−1∑
j=i

(g0, ..., ĝi, ...ĝj+1, ..., gr)

Therefore,

dr−1(dr(g0, g1, ..., gr)) =
r∑
i=0

i−1∑
j=0

(−1)i+j(g0, ..., ĝj , ..., ĝi, ...gr) +
r∑
i=0

r−1∑
j=i

(−1)i+j(g0, ..., ĝi, ...ĝj+1, ..., gr)

We should change index in the second summation by taking j + 1 = J and thus

r∑
i=0

r−1∑
j=i

(−1)i+j(g0, ..., ĝi, ...ĝj+1, ..., gr) =

r∑
i=0

r∑
J=i+1

(−1)i+J(g0, ..., ĝi, ...ĝJ , ..., gr)

Hence the previous equation can be rewritten as

dr−1(dr(g0, g1, ..., gr)) =

r∑
i=0

∑
j<i

(−1)i+j(g0, ..., ĝi, ..., ĝj , ...gr) −
r∑
i=0

∑
j>i

(−1)i+j(g0, ..., ĝi, ..., ĝj , ...gr)

To prove that the RHS is zero, it suffices to show that

{{i, j} : 0 ≤ i, j ≤ r and i < j} = {{i, j} : 0 ≤ i, j ≤ r and j < i}

which is obvious.

Let ε : P0 → Z be the map such that g 7→ 1 ∀ g ∈ G

Lemma 9. The complex

...Pr
dr−→ Pr−1 → ...

d1−→ P0
ε−→ Z→ 0

is exact.

Proof. Firstly we need to show that this is indeed a complex. After Lemma 8, we only have to
prove that ε ◦ d1 = 0. But we find that

ε(d1(g0, g1)) = ε(g1 − g0) = ε(g1)− ε(g0) = 1− 1 = 0

Thus it is indeed a complex. To show that it is exact as well, we need to prove that Ker(dr) ⊂
Im(dr+1) for all r ≥ 1.

Choose any element o ∈ G, and define the map

kr : Pr → Pr+1

such that
kr(g0, g1, ..., gr) = (o, g0, g1, ..., gr)
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We want to show that dr+1 ◦ kr + kr−1 ◦ dr is the identity function. Let (g0, g1, ..., gr) ∈ Pr. Then

kr(g0, g1, ..., gr) = (o, g0, g1, ..., gr) = (G0, G1, ..., Gr+1)

where G0 = o and Gi = gi−1 for i ≥ 1. We have

dr+1(G0, ..., Gr+1) =
r+1∑
i=0

(−1)i(G0, ..., Ĝi, ..., Gr+1) = (G0, ..., Gr+1) +
r+1∑
i=1

(−1)i(G0, G1, ..., Ĝi, ..., Gr+1)

= (g0, ..., gr) +
r+1∑
i=1

(−1)i(o, g0, ..., ĝi−1, ..., gr) = (g0, ..., gr) −
r∑
i=0

(−1)i(o, g0, ..., ĝi, .., gr)

(2.10)

Thus

dr+1(kr(g0, g1, ..., gr)) = (g0, ..., gr) −
r∑
i=0

(−1)i(o, g0, ..., ĝi, .., gr)

Now we have

kr−1(dr(g0, ..., gr)) = kr−1

(
r∑
i=0

(−1)i(g0, ..., ĝi, ..., gr))

)

=
r∑
i=0

(−1)ikr−1(g0, ..., ĝi, ..., gr) =
r∑
i=0

(−1)i(o, g0, ..., ĝi, ..., gr)

(2.11)

Therefore,
dr+1(kr(g0, g1, ..., gr)) + kr−1(dr(g0, ..., gr)) = (g0, g1, ..., gr)

and so dr+1 ◦ kr + kr−1 ◦ dr is the identity function.

Now if x ∈ Ker(dr), then x = dr+1(kr(x)) ∈ Im(dr+1) and so we are done.

Define the maps
d′r : HomG(Pr,M)→ HomG(Pr+1,M)

such that
d′r(φ) = φ ◦ dr+1

Theorem 16. For every G-module M ,

Hr(G,M) ∼= Hr(HomG(P•,M))

Proof. This follows from the general theory of Ext groups and right derived functors (See Example
A.14, page 93, [1]).

Let C̄r(G,M) denote the abelian group

{φ : Gr+1 →M : φ(gg0, ..., ggr) = g(φ(g0, ..., gr)) ∀ g, g0, ..., gr ∈ G}

The elements of C̄r(G,M) are called homogeneous r-cochains of G with values in M .
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Lemma 10. HomG(Pr,M) ∼= C̄r(G,M) as abelian groups.

Proof. Recall that Pr is a free Z-module with basis Gr+1.

Define the map ηr : HomG(Pr,M)→ C̄r(G,M) such that

ηr(ψ) = ψ �Gr+1

and the map
κr : C̄r(G,M)→ HomG(Pr,M)

such that

(κr(φ))

(∑
i

ni(g0, ..., gr)

)
=
∑
i

niφ(g0, ..., gr)

Then we can proceed as in Lemma 2 to show that κr is well-defined and that ηr and κr are inverses
of each other.

It is straightforward to check that there is a commutative diagram :

HomG(Pr,M) HomG(Pr+1,M)

C̄r(G,M) C̄r+1(G,M)

d′r

ηr ηr+1

d̄r

(2.12)

Therefore, we have
Ker(dr)

Im(d′r−1)
∼=

Ker(d̄r)

Im(d̄r−1)

This combined with Theorem 16 shows that

Hr(G,M) ∼= Hr(HomG(P•,M)) =
Ker(dr)

Im(d′r−1)
∼=

Ker(d̄r)

Im(d̄r−1)

Hence we have proven the following the following theorem :

Theorem 17. Hr(G,M) ∼= Ker(d̄r)

Im(d̄r−1)

Let Cr(G,M) denote the set of functions {φ : Gr →M} which is an abelian group under addition
of functions. The elements of Cr(G,M) are called the inhomogeneous r-cochains of G with values
in M . Set the convention G0 = {1} and so C0(G,M) = M .

Define the map
d0 : C0(G,M)→ C1(G,M)

such that
(d0m)(g) = gm−m

and for any r > 0,
dr : Cr(G,M)→ Cr+1(G,M)

such that

(dr(φ)(g1, g2, ..., gr+1) = g1φ(g2, ..., gr+1) +

r∑
j=1

(−1)jφ(g1, ..., gjgj+1, ..., gr+1) + (−1)r+1φ(g1, ..., gr)
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Lemma 11. C̄r(G,M) ∼= Cr(G,M)

Proof. Define the map βr : C̄r(G,M)→ Cr(G,M) such that

βr(ψ)(g1, ..., gr) = ψ(1, g1, g1g2, ..., g1g2...gr)

Then βr is clearly a homomorphism of abelian groups. Now we will show that βr is injective. Let
ψ(1, g1, g1g2, ..., g1g2...gr) = 0 for all g1, ..., gr ∈ G. Then for any g1, ..., gr ∈ G, let G1 = g−1

1 g2,
G2 = g−1

2 g3, ..., Gr = g−1
r−1gr.

Since ψ ∈ C̄r(G,M), so we have

ψ(g1, ...gr) = g1g2...grψ(1, G1, G2, ..., Gr) = 0

Thus ψ = 0 and we get that the map βr is injective. A similar argument shows that βr is also
surjective.

It is straightforward to show that the following diagram commutes :

C̄r(G,M) C̄r+1(G,M)

Cr(G,M) Cr+1(G,M)

d̄r

βr βr+1

dr

(2.13)

This lemma shows that
Ker(d̄r)

Im(d̄r−1)
∼=

Ker(dr)

Im(dr−1)

Combined with Theorem 17, we get

Hr(G,M) ∼=
Ker(dr)

Im(dr−1)

Define
Zr(G,M) = Ker(dr)

This is known as the group of r-cocycles. Also, define

Br(G,M) = Im(dr−1)

This is known as the group of r-coboundaries.

DESCRIPTION OF H1(G,M)

A map φ : G→M is said to be a crossed homomorphism if ∀ σ, τ ∈ G,

φ(στ) = σφ(τ) + φ(σ)

In particular the condition implies that, for e the identity element of G,

φ(e) = φ(ee) = eφ(e) + φ(e) = 2φ(e)
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and so φ(e) = 0. For every m ∈M , the map σ 7→ σm−m is a crossed homomorphism since

φ(στ) = (στ)m−m = (σ(τm)− σm) + (σm−m) = σ(τ(m)−m) + (σm−m) = σ(φ(τ)) + φ(σ)

and is called a principal crossed homomorphism.

Note that
(d1(φ))(σ, τ) = σ(φ(τ)− φ(στ) + φ(σ, τ)

and
(d0(m))(σ) = σm−m

for some m ∈M . Thus φ is a crossed homomorphism ⇔ d1(φ) = 0 ⇔ φ ∈ Ker(d1).

Hence Ker(d1) = {crossed homomorphisms G→M}.

Moreover, ψ is a principal crossed homomorphism ⇔ ψ = d0(m) for some m ∈M ⇔ ψ ∈ Im(d0).

Hence Im(d0) = { principal crossed homomorphisms G→M}.

Therefore, H1(G,M) = Ker(d1)
Im(d0)

= {crossed homomorphisms G→M}
{principal crossed homomorphisms G→M}

If the action of G on M is trivial , then crossed homomorphisms become homomorphisms (as
abelian groups) since

φ(στ) = σφ(τ) + φ(σ) = φ(τ) + φ(σ) = φ(σ) + φ(τ)

and principal crossed homomorphisms are zero since

φ(σ) = σ(m)−m = m−m = 0

Thus, in this case
H1(G,M) ∼= HomZ(G,M)

Theorem 18. A short exact sequence

0→M ′ →M →M ′′ → 0

of G-modules gives rise to a long exact sequence

0→ H0(G,M ′)→ H0(G,M)→ ...→ Hr(G,M ′)→ Hr(G,M)→ Hr(G,M ′′)
δr−→ Hr+1(G,M ′)→ ...

Proof. See Theorem 1.2.11, page 9, [6].

Remark 4. Let
0→M

i−→ N
π−→ P → 0

be an exact sequence of G-modules. The proof of Theorem 18 shows that the boundary map

δr : Hr(G,P )→ Hr+1(G,M)

has the following description :
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Let γ ∈ Hr(G,P ) be represented by the r-cocycle φ : Gr → P . Since π is a surjective map,
we can choose a lift φ′ : Gr → N of φ i.e. φ′ is a map such that

π(φ′(g1, ..., gr)) = φ(g1, ..., gr)

Since φ is a r-cocycle, dr(φ) = 0 and so

π(dr(φ′(g1, ..., gr))) = dr(π(φ′(g1, ..., gr))) = dr(φ(g1, ..., gr)) = 0

where in the second equality, we have used that π is a G-module homomorphism. Moreover, we
have Ker(π) = Im(i) and so dr(φ′(g1, ..., gr)) ∈M . Then, dr(φ′) is the cocycle representing δr(γ).

2.5 Shapiro’s Lemma

Let M be a G-module, and regard Z as a G-module with trivial action i.e. gm = m ∀ g ∈ G,
m ∈ Z.

Lemma 12. HomG(Z,M) ∼= MG

Proof. Define the map
η1 : HomG(Z,M)→MG

such that
η1(φ) = φ(1)

η1(φ) ∈MG because for any g ∈ G, we have

(gφ(1)) = φ(g1) = φ(1)

The first equality holds because φ is a G-module homomorphism and the second equality holds
because G has trivial action on Z.

Clearly η1 is a homomorphism of abelian groups. It is also a G-module map since

η1(gφ) = (gφ)(1) = g(φ(g−11)) = g(φ(1)) = g(η1(φ))

In the second equality we have used the action of G on HomG(Z,M) and in the third equality we
have used that G has trivial action on Z.

Now define
η2 : MG → HomG(Z,M)

such that
η2(m)(k) = km

Moreover, η1(η2(m)) = (η2(m))(1) = m Thus η1(η2(m)) = m and we have η1◦η2 is the identity map.

Also, η2(η1(φ))(k) = η2(φ(1))(k) = kφ(1) = φ(k). Thus η2(η1(φ)) = φ and we have η2 ◦ η1 is
the identity map.

Hence η1 is a G-module isomorphism.

Remark 5. H0(G,M) ∼= HomG(Z,M)
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Proof. It follows directly from Lemma 6 and Lemma 12.

Theorem 19. (Shapiro’s Lemma) Let H be a subgroup of G. For every H-module N , there is a
canonical isomorphism

Hr(G, IndGH(N))→ Hr(H,N)

for all r ≥ 0.

Proof. Firstly we prove it for the case r = 0. By Theorem 8, we know that

HomG(Z, IndGH(N)) ∼= HomH(Z, N)

This, combined with Remark 5 gives us that

H0(G, IndGH(N)) ∼= H0(H,N)

and we are done for this case. Now let r > 0.

Choose an injective resolution of N

0→M → I0 d0

−→ I1 d1

−→ I2 → ... Ir
dr−→ Ir+1 → ...

where each Ir is an injective H module. Since IndGH is an exact functor by Theorem 9, so

0→ IndGH(N)→ IndGH(I0)→ IndGH(I1)→ ...IndGH(Ir)→ IndGH(Ir+1)→ ...

is an exact sequence. We also know that if I is an injective H-module, then IndGH(I) is an injective
G-module. Thus this sequence is an injective resolution of IndGH(N). Then the corresponding
cohomology sequence becomes

0
d−1

−−→ (IndGH(I0))G
d0

−→ (IndGH(I1))G → ...(IndGH(Ir))G
dr−→ (IndGH(Ir+1))G → ...

We also know that the cohomology sequence for N is

0
d−1

−−→ (I0)G
d0

−→ (I1)G
d1

−→ (I2)G → ...

Thus we get a diagram which can be shown to be commutative by direct verification :

(IndGH(Ir−1))G (IndGH(Ir))G (IndGH(Ir+1))G

(Ir−1)G (Ir)G (Ir+1)G

d′r−1

ηr−1

d′r

ηr ηr+1

dr−1 dr

(2.14)

where the vertical maps ηi are isomorphisms given by the case r = 0 above. The commutativ-
ity of the diagram gives us

Ker(d′r)

Im(d′r−1)
∼=

Ker(dr)

Im(dr−1)
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and thus

Hr(G, InGH(N)) ∼= Hr(H,N)

This completes the proof of Shapiro’s Lemma.

Corollary 2. If M is an induced G-module, then Hr(G,M) = 0 for all r > 0.

Proof. Since M is an induced G-module, so M ∼= IndG(M0) for some abelian group M0. Then

Hr(G, IndG(M0)) ∼= Hr({1},M0)

To complete the proof of the corollary, we need the following lemma.

Lemma 13. If G = {1} and M is an abelian group (hence also a G-module), then Hr(G,M) = 0

Proof. Let
0→M → I0 → I1 → ...

be an injective resolution of M . In our case, G = {1} and MG = M for any abelian group M .
Thus the cohomology sequence

0
d−1

−−→ (I0)G
d0

−→ (I1)G
d1

−→ (I2)G → ...

simply becomes

0
d−1

−−→ I0 d0

−→ I1 d1

−→ I2 → ...

Since

I0 d0

−→ I1 d1

−→ I2 → ...

is a part of the injective resolution and thus is exact, so Ker(dr) = Im(dr−1) whenever r > 0
(though not for r = 0) and thus Hr(G,M) = 0 whenever r > 0.

Remark 6. Consider the exact sequence

0→M → J → N → 0

of G-modules. If Hr(G, J) = 0 for all r > 0, then

Hr(G,N) ∼= Hr+1(G,M)

for all r ≥ 1.

Proof. The cohomology sequence (Theorem 18) gives the exact sequence

...→ Hr(G, J)→ Hr(G,N)→ Hr+1(G,M)→ Hr+1(G, J)→ ...

for each r ≥ 0. But we are given that Hr(G, J) = 0 for all r ≥ 1. Thus we get the exact sequence

0→ Hr(G,N)
δr−→ Hr+1(G,M)→ 0

for each r ≥ 1. The exactness of the sequence shows us that Ker(δr) = 0 and Im(δr) = Hr+1(G,M)
which show that δr is injective and surjective respectively. Hence δr is an isomorphism and we get

Hr(G,N) ∼= Hr+1(G,M)

for all r ≥ 1.
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Let M be a G-module and M0 be M regarded as an abelian group. We know that M can be
embedded into IndGM0 through the map M → IndG(M0) given by m 7→ φm where φm(g) = gm.
Let’s denote IndG(M0) by M∗ and define M† = M∗/M . Then we get the exact sequence

0→M →M∗ →M† → 0

Thus by Remark 6, we find that

Hr(G,M†) ∼= Hr+1(G,M)

2.6 Cohomology of finite Galois extensions

2.6.1 Hilbert’s Theorem 90

Let L be a finite Galois extension of a field K, and let G = Gal(L/K). Then L, regarded as a group
under addition is a G-module. L∗, regarded as a group under multiplication is also a G-module.

Theorem 20. (Hilbert’s Theorem 90) Let L/K be a finite Galois extension with Galois group G.
Then H1(G,L∗) = 0.

Proof. Let φ : G → L∗ be a crossed homomorphism. In multiplicative notation, this means that
for all σ, τ ∈ G,

φ(στ) = σ(φ(τ))φ(σ)

For any a ∈ L∗, let

b =
∑
σ∈G

φ(σ)(σa)

Suppose b 6= 0. Then

τ(b) = τ

(∑
σ∈G

φ(σ)(σa)

)
=
∑
σ∈G

τ(φ(σ)(σa)) =
∑
σ∈G

τ(φ(σ))τ(σa) =
∑
σ∈G

(φ(τ))−1φ(τσ)((τσ)(a))

where the last equality holds because

φ(τσ) = τ(φ(σ)) (φ(τ))

since φ is a crossed homomorphism. But then

τ(b) = (φ(τ))−1
∑
σ∈G

φ(τσ)((τσ)(a)) = (φ(τ))−1
∑
σ∈G

φ(σ)(σ(a)) = (φ(τ))−1b

where the second equality holds because as σ runs over G, so does τσ for any τ ∈ G.
Thus, τ(b) = (φ(τ))−1b and so

φ(τ) =
b

τ(b)
=
τ(b−1)

b−1

+ which shows that φ is a principal crossed homomorphism and we are done.

The only thing left to be shown is that ∃ a ∈ L∗ for which b 6= 0. Let’s assume to the con-
trary that b = 0 for all a ∈ L∗. i.e.

∑
σ∈G φ(σ)(σa) = 0 ∀ a ∈ L∗

Recall the Dedekind’s Theorem on the independence of characters :
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Let L be a field and H a group; then every finite set {fi} of distinct homomorphism H → L∗

is linearly independent over L i.e.∑
aifi(α) = 0 ∀ α ∈ H ⇒ a1 = a2 = ... = an = 0

Now we apply this theorem with H = L∗, the homomorphisms σ : L∗ → L∗, σ ∈ G and the
equation

∑
σ∈G φ(σ)(σa) = 0 ∀ a ∈ L∗, we find that ∀ σ ∈ G, φ(σ) = 0 which is a contradiction

because φ(σ) ∈ L∗. Hence ∃ a ∈ L∗ for which b 6= 0 and we are done.

2.6.2 Cohomology of L

Theorem 21. Let L/K be a finite Galois extension with Galois group G. Then Hr(G,L) = 0 ∀
r > 0.

Proof. By the Normal Basis Theorem, ∃ α ∈ L such that {σα : σ ∈ G} is a basis for L as a K-vector
space. Then we get a map

η : K[G]→ L

such that

η

(∑
σ∈G

aσσ

)
=
∑
σ∈G

aσσ(α)

Clearly η is a well defined homomorphism of abelian groups. η is injective since {σα : σ ∈ G} is
linear independent over K and η is surjective since {σα : σ ∈ G} generates L over K. Finally for
any τ ∈ G, we have

η

(
τ

(∑
σ∈G

aσσ

))
= η

(∑
σ∈G

aστσ

)
=
∑
σ∈G

aσ(τσ(α)) = τ

(∑
σ∈G

aσσ(α)

)
= τ

(
η

(∑
σ∈G

aσσ

))
Hence η is a G-module isomorphism. The following lemma combined with Corollary 2 will complete
the proof of the theorem.

Lemma 14. Let L/K be a finite Galois extension with Galois group G, then K[G] ∼= IndGK as
G-modules.

Proof. Since G is a finite group, we can label it as G = {τ1, τ2, ......, τn}. Now define the map

η1 : IndGK → K[G]

such that

ψ 7→
n∑
i=1

ψ(g−1
i )gi

The inverse map
η2 : K[G]→ IndGK

is given by
n∑
i=1

aiτi 7→ φ

where φ(τi) = aj and j is defined as τj = τ−1
i It is straightforward to show that η1 is a G-module

homomorphism and that the maps η1 and η2 are actually inverses of each other.
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2.7 The Cohomology of Products

A product M =
∏
iMi of G-modules Mi becomes a G-module under the diagonal action i.e.

σ(...,mi, ...) = (..., σmi, ...).

Theorem 22. For any G-modules Mi, H
r(G,

∏
iMi) ∼=

∏
iH

r(G,Mi).

Proof. Firstly we will prove that a product of exact sequences is exact.
Let

0→ Ai
αi−→ Bi

βi−→ Ci → 0

be exact ∀ i ∈ I where I is some indexing set.

We need to prove that

0→
∏
i

Ai

∏
i αi−−−→

∏
i

Bi

∏
i βi−−−→

∏
i

Ci → 0

is also an exact sequence.

Note that

Ker

(∏
i

βi

)
=

{
(x)i∈I :

(∏
i

βi

)
(x)i∈I = 0

}
= {(xi)i∈I : (βi)(xi) = 0 ∀ i ∈ I} =

∏
i

Ker(βi)

Hence

Ker

(∏
i

βi

)
=
∏
i

Ker(βi)

Similarly we can prove,

Ker

(∏
i

αi

)
=
∏
i

Ker(αi), Im

(∏
i

βi

)
=
∏
i

Im(βi) and Im

(∏
i

αi

)
=
∏
i

Im(αi)

Then we are done by the exactness of the individual short exact sequences.

Now we will prove that

I =
∏
i

Ii

of injective G-modules Ii is again injective.

Let
0→M ′ →M →M ′′ → 0

be an exact sequence of G-modules. Since Ii is injective, so

0→ HomG(M ′, Ii)→ HomG(M, Ii)→ HomG(M ′′, Ii)→ 0

is exact ∀ i. Hence,

0→
∏
i

HomG(M ′, Ii)→
∏
i

HomG(M, Ii)→
∏
i

HomG(M ′′, Ii)→ 0
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is exact. It is easy to verify that for any G-module N ,

HomG(N, I) ∼=
∏

HomG(N, Ii)

through the natural map. Hence,

0→ HomG(M ′, I)→ HomG(M, I)→ HomG(M ′′, I)→ 0

is exact and thus I is injective.

Let Mi → I•i be an injective resolution of Mi. Then
∏
iMi →

∏
i I
•
i is an injective resolution

of
∏
iMi by the above discussion and thus by the definition of cohomology groups,

Hr

(
G,
∏
i

Mi

)
∼= Hr

(∏
i

I•i

)G
Moreover, it is easy to check that (∏

i

I•i

)G
=
∏
i

(I•i )G

and so

Hr

(
G,
∏
i

Mi

)
∼= Hr

(∏
i

I•i

)G ∼= Hr

(∏
i

(I•i )G
)

Then the fact that Kernels and Images commute with direct products (which we proved above)
gives us

Hr

(∏
i

(I•i )G
)
∼=
∏
i

Hr(I•i )G

Therefore,

Hr

(
G,
∏
i

Mi

)
∼=
∏
i

Hr(I•i )G ∼=
∏
i

Hr(G,Mi)

where the last congruence holds by the definition of cohomology groups.

In particular for any G-modules M ,N ,

Hr(G,M ⊕N) ∼= Hr(G,M)⊕Hr(G,N)

2.8 Functorial Properties of the Cohomology Groups

Let M be a G module, M ′ be a G′ module and let α : G′ → G be a group homomorphism.

Note that M naturally becomes a G′ module via α.
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Let
β : M →M ′

be a homomorphism (only as abelian groups).

α and β are said to be compatible if ∀ g′ ∈ G′ ∀ m ∈M

β(α(g′)m) = g′(β(m))

Observe that this condition exactly means that β is a G′ module homomorphism.

Then for each non-negative integer r, we get

ηr : Cr(G,M)→ Cr(G′,M ′)

such that
φ 7→ β ◦ φ ◦ αr

i.e.
ηr(φ(g1, ..‘., gr)) = β(φ(α(g1), ..., α(gr)))

Consider the diagram :

Cr−1(G,M) Cr(G,M)

Cr−1(G′,M ′) Cr(G′,M ′)

dr−1

ηr−1 ηr

d′r−1

(2.15)

Direct calculation shows that this diagram commutes i.e. ∀r ∈ N

ηr ◦ dr−1 = d′r−1 ◦ ηr−1

Note that the compatibility condition is required in the proof of this fact.

Now
ηr ◦ dr−1 = d′r−1 ◦ ηr−1

which implies that
ηr(Im(dr−1)) ⊂ Im(d′r−1)

and
ηr+1 ◦ dr = d′r ◦ ηr

and so
ηr(Ker(d

r)) ⊂ Ker(d′r)
Thus ηr induces a group homomorphism (which we again denote by ηr)

ηr :
Ker(dr)

Im(dr−1)
→ Ker(d′r)

Im(d′r−1)

i.e. a group homomorphism
ηr : Hr(G,M)→ Hr(G′,M ′)
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2.8.1 Examples

1. Shapiro’s Lemma Let H be a subgroup of G and let α be the inclusion map from H to G
and β : IndGHM → M such that φ 7→ φ(1). Compatibility condition is satisfied and by the above
procedure we get the group homomorphism

Hr(G, IndGHM)→ Hr(H,M)

This group homomorphism is infact an isomorphism which gives another proof of the Shapiro’s
lemma (Theorem 19). This is a fact which we will see in a later section (Theorem 37) but we are
assuming it for now.

2. Restriction maps Let H be a subgroup of G and let α be the inclusion map from H to
G and β be the identity map on M. Then by the above procedure we obtain the restriction homo-
morphism

Res : Hr(G,M)→ Hr(H,M)

There is another way of describing the restriction homomorphism.

Let α be the identity map on G and β : M → IndGHM be the map such that m 7→ φm where
φm(g) = gm. This gives us the homomorphism

Hr(G,M)→ Hr(G, IndGHM)

Composing this homomorphism with the isomorphism of Shapiro’s lemma (in Example 1 above),
Hr(G, IndGHM)→ Hr(H,M), we get the required restriction map.

3. Inflation maps Let H be a normal subgroup of G. Then MH is a G/H module as seen
in the proof of Lemma 12. Let α be the quotient map G→ G/H and β be the inclusion MH →M .
This induces the inflation homomorphism :

Inf : Hr(G/H,MH)→ Hr(G,M)

4. Corestriction maps Let H be a subgroup of finite index in G, and let S be a set of left coset
representatives for H in G. Let α be the identity map on G and β : IndGHM →M such that

β(φ) =
∑
s∈S

sφ(s−1)

In order to show that β is well-defined, we have to show that the sum
∑
s∈S

sφ(s−1) is independent of

the choice of set of left coset representatives. Let S = {s1, ..., sn} and T = {t1, ..., tn} be two sets
of left coset representatives of H in G. We need to show that

n∑
i=1

siφ(s−1
i ) =

n∑
i=1

tiφ(t−1
i )

Since we can interchange S and T , so it suffices to show that

n∑
i=1

siφ(s−1
i ) ≤

n∑
i=1

tiφ(t−1
i )
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Any si ∈ S is in some coset tjH and so we have si = tjhij for some hij ∈ H. This shows that
s−1
i = h−1

ij t
−1
j and so

φ(s−1
i ) = φ(h−1

ij t
−1
j ) = h−1

ij φ(t−1
j )

Note that in the last equality, we have used that φ ∈ IndGH(M). Thus

siφ(s−1
i ) = tjhijh

−1
ij φ(t−1

j ) = tjφ(t−1
j )

Hence we have shown that every element siφ(s−1
i ) is of the form tjφ(t−1

j ) for some j. This implies
that

n∑
i=1

siφ(s−1
i ) ≤

n∑
i=1

tiφ(t−1
i )

and so we are done. Thus β is a well defined map and induces the homomorphism

Hr(G, IndGHM)→ Hr(G,M)

Composing this homomorphism with the inverse of isomorphism of Shapiro’s lemma (in Example
1 above), we get the corestriction homomorphism :

Cor : Hr(H,M)→ Hr(G,M)

Remark 7. It is important to see the description of corestriction maps in dimension 0. Let G be
a finite group. For every G-module M , define the norm map

NmG : M →M

such that
m 7→

∑
g∈G

gm

By the proof of Shapiro’s Lemma (Theorem 19), we know that the isomorphism

H0(H,M)→ H0(G, IndGHM)

is given by m 7→ φm where φm(g) = m ∀ g ∈ G. The map

H0(G, IndGHM)→ H0(G,M)

takes φm to ∑
s∈S

sφm(s−1) =
∑
s∈S

sm = NmG/Hm

Hence the corestriction map in dimension 0 is

cor0 : MH →MG

given by

cor0(m) =
∑
s∈S

sm = NmG/Hm

Thus the corestriction map is given by the norm map in dimension 0.
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2.8.2 Relations among functorial maps

Theorem 23. Let H be a subgroup of G of finite index. The composite

Cor ◦Res : Hr(G,M)→ Hr(G,M)

is multiplication by (G : H).

Proof. Note that while taking the composition, the isomorphism of Shapiro’s Lemma (in Example
1) and its inverse cancel with each other (We are using the alternate description of the restriction
map).

Cor ◦Res : Hr(G,M)→ Hr(G,M)

is then simply the induced map on cohomology taking α to be the identity on G and β to be the
composite

M → IndGHM →M

such that
m 7→ φm 7→

∑
s∈S

sφm(s−1) =
∑
s∈S

s(s−1m) = (G : H)m

Now since ηr(φ) = β ◦ φ ◦ αr and α is the identity; thus ηr(φ) = β ◦ φ. Since β is multiplication by
(G : H); so ηr is also multiplication by (G : H).

Corollary 3. If (G : 1) = m, then mHr(G,M) = 0.

Proof. If we take H = {1}, by Theorem 23, we get mHr(G,M) = (Cor ◦Res)(Hr(G,M)

Res : Hr(G,M)→ Hr({1},M) is the zero map since Hr({1},M) = 0. Hence

mHr(G,M) = (Cor ◦Res)(Hr(G,M) = Cor(Res(Hr(G,M))) = Cor(0) = 0

Theorem 24. Let H be a normal subgroup of G, and let M be a G-module. Then the inflation
restriction sequence

0→ H1(G/H,MH)
Inf−−→ H1(G,M)

Res−−→ H1(H,M)

is exact.

Proof. Firstly we will prove that the Inf map is injective.

Let φ1 and φ2 be crossed homomorphisms from G/H to MH such that

Inf(φ̄1) = Inf(φ̄2)

in H1(G,M). Thus
Inf(φ1) = Inf(φ2) + η

where η : G→M is such that η(g) = gm0 −m0 ∀ g ∈ G for some m0 ∈ M . Therefore, ∀ g ∈ G,

φ1(gH) = φ2(gH) + (gm0 −m0)
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In particular ∀ h ∈ H,
hm0 = m0

Thus η is zero on H and m0 ∈ MH . Define the map η′ : G/H → MH given by η′(gH) = η(g).
Firstly we will show that η′ is well-defined. Let g1H = g2H. This means that g1 = g2h for some
h ∈ H. Thus

η(g1) = η(g2h) = g2η(h) + η(g2) = η(g2)

and so η′ is well-defined. Since gm0 −m0 = (gH)m0 −m0, so η′ is a principal crossed homomor-
phism from G/H to MH . Hence, φ̄1 = φ̄2 and Inf is injective.

Exactness at H1(G,M) :

Firstly we will prove that Im(Inf) ⊂ Ker(Res).

Let ψ̄ = Inf(φ̄) where φ ∈ H1(G/H,MH) i.e. φ is a crossed homomorphism from G/H to MH .
Then ψ̄ is represented by a crossed homomorphism ψ from G to M such that ψ(g) = φ(gH).

η̄ = Res ψ̄ is represented by a crossed homomorphism η from H to M such that

η(h) = ψ(h) = φ(hH) = φ(H) = 0

Thus Res(ψ̄) = 0, so ψ̄ ∈ Ker(Res) and we are done.

Now we will prove that Ker(Res) ⊂ Im(Inf).

Let φ̄ ∈ Ker(Res) i.e. φ is a crossed homomorphism from G to M such that the restriction
of φ to H is a principal crossed homomorphism i.e.

φ(h) = hm0 −m0

for some m0 ∈ M ∀ h ∈ H.

Define φ
′

: G→M such that
φ
′
(g) = φ(g)− (gm0 −m0)

Then
φ
′
(g1g2) = φ(g1g2)− (g1g2m0 −m0)

Since φ1 is a crossed homomorphism,

φ(g1g2) = g1φ(g2) + φ(g1)

It follows that
φ
′
(g1g2) = g1φ

′
(g2) + φ

′
(g1)

Hence φ
′

is also a crossed homomorphism which is in the same class as φ in H1(G,M)

Note that φ
′
(h) = 0 ∀ h ∈ H.

Define φ
′′

: G/H →M such that φ
′′
(gH) = φ

′
(g).
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We will show that φ
′′

is well defined.

Let g1H = g2H. Then g−1
2 g1 ∈ H i.e. g1 = hg2 for some h ∈ H and so g1 = g2h1 for some

h1 ∈ H since H is normal in G.

Since φ
′

is crossed,
φ
′
(g1) = g2φ

′
(h1) + φ

′
(g2) = φ

′
(g2)

and thus
φ
′′
(g1H) = φ

′′
(g2H)

Now we will prove that for any g ∈ G, φ′′(gH) ∈MH . Note that for h ∈ H and g ∈ G, we have

φ
′
(hg) = hφ

′
(g) + φ

′
(h)

and thus,
hφ
′
(g) = φ

′
(hg)− φ′(h) = φ

′
(hg) = φ

′
(gh1)

for some h1 ∈ H since H is normal in G. Therefore,

hφ
′
(g) = gφ

′
(h1) + φ

′
(g) = φ

′
(g)

Hence,
hφ
′
(g) = φ

′
(g) ∀ h ∈ H

which shows that,
φ
′′
(gH) = φ

′
(g) ∈MH

and hence we are done.

Finally φ
′′

is a crossed homomorphism because,

φ
′′
((g1H)(g2H)) = φ

′′
((g1g2H) = φ

′
(g1g2) = g1φ

′
(g2) + φg1 = (g1H)φ

′′
(g2H) + φ

′′
(g1H)

Hence we have shown that the inflation restriction sequence is exact.

Using the description of the boundary map, it is straightforward to show that the following results
hold :

Theorem 25. Let
0→ A→ B → C → 0

be an exact sequence of G-modules, then the diagram

Hr(G,C) Hr+1(G,A)

Hr(H,C) Hr+1(H,A)

δ

resr resr+1

δ

(2.16)

commutes for all r ≥ 0.
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Theorem 26. Let
0→ A→ B → C → 0

be an exact sequence of G-modules, then the diagram

Hr(H,C) Hr+1(H,A)

Hr(G,C) Hr+1(G,A)

δ

corr corr+1

δ

(2.17)

commutes for all r ≥ 0.

Theorem 27. Let
0→ A→ B → C → 0

be an exact sequence of G-modules, and let H be a normal subgroup of G. If the sequence

0→ AH → BH → CH → 0

is also exact, then the diagram

Hr(G/H,CH) Hr+1(G/H,AH)

Hr(G,C) Hr+1(G,A)

δ

infr infr+1

δ

(2.18)

commutes for all r ≥ 0.

The main step in the proof of each of these theorems is the observation that these functorial maps
commute with the maps

dr : Cr(G,M)→ Cr+1(G,M)

2.9 Homology

For a G-module M , let MG be the largest quotient of M on which G acts trivially. Thus MG is the
quotient of M by the subgroup M0 generated by

{gm−m : g ∈ G,m ∈M}

Lemma 15. If

M ′
α−→M

β−→M ′′ → 0

is an exact sequence of G-modules, then

M ′G
α1−→MG

β1−→M ′′G → 0

is also exact.
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Proof. The map α1 : M ′G →MG is defined as m′ 7→ α(m′). To show that α1 is well defined we have
to show that α(M ′0) ⊂M0. But this is true since for any m′ ∈M ′, we have

α(gm′ −m′) = α(gm′)− α(m′) = g(α(m′))− α(m′) ∈M0

Similarly β1 : MG →M ′′G such that m 7→ β(m) is a well-defined G-module homomorphism. Clearly
β1 is surjective since β is. Since Ker(β) = Im(α), so we have β(α(m′)) = 0 for any m′ ∈ M ′.
Therefore, Im(α1) ⊂ Ker(β1). Conversely let m + M0 ∈ Ker(β1) for some m ∈ M . This means
that β(m) = gm′′−m′′ for some m′′ ∈M ′′. Since β is surjective, so m′′ = β(m1) for some m1 ∈M .
Therefore,

gm′′ −m′′ = gβ(m1)− β(m1) = β(gm1 −m1)

Hence β(m) = β(gm1−m1) and som−(gm1−m1) ∈ Ker(β) = Im(α). Therefore, m−(gm1−m1) =
α(m′) for some m′ ∈ M ′ which shows that m − α(m′) ∈ M0 Hence m + M0 = α(m′) + M0. This
shows that Ker(β1) ⊂ Im(α1) and we are done.

Definition 4. A G-module P is said to be projective if for every surjective G-module homomor-
phism π : N → M and every G-module homomorphism α : P → M , there exists a G-module
homomorphism β : P → N such that β ◦ π = α i.e. the following diagram commutes :

N

P M

π

α

β (2.19)

Equivalently, P is projective if Hom(P, ) is an exact functor.

Lemma 16. Every G-module is a quotient of a projective G-module.

Proof. We know that every G-module is a quotient of a free G-module. By the universal property
of free modules, it follows that every free G-module is projective, so every G-module is a quotient
of a projective G-module.

Definition 5. A projective resolution of a G-module M is a long exact sequence

...→ P2
d2−→ P1

d1−→ P0
d0−→M → 0

such that Pi is a projective module for each i ≥ 0.

We had shown that for any G-module M , there is an injective resolution. With a similar approach,
one can show that

Theorem 28. For a G-module M , there exists a projective resolution of M .

Definition 6. Met M be a G-module, and choose a projective resolution

...→ P2
d2−→ P1

d1−→ P0
d0−→M → 0
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of M. The complex

...→ (P2)G
d2−→ (P1)G

d1−→ (P0)G
d0−→ 0

need no longer be exact and we define the rth homology group

Hr(G,M) =
Ker(dr)

Im(dr+1)

Theorem 29. Hr(G,M) is independent of the choice of the projective resolution (upto an isomor-
phism) and is thus well defined.

Proof. See Theorem 6, page 782, [7].

Lemma 17. H0(G,M) ∼= MG

Proof. Since
P1 → P0 →M → 0

is an exact sequence, so by Lemma 15, the following sequence is also exact :

(P1)G
d1−→ (P0)G

d′0−→MG → 0

Therefore,

H0(G,M) =
Ker(d0)

Im(d1)
=

(P0)G
Im(d1)

=
(P0)G
Ker(d′0)

∼= Im(d′0) = MG

Lemma 18. If P is a projective G-module, then Hr(G,P ) = 0 for all r > 0

Proof. This follows from the fact that

...→ 0→ P → P → 0

is a projective resolution of P .

Theorem 30. A short exact sequence

0→M ′ →M →M ′′ → 0

of G-modules gives rise to a long exact sequence

0→ H0(G,M ′)→ H0(G,M)→ ...→ Hr(G,M
′)→ Hr(G,M)→ Hr(G,M

′′)
δr−→ Hr+1(G,M ′)→ ...

Proof. See page 789, [7].
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2.10 The Group H1(G,Z)

Define the augmentation map
η : Z[G]→ Z[G]

such that
η
(∑

nigi

)
=
∑

ni

IG = Ker(η) is called the augmentation ideal.

The set
{g − 1 : g ∈ G and g 6= 1}

generates IG as a Z module since,

k∑
i=1

nigi =

k∑
i=1

ni(gi − 1)

because
∑
ni = 0. Moreover,

H0(G,M) ∼= MG =
M

M0

where M0 is the submodule of M generated by all elements of the form gm−m where g ∈ G and
m ∈M . But gm−m = (g − 1)m and thus, M0 = IGM which shows that H0(G,M) ∼= M

IGM
.

Consider the augmentation sequence :

0→ IG
i−→ Z[G]

η−→ Z→ 0

The G-module Z[G] is projective because it is a free Z[G] module and so H1(G,Z[G]) = 0 But we
have an exact sequence which is a part of the long exact sequence for the homology groups.

H1(G,Z[G])→ H1(G,Z)→ H0(G, IG)→ H0(G,Z[G])→ H0(G,Z)→ 0

We also know that
H0(G,Z) = Z

since the action of G on Z is trivial. Moreover, we have

H0(G,Z[G]) =
Z[G]

IGZG
=

Z[G]

IG

and,

H0(G, IG) =
IG
IGIG

=
IG
I2
G

Hence we get an exact sequence

0→ H1(G,Z)→ IG
I2
G

i−→ Z[G]

IG
→ Z→ 0
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The map
IG
I2
G

i−→ Z[G]

IG

is induced by the map IG
i−→ Z[G] and is thus the zero map as we are evaluating the image of an

element of IG modulo IG.

Hence we have the exact sequence

0→ H1(G,Z)
α−→ IG
I2
G

0−→ Z[G]

IG

β−→ Z→ 0

We already knew that α is injective and β is surjective but by this exact sequence, we also have
that Im(α) = Ker(0) and Im(0) = Ker(β).

Thus Im(α) = IG
I2
G

and Ker(β) = 0.

This shows that α is surjective and β is injective. Hence α and β are both bijections and thus
isomorphisms.

Therefore, we have

H1(G,Z) ∼=
IG
I2
G

(2.20)

and
Z[G]

IG
∼= Z

Remark 8. Z is the largest quotient of Z[G] on which G acts trivially.

Remark 9. I2
G is the Z-submodule of Z[G] generated by elements of the form (g− 1)(g

′ − 1) where
g, g

′ ∈ G

Lemma 19. Let Gc be the commutator subgroup of G, so that G/Gc is the largest abelian quotient
of G. Then the map

φ : G/Gc → IG
I2
G

such that

φ(gGc) = (g − 1) + I2
G

is an isomorphism.

Proof. Firstly consider the map φ : G→ IG
I2
G

such that g 7→ (g − 1) + I2
G

For g, g′ ∈ G, we have

φ(gg′) = (gg′ − 1) + I2
G = (g − 1)(g′ − 1) + (g − 1) + (g′ − 1) + I2

G = φ(g) + φ(g′)

since (g− 1)(g′− 1) ∈ I2
G and thus φ is a group homomorphism. Then we have for given g1, g2 ∈ G,

φ(g1g2g
−1
1 g−1

2 ) = φ(g1) + φ(g2) + φ(g−1
1 ) + φ(g−1

2 ) = 0
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because IG
I2
G

is abelian. Hence there is a well defined homomorphism

Φ : Gab =
G

Gc
→ IG

I2
G

such that
Φ(gGc) = (g − 1) + I2

G

Similarly one can verify that there is a well defined homomorphism

Ψ :
IG
I2
G

→ Gab

such that

Ψ((g − 1) + I2
G) = gGc

Clearly Φ and Ψ are inverses of each other. Thus, IG
I2
G

∼= Gab

Theorem 31. H1(G,Z) ∼= Gab

Proof. This follows directly from equation 2.20 and Lemma 19.

Remark 10. From the proof of Theorem 31, it follows that the isomorphism H1(G,Z) ∼= Gab is
the composition of the isomorphisms H1(G,Z) ∼= IG/I

2
G and IG/I

2
G
∼= Gab. This description would

be required later.

2.11 Tate Groups

Throughout this section, we assume that G is a finite group.

For every G-module M , define the norm map

NmG : M →M

such that
m 7→

∑
g∈G

gm

Let g′ ∈ G. Since we have

g′NmG(m) = g′
∑
g∈G

gm =
∑
g∈G

g′gm =
∑
g∈G

gm = NmG(m)

so Im(NmG) ⊂MG. Similarly IGM ⊂ Ker(NmG)

Hence the norm map can be extended to NmG : M
IGM

→MG
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Since the Kernel of the norm map is Ker(NmG)
IGM

and the cokernel is MG

NmG(M) , so we get an ex-
act sequence

0→ Ker(NmG)

IGM
→ M

IGM

NmG−−−→MG → MG

NmG(M)
→ 0

This can also be expressed as

0→ Ker(NmG)

IGM
→ H0(G,M)

NmG−−−→ H0(G,M)→ MG

NmG(M)
→ 0

Thus the Kernel of the norm map is Ker(NmG)
IGM

and the cokernel is MG

NmG(M)

We define Tate groups Hr
T (G,M) (−∞ < r <∞) as :



Hr(G,M) r > 0

MG/NmG(M) r = 0

Ker(NmG)/IGM r = −1

H−r−1(G,M) r < −1

Note that in view of these definitions, our exact sequence can be rewritten as

0→ H−1
T (G,M)→ H0(G,M)

NmG−−−→ H0(G,M)→ H0
T (G,M)→ 0 (2.21)

Thus the kernel of the norm map is H−1
T (G,M) and cokernel of the norm map is H0

T (G,M).

This interpretation will be useful in the next section.

Theorem 32. For every given short exact sequence

0→M ′ →M →M ′′ → 0

there is a very long exact sequence for Tate Cohomology groups

...→ Hr
T (G,M ′)→ Hr

T (G,M)→ Hr
T (G,M ′′)

δ−→ Hr+1
T (G,M)→ ...

Proof. To prove this Theorem, we have to firstly describe the maps η2 : H−2(G,M ′′)→ H−1(G,M ′),
η : H−1

T (G,M ′′)→ H0
T (G,M ′) and η5 : H0

T (G,M ′′)→ H1
T (G,M ′) as these maps had not been de-

fined till now.
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Consider the commutative diagram :

H0(G,M ′) H0(G,M) H0(G,M ′′) 0

0 H0(G,M ′) H0(G,M) H0(G,M ′′) H1(G,M ′)

f

NmG NmG NmG

g

(2.22)

where the upper row is the long exact homology sequence and the lower row is the long exact
cohomology sequence. We can apply the extended snake lemma to get an exact sequence.

0→ Ker(f)→ H−1
T (G,M ′)

η3−→ H−1
T (G,M)→ H−1

T (G,M ′′)
η−→ H0

T (G,M ′)

→ H0
T (G,M)

η4−→ H0
T (G,M ′′)

κ2−→ Coker(g)→ 0
(2.23)

In particular, it shows that Ker(f) ⊂ H−1
T (G,M ′).

Note that the map η : H−1
T (G,M ′′) → H0

T (G,M ′) has been defined automatically by the Ex-
tended Snake Lemma.

Observe that by equation 2.21, we have

H−1
T (G,M ′) ⊂ H0(G,M ′)

We also have the long exact homology sequence :

...→ H1(G,M ′)→ H1(G,M)→ H1(G,M ′′)
δ−→ H0(G,M ′)

f−→ H0(G,M)→ H0(G,M ′′)→ 0

which shows that
Im(δ) = Ker(f) ⊂ H−1

T (G,M ′)

Thus we can define
η2 : H−2

T (G,M ′′)→ H−1
T (G,M ′)

to be the map
δ : H1(G,M ′′)→ H0(G,M ′)

since Im(δ) ⊂ H−1(G,M ′).

Now we want to define the map η5 : H0
T (G,M ′′)→ H1

T (G,M ′).

By equation 2.23, we have a surjective map

κ2 : H0
T (G,M ′′)→ Coker(g)

Moreover, we have the long exact cohomology sequence

H0(G,M ′)→ H0(G,M)
g−→ H0(G,M ′′)

κ3−→ H1(G,M ′)
η6−→ H1(G,M)→ H1(G,M ′′)→ ...

which gives us an injective map

κ1 : Coker(g)→ H1(G,M ′)
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induced by κ3 since Ker(κ3) = Im(g). We define

η5 : H0
T (G,M ′′)→ H1

T (G,M ′)

such that
η5 = κ1 ◦ κ2

Now we will prove the Theorem.

By the long exact cohomology sequence, we know that the following sequence is exact :

H0(G,M ′)→ H0(G,M)
g−→ H0(G,M ′′)

κ3−→ H1(G,M ′)
η6−→ H1(G,M)→ H1(G,M ′′)→ ...

In particular we get that the following sequence is exact :

H1
T (G,M ′)

η6−→ H1
T (G,M)→ H1

T (G,M ′′)→ ... (2.24)

By the long exact homology sequence, we know that the following sequence is exact :

...→ H1(G,M ′)→ H1(G,M)→ H1(G,M ′′)
δ−→ H0(G,M ′)

f−→ H0(G,M)→ H0(G,M ′′)→ 0

This can be rewritten as :

...→ H−2
T (G,M ′)→ H−2

T (G,M)→ H−2
T (G,M ′′)

δ−→ H0(G,M ′)
f−→ H0(G,M)→ H0(G,M ′′)→ 0

In particular we get that the following sequence is exact :

...→ H−2
T (G,M ′)→ H−2

T (G,M)→ H−2
T (G,M ′′) (2.25)

In order to prove the Theorem, by equations 2.24 and 2.25, it suffices to prove the exactness of the
following sequence :

H−2
T (G,M)

η1−→ H−2
T (G,M ′′)

η2−→ H−1
T (G,M ′)

η3−→ H−1
T (G,M)→ H−1

T (G,M ′′)

→ H0
T (G,M ′)→ H0

T (G,M)
η4−→ H0

T (G,M ′′)
η5−→ H1

T (G,M ′)
η6−→ H1

T (G,M)
(2.26)

By equation 2.23, we only need to show exactness of this sequence at H−2
T (G,M ′′), H−1

T (G,M ′),
H0
T (G,M ′′) and H1

T (G,M ′).

By long exact homology sequence, we have that the following sequence is exact :

...→ H1(G,M ′)→ H1(G,M)
η1−→ H1(G,M ′′)

δ−→ H0(G,M ′)
f−→ H0(G,M)→ H0(G,M ′′)→ 0

Therefore, Im(η1) = Ker(δ) but we have Ker(δ) = Ker(η2) by definition of η2. So Im(η1) =
Ker(η2).

Thus we have shown exactness at H−2
T (G,M ′′).

Now by equation 2.23, we have Ker(η3) = Ker(f). But we have by the exact sequence for
homology, we have Ker(f) = Im(δ). Moreover, Im(δ) = Im(η2) by definition of η2. Therefore,
Ker(η3) = Im(η2) and so we have exactness at H−1

T (G,M ′).
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Now Ker(η5) = Ker(κ2) since η5 = κ1 ◦ κ2 and κ1 is injective. Moreover, we have Ker(κ2) =
Im(η4) by equation 2.23. Therefore, Im(η4) = Ker(η5).

Thus we have shown exactness at H0
T (G,M ′′).

Moreover, we have Im(η5) = Im(κ1) as η5 = κ1 ◦ κ2 and κ2 is surjective. But Im(κ1) = Im(κ3)
by definition of κ1. Furthermore, we have the long exact cohomology sequence :

H0(G,M ′)→ H0(G,M)
g−→ H0(G,M ′′)

κ3−→ H1(G,M ′)
η6−→ H1(G,M)→ H1(G,M ′′)→ ...

which shows that Im(κ3) = Ker(η6). Thus we have Im(η5) = Ker(η6) which shows the exactness
at H1

T (G,M ′). This completes the proof of the Theorem.

Remark 11. The map η : H−1
T (G,M ′′)→ H0

T (G,M ′) can be obtained by the diagram 2.22. Since
kernel of the map NmG : H0(G,M ′′) → H0(H,M ′′) is equal to H−1

T (G,M ′′) and cokernel of
the map NmG : H0(G,M ′) → H0(G,M ′) is equal to H0

T (G,M ′) by equation 2.21, so we get the
commutative diagram :

H−1
T (G,M ′′)

H0(G,M ′) H0(G,M) H0(G,M ′′) 0

0 H0(G,M ′) H0(G,M) H0(G,M ′′) H1(G,M ′)

H0
T (G,M ′)

i

f

NmG

α

NmG NmG

β

π

g

(2.27)

Now since we have defined η by Extended Snake’s Lemma, to take the image of an element of
H−1
T (G,M ′′) under the map η, we have to first take its image under i, then take some preimage

under α, then take its image under the map NmG, then take the preimage under β and finally take
its image under π.

This description of the map η : H−1
T (G,M ′′)→ H0

T (G,M ′) would be required later.

We would need the following Lemma several times :

Lemma 20. If
0→ X

α−→ Y
π−→ Z → 0

is an exact sequence of free Z-modules and A is an arbitrary Z-module, then the sequence

0→ X ⊗A α⊗1−−→ Y ⊗A π⊗1−−→ Z ⊗A→ 0

is also exact.
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Proof. Since we know that the tensor product is right exact, so we only have to show that the map
α⊗ 1 is injective. Since Z is a free module, so by the universal property, there exists a map β such
that the following diagram commutes :

Y

Z Z

π

id

β (2.28)

i.e. π ◦ β = id. Now we will show that

Y = Im(β)⊕Ker(π)

Firstly assume that y ∈ Im(β) ∩Ker(π). Thus y = β(z) for some z ∈ Z and π(y) = 0. Therefore

z = π(β(z)) = π(y) = 0

and so y = β(0) = 0. Thus we have shown that

Im(β) ∩Ker(π) = 0

which means that it suffices to show that

Y = Im(β) +Ker(π)

Clearly
Im(β) +Ker(π) ⊂ Y

Now for any y ∈ Y , we have

π(y − β(π(y))) = π(y)− π(β(π(y))) = π(y)− π(y) = 0

where in the second equality, we have used the fact that π ◦ β = id. Thus we have shown that

Y = Im(β)⊕Ker(π)

Therefore,

Y ⊗ Z ∼= (Im(β)⊗ Z)⊕ (Ker(π)⊗ Z) = (Im(β ⊗ 1))⊕ (Ker(π)⊗ Z)

which implies that the map β ⊗ 1 is injective.

Theorem 33. If M is induced as a G-module, then Hr
T (G,M) = 0 ∀ r ∈ Z.

Proof. For r > 0, it was already proved in previous sections.

Now we prove it for the case r = 0.

Recall that M ∼= Z[G] ⊗ X for some abelian group X. So it suffices to show Hr
T (G,Z[G]⊗X) = 0

Lemma 21. Every element of Z[G]⊗X can be written uniquely in the form
∑

g ⊗ xg
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Proof. Let
m∑
i=1

gi ⊗ xgi =
n∑
j=1

gm+jxgm+j

such that gi 6= gj if 1 ≤ i < j ≤ m and gm+i 6= gm+j if 1 ≤ i < j ≤ n.

Apply the isomorphism β : Z[G] ⊗ X → IndGX (decribed in the proof of Theorem 10) on both
sides to get,

m∑
i=1

φgi,xgi =

n∑
i=1

φgm+i,xgm+i

L.H.S. is non-zero on the set {g−1
1 , g−1

2 , ..........g−1
m } and R.H.S. is non-zero on the set {g−1

m+1, g
−1
m+2, ..........g

−1
m+n}

Hence {g1, ........gm}= {gm+1, .......gm+n}. In particularm = n, and so {g1, ........gm} = {gm+1, .......g2m}
Rearrange gi such that gm+i = gi ∀ 1 ≤ i ≤ m and we are done.

Now we continue our proof of the case r = 0 of Theorem 33.

Any elementm ofM can be written uniquely in the form
∑

g g⊗xg. If g′ fixesm, then g′
(∑

g g ⊗ xg
)

=∑
g g⊗ xg and so

∑
g g
′g⊗ xg =

∑
g g⊗ xg. Comparing the terms having g′ in the first coordinate,

we get g′ ⊗ xe = g′ ⊗ xg′ ∀ g′ ∈ G. Thus x′g = xe again by Lemma 21.

Now let x ∈ MG, then gx = x ∀ g ∈ G, which implies that xg = xe ∀ g ∈ G by the observa-
tion in the preceding paragraph. Then

x =
∑
g

g ⊗ xg =
∑
g

g ⊗ xe =
∑
g

g(e⊗ xe) = Nm(e⊗ xe)

Therefore, MG ⊂ NmGM and so H0
T (G,M) = 0

Next we will prove the Theorem for the case r = −1.

If
∑

g g ⊗ xg ∈ KerNmG, then NmG(
∑

g g ⊗ xg) = 0 and so∑
g′

g′
∑
g

g ⊗ xg = 0

which implies that ∑
g

∑
g′

g′g ⊗ xg = 0

Calculating terms having 1 in the first coordinate (i.e. g′ = g−1), we get∑
g∈G

1⊗ xg = 0

by Theorem 21. Then∑
g

g ⊗ xg =
∑
g

(g − 1)⊗ xg +
∑
g

1⊗ xg =
∑
g

(g − 1)⊗ xg ∈ IGM
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Hence we have proved that Ker(NmG) ⊂ IGM and so H−1(G,M) = 0

Finally we prove the Theorem for the case r < −1.

Let M = Z[G] ⊗ X. Write X as a quotient of a free abelian group X0. Then we have a sur-
jective map X0 → X. The kernel of this map X1 is also a free abelian group because every
subgroup of a free abelian group is free abelian.

Hence we have an exact sequence

0→ X1 → X0 → X → 0

where X0 and X1 are free abelian groups.

Since Z[G] is a free Z-module, so it is flat and therefore, upon tensoring with Z[G], we get an
exact sequence,

0→M1 →M0 →M → 0

where M1 = Z[G]⊗X1 and M0 = Z[G]⊗X0. By the previous cases, we know that Hr
T (G,M0) =

Hr
T (G,M1) = 0 ∀ r ≥ −1.

But M1 is a free G-module since X1 is a free abelian group. Similarly M0 is a free G-module.
Hence M0 and M1 are projective as G-modules and thus Hr(G,M0) = Hr(G,M1) = 0 for all r ≥ 0
which means that Hr

T (G,M0) = Hr
T (G,M1) = 0 for all r ≤ −2. Since we already know by the previ-

ous cases that Hr
T (G,M0) = Hr

T (G,M1) = 0 for all r ≥ −1, so we get Hr
T (G,M0) = Hr

T (G,M1) = 0
for all r ∈ Z. Now by Theorem 32, we know that the Tate cohomology sequence

...→ Hr
T (G,M0)→ Hr

T (G,M)→ Hr+1
T (G,M1)→ ...

is exact which shows that Hr
T (G,M) = 0 for all r ∈ Z.

2.12 Alternative approach to Tate Cohomology

Now we describe an alternate description of Tate cohomology as described in [2]. In the later
sections, we will use both the descriptions interchangeably. All cohomology groups will be Tate
and we will drop the subscript T .

2.12.1 Cohomology groups

Throughout this section, we will assume that G is a finite group. For q ≥ 1, we consider all q-tuples
(σ1, ..., σq), where the σi run through the group G. We use these q-tuples to generate G-modules
Xq i.e. we define

Xq = X−q−1 =
⊕

Z[G](σ1, ..., σq)

For q = 0, we put
X0 = X−1 = Z[G]
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where we choose 1 ∈ Z[G] as the generator. In particular, the modules

..., X−2, X−1, X0, X1, X2, ...

are free G-modules. For any G-module A, we set

Aq = HomG(Xq, A)

There is an exact sequence

...
d−2←−− X−2

d−1←−− X−1
d0←− X0

d1←− X1
d2←− X2

d3←− ...

which induces the complex

...
∂−2−−→ A−2

∂−1−−→ A−1
∂0−→ A0

∂1−→ A1
∂2−→ A2

∂3−→ ...

Contrary to the first sequence, the second sequence need not be exact.

Definition 7. For all q ∈ Z, we define the factor group

Hq(G,A) = Ker(∂q+1)/Im(∂q)

is called the qth cohomology group with coefficients in A.

Theorem 34. If
0→ A→ B → C → 0

is an exact sequence of G-modules, then there exists a canonical homomorphism

δq : Hq(G,C)→ Hq+1(G,A)

Detailed description of the maps dq , ∂q and δq can be found on page 13, 16 and 21 respectively of
[2].

Theorem 35. If

0 A B C 0

0 A′ B′ C ′ 0

i

f

j

g h

i′ j′

(2.29)

is a commutative diagram of G-modules with exact rows, then the following diagram is also com-
mutative :

Hq(G,C) Hq+1(G,A)

Hq(G,C ′) Hq+1(G,A′)

δq

h̄q f̄q+1

δq

(2.30)

where h̄q is the map induced by h and f̄q+1 is the map induced by f on the cohomology groups of
dimension q and (q + 1) respectively.

Proof. The proof follows immediately from the description of δq. See Proposition 3.5, Page 24, [2]
for details.
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2.12.2 Dimension Shifting

From now onwards, we denote the element
∑

σ∈G σ of Z[G] by NG. By NG(a), we would mean∑
σ∈G σa. Define the homomorphism

ε : Z[G]→ Z

with

ε

(∑
σ∈G

nσσ

)
=
∑
σ∈G

nσ

and the homomorphism
µ : Z→ Z[G]

such that µ(n) = nNG We denote by IG the augmentation ideal (Kernel of ε) of Z[G] and JG the
factor module Z[G]/ZNG. Then we get the exact sequences (which are known as the augmentation
and coaugmentation sequence respectively)

0→ IG → Z[G]
ε−→ Z→ 0,

0→ Z µ−→ Z[G]→ JG → 0

All terms in these exact sequences are free Z-modules (See Proposition (1.2), page 4, [2] for proof).

Lemma 22. For all G-modules A, we have the exact sequences

0→ IG ⊗A→ Z[G]⊗A→ A→ 0

and
0→ A→ Z[G]⊗A→ JG ⊗A→ 0

Proof. It follows directly from Lemma 20.

We know by Theorem 10 that Z[G]⊗M is an induced module and so by Theorem 33, for every q
and every subgroup H ∈ G. we have isomorphisms

δ : Hq−1(H,A1)→ Hq(H,A)

where A1 = JG ⊗A and
δ−1 : Hq+1(H,A−1)→ Hq(H,A)

where A−1 = IG ⊗A. We can iterate this process.

For every m ∈ Z such that m > 0, set

Am = JG ⊗ JG ⊗ ...⊗ JG ⊗A

where the number of times JG appears in the tensor product is m.

For every m ∈ Z such that m < 0, set

Am = IG ⊗ IG ⊗ ...⊗ IG ⊗A
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where the number of times IG appears in the tensor product is |m|.

Composition of the isomorphism δ (or δ−1) with itself |m| times gives us the isomorphism

δm : Hq−m(H,Am)→ Hq(H,A)

This technique will help us to reduce many definitions and proofs to the case of zero-dimensional
cohomology which we understand better. This method is called the method of dimension shifting.

We demonstrate an immediate application of dimension shifting.

Lemma 23. Let G be a finite group of order n and A be a G-module. Then

nHq(G,A) = 0

for all q ∈ Z.

Proof. If q = 0, then na = NG(a) for any a ∈ AG and so n(a + NGA) = na + NGA = 0. This
proves the Lemma for q = 0 case. The general case now follows from the commutative diagram :

H0(G,Aq) Hq(G,A)

H0(G,Aq) Hq(G,A)

δq

n n

δq

(2.31)

Definition 8. An abelian group A is said to be uniquely divisible if for every a ∈ A and every
natural number n, the equation nx = a has a unique solution.

Corollary 4. A uniquely divisible G-module A has trivial cohomology.

Proof. Let n = |G|. Since A is uniquely divisible, the map A → A given by x 7→ nx is bijective
and therefore induces an isomorphism

Hq(G,A)→ Hq(G,A)

given by φ̄ 7→ nφ̄. Therefore,
Hq(G,A) ∼= nHq(G,A) = 0

With the help of the dimension shifting technique, we can get an analogue of the inflation restriction
exact sequence (Theorem 24) for higher dimensions though only under certain conditions.

Theorem 36. Let A be a G-module and H is a normal subgroup of G. If H i(H,A) = 0 for
0 < i < q and q ≥ 1, then the sequence

0→ Hq(G/H,AH)
inf−−→ Hq(G,A)

res−−→ Hq(H,A)

is exact.
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Proof. We prove this by induction on q. The base case q = 1 has already been proved (Theorem
24). Now assume q > 1 and set B = Z[G]⊗A and C = JG ⊗A. We have an exact sequence

0→ A→ B → C → 0

By the hypothesis of the theorem, we have

H1(G,A) = 0

and thus the long exact sequence for cohomology (Theorem 18) shows that the following sequence
is also exact :

0→ AH → BH → CH → 0

Now by Theorem 27 and Theorem 25, we have the following commutative diagram :

0 Hq−1(G/H,CH) Hq−1(G,C) Hq−1(H,C)

0 Hq(G/H,AH) Hq(G,A) Hq(H,C)

inf

δ

res

δ δ

inf res

(2.32)

Since B is an induced G-module by Theorem 10, so the middle vertical map is an isomorphism.
Moreover by Theorem 12, B is an induced H-module and BH is also an induced G/H module.
Therefore, the first and third vertical maps are also isomorphisms.

Since the third vertical map is an isomorphism, so

H i(H,C) ∼= H i+1(H,A) = 0

for all 0 < i < q − 1. Thus C satisfies the hypothesis of the Theorem for (q − 1) and therefore by
the induction hypothesis, the sequence in the top row of the commutative diagram is exact. Since
all the vertical maps are isomorphisms, so the sequence in bottom row is also exact and we are
done.

Theorem 37. (Shapiro’s Lemma) Let

A =
⊕

σ∈G/H

σD

for some H-module D ⊂ A. Then the composition of homomorphisms

Hq(G,A)
res−−→ Hq(H,A)

π−→ Hq(H,D)

is an isomorphism where π is induced by the natural projection A
π−→ D.

Proof. See Theorem 4.19, Page 43, [2].

If we take A = IndGHM and D = M , we know by proof of Theorem 11 that

A =
⊕

σ∈G/H

σD

Then by Theorem 37, we have

Hq(G, IndGH(M)) ∼= Hq(H,M)
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2.12.3 Functorial Maps

We now see how the compatibility condition of Theorem 25 enables us to give a definition of
restriction map on the whole Tate cohomology.

Definition 9. Let G be a finite group and H a subgroup of G. Then restriction is the uniquely
determined family of homomorphisms

resq : Hq(G,A)→ Hq(H,A)

with the properties :

1. If q = 0, then
res0 : H0(G,A)→ H0(H,A)

is given by
a+NGA 7→ a+NHA

2. For every exact sequence 0→ A→ B → C → 0 of G-modules, the following diagram is commu-
tative :

Hr(G,C) Hr+1(G,A)

Hr(H,C) Hr+1(H,A)

δ

resq resq+1

δ

(2.33)

for all q ∈ Z.

Condition 2 in the definition means that we have to define the resq map by the commutative dia-
gram :

H0(G,Aq) Hq(G,A)

H0(H,Aq) Hq(H,A)

δq

res0 resq

δq

(2.34)

By Condition 1, we know the restriction maps res0 in dimension 0. Since the horizontal maps in
the diagram are isomorphisms, so we get unique maps resq in dimension q.

Similarly we will define corestriction maps on the whole of Tate cohomology.

In case q = −1, we define the corestriction homomorphism

cor−1 : H−1(H,A)→ H−1(G,A)

given by
a+ IHA 7→ a+ IGA
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Lemma 24. Let 0 → A → B → C → 0 be an exact sequence of G-modules. Then the following
diagram is commutative :

H−1(H,C) H0(H,A)

H−1(G,C) H0(G,A)

δ

cor−1 cor0

δ

(2.35)

Proof. This can be shown by using the description of the corestriction map in dimension 0 given in
Remark 7 and the description of the map H−1(H,C)→ H0(H,A) provided in Remark 2.21.

Definition 10. Let G be a finite group, and let H be a subgroup of G. Then corestriction is the
uniquely determined family of homomorphisms

corq : Hq(H,A)→ Hq(G,A)

with the properties :

1. If q = 0, then
cor0 : H0(H,A)→ H0(G,A)

is given by
a+NHA 7→ NG/Ha+NGA

2. For every exact sequence 0→ A→ B → C → 0 of G-modules, the following diagram is commu-
tative

Hr(H,C) Hr+1(H,A)

Hr(G,C) Hr+1(G,A)

δ

corq corq+1

δ

(2.36)

for all q ∈ Z.

Condition 2 in the definition means that we have to define the corq map by the commutative dia-
gram :

H0(H,Aq) Hq(H,A)

H0(G,Aq) Hq(G,A)

δq

cor0 corq

δq

(2.37)
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Theorem 38. Let H ⊂ G be a subgroup. The homomorphism

κ : Hab → Gab

induced by the corestriction homomorphism cor−2 : H−2(H,Z) → H−2(G,Z) coincides with the
canonical injective homomorphism σHc 7→ σGc.

Proof. We have the exact sequence

0→ IG → Z[G]→ Z→ 0

By condition 2 in the definition of corestriction maps, we have a commutative diagram :

H−2(H,Z) H−1(H, IG)

H−2(G,Z) H−1(G, IG)

δ

cor−2 cor−1

δ

(2.38)

Moreover by Theorem 35, we get the commutativity of the following diagram :

H−2(H,Z) H−1(H, IH)

H−2(H,Z) H−1(H, IG)

δ

id f−1

δ

(2.39)

where f−1 is the map induced by the inclusion map IH → IG. Composition of these two diagrams
gives us the following commutative diagram :

H−2(H,Z) H−1(H, IH)

H−2(G,Z) H−1(G, IG)

δ

cor−2 cor−1◦f−1

δ

(2.40)

By the description of cor−1 and f−1, we have cor−1 ◦f−1 is just the inclusion map IH/I
2
H → IG/I

2
G.

By the proof of Theorem 31, we know that the following diagram commutes :

H−2(H,Z) H−1(H, IH) Hab

H−2(G,Z) H−1(G, IG) Gab

δ

cor−2 cor−1◦f−1 i

δ

(2.41)

Thus the map Hab → Gab induced by cor−2 is same as that induced by cor−1 ◦ f−1 which is the
inclusion map.
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Definition 11. For any abelian group A and prime number p, we define the p-primary component
A(p) of A to be the subgroup consisting of all elements killed by a power of p.

Theorem 39. Let H ⊂ G be a subgroup. Then the composition

Hq(G,A)
res−−→ Hq(H,A)

cor−−→ Hq(G,A)

is given as :
cor ◦ res = (G : H) id

Proof. We have already shown this for all cohomology groups and hence it can be shown for all
Tate cohomology groups using dimension shifting.

Corollary 5. Let G be a finite group, and let Gp be its Sylow p-subgroup. For every G-module M ,
the restriction map

Res : Hr(G,M)→ Hr(Gp,M)

is injective on the p-primary component of Hr(G,M).

Proof. By Theorem 39, we know that the composite

Cor ◦Res : Hr(G,M)→ Hr(Gp,M)→ Hr(G,M)

is multiplication by (G : Gp). Let γ be in the p-primary component of Hr(G,M) such that
Cor(Res(γ)) = 0. This means that (G : Gp)γ = 0. But also pkγ = 0 for some k ∈ N since γ
is in the p-primary component of Hr(G,M). Since Gp is the Sylow p-subgroup of G, so p does
not divide (G : Gp). This shows that gcd(pk, (G : Gp)) = 1, so there exist integers a and b such
that apk + b(G : Gp) = 1. Since pkγ = (G : Gp)γ = 0, so γ = 0 and thus Cor ◦ Res is injective
on the p-primary component of Hr(G,M) which in particular means that Res is injective on the
p-primary component of Hr(G,M).

2.12.4 Cup Products

Let A and B be G-modules. Then A ⊗ B is a G-module, and the map (a, b) 7→ a ⊗ b induces a
canonical mapping

AG ×BG → (A×B)G

which maps NGA×NGB to NG(A⊗B). Hence the tensor product induces a bilinear mapping

H0(G,A)×H0(G,B)→ H0(G,A⊗B)

given by
(a, b) 7→ a⊗ b

We call the element a⊗ b ∈ H0(G,A⊗B) the cup product of a ∈ H0(G,A) and b ∈ H0(G,B), and
denote it by

a ∪ b = a⊗ b

Now we will show how the cup product extends to arbitrary dimensions just from this case.
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Definition 12. There exists a unique family of bilinear mappings

Hp(G,A)×Hq(G,B)→ Hp+q(G,A⊗B)

defined for all G-modules A and B and all p, q non-negative integers satisfying the following con-
ditions :

1. For p = q = 0, the pairing is given by

(a, b) 7→ a⊗ b

2. If
0→ A→ A′ → A

′′ → 0

is an exact sequence of G-modules such that

0→ A⊗B → A′ ⊗B → A
′′ ⊗B → 0

is also exact, then
δa
′′ ∪ b = δ(a

′′ ∪ b)

where a
′′ ∈ Hp(G,A

′′
), b ∈ Hq(G,B) and δ denotes the connecting homomorphisms

Hp(G,A
′′
)→ Hp+1(G,A)

and

Hp+q(G,A
′′ ⊗B)→ Hp+q+1(G,A⊗B)

3. If
0→ B → B′ → B

′′ → 0

is an exact sequence of G-modules such that

0→ A⊗B → A⊗B′ → A⊗B′′ → 0

is also exact, then
a ∪ δb′′ = (−1)pδ(a ∪ b′′)

where a ∈ Hp(G,A), b
′′ ∈ Hq(G,B

′′
)

We will use these three conditions to give the definition of cup product in arbitrary dimensions
(p, q). We know the cup product map in the dimension (0, 0) by Condition 1. The strategy is to
go from (0, 0) to (p, 0) through Condition 2 and then from (p, 0) to (p, q) through Condition 3.

To go from (p, 0) to (p, q), we would need the identification (A ⊗ B)q with (A ⊗ Bq). To see
this, observe that if q > 0, then

Bq = JG ⊗ JG ⊗ ...JG ⊗B
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and so
A⊗Bq = A⊗ JG ⊗ JG ⊗ ...JG ⊗B

which is naturally identified with

JG ⊗ JG ⊗ ...JG ⊗ (A⊗B) = (A⊗B)q

Similarly if q < 0, then
Bq = IG ⊗ IG ⊗ ...IG ⊗B

and so
A⊗Bq = A⊗ IG ⊗ IG ⊗ ...IG ⊗B

which is naturally identified with

IG ⊗ IG ⊗ ...IG ⊗ (A⊗B) = (A⊗B)q

Hence in either case, (A⊗B)q can be identified with (A⊗Bq).

Similarly we can identify (A⊗Bq)p with Ap⊗Bq. This would be required to go from (0, 0) to (p, 0).

For any b ∈ H0(G,Bq), condition 2 of the definition gives us the commutative diagram :

H0(G,Ap) H0(G,Ap ⊗Bq)

Hp(G,A) Hp(G,A⊗Bq)

∪ b

δp δp

∪ b

(2.42)

Since we know the map in the (0, 0) level (upper row), so we obtain a unique map in the (p, 0) level
(lower row).

For any a ∈ Hp(G,A), condition 3 of the definition gives us the commutative diagram :

H0(G,Bq) Hp(G, (A⊗B)q)

Hq(G,B) Hp+q(G,A⊗B)

a ∪

δq (−1)pqδq

a ∪

(2.43)

Since we know the map in the (p, 0) level (upper row) by the previous diagram, so we get a unique
map in the (p, q) level (lower row).

Note that here we get the factor (−1)pq because on applying δ once we get a factor of (−1)p

by Condition 3 of the definition and here we are applying it |q| times.

Remark 12. We have shown how these three conditions uniquely determine the cup product but
we still need to show that the cup product so defined satisfies condition 2 and 3. This is a natural
but lengthy check. Please refer to Page 46, 47, [2] for details.
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2.12.5 Properties of Cup Products

Theorem 40. If we denote by ap p-cocycles of A and by bq q-cocylces of B, and by ap and bq their
respective cohomology classes, then

a0 ∪ bq = a0 ⊗ bq
and

ap ∪ b0 = ap ⊗ b0

Proof. This will follow directly from a more general description of cup product for all cohomology
groups i.e. q ≥ 0. This description is provided at the end of this section.

Lemma 25. Let A,B be G-modules, and let H be a subgroup of G. If ā ∈ Hp(G,A) and b̄ ∈
Hq(G,B), then

res(ā ∪ b̄) = res(ā) ∪ res(b̄) ∈ Hp+q(H,A⊗B)

Proof. Firstly, we prove this for the case p = q = 0. By condition 1 in the definiton of restriction
map (Definition 9), we know that res(ā) = res(a+NGA) = a+NHA and res(b̄) = res(b+NGA) =
b+NHB. Therefore by condition 1 in the definition of cup product (Definition 12), we have

res(ā) ∪ res(b̄) = (a⊗ b) +NH(A⊗B) = res(ā ∪ b̄)

Thus in the (0, 0) level, we have proved that the following square commutes :

H0(G,Ap) H0(G,Ap ⊗Bq)

H0(H,Ap) H0(H,Ap ⊗Bq)

∪ b̄

res res

∪ (res b̄)

(2.44)

We can extend this square to a cube of which this square becomes the bottom face. The top face
is constructed as :

Hp(G,A) Hp(G,A⊗Bq)

Hp(H,A) Hp(H,A⊗Bq)

∪ b̄

res res

∪ (res b̄)

(2.45)

The vertical maps in the cube are all boundary maps used for dimension shifting (going from
dimension 0 to dimension p) and are thus isomorphisms. The vertical squares also commute because
we know that the diagram 2.42 commutes. This shows that the top squares also commute which
means we have proven the theorem for the (p, 0) case. Similarly, one can extend this proof for (p, q)
level using the commutativity of diagram 2.43.

Lemma 26. Let A,B be G-modules, and let H be a subgroup of G. If ā ∈ Hp(H,A) and b̄ ∈
Hq(G,B), then

cor(ā ∪ resb̄) = ā ∪ cor(b̄) ∈ Hp+q(G,A⊗B)
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Proof. We will prove this for p = q = 0 and then we would be done by dimension shifting. By
condition 1 of definiton of restriction maps (Definition 9), we have ā = a+NGA, b̄ = b+NGB and
so res(b̄) = b+NHB which implies

ā ∪ (res b̄) = a⊗ b+NH(A⊗B)

Thus

cor(ā ∪ (res b̄)) = cor(a⊗ b+NH(A⊗B)) =
∑

σ∈G/H

σ(a⊗ b) +NG(A⊗B)

by condition 1 of definition of corestriction maps (Definition 10). But we have

σ(a⊗ b) = σ(a)⊗ σ(b) = a⊗ σ(b)

since σ ∈ G and a ∈ AG. Therefore,

cor(ā ∪ (res b̄)) =
∑

σ∈G/H

a⊗ σ(b) +NG(A⊗B) = a⊗

 ∑
σ∈G/H

σ(b)

+NG(A⊗B) = ā ∪ cor b̄

Lemma 27. Let ā ∈ Hp(G,A), b̄ ∈ Hq(G,B), and c̄ ∈ Hr(G,C). Then

ā ∪ b̄ = (−1)pq(b̄ ∪ ā)

and
(ā ∪ b̄) ∪ c̄ = ā ∪ (b̄ ∪ c̄)

where we are using the natural identification of A⊗B with B⊗A and (A⊗B)⊗C with A⊗(B⊗C).

Proof. We will prove this for p = q = 0 and then we would be done by dimension shifting. By
condition 1 of definition 12, we know that

a ∪ b = a⊗ b = b⊗ a = b ∪ a

where we have used the identification of A⊗ B with B ⊗ A given by a⊗ b 7→ b⊗ a. Similarly, we
have

(ā ∪ b̄) ∪ c̄ = ā ∪ (b̄ ∪ c̄)

by the associativity of the tensor product.

Remark 13. More precisely, one should say that (−1)pq(b̄ ∪ ā) is the image of ā ∪ b̄ under the
canonical isomorphism Hp+q(G,A ⊗ B) ∼= Hp+q(G,B ⊗ A) induced by A ⊗ B ∼= B ⊗ A, and
similarly for the second formula. This description is required for the dimension shifting step.

Now we want to compute some explicit formulas for the cup product in low dimensions. These
would turn out to be very useful in Local Class Field Theory. Now we denote by ap the p-cocycles
of A and by āp their cohomology classes in Hp(G,A). Similarly we denote by bq the q-cocycles of
B and by b̄q their cohomology classes in Hq(G,B).

Lemma 28. ā1 ∪ b̄−1 = x̄0 ∈ H0(G,A⊗B) where

x0 =
∑
τ∈G

a1(τ)⊗ τb−1
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Proof. Consider the coaugmentation sequence

0→ Z→ Z[G]→ JG → 0

Then by Lemma 20, we get the following exact sequences

0→ A→ Z[G]⊗A→ JG ⊗A→ 0

and
0→ A⊗B → Z[G]⊗ (A⊗B)→ JG ⊗ (A⊗B)→ 0

We denote Z[G]⊗A by A′ and JG ⊗A by A′′. Therefore, we can rewrite the exact sequences as

0→ A→ A′
π−→ A′′ → 0

and
0→ A⊗B → A′ ⊗B → A′′ ⊗B → 0

We think of A embedded in A′ and A⊗B embedded in A′⊗B. Since a1 is a 1-cocycle in C1(G,A),
so a1 is also a 1-cocycle in C1(G,A′). Since H1(G,A′) = 0, so a1 is a coboundary in C1(G,A′) i.e.
∃ a′0 ∈ A′ such that ∀ τ ∈ G

a1(τ) = τ(a′0)− a0

Let a′′0 = π(a′0) Now a1 = δ(a′′0) and therefore

a1 ∪ b−1 = δ(a′′0) ∪ b−1 = δ(a′′0 ∪ b−1) = δ(a′′0 ⊗ b−1)

Now we need the description of the boundary map

H−2(G,A′′ ⊗B)→ H−1(G,A⊗B)

described in Remark 11.

Firstly note that a′0⊗b−1 is a preimage of a′′0⊗b−1 in A′⊗B. Then we need to calculate NG(a′0⊗b−1).
We have

NG(a′0 ⊗ b−1) =
∑
τ∈G

τ(a′0)⊗ τ(b−1) =
∑
τ∈G

(a1(τ) + a′0)⊗ τb−1 =
∑
τ∈G

a1(τ)⊗ τb−1 + a′0 ⊗NGb−1

By definition of b−1, we know that b−1 ∈ Ker(NG) and so NGb−1 = 0. Thus

NG(a′0 ⊗ b−1) =
∑
τ∈G

a1(τ)⊗ τb−1

Since it is already in A, its preimage in A is itself, so we get

a1 ∪ b−1 = δ(a′′0 ⊗ b−1) = x0

where
x0 =

∑
τ∈G

a1(τ)⊗ τb−1

and so we are done.
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Now we restrict our attention to the case B = Z and identify A ⊗ Z with A under the map
a⊗ n 7→ na. Recall that we have the isomorphism

H−2(G,Z) ∼= Gab

If σ ∈ G, let σ̄ be the element in H−2(G,Z) corresponding to σGC ∈ Gab

Lemma 29. a1 ∪ σ = a1(σ) ∈ H−1(G,A)

Proof. The first thing we have to verify is that a1(σ) ∈ Ker(NG) because then only we can talk
about its cohomology class in H−1(G,A). To see this, note that

NG(a1(σ)) =
∑
τ∈G

τ(a1(σ)) =
∑
τ∈G

τ(σ(a′0)− a′0) =
∑
τ∈G

τσ(a′0)−
∑
τ∈G

τ(a′0) = 0

where a′0 is as in Lemma 28. Consider the augmentation sequence

0→ IG → Z[G]→ Z→ 0

By Lemma 20, we get that the following sequence is also exact :

0→ A⊗ IG → A⊗ Z[G]→ A→ 0

Since A⊗ Z[G] is an induced G-module, so we get the isomorphism

δ : H−1(G,A)→ H0(G,A⊗ IG)

Therefore, it suffices to show that
δ(a1 ∪ σ) = δ(a1(σ))

To calculate, δ(a1(σ)), we again need the description of the boundary map

H−2(G,A′′ ⊗B)→ H−1(G,A⊗B)

described in Remark 11.

Firstly observe that a1(σ)⊗ 1 is a preimage of a1(σ) in A⊗ Z[G]. Now we take its norm which is∑
τ∈G

τ(a1(σ)⊗ 1) =
∑
τ∈G

τ(a1(σ))⊗ τ

Finally we have to take a preimage of ∑
τ∈G

τ(a1(σ))⊗ τ

in A⊗ IG. Note that∑
τ∈G

τ(a1(σ))⊗ τ =
∑
τ∈G

τ(a1(σ))⊗ (τ − 1) +
∑
τ∈G

τ(a1(σ))⊗ 1

But ∑
τ∈G

τ(a1(σ))⊗ 1 =

(∑
τ∈G

τ(a1(σ))

)
⊗ 1 = NG(a1(σ))⊗ 1 = 0
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since a1(σ) ∈ Ker(NG). Therefore,∑
τ∈G

τ(a1(σ))⊗ τ =
∑
τ∈G

τ(a1(σ))⊗ (τ − 1) ∈ A⊗ IG

and thus
∑

τ∈G τ(a1(σ))⊗ τ is a preimage of itself in A⊗ IG and so we have

δ(a1(σ)) = x0

where
x0 =

∑
τ∈G

τ(a1(σ))⊗ τ

Now we will calculate δ(a1 ∪ σ).

From the proof of Theorem 31 and the definition of σ̄, we have

δ(σ) = σ − 1

Thus
δ(a1 ∪ σ)) = −(a1 ∪ δ(σ) = −(a1 ∪ σ − 1) = y0

By the previous lemma, we have

y0 = −
∑
τ∈G

a1(τ)⊗ τ(σ − 1) =
∑
τ∈G

a1(τ)⊗ τ −
∑
τ∈G

a1(τ)⊗ τσ

Since a1 is a cocycle, so a1(τ) = a1(τσ)− τ(a1(σ)), and therefore,∑
τ∈G

a1(τ)⊗ τσ =
∑
τ∈G

a1(τσ)⊗ τσ −
∑
τ∈G

τ(a1(σ))⊗ τσ =
∑
τ∈G

a1(τ)⊗ τ −
∑
τ∈G

τ(a1(σ))⊗ τσ

Hence
y0 =

∑
τ∈G

τ(a1(σ))⊗ τσ =
∑
τ∈G

τ(a1(σ)⊗ σ)

Thus
y0 − x0 =

∑
τ∈G

τ(a1(σ)⊗ (σ − 1)) = NG (a1(σ)⊗ (σ − 1))

which means
y0 = x0

and so we are done.

In fact for cohomology groups (i.e. q ≥ 0), one can give an explicit description of the cup product.

Define the cup product pairing as

Φ : Hr(G,M)×Hs(G,N)→ Hr+s(G,M ⊗N)

such that
(m,n) 7→ m ∪ n

where m ∪ n is defined as follows.
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Let φ be a cocycle representing m and ψ be a cocycle representing n.

Then m ∪ n is represented by the cocycle η of Hr+s(G,M ⊗N) where η is given as :

η : Gr+s →M ⊗N

such that
η(g1, .., gr+s) = φ(g1, .., gr)⊗ (g1, .., grψ(gr+1, .., gr+s))

Firstly we will prove that η is infact a cocycle i.e. dr+s(η) = 0 We have

(dr+s(η))(g1, g2, ..., gr+s+1) = g1η(g2, ..., gr+s+1) +
r+s∑
j=1

(−1)jη(g1, ..., gjgj+1, ..., gr+s+1)

+(−1)r+s+1η(g1, ..., gr+s)

(2.46)

Now

g1η(g2, ..., gr+s+1) = g1(φ(g2, ..., gr+1)⊗ g2...gr+1(ψ(gr+2, ..., gr+s+1)))

= g1(φ(g2, ..., gr+1))⊗ g1...gr+1ψ(gr+2, ..., gr+s+1)
(2.47)

and

r+s∑
j=1

(−1)jη(g1, ..., gjgj+1, ..., gr+s+1) =
r∑
j=1

(−1)jφ(g1, ..., gjgj+1, ..., gr+1)⊗ g1...gr+1ψ(gr+2, ..., gr+s+1)

+

r+s∑
j=r+1

(−1)jφ(g1, ..., gr)⊗ g1...grψ(gr+1, ...gjgj+1, ..., gr+s)

(2.48)

Making a change of variables j = J + r in the second summation, we get

r+s∑
j=1

(−1)jη(g1, ..., gjgj+1, ..., gr+s+1) =

r∑
j=1

(−1)jφ(g1, ..., gjgj+1, ..., gr+1)⊗ g1...gr+1ψ(gr+2, ..., gr+s+1)

+ (−1)r
s∑
j=1

(−1)jφ(g1, ..., gr)⊗ g1...grψ(gr+1, ...gr+jgr+j+1, ..., gr+s)

(2.49)

Combining these equations together, we get

(dr+sη)(g1, g2, ..., gr+s+1) = g1(φ(g2, ..., gr+1))⊗ g1...gr+1ψ(gr+2, ..., gr+s+1)

+
r∑
j=1

(−1)jφ(g1, ..., gjgj+1, ..., gr+1)⊗ g1...gr+1(ψ(gr+2, ..., gr+s+1)) + (−1)rφ(g1, ...gr)⊗

g1...gr

 s∑
j=1

(−1)jφ(g1, ..., gr)⊗ g1...grψ(gr+1, ...gr+jgr+j+1, ..., gr+s) + (−1)s+1ψ(gr+1, ..., gr+s)


(2.50)
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The term in the big paranthesis becomes equal to

−gr+1ψ(gr+2, ..., gr+s+1)

since ψ is a cocycle. Therefore, we get (dr+sη)(g1, g2, ..., gr+s+1) =(
g1(φ(g2, ..., gr+1) +

r∑
i=1

(−1)jφ(g1, ..., gjgj+1, ..., gr+s+1 + (−1)r+1φ(g1, ..., gr)

)
⊗ g1...gr+1ψ(gr+2, ..., gr+s+1)

(2.51)

which is 0 since φ is also a cocycle.

Condition 1 is an immediate consequence of the definition of the cup product and the identifi-
cation C0(G,M) with M . Conditions 2 and 3 can be proven by a direct but very lengthy check.

2.13 The Cohomology of Finite Cyclic Groups

Q,Z and Q/Z are regarded as G-modules with trivial action.

Lemma 30. For every finite group G.
1. Hr

T (G,Q) = 0 ∀ r ∈ Z
2. H0

T (G,Z) = Z
(G:1)Z

3. H1
T (G,Z) = 0

4. H2(G,Z) ∼= Hom(G,Q/Z)

Proof. Statement 1 is an immediate consequence of Corollary 4 since Q is a uniquely divisible group.

Clearly

H0
T (G,Z) =

ZG

NmGZ
=

Z
(G : 1)Z

We also know that
H1
T (G,Z) = H1(G,Z) = Hom(G,Z)

Let φ : G → Z be a homomorphism. Take any g ∈ G. Then gn = e where n = |G|. Thus,
φ(gn) = nφ(g) = 0 which means that φ(g) = 0 ∀ g ∈ G. Therefore, φ = 0 and we get H1(G,Z) = 0.

Consider the exact sequence
0→ Z→ Q→ Q/Z→ 0

This sequence gives rise to a very long exact sequence

...→ H1(G,Q) −→ H1(G,Q/Z) −→ H2(G,Z) −→ H2(G,Q)→ ...

Since H1(G,Q) = H2(G,Q) = 0, we get

H2(G,Z) ∼= H1(G,Q/Z) = Hom(G,Q/Z)
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Theorem 41. Let G be a cyclic group of finite order. A choice of a generator for G determines
isomorphisms

Hr
T (G,M)→ Hr+2

T (G,M)

for all G-modules M and all r ∈ Z.

Proof. We have the augmentation sequence

0→ IG → Z[G]→ Z→ 0

Therefore by Lemma 20, we get that the sequence

0→ IG ⊗M → Z[G]⊗M →M → 0

is also exact.

For any generator σ of G, it is straightforward to show that the sequence

0→ Z η1−→ Z[G]
η2−→ IG → 0

is also exact where η1(n) = nNG =
∑

g∈G gn and η2(x) = (σ(x)− x) for all x ∈ Z[G].

Therefore by Lemma 20, we get that the sequence

0→M
η1⊗1−−−→ Z[G]⊗M η2⊗1−−−→ IG ⊗M → 0

is also exact. Now we know that
Z[G]⊗M

is an induced G-module by Theorem 10 and so has trivial Tate cohomology by Theorem 33 i.e.

Hr
T (G,Z[G]⊗M) = 0

for all r ∈ Z. From these two exact sequences, we get the isomorphisms

δ : Hr
T (G,M)→ Hr+1

T (G, IG ⊗M)

and
δ : Hr+1

T (G, IG ⊗M)→ Hr+2
T (G,M)

Combining these two isomorphisms, we get

Hr
T (G,M) ∼= Hr+2

T (G,M)

for all r ∈ Z.

Let G be a finite cyclic group and let M be a G-module. If the cohomology groups Hr(G,M)
are finite (which means that all Tate cohomology groups are finite by Theorem 41), we define the
Herbrand quotient of M to be

h(M) =
|H0

T (G,M)|
|H−1

T (G,M)|
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Theorem 42. Let
0→M ′ →M →M ′′ → 0

be an exact sequence of G-modules. If any two of the Herbrand quotients h(M ′), h(M) and h(M ′′)
are defined, then the third is also defined and

h(M) = h(M ′)h(M ′′)

Proof. By Theorem 32, we know that there is a very long exact sequence

...→ H−1
T (M)→ H−1

T (M ′′)→ H0
T (M ′)→ H0

T (M)→ H0
T (M ′′)→ H1(M ′)→ H1(M)→ H1(M ′′)→ ...

The first statement in the proof now follows immediately.

We can truncate this sequence to get another exact sequence

0→ K → H0
T (M ′)→ H0

T (M)→ H0
T (M ′′)→ H1(M ′)→ H1(M)→ H1(M ′′)→ K ′ → 0

where K is the cokernel of the map

H−1
T (M)→ H−1

T (M ′′)

and K ′ is the cokernel of the map
H1
T (M)→ H1

T (M ′′)

We know by Theorem 41 that H−1
T (M) ∼= H1

T (M) and H−1
T (M ′′) ∼= H1

T (M ′′). Under the same
isomorphism, we get K ∼= K.

To complete the proof of the second statement, we need a helping lemma :

Lemma 31. Let
A0 → A1 → ....→ Ar → 0

be an exact sequence of finite groups. Then

|A0| |A2| |A4| ...
|A1| |A3| |A5| ...

= 1

Proof. Firstly we prove it for r = 2 i.e. for short exact sequences.

Then we are given an exact sequence

0→ A0 → A1 → A2 → 0

Thus

A2
∼=
A1

A0

which shows that
|A0| |A2|
|A1|

= 1

and we are done.

70



Now we prove the result in generality.

Note that if
A0

α0−→ A1
α1−→ ...→ Ar−1

αr−1−−−→ Ar → 0

is exact, then cokernel of the map αi−1 is

Ai
Im(αi−1)

=
Ai

Ker(αi)

which by the first isomorphism theorem is isomorphic to

Im(αi) = Ker(αi+1)

Hence for each i,
Coker(αi−1) = Ker(αi+1)

We denote it by Ci i.e.
Ci = Coker(αi−1) = Ker(αi+1)

The exact sequence can be broken into short exact sequences,

0→ A0 → A1 → C1 → 0

0→ C1 → A2 → C2 → 0

and so on till
0→ Cr−1 → Ar−1 → Ar → 0

We have

1 =
|A0| |C1|
|A1|

=
|A0| |A2|
|A1| |C2|

since |C1| = |A2|
|C2| . Similarly

1 =
|A0| |A2| |C3|
|A1| |A3|

and so on. This completes the proof of Lemma 31.

Now we continue our proof of Theorem 42. Applying this Lemma 31 to the exact sequence

0→ K → H0
T (M ′)→ H0

T (M)→ H0
T (M ′′)→ H1(M ′)→ H1(M)→ H1(M ′′)→ K ′ → 0

we find that,

|H0
T (M ′)| |H0

T (M ′′)| |H1(M)| |K ′| = |K| |H0
T (M)| |H1(M ′)| |H1(M ′′)|

Since K ∼= K ′, so |K| = |K ′| and the equation reduces to

|H0
T (M ′)| |H0

T (M ′′)| |H1(M)| = |H0
T (M)| |H1(M ′)| |H1(M ′′)|

Thus,
|H0

T (M ′)|
|H1(M ′)|

|H0
T (M ′′)|

|H1(M ′′)|
=
|H0

T (M)|
|H1(M)|

Therefore,
h(M) = h(M ′) h(M ′′)

and we are done.
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Theorem 43. If M is a finite module, then h(M) = 1.

Proof. It is easy to verify that the sequence

0→MG i−→M
σ−1−−→M

π−→MG → 0

is exact where i is the inclusion map and π is the projection map. By Lemma 31, we obtain
|MG| = |MG|. By the section on Tate groups (Equation 2.21), we know that there is an exact
sequence

0→ H−1
T (M)→MG

NmG−−−→MG → H0
T (M)→ 0

By Lemma 31 again, we get |H−1
T (M)| = |H0

T (M)|.

Hence h(M) = 1.

Corollary 6. Let α : M → N be a homomorphism of G-modules with finite kernel and cokernel.
If either h(M) or h(N) is defined, then so also is the other, and they are equal.

Proof. Note that since Ker(α) and Coker(α) are finite, so h(Ker(α)) = h(Coker(α)) = 1. Suppose
that h(N) is defined. Consider the short exact sequence

0→ α(M)→ N → Coker(α)→ 0

Since h(N) and h(Coker(α)) are defined, so h(α(M)) is also defined and is equal to h(N) by
Theorem 42. Also the following sequence is exact

0→ Ker(α)→M → α(M)→ 0

Since h(α(M)) and h(Ker(α)) are defined, so h(M) is also defined and equal to h(N) by
Theorem 42.

2.14 Tate’s Theorem

From now onwards all cohomology groups will be Tate groups and so we drop the subscript T
except for the main statements.

Theorem 44. Let G be a finite group and let M be a G-module. If H i(H,M) = H i+1(H,M) = 0
for all subgroups H of G for some i ∈ Z, then Hr

T (G,M) = 0 ∀ r ∈ Z.

Proof. If G is cyclic, this follows directly from Theorem 41 as Hr(G,M) ∼= H1(G,M) if r is odd
and Hr(G,M) ∼= H2(G,M) if r is even.

Now let us assume that G is solvable. We will prove the theorem in this case by induction on
|G|. Since G is a finite solvable group, so G has a finite composition series G = G0 ⊃ G1 ⊃ ... ⊃ Gn
such that Gi+1 is normal in Gi and Gi/Gi+1 is abelian for all i. Moreover, we can choose a re-
finement of the composition series such that Gi/Gi+1 is a simple group for every i. Since a finite
simple abelian group is cyclic, so Gi/Gi+1 is a cyclic group for all i.

Therefore, G contains a proper normal subgroup H such that G/H is cyclic. Since |H| < |G|,
Hr(H,M) = 0 ∀ r ∈ Z by the induction hypothesis. Now we have the restriction - inflation exact
sequences ∀ r ∈ N

0→ Hr(G/H,MH)
Inf−−→ Hr(G,M)

Res−−→ Hr(H,M)
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Since H i(G,M) = 0 and H i+1(G,M) = 0, so H i(G/H,MH) and H i+1(G/H,MH) are also 0.
Moreover, G/H is cyclic, thus Hr(G/H,MH) = 0 ∀ r ∈ Z. Also since Hr(H,M) = 0 ∀ r ∈ Z, so by
the exact sequence we get Hr(G,M) = 0 ∀ r ∈ N. Now we will show that H0

T (G,M) = 0. Firstly
we will use NmG = NmG/H ◦NmH to prove this fact. Then we will prove NmG = NmG/H ◦NmH .

We know that

H0
T (G,M) =

MG

NmGM

Take any x ∈MG, we want to show that x ∈ NmG(M). We know that H0
T (G/H,MH) = 0. So,

(MH)G/H = NmG/HM
H

Note that
(MH)G/H = {m ∈MH : gm = m ∀g ∈ G} = MG

Thus, MG = NmG/HM
H and so x ∈ NmG/HM

H . Therefore, x = NmG/Hy for some y ∈MH

Now MH = NmHM since H0(H,M) = 0 and so y = NmHz for some z ∈M . Hence,

x = NmG/HNmHz = NmGz ∈ NmG(M)

since NmG/H ◦NmH = NmG,

Now we will prove NmG/H ◦NmH = NmG

We have,

NmG/HNmHz = NmG/H

∑
h∈H

hz

 =
∑
s∈S

s
∑
h inH

hz =
∑
s∈S

∑
h∈H

shz =
∑
g∈G

gz = NmGz

where S is a set of coset representatives of H in G.

Now we have proved Hr(G,M) = 0 ∀ r ≥ 0.

We have the exact sequence
0→M ′ → Z[G]⊗M →M → 0

from the previous section. Since Z[G] ⊗M is induced as a G-module, so it is also induced as an
H-module by Theorem 12, thus ∀ r ∈ Z and for all H ′ subgroup of G,

Hr(H ′,Z[G]⊗M) = 0

by Theorem 33. Thus ∀ r ∈ Z and for all H ′ subgroup of G,

Hr(H ′,M) ∼= Hr+1(H ′,M ′)

Since H i(H ′,M) = H i+1(H ′,M) = 0, so H i+1(H,M ′) = H i+2(H,M ′) = 0 and thus M ′ satisfies
the hypothesis of the theorem.

Therefore, Hr(G,M ′) = 0 for all r ≥ 0 because we had proved that whenever G is a solvable

73



group and (G,M) satisfy the hypothesis of the Theorem, then Hr(G,M) = 0 ∀ r ≥ 0.

The isomorphism now proves that whenever G is a solvable group and (G,M) satisfy the hy-
pothesis of the Theorem, then Hr(G,M) = 0 ∀ r ≥ −1.

Again since (G,M ′) satisfies the hypothesis, so Hr(G,M ′) = 0 ∀ r ≥ −1. But using the iso-
morphism again, we get Hr(G,M) = 0 ∀ r ≥ −2 and so on. Hence we have proved the theorem in
the case when G is solvable.

Now consider the case of an arbitrary group G. Let Gp denote a Sylow p-subgroup. We know
that Gp is solvable. If (G,M) satisfy the hypothesis of the theorem, so do (Gp,M) ∀ p since sub-
groups of Gp are also subgroups of G. Hence by Corollary 5, we know that p-primary component
of Hr(G,M) is 0 ∀ p. But since Hr(G,M) has finite order as |G|Hr(G,M) = 0 by Theorem 23, so
Hr(G,M) = 0 ∀ r ∈ Z and we are done.

Theorem 45. (Tate’s Theorem) Let G be a finite group and let C be a G-module. Suppose that
for all subgroups H of G,
1. H1(H,C) = 0, and
2. H2(H,C) is a cyclic group of order equal to (H : 1). Then, for all r, there is an isomomorphism

Hr(G,Z)→ Hr+2(G,C)

depending only on the choice of generator for H2(G,C).

Proof. Choose a generator γ for H2(G,C). We will show that Res(γ) generates H2(H,C) for any
subgroup H of G.

For any i < |H|, we have i(G : H) < |G| and thus

Cor(iRes(γ)) = iCor(Res(γ)) = i(G : H)γ 6= 0

since γ is a generator for G. This shows that for any i < |H|,

iRes(γ) 6= 0

so Res(γ) is a generator for H2(H,C) since we are given in the hypothesis that H2(H,C) is a cyclic
group of order equal to (H : 1).

Let φ be a cocycle representing γ.

Define
C(φ) = C ⊕ C0(φ)

where C0(φ) is the free abelian group having basis symbols xσ one for each σ ∈ G, σ 6= 1 and
extend the action of G on C to an action on C(φ) as :

σxτ = xστ − xσ + φ(σ, τ)
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The symbol x1 is to be interpreted as φ(1, 1). By this statement we mean that as σ, τ vary over G
(τ 6= 1), if στ = 1, then xστ is defined as φ(1, 1). Also, if σ = 1, then xσ is defined as φ(1, 1). We
will show that C(φ) is a G-module. We have

ρ(σxτ ) = ρ(xστ − xσ + φ(σ, τ))

But
ρ(xστ ) = xρστ − xρ + φ(ρ, στ)

and
ρ(xσ) = xρσ − xρ + φ(ρ, σ)

Hence
ρ(σxτ ) = xρστ − xρσ + φ(ρ, στ)− φ(ρ, σ) + ρ(φ(σ, τ))

Since φ is a cocycle,
ρ(φ(σ, τ)) + φ(ρ, στ) = φ(ρ, σ) + φ(ρσ, τ)

Thus
ρ(σxτ ) = xρστ − xρσ + φ(ρσ, τ) = (ρσ)(xτ )

Also
1xτ = xτ − x1 + φ(1, 1)

Since x1 is interpreted as φ(1, 1), so 1xτ = xτ .

We will show that φ is coboundary of a 1-cochain in C(φ). Define

ψ : G→ C(φ)

such that
ψ(σ) = xσ

Then we get the map
d1ψ : G2 → C(φ)

such that
d1ψ(σ, τ) = σψ(τ)− φ(στ) + ψ(σ) = σxτ − xστ + xσ = φ(σ, τ)

Therefore, φ = d1ψ ∈ Im(d1) and so φ̄ = 0 in H2(G,C(φ)) which means that γ 7→ 0 under the
natural map H2(G,C)→ H2(G,C(φ)). That is why C(φ) is called the splitting module for γ.
We will now show that the hypothesis of the theorem implies that

H1(H,C(φ)) = H2(H,C(φ)) = 0

for all subgroups H of G.

We have the exact augmentation sequence

0→ IG → Z[G]→ Z→ 0

Z[G] is an induced G-module as Z[G] ∼= Z[G]⊗ZZ and hence also an induced H-module by Theorem
12 which shows that ∀ r ∈ Z,

Hr(H,Z[G]) = 0
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by Theorem 33. Hence by the very long exact sequence for Tate groups,

H1(H, IG) ∼= H0(H,Z)

and
H2(H, IG) ∼= H1(H,Z)

Thus

H1(H, IG) ∼=
Z
|H|Z

and
H2(H, IG) = 0

by Lemma 30. Define the map
α : C(φ)→ Z[G]

such that
α(C) = 0, α(xσ) = σ − 1 ∀ σ ∈ G, σ 6= 1

Clearly α(C(φ)) ⊂ IG. We will show that

0→ C → C(φ)
α−→ IG → 0

is an exact sequence. We only need to prove that Ker(α) = C. Clearly C ⊂ Ker(α)

Now let

α

(
c+

K∑
i=1

nixσi

)
= 0

Then

α(c) + α

(
K∑
i=1

nixσi

)
= 0

and therefore by definition of α,

α

(
K∑
i=1

nixσi

)
= 0

which means that
∑K

i=1 niα(xσi) = 0 and so
∑K

i=1 ni(σ − 1) = 0. Since IG is a free Z module with
basis {σ − 1 : σ ∈ G and σ 6= 1}, so ni = 0 ∀ i and hence Ker(α) ⊂ C. This completes the proof
that

0→ C → C(φ)
α−→ IG → 0

is an exact sequence. The short exact sequence leads to a very long exact sequence, a part of which
is as follows

H1(H,C)→ H1(H,C(φ))→ H1(H, IG)→ H2(H,C)→ H2(H,C(φ))→ H2(H, IG)

Since by the hypothesis, H1(H,C) = 0 and we have shown that H2(H, IG) = 0
Thus the exact sequence reduces to

0→ H1(H,C(φ))→ H1(H, IG)
η−→ H2(H,C)

β−→ H2(H,C(φ))→ 0
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It is straightforward to check that the following diagram commutes :

H2(G,C) H2(G,C(φ))

H2(H,C) H2(H,C(φ))

res res (2.52)

where the horizontal arrows are induced by the inclusion map C → C(φ).

Since we already know that γ 7→ 0 under the map H2(G,C) → H2(G,C(φ)), so Res(γ) 7→ 0
under the the map H2(H,C) → H2(H,C(φ)). Since H2(H,C) is generated by Res(γ), thus β is
the zero map and so η is onto.

But we also know that H1(H, IG) ∼= Z
|H|Z and therefore, |H1(H, IG)| = (H : 1). Since we are

also given in the hypothesis that |H2(H,C)| = (H : 1), so |H1(H, IG)| = |H2(H,C)| and the map
η is infact an isomorphism.

Hence Ker(η) = Coker(η) = 0 i.e,

H1(H,C(φ)) = H2(H,C(φ)) = 0

Thus by Theorem 44, ∀ r ∈ Z
Hr(G,C(φ)) = 0

We have two exact sequences

0→ C → C(φ)
α−→ IG → 0

0→ IG
i−→ Z[G]→ Z→ 0

Now Hr(G,C(φ)) = Hr(G,Z[G]) = 0 ∀ r ∈ Z,

The second exact sequence gives us the isomorphism

δ : Hr(G,Z)→ Hr+1(G, IG)

while the first exact sequence gives us the isomorphism

δ : Hr+1(G, IG)→ Hr+2(G,C)

Composing these maps, we get the isomorphism

Hr(G,Z)→ Hr+2(G,C)
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2.15 Another proof of Tate’s Theorem

Using the alternative approach to Tate cohomology, we can obtain another description of the
isomorphism in Tate’s Theorem using cup products which would be very useful for Local Class
Field Theory.

Theorem 46. Let A be a G-module with the following properties. For each subgroup H of G, we
have

1. H−1(H,A) = 0,
2. H0(H,A) is a cyclic group of order |H|.

If a generates the group H0(G,A), then the cup product map

a ∪ : Hq(G,Z)→ Hq(G,A)

given by
x 7→ a ∪ x

is an isomorphism for all q ∈ Z.

Proof. Define
B = A⊕ Z[G]

Consider the short exact sequence

0→ A
i−→ B

π−→ Z[G]→ 0

Since Z[G] is cohomologically trivial, so the map

ī : Hq(H,A)→ Hq(H,B)

is an isomorphism. Choose a0 ∈ AG such that a0 +NGA = a. Define the map f : Z→ B such that

f(n) = na0 + nNG

Note that f is injective since nNG = 0 clearly implies that n = 0.

f induces the homomorphism
f̄ : Hq(H,Z)→ Hq(H,B)

We want to show that the following diagram is commutative :

Hq(G,Z) Hq(G,A)

Hq(G,B)

a ∪

f̄
ī (2.53)

By Theorem 40, we know that cup with a is same thing as tensoring with a. But the tensor product
of a0 with an element n of Z is the same thing as na0 (i.e. via action of n ∈ Z on a0 ∈ A). Thus the
only thing left is to show that nNG is a coboundary and thus 0 in Hq(G,B). But nNG is a q-cocycle
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in Cq(G,Z[G]) and is thus a (q−1)-coboundary in Cq(G,Z[G]) since Z[G] is cohomologically trivial
and thus nNG is a (q − 1)-coboundary in Cq(G,B).

Hence, to prove Theorem 46, it suffices to show that f̄ is bijective.

Since the map f : Z→ B is injective, so there is an exact sequence of G-modules

0→ Z f−→ B → C → 0

for some G-module C. Now by the hypothesis,

H−1(H,A) = 0

which immediately implies that
H−1(H,B) = 0

since the map ī is an isomorphism. Moreover by Lemma 30, we know that

H1(H,Z) = 0

Therefore the very long exact sequence of Tate Cohomology groups (Theorem 32) shows that the
following sequence is exact :

0→ H−1(H,C)→ H0(H,Z)
f̄−→ H0(H,B)→ H0(H,C)→ 0 (2.54)

If q = 0, then we will show that f̄ is injective. We have f̄ : Z/|H|Z→ BH/NHB given by

f̄(n) = na0 + nNG

f̄(n) = 0 means that na0 = NHa1 for some a1 ∈ A. This shows that res(na) = nres(a) = 0 in
H0(H,A). Since res(a) is a generator for H0(H,A) (as shown in the proof of Theorem 45) and
|H0(H,A)| = |H|, so n is a multiple of |H|. Thus f̄ is injective.

Moreover, by Lemma 30 and the hypothesis of this theorem, we have

H0(H,Z) = |H| = H0(H,B)

Therefore, f̄ is bijective and
H−1(H,C) = H0(H,C) = 0

By Theorem 44, we get
Hq(H,C) = 0

for all q ∈ Z. The very long exact sequence for Tate Cohomology (Theorem 32) gives us the exact
sequence

Hq−1(G,C)→ Hq(G.Z)
f̄−→ Hq(G,B)→ Hq(G,C)

But since Hq(G,C) = 0 for all q ∈ Z, so we have the exact sequence

0→ Hq(G,Z)
f̄−→ Hq(G,B)→ 0

which shows that f̄ is bijective and we are done.
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Theorem 47. (Tate’s Theorem) Assume that A is a G-module with the following properties :

For each subgroup H of G, we have

1. H1(H,A) = 0,
2. H2(H,A) is a cyclic group of order |H|.

If a generates the group H2(G,A), then the cup product map

a ∪ : Hq(G,Z)→ Hq+2(G,A)

given by
x 7→ a ∪ x

is an isomorphism for all q ∈ Z.

Proof. For all q ∈ Z and for each subgroup H of G, there is an isomorphism

δ2 : Hq(H,A2)→ Hq+2(H,A)

as used in the section on dimension shifting. For any subgroup H of G, Condition 1 shows that
H−1(H,A2) = 0 and Condition 2 shows that H0(H,A2) is a cyclic group of order |H|. Thus the
hypothesis of Theorem 46 is satisfied. Moreover (by taking H = G and q = −2), we have an
isomorphism

δ2 : H−2(G,A2)→ H0(G,A)

This shows that δ−2(a) is a generator of H0(G,A2). Therefore by Theorem 46, the map

Hq(G,Z)
δ−2a ∪−−−−→ Hq+2(G,A2)

is an isomorphism. Moreover, we will show that the following diagram commutes :

Hq(G,Z) Hq(G,A2)

Hq(G,Z) Hq+2(G,A)

δ−2a ∪

id δ2

a ∪

(2.55)

To see this, take any x ∈ Hq(G,Z). Then we have

δ2(δ−2a ∪ x) = δ2(δ−2(a)) ∪ x = a ∪ x

and so we are done. Since the map δ−2a ∪ is an isomorphism, so the map a ∪ is also an
isomorphism.

2.16 Galois Cohomology

2.16.1 Profinite groups

In this subsection, we state the important properties of profinite groups. For detailed proofs, please
refer to Section 2.1, [6].
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Definition 13. A topological group G is group endowed with a topology with respect to which both
the multiplication map G × G → G and the inversion map G → G that takes an element to its
inverse are continuous.

Definition 14. A homomorphism φ : G→ G′ between topological groups G and G′ is a topological
isomorphism if it is both an isomorphism and a homeomorphism.

Lemma 32. Let G be a topological group and g ∈ G. Then the map mg : G→ G with mg(a) = ga
for all a ∈ A is a topological isomorphism.

Lemma 33. Let G be a topological group. Then any open subgroup of G is closed and any closed
subgroup of finite index in G is open.

Lemma 34. Every open subgroup of a compact group G is of finite index in G.

Recall the definitions of a directed set, inverse system, and the inverse limit.

Definition 15. A directed set I = (I,≥) is a partially ordered set such that for every i, j ∈ I, there
exists k ∈ I such that k ≥ i and k ≥ j.

Definition 16. Let I be a directed set. An inverse system (Gi, φi,j) of groups over the indexing
set I is a set

{Gi : i ∈ I}

of groups and a set
{φi,j : Gi → Gj : i, j ∈ I, i ≥ j}

of group homomorphisms such that for any i ≥ j ≥ k, we have

φi,k = φj,k ◦ φi,j

and φi,i = id.

Definition 17. Let (Gi, φi,j) be an inverse system of groups over an indexing set I. Then the
inverse limit of the system is given as the group

G =

{
(gi)i ∈

∏
i∈I

Gi : φi,j(gi) = gj

}

and the maps πi : G → Gi for i ∈ I are the compositions of G →
∏
i∈I Gi → Gi of inclusion

followed by projection. Moreover, for any i ≥ j, we have

πj = πi,j ◦ πi

We may endow an inverse limit of groups with a topology as follows :

Definition 18. Let (Gi, φi,j) be an inverse system of groups over an indexing set I. Then the
inverse limit topology on the inverse limit G is the subspace topology for the product topology on∏
i∈I Gi.

Definition 19. A profinite group is an inverse limit of a system of finite groups, endowed with the
inverse limit topology for the discrete topology on the finite groups.

Theorem 48. A profinite topological group is compact, Hausdorff and totally disconnected
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Theorem 49. A compact Hausdorff and totally disconnected topological group has a basis of neigh-
borhoods consisting of open normal subgroups.

Corollary 7. A profinite topological group has a basis of neighborhoods consisting of open normal
subgroups.

Theorem 50. Let G be a profinite group, and let U be the set of all open normal subgroups of G.
Then the canonical homomorphism

G→ lim←−
N∈U

G/N

is also a homeomorphism.

Definition 20. A subset S of a topological group G is said to be a topological generating set of G
if G is the closure of the subgroup generated by S.

Definition 21. We say that a topological group is (topologically) finitely generated if it has a finite
set of topological generators.

2.16.2 Cohomology of Profinite Groups

In this section, G will denote a topological group.

Definition 22. A topological G-module A is an abelian topological group such that the map G×A→
A defining the G-action on A is continuous.

Definition 23. A G-module A is a discrete module if it is a topological G-module for the discrete
topology on A.

For the proofs of Theorem 51, Lemma 35 and Theorem 52, please refer to Section 2.2, [6].

Theorem 51. Let G be a profinite group, and let A be a G-module. The following are equivalent :

1. A is discrete.
2. A = ∪N∈U , where U is the set of open normal subgroups of G.
3. The stabilizer of each a ∈ A is open in G.

Definition 24. For a topological G-module A and i ∈ Z, the group of continuous i-cochains of G
with A-coefficients is

Cicts(G,A) = {f : Gi → A, f is continuous}.

Lemma 35. Let A be a topological G-module. The usual differential di on Ci(G,A) restricts to a
map

dicts : Cicts(G,A)→ Ci+1
cts (G,A)

Thus, (C•cts(G,A), dcts) is a cochain complex.

Definition 25. Let G be a profinite group and A a discrete G-module. The ith profinite cohomology
group of G with coefficients in A is

H i(G,A) = H i(C•cts(G,A))

where A is endowed with the discrete topology.
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Theorem 52. Suppose that

0→ A
i−→ B

π−→ C → 0

is a short exact sequence of discrete G-modules. Then there is a long exact sequence of abelian
groups

0→ H0(G,A)
i′−→ H0(G,B)

π′−→ H0(G,C)
δ0

−→ H1(G,A)→ ...

Theorem 53. Let G be a profinite group, and let U be the set of open normal subgroups of G. For
each discrete G-module A, we have an isomorphism

Cr(G,A) ∼= lim−→
N∈U

Cr(G/N,AN )

Proof. Let N1, N2 ∈ U , we define N1 ≤ N2 by N2 ⊂ N1.

For N1, N2 ∈ U , we have N1 ∩ N2 ∈ U . Also we have N1 ≤ N1 ∩ N2 and N2 ≤ N1 ∩ N2.
Thus (U,≤) is a directed set. Let

GN = Cr(G/N,AN )

and for N1 ≤ N2 (i.e. N2 ⊂ N1), we have the natural map

αN2N1 : GN1 → GN2

Also we have the natural maps
αN : GN → S

We define
S = lim−→

N∈U
GN

and
T = Crcts(G,A)

Also we have the inflation maps

βN : Cr(G/N,AN )→ Crcts(G,A)

It is straightforward to check that for N1 ≤ N2, βN1 = βN2 ◦ αN2N1 .

Hence by the universal property of the direct limit, there exists a unique map β : S → T such
that βN = β ◦ αN .

Firstly we will show that β is surjective.

Let f : Gi → A be a continuous map. Since G is compact, so is f(G). But we are given that
A has the discrete topology. Since compact subset of a discrete space is finite, we get Im(f) is
finite. Also we know that since A is a discrete module, so

A =
⋃
N∈U

AN

Hence for any a ∈ Im(f), ∃ Ma ∈ U such that a ∈ AMa .

Therefore,
Im(f) ⊂ AM
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where
M =

⋂
a∈Im(f)

Ma

Note that M is open since Im(f) is finite. Also M is normal in G. Hence M ∈ U .

For any x ∈ Gi, continuity of f implies that V = f−1{f(x)} is open in Gi and f is constant on V
(Infact f(V ) = {f(x)}). Let V1 = x−1V . Then V1 is an open subset of Gi because multiplication by
a fixed element is a homeomorphism for topological groups. Hence V1 is an open neighborhood of 1.

Since Gi has the product topology, V1 is a product of sets open in G and containing 1 (i.e. neigh-
borhoods of 1G). Also since the open normal subgroups form a neighborhood base for 1, so V1

contains a neighborhood of the form
∏i
j=1Hj(x) where Hj(x) is an open normal subgroup of G.

Define

H(x) =
i⋂

j=1

Hj(x)

H(x) is again an open normal subgroup of G. Since

xH(x)i ⊂ x

 i∏
j=1

Hj(x)

 ⊂ xV1 = V

so f is constant on xH(x)i.

Now Gi is covered by the xH(x)i for x ∈ Gi since H(x) contains 1G. Since G is a profinite
group, thus G is compact and hence so is Gi. Thus there is a finite subcover of xH(x)i correspond-
ing to some x1, .., xn ∈ Gi.

Now define

H =

n⋂
k=1

H(xk)

For any y ∈ Gi, we have y ∈ xkH(xk)
i for some k. Since H ⊂ H(xk) and H(xk) is a subgroup of

G, thus yH ⊂ xkH(xk)
i and f is constant on yH since it is constant on xkH(xk)

i. Hence f factors
through (G/H)i.

We have shown that f is the inflation of a map (G/H)i → AM (Since we had earlier shown
that Im(f) ⊂ AM ). Now if we take N = H ∩M , then N ⊂ H and AM ⊂ AN . Hence f factors
through a map (G/N)i → AN and we are done.

Now we will prove that β is injective. Let Φ be an element of S such that β(Φ) = 0. We know that

Φ = αN (φN )

for some N ∈ U . Thus β(αN (φN )) = 0 for some N ∈ U and so

βN (φN ) = 0

since β ◦ αN = βN by the universal property of direct limit.

84



It is straightforward to check that the inflation maps βN are injective (though the inflation maps
at the level of cohomology need not be injective but they are injective at the cochain level).

Hence φN = 0 and so Φ = α(φN ) = 0. Thus β is injective as well and so β is an isomorphism.

Theorem 54. Let G be a profinite group, and let U be the set of open normal subgroups of G. For
each discrete G-module A, we have an isomorphism

Hr(G,A) ∼= lim−→
N∈U

Hr(G/N,AN )

where the direct limit is taken with respect to inflation maps.

Proof. We know that the following diagram commutes :

Cr(G/N,AN ) Cr+1(G/N,AN )

Cr(G/N ′, AN
′
) Cr+1(G/N ′, AN

′
)

drN

αr
N,N′ αr+1

N,N′

dr
N′

(2.56)

This shows that
αN,N ′(Ker(d

r
N )) ⊂ Ker(d′rN )

and
αN,N ′(Im(drN )) ⊂ Im(d′rN )

Therefore Ker(drN ) and Im(drN ) form direct systems.

Moreover, αN,N ′ induces the map

αN,N ′ :
Ker(drN )

Im(drN )
→

Ker(drN ′)

Im(drN ′)

i.e. the map
αN,N ′ : Hr(G/N,AN )→ Hr(G/N ′, AN

′
)

Thus Hr(G/N,AN ) also forms a direct system. Now we have an exact sequence

0→ Im(dr−1
N )→ Ker(drN )→ Hr(G/N,AN )→ 0

Since direct limit preserves exactness, so

0→ lim−→
N∈U

Im(dr−1
N )→ lim−→

N∈U
Ker(drN )→ lim−→

N∈U
Hr(G/N,AN )→ 0

is also exact and we have

lim−→
N∈U

Hr(G/N,AN ) =
lim−→N∈U Ker(d

r
N )

lim−→N∈U Im(dr−1
N )

Since diagram 2.56 commutes, so there exists a map

lim−→
N∈U

drN : lim−→
N∈U

Cr(G/N,AN )→ lim−→
N∈U

Cr+1(G/N,AN )
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such that the following diagram commutes :

Cr(G/N,AN ) Cr+1(G/N,AN )

lim−→N∈U C
r(G/N,AN ) lim−→N∈U C

r+1(G/N,AN )

drN

αr
N αr+1

N

lim−→N∈U
drN

(2.57)

Moreover by the previous theorem, we have

Cr(G,A) ∼= lim−→
N∈U

Cr(G/N,AN )

This shows that

Hr(G,A) ∼=
Ker(lim−→N∈U d

r)

Im(lim−→N∈U d
r−1)

Thus to complete the proof of the theorem, it suffices to show that

Ker(lim−→H∈U d
r
H)

Im(lim−→H∈U d
r−1
H )

=
lim−→H∈U Ker(d

r
H)

lim−→H∈U Im(dr−1
H )

We have an exact sequence

0→ Ker(dRH)→ Cr(G/H,MH)
drH−−→ Cr+1(G/H,MH)

Since direct limit preserves exactness,

0→ lim−→
H∈U

Ker(drH)→ lim−→
H∈U

Cr(G/H,MH)
lim−→H∈U

drH
−−−−−−−→ lim−→

H∈U
Cr+1(G/H,MH)

is exact and thus
Ker( lim−→

H∈U
drH) = lim−→

H∈U
Ker(drH)

Similarly we have an exact sequence

Cr(G/H,MH)
drH−−→ Cr+1(G/H,MH)

πH−−→ Coker(drH)→ 0

Again passing to the direct limits, we get an exact sequence

lim−→
H∈U

Cr(G/H,MH)
lim−→H∈U

drH
−−−−−−−→ lim−→

H∈U
Cr+1(G/H,MH)

lim−→H∈U
πH

−−−−−−−→ lim−→
H∈U

Coker(drH)→ 0

Thus we get
Im( lim−→

H∈U
drH) = Ker( lim−→

H∈U
πH) = lim−→

H∈U
Ker(πH) = lim−→

H∈U
Im(drH)

Note that the second equality follows from the fact that kernels commute with direct limits which
we had already shown above.

Hence
Ker(lim−→H∈U d

r
H)

Im(lim−→H∈U d
r−1
H )

=
lim−→H∈U Ker(d

r
H)

lim−→H∈U Im(dr−1
H )

This completes the proof that Hr(G,A) ∼= lim−→N∈U H
r(G/N,AN )

86



Chapter 3

Local Class Field Theory

3.1 Recap of Local Fields

Throughout this chapter, we would use several properties of local fields which we state here. Easy
and detailed proofs of these results can be found in Ch. 4 and Ch. 7 of [9]. Ch.7 of [3] is also a
good reference.

Definition 26. A local field K is a field which is locally compact with respect to a nontrivial
valuation.

Lemma 36. Let K, || be a non-archimedean local field. Then the following are equivalent :
1. K is a local field.
2. OK is compact.
3. K is complete, w.r.t || which is discrete and the residue field k = OK/mK is finite.

Lemma 37. Let K be a non-archimedean local field, then OK is compact and the residue field
k = OK/mK is finite and since || is discrete, so mK is a principal ideal.

Theorem 55. If K is a non-archimedean local field such that char(K) = 0, then K is a finite
extension of Qp.

Theorem 56. Suppose K, || is a complete non-archimedean field and L is a finite extension of K
such that [L : K] = n. Then there is a unique absolute value ||L on L extending || on K, and
L is complete non-archimedian with respect to this valuation. Explicitly |x|L = |NmL/K(x)|1/n.
Also || is discrete ⇔ ||L is discrete. This (along with Lemma 36) shows that if K is a discrete
non-archimedian local field, then so is L.

Theorem 57. Finite,unramified extensions of a local field K are in one to one correspondence
with finite extensions of the residue field k.

Lemma 38. Suppose L/K is a finite, unramified extension. Then L/K is Galois if and only if l/k
is Galois, and in this case Gal(L/K) ∼= Gal(l/k).

Theorem 57 implies that any local field K has a unique unramifed extension of degree n which
is Ln = K(µpn−1) and this shows that there is a maximal unramified extension Kun obtained by
adjoining (to K) nth roots of unity for all n coprime to the characteristic of the residue field k.
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3.2 Properties of Frobenius Element

3.2.1 Finite Extensions

For a local field K, we denote the cardinality of its residue field by qK . For an extension L/K, we
denote the Frobenius element by σL/K .

Let E ⊃ L ⊃ K be a tower of finite unramified extensions of local fields. Then we have the
following properties :

Lemma 39. σL/K = σE/K �L= σE/KGal(E/L) ∈ Gal(L/K)

Proof. We know that σL/K is the unique element of Gal(L/K) such that σL/K(x) ≡ xqK (mod mL)
∀ x ∈ OL. Now note that σE/K �L∈ Gal(L/K) and we have σE/K(x) ≡ xqK (mod mE) ∀ x ∈ OE
and hence also ∀ x ∈ OL. Now for any x ∈ OL, we have σE/K(x) ∈ L (since L is galois over K).

Thus
σE/K(x)

xqK ∈ L ∩mE = mL i.e. σE/K(x) ≡ xqK (mod mL). By the uniqueness for σL/K , we get
σL/K = σE/K �L.

Since we have the isomorphism
Gal(E/K)

Gal(E/L)
∼= Gal(L/K)

which is given by
τGal(E/L) 7→ τ �L

for any τ ∈ Gal(E/K). So
σE/KGal(E/L) 7→ σE/K �L= σL/K

and thus we can say σE/K �L= σE/KGal(E/L) ∈ Gal(L/K).

Lemma 40. σE/L = σ
[L:K]
E/K

Proof. We know that
∣∣∣Gal(E/K)
Gal(E/L)

∣∣∣ = [L : K], so (σE/KGal(E/L))[L:K] is identity in Gal(E/K)
Gal(E/L) i.e.

σ
[L:K]
E/K ∈ Gal(E/L). Now for any x ∈ OE , we have σE/K(x) ≡ xqK (mod mE) and thus σ

[L:K]
E/K (x) ≡

xqL(mod mE) since qL = q
[L:K]
K . By the uniqueness for σE/L, we get σE/L = σ

[L:K]
E/K .

3.2.2 Infinite Extensions

Let L be a galois extension of K and let K1,K2 be finite galois subextensions of L over K. Then
K1K2 is again a finite galois extension of K. Thus the finite galois subextensions of L over K form
a directed set. For K1 ⊂ K2, define

βK1,K2 : Gal(K2/K)→ Gal(K1/K)

to be the restriction maps. Thus we get an inverse system (Gal(K ′/K), βK′,K′′). Let

βK1 : lim←−
K′

Gal(K ′/K)→ Gal(K1,K)
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be the projection map. Then for any K1 ⊂ K2, we have βK1,K2 ◦ βK2 = βK1 . Now let γK′ :
Gal(L/K)→ Gal(K ′/K) be the restriction map. Then for any K1 ⊂ K2,

βK1,K2 ◦ γK2 = γK1

Thus by the universal property of inverse limits, we get a map

β : Gal(L/K)→ lim←−
K′

Gal(K ′/K)

such that
βK′ ◦ β = γK′

By infinite galois theory, it can be shown that the map β is infact an isomorphism of topological
groups.

Thus for an infinite galois extension L/K, we have

Gal(L/K) ∼= lim←−
K′

Gal(K ′/K)

where K
′

runs over finite galois extensions of K in L. Note that

σ0 = (σK′/K)K′

is a well-defined element in the inverse limit because if K1 ⊂ K2, then

βK1,K2(σK2/K) = σK2/K �K1= σK1/K

Now we can define the Frobenius element σL/K ∈ Gal(L/K) to be the unique preimage of σ0 under
this isomorphism β.

Let E ⊃ L ⊃ K be a tower of unramified (possibly infinite) extensions.

Lemma 41. σL/K = σE/K �L= σE/KGal(E/L) ∈ Gal(L/K)

Proof. Let x ∈ L. Thus x ∈ K ′ for some finite subextension of L over K. Since

βK′ ◦ β = γK′

so
βK′(β(σL/K)) = γK′(σL/K)

which implies that
βK′(σ0) = σL/K �K′

i.e.
σL/K �K′= σK′/K

Hence
σL/K(x) = σK′/K(x)

Since L ⊂ E, so x ∈ L. Then by repeating the whole argument, we have

σE/K(x) = σK′/K(x)
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Thus we have shown that for any x ∈ L,

σL/K(x) = σE/K(x)

Hence
σL/K = σE/K �L

Finally
σE/K �L= σE/KGal(E/L)

follows in exactly the same way as in the proof of Lemma 39.

Theorem 58. The subgroup generated by σL/K in Gal(L/K) is dense.

Proof. We will use a result from infinite galois theory :

Let L be galois over K with Galois group G. Then for any subgroup H of G, Gal(L/LH) is
the closure of H. (see Proposition 7.11, page 94, [5] for proof)

In our case H = < σL/K >.

Thus it suffices to show that LH = K. Let x ∈ L such that σL/K(x) = x. Again, let x ∈ K ′

for some finite subextension of L in K. Then

σK′/K(x) = σL/K(x) = x

Thus x is in the fixed field of Gal(K ′/K) which is K and we are done.

Lemma 42. Let L be a finite extension of K of degree n. Let σK denote the Frobenius element
of the extension Kun/K and σL denote the Frobenius element of the extension Lun/L. Then

σL �Kun= σfK

Proof. We know that σL(x) ≡ xqL (mod mLun) for all x ∈ OLun and σK(x) ≡ xqK (mod mKun)

for all x ∈ OKun . Therefore σL(x) ≡ σfK(x) (mod mLun) for all x ∈ OKun which shows that

σL �Kun= σfK

3.3 The Cohomology of Unramified Extensions

Let K be a discrete non-archimedean local field and let L be a finite extension of K. Then we know
that there is a unique extension of valuation of K to valuation of L. Also under this valuation,
L is a discrete non-archimedean local field by Theorem 56. Since L and K are local fields, so the
residue fields l = OL/mL and k = OK/mK are finite. Let |k| = p and |l| = q where q is some power
of p. All cohomology groups will be Tate cohomology groups and the subscript T will be dropped.

Since l/k is a finite extension of a finite field, L/K is Galois and Gal(L/K) is a cyclic group
generated by the Frobenius element FrobL/K which is characterized uniquely by

σ(α) ≡ αp (mod mL)

For a Galois extension L/K of fields, we set

H2(L/K) = H2(Gal(L/K), L∗)
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Theorem 59. Let L/K be a finite unramified extension with Galois group G, and let UL be the
group of units in L. Then Hr(G,UL) = 0 ∀ r.

Proof. Since L is a non-archimedian field, OL is a local ring with unique maximal ideal mL. Simi-
larly OK is a local ring with unique maximal ideal mK . Since L and K are discrete, so mL and mK

are principal ideals. Thus mK is an ideal generated by some prime π ∈ OK . Then since L/K is
an unramified extension, π remains prime in OL and hence is also a generator for mL. Thus every
element α of L∗ can be written uniquely in the form α = uπm for some u ∈ UL and m ∈ Z

Define f : L∗ → UL × Z such that
f(uπm) = (u,m)

f is well defined because of uniqueness of the expression uπm. f is clearly one-one and onto.
Moreover,

f((u1π
m1)(u2π

m2)) = f(u1u2π
m1+m2) = (u1u2,m1 +m2) = (u1,m1) ∗ (u2,m2)

Thus f is a homomorphism of abelian groups.

Now for any τ ∈ G, we have

f(τ(uπm)) = f(τ(u)πm) = (τ(u),m) = (τ(u), τ(m)) = τ(u,m) = τ(f(uπm))

The first equality follows from the fact that π ∈ K and is hence fixed by any τ ∈ Gal(L/K). The
third equality follows from the fact that G acts trivially on Z.

Hence f is a G-module homomorphism and thus a G-module isomorphism. Therefore by The-
orem 22, for any r ≥ 0,

Hr(G,L∗) ∼= Hr(G,UL)⊕Hr(G,Z)

By Hilbert’s Theorem 90 (Theorem 20), we know that H1(G,L∗) = 0 and thus H1(G,UL) = 0.

Because G is cyclic, we know that cohomology groups are periodic with periodicity 2 by Theo-
rem 41. Hence to prove our theorem, it suffices to show that H0(G,UL) = 0 which will follow from
the next few lemmas.

Lemma 43. For m > 0, let UmL = 1+mm
L . Then UL/U

(1)
L
∼= l∗ and U

(m)
L /U

(m+1)
L

∼= l as G-modules.

Proof. Note that U
(m)
L = {1 + aπm : a ∈ OL}.

Define the map φL : UL → l∗ such that φ(u) = u+mL.

Since UL = OL − mL, we know φL is well-defined. Now φL is also surjective because for any
x ∈ OL such that x̄ 6= 0̄ (i.e. x 6∈ mL), we have x ∈ UL again because of UL = OL −mL and thus
x+mL = φL(x).

φL is also a G-module map since

φL(τ(u)) = τ(u) +mL = τ(u+mL) = τ(φL(u))
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Moreover,

Ker(φL) = {u ∈ UL : ū = 1̄} = 1 +mL = U
(1)
L

Hence we get an isomorphism ΦL : UL/U
(1)
L → l∗ of G-modules.

Similarly define the maps ψL : U
(m)
L → l such that ψ(1 + aπm) = a+mL.

ψL is well defined because if 1 + aπm = 1 + bπm for some a, b ∈ OL, then (a − b)πm = 0 and
thus a = b (since π is invertible in K though not in OK) and so a+mL = b+mL .Moreover,

ψL((1 + aπm)(1 + bπm)) = ψL(1 + (a+ b)πm + abπ2m) = ψL(1 + (a+ b+ πmab)πm)

= a+ b+ πmab+mL = a+ b+mL = ψL(1 + aπm) + ψL(1 + bπm)
(3.1)

Note that in the second last equality, we have used that π ∈ mL.

Thus ψL is a group homomorphism. For any τ ∈ G, we have

ψL(τ(1 + aπm)) = ψL(1 + τ(a)πm) = τ(a) +mL = τ(a+mL) = τ(ψL(1 + aπm))

Hence ψL is a G-module homomorphism. Now

Ker(ψL) = {1 + aπm : a ∈ mL} = {1 + bπm+1 : b ∈ OL} = U
(m+1)
L

Thus we get an isomorphism ΨL : U
(m)
L /U

(m+1)
L → l of G-modules.

Lemma 44. Hr(G, l∗) = 0 ∀ r ∈ Z. In particular the norm map l∗ → k∗ is surjective.

Proof. By Hilbert’s Theorem 90, H1(G, l∗) = 0. We know that l∗ is finite and so the Herbrand
quotient h(l∗) = 1. Hence H0(G, l∗) = 0 and so Hr(G, l∗) = 0 ∀ r ∈ Z by the periodicity of the
Tate cohomology for cyclic groups. In particular H0(G, l∗) = 0 and thus (l∗)G = Nml/k(l

∗).

Since l/k is galois, (l∗)G = k∗ and so Nml/k(l
∗) = k∗ which implies that the norm map l∗ → k∗ is

surjective.

Lemma 45. Hr(G, l) = 0 ∀ r ∈ Z. In particular, the trace map l→ k is surjective.

Proof. We know that Hr(G, l) = 0 ∀ r > 0 by Theorem 21. Hence Hr(G,L) = 0 ∀ r ∈ Z by
Theorem 41. In particular H0(G, l) = 0 and so lG = Tr(l).

Since l/k is galois, so lG = k and we get Tr(l) = k which implies that the trace map l → k is
surjective.

Theorem 60. For every finite unramified extension L/K, the norm map NmL/K : UL → UK is
surjective.

Proof. For all m > 0, the following diagrams commute :

UL l∗ U
(m)
L l

UK k∗ U
(m)
K k

φL

NmL/K Nml/k

ψL

NmL/K Trl/k

φK ψK

(3.2)
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Consider u ∈ UK . Then φK(u) ∈ k∗. Because the norm map l∗ → k∗ and φL are surjective, ∃
v0 ∈ UL such that

NmL/K(φL(v0)) = φK(u)

Since the diagram commutes, we get

φK(Nm(v0)) = φK(u)

Since Ker(φK) = U
(1)
K , we get

u

Nm(v0)
∈ U (1)

K

Similarly commutativity of the diagram and surjectivity of the trace map l → k imply that ∃
v1 ∈ U (1)

L such that

Nm(v1) ≡ u

Nm(v0)
mod U

(2)
K

Continuing in this fashion, we obtain a sequence of elements v0, v1, ..., vi ∈ U (i)
L such that

u

Nm(v0...vi)
∈ U (i+1)

K

Consider the sequence
∏m
j=0 vj .

Now ∣∣∣∣∣∣
m∏
j=0

vj −
m+1∏
j=0

vj

∣∣∣∣∣∣ =

∣∣∣∣∣∣
m∏
j=0

vj(1− vm+1)

∣∣∣∣∣∣ < |π|m+1

since |vi| = 1 ∀ i (as vi ∈ UL) and |1− vm+1| < |π|m+1 (as vm+1 ∈ Um+1
L = 1 +mm+1

L ).

Since L is non-archimedian, the above analysis shows that the sequence
∏m
j=0 vj is cauchy. More-

over L is a locally compact field, so it is complete and the sequence
∏m
j=0 vj converges.

Let v = limm→∞
∏m
j=0 vj . Since L is non-archimedean, we have

|v| ≤ max

∣∣∣∣∣∣v −
m∏
j=0

vj

∣∣∣∣∣∣ ,
∣∣∣∣∣∣
m∏
j=0

vj

∣∣∣∣∣∣
 = max

∣∣∣∣∣∣v −
m∏
j=0

vj

∣∣∣∣∣∣ , 1

 ∀m ∈ N

Also we know that for large enough m, ∣∣∣∣∣∣v −
m∏
j=0

vj

∣∣∣∣∣∣ < 1

since v = limm→∞
∏m
j=0 vj . Thus |v| ≤ 1 and so v ∈ OL. Moreover,∣∣∣∣∣∣

m∏
j=0

vj

∣∣∣∣∣∣ ≤ max

∣∣∣∣∣∣
m∏
j=0

vj − v

∣∣∣∣∣∣ , |v|
 ∀m ∈ N

This shows that |v| ≥ 1 and hence |v| = 1 i.e. v ∈ UL. We also have∣∣∣∣ u

NmL/K(v)
− 1

∣∣∣∣ ≤ max

(∣∣∣∣ u

NmL/K(v)
− u

NmL/K(v0...vi)

∣∣∣∣ , ∣∣∣∣ u

NmL/K(v0...vi)
− 1

∣∣∣∣) ∀ i ∈ N
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It is easy to show that

lim
i→∞

u

NmL/K(v0...vi)
=

u

NmL/K(v)

and so

lim
i→∞

∣∣∣∣ u

NmL/K(v)
− u

NmL/K(v0...vi)

∣∣∣∣ = 0

Now we have
u

NmL/K(v0...vi)
∈ U i+1

k

so
u

NmL/K(v0...vi)
− 1 ∈ mi+1

k

and thus ∣∣∣∣ u

NmL/K(v0...vi)
− 1

∣∣∣∣ < |π|i+1

Hence

lim
i→∞

∣∣∣∣ u

NmL/K(v0...vi)
− 1

∣∣∣∣ = 0

Combining all these together, we get ∣∣∣∣ u

NmL/K(v)
− 1

∣∣∣∣ = 0

and thus
u = NmL/K(v)

which implies that the norm map is surjective and we are done.

Theorem 61. Let L/K be an infinite unramified extension with Galois Group G. Then Hr(G,UL) =
0 ∀ r > 0.

Proof. The field L is a union of finite extensions K ′ of K. Thus L is a discrete Gal(L/K) module
and by Theorem 54, we get

Hr(Gal(L/K), UK) ∼= lim−→
K′

Hr(Gal(K ′/K), U
′
K)

Since L is unramified, any finite subextension K
′

of L is also unramified by definition of an infinite
unramified extension. By the above result, we know that Hr(Gal(K ′/K), U

′
K) = 0 ∀ K ′ . Thus

Hr(G,UL) = 0 for all r ≥ 0.
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3.4 Invariant Map and Local Artin Map

3.4.1 Finite Extensions

Let L be a finite unramified extension of K with [L : K] = n, and let G = Gal(L/K). Consider
the short exact sequence

0→ UL → L∗
ordL−−−→ Z→ 0

where the ordL map is given by
ordL(uπm) = m

Since UL is cohomologically trivial, we get an isomorphism

H2(G,L∗)→ H2(G,Z)

An explicit description of this map as well as its inverse would be required later.

The map η1 : H2(G,L∗)→ H2(G,Z) is given as φ̄ 7→ ψ̄ where

ψ(g1, g2) = ordL(φ(g1, g2))

The inverse map η2 : H2(G,Z)→ H2(G,L∗) is given by Ψ̄ 7→ Φ̄ where

Φ(g1, g2) = πΨ(g1,g2)

We want to verify that the maps η1 and η2 are inverses of each other. It is clear that η1 ◦ η2 is the
identity map on H2(G,Z). The proof that η2 ◦ η1 is the identity map on H2(G,L∗) is somewhat
more intricate. (η2 ◦ η1)(φ̄) = γ̄ where

γ(g1, g2) = πordL(φ(g1,g2))

To show that φ̄ = γ̄, it suffices to show that ψ := φ/γ is d1(κ) for some 1-cochain κ. But note that
Im(ψ) ⊂ UL. It can be directly verified that ψ is a cocycle in C2(G,UL). Since UL is cohomologi-
cally trivial, ψ is infact a 1-coboundary in C1(G,UL) and hence also in C1(G,L∗).

The short exact sequence
0→ Z→ Q→ Q/Z→ 0

gives rise to the isomorphism
H1(G,Q/Z)→ H2(G,Z)

since Q is cohomologically trivial by Lemma 30. We also know thatH1(G,Q/Z) = Homcts(G,Q/Z).
Let σ be the Frobenius element (which is a generator of G).

Now define a map
ψ : Homcts(G,Q/Z)→ Q/Z

such that
ψ(f) = f(σ)

Note that ψ is an injection and Im(ψ) = 1
nZ/Z because

n(ψ(f)) = n(f(σ)) = f(σn) = f(1) = 0 + Z

and thus ψ(f) ∈ 1
nZ/Z.
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Definition 27. The composite of the maps

H2(L/K)
ordL−−−→ H2(G,Z)

δ−1

−−→ Homcts(G,Q/Z)
f 7→f(σ)−−−−−→ Q/Z (3.3)

is called the invariant map.
invL/K : H2(L/K)→ Q/Z (3.4)

Remark 14. Infact invL/K is an isomorphism from H2(L/K) onto 1
nZ/Z.

Definition 28. The local fundamental class is the element of H2(L,K) mapped to the generator
1
n + Z under the invariant map invL/K .

Remark 15. Let H be a subgroup of G and E be its fixed field. Then H = Gal(L/E) and L is
a galois extension of E. Thus by Hilbert’s Theorem 90 (Theorem 20), we have H1(H,L∗) = 0.
Also H2(H,L∗) is a cyclic group with order equal to [L : E] = |H| because of Remark 14. Thus
hypothesis of the Tate’s theorem (Theorem 45) is satisfied.

Remark 16. By Tate’s Theorem (Theorem 45), ∀ r ∈ Z, there is an isomorphism Hr(G,Z) →
Hr+2(G,L∗) which is cup-product with the local fundamental class. In particular for r = −2, we
get the isomorphism H−2(G,Z)→ H0(G,L∗) i.e. an isomorphism G→ K∗/Nm(L∗) .

Definition 29. By Remark 16, there is an isomorphism G → K∗/Nm(L∗) given by cup product
with the local fundamental class. The inverse isomorphism

K∗/Nm(L∗)→ G

is known as the Local Artin Map.

We now compute the Local Artin Map explicitly using the proof of Tate’s theorem. To achieve
this goal, we have to firstly find an explicit description of the local fundamental class (because the
proof of Tate’s theorem requires us to know a generator of H2(L/K)). Firstly we need to find a
map f : G→ Q/Z such that f(σ) = 1

n + Z. But then the map f is uniquely characterized by this
condition.

Now we have to find the image of f under the boundary map δ. We will use the explicit de-
scription of the boundary map provided in Remark 4. We first need to choose a lift of f to
1-cochain f̄ : G → Q. Define f̄ : G → Q such that f̄(σ) = 1

n . Clearly f̄ is a lift of f . Then
δf̄ ∈ H2(G,Z) such that

δf̄(σi, σj) = σif̄(σj)− f̄(σi+j) + f̄(σi)

Since G acts trivially on Q, we get δf̄(σi, σj) ={
0 i+ j < n

1 i+ j ≥ n

Now let us get back to H2(G,L∗) from H2(G,Z) via the inverse map η2. The local fundamental
class is the image of δ(f̄) in H2(G,L∗). Thus the local fundamental class uL/K is represented by
the cocycle φ in H2(L/K) where φ(σi, σj) ={

1 i+ j < n

π i+ j ≥ n
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Remark 17. Let π1 and π2 be two different primes in OK . This means that they both generate
the same ideal mK in OK . Thus they are associates i.e. π1 = uπ2 for some u ∈ UK . By Theorem
60, we know that u = NmL/Ku

′ for some u′ ∈ UL. Therefore π1 and π2 have the same class in
NmL/K(L∗). Hence the class of uniformizer is independent of the chosen prime element π.

Theorem 62. Under the inverse of Local Artin Map G→ K∗/NmL/K(L∗), the Frobenius element
σ ∈ G maps to the class of π in K∗/NmL/K(L∗).

Proof. We will basically trace through the isomorphisms in the proof of Tate’s theorem.

Firstly we need to find the image of σ in H−1(G, IG). Recall from the proof of Theorem 32
that the map H−2(G,Z) → H−1(G, IG) is given as the boundary map η : H1(G,Z) → H0(G, IG)
corresponding to the short exact sequence

0→ IG → Z[G]→ Z→ 0

Also by Remark 10, the map Gab → H1(G,Z) is given by composing the maps Gab → IG/I
2
G and

IG/I
2
G

η−1

−−→ H1(G,Z).

Thus for finding the image of σ under the map G → H−1(G, IG), the maps η and η−1 cancel
and we just get the image of σ in IG/I

2
G which is (σ − 1) + I2

G.

Now we need to calculate the image of (σ − 1) + I2
G under the map H−1(G, IG) → H0(G,L∗)

which was described in Remark 11. Consider the following diagram :

H−1(G, I)

(L∗)G L∗(φ)G (I)G 0

0 L∗G L∗(φ)G IG

H0(G,L∗)

(3.5)

Firstly we have to find a preimage of (σ − 1) + I2
G under the map

(L∗(φ))G → IG/I
2
G

Consider the element xσ + IGL
∗(φ) ∈ L∗(φ)G. Then under this map (which we called α during the

proof of Tate’s theorem),
xσ + IGL

∗(φ) 7→ (σ − 1) + IG/I
2
G
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Now we want to find the image of this element under the norm map L∗(φ)G → L∗(φ)G (which is
given by NmG =

∑n−1
i=0 σ

i ) i.e. the image is equal to
∑n−1

i=0 σ
ixσ. But the way action of G is

defined on L∗(φ), we get
σi(xσ) = xσi+1 − xσi + φ(σi, σ)

Thus
n−1∑
i=0

σixσ =
n−1∑
i=0

φ(σi, σ) = π

by the description of φ given just before Remark 17. Note that in the last equality, we have used
the fact that L∗ is a group under multiplication. So the symbol + actually means multiplication.

Since π is infact an element of K∗, thus π is the preimage of π under the inclusion K∗ → L∗(φ)G and
the image of π under the map K∗ → H0(G,L∗) is π NmL/K(L∗) which completes the proof.

Corollary 8. Under the Local Artin Map K∗/NmL/K(L∗)→ G, the class of the uniformizer maps
to the Frobenius element.

Now we want to define the invariant map for infinite unramified extensions as well. We need to be
careful about the definition of the ordL.

Let π be a generator of the maximal ideal mK of OK . Then for any x ∈ L, x ∈ K
′

for some
finite extension K

′
of K (eg. take K

′
= K(x)). Then K

′
is also unramified over K and we get

x = uπn for some u ∈ UK′ and some n ∈ Z. Hence every element of L can be written in the form
uπn for some u ∈ UL and some n ∈ Z. Uniqueness of this expression is also immediate. Now we
can define the ordL map in the same way as for finite unramified extensions as we have got a short
exact sequence

0→ UL → L∗
ordL−−−→ Z→ 0

3.4.2 Infinite Extensions

Consider a tower of field extensions

E ⊃ L ⊃ K

with both E and L unramified over K. Then E and L are also Galois over K because E is unram-
ified over K means that any finite subextension of E over K is unramified which is then also galois
(infact cyclic). Since E is a union of its finite subextensions, so E is a union of Galois extensions
which shows that E is also Galois over K.

We denote G = Gal(E/K), H = Gal(E/L) is a subgroup of G. By infinite galois theory, we
know that G/H ∼= Gal(L/K). For convenience, we denote G/H by G1.

Theorem 63. The following diagram commutes :

H2(L/K) Q/Z

H2(E/K) Q/Z

invL/K

Inf Id

invE/K

(3.6)
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Proof. To check the commutativity of this diagram, one has to check the commutativity of the
following diagram :

H2(L/K) H2(G1,Z) H1(G1,Q/Z) Q/Z

H2(E/K) H2(G,Z) H1(G,Q/Z) Q/Z

ordL

Inf

δ−1
L

Inf

g 7→g(σL/K)

Inf Id

ordE δ−1
E g 7→g(σE)

(3.7)

We want to show the commutativity of the first square. Let φ : G2
1 → L∗ be a 2-cocycle.

Then Inf(ordL(φ))(g1, g2) = ordL(φ(g1H, g2H)). Now Inf(φ)(g1, g2) = φ(g1H, g2H) and thus
ordE(Inf(φ(g1, g2))) = ordE(φ(g1H, g2H)) = ordL(φ(g1H, g2H)) since φ(g1H, g2H) ∈ L∗ and E is
unramified over L.

Now we want to show the commuativity of the second square. Note that we have already shown
that the following diagram commutes :

H1(G1,Q/Z) H2(G1,Z)

H1(G,Q/Z) Q/Z

δL

Inf1 Inf2

δE

(3.8)

Hence we have Inf2 ◦ δL = δE ◦ Inf1 which implies δ−1
E ◦ Inf2 = Inf1 ◦ δ−1

L by precomposition with
δ−1
E and postcomposition with δ−1

L . This completes the proof of commutativity of the second square.

Finally we will show the commutativity of the third square. Let φ ∈ Hom(G1,Z). Then for
any τ ∈ G, we have (Inf(φ))(τ)) = φ(τH) and thus by Lemma 41,

Inf(φ) 7→ (Inf(φ))(σE/K) = φ(σE/KH) = φ(σL/K)

This completes the proof of commutativity of the third square.

Theorem 64. There exists a unique isomorphism

invK : H2(Kun/K)→ Q/Z, (3.9)

with the property that, for every L ⊂ Kun of finite degree n over K, invK induces the isomorphism

invL/K : H2(L/K)→ 1

[L : K]
Z/Z (3.10)

Proof. We have already shown that invL/K : H2(L/K)→ 1
[L:K]Z/Z is an isomorphism. Moreover,

by Theorem 63, we have a commutative diagram :

H2(L/K) Q/Z

H2(Kun/K) Q/Z

invL/K

Inf Id

invK

(3.11)
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Suppose that invK is not surjective. Hence there exists i
n ∈ Q such that i

n + Z /∈ Im(invK). Take
L to be the unramified extension of K of degree n. Since i

n +Z ∈ 1
nZ/Z = Im(invL/K), so i

n +Z ∈
Im(invK) by the commutativity of diagram which is a contradiction. Hence invK is surjective.

Now we will prove that invK is injective. Let φ̄ ∈ H2(Kun/K) such that invK(φ̄) = 0.

For any L finite unramified over K, we have Inf(H2(L/K)) ⊂ H2(Kun/K). We also have that
for any finite unramified extensions L1 and L2 of K, Inf(H2(L1/K)) ⊂ Inf(H2(L1L2/K)) and
Inf(H2(L2/K)) ⊂ Inf(H2(L1L2/K)). This follows from the commutativity of the following dia-
gram (which can be verified directly) :

H2(L1/K)

H2(L1L2/K) H2(Kun/K)

Inf
Inf ′

Inf

(3.12)

Hence we have

H2(Kun/K) ∼= lim−→
L

H2(L/K) ∼= lim−→
L

Inf(H2(L/K)) ∼=
⋃
L

Inf(H2(L/K))

The second congruence follows from the fact that the inflation map is injective and thus for each
L, we have H2(L/K) ∼= Inf(H2(L/K)). For the last congruence, see Ex. 17, Ch. 2, page 33 of [12].

Thus for any φ̄ ∈ H2(Kun/K), we have φ̄ = Inf(ψ̄) for some ψ̄ ∈ H2(L,K) for some finite
unramified extension L over K.

Therefore by commutativity of diagram 3.11, we have

invL/K(ψ̄) = invK(Inf(ψ̄)) = invK(φ̄) = 0

Since invL/K is an isomorphism, so ψ̄ = 0 and thus φ̄ = 0. This completes the proof that invK is
injective. Thus we have shown that :

There exists an isomorphism
invK : H2(Kun/K)→ Q/Z, (3.13)

with the property that, for every L ⊂ Kun of finite degree n over K, invK induces the isomorphism

invL/K : H2(L/K)→ 1

[L : K]
Z/Z (3.14)

given as invL/K = invK ◦ Inf .

Now we have to check the uniqueness of such an isomorphism invK . Let

ΨK : H2(Kun/K)→ Q/Z

be an isomorphism with the property that, for every L ⊂ Kun of finite degree over K, ΨK induces
the isomorphism

invL/K : H2(L/K)→ 1

[L : K]
Z/Z (3.15)
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i.e. invL/K = ΨK ◦ Inf .

We know that for any φ̄ ∈ H2(Kun/K), we have φ̄ = Inf(ψ̄) for some ψ̄ ∈ H2(L,K) for some
finite unramified extension L over K. Hence

ΨK(φ̄) = ΨK(Inf(ψ̄)) = invL/K(ψ̄) = invK(Inf(ψ̄)) = invK(φ̄)

for any φ̄ ∈ H2(Kun/K). Thus invK = ΨK which completes the proof of uniqueness of the isomor-
phism.

Theorem 65. Let L be a finite extension of K of degree n, and let Kun and Lun be the largest
unramified extensions of K and L. Then the following diagram commutes :

H2(Kun/K) H2(Lun/L)

Q/Z Q/Z

Res

invK invL

n

(3.16)

Proof. Since Lun = LKun, so the map Gal(Lun/L) → Gal(Kun/K) given by τ 7→ τ �Kun is in-
jective. Hence we can treat Gal(Lun/L) as a subgroup of Gal(Kun/K) and obtain the restriction
maps H2(Kun/K)→ H2(Lun/L). Note that these maps are not strictly restriction maps according
to our earlier definitions as the modules are different, but since Kun∗ ⊂ Lun∗, they are essentially
restriction maps and we will see that they satisfy all properties of restriction maps.

To ease the notation, let’s denote Gal(Kun/K) by ΓK and Gal(Lun/L) by ΓL.

We have to check the commutativity of the following diagram :

H2(Kun/K) H2(ΓK ,Z) H1(ΓK ,Q/Z) Q/Z

H2(Lun/L) H2(Γl,Z) H1(ΓL,Q/Z) Q/Z

ordK

Res

δ−1
K

eRes

g 7→g(σK)

eRes fe

ordL δ−1
L g 7→g(σL)

(3.17)

where e is the ramification degree and f is the residual class degree.

In order to prove the commutativity of the first square, note that the following diagram com-
mutes :

Kun∗ Z

Lun∗ Z

ordK

e

ordL

(3.18)

101



Let mK be generated by a prime element πK ∈ OK . Since ramification index for L/K is e, we
have πKOL = me

L. Now let πL be a generator for mL. Thus mL = πLOL and so πKOL = πeLOL
ie. πK = πeLu0 for some u0 ∈ UL. Now let x ∈ Kun∗. Thus x = uπmK for some u ∈ OKun and some
m ∈ Z. The above discussion shows that x = u(u0π

e
L)m. Thus ordL(x) = em = eordK(x) and we

are done.

Now we use this diagram to prove the commutativity of the first square. Let φ : Γ2
K → Kun∗

be a 2-cocyle representing an element of H2(Kun/K). Then ordK(φ̄) is represented by a 2-
cocycle ψ : Γ2

K → Z where ψ(σ1.σ2) = ordK(φ(σ1, σ2)).Then Res(ψ̄) is represented by a 2-cocylce
η : Γ2

L → Z where η(σ1, σ2) = ordK(φ(σ1, σ2)) and thus (eRes)(ψ̄) is represented by a 2-cocylce
η
′

: Γ2
L → Z where

η
′
(σ1, σ2) = e(ordK(φ(σ1, σ2))) = ordL(φ(σ1, σ2))

by the commutativity of the above diagram. Also Res(φ̄) is represented by a 2-cocycle κ : Γ2
L →

Lun∗ where κ(σ1, σ2) = φ(σ1, σ2) and so ordL(Res(φ̄)) is represented by a 2-cocycle β : Γ2
L → Z

where β(σ1, σ2) = ordL(φ(σ1, σ2)). This shows that

(eRes)(ordK(φ̄)) = ordL(Res(φ̄))

i.e. eRes ◦ ordK = ordL ◦Res and thus completes the proof of commutativity of the first square.

Now we want to show that the second square commutes. We have already shown that restric-
tion map commutes with the boundary map and thus the following diagram is commutative :

H1(ΓK ,Z) H2(ΓK ,Z)

H1(ΓL,Z) H2(ΓL,Z)

δK

Res Res

δL

(3.19)

Multiplying both the vertical arrows by e does not affect the commutativity of the diagram i.e. we
get a commutative diagram :

H1(ΓK ,Z) H2(ΓK ,Z)

H1(ΓL,Z) H2(ΓL,Z)

δK

eRes eRes

δL

(3.20)

i.e. (eRes) ◦ δK = δL ◦ (eRes). Again precomposition with δ−1
L and postcomposition with δ−1

K

gives us δ−1
L ◦ (eRes) = (eRes) ◦ δ−1

K . So we have shown that the second square also commutes.

Now we want to show that the third square commutes. Consider the following diagram :
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Hom(ΓK ,Q/Z) Q/Z

Hom(ΓL,Q/Z) Q/Z

g 7→g(σK)

g 7→g�ΓL f

g 7→g(σL)

(3.21)

Let g be a continuous homomorphism from ΓK to Q/Z. To show the commutativity of this diagram,

we have to show that fg(σK) = g �ΓL
(σL) but this is true since σL �Kun= σfK by Lemma 42.

Multiplying the vertical maps with e does not disturb the commutativity of the diagram and we
get that the third square also commutes.

3.5 Ramified Extensions

Let E ⊃ L ⊃ K be a tower of Galois extensions. Note that E is automatically Galois over K
since E is Galois over K. Also let G = Gal(E/K), H = Gal(E/L). Then G/H ∼= Gal(L/K). By
Hilbert’s Theorem 90, we know that H1(H,E∗) = H1(Gal(E/L), E∗) = 0 (by treating L as the
base field instead of K). Hence by the inflation - restriction exact sequence (for r = 2), we get that
the sequence

0→ H2(L/K)
Inf−−→ H2(E/K)

Res−−→ H2(E/L)

is exact. In particular, the Inf map in this setting is injective. This general setting would be used
again and again in this section by taking different fields E,L and K.

Theorem 66. For every local field K, there exists a canonical isomorphism

invK : H2(Kal/K)→ Q/Z.

Moreover, if L is a finite extension of K with [L : K] = n, then the diagram

0 H2(L/K) H2(Kal/K) H2(Kal/L)

0 1
nZ/Z Q/Z Q/Z

Inf Res

invK invL

n

(3.22)

commutes. Furthermore, if L/K is Galois, then there is an isomorphism

invL/K : H2(L/K)→ 1

n
Z/Z

such that
invK ◦ Inf = invL/K

Remark 18. At the first sight, it might seem that there is a discrepancy in the notation invL as
one would expect it to denote invL : H2(Lal/L) → Q/Z instead of invL : H2(Kal/L) → Q/Z but
this problem is easily overcome by the the observation that Lal ∼= Kal since L ⊂ Kal and so Kal is
also an algebraic closure for L.
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Remark 19. mn
L = B(0, |πL|n) is an open neighborhood of 0. Moreover, if U is an open set con-

taining 0, then U contains some ball B(0, r). Choose n such that |πL|n < r and thus B(0, |πL|n) ⊂
B(0, r) ⊂ U . Thus {mn

L : n ∈ N} is a neighborhood base at 0. Similarly {UnL : n ∈ N} is a
neighborhood base at 1 where UnL = 1 +mn

L = B(1, |πL|n).

Note that the top row is obtained by taking the tower of Galois extensions Kal ⊃ L ⊃ K. The
proof will require a few lemmas which we now prove.

Lemma 46. If L/K is Galois of finite degree n, then H2(L/K) contains a subgroup canonically
isomorphic to 1

nZ/Z.

Proof. Consider the diagram :

0 Ker(Res) H2(Kun/K) H2(Lun/L)

0 H2(L/K) H2(Kal/K) H2(Kal/L)

i

η

Res

Inf Inf

Inf Res

(3.23)

It is straightforward to show that the diagram commutes (since all the maps are canonical).

Note that the inflation maps H2(Kun/K) → H2(Kal/K) and H2(Lun/L) → H2(Lal/L) are
injective. This can be shown by taking the tower of Galois extensions Kal ⊃ Kun ⊃ K and
Lal ⊃ Lun ⊃ L respectively.

Since the first square is commutative and the maps i and Inf are injective, so η is injective as
well. Thus H2(L/K) contains a subgroup which is isomorphic to Ker(Res). In Theorem 65, we
have proved that the following diagram commutes :

H2(Kun/K) H2(Lun/L)

Q/Z Q/Z

Res

InvK InvL

n

(3.24)

Since invK and invL are isomorphisms, Ker(Res) ∼= Ker(n) = 1
nZ/Z.

In order to prove Theorem 66, we need to show that H2(L/K) is infact isomorphic to 1
nZ/Z. Due

to Lemma 46, it suffices to prove that |H2(L/K)| ≤ n.

Lemma 47. Let L be a finite Galois extension of K with Galois group G. Then there exists an
open subgroup V of OL such that Hr(G,V ) = 0 for all r > 0.

Proof. By Normal Basis Theorem, there exists a basis {τx : τ ∈ G} of L over K. Since G is a finite
group, min(ordL(τx)) ∈ Z, say m = min(ordL(τx)). Choose n ≥ |m|, then ∀ τ ∈ G,

ordL(τ(πnKx)) = ordL(πnKτ(x)) ≥ 0
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which means that πnKτ(x) ∈ OL ∀ τ ∈ G. Since

{τ(πnx) : τ ∈ G}

is also a basis of L over K, without loss of generality we can assume that the basis {τx : τ ∈ G} of
L over K is inside OL. Define

V =
∑
τ∈G

τ(x)OK

Clearly V is a subgroup ofOL which is stable underG. Then V ∼= OK [G] where the map V → OK [G]
is given as ∑

τ∈G
τ(x)uτ 7→

∑
τ∈G

τuτ

where uτ ∈ OK . This map is well defined because of the linear independence of the basis {τx : τ ∈
G} of L over K. Since G is a finite group, we can label it as

G = {τ1, τ2, ......, τn}

NowOK [G] ∼= IndGOK given by the noncanonical map η : OK [G]→ IndGOK such that
∑n

i=1 uiτi 7→
φ where

φ(τi) = uj

and j is defined as τj = τ−1
i . The inverse map η

′
: IndGOK → OK [G] is given by

ψ 7→
n∑
i=1

ψ(g−1
i )gi

It is straightforward to show that the maps η and η
′

are actually inverses of each other. The map
η is also a G-module map since

η

τ
 n∑
j=1

ujτj

 = η

 n∑
j=1

uj(ττj)

 = φ
′

where φ
′
(τi) = uk where k is defined as ττk = τ−1

i i.e. τk = τ−1τ−1
i and

τ

η
 n∑
j=1

uj(τj

 = τ(φ)

Now (τ(φ))(τi) = φ(τiτ) = ul where l is defined as τl = (τiτ)−1 = τ−1τ−1
i . Hence τk = τl which

means that k = l and so uk = ul.

Therefore the map η is a G-module isomorphism. Thus OK [G] is an induced G module and so
Hr(G,OK [G]) = 0 ∀ r > 0 which implies that Hr(G,V ) = 0 ∀ r > 0.

We are only left to prove that V is open in OL. It suffices to show that V is open in L.

Since L is a finite dimensional vector space over K with basis {τ1(x), ..., τn(x)}, so we have a
K-vector space isomorphism

φ : L→
∏
τ∈G

K
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given by
n∑
i=1

αiτi(x) 7→ (α1, ..., αn)

Let | |∞ be a metric on
∏
τ∈GK defined such that

|(α1, ..., αn)|∞ = max
1≤i≤n

|αi|

Then φ is a homeomorphism between (
∏
τ∈GK, | |∞) and (L, | |). This follows from a basic fact

in Functional Analysis which says that any two norms on a finite dimensional Banach space are
equivalent. Now observe that

φ

(∏
τ∈G

OK

)
= V

Since
∏
τ∈GOK is an open subset of

∏
τ∈GK, so V is open subset of L and we are done.

Lemma 48. Let L,K and G, be as in the last lemma. Then there exists an open subgroup V of
UL stable under G such that Hr(G,V ) = 0 ∀ r > 0.

Proof. We prove this only for the case char(K) = 0. We know that mn
L
∼= U

(n)
L as abelian groups

whenever n > ord(p)
p−1 . The isomorphism mn

L → U
(n)
L is given by

x 7→ expx =

∞∑
n=0

xn

n!

with the inverse map U
(n)
L → mn

L given by

x 7→ log x =
∞∑
n=1

(−1)(n−1)xn

It is infact a G-module isomorphism because the action of G is continuous and so

σ(expx) = σ

(
lim
n→∞

n∑
i=0

xi

i!

)
= lim

n→∞

(
σ

n∑
i=0

xi

i!

)
= lim

n→∞

(
n∑
i=0

(σx)i

i!

)
= exp(σ(x))

Choose an open subgroup V ′ of OL stable under G such that Hr(G,V ′) = 0 ∀ r > 0. Choose M

such that M > ord(p)
p−1 . Then πMK V

′ is stable under G since σ(πK) = πK . Moreover, we have

πMK V
′ = πeML V ′

Also V ′ is an open neighborhood of 0, so V ′ = ∪nmn
L which implies that πeML V ′ = ∪nmn+eM

L is
also an open subgroup of OL. Moreover, there is a G-module isomorphism V ′ → πMK V

′ such that
x 7→ πMK x with the inverse map πMK V

′ → V ′ given by πmKx 7→ x. Thus Hr(G, πMK V
′) ∼= Hr(G,V ) =

0. Since

ord(πMK V
′) = M + ord(V ′) ≥M >

ord(p)

p− 1

so we can take the exponential
V = exp(πeML V ′)
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under the isomorphism exp : meM
L → U

(M)
L . It is easy to verify that V is stable under G. Also

Hr(G,V ) = 0 since Hr(G, πeML V ′) = 0. Moreover, we had πeML V ′ = ∪nmn+eM
L , and so

V = exp(πeML V ′) = ∪n exp(mn+eM
L ) = ∪nUn+eM

L

is an open subgroup of UL.

Lemma 49. Let L/K be a cyclic extension of degree n; then h(UL) = 1 and h(L∗) = n.

Proof. Let V be an open subgroup of UL with Hr(G,V ) = 0 ∀ r ∈ Z as in Lemma 48. Take the
cosets of V in UL. We have UL =

⋃
S gV where S is a set of coset representatives of V in UL. Since

V is open, so is each gV because the map ”multiplication by g” is a topological isomorphism. Since
UL is compact, there must be a finite subcover i.e. S is finite. Hence UL/V is finite, which implies
h(UL/V ) = 1 by Theorem 43. Since

h(UL) = h(V )h(UL/V )

by Lemma 42, so h(UL) = h(V ). But note that

h(V ) =
|H0(G,V )|
|H1(G,V )|

=
1

1
= 1

Also we have the exact sequence 0→ UL → L∗ → Z→ 0. Thus

h(L∗) = h(UL)h(Z) = h(Z) =
|H0(G,Z)|
|H1(G,Z)|

=
n

1
= n

Lemma 50. Let L be a finite Galois extension of order n, then H2(L/K) has order n.

Proof. We prove by induction on [L : K]. Clearly the base case (n = 1) is true. Now let L be an
extension of K such that L 6= K. If L/K is cyclic we are done by Lemma 49 and periodicity of
cohomology groups. So we assume that L/K is not cyclic. We know that the group Gal(L/K) is
solvable, thus it has a finite composition series

G = G0 ⊃ G1 ⊃ G2...... ⊃ Gn = {1}

where each Gi/Gi+1 is nontrivial, finite abelian and simple (so cyclic). Note that since G is not
cyclic, so n 6= 1 i.e. n ≥ 2 and thus G contains a proper nontrivial normal subgroup G1. By Galois
theory, there exists a Galois extension K ′ ⊂ L over K such that K ′ 6= K and K ′ 6= L.

Thus we can apply the induction hypothesis to conclude thatH2(K ′/K) = [K ′/K] andH2(L/K ′) =
[L : K ′]. Since we have an exact sequence

0→ H2(K ′/K)→ H2(L/K)→ H2(L/K ′)

so
|H2(L/K)|
|H2(K ′/K)|

≤ |H2(L/K ′)|

i.e.
|H2(L/K)| ≤ |H2(K ′/K)| |H2(L/K ′)| = [K ′ : K] [L : K ′] = [L : K]

and thus we are done since by Lemma 46, we know that |H2(L/K)| ≥ n.
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Proof. Now let us complete the proof of Theorem 66. We know by the proof of Theorem 64 that

H2(Kal/K) =
⋃
Inf(H2(L/K))

where L runs over finite extensions of K. We now want to show that it suffices to take the union
over finite Galois extensions of K. Let Ω1 be the collection of all finite extensions of K and Ω2 be
the collection of all finite Galois extensions of K. We want to show that⋃

L∈Ω1

Inf(H2(L/K)) =
⋃
L∈Ω2

Inf(H2(L/K))

Since Ω2 ⊂ Ω1 so it is clear that⋃
L∈Ω2

Inf(H2(L/K)) ⊂
⋃
L∈Ω1

Inf(H2(L/K))

Conversely if we take L to be any finite extension of K, then we can take a finite Galois extension
L′ over K containing L. We know that the following diagram commutes :

H2(L/K)

H2(L′/K) H2(Kal/K)

Inf ′
Inf

Inf

(3.25)

This shows that
Inf(H2(L/K)) ⊂ Inf(H2(L′/K))

Thus we have that ⋃
L∈Ω1

Inf(H2(L/K)) ⊂
⋃
L∈Ω2

Inf(H2(L/K))

This completes the proof that

H2(Kal/K) =
⋃
Inf(H2(L/K))

where L runs over finite Galois extensions of K. Hence an arbitrary element φ̄ of H2(Kal/K) is
of the form Inf(ψ̄) for some ψ̄ ∈ H2(L/K) for some L galois over K. Now again consider the
diagram :

0 Ker(Res) H2(Kun/K) H2(Lun/L)

0 H2(L/K) H2(Kal/K) H2(Kal/L)

i

η

Res

Inf Inf

Inf Res

(3.26)

We have shown that η is an isomorphism. Thus (ψ̄) = η(κ̄) for some κ̄ ∈ Ker(Res).
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Hence φ̄ = Inf(η(κ)) = (Inf ◦ i)(κ̄) = Inf(i(κ̄)). This proves that the map Inf : H2(Kun/K)→
H2(Kal/K) is surjective as well and is thus an isomorphism.

Recall that we have also proved the commutativity of the following diagram (Theorem 65) :

H2(Kun/K) H2(Lun/L)

Q/Z Q/Z

Res

InvK InvL

n

(3.27)

This in turn proves the commutativity of the following diagram :

0 Ker(Res) H2(Kun/K) H2(Lun/L)

0 1
nZ/Z Q/Z Q/Z

Res

InvK InvL

n

(3.28)

All the vertical maps are isomorphisms.

We can combine the diagram 3.28 to the diagram 3.26 which means to compose diagram 3.28 with
the inverse of diagram 3.26 to get the following commutative diagram :

0 H2(L/K) H2(Kal/K) H2(Kal/L)

0 1
nZ/Z Q/Z Q/Z

Inf

invL/K

Res

invK invL

n

(3.29)

In particular, the invK : H2(Kal/K) → Q/Z and invL : H2(Kal/L) → Q/Z maps are also
isomorphisms. Then we can say that for any finite Galois extension L of K, invK induces the
isomorphism invL/K = invK ◦ Inf .

Remark 20. Note that the diagram in the Theorem 66 commutes even if L/K is not Galois because
to show that this diagram commutes, it suffices to show that the right square in the diagram 3.23
and the diagram 3.27 commute. The condition L/K is Galois is required only to prove that the
left square in the diagram 3.23 commutes and hence is not required for the commutativity of the
diagram in the Theorem 66.
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3.6 The Fundamental Class

Definition 30. Let L be a finite Galois extension of K with Galois group G. By Section 3.5, there
are isomorphisms

Ker(Res)
invK−−−→ 1

n
Z/Z

and
Ker(Res)

η−→ H2(L/K)

Composition of these isomorphisms gives us the isomorphism

H2(L/K)→ 1

n
Z/Z

This isomorphism is known as the invariant map invL/K .

Definition 31. Let L be a finite Galois extension of K with Galois group G. We define the
fundamental class uL/K of H2(L/K) such that

invL/K(uL/K) =
1

[L : K]
+ Z (3.30)

Since diagram 3.29 commutes and the map Inf : H2(L/K) → H2(Kal/K) is injective, uL/K is
also uniquely determined as :

invK(Inf(uL/K)) =
1

[L : K]
+ Z (3.31)

Since the Inf map is injective, we may identify Inf(uL/K) with uL/K and the above condition is
written as

invK(uL/K) =
1

[L : K]
+ Z

Theorem 67. Let L ⊃ E ⊃ K with L/K galois. Then

Res(uL/K) = uL/E

Cor(uL/E) = [E : K]uL/K
(3.32)

Moreover if E/K is Galois,
Inf(uE/K) = [L : E]uL/K

Proof. There is a commutative diagram by Theorem 66 :

H2(Kal/K) H2(Kal/E)

Q/Z Q/Z

Res

invK invE

E:K

(3.33)

There is also a commutative diagram :
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H2(Kal/E) H2(Kal/L)

Q/Z Q/Z

Res

invK invE

L:E

(3.34)

Combining the two diagrams together, we get a commutative diagram :

H2(Kal/K) H2(Kal/E) H2(Kal/L)

Q/Z Q/Z Q/Z

Res

invK

Res

invE invL

E:K L:E

(3.35)

Now we need a helping lemma which can be proved by direct verification.

Lemma 51. If we have a commutative diagram such that the rows are exact

A B C

D E F

f1

η1

g1

η2 η3

f2 g2

(3.36)

then the following diagram is also commutative with exact rows :

Ker(f1) Ker(g1 ◦ f1) Ker(g1)

Ker(f2) Ker(g2 ◦ f2) Ker(g2)

incl.

η1

f1

η1 η2

incl. f2

(3.37)

where the map ”incl.” is the inclusion map.

Remark 21. The fact that the rows are exact is a part of the Kernel - Cokernel lemma which
comes from the Extended Snake Lemma.

Now we will apply Lemma 51 to our diagram. In our situation, we have f1 = Res : H2(Kal/K)→
H2(Kal/E), g1 = Res : H2(Kal/E)→ H2(Kal/L)) and g1 ◦f1 = Res : H2(Kal/K)→ H2(Kal/L).

Then by exactness of the inflation-restriction sequence (Theorem 36), we getKer(f1) = Inf1(H2(E/K)),
Ker(g1 ◦ f1) = Inf2(H2(L/K)) and Ker(g1) = Inf3(H2(L/E)) where Inf1 is the inflation map
Inf : H2(E/K)→ H2(Kal/K), Inf2 is the inflation map Inf : H2(L/K)→ H2(Kal/K) and Inf3

is the inflation map Inf : H3(L/E)→ H2(Kal/E).

Moreover, the maps ηi are just the invariant maps. Thus by Lemma 51, we get the commuta-
tive diagram with exact rows :
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Inf1(H2(E/K)) Inf2(H2(L/K)) Inf3(H2(L/E))

1
(E:K)Z/Z

1
(L:K)Z/Z

1
(L:E)Z/Z

invK

i

invK

Res

invL

incl. (E:K)

(3.38)

It is easy to verify that the following diagram commutes :

H2(E/K) H2(L/K) H2(L/E)

Inf1(H2(E/K)) Inf2(H2(L/K)) Inf3(H2(L/E))

Inf

Inf1

Res

Inf2 Inf3

i Res

(3.39)

Combining these two diagrams, we get the following commutative diagram :

H2(E/K) H2(L/K) H2(L/E)

1
(E:K)Z/Z

1
(L:K)Z/Z

1
(L:E)Z/Z

Inf

invK◦Inf1

Res

invK◦Inf2 invL◦Inf3

incl. (E:K)

(3.40)

Now by the diagram 3.29, we know that invK ◦ Inf2 = invL/K , invK ◦ Inf1 = invE/K and
invL/E = invL ◦ Inf3. Hence we get the following commutative diagram :

H2(E/K) H2(L/K) H2(L/E)

1
(E:K)Z/Z

1
(L:K)Z/Z

1
(L:E)Z/Z

Inf

invE/K

Res

invL/K invL/E

incl. (E:K)

(3.41)

The commutativity of the second square shows that

invL/E(Res(uL/K)) = [E : K] invL/K(uL/K)
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but we already know that

invL/K(uL/K) =
1

[L : K]
+ Z

Thus we get

invL/E(Res(uL/K)) = [E : K]

(
1

[L : K]
+ Z

)
=

(
1

[L : E]
+ Z

)
But also

invL/E(uL/E) =
1

[L : E]
+ Z

Hence
invL/E(Res(uL/K)) = invL/E(uL/E)

Since invL/E is an isomorphism, so

Res(uL/K) = uL/E

Thus
Cor(uL/E) = Cor(Res(uL/K)) = [E : K] uL/K

Similarly, the commutativity of the first square in diagram 3.41 shows that

invL/K(Inf(uE/K)) = invE/K(uE/K)

We know that

invE/K(uE/K) =
1

[E : K]
+ Z

Thus

invL/K(Inf(uE/K)) =
1

[E : K]
+ Z

But

1

[E : K]
+ Z = [L : E]

(
1

[L : K]
+ Z

)
= [L : E] invL/K(uL/K) = invL/K([L : E] uL/K)

Therefore,

invL/K(Inf(uE/K)) = invL/K([L : E] uL/K)

and so
Inf(uE/K) = [L : E] uL/K

since invL/K is an isomorphism.
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3.7 The Local Artin Map

Remark 22. Let L be a finite Galois extension of K with Galois group G. Let H be a subgroup
of G and E be its fixed field. Then H = Gal(L/E) and L is a Galois extension of E. Thus by
Hilbert’s Theorem 90 (Theorem 20), we have H1(H,L∗) = 0. Also H2(H,L∗) is a cyclic group with
order equal to [L : E] = |H| because of Theorem 66. Thus hypothesis of Tate’s theorem (Theorem
45) is satisfied.

Definition 32. By Tate’s Theorem, for every finite Galois extension of local fields L/K with Galois
group G and r ∈ Z, the homomorphism

Hr
T (G,Z)→ Hr+2

T (G,L∗)

defined by x 7→ x ∪ uL/K is an isomorphism. When r = −2, this becomes an isomorphism

Gab ∼= K∗/NmL/K(L∗)

where Gab = G/Gc is the abelianization of G. The inverse isomorphism

φL/K : K∗/NmL/K(L∗) ∼= Gab

is known as the Local Artin Map φL/K .

Remark 23. The Local Artin Map naturally induces the map

K∗ → Gal(L/K)ab

This is a surjective map with kernel NmL/K(L∗). We will denote this map also by φL/K . Though
there is some ambiguity in this notation but the notation will be clear from the context.

Lemma 52. Let L ⊃ E ⊃ K be a tower of local fields with L/K Galois. Then the following
diagram commutes :

E∗ Gal(L/E)ab

K∗ Gal(L/K)ab

φL/E

NmE/K i

φL/K

(3.42)

where the map i is the map induced by the inclusion map Gal(L/E) → Gal(L/K) and the map
φL/E is induced by the Local Artin map E∗/NmL/E(L∗)→ Gal(L/E)ab. Similarly φL/K is induced

by the Local Artin map K∗/NmL/K(L∗)→ Gal(L/K)ab.

Proof. By transitivity of the norm map, it is clear that the following diagram commutes :

E∗ E∗/NmL/E(L∗)

K∗ K∗/NmE/K(E∗)

NmE/K NmE/K (3.43)
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Thus it suffices to prove that the following diagram commutes :

E∗/NmL/E(L∗) Gal(L/E)ab

K∗/NmE/K(E∗) Gal(L/K)ab

φL/E

NmE/K i

φL/K

(3.44)

To prove
i ◦ φL/E = φL/K ◦NmE/K

it suffices to show that
φ−1
L/K ◦ i = NmE/K ◦ φ−1

L/E

i.e. the following diagram commutes :

Gal(L/E)ab E∗/NmL/E(L∗)

Gal(L/K)ab K∗/NmE/K(E∗)

φ−1
L/E

i NmE/K

φ−1
L/K

(3.45)

We know that the map φ−1
L/K is given by cup product with the local fundamental class uL/K and the

map φ−1
L/E is given by cup product with the local fundamental class uL/E . Moreover, by Remark 7

and Theorem 38, the maps i and NmE/K are nothing but the corestriction maps in dimension −2
and 0 respectively. Thus we are just required to show

Cor(x ∪ uL/E) = Cor(x) ∪ uL/K

But we know a standard property of cup products (Lemma 26)

Cor(a ∪Res(b)) = Cor(a) ∪ b

which tells us that
Cor(x ∪ (Res(uL/K)) = Cor(x) ∪ uL/K

But by Theorem 67, we know that Res(uL/K) = uL/E and so we are done.

Lemma 53. For every κ ∈ H1(Gal(L/K),Q/Z) and a ∈ K∗, we have

κ(φL/K(a)) = invK(a ∪ δκ)

Proof. To ease notation, we set σa = φL/K(a) and σa the element of H−2(G,Z) which corresponds

to φL/K(a) under the isomorphism H−2(G,Z) ∼= Gab. We denote by a the class of a in H0(G,L∗).

Since φ−1
L/K : H−2(G,Z) → H0(G,L∗) is given by cup product with the local fundamental class

uL/K , so we have
σa ∪ uL/K = a

Thus
a = uL/K ∪ σa
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since we know that b ∪ a = (−1)pq(a ∪ b). Therefore,

a ∪ δκ = (uL/K ∪ σa) ∪ δκ = uL/K ∪ (σa ∪ δκ) = uL/K ∪ δ(σa ∪ κ)

since δ(a ∪ b) = (−1)p(a ∪ δ(b)). By Lemma 29, we have

σa ∪ κ = κ(σa) =
r

n
+ Z ∈ 1

n
Z/Z = H−1(G,Q/Z)

for some r where n = |G|. Note that the last equality follows from the fact that G has trivial action
on Q/Z which means that the Kernel of norm map is 1

nZ/Z and IG(Q/Z) = 0. Now we want to

find δ(κ(σa)). We have to again use the description of the map H−1(G,Q/Z)→ H0(G,Z) provided
in Remark 11.

Firstly note that r
n itself is a preimage of r

n + Z under the map Q → Q/Z. Since G has triv-
ial action on Q, so norm of r

n is equal to n( rn) = r. Again r itself is a preimage of r under the
inclusion map Z→ Q. Thus we have

δ(σa ∪ κ) = δ(κ(σa)) = δ
( r
n

+ Z
)

= r + nZ ∈ Z/nZ = H0(G,Z)

Therefore,
a ∪ δκ = uL/K ∪ (r + nZ)

Note that uL/K ∪ (r + nZ) need to be calculated through the map

H2(G,L∗)→ H2(G,L∗ ⊗ Z) ∼= H2(G,L∗)

where the last isomorphism is induced by the isomorphism

L∗ ⊗ Z→ L∗

given by x⊗ n 7→ xn. Thus under this composite map, we have

uL/K 7→ uL/K ⊗ r 7→ urL/K

where the first step is because of Theorem 40. Hence

invK(uL/K∪(r+nZ)) = invK(urL/K) = r invK(uL/K) = r

(
1

n
+ Z

)
=
r

n
+Z = κ(σa) = κ(φL/K(a))

Theorem 68. Let L ⊃ E ⊃ K be local fields with both L and E Galois over K. Then the following
diagram commutes :

K∗ Gal(L/K)ab

K∗ Gal(E/K)ab

φL/K

id π

φE/K

(3.46)

where the map π is induced by the surjective map Gal(L/K)→ Gal(E/K) given by σ 7→ σE.
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Proof. As usual we denote Gal(L/K) by G, Gal(L/E) by H and then G/H ∼= Gal(E/K). For any
character κ ∈ H1(G/H,Q/Z), we have inf(κ) ∈ H1(G,Q/Z). Then by definition of inflation map,
for any g ∈ G, we have

(inf(κ))(g) = κ(gH) = κ(π(g))

Therefore,
κ(π(φL/K(a)) = (inf(κ))(φL/K(a)) = invL/K(a ∪ δ(infκ))

by Lemma 53. Since we know that inflation maps commute with the boundary map (Theorem 27),
so

invL/K(a ∪ δ(infκ)) = invL/K(a ∪ inf(δκ)) = invL/K(inf(a ∪ δκ)) = invE/K(a ∪ δκ)

because invE/K = invL/K ◦ inf by diagram 3.41. But

invE/K(a ∪ δκ) = κ(φE/K(a)))

by Lemma 53. Hence for every κ ∈ H1(G/H,Q/Z), we have

κ(π(φL/K(a)) = κ(φE/K(a))

which shows that
π(φL/K(a)) = φE/K(a)

Remark 24. Theorem 68 immediately implies that if L ⊃ E ⊃ K is a tower of finite abelian
extensions of K, then ∀ a ∈ K∗,

φL/K(a) �E = φE/K(a)

Definition 33. We define the Local Artin Map φK

φK : K∗ → Gal(Kab/K)

to be the homomorphism such that for every finite abelian extension L/K,

φK(a) �L= φL/K(a)

Theorem 69. For every local field K, there exists a homomorphism (local Artin map)

φK : K∗ → Gal(Kab/K)

with the following properties :
(a) for every prime element π of K, φK(π) �Kun= FrobK ;
(b) for every finite abelian extension L of K, NmL/K(L∗) is contained in the kernel of a 7→
φK(a) �L, and φK induces an isomorphism

φL/K : K∗/NmL/K(L∗)→ Gal(L/K)

Proof. (b) is clear from the diagram :

K∗ Gal(Kab/K)ab

K∗ Gal(L/K)ab

φK

id π

φL/K

(3.47)
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To prove (a), observe that for any finite unramified extension L of K (which is then cyclic and
hence abelian), we have

φK(π) �L = φL/K(π) = FrobL/K

and thus
φK(π) �Kun= FrobK

Theorem 70. (Norm Limitation Theorem) Let L be a finite extension of K, and let E be the
largest abelian extension of K contained in L; then

NmL/K(L∗) = NmE/K(E∗)

Proof. Note that L ⊃ E ⊃ K. Thus we have the transitivity of the norm map (proved earlier),

NmL/K = NmE/K ◦NmL/E

which shows that
NmL/K(L∗) ⊂ NmE/K(E∗)

Therefore, we have a surjective map

η :
K∗

NmL/K(L∗)
→ K∗

NmE/K(E∗)

such that
x+NmL/K(L∗) 7→ x+NmE/K(E∗)

Firstly suppose that L/K is Galois. We will prove that in this case,

Gal(E/K) = Gal(L/K)ab

We know that for any galois extension F of K in L,

Gal(F/K) ∼=
Gal(L/K)

Gal(L/F )

We know from basic group theory that for a normal subgroup H of G,

G/H is abelian ⇔ H ⊃ Gc

where Gc denotes the commutator subgroup of G. Thus F is abelian if and only if Gal(L/F ) ⊃
Gal(L/K)c and Gal(L/F ) is normal in Gal(L/K).

Also, we know that for F1 ⊂ F2, we have Gal(L/F1) ⊃ Gal(L/F2). Since E is the largest
abelian extension of K in L, so Gal(L/E) is the smallest normal subgroup of Gal(L/K) con-
taining Gal(L/K)c which is infact equal to Gal(L/K)c. Let F0 be the fixed field of Gal(L/K)c.
Then by the Fundamental Theorem of Galois Theory, we have F0 = E. Thus

Gal(L/E) ∼= (Gal(L/K)c)
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Hence we get that

Gal(E/K) ∼=
Gal(L/K)

Gal(L/E)
=

Gal(L/K)

Gal(L/K)c
= Gal(L/K)ab

This shows that
| Gal(E/K) | = | Gal(L/K)ab |

Now the isomorphism of local Artin map shows that

|Gal(L/K)ab| =
∣∣∣∣ K∗

NmL/K(L∗)

∣∣∣∣
and

|Gal(E/K)| = |Gal(E/K)ab| =
∣∣∣∣ K∗

NmE/K(E∗)

∣∣∣∣
All these equations can be combined to conclude that∣∣∣∣ K∗

NmL/K(L∗)

∣∣∣∣ =

∣∣∣∣ K∗

NmE/K(E∗)

∣∣∣∣
Thus η is also an injection and we get Ker(η) is trivial which means that

NmE/K(E∗) ⊂ NmL/K(L∗)

and so
NmE/K(E∗) = NmL/K(L∗)

Now consider the general case (L/K need not be Galois).

We are going to assume char(K) = 0. Let L′ be a finite Galois extension of K containing L
(Such an extension can be constructed by adjoining all the roots of minimal polynomials of a prim-
itive element of L over K which is the splitting field of a seperable polynomial and hence Galois).
Let G = Gal(L′/K) and H = Gal(L′/L).

For any Galois extension F of K inside L′, we have

Gal(F/K) ∼=
Gal(L′/K)

Gal(L′/F )

Thus F is an abelian extension of K inside L′ if and only if Gal(L′/F ) ⊃ Gc and Gal(L′/F ) is
normal in Gal(L′/K). Moreover F is contained in L if and only if Gal(L′/F ) ⊃ Gal(L′/L) = H.

Hence F is an abelian extension of K inside L if and only if Gal(L′/F ) ⊃ GcH and Gal(L′/F ) is
normal in Gal(L′/K).

Also, we know that for F1 ⊂ F2, we have Gal(L/F1) ⊃ Gal(L/F2). Since E is the largest abelian
extension of K in L, so Gal(L/E) is the smallest normal subgroup of Gal(L/K) containing GcH
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which is infact equal to GcH. Let F0 be the fixed field of GcH. Then by the Fundamental Theorem
of Galois Theory, we have F0 = E. Hence we know that

Gal(L′/E) ∼= GcH

and thus

Gal(E/K) ∼=
Gal(L′/K)

Gal(L′/E)
=

G

GcH

Take any a ∈ NmE/K(E∗). We have to show that a ∈ NmL/K(L∗) (since we already know that
NmL/K(L∗) ⊂ NmE/K(E∗)). Consider the commutative diagram obtained by combining the dia-
grams in Lemma 52 and Lemma 68 :

L∗ H/Hc

K∗ G/Gc

K∗ G/GcH

φL′/L

NmL/K incl.

φL′/K

id proj.

φE/K

(3.48)

Note that the inclusion map H/Hc → G/Gc is induced by the inclusion map H → G (since
H ∩ Gc = Hc) and is given by hHc 7→ hGc and the projection map G/Gc → G/GcH is given by
gGc 7→ gGcH.

Since a ∈ Nm(E∗), so φE/K(a) = 1. By the commutativity of the lower square, we get φL′/K(a) 7→ 1
under the projection map. We want to show that φL/K(a) is in the image of the inclusion map. It
suffices to show that whenever an element of G/Gc maps to 1 under the projection map, then it is
in the image of the inclusion map.

Let gGc 7→ 1 under the projection map. Then g ∈ GcH and so g = g1h for some g1 ∈ Gc

and some h ∈ H. Thus
gGc = g1hG

c = hg2G
c = hGc = incl.(hHc)

and so we are done. Note that we have used that g1h = hg2 for some g2 ∈ Gc since Gc is a normal
subgroup of G. Hence φL′/K(a) is in the image of inclusion map, say φL/K(a) = incl.(hHc). Since
φL′/L is surjective, so hHc = φ(L′/L)(b) for some b ∈ L∗). Thus φL/K(a) = φ(L′/L)(incl.(b)). The
commutativity of the upper square then implies that

φL′/K(a) = φL′/K(NmL/K(b))

Thus
a

NmL/K(b)
∈ Ker(φL′/K) = NmL′/K(L′∗)

and so
a

NmL/K(b)
= NmL′/K(c)
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for some c ∈ L∗. Again, transitivity of norms show that NmL′/K(c) = NmL/K(NmL′/L(c)) and
thus

a = NmL/K(b) NmL′/K(c) = NmL/K(b) (NmL/K(NmL′/L(c))) = NmL/K(b NmL′/L(c))

Hence a ∈ NmL/K(L∗) and we are done.

3.8 The Hilbert Symbol

In order to prove the Existence Theorem, we need a result from the theory of Hilbert Symbol.

Theorem 71. Let K be a local field containing a primitive nth root of 1. Any element of K∗ that
is a norm from every cyclic extension of K of degree dividing n is an nth power.

Proof. We will require the following standard result in the theory of Hilbert Symbols.

Theorem 72. The Hilbert Symbol has the following properties :

(a). It is bi-multiplicative, i.e.
(aa′, b) = (a, b)(a′, b)

(a, bb′) = (a, b)(a, b′)

(b). It is skew symmetric, i.e.
(b, a) = (a, b)−1

(c). It is non-degenerate, i.e.

(a, b) = 1 for all b ∈ K∗/K∗n =⇒ a ∈ K∗n

(a, b) = 1 for all a ∈ K∗/K∗n =⇒ b ∈ K∗n

(d). (a, b) = 1 if and only if b is a norm from K[a1/n].

Proof. See Theorem 4.4, page 112, [1].

Now we prove Theorem 71 with the help of Theorem 72. Let a be an element of K∗ which is a
norm from every cyclic extension of degree dividing n. By part (d) of Theorem 72, it follows that
(a, b) = 1 for all a ∈ K∗ which means that b ∈ K∗n by part (c) of Theorem 72 and thus b is an nth

power.

3.9 The Existence Theorem

Let K be a local field.

Definition 34. A subgroup N of K∗ is known as a norm group if there is a finite abelian extension
L/K such that NmL/K(L∗) = N

If N is a norm subgroup, then K∗/N ∼= Gal(L/K), and so N is of finite index in K∗.
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Lemma 54. If L and L′ are abelian extensions of K, then

L ⊂ L′ ⇔ NmL/K(L∗) ⊃ NmL′/K(L′∗)

and
NmLL′/K((LL′)∗) = NmL/K(L∗) ∩NmL′/K(L′∗)

Proof. If L ⊂ L′, then transitivity of the norm map tells us that

NmL/K(L∗) ⊃ NmL′/K(L′∗)

Hence, in particular
NmLL′/K((LL′)∗) ⊂ NmL/K(L∗)

and
NmLL′/K((LL′)∗) ⊂ NmL′/K(L′∗)

since L ⊂ LL′ and L′ ⊂ LL′. Therefore,

NmLL′/K((LL′)∗) ⊂ NmL/K(L∗) ∩NmL′/K(L′∗)

Conversely, let a ∈ NmL/K(L∗) ∩NmL′/K(L′∗), then

φL/K(a) = 1 = φL′/K(a)

But
φLL′/K(a) �L= φL/K(a) = 1

and
φLL′/K(a) �′L= φL′/K(a) = 1

by Lemma 68. Since the map

σ 7→ (σ �L, σ �L′) : Gal(LL′/K)→ Gal(L/K)×Gal(L′/K)

is injective, thus we get φLL′/K(a) = 1 and so a ∈ NmLL′/K((LL′)∗). This completes the proof
that

NmLL′/K((LL′)∗) = NmL/K(L∗) ∩NmL′/K(L′∗)

Finally let NmL/K(L∗) ⊃ NmL′/K(L′∗). Then by the above result, we have

NmLL′/K((LL′)∗) = NmL/K(L∗) ∩NmL′/K(L′∗) = NmL′/K(L′∗)

But we also know by the local Artin map that

[K∗ : NmL′/K(L′∗)] = [L′ : K]

and
[K∗ : NmLL′/K((LL′)∗)] = [LL′ : K]

Hence [LL′ : K] = [L′ : K]. Since L′ ⊂ LL′, thus L′ = LL′ which means L ⊂ L′ and so we are
done.

Lemma 55. Every subgroup of K∗ containing a norm group is itself a norm group.
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Proof. Let N be a norm group i.e. N = NmL/K(L∗) for some abelian extension L/K and let I ⊃ N .
Then φL/K(I) is a subgroup of Gal(L/K) and let M be its fixed field. Thus Gal(L/M) = φL/K(I)
by Galois Theory and φL/K maps I onto Gal(L/M). Consider the commutative diagram :

K∗ Gal(L/K)

K∗ Gal(M/K)

φL/K

id π

φM/K

(3.49)

The kernel of φM/K is NmM/K(M∗). On the other hand, the kernel of

K∗ → Gal(L/K)→ Gal(M/K)

is given as
φ−1
L/K(Gal(L/M)) = φ−1

L/K(φL/K(I)) = I

To see the last equality, let x ∈ φ−1
L/K(φL/K(I)), so φL/K(x) = φL/K(i) for some i ∈ I. Thus

x
i ∈ Ker(φL/K) = NmL/K(L∗) = N ⊂ I and so x ∈ I and we are done.

Lemma 56. Let L be a field extension of K. Then NmL/K(L∗) is an open subgroup of finite index
in K∗.

Proof. It suffices to show that NmL/K(UL) is an open subgroup of K∗ since we know that if a
subgroup of a topological group contains an open subgroup, then it is itself open (because it is a
union of open cosets). The group UL is compact. Since the norm map is continuous, NmL/K(UL)
is a compact subset of K∗. In particular, NmL/K(UL) is a closed subset of K∗. We know that

NmL/K(UL) ⊂ NmL/K(L∗) ∩ UK

Let x ∈ NmL/K(L∗) ∩ UK . Then x = NmL/K(y) for some y ∈ L∗ and x ∈ UK i.e. |x| = 1. Since
|x| = |y|n, so |y| = 1 as well i.e. y ∈ UL and so x ∈ Nm(UL). Therefore we have shown

NmL/K(L∗) ∩ UK ⊂ NmL/K(UL)

Combining these relations together, we get

NmL/K(UL) = NmL/K(L∗) ∩ UK

Thus we get an injective map

i : UK/NmL/K(UL)→ K∗/NmL/K(L∗)

which shows that NmL/K(UL) has finite index in UK . Since NmL/K(UL) is closed in K∗, so it is
closed in UK as well. Therefore, NmL/K(UL) is a closed subgroup of finite index in UK . Since the
complement of NmL/K(UL) (w.r.t. UK) is given by union of finitely many cosets, each of which is
closed, so NmL/K(UL) is open in UK . Since

UK =

{
x ∈ K∗ : |x| < 1

|πK |

}
∩ {x ∈ K∗ : |x| > |πK |}

so UK is open in K∗ and thus NmL/K(UL) is open in K∗.
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We also need to recall a basic result in topology.

Recall that a collection A of subsets of a set X is said to have the finite intersection property
(FIP) if the intersection over any finite subcollection of A is nonempty.

Lemma 57. If X is a compact topological, then a collection of closed sets of X having the finite
intersection property has non-empty intersection.

Theorem 73. (Existence Theorem) Every open subgroup of finite index in K∗ is a norm group.

Proof. We will need a few helping lemmas.

Lemma 58. For any finite L/K, the norm map L∗ → K∗ has closed image and compact kernel.

Proof. Since the image Nm(L∗) has finite index (i.e. K∗/Nm(L∗) is finite), so it is open by
Lemma 56 and thus closed. Since a singleton set is closed in every metric space and the norm map
is continuous, so kernel of the norm map is closed. Moreover, we have

ordL(Nm(a)) = [L : K] ordL(a)

since all conjugates have the same order. Thus if a ∈ Ker(Nm), then ordL(a) = 0 and so a ∈ UL.
Hence we have shown that Ker(Nm) is a closed subset of UL. Since UL is compact, so Ker(Nm)
is also compact.

Let DK = ∩LNmL/K(L∗) where L runs over the finite extensions of K. Note that by Theorem
70 (Norm Limitation Theorem), we get DK = ∩LNmL/K(L∗) where L runs over the finite abelian
extensions of K.

Lemma 59. For each finite extension K ′/K, NmK′/KDK′ = DK .

Proof. Let a ∈ DK′ , and let L be a finite extension of K ′. Then a ∈ NmL/K′(L
∗) , say a =

NmL/K′(b) for some b ∈ L∗. Then NmK′/K(a) = NmK′/K(NmL/K′(b)) = NmL/K(b) by the
transitivity of norms. Thus we have shown that a ∈ NmL/K(L∗) for any finite extension L/K ′.
Now let L be any finite extension of K. Then by what we have shown a ∈ NmLK′/K((LK ′)∗) but
by Lemma 54, we know that NmLK′/K((LK ′)∗) ⊂ NmL/K(L∗) and so a ∈ NmL/K(L∗) for any
finite extension L/K. Hence we have shown that

NmK′/KDK′ ⊂ DK

Conversely let a ∈ DK , and consider the sets

NmL/K′(L
∗) ∩Nm−1

K′/K(a), L/K ′finite

Firstly we will show that all these sets are nonempty. Since a ∈ DK , so or any finite extension L/K ′,
a = NmL/K(b) for some b ∈ L∗. Thus a = NmK′/K(NmL/K′(b)) and so NmL/K′(b) ∈ Nm−1

K′/K(a).

Since we have NmL/K′(b) ∈ NmL/K′(L
∗), so NmL/K′(b) ∈ NmL/K′(L

∗) ∩ Nm−1
K′/K(a) and thus

we are done.

Let [K ′/K] = n. Note that Nm−1
K′/K(a) is a closed subset of K ′∗ since the norm map is con-

tinuous. Since Nm−1
K′/K(a) is nonempty, we can choose an x0 in Nm−1

K′/K(a). Observe that

Nm−1
K′/K(a) = {x ∈ (K ′)∗ : NmK′/K(x) = NmK′/K(x0)} ⊂ {x ∈ (K ′)∗ : |x| = |x0|} = x0UK′
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which is compact and so NmL/K′(L
∗) ∩ Nm−1

K′/K(a) is contained in a compact set for all finite

extensions L/K. We know that the norm group NmL/K′(L
∗) is closed in K ′∗. Nm−1

K′/K(a) is

also a closed subset of K ′∗ since the norm map is continuous. Thus, NmL/K′(L
∗) ∩ Nm−1

K′/K(a)

is also a closed subset of K ′∗ which is contained in the compact set x0UK′ . Moreover for any
two finite extensions L1, L2 of K, we know by Lemma 54 that NmLL′/K((LL′)∗) = NmL/K(L∗) ∩
NmL′/K(L′∗) and thus the intersection of any two sets of the collection NmL/K′(L

∗)∩Nm−1
K′/K(a)

is another set in the collection. This shows that this collection has the finite intersection property.
Hence by Lemma 57, the collection

NmL/K′(L
∗) ∩Nm−1

K′/K(a), L/K ′finite

has nonempty intersection. Let b be an element in this intersection. Then b lies in ∩LNmL/K′(L
∗) =

DK′ and has norm a since it is also in Nm−1
K′/K(a). Thus a = NmK′/K(b) ∈ NmK′/KDK′ and we

are done.

Lemma 60. The group DK is divisible.

Proof. Let n > 1 be an integer. We have to show that Dn
K = DK (since DK is a multiplicative

group). Let a ∈ DK . For each finite extension L of K containing a primitive nth root of 1, define
the set

E(L) = {b ∈ K∗ : bn = a, b ∈ NmL/K(L∗)}

Firstly we will show that E(L) is nonempty for all L. We have a ∈ DK and so by Lemma 59,
we have a = NmL/K(a′) for some a′ ∈ DL. But a′ ∈ DL means that a′ is a norm from all finite
extensions of L and hence in particular a′ is a norm from all cyclic extensions of order dividing n.
Thus by Theorem 71, a′ is an nth power i.e. a′ ∈ (L∗)n which means a′ = cn for some c ∈ L∗.
Therefore,

a = NmL/K(a′) = NmL/K(cn) = (NmL/K(c))n

Thus NmL/K(c) ∈ E(L) and so E(L) is nonempty. For each finite L/K,

E(L) ⊂ {b ∈ K∗ : bn = a}

Note that {b ∈ K∗ : bn = a} is a finite subset of K∗ and thus compact. Each E(L) is a finite subset
of K∗ and thus closed (since it is a union of singletons) and so each E(L) is a non-empty closed
subset of a compact set. Moreover, for any finite extensions L,L′ of K containing a primitive nth

root of 1, we have Nm((LL′)∗) ⊂ Nm(L∗) ∩Nm(L′∗) and so

E(LL′) ⊂ E(L) ∩ E(L′)

This shows that the collection E(L) where L is a finite extension of K containing a primitive
nth root of 1 satisfies the finite intersection property. Hence by Lemma 57, this collection has a
nonempty intersection. Let b0 be an element in the intersection. Then bn0 = a and b0 ∈ NmL/K(L∗)

for every finite extension L of K containing a primitive nth root of 1. Now let L′ be any finite
extension of K. Then consider the smallest extension L′′ of L′ containing a primitive nth root of
1. Clearly L′′ is finite over L′ and hence also over K. Then we have b0 ∈ NmL′′/K((L′′)∗). But by
Lemma 54, we get

NmL′′/K((L′′)∗) ⊂ NmL′/K((L′)∗)

and so b0 ∈ NmL′/K((L′)∗) for any finite extension L′/K. Thus b0 ∈ DK . Since a = bn0 , so a ∈ Dn
K

and we are done.
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Lemma 61. Every subgroup I of finite index in K∗ that contains UK is a norm subgroup.

Proof. Consider the map
ordK : K∗ → Z

We know that ordK is a homomorphism, thus ordK(I) is a subgroup of Z, so ordK(I) = nZ for
some n ∈ N. Thus ord−1

K (nZ) = ord−1
K (ordK(I)) ⊃ I. Now let x ∈ ord−1

K (nZ) and so ordK(x) ∈ nZ
which implies ordK(x) = ordK(i) for some i ∈ I. Thus ordK(x/i) = 0 which means x/i ∈ UK .
Since I ⊃ UK , so x/i ∈ I and thus x ∈ I.

Thus we have shown that if I is a subgroup of K∗ that contains UK , then I = ord−1
K (nZ) for

some n ∈ N where n is determined by the equation ordK(I) = nZ.

Let Kn be the unramified extension of degree n over K. Then NmKn/K(K∗n) is a subgroup of K∗

which contains UK by Theorem 60 and ordK(NmKn/K(K∗n)) = nZ because ordK(NmKn/K(x)) =
[Kn : K] ordKn(x) = n ordKn(x) and the map ordKn : K∗n → Z is surjective. Thus by the remark
in the above paragraph, we get I = NmKn/K(K∗n) and so we are done.

Lemma 62. Let {Ui : i ∈ I} be a family of finite sets such that the following conditions are satisfied

1.
⋂
i∈I Ui = {1}

2. For each i, j ∈ I, there exists some k ∈ I such that Ui ∩ Uj = Uk.

Then there is some i ∈ I such that Ui = {1}.

Proof. Let U1 = {1, x1, x2, ..., xn0} for some n0 ∈ N. By condition 1 in the hypothesis, there
exists i1 ∈ I such that x1 /∈ Ui1 . Then by condition 2, there exists some j1 ∈ I such that
U1 ∩ Ui1 ⊃ Uj1 . Then Uj1 ⊂ {1, x2, ..., xn0}. We can iterate this process to get some jn0 ∈ I such
that Ujn0

= {1}.

We now complete the proof of Theorem 73. Let U be the set of norm groups in K∗, so that
DK =

⋂
N∈U N . Let I be a subgroup of K∗ of finite index. Then I ⊃ (K∗)n where n = [K∗ : I].

Since DK ⊂ K∗, so I ⊃ Dn
K . Moreover, since DK is divisible, so I ⊃ DK . Therefore,⋂

N∈U
(N ∩ UK) ⊂ DK ⊂ I

By Lemma 58, we know that N is closed in K∗. Therefore N ∩UK is closed subgroup of UK which
is compact. Hence each group N ∩ UK is compact. Consider the projection map π : K∗ → K∗/I.
Take the family

{π(N ∩ UK) : N ∈ U}

Clearly this is a family of finite sets (since K∗/I is finite). The condition⋂
N∈U

(N ∩ UK) ⊂ I

shows that

π

( ⋂
N∈U

(N ∩ UK)

)
= {1}
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which precisely means that the intersection of all the sets of this family is {1}. Moreover since
intersection of two norm groups is a norm group, so the hypothesis of Lemma 62 is satisfied and
we get π(N ∩UK) = {1} for some N ∈ U . Thus we have shown that there is a norm group N such
that N ∩ UK ⊂ I. We want to strengthen this condition to say

N ∩ (UK(N ∩ I)) ⊂ I

Let y ∈ N ∩ (UK(N ∩ I)). Thus y = y1y2 where y1 ∈ UK , y2 ∈ N ∩ I. Moreover y ∈ N . Since
y, y2 ∈ N , so y1 ∈ N . Thus y1 ∈ N ∩ UK ⊂ I. Thus y1 ∈ I. Therefore, y = y1y2 ∈ I and we
are done. Hence N ∩ (UK(N ∩ I)) ⊂ I. Since N is a norm group, so K∗/N is finite by the local
reciprocity law. Moreover, I is given to be a subgroup of finite index in K∗ so K∗/I is also finite.
Now consider the natural injection

K∗/(N ∩ I)→ K∗/N ×K∗/I

given by x+ (N ∩ I) 7→ (x+N, x+ I). Thus K∗/(N ∩ I) is also finite. Furthermore, consider the
natural surjection

K∗/(N ∩ I)→ K∗/(UK(N ∩ I))

given by x + N ∩ I 7→ x + UK(N ∩ I). Thus K∗/(UK(N ∩ I)) is also finite which means that
UK(N ∩ I) is a subgroup of finite index in K∗ that contains UK and so is a norm group by Lemma
61. Now N ∩UK(N ∩ I) being an intersection of two norm groups is also a norm group. Therefore
I contains a norm group and so is itself a norm group by Lemma 55.

Theorem 74. Let I be a subgroup of K∗, then the following conditions are equivalent :

(1). I is a norm group.
(2). I is an open subgroup of finite index.
(3). I is a closed subgroup of finite index.
(4). I is of finite index in K∗.

Proof. We have (1) implies (2) by Lemma 56. (2) is clearly equivalent to (3). Moreover, by Theorem
73, we have (2) implies (1). Hence we only need to show that (3) implies (4). We know that if I is
of finite index m in K∗, then I ⊃ K∗m, but since K∗m is open (see Corollary 3.6, page 81, [2]), so
I is open in K∗m and we are done.

Corollary 9. DK = {1}.

Proof. Choose a prime element π of K. Let Vm,n = U
(m)
K × πnZ. Then Vm,n is a subgroup of K∗

of finite index which means that it is also open by Theorem 74. But by Theorem 73, Vm,n is also
a norm group. Thus DK ⊂ Vm,n for all m and n. Since ∩m,nVm,n = {1}, so DK = {1}.

Remark 25. Theorem 73 is known as the Existence Theorem because its crucial assertion is that
given an open subgroup I of finite index in K∗, there exists an abelian extension L/K whose norm
group NmL/K(L∗) = I. This field L is uniquely determined (because of Lemma 54) and is called
the class field associated with I.

The Existence Theorem provides a topological characterization of norm groups, but there is also
an arithmetic description of these groups :
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Remark 26. The norm groups of K∗ are precisely the groups containing

U
(n)
K × (π)f

for some n ≥ 0 and some f ≥ 1. Here U0
K = UK , π is a prime element of K, and (π)f is the

subgroup generated by πf . (see Theorem (6.4), Page 97, [2] for proof.)

Remark 27. K∗/NmL/K(L∗) form an inverse system as L runs through the finite abelian exten-
sions of K via the natural transition maps

φi,j : K∗/NmL1/K(L1)∗ → K∗/NmL2/K(L2)∗

for any L2 ⊂ L1. Also, Gal(L/K) form an inverse system as L runs through the finite abelian
extensions of K, ordered by restriction. Moreover, we have a family of homomorphisms (infact
isomorphisms)

φL/K : K∗/NmL/K(L∗)→ Gal(L/K)

between these inverse systems such that for any L2 ⊂ L1, the following diagram commutes (by
Theorem 68) :

K∗/NmL1/K(L∗1) Gal(L1/K)

K∗/NmL2/K(L∗2) Gal(L2/K)

φL1/K

π π

φL2/K

(3.50)

Therefore we get the map

φ̂K : lim←−
N∈U

K∗/NmL/K(L∗)→ lim←−
N∈U

Gal(L/K)

Since the inverse limit functor is left exact (see Proposition 10.3, page 164, [11]), the map φ̂K is
injective. Note that

lim←−
N∈U

Gal(L/K) ∼= Gal(Kab/K)

Since intersection of any two norm groups is a norm group, so they become a local base for a topology
i.e. there is a topology for which the norm groups form a fundamental system of neighborhoods of 1.
This topology on K∗ is called the norm topology. Let K̂∗ denote the completion of K∗ with respect
to this topology. Then we know that

K̂∗ ∼= lim←−
N∈U

K∗/NmL/K(L∗)

(see page 103, [12]). Hence we get an injective map

φ̂K : K̂∗ → Gal(Kab/K)

But since the maps φL/K are isomorphisms, so we can work with φ−1
L/K instead of φL/K and repeat

the above procedure to get the inverse of the map φ̂K .

Therefore, φ̂K is infact an isomorphism of topological groups.

Remark 28. Since intersection of the norm groups is trivial by Corollary 9, so K∗ embeds into K̂∗

i.e. the natural map K∗ → K̂∗ is injective. Moreover, the image of K∗ under this map is dense.
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