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Chapter 1

Introduction

The main aims of this thesis are to prove the Ködaira Embedding Theorem (Theorem-25)

and the degeneration of the Frölicher Spectral sequence (Theorem-19) for Kähler

manifolds through Hodge Theory.

The first one tells us that there is an embedding of every Kähler manifold with integral

Kähler cohomology class (called Polarised Manifolds) in some complex projective

space. Now, by Chow’s Theorem, every complex projective manifold is a complex

algebraic variety. So we get a (1, 1)-correspondence between smooth complex projective

(algebraic) varieties and polarised manifolds.

The second one is equivalent to having F pHk(X,C)
F p+1Hk(X,C)

∼= Hq(X,Ωp
X) for p + q = k

where Hq(X,Ωp
X) is the sheaf cohomology of the holomorphic p-forms and F is the

filtration F pHk(X,C) =
⊕

r≥p,r+q=kH
r,q(X). (see Section-6.1 and Theorem-19) It is

also equivalent to having the decomposition of betti numbers bk =
∑

p+q=k h
p,q, where

bk = dimCH
k(X,C) and hp,q := dimC(Hq(X,Ωp

X)). Thus it can be called a weak

version of the Hodge decomposition theorem (Theorem-13).

Now if (X,OalgX ) is a complete complex algebraic variety ( has the properties: quasi-projective,

compact with respect to analytic topology) with Zariski topology, we define the

algebraic de Rham complex to be the complex of the sheaves of algebraic differential

forms with exterior derivative. These are by nature locally free coherent sheaves

of OalgX -modules. We also have the sheaf of holomorphic functions OanX on X. The

identity map

IdX : Xan = (X,OanX )→ Xzar = (X,OalgX )
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is a morphism of sheaves. Let CohOalgX
and CohOanX be the categories of coherent

sheaves of OalgX -modules and OanX -modules respectively. Then we have the functor

T : CohOalgX
→ CohOanX

defined by pulling back any element of CohOalgX
by IdX and tensoring it with OanX over

the pull-back of OalgX by IdX (see [5]). The Serre’s GAGA principle tells us that:

Theorem 1 (Serre 1956)

If X is a complete algebraic variety, the functor T is an equivalence of categories

CohOalgX
and CohOanX . Moreover, for every F ∈ CohOalgX we have

Hq(Xzar,F) ∼= Hq(Xan, T (F)) ∀q

By the GAGA theorem,

Hk(X,C) ∼= Hk(X,Ω∗X,an) ∼= Hk(X,Ω∗X,alg)

where the first term is the complex cohomology of X with analytic topology, the

last two terms are Hypercohomology ( see Definition-5.3.1), the first isomorphism is

given by Theorem-18 and the second isomorphism is obtained by applying GAGA to

hypercohomologies on the complexes of sheaves.

Again by the GAGA principle degeneracy at E1 of the Frölicher spectral sequence

associated to the holomorphic and the algebraic de Rham complex are equivalent;

i.e. one degenerates at E1 if the other does. So this weak version of the Hodge

decomposition theorem can be generalised for complete algebraic varieties.

We assume the reader is familiar with some multivariable complex analysis like Cauchy

integral formulas, Hartog’s theorem and Riemann’s Theorem( these can be found in [3]

and [1]), some differential geometry like De Rham’s Theorem and Poincare lemma and

Poincaré-Dolbeault lemma (these state the exactness of the de Rham complex and the

Dolbeault complex respectively), some sheaf cohomology and Ĉech cohomology (these

can be found in [5], [3] and [1]) By a smooth function we will mean a C∞-function.
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Chapter 2

Complex Manifolds

Definition 2.0.1 (Complex Manifolds)

Let n ∈ Z≥0. A complex manifold X of dimension n, is a smooth (= C∞)

2n-dimensional manifold and if there is a smooth atlas U = (Uα, φα : Uα → R2n ∼=

Cn)α∈I , such that the transition maps φα◦φ−1
β : φβ(Uα,β)→ φα(Uα,β) (Uα,β := Uα∩Uβ)

∀α, β ∈ I are holomorphic maps on open subsets of Cn.

In this case U is said to be a complex structure on X.

(The ideas presented in this section are adapted from the book [1])

Let OCn,z be the stalk of the sheaf of holomorphic functions at a point z ∈ Cn. Let

O[n] denote OCn,(0,...,0). We have that O[n] is an integral domain, which follows from

the Identity theorem, and also a local ring with the unique maximal ideal

m[n] := {f ∈ O[n] : f(0, ..., 0) = 0}

We prove that:

Proposition 2.0.2 O[n] is a unique factorization domain (UFD for brevity).

Proof Clearly, O[0] = C which is indeed an integral domain. Suppose O[n− 1] is a

UFD and let f ∈ O[n] \ {0}. Since f is not identically zero, we can assume that f is

a holomorphic function f : U → C in a neighbourhood U (say) of (0, .., 0) ∈ Cn such

that

f(0, ..., 0, w) 6= 0 ∀w ∈ V \ {0},

where V = {z ∈ C : (0, ..., 0, z) ∈ U} .

We first prove the following Lemma which is called the Weierstrass preparation

theorem:
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Lemma 1 Let zj be the complex coordinate axes in Cn. If f is a holomorphic function

around (0, .., 0) in Cn with f(0, ..., 0) = 0 and is not identically zero on the zn-axis,

then in some smaller neighbourhood around the origin, there is a Weierstrass polynomial

g of degree d in zn = t and a non-zero holomorphic function h such that f can be

uniquely expressed as

f = g · h.

Proof of the Lemma : Let V (f) := {f = 0} .

Since f does not vanish identically on the zn-axis, we have that the power series

expansion for f around the origin has a term c · tk with c 6= 0, and k ≥ 1. Choose

a very small ε > 0. Then there is an open n-disc Dr of radius r > 0, around the

origin and a δ ≥ 0, such that f(0, .., 0, t) ≥ δ > 0 on the boundary sphere ∂Dr and

f(z1, ..., zn−1, t) ≥ δ
2

on the cylinder Dn−1
ε × ∂Dr. Let b1(z1, ..., zn−1), ..., bd(z1, ..., zn−1)

be the solutions of the equation

f(z1, ..., zn−1, t) = 0

in Dn−1
ε × Dr. Then, by the residue theorem, we have the equality of holomorphic

function

bq1(z) + · · ·+ bqd(z) =
1

2π
√
−1

∫
∂Dr

(
td

f(z, t)
)
∂f(z, t)

∂t
dt ∀(z, t) ∈ Dn−1

ε × Dr

Now the elementary symmetric polynomials E1(z), ..., Ed(z) are polynomials in b(q) :=

bq1 + · · · + bqd, and g(z, t) :=
∑d

j=1(−1)jEj(z)td−j ∀(z, t) ∈ Dn−1
ε × Dr, and f = 0 ⇔

g = 0. Then h =
f

g
is holomorphic on (Dn−1

ε × Dr) \ V (f), and has only removable

t-singularities for fixed z along V (f). Then h(z, t) extends to a function which is

holomorphic in t ∈ Dr for each fixed z ∈ Dε. But it also extends to a holomorphic

function h̃(z, t) =
1

2π
√
−1

∫
∂Dr

f(z, v)

v − t
dv ∀(z, t) ∈ Dn−1

ε × Dr This proves the lemma.

By this lemma we can write f = g · u,

where u is invertible in O[n] and g is a Weierstrass polynomial with coefficients in

O[n − 1]. Now by Gauss’ Lemma, the ring of all Weierstrass polynomials W with

coefficients in O[n− 1] is a UFD. So there are irreducible polynomials g1, ..., gr ∈ W

such that

f = u ·
r∏
j=1

gj

4



and clearly g1, ..., gr ∈ W are unique upto multiplication by units. The rest of the

uniqueness part follows from the uniqueness in the Weierstrass preparation theorem.

�

2.1 Almost Complex Manifolds

Definition 2.1.1

1. (Complex Vector Bundles) A complex vector bundle of rank r on a real

manifold X is a real vector bundle (E, p) with p−1(X) ∼= Cr and a vector bundle

endomorphism J2 = 1.

2. (Holomorphic Vector Bundles) A holomorphic vector bundle of rank r on

a complex manifold is a real vector bundle of rank 2r such that there is a trivialization

U = (Uα, ψα)α∈I such that the transition maps gα,β := ψα◦ψ−1
β : Uα,β×Cr → Uα,β×Cr

are holomorphic (where Uα,β := Uα ∩ Uβ) ∀α, β ∈ I.

A complex structure U = (Uα, φα)α∈I on a complex manifold X, induces an endomorphism

J :=: TX,R → TX,R

with J2 = −1 defined by J |Uα := IdUα× (
√
−1 ·IdCn) : TX,R|Uα → Uα×Cn. Now every

vector bundle endomorphism I :=: TX,R → TX,R with I2 = −1 need not come from a

complex structure on a even dimensional manifold

Definition 2.1.2 (Almost complex structures and Integrable almost complex

structures) An almost complex structure on a manifold X, is a smooth vector

bundle endomorphism J of the tangent bundle of X, such that J2 = −1; and the pair

(X, J) is called an almost complex manifold. Such an almost complex structure

is said to be integrable if it comes from a complex structure on the manifold.

Note: Here by the ”Newlander-Nirenberg question” we will mean the question that

asks the conditions on the pair (X, J) which makes J integrable Let TX,R be the real
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tangent bundle of an almost complex manifold (X, J) of real dimension 2n and define:

TX,C := TX,R ⊗
R
C

T 1,0
X := TX,R − iJTX,R

T 0,1
X := TX,R + iJTX,R

Clearly, these three above are complex vector bundles on X. Moreover, if J is integrable,

T 1,0
X is a holomorphic vector bundle on the complex manifold X. Let A1

X,C := T ∗X,C,

A1,0
X := (T 1,0

X )∗, A0,1
X := (T 0,1

X )∗ be the complex duals of these bundles respectively. Let

A1
X,R be the real dual of TX,R.

Also define AkX,R :=
∧k(A1

X,R) and AkX,C :=
∧k(A1

X,C) and Ap,qX :=
∧p(A1,0

X ) ⊗C∧q(A0,1
X ), and Ωp

X := Ap,0X . The first two are called the bundle of real differential k-

forms, complex differential k-forms on X and when J is integrable on X, the

third one is called the bundle of holomorphic p- forms on X.

We have AkX,C =
⊕

p+q=kA
p,q
X . Let

∧
(AX,C) := C ⊕ ∧1(AX,C) ⊕ ∧2(AX,C) ⊕ · · · ,∧

(AX,R) := R⊕∧1(AX,R)⊕∧2(AX,R)⊕· · · and ∧k(AX,C) and ∧k(AX,R) are homogeneous

part of these of degree k respectively. Let d0α be the degree of a differential form (real

or complex) alpha (or we sometimes say a homogeneous differential form of degree k,

when we want to call all the elements of
∧

(AX,C) and
∧

(AX,R) as differential forms.)∧
(AX,C) and

∧
(AX,R) are what we call graded commutative algebras meaning

α ∧ β = (−1)d
0α·d0ββ ∧ α for any two homogeneous differential forms.

Then for any chart (U, x1, y1, ..., xn, yn) of X, with J(xj) = yj, and J(yj) = −xj, for

all j ∈ Nn. Let zj := xj+i·yj, zj := xj−i·yj, dzj := dxj+i·dyj and dzj := dxj−i·dyj,

∀j ∈ Nn.

For every j ∈ Nn and every smooth function f on U we define:

∂

∂zj
:=

1

2
· ( ∂

∂xj
− i ∂

∂yj
)

∂

∂zj
:=

1

2
· ( ∂

∂xj
+ i

∂

∂yj
)

∂f :=
n∑
k=1

∂f

∂zk
dzk

∂f :=
n∑
k=1

∂f

∂zk
dzk
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We have the maps Re, Im : TX,C → TX,R defined by Re(v + i ·w) := v and Im(v + i ·

w) := w, for real vector fields v, w on X. Then Re : T 1,0
X → TX,R and IdTX,R−

√
−1 ·J

are inverse to each other and hence T 1,0
X
∼= TX,R are isomorphic as real vector bundles.

Then (
∂

∂zj
)1≤j≤n is a basis of T 1,0

X , and (
∂

∂zj
)1≤j≤n is a basis of T 0,1

X ; and (dzj)1≤j≤n

and (dzj)1≤j≤n are their dual bases, respectively. We extend d, ∂ and ∂ on
∧

(AX,C)

by

µ(α ∧ β) = µ(α) ∧ β + (−1)d
0αµ(β) ∧ α

where α and β are homogeneous differential forms ∀µ = d, ∂, ∂.

Then we have the sequences of sheaves:

· · · d→ AkX
d→ Ak+1

X

d→ · · · (2.1)

· · · ∂→ Ap,qX
∂→ Ap,q+1

X

∂→ · · · (2.2)

are exact by the Poincaré Lemma and the Poincaré-Dolbeault Lemma respectively,

which we will assume to be true here. For the proofs the reader may see [3]. Let us

denote by Ak(X),Ap,q(X),AkC(X) the space of global sections of AkX,R,A
p,q
X and AkX,C

respectively, and let AkR,x,A
p,q
X,x and AkC,x be the stalks of the sheaves at x associated

to these bundles respectively.

Then the cohomologies of the complexes:

· · · d→ Ak(X)
d→ Ak+1(X)

d→ · · · (2.3)

· · · ∂→ Ap,q(X)
∂→ Ap,q+1(X)

∂→ · · · (2.4)

are called the de Rham cohomology and Dolbeault cohomology respectively and

we denote the kth-cohomology of 2.3 by Hk
DR(X,R) and that of the complexification

of 2.3 by Hk
DR(X,C) and the qth-cohomology of 2.4 by Hp,q

∂ (X), or Hp,q

∂
(X).

Note: The de Rham theorem tells us that Hk
DR(X,K) ∼= Hk(X,K) where the

second one is singular cohomology; for K = R or C. We also have that Hk(X,K) is

isomorphic to the kth-sheaf cohomology of the constant sheaf K on X, for K = R,C.

Definition 2.1.3

1. Let p : E → X be a C∞-vector bundle on a smooth (= C∞) manifold X, of rank r.

Then a smooth vector subbundle V ⊆ E of E of rank k ≤ r, is called a k-distribution

on (E,X).

7



A k-distribution on (TX,R, X) is called a real k-distribution on X.

Similarly a complex k-distribution on X is a smooth subbundle of rank k of

(TC,X , X).

A holomorphic k-distribution on a complex manifold is a holomorphic subbundle

of T 1,0
X of complex rank r.

2. A real (resp. complex) distribution V is said to be integrable if X has an open

cover U = (Uα)α∈I such that ∃ a C∞ map φU : U → RdimRX−k(resp. C2·dimRX−k),

such that V|U = ker(dφU) ∀U ∈ U

3. A holomorphic k-distribution V is one for which there is an open cover U and

holomorphic maps φU : U → CdimCX−k for each u ∈ U such that V|U = ker(dφU) ∀U ∈

U .

We use the following theorem that characterizes real distributions to answer the Newlander

-Nirenberg Question:

Theorem 2 (Frobenius Theorem)

A real distribution V is integrable if and only if [V ,V ] ⊆ V . 2

Frobenius theorem gives us the following answer to this question known as the famous

Newlander-Nirenberg theorem:

Theorem 3 (Newlander-Nirenberg theorem) An almost complex structure J on

a manifold X is integrable iff [T 0,1
X , T 0,1

X ] ⊆ T 0,1
X (which is same as saying [T 1,0

X , T 1,0
X ] ⊆

T 1,0
X by taking conjugates) 2

Proof We prove this theorem by the following lemma which is a more stronger

version of the Frobenius theorem:

Lemma 2 Let E be a holomorphic k-distribution on a complex manifold X. Then E

is integrable if and only if [E,E] ⊆ E 2

Proof of the Lemma : We see that since E ⊆ T 1,0
X and [E,E] ⊆ E⇒ [Re(E), Re(E)] ⊆

Re(E) and thus by the Frobenius integrability theorem in real case, Re(E) is integrable.

So there is an open cover U of X and real smooth submersive maps φU : U → V (U)

where V (U) is an open subset of R2n−2k such that

Re(E)|U = ker(dφU)

8



∀U ∈ U . Clearly, TV (U),R ∼= (TX,R|U)/Re(E)|U ∀U ∈ U , and since Re(E) is invariant

under the action of J, J induces a complex structure on V (U) Let M(U) be a

submanifold of U, which is transverse to the fibers of φU , (such a manifold exists if we

refine U sufficiently). Then φU is a diffeomorphism of M(U) onto V (U); as Re(E)|U⊕

TM(U),R (after shrinking U if necessary), the complex structure on (TX,R|U)/Re(E)|U
by J induces a complex structure on TM(U),R. As [TM(U),R, TM(U),R] ⊆ TM(U),R (for

Re(E)|U ⊕ TM(U),R) ∀U ∈ U . we get that the complex structure on every V (U) is

integrable. This makes φU is a holomorphic map. This proves the lemma.

Since the statement is local, we assume X to be an open subset of R2n and that J

is real analytic and can be given by a convergent power series. Clearly, J extends

to a holomorphic map U → Cn where U is a neighbourhood of X in Cn. J gives a

holomorphic distribution E on U defined by the space corresponding to the eigenvalue
√
−1 of J. We have E|X = T 1,0

X .

We see that E = TU,C−i ·JTU,C and E|X = TX,R−i ·JTX,R. So we see that [E,E] ⊆ E.

As E is integrable, locally there are holomorphic submersions φV : V → Cn on U.

Again as the statement we want to show is local, we assume there is a holomorphic

map φ : U → Cn Now, φ|X : X → φ(X) is a local diffeomorphism where φ(X)

is open in Cn; as TX ⊆ TU ∼= C2n can be identified with R2n ⊆ C2n which is

transversal to Re(E) ∼= T 1,0
X . It follows that dφ|TU is an isomorphism and so φ is

a local diffeomorphism.

We want to show that the pullback of the complex structure by φ and the the

associated complex structure on X are equal. Clearly, J gives a complex structure on

TX,x, and we have a complex structure on TU,x given by the isomorphism TU,x ∼= C2n.

We see that Re(E)x ⊆ TU,x ∼= TX,x ⊗ C is generated by −i · Jα so that α = iJα in

TU,x/Re(E)x for all α ∈ TX,x and we see that the composition

TX,x ↪→ TU,x → TU,x/Re(E)x

for every x ∈ Xand it follows that the local isomorphism dφ : TX,R → TCn,R identifies

J with the complex structure on Cn

9



10



Chapter 3

Kähler Manifolds

Let (X, J) be an almost complex manifold. A Hermitian metric h : TX,R× TX,R →

C, on (X, J) is a collection of Hermitian metrics hx : TR,x × TR,x → C, (of complex

vector spaces) taking TR,x as a complex vector space, where multiplication by
√
−1

is given by the endomorphism Jx ∀x ∈ X, such that all the functions hi,j : x →

hx(
∂
∂xi
, ∂
∂xj

) on X are smooth for all chosen chart (U, (xk)1≤k≤n), where n = dimRX.

Since h takes values in C, we can express h as u+ i · v where g and h are tensor fields

on X. We denote Re(h) = u and Im(h) = v.

We have the following correspondence:

{The set of all smooth Hermitian metrics on X}

↔ {The set of all smooth real (1, 1)-differential forms on X}

given by

h 7→ −Im(h)

and

(ω ◦ (IdTX,R ⊗ J)−
√
−1) · ω� ω

Definition 3.0.1

1. We say that a (1, 1) differential form ω on X is positive if ω(u, Jv) > 0 for any two

vector fields u and v

We see that a (1, 1) differential form is positive if and only if the associated Hermitian

metric is positive definite.
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2. We say that the smooth Hermitian metric on X is Kähler and the associated form

ω is Kähler and the manifold X is Kähler if the almost complex structure on X is

integrable and the 2-form ω is closed.

We also have the following proposition which is easy to show and so we omit the

proof:

Proposition 3.0.2 Let h be a Hermitian metric and ω be the associated (1, 1)-differential

form on an almost complex manifold (X, J). Then the volume form of X is equal to
ωn

n!
where 2n = dimRX.

3.1 Example of Kähler Manifolds

Example 1 : (Riemann surfaces)

A Riemann surface X is a complex manifold. Any Hermitian metric on X is Kähler

since X is a 2-dimensional real manifold implies that the symplectic real 2-form

associated to the Hermitian metric has to be closed.

Example 2 : (Complex tori)

Let n be a positive integer and Γ be a lattice (i.e. a discrete subgroup) in Cn, and

consider the complex n-tori Tn :=
Cn

Γ
. If we take Hermitian metrics with constant

coefficients on Cn, then that metric is invariant under translations and therefore

induces a metric on Tn.

Example 3 : (Kähler manifolds with Curvature form of a Line Bundle)

Let X be a complex manifold and let (L, h) be a holomorphic Hermitian line bundle

on X. Let U = (Uα)α∈I is a complex atlas on X that trivializes L, via. the maps φα :

L|Uα → Uα×Cn. This means that we have σα ∈ L(Uα) such that σα(x) = 0 ∀x ∈ Uα
∀α ∈ I. Let gα,β : Uα ∩ Uβ → C be the transition function φα ◦ φ−1

β . Then

σα = gα,βσβ : Uα ∩ Uβ → C

Let hα := h(σα, σα) ∀α ∈ I, then hα = |gα,β|2 · hβ : Uα ∩ Uβ → C. The 2-forms

ωα :=
1

2π
√
−1

∂∂(log(hα)) : Uα → C

are such that ωα and ωβ coincide on Uα ∩ Uβ, as

ωα − ωβ =
1

2π
√
−1

∂∂(log|gα,β|2) = 0

12



Therefore the local 2-forms ωα glue together to give a global 2-form Θ(L, h) and it

is called the curvature form of (L, h). This form is closed for it is locally exact.

Moreover it is of type (1, 1) and therefore it is a Kähler form on X.

Example 4 : (Fubini-Study metric on CPn)

Let l be any line through origin (by a line through origin in this section we will mean

a complex vector subspace of complex dimension 1) on Cn+1 and let p : Cn+1 → CPn

be the quotient map. Let Ui := p({(z0, · · · , zn) ∈ CPn : zi 6= 0}), for all i ∈ Nn.

Then {p(l)} × l ⊆ CPn × Cn+1. Let OCPn(−1) be the union of all such {p(l)} × l.

For every i ∈ Nn, let S(Ui) be the set of all lines through the origin l that intersects

Ui, and for every l ∈ S(Ui) choose an element σi(p(l)) = [z0, · · · , zn] ∈ l such that

zi = 1. Then σi =
zi
zj
· σj on Ui ∩ Uj, where

zi
zj

and
zj
zi

are meromorphic functions on

CPn that are holomorphic on Ui∩Uj. Thus, the maps φi : O(−1)(Ui) = Ui×S(Ui)→

Ui × C : (p(l), c · σi(p(l))) 7→ (p(l), c · 1) ∀c ∈ C and ∀ line through the origin l in

Cn+1, gives a line bundle structure on OCPn(−1) by being the trivialization maps of

it. This line bundle on CPn is called the tautological line bundle.

Let OCPn(+1) be the dual of the tautological line bundle, which we call the Twisted

bundle of Serre. Let h be the standard Hermitian metric (usually denoted by

hstandard) on Cn+1. This defines a Hermitian metric on the subbundle

OCPn(−1) ⊆ CPn × Cn+1.

Let h∗ be the metric on OCPn(+1) dual to the metric h on the tautological bundle.

Let ω be the curvature form Θ(OCPn(+1), h∗). Then

ωi := ω|Ui =
1

2π
√
−1

∂∂(log(h∗(σi))

with notations as Example 3. Now h∗(σi) =
1

h(σi)
: Ui ∼= Cn → C and

h(σi)(z1, · · · , zn) := 1+
∑n

i=1 ‖z‖
2 and ωi(z1, · · · , zn) =

1

2π
√
−1

∂∂log(
1

1 +
∑n

j=1 ‖zj‖
2 )

We also get that this (1, 1)-form is positive:

Lemma 3 (Positivity lemma of Fubini-Study metric) The form ω on CPn

defined above is positive 2

Proof ∂log(
1

1 +
∑n

j=1 ‖zj‖
2 ) = −∂(1 +

∑n
i=1 ‖zj‖

2)

1 +
∑n

j=1 ‖zj‖
2 = −

∑n
j=1 zjdzj

1 +
∑n

j=1 ‖zj‖
2 implies,

ωi(z1, · · · , zn) =

√
−1

2π
·

(1 +
∑n

j=1 ‖zj‖
2)(
∑
dzj ∧ dzj) + (

∑
zjdzj) ∧ (

∑
(zjdzj))

(1 +
∑n

j=1 ‖zj‖
2)2

13



and so ωi(0, ..., 0) =
√
−1

2π
·
∑
dzj ∧ dzj, which is positive. Now, from definition of the

Fubini-Study metric, we see that it is invariant under biholomorphic maps Cn+1 onto

itself which preserve the standard metric, and clearly, SU(n + 1) acts on Cn+1 by

these maps, and this action keeps ω invariant. Thus ω is positive everywhere.

This construction generalizes in the case of projective bundles over a compact Kähler

manifold, which is described below:

Example 5 : (Fubini-Study metric on Projective Bundles over a compact

Kähler manifold)

Let π : E → X be a holomorphic vector bundle of rank r+ 1, on a complex manifold

X. Let E∗ := E \ 0E be the complement of the zero section 0E of the bundle E. The

constant sheaf C∗X of stalks C∗ is a group in itself and acts on E∗ in the natural way.

Let us denote the quotient of this action by P(E). Let pE : E∗ → P(E)

Let U := (Uα, φα)α∈I be a trivializing open cover of E, by connected open sets. Then

φα : E|Uα → Uα×Cr+1 are biholomorphic maps and by passing through the quotients

of the action of C∗X we get the maps φα satisfying the commutative diagram:

π−1(Uα) \ 0E Uα × Cr+1

P(π−1(Uα)) Uα × CPr

pE

φα

IdUα×pCr+1

P(φα)

The transition maps gα,β := φα ◦ φ−1
β : Uα ∩ Uβ → GL(r + 1,C), send lines through

origin to lines through origin and we have the commutative triangle of biholomorphic

maps:

(Uα ∩ Uβ)× Pr (Uα ∩ Uβ)× Pr

P(π−1(Uα ∩ Uβ))

P(φα)◦P(φβ)−1

P(φβ)

P(φα)

and so we have a well-defined complex manifold structure on P(E) which makes the

map P(π) defined by the diagram:

E X

P(E)

π

pE P(π)

14



holomorphic.

Definition 3.1.1 The pair (P(E),P(π)) is called the projective bundle on X, associated

to the vector bundle (E, π).

We can generalize the tautological bundle on CPr to P(E). Let V := P(π)∗E be the

pull-back of the line bundle E to P(E). Let q : V → P(E) be the pull-back P(π)∗(π).

For every x ∈ X, define OP(E)(−1)x to be the union of all pairs q(l)× l ⊆ P(E)x× Vx
where l is a line through origin in the fiber Vx over x and P(E)x is the fiber of P(E)

over x, and let OP(E)(−1) := qx∈XOP(E)(−1)x., and we define the complex manifold

structure on OP(E)(−1) in the natural way and it becomes a holomorphic bundle on

P(E).

Definition 3.1.2 The bundle OP(E)(−1) on P(E) is called the tautological bundle.

The dual of the bundle OP(E)(−1) is denoted by OP(E)(+1), and we call it the twisted

bundle of Serre

Proposition 3.1.3 Let (X,ωX) be a compact Kähler manifold and E be a holomorphic

bundle on X, then the manifold P(E) is Kähler.

Proof Let h be a Hermitian metric on E. Then h induces a Hermitian metric

on both V and therefore induces a Hermitian metric on OP(E)(−1) by restriction.

The curvature form ωE of the induced metric on the dual OP(E)(+1) is a form on

P(E) whose restriction on each fiber P(π)−1(x) is positive (for this restriction is the

Fubini-Study metric on P(Ex) coming from (Ex, hx) ∼= (Cr+1, hstandard)), but it may

not be positive everywhere. Consider the unit spheres S(Ex) := {v ∈ Ex : hx(v, v) = 1}

of each fibers Ex. Consider only the (biholomorphic) transition maps that take values

in U(r + 1,C) (these maps actually take values in SU(r + 1)); i.e. the transition

maps preserve the Hermitian metric, (and therefore map unit vectors of one fiber to

the unit vectors of the other fiber of E). Then by these transition maps the spaces

S(Ex) glue over X, to give a set S(E), a map s : S(E) → X and trivializing charts

ψα : s−1(Uα) → Uα × SrC, where (SrC := {z ∈ Cr+1 : hstandard(z, z) = 1}) giving S(E)

the structure of a manifold and making s smooth. S(E) is called the sphere bundle

over X, associated to E, and if X is compact, S(E) is also compact and P(E) is a

quotient space of S(E) in the natural way, so P(E) is compact. Being a form on a
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compact manifold ωE is bounded; (i.e. bounded on the sphere bundle S(
∧2 T ∗P(E));

where T ∗P(E)) is the cotangent bundle on P(E)). Thus, for sufficiently large λ >> 0,

the form

ω := ωE + λ · P(π)∗ωX

is a real closed form of type (1, 1), which is positive on P(E). �

3.2 Blowups

Let Y be a complex submanifold of codimension kof a complex manifold of dimension

n. For every y ∈ Y, there is a complex chart U around y and a collection of k-holomorphic

functions (f1, ..., fk) from U to C with independent differentials such that U ∩ Y =

{z ∈ U : f1(z) = · · · = fk(z) = 0} . This set of functions is called the system of local

equations of Y around y. We have the following proposition:

Proposition 3.2.1 Let y ∈ Y. Let f := (f1, ..., fk) and g := (g1, ..., gk) be the system

of local equations around the open sets U and V respectively around y, then there exist

a matrix M := (Mi,j)1≤i,j≤k of functions holomorphic on U ∩ V and invertible along

U ∩ V ∩ Y. Moreover, the restriction of the entries of this matrix to Y is uniquely

determined by the local equations f and g.

Proof Without loss of generality, consider the elements of f to be the first k complex

coordinates (z1, ..., zk) in U ∩V. Consider the power series of the functions gi given by

gi(z1, ..., zn) = ci,00 + (ci,11 z1 + · · ·+ ci,1n zn) + (ci,21,1z
2
1 + ci,21,2z1z2 · · ·+ ci,nn,nz

2
n) + · · ·

Then

0 = g(z) = g(0, ..., 0, zk+1, ..., zn) =

= ci,00 + (ci,1k+1zk+1 + · · ·+ ci,1n zn) + (ci,2k+1,k+1z
2
k+1 + ci,2k+1,k+2zk+1zk+2 · · ·+ ci,nn,nz

2
n) + · · ·

∀z ∈ {w ∈ U ∩ V ∩ Y : w1 = · · · = wk = 0}. Thus all the coefficients of the above

equation are zero and therefore there exist holomorphic functions Ni,j(z1, ..., zn) i, j ∈

Nk such that

gi(z1, ..., zn) =
k∑
j=1

Nj,i(z1, ..., zn)zj.
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Thus there are holomorphic functions Mi,j : U ∩ V → C for i, j ∈ Nk such that

gi =
k∑
j=1

Mj,ifj

Taking differentials,

dgi =
k∑
j=1

Mj,idfj +
k∑
j=1

fj · dMj,i

and so,

dgi|Y =
k∑
j=1

(Mj,i|Y · dfj|Y )

The uniqueness follows from the fact that (dfj|Y )j and (dgi|Y )i are independent on

U ∩ V ∩ Y. �

Definition 3.2.2 (Conormal bundle)

Choose an open cover U = (Uα)α∈I of X by open sets Uα of X, such that for every

α ∈ I, ∃ a system of local equations fα = (fα1 , ..., f
α
k ) of Y, on Uα. Then by the above

Proposition ∃ matrices Mα,β := (Mα,β
i,j )i,j of holomorphic functions defined uniquely

and invertible over Y, satisfying dfαi |Y =
∑k

j=1M
α,β
j,i |Y · df

β
j |Y . So, we see that the

spaces Uα × spanC{fα1 , ..., fαk } glue together to give a vector bundle N∗Y/X via. the

transition functions Mα,β|Y = (Mα,β
i,j |Y )i,j. The fibers N∗Y/X,y of this vector bundle

consists of all the complex linear forms on TX,y which is zero on TY,y, for every y ∈ Y.

This vector bundle is called the conormal bundle of Y in X.

In the case of the above definition and U ∈ U , with f = (f1, ..., fk), being the system

of local equations on U of Y ↪→ X. Define

ŨY :=
{

(Z, z) ∈ CPk−1 × U : Zifj(z) = Zjfi(z) ∀(i, j) ∈ Nk

}
where Z = [Z1 : · · · : Zk] (i.e. Z is the line in CPk that passes through origin

and (Z1, ..., Zk) ) and Zj 6= 0 for some j ∈ Nk. Define τU : ŨY → U given by

the restriction of the projection map CPk−1 × U → U. Clearly, ŨY is a complex

submanifold of CPk−1 × U, and the map τU is holomorphic. By defining the map

ψU : U \ Y → τ−1
U (U \ Y ) defined by ψU(z) = ([f1(z) : · · · : fk(z)], z) ∀z ∈ U \ Y , we

see that τU |τ−1
U (U\Y ) and ψU are holomorphic maps inverse to each other. We also see

that τ−1
U (y) = CPk−1 × {y} , for every y ∈ Y ∩ U.

Now let U, V ∈ U , and let f = (f1, ..., fk) and g = (g1, ..., gk) be the system of
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local equations on U, and V respectively. Then by the last proposition there is a

matrix MU,V = (MU,V
i,j )i,j of holomorphic functions on U ∩ V → C that are uniquely

determined and invertible on U ∩ V ∩ Y, such that

fUi =
k∑
j=1

MU,V
j,i · fVj (3.1)

on U ∩ V ∩ Y. Then the equation 3.1 above defines PU,V : τ−1
V ((U ∩ V ) \ Y ) →

τ−1
U ((U ∩ V ) \ Y ) by

PU,V ([fV1 (z) : · · · fVk (z)], z) = ([
k∑
j=1

MU,V
j,1 · fVj : · · · :

k∑
j=1

MU,V
j,k · f

V
j ], z)

= ([fU1 (z) : · · · fUk (z)], z)

and we have that PU,V satisfies the commutative diagram,

τ−1
U ((U ∩ V ) \ Y ) τ−1

V ((U ∩ V ) \ Y )

(U ∩ V ) \ Y

PU,V

τU
τV

and PU,V is nothing but P(tMU,V ) and therefore PU,V −1 = P(tMU,V )−1 defines biholomorphic

maps τ−1
U ((U ∩ V ) \ Y )→ τ−1

V ((U ∩ V ) \ Y ) which extend to a biholomorphic maps

τ−1
U (U ∩ V )→ τ−1

V (U ∩ V )

by continuity, which is again biholomorphic by Hartog’s theorem.

Definition 3.2.3 The spaces ŨY and the maps τU : ŨY → U defined above glue

together over X, via. the transition maps P(tMU,V )−1, for U, V ∈ U to give a complex

manifold X̃Y and a holomorphic map τ : X̃Y → X. The pair (X̃Y , τ) is called the

Blowup of X along Y.

Note:

1. The transition maps P(tMU,V )−1 = P((tMU,V )−1) are also the transition maps of the

projective bundle corresponding to the Normal Bundle NY/X , where the normal

bundle is defined to be the dual of the conormal bundle N∗Y/X of Y in X. So τ−1(Y ) ∼=

P(NY/X).
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2. τ−1(Y ) is a complex submanifold of X̃Y of codimension 1, (a complex submanifold

of codimension 1 is called a Hypersurface or a Holomorphic divisor). Because

with notations as in Definition 3.2.2 if U ∈ U and fU = (fU1 , ..., f
U
k ) is the system of

local equation of Y in X, then there is some i ∈ Nk such that fi◦τ(u) = 0⇒ fj ◦τ(u)

for all j ∈ Nk. We now prove the following lemma:

Lemma 4 ∃ a holomorphic line bundle L on X̃Y which restricts to the twisted bundle

OP(NY/X)(+1) on τ−1(Y ), and it is trivial outside τ−1(Y ). 2

Proof Let D be a holomorphic divisor of a complex manifold X. Let V be a covering

of X by open sets, such that for every U ∈ V , there is a holomorphic function

fV : V → C, such that V ∩ Y = fV = 0. We set X \ D ∈ V and fX\D = 1 on

X \ D. By Equality 3.1 and Proposition 3.2.1 we get that the transition functions

gU,V : U ∩ V → C of the conormal bundle of D ↪→ X, are given by gU,V = fU/fV

and are invertible on U ∩ V. Let OX(−D) be the holomorphic line bundle with

the transition functions gU,V U, V ∈ V then we call OX(−D) the Line Bundle

associated to the divisor D. Then this line bundle is trivial outside X. Now, by

3.1 and Proposition 3.2.1 we have dfU = gU,V dfV alongD, soOX(−D)|D is isomorphic

to the conormal bundle of D ↪→ X.

We now prove the following claim:

Claim: The line bundleOXY (−τ−1(Y )) restricts to the twisted bundleOP(NY/X)(+1)

on τ−1(Y ) ∼= P(NY/X).

Proof of the claim: By the arguments above we are reduced to showing that

Nτ−1(Y )/X̃Y

∼= OP(NY/X)(−1). The differential τ∗ : TX̃Y
→ τ ∗TX induces a map

τ∗ : Nτ−1(Y )/X̃Y
→ τ ∗TX and we check that this map is injective and gives the

required isomorphism onto OP(NY/X)(−1) ⊆ τ ∗TX This follows from the identification

τ−1(Y ) ∼= P(NY/X). �We now show the next theorem:

Theorem 4 The manifold X̃Y of the blowup (X̃Y , τ) of a Kähler manifold (X,ωX)

by a compact complex submanifold Y is Kähler, and it is compact if X is compact.2

Proof The pull-back τ ∗(ωX) of the Kähler form is positive outside τ−1(Y ), but only

semi-positive along τ−1(Y ), for

ker(τ ∗(ωX)|τ−1(Y )) = qy∈Y Tτ−1(y)
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Now by the last lemma, ∃ a holomorphic line bundle L on X̃Y which restricts to

the twisted bundle OP(NY/X)(+1) on τ−1(Y ), and it is trivial outside τ−1(Y ). By

partition of unity we can extend the Fubini-Study metric h on OP(NY/X)(+1) to a

Hermitian metric on L, which is the pull-back of the standard metric on C by the

trivialization over X̃Y \ τ−1(Y ), outside a compact neighbourhood of τ−1(Y ). The

curvature form ωL := Θ(L, hL) is the symplectic form of the Fubini-Study metric

on τ−1(Y ) ∼= P(NY/X)(+1) and zero outside a compact neighbourhood of τ−1(Y )

Moreover, ωL is strictly positive on the bundle ker(τ∗) over the blow-up, and

ker(τ ∗(ωX)|τ−1(Y )) = qy∈Y Tτ−1(y)

, we get that supp(ωL) is compact and therefore there is some λ >> 0, such that

ω := λ · τ ∗(ωX) + ωL

is positive, and real closed of type (1, 1) and (X̃Y , ω) is a Kähler manifold.

Since X̃Y is Hausdorff and X is locally compact Hausdorff and τ is closed and has

compact fibers, we see that τ is a proper map; i.e. inverse image of compact subspaces

is compact under τ. Thus X̃Y is compact if and only if X is compact. �
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Chapter 4

Harmonic Forms and Hodge

Decomposition

Convention: In this chapter we will consider only smooth oriented manifolds. So

whenever we say that M is a manifold, it means it is a smooth oriented manifold. In

case it is a complex manifold we will mention it.

4.1 Hodge star operators and Laplacians

Convention: In this chapter we will consider only oriented manifolds. So whenever

we say that M is a manifold, it means it is a oriented manifold.

4.1.1 The Hodge star operator

Let X be a differentiable Riemannian manifold with Riemann metric g. Let e1, ..en

be an orthonormal basis of TR,x Then for this metric on AkX,R, and e1, ..en be an

orthonormal basis of TR,x, e
∗
1 ∧ ... ∧ e∗n is an orthonormal basis of AkR,x. Now assume

that X is oriented, [X] be the orientation class of X and let V ol be the volume form

of X relative to g. The L2-metric on the space Akcs(X) of C∞-differential forms with

compact support on X is defined by

〈α, β〉g,L2 :=

∫
[X]

g(α, β) V ol ∀α, β ∈ Akcs(X)

. The pairing AkR,x ⊗R An−kR,x → AnR,x ∼= R given by the wedge product, gives an

isomorphism p : An−kR,x
∼=→ Hom(AkR,x,R). We also have the R-isomorphism of AkR,x
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with its dual, so we get an isomorphism of sections

∗x : AkR,x
∼=→ An−kR,x .

which glues as a C∞-map giving an isomorphism of bundles. This operator is called

the Hodge star operator. We can consider this operator on the sheaves of sections

of its domain bundle and codomain bundle.

This operator has the following essential property:

Proposition 4.1.1 〈α, β〉g,L2 =
∫

[X]
α ∧ ∗(β) ∀α, β ∈ Akcs(X)

But now if X is also a complex manifold, the metric g and the almost complex

structure J on X together give a hermitian metric, say h on X and we have a L2-metric

(is this L2 ?)

〈α, β〉h,L2 :=

∫
[X]

h(α, β) V ol ∀α, β ∈ (AC)kcs(X)

Now this h gives a C-conjugate linear isomorphism of AkC,x with its dual. Now if we

extend ∗ by C-linearity, we get a C-isomorphism

∗ : AkX,C
∼=→ An−kX,C .

but not a C-antilinear isomorphism. So vaguely saying ”∗ does not capture the

structure provided by h, it only captures the structure provided by g”. But if we

define ∗(β) := ∗(β) ∀β ∈ (AC)kcs(X), then the operator ∗ ”does capture the structure

given by h” and we get the following proposition:

Proposition 4.1.2 〈α, β〉h,L2 =
∫

[X]
α ∧ ∗(β) ∀α, β ∈ (AC)kcs(X)

This operator ∗ is also considered as the Hodge star operator but here we will call it

the Conjugate star operator

We have seen that for a complex manifold X, the conjugate star operator is more

closely related to its complex structure than the (real) star operator. Having this

in mind we define the star operator for holomorphic hermitian vector bundles on a

complex manifold followingly:

Let (E, hE) be a holomorphic hermitian vector bundle on a complex manifold X, with

the Dolbeault operator ∂E. Then this also defines a L2 −metric :
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〈α, β〉hE ,L2 :=
∫

[X]
hE(α, β) V ol ∀α, β ∈ (AE,C)0,q

cs

Then the pairing:

(A0,q
X ⊗C

E)⊗
C

(An,n−qX ⊗
C
E∗)→ An,nX ∼= C

makes An,n−qX ⊗C E
∗ dual to A0,q

X ⊗C E as C-vector spaces. Now by the C-conjugate

linear isomorphism of Ω0,q
X ⊗CE with its dual. We define the Hodge star operator

∗E, of the bundle E by the conjugate isomorphism:

∗E : A0,q
X ⊗C

E → An,n−qX ⊗
C
E∗.

Consider the canonical bundle KX := An,0X on X. Then this is a holomorphic line

bundle on X. Moreover,

An,n−qX ⊗
C
E∗ ∼= A0,n−q

X ⊗
C

(KX ⊗
C
E∗)

Now since Ap,qX = Ao,qX ⊗ A
p,0
X . We can take E = Ωp,0

X . Then we get ∂E = (−1)p∂.

This also satisfies the similar proposition:

Proposition 4.1.3 〈α, β〉hE ,L2 =
∫

[X]
α ∧ ∗E(β) ∀α, β ∈ (AX)0,q

cs

Moreover, if we define ∂E
∗

:= (−1)q∗E−1 ◦ ∂KX⊗E∗ ◦ ∗E. Then ∂E
∗

is the (formal)

dual of ∂E w.r.t. the L2 metric induced by hE

Moreover, we have ∂
∗

= (−1)p 1
2
∂E
∗
, where the coefficient 2 comes from the relation

2kh(k) = Σhp,q. Now just replace E by Ap,0X ⊗C E

One of the great things the Hodge star operators do is to provide us with the formal

duals of operators for which come paired with another operator, which we call its

Quasi-adjoint here, such that these two together satisfy a certain condition which

we will mention below. We are lucky that most of the operators we study in this

Chapter have a Quasi-adjoint (mostly they are Quasi-adjoint to themselves):

4.1.2 Operators with a Quasi-adjoint and their Formal Duals

Let X be a Riemannian manifold of dimension n and let V = T ∗R,X be the real

cotangent bundle of X, and let W = V ⊗R C be the complexified cotangent bundle.

If X is a complex manifold we have the decomposition ∧rW =
⊕

p+q=rW
p,q, where

W p,q is the set of all (p, q)-forms.

23



Let
∧

(V ) := R ⊕ ∧1V ⊕ ∧2V ⊕ · · · . and
∧

(W ) :=
∧

(W ) ⊗R C Then under wedge

product of forms
∧

(V ) and
∧

(W ) form what we call a graded commutative

algebra (not to be confused with a commutative algebra which is graded) which

means for α ∈ ∧kW and β ∈ ∧lW we have α ∧ β = (−1)klβ ∧ α. for all k, l ≥ 0.

Every element of ∧kW can be called homogeneous (differential) form of degree

k, for all non-negative k.

Let ur :
∧

(V ) → ∧rV and up,q :
∧

(W ) → ∧p,qW be projection maps. We denote

the complexification of ur by ur too. We define the following maps:

(a) Define κ :
∧

(V ) →
∧

(V ) by κ :=
∑
r≥0

(−1)nr+rur and we see at once that ∗2 = κ

and κ2 = 1

(b) Any homogeneous form η of degree r (r ≥ 0) defines an operator e(η) := η ∧ (∗) :∧
(W )→

∧
(W )

(c) When X is a complex manifold, define J :
∧

(W ) →
∧

(W ) by J :=
∑

p≥0,q≥0

ip−qup,q

and we see that J2 = κ.

Definition 4.1.4 Let r, s ∈ Z and T : Ak(X) → Ak+r(X) be a R-linear map. Then

here we call, another R-linear operator S : Ak(X) → Ak+r(X) to be the Quasi-

adjoint to T if ∃c : Z→ R such that∫
X

Tα ∧ β = c(d0β)

∫
X

α ∧ Sβ

for all α and β which are differential forms of appropriate orders and compact support.

Then we define the (formal) dual of T , denoted by T ∗ : Ak(X)→ Ak−r(X) as:

T ∗ := c(k) · ∗−1 ◦ S ◦ ∗ = c(k) · κ ◦ (∗S∗).

When X is a complex Hermitian manifold, a C-linear map T : Ap,q(X)→ Ap+r,q+s(X)

is Quasi- adjoint to another C-linear map S : Ap,q(X)→ Ap+r,q+s(X) if it satisfies

a relation similar to above where c can be a complex number and it has its dual defined

as above except the fact that we use the conjugate star operator ∗ in place of ∗.

The formal duals in the case of maps between differential forms with E coefficients

where E is a holomorphic Hermitian vector bundle on a complex hermitian manifold

is defined similarly using the Hodge star operator associated to the bundle and in this

case also c is a complex number.
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The name dual comes from the following proposition:

Proposition 4.1.5 Let X be a complex hermitian manifold. Let T : Ap,q(X) →

Ap+r,q+s(X) be Quasi-adjoint to the C-linear map S : Ap,q(X)→ Ap+r,q+s(X). Then

〈Tα, β〉 = 〈α, T ∗β〉

, for all α and β which are differential forms of appropriate type and compact support.

The inner product above is the L2-metric defined by the Hermitian metric h. The other

(formal) duals also satisfy similar equalities. The only thing is that for real operators,

the L2-metric is defined by the Riemannian metric and for operators on vector valued

differential forms on a complex Hermitian manifold, the L2-metric comes from the

Hermitian metric of the holomorphic vector bundle and the base space.

Proof 〈Tα, β〉V ol. =
∫
X
Tα ∧ ∗β = c ·

∫
X
α ∧ S ∗β = c ·

∫
X
α ∧ ∗−1S ∗β =

〈α, T ∗β〉V ol. ⇒ 〈Tα, β〉 = 〈α, T ∗β〉, for differential forms α and β of appropriate

type.

Let X be a compact complex manifold and let ω be a Kähler form on X. Let

L := ω ∧ (·) : AkX → Ak+2
X : α 7−→ ω ∧ α

We call this operator the Lefschetz operator.

Clearly, after complexifying L, L = e(ω).

The following corollary of the above proposition tell us what are the duals of certain

useful operators.

Corollary 4.1.6

(a) Let X be a real Riemannian manifold with Riemannian metric g. The dual d∗ of the

exterior derivative d : AkX → Ak+1
X is given by

d∗ = (−1)k ∗−1 d∗

(b) Let η be a homogeneous form of degree r (r ≥ 0). The dual e(η)∗ of the operator

e(η) := η ∧ (∗) : ∧kW → ∧k+rW is given by

e(η)∗ = (−1)r(dimRX−k−r)(∗−1e(η)∗).
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(c) Let X be a complex Hermitian manifold with Hermitian metric h. The dual ∂∗ of

the operator ∂ : Ap,qX → A
p+1,q
X is given by

∂∗ = (−1)k∗−1∂∗

(d) Let X be a complex Hermitian manifold with Hermitian metric h. The dual ∂
∗

of

the operator ∂ : Ap,qX → A
p,q+1
X is given by

∂
∗

= (−1)k∗−1∂∗

(e) Let X be a complex Hermitian manifold with Hermitian metric h and let (E, hE)

be the Hermitian holomorphic vector bundle X. The dual ∂
∗
E of the operator ∂E :

Ap,qE → A
p,q+1
E is given by

∂
∗
E = (−1)k∗−1

E ∂E∗E

(f) Let X be a compact complex manifold and let ω be a Kähler form on X. The dual

L∗ of the Lefschetz operator L = ω ∧ (·) : AkX → Ak+2
X is given by L∗ = ∗−1L∗

Proof We will only prove 1 and 2. Clearly, 5. follows from 2. The proof of others

are similar to that of 1.

Proof of 1 : Clearly,

∫
X

dα ∧ β = (−1)d
0α+1

∫
X

α ∧ dβ for all α and β which are

differential forms of appropriate orders and compact support. This follows from

Leibnitz rule for d and the Stokes’ Theorem: Leibnitz rule gives us, d(α ∧ β) =

dα∧β+(−1)d
0αα∧dβ. Now by Stokes’ Theorem

∫
X
d(α∧β) = 0. Now, d0β = d0α+1.

This proves 1.

Proof of 2 : Clearly,

e(η)α∧β = η∧α∧β = (−1)d
0α·d0η(α∧η∧β) = (−1)d

0α·d0η(α∧ e(η)β and d0α ·d0η =

r(dimRX − k − r) therefore

∫
X

e(η)α ∧ β = (−1)r(dimRX−k−r)
∫
X

α ∧ e(η)β

for any two complex differential forms α and β such that d0α + d0β + r = dimRX.

This proves 2. �

4.1.3 Computing the Hodge star operator locally on a Manifold

Let n be a positive integer. For every p ∈ Nn, let

Ip,n := {µ = (µ1, ...µp) ∈ Np | µ1 < · · · < µp}

In := qp∈NnIp,n
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The set In (resp. Ip,n) is called the set of all strictly increasing multinidices (resp.

multiindices of length p) chosen from 1,..,n. Suppose µ = (µ1, ...µp) ∈ In. Then we

say that the integer p is the length of µ and write |µ| = p. We also write µi ∈ µ to

mean that µi is a component of µ; i.e. we treat the multiindices as ”ordered sets”.

Real Manifolds with respect to the real co-ordinate chart

Let (X, g) be a Riemannian manifold of dimension n. Let (U, φ = (x1, ..., xn)) be a

chart of (X, g) and let V be the cotangent bundle over U with φ giving an oriented

frame dx = (dx1, ..., dxn) of V on U. For any µ ∈ Ip, define dxµ := dxµ1 ∧ · · · ∧ dxµp
Let M(g) = (gi,j) be the matrix of g w.r.t. the basis x. Let M(g)−1 = (gi,j)

For any α =
∑
µ

αµdxµ, define

αµ = αµ1,...,µp = gµ1,ν1 · · · gµp,νpαν1,..,νp

, where we follow the Einstein summation convention. Then if we declare, ∗α =∑
η=(η1,...,ηn−p)(∗αη)dxη (where (µ, η) is a permutation of (1, 2, .., n)), we can find the

coefficients (∗αη) by the following formula which is easy to show:

Lemma 5 (∗αη) = (sgn(µ, η))
√
detM(g)αµ 2

Complex manifolds with respect to the complex co-ordinate chart

We now introduce a way to compute ∗ζ for every complex differential form ζ on some

open subset of a complex manifold X of complex dimension n. Let U be a holomorphic

chart of X. Let V be the real cotangent bundle on U and W = V ⊗RC, x1, y1, ..., xn, yn

be a basis of V and z1, ..., zn be the basis of W 1,0 given by zi = xi +
√
−1yi ∀i =

1, ..., n and let zi = xi −
√
−1yi ∀i = 1, ..., n.

For any p ∈ Nn and µ = (µ1, ..µp) ∈ Ip,n, define:

zµ := zµ1 ∧ ... ∧ zµp

xµ := xµ1 ∧ ... ∧ xµp

...etc. and

ωµ :=
∧

16i6p

(zµi ∧ zµi)
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We see that any form in
∧∗W = R ⊕ ∧1W ⊕ · · · is a complex linear combination

of the terms zA ∧ zB ∧ ωM for (A,B,M) ∈ I3
n such that A, B and M are mutually

disjoint. With the help of this we can compute the Hodge star operator:

Lemma 6 ∗(zA ∧ zB ∧ ωM) = λ(a, b,m)zA ∧ zB ∧ ωM ′,

where A, B, M are mutually disjoint multinidices in In, a = |A|, b = |B|, m = |M |,

and M ′ = Nn \ (A ∪B ∪M) and

λ(a, b,m) = ia−b(−1)
p(p+1)

2
+m(−2i)p−n

where p = a+ b+ 2n is the total degree of zA ∧ zB ∧ ωM . 2

4.1.4 Laplacians

Definition 4.1.7 (Laplacians and Harmonic Forms)

• Laplacian and Harmonic forms associated to d :

Let X be a smooth Riemannian manifold. We define the Laplacian associated to

d by, ∆d := d ◦ d∗ + d∗ ◦ d : AkX,cs → AkX,cs.

A form α ∈ AkX,cs is ∆d-Harmonic if ∆dα = 0.

The space of all ∆d-Harmonic forms of order k on X is denoted by Hk
d or Hk

X

• Laplacian associated to ∂ :

Let X be a complex manifold equipped with a Hermitian metric h. We define the

Laplacian associated to ∂ by: ∆∂ := ∂ ◦ ∂∗ + ∂∗ ◦ ∂ : Ap,qX,cs → A
p,q
X,cs.

A form α ∈ Ap,qX,cs is ∆∂-Harmonic if ∆∂α = 0.

The space of all ∆∂-Harmonic forms of type (p, q) on X is denoted by Hp,q
∂

• Laplacian associated to ∂ :

Let X be a complex manifold equipped with a Hermitian metric h. We define the

Laplacian associated to ∂ by: ∆∂ := ∂ ◦ ∂∗ + ∂
∗ ◦ ∂ : Ap,qX,cs → A

p,q
X,cs.

A form α ∈ Ap,qX,cs is ∆∂-Harmonic if ∆∂α = 0.

The space of all ∆∂-Harmonic forms of type (p, q) on X is denoted by Hp,q

∂

• Laplacian associated to ∂E :

Let X be a complex manifold equipped with a Hermitian metric h and let (E, hE) be a

holomorphic Hermitian vector bundle on X. We define the Laplacian associated

to ∂E by: ∆∂E
:= ∂E ◦ ∂

∗
E + ∂

∗
E ◦ ∂E : (AE,X)p,qcs → (AE,X)p,qcs .
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A form α ∈ (AX,E)p,qcs is ∆∂E
-Harmonic if ∆∂E

α = 0.

The space of all ∆∂-Harmonic forms of type (p, q) on X is denoted by Hp,q
E

Then following lemma shows us that harmonic forms are closed.

Lemma 7 If X is compact smooth Riemannian manifold. Then

〈α,∆dα〉 = 〈dα, dα〉+ 〈d∗α, d∗α〉

Corollary 4.1.8 In the case of the above lemma, ker∆d = ker(d) ∩ ker(d∗)

4.2 Elliptic Differential Operators

4.2.1 Differential Operators

Let X be a smooth manifold and E
τ→ X and F

σ→ X are two complex vector bundles

of ranks r and s respectively, on X. A C-linear map of sheaves (this is not in general a

map of C∞X -modules !) L : εE → εF is called a Differential operator of order k if

∃ an open cover by charts (U , φ) = (Uα, φα = (x1,α, .., xn,α))α of X that trivialize both

E and F by the local frames ζα := (ζα1 , ..., ζ
α
r ) and ηα = (ηα1 , ..., η

α
s ) respectively on Uα

and C-linear maps C∞X (Uα)r
L̃α→ C∞X (Uα)s such that the following diagram commutes:

εE(Uα) εF (Uα)

C∞X (Uα)r C∞X (Uα)s

∼=

L|Uα

∼=

L̃α

(4.1)

and the maps Lα are given by

Lα(f1, ..., fr) = (
∑

|σ| ≤k, 1≤j≤r

aj,iα,σD
σ
α(fj) )1≤i≤s

where Dσ
α are just some monomials of degree at most k in the polynomial ring

(multiplication is given by composition of operators) R[
∂

∂x1,α

, · · · , ∂

∂xn,α
] that acts

as an operator on C∞X (Uα) and there is some σ with |σ| = k such that some aj,iα,σ 6= 0.

Fix some indices α and β for the open sets. Let us denote U = Uα ∩ Uβ, restrict the

frames and charts on Uα to U and denote these without the index α. Let us explain
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what happens to the Differential operators when we change the chart and the frames

of E and F on U. Let

g : U → GL(n,R), u : U → GL(r,C), v : U → GL(s,C)

be the change of frame maps of the tangent bundle, E and F respectively. Then,

(a) if y1, .., yn be the new coordinates on U, the linear operator g defined on the tangent

bundle of U, gives a graded homomorphism of commutative graded R-algebra homomorphism

of the polynomial rings (with the obvious grading) R[
∂

∂x1

, · · · , ∂

∂xn
]→ R[

∂

∂y1

, · · · , ∂

∂yn
],

this maps Dσ ∈ R[
∂

∂x1

, · · · , ∂

∂xn
] to a homogeneous polynomial of the same degree

in R[
∂

∂y1

, · · · , ∂

∂yn
]. Thus all linear sums of Dσ with |σ| = m give all the sections

of the symmetric product Sm(TR,X) ∀m 6 k.

(b) The action of v on frames changes L in the following way : The coefficients ai,jσ of L

change according to the formula:

v ? (ai,jσ )i = tv · (ai,jσ )i

, where v ? (ai,jσ )i are the new coefficients and the dot on the right hand side of the

above is matrix multiplication. So, it behaves like a section of F.

(c) But because of the Leibnitz rule, u changes L in a co-ordinate dependent way,

therefore L is not a C∞X -module homomorphism of sheaves or a morphism of vector

bundles. But we do get a section of E∗ ⊗ F = Hom(E,F ) in the following way:

For each point (x, v) ∈ T ∗R,x with v 6= 0 choose a function g ∈ C∞X (V ) for some open

set V of X such that v = dg.

Define σL(x, v)(f) := L(
ik

k!
(g − g(x))kf)(x) ∈ Fx ∀f ∈ Ex

and call it the principal symbol of L. This does define a section of the vector

bundle Hom(E,F ) over some open set V of X if v is a differential 1-form on V and

g is defined all over V. In this construction of σL, only the principal part of L is

important; i.e. if two differential operators have the same principal part then they

have the same principal symbol. But this gives us more: let θ be the 1-form on X

which is zero everywhere the principal symbol gives a homogeneous morphism

Ω1
X \ θ → Hom(E,F ).
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meaning, σL(x, ρv) = ρkσL(x, v) ∀v ∈ T ∗R,x \ 0, ∀x ∈ X and ∀ρ > 0.

Note: The principal part of the differential operator L is:

Lprin = (
∑

|σ| =k, 1≤j≤r

aj,iα,σD
σ
α(fj) )1≤i≤s

We are now ready to define and study elliptic differential operators.

4.2.2 The Fundamental Theorem of Elliptic Differential Operators

Definition 4.2.1 We say that a differential operator P : εE → εF is elliptic if

σP (x, v) is injective for every v and x such that v is a non-zero cotangent vector at x

and x is a point in X.

Suppose (X, g) is a compact Riemannian manifold and let (E, gE)and(F, gF )betwoC∞-bundles

over X, with Riemannian metrics gE and gF on them, respectively. Let differential

operator P : εE → εF . Let f1 : E → E∗ and f2 : F → F ∗ be the isomorphisms of E

and F with their dual given by the metrics on them.

We define the formal adjoint of P by P ∗ : εF ∗ → εE∗ that satisfies 〈α, Pβ〉gF∗ ,L2 =

〈P ∗α, β〉gE ,L2 . We will construct such an adjoint later but for now assume that it

exists (?)...... Note:

The proof of the existence tells something about the symbol of the adjoint. We see

that:

Proposition 4.2.2 The symbol of P ∗ is equal to the adjoint of the symbol of P; i.e.

σP (x, v) = (σP ∗(x, v))∗ ∀v ∈ T ∗R,x \ 0 ∀x ∈ X. particularly, P ∗ is an elliptic operator

if and only if P is the same.

Theorem 5 The Fundamental Theorem of Elliptic Differential Operators

Let P : E → F be an elliptic differntial operator on a compact Riemannian manifold

X between two vector bundles E,F of the same rank with equipped Riemannian

metrics on them. Then the kernel and the image of P are finite dimensional R-vector

spaces, and we have the decomposition εE = kerP ⊕ ImP ∗. 2
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4.2.3 Laplacian as an Elliptic Differential Operator and the

Hodge Isomorphism

By computing the symbol of the Laplacians we can see that they are all Elliptic

Differential Operators:

Lemma 8 Symbols of Laplacians

(a) Symbol of ∆d

Let x ∈ (X, g), where (X, g) is a Riemannian manifold. On a sufficiently small

chart around x, the symbol σ∆d
is given by

σ∆d
(v)(ω) = −‖v‖2 ω

where v is a non-zero section of the cotangent bundle and ω is a non-zero section of

some AkX around the point x ∈ X, where ‖·‖ is the norm induced by g.

(b) Symbol of ∆∂

If x ∈ (X, h) is a point on a complex manifold X with Hermitian metric h. Then on

a sufficiently small chart of X, the symbol σ∆∂
is given by

σ∆∂
= −1

2
‖v‖2 Id.

on Ap,qX around x ∈ X, where ‖·‖ is the norm given by h

(c) Symbol of ∆∂E

If x ∈ (X, h) is a point on a complex manifold X with Hermitian metric h and (E, hE)

be a holomorphic Hermitian vector bundle on X. Then on a sufficiently small chart

of X, the symbol σ∆∂E
is given by

σ∆∂E
= ‖v‖2 Id.

on Ap,qE around x ∈ X, where ‖·‖ is the norm induced by h.

Thus all the Laplacians above are Elliptic Differential Operators. 2

Proof 2a : Let α =
∑

µ αµdxµ be any differential form. Let η be the unique element

in In−p,n, where |µ| = p, such that (µ, η) is a permutation of (1, ..., n).

Then

∗α =
∑
η

(sgn(µ, η))
√
det(M(g))(

∑
ν

gµ1,ν1 · · · gµp,νpαν)dxη
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and define, Gµ
ν,η :=

√
det(M(g))(gµ1,ν1 · · · gµp,νp). The G’s are smooth functions on U.

I would like to make a note here that the index η in G has not much use except that

it is helpful to keep note of what happens when we apply the Hodge star operator.

Then

∗α =
∑
ν,η

(sgn(µ, η))Gµ
ν,ηανdxη

and

d(∗α) =
∑
ν,η,i

(sgn(µ, η))(
∂Gµ

ν,η

∂xi
ανdxi ∧ dxη) +

∑
ν,η

(sgn(µ, η))Gµ
ν,η(
∑
i

∂αν
∂xi

dxi ∧ dxη)

Let Hi,η be the coefficients of dxi∧dxη in the right hand side of the last equality above.

Though the multiindex (i, η) is not strictly positive we will work with these. Now the

complement of the underlying set of (i, η) is {µ1, .., µp}\{i} , call this µ− i Now if i =

µr then sgn(µ, η) = (−1)p−rsgn(µ− i, (i, η)) = (−1)p−r(−1)(p−1)(n−p+1)sgn((i, η), µ−

i). Now as we defined Gµ
ν,η for α, we define G

(i,η)
(j,τ),µ−j in the similar way and we get:

(∗d∗)(α) =
∑

µ,ν,i,j,τ

(−1)(p−r)+(p−1)(n−p+1)G
(i,η)
(j,τ),µ−i(

∂Gµ
ν,τ

∂xj
αν +Gµ

ν,τ

∂αν
∂xj

)dxµ−i

The formula above is complicated because of the choice of the chart. If we change

the chart and dx1, ..., dxn is an orthonormal basis for the metric g, then the above

formula becomes simple; e.g.
∑

ν G
µ
ν,ηαν becomes αµ. So we get,

(∗d∗)(α) =
∑
µ,i

(−1)(p−r)+(p−1)(n−p+1)∂αµ
∂xi

dxµ−i

If we apply d to the above formula we get d(∗d∗) and if we replace α by dα we get

(∗d∗)(dα). Then adding them with appropriate signs we can see that

∆d(α) = −
∑
µ,i

(
∂2αµ
∂x2

i

dxµ)

. Thus the symbol of ∆d is given by:

σ∆d
(v)(α) = −(v2

1 + ...+ v2
i + ...+ v2

n)α = −‖v‖2 α

The proofs of 2b and 2c are similar to 2a.

Now we can apply the Fundamental Theorem of Elliptic Operators on the Laplacians

and get a similar decomposition.
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Suppose that (X, g) be a compact Riemannian manifold. Note that Laplacians are

self-adjoint, so we have

Ak(X) = Hk
X ⊕∆d(Ak(X)).

This gives us the projection map Ak(X) → Hk
X . Let Zk(X) be the space of all

d-closed differential forms of degree k on X and Bk(X) = d(Ak−1(X)), then we get

the induced map µ : Zk(X)→ Hk
X .

Let β ∈ Bk(X) and let β = α+∆d(γ), where α ∈ Hk
X and γ ∈ Ak(X). So, α+d∗d(γ)

is exact and so in particular it is closed. Thus dastd(γ) is closed. and therefore it lies

in ker(d) ∩ Im(d∗) = 0, so α is exact. Thus, α is in ker(d∗) ∩ Im(d) = 0, and this

shows that Zk(X)→ Hk
X induces a map,

φ : Hk
DR(X,R)→ Hk

X

We also have the projection map τ : Zk(X)→ Hk
DR(X,R), which when restricted to

Harmonic form gives the map:

ψ : Hk
X → Hk

DR(X,R)

which sends every harmonic form to its cohomology class.

The following theorem is of a significant importance to us and I call it the Hodge

Isomorphism Theorem:

Theorem 6 (Hodge Isomorphism Theorem)

The maps φ and ψ above are inverse to each other. 2

Proof Let β ∈ Zk(X) and let β = α + ∆d(γ), where α ∈ Hk
X and γ ∈ Ak(X). So,

α + d∗d(γ) is closed and so is in ker(d) ∩ Im(d∗) = 0, and hence β is cohomologous

to α. So we see that the diagram below commutes:

Zk(X) Hk
X

Hk
DR(X,R)

µ

τ

ψ
(4.2)

Since both µ and τ are zero on exact forms, the following diagram commutes:

Hk
DR(X,R) Hk

X

Hk
DR(X,R)

φ

Id
Hk
DR

(X,R)
ψ

(4.3)
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Now if we show that ψ is injective, we will get φ ◦ ψ = IdHkX . But that follows from

Hk
X ∩Bk(X) ⊆ ker(d∗) ∩ Imd = 0 �

The similar Isomorphism theorems hold for Complex De Rham cohomology of X,

Dolbeault cohomology of a compact complex Hermitian manifold and the Dolbeault

cohomology of a Hermitian Holomorphic vector bundle on a compact complex vector

bundle.

There is this amazing corollary of the Hodge Isomorphism theorem :

Corollary 4.2.3 The cohomology groups Hk(X,R) are all finite dimensional. Moreover,

the same holds for the complex cohomologies of X, the Dolbeault cohomologies of a

compact complex manifold and the Dolbeault cohomologies of a holomorphic hermitian

vector bundle on a compact complex manifold.

4.3 Lefschetz Representation of the Lie algebra

sl(2, C)

Let X be a compact complex manifold of complex dimension n and let ω be a Kähler

form on X. Let

L := ω ∧ (·) : A∗X,R → A∗+2
X,R (or,Ap,qX → A

p+1,q+1
X ) : α 7−→ ω ∧ α

be the Lefschetz operator and let L∗ denote the formal dual of L obtained using the

Hodge star operator defined by the metric h associated to the Kähler form ω. Then

recall that we have seen that L∗ = ∗−1L∗ = κ ∗ L ∗. Where

κ :
∧
AX,R →

∧
AX,R α 7→

∑
r≥0

(−1)r ur α

and
∧
AX,R = R ⊕A0

X,R ⊕A1
X,R ⊕ · · · . and ur :

∧
AX,R → ArX,R are the projection

maps for all non-negative r. But what really is κ when we take L : AkX,R → Ak+2
X,R ?

Clearly it is (−1)k−2 = (−1)k. Also recall that we were introduced to the map

J :=
∑

p≥0,q≥0

ip−q up,q :
∧
AX,C →

∧
AX,C, where up,q :

∧
AX,C → Ap,qX and

∧
AX,C = (

∧
AX,R)⊗

R
C.
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Consider the non-commutative algebra G of all C-linear morphism of sheaves AX,C →

AX,C where multiplication is given by composition of maps, and the C-vector space

structure is pointwise. Then the operator [·, ·] : G ×G → G : [A,B] := A ◦B−B ◦

A, ∀A,B ∈ G. This operator is called the commutator because if [A,B] = 0 then

A ◦ B = B ◦ A, i.e A and B commute. Clearly (G, [·, ·]) forms a Lie algebra. We get

the following proposition at once:

Proposition 4.3.1

(a) [L∗, L] =
∑

0≤r≤2n

(n− r)ur,

(b) ∗ ◦ up,q = un−q,n−p ◦ ∗,

(c) [L, J ] = [L∗, J ] = [L, ω] = [L∗, ω] = 0.

By K we will mean either one of the fields R and C.

Definition 4.3.2 (Lie Groups and Lie Algebras)

(a) (Lie Group) Let G be a smooth manifold (real or complex) such that the multiplication

map G×G→ G is also smooth ( if G is a complex manifold we require this map to

be homogeneous).

(b) (Lie Algebra) Let F be any field. A Lie algebra over F is a pair (V, [[·, ·]]) where

V is a vector space over F and [[·, ·]] : V × V → V is a F-bilinear map that satisfies

the following two axioms:

i. (Anticommutativity) [[v, v]] = 0 ∀v ∈ V

This implies [[v, w]] = −[[w, v]] ∀v, w ∈ V

ii. (Jacobi identity) [[v, w]] + [[w, u]] + [[u, v]] = 0 ∀u, v, w ∈ V

Example 4.3.3

(a) Clearly (G, [·, ·]) forms a Lie algebra.

(b) More generally, let V be any vector space over a field F. Let EndF(V ) the non-commutative

algebra of all F-linear endomorphisms on V with pointwise vector space structure

and composition of functions. Then (EndF(V ), [·, ·]) is a Lie algebra, where [·, ·] :

V × V → V [a, b] := a ◦ b − b ◦ a ∀a, b ∈ EndF(V ). This particular Lie algebra

is denoted by gl(V ) and this operator [·, ·] is also called a commutator for the same

reason. When V = Fn we denote gl(V ) by gl(n,F)
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(c) The elements of gl(V ) which have trace zero form a Lie algebra with the commutator

of gl(V ). This Lie algebra is denoted by sl(V ). When V = Fn we denote sl(V ) by

sl(n,F)

Definition 4.3.4

(a) A represerntation (V, ρ) of a Lie group G consists of a vector space V over K

and a smooth group homomorphism

ρ : G→ GL(V ).

(b) A representation (V, τ) of a Lie algebra g over F is a vector space homomorphism

τ : g→ gl(V )

over k such that

τ( [[v, w]] ) = [τ(v), τ(w)] ∀v, w ∈ V,

for any field F.

(c) A Lie group homomorphism ρ : G→ H is a group homomorphism between Lie

groups which is also a smooth map.

We can similarly define real analytic Lie group homomorphism of real analytic Lie

groups and holomorphic Lie group homomorphisms of holomorphic Lie groups.

(d) A Lie algebra homomorphism ρ : (L, [·, ·]L)→ (M, [·, ·]M) is a vector space map

φ : L→M between Lie algebras (L, [·, ·]L) and (M, [·, ·]M) such that

[v, w]L = [τ(v), τ(w)] ∀v, w ∈ L

Example 4.3.5 Let G be any Lie group and for any g ∈ G, let Lg : G→ G a 7→ g ·a

and Rg : G→ G a 7→ a · g be the left and right multiplication action of G on itself.

By definition of Lie group these maps are smooth. A vector field X on G is said to

be left-invariant (resp. right-invariant) if

dLg(Xa) = Xg·a ∀g, a ∈ G.

(resp. dRg(Xa) = Xg·a ∀g, a ∈ G. We state the following propositions without proof:

Proposition 4.3.6 All the left invariant sections of the tangent bundle TK,G, forms

a subbundle L[G] of TK,G and becomes a Lie algebra under the Lie bracket [·, ·]
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of vector fields defined by [X, Y ]f := X(Y f) − Y (Xf) ∀ sections X, Y of TF,G

and a F-valued C∞-function f (viewing vector fields as derivations of germs of C∞

functions.). Moreover the K-vector spaces L[G] and h are isomorphic, where g is

the K-tangent space at the identity element of G. Thus, g becomes a Lie algebra in

a natural way and the cotangent bundle g∗ at identity also becomes a Lie algebra by

the natural isomorphism between a vector space and its dual. (We can replace the

left invariant vector fields by right invariant vector fields in this proposition. The

bundle of all right invariant vector fields is denoted by R[G].) We say that g is the

Lie algebra associated to the Lie group G, and we express this statement by saying

Lie(G) = g

For any Lie group homomorphism ρ : G→ H the differential dρ : Lie(G)→ Lie(H)

is a Lie algebra homomorphism.

Definition 4.3.7

(a) A morphism of two Lie group representations ρj : G→ GL(Vj) j = 1, 2, is a map

of vector spaces φ : V1 → V2 such that

ρ2(g) ◦ φ = φ ◦ ρ1(g) ∀g ∈ G.

(b) A morphism of two Lie algebra representations τj : g → gl(Vj) j = 1, 2, is a map

of vector spaces φ : V1 → V2 such that

τ2(v) ◦ φ = φ ◦ τ1(v) ∀v ∈ g.

(c) A representation (V, ρ) ( Lie algebra or Lie group representation) is said to be a

subrepresentation of another representation (W, p) (of the same type) if there is

an injective morphism of representations φ : (V, ρ)→ (W, p).

(d) A representation (V, ρ) ( Lie algebra or Lie group representation) is said to be

irreducible if it has no proper subrepresentation.

(e) A representation (V, ρ) ( Lie algebra or Lie group representation) is said to be

completely reducible if it can be expressed as a direct sum of irreducible subrepresentations.

Definition 4.3.8 Define B :=
∑

0≤r≤2n(n− r) ur .
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Consider the elements e :=

0 1

0 0

, f :=

0 0

1 0

 and h :=

1 0

0 −1

 of sl(2,C)

and we get [e, f ] = h, [h, e] = 2e and [h, f ] = −2f . The elements h, e, f are the basis

of the Lie algebra sl(2,C) and the map

ρ : sl(2,C)→ G

defined by

h 7→ B, e 7→ L∗, f 7→ L

gives a representation of the Lie algebra sl(2,C). We call this representation of sl(2,C)

the Lefschetz representation.

Definition 4.3.9

(a) Let V be a complex vector space. For any Lie algebra representation τ : sl(2,C)→

gl(V ), an element v ∈ V is said to have weight λ ∈ C if τ(h)(v) = λ · v; i.e. λ is an

eigenvalue of τ(h) with eigenvector v. Under this representation ρ of sl(2,C) every

differential form of degree p, has weight n-p, as ρ(h) = B =
∑∞

j=0(n − j)uj. The

subspace of all all vectors of weight λ is called the space of weight- λ.

(b) In the above case of the representation (V, τ) of sl(2,C), an eigen-vector v ∈ V of

τ(h) is said to be primitive if τ(e)(v) = 0.

We have the following theorem for sl(2,C) Lie algebras:

Theorem 7 Every finite dimensional sl(2,C) is completely reducible. 2

Theorem 8 Every finite dimensional representation of sl(2,C) has a primitive vector.

Let v0 be a primitive vector of weight λ in an irreducible representation (V, ρ) Then

defining

vn =

0 for n = −1

1
n!
ρ(f)nv0 for n = 0, 1, 2, · · ·

then we have:

ρ(h)vn = (λ− 2n)vn (4.4)

ρ(f)vn = (n+ 1)vn+1 (4.5)

ρ(e)vn = (λ− n+ 1)vn−1 (4.6)

Moreover, λ ∈ Z and λ+ 1 = dimCV, and ρ(fn)v0 = 0 ∀n > m. 2
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Theorem 9 (Classification of finite dimensional irreducible sl(2,C) representations)

Let V be a vector space of dimension m ∈ Z≥0 with the basis (v0, ..., vm). Then we

have a sl(2,C) representation on V, defined by:

ρ(h)vn = (m− 2n)vn (4.7)

ρ(f)vn = (n+ 1)vn+1 (4.8)

ρ(e)vn = (m− n+ 1)vn−1 (4.9)

and with the convention v−1 = vm+1 = 0., which is irreducible. Conversely, every

complex representation of sl(2,C) of dimension m+1 is equivalent this representation.2

For the proofs of these theorems see [2] pg. 171− 178.

Corollary 4.3.10 Suppose (V, ρ) be an irreducible complex representation of sl(2,C)

of dimension m+ 1, where m ∈ Z≥0. For every vector u ∈ V of weight λ, we have an

integer r ≥ 0 and a primitive vector u0 of weight λ+ 2r, such that

u = ρ(f r)u0

and

u0 =
(m− r)!
m!r!

ρ(e)ru

Proof Let B = (v0, ..., vm) be a basis of V such that the pair (ρ,B) satisfies the

condition of Theorem 9. From 4.9, we get

ρ(e)rvr = (m− r + 1)(m− r + 2) · · · (m− 1)m · v0 =
m!

(m− r)!
v0.

and by 4.8 we get

ρ(f)rρ(e)rvr =
m!

(m− r)!
vr

0 ≤ ∀r ≤ m. Since every irreducible subrepresentation of a sl(2,C) representation

intersects every space of fixed weight in a subspace of dimension 1 (a complex line

through origin), we get that u is a scalar multiple of some vr, say u = c · vr, for fixed

c ∈ C and fixed r, (0 ≤ r ≤ m). Then

u =
(m− r)!
m!r!

ρ(f)rρ(e)ru

and hence (m−r)!
m!r!

ρ(e)ru is primitive. �

We will now consider an action of SL(2,C) and sl(2,C) on the symmetric power
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Sm(C2), ∀m ∈ Z>0. Let v1,0 :=

1

0

 and v1,1 :=

0

1

 and vm,k := vm−k1,0 · vk1,1 0 ≤

∀k ≤ m. Then (vm,k)0≤k≤m is a basis of Sm(C2). Let τ1 : SL(2,C)→ GL(S1(C2)) =

GL(2,C) is the inclusion map SL(2,C) ↪→ GL(2,C), and τm = τ⊗m1 . Let ρm :=

dτm ∀m ∈ Z>0. Then we get the formulas:

ρm(h)vm,k = (m− 2k)vm,k 0 ≤ k ≤ m

ρm(e)vm,0 = 0

ρm(f)vm,m = 0

ρm(e)vm,k = k · vm,k−1 0 < k ≤ m

ρm(f)vm,k = (m− k)vm,k+1 0 ≤ k ≤ m− 1.

Let uk := ρm(f)kvm,0 = m!
(m−k)!

vm,k. Then u0 is primitive, and the pair (ρm, (u0, ..., um))

satisfies the condition of Theorem 9 and therefore (Sm(C2), ρm) is irreducible. Let

γ := i(e+ f) = exp(i(e+ f)) ∈ SL(2,C) ∩ sl(2,C). Then,

τm(γ)uk =
m!

(m− k)!
τm(γ)vm,k =

m!

(m− k)!
(τ1(γ)(v1,0))m−k · (τ1(γ)(v1,1))k

=
imk!

(m− k)!
um−k

as (τ1(γ)v1,ε = iv1,1−ε, ε = 0, 1). Hence,

τmρm(f)ku0 =
imk!

(m− k)!
ρm(f)m−ku0 (4.10)

4.4 Lefschetz Decomposition and important identities

on Kähler Manifolds

4.4.1 The Lefschetz Decomposition of Diffrerential Forms

Definition 4.4.1 A complex differential p-form α is said to be primitive if

ρ(e)α = L∗α = 0

We have the following proposition about primitiveness:

Proposition 4.4.2
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(a) Any complex p-form α is primitive then Lkα = 0∀k ≥ n− p+ 1

(b) All the primitive forms have degree less than n (the complex dimension of X).

Proof Let sl(2,C) · α vector space spanned by the orbit of α under the action of

sl(2,C). Then by the theory of Lie algebra representation of sl(2,C), we have:

dimC(sl(2,C) · α) = n− p+ 1.

with α, ρ(f)α, ..., ρn−p(f)α being a basis of sl(2,C)·α and ρn−p+1(f)α = Ln−p+1α = 0.

2. is true because of dimension count and α 6= 0. �

Let (·)+ : R→ R be defined by (x)+ := maxx, 0 ∀x ∈ R.

Theorem 10 (Lefschetz decomposition on differential forms)

(a) Let α be a complex differential form of degree p. Then there is an unique representation,

α =
∑
2r≤p

Lrαr

where for each r, αr is a primitive p-form of degree (p− 2r). Moreover,

αr =
∑
r,s

ar,sL
s(L∗)r+sα

for some fixed, ar,s ∈ Q.

(b) If Lmα = 0, then αr = 0 for all r ≥ (n− p+m)+.

In particular, if p ≤ n and Ln−pα = 0, then α = 0. 2

Proof Let W be the complex vector space
∧

(AX,C). Since every finite dimensional

sl(2,C)-representation can be decomposed into irreducible subrepresentations, we

have:

W = W1 ⊕ · · · ⊕Wl.

Now if α is any p-form in W and it α =
∑

j βj for βj ∈ Wj, then d(βj) = d(β) = p

for all j = 1, 2, ..., l.

Now, since each βj has weight n − p, the sub-representation generated by βj has

dimension n− p+ 1 and there is some rj ∈ N such that

βj = Lrjηj

where ηj is primitive form of degree (p− 2rj) for all j, and we have

ηj = cj · (L∗)rjβj
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where cj ∈ Q for all j.

For every r, let αr :=
∑

rj=r
βj, then we get

α =
∑
2r≤p

Lrαr

Clearly, proving the expression for αr will prove the uniqueness of the decomposition

of α, which we will now do:

If α = α0 + Lα1 + · · · + Lmαm, then (L∗)mα = (L∗)mα0 + (L∗)m−1(L∗ ◦ L)α1 · · · +

(L∗)m ◦ Lmαm
Since αr are primitive and (ρ(e)r ◦ ρ(f)r)(αr) = brαr for r = 1, ...,m (from 4.10),

where br ∈ Q we get αm = 1
bm
α. The formula for αr in (a) is then proved using

induction on r.

Part (b) then follows from the uniqueness in part (a) and the previous proposition.

�

4.4.2 Important Identities

Let η be any differential form (possibly complex) of degree r, (r ≥ 0), and recall the

operator e(η) and e(η)∗ that we were introduced to earlier this Chapter. For any

two homogeneous forms α and β we have e(α ∧ β) = e(α) ◦ e(β). We also have the

following proposition about formal duals:

Proposition 4.4.3 Suppose T1 : ∧∗AX,C → ∧∗+k1AX,C and T2 : ∧∗AX,C → ∧∗+k2AX,C
be two C-linear maps of sheaves that have Quasi-adjoints S1 and S2 respectively and

let c1, c2 : Z→ C be the constants that give us
∫
X
Tjαj ∧ βj = cj(d

0βj) ·
∫
X
αj ∧ Sjβj

for any two homogeneous forms αj and βj satisfying kj + d0αj + d0βj = dimRX, for

j = 1, 2.

(a) If c1 and c2 satisfy

c2(d0(S1β)) = c2(d0((∗−1S1∗)β))

for any homogeneous form β, then: (T1 ◦ T2)∗ = T ∗2 ◦ T ∗1 . The converse is also true.

(b) Moreover, if (T1 ◦ T2)∗ = T ∗2 ◦ T ∗1 and (T2 ◦ T1)∗ = T ∗1 ◦ T ∗2 and c1, c2 satisfy

c2(d0(S1β)) · c1(d0β) = c1(d0(S2β)) · c2(d0β)

for any homogeneous form β, then

[T1, T2]∗ = [T ∗2 , T
∗
1 ]
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Proof We have∫
X

(T1 ◦ T2)(α) ∧ β = c2(d0(S1β)) · c1(d0β) ·
∫
X

α ∧ (S2 ◦ S1)(β)∫
X

(T2 ◦ T1)(α) ∧ β = c1(d0(S2β)) · c2(d0β) ·
∫
X

α ∧ (S1 ◦ S2)(β)

for any two homogeneous forms α and β satisfying k1 + k2 + d0α + d0β = dimRX.

We also have

T ∗2 ◦ T ∗1 = [(c2 ◦ d0) · (∗−1S2∗)] ◦ [(c1 ◦ d0) · (∗−1S1∗)]

= (c1 ◦ d0) · (c2 ◦ d0 ◦ (∗−1S1∗)) · (∗−1(S2 ◦ S1)∗)

The rest of the proof is trivial. �

Note:

(a) If c1, c2 : Z → C× are group homomorphisms from the additive group of integers

and the multiplicative group of non-zero complex numbers, with c2
1 = c2

2 = 1

(multiplication comes from the multiplication of C×) then 1. is true and if moreover

c2(k1) = c1(k2), then 2. is true.

(b) If η1 and η2 are homogeneous differential forms of degrees of the same parity, then

the operators T1 = e(η1) and T2 = e(η2) satisfy the above proposition. Moreover

if η1 and η2 are homogeneous differential forms of degrees of opposite parity, then

one of the η’s have even degree and therefore the commutator [e(η1), e(η2)] = 0, and

[e(η2)∗, e(η1)∗] = 0.

Let {x1, y1, ..., xn, yn} = {v1, ..., v2n} be the orthonormal basis for the complex cotangent

bundle of X w.r.t. the Hermitian metric given by the Kähler form ω. Then, ω =∑
1≤j≤n xj ∧ yj and from what we noted above we have

L = e(ω) =
∑

1≤j≤n

e(xj) ◦ e(yj)

which implies,

L∗ = e(ω)∗ =
∑

1≤j≤n

e(yj)
∗ ◦ e(xj)∗

Now, for 1-forms η we have e(η)∗ = ∗(e(η))∗ and we see that

e(vj1)
∗(vj1 ∧ · · · ∧ vjk) = vj2 ∧ · · · ∧ vjk

if j1 6∈ {j2, · · · jk} and zero otherwise. Next, we prove the following lemma:
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Lemma 9

(a) [L∗, e(xj)] = e(yj)
∗ and [L∗, e(yj)] = −e(xj)∗ ∀j = 1, 2, · · ·n.

(b) [L∗, e(ζ)] = −ie(ζ)∗ and [L∗, e(ζ)] = ie(ζ)∗ for every form ζ of type (1, 0).

(c) [L∗, e(α)] = −Je(α)∗J−1 for every real 1-form α. 2

Proof Fix j ∈ Nn

[L∗, e(xj)] = (
∑

1≤k≤n

e(yk)
∗e(xk)

∗)(e(xj))− (e(xj))(
∑

1≤k≤n

e(yk)
∗e(xk)

∗)

= e(yj)
∗e(xj)

∗e(xj)− e(xj)e(yj)∗e(xj)∗

(from the last equality above we have that e(xj) commutes with e(vs) for all vs 6= xj).

Suppose η is any homogeneous form. Then η = η0 + xj ∧ η1 + yj ∧ η2 + xj ∧ yj ∧ η3

where the forms η0, η1, η2, η3 are homogeneous forms where neither xj nor yj occur in

them. Now, [L∗, e(xj)]η = η2 − xj ∧ η3 and e(yj)
∗(η) = η2 − xj ∧ η3.

Now,

[L∗, e(yj)] = [L∗, e(Jxj)] = [L∗, J ◦ e(xj) ◦ J−1] = J ◦ [L∗, e(xj)] ◦ J−1

= Je(yj)
∗J−1 = J∗e(yj)∗J−1(since e(α)∗ = ∗e(α)∗ ∀ real 1− form α)

= ∗Je(yj)J−1∗ = ∗e(−xj)∗

This proves 1. and everything else follows from 1. �

Consider the exponential map

exp : gl(n,C)→ GL(n,C) : A 7→ eA :=
∞∑
k=0

Ak

k!

We use the fact that ead(A) ◦ P = eAPe−A for all A ∈ gl(n,C) and for all P ∈

End(n,C), where ad(A)(B) := [A,B] for all A,B ∈ gl(n,C) The exponential map

can be defined in a similar way for any Lie Group G and its associated Lie algebra g.

For the representation ρ : sl(2,C)→ G we define

χ := exp(
i

2
πρ(e+ f)) = exp(

i

2
π(L∗ + L)).

Define t 7→ et(α) := exp(itρ(e+ f)) ◦ e(α) ◦ exp(−itρ(e+ f)) from C to G.

Lemma 10 Let α be a real 1-form. Then χe(α)χ−1 = −iJe(α)∗J−1
2
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Proof Clearly, e0(α) = e(α) and eπ
2
(α) = χe(α)χ−1. The idea of the proof is

to construct a initial value problem, i.e. to construct a differential equation in

independent variable t and dependent variable f(t) taking values in G such that

f(0) = e(α).

Clearly et(α) =
∑∞

k=0
1
k!

[ad(it(L∗ + L))]ke(α) and every [ad(L∗ + L)]k is a sum of

monomials in ad(L∗) and ad(L) and since we have:

(a) B = [L∗, L] = L∗ ◦ L− L ◦ L∗

(b) ad(L) ◦ e(α) = 0 and ad(−B) ◦ e(α) = e(α)

we get that

et(α) =
∞∑
k=0

ck(t)ad(L∗)k

where ck(t) are given by power series in t with complex coefficients.

Now, by the last lemma [ad(L∗)]ke(α) = 0 ∀k ≥ 2. So we get that

et(α) = c0(t)e(α) + c1(t)ad(L∗)e(α)

Now differentiating et(α) =
∑∞

k=0
1
k!

[ad(it(L∗ + L))]ke(α) and

et(α) = c0(t)e(α) + c1(t)ad(L∗)e(α)

and comparing the coefficients, we get the system of differential equations:

c′0(t) = ic1(t) and c′1(t) = −c0(t) now the unique solution of the above system that

satisfies the initial condition is given by: co(t) = cos t and c1(t) = i sin t. So,

et(α) = (cos t)e(α) + (i sin t)ad(L∗)e(α)

and the proof of the lemma is complete by putting t = π
2

above. �

Lemma 11 Let β be any complex differential p-form. Then

∗(β) = ip
2−nJ−1χ(β)

Proof Let # := ip
2−nJ−1χ. Then from equation-4.10 applied to the Lefschetz

decomposition we get

χ · ρ(f)ku0 =
imr!

(m− r)!
ρ(f)m−ru0 (4.11)
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for every primitive form of weight m. Now, since u0 = 1 is a primitive 0-form of

weight n = dimCX, from equation-4.11 above we get

χ(1) =
in

n!
Ln(1).

Hence #( 1) =
1

n!
Ln(1) = V ol.

Now, # e(ζ)β = i(p+1)2−nJ−1χe(ζ)β

= i(p+1)2−nJ−1(χe(ζ)χ−1)χβ = (−1)pe(ζ)∗(ip
2−nJ−1χβ) = (−1)pe(ζ)∗ # β

for every 1-form ζ. But, ∗ also satisfies:

∗(1) = V ol.

∗ ◦ e(ζ)β = (−1)pe(ζ) ◦ ∗β ∀p− formβ.

Now, as 1-forms generate the whole space of all forms of all degrees (denoted previously

by W ) on X, ∗ and # are equal. �

Proposition 4.4.4 Let β be any primitive complex differential p-form. Then

∗Lrβ = (−1)
p(p+1)

2
r!

(n− p− r)!
Ln−p−rJβ

for all r such that 0 ≤ r ≤ n− p

Proof Applying Theorem-8 for Lefschetz representation we see that the vector space

generated by {β, ρ(f)β, ..., ρ(f)n−pβ} is an irreducible sub-representation of the Lefschetz

representation. Again applying equation-4.10 to the Lefschetz representation, we get:

χLβ =
in−p · r!

(n− p− r)!
Ln−p−rβ

and by the last lemma we get

∗Lrβ = i(p+2r)2−nJ−1χLrβ = ip
2−nJ−1 in−p · r!

(n− p− r)!
Ln−p−rβ

= ip
2−pJ−2 r!

(n− p− r)!
Ln−p−rJβ

(as J commutes with L.) But this is exactly equal to the right hand side of the

equality in the proposition. Notice that, J−2(φ) = (−1)pφ for any p-form φ and we

can put φ = Jβ �
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4.5 Hodge Decomposition Theorem

Let dc and d∗c be defind by: dc := J−1 ◦ d ◦ J and d∗c = J−1 ◦ d∗ ◦ J We will now prove

the following lemma:

Lemma 12 (More Identities)

(a) dcφ = −i(∂ − ∂)φ and ddc = 2
√
−1∂∂

(b) For a compact Kähler manifold X : [L, d] = [L∗, d∗] = 0 and [L, d∗] = dc and

[L∗, d] = −dc

(c) [L, dc] = [L∗, d∗c ] = 0 and [L, d∗c ] = −d and [L∗, dc] = d∗

(d) [L, ∂] = [L, ∂] = [L∗, ∂∗] = [L∗, ∂
∗
] = 0 , [L, ∂∗] = i∂, [L, ∂

∗
] = −i∂, [L∗, ∂] = i∂

∗

and [L, ∂] = −i∂∗

(e) d∗dc = −dcd∗ = d∗Ld∗ = −dcL∗dc, dd∗c = −d∗cd = d∗cLd
∗
c = −dL∗d

(f) ∂∂
∗

= −∂∗∂ = −i∂∗L∂∗ = −i∂L∂ and ∂∂∗ = −∂∗∂ = i∂L∂ = i∂∗L∂∗ 2

Proof For every complex smooth function f,

(a)

Jd(Jf) = Jdf = J [
n∑
j=1

(
∂f

∂zj
dzj) +

n∑
j=1

(
∂f

∂zj
dzj)] =

=
n∑
j=1

(
∂f

∂zj
Jdzj)+

n∑
j=1

(
∂f

∂zj
Jdzj) =

n∑
j=1

(
∂f

∂zj

√
−1dzj)+

n∑
j=1

(
∂f

∂zj
(−
√
−1)dzj) =

√
−1(∂−∂)f

So, ddcf = (∂ + ∂)[
√
−1(∂ − ∂)]f = 2

√
−1∂∂f.

(b) The first part of (b) follows from the Kähler hypothesis on X; i.e. we have [L, d] = 0

and [L∗, d∗] = 0 by taking adjoints.

d∗ = (−1)p+1 ∗ d∗−1 on p-forms. Now from Lemma 11 we get

χ−1f = i(2n−p)
2∗−1J−1f

Therefore,

χdχ−1f = i−(2n−p+1)2+nip
2−nJ∗d∗−1J−1f = iJd∗J−1f

Define dt := exp(it(L∗ + L)) ◦ d ◦ exp(−it(L∗ + L)). Then following the proof of

Lemma 10, we get

dt =
∞∑
k=0

1

k!
[ad(it(L∗ + L))]kd
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and by the Kähler hypothesis we get [L, d] = 0, and therefore, we have:

dt =
∞∑
k=0

ck(t)[ad(L∗)]kd

where ck(t) are analytic functions. We see that dπ
2
f = χ ◦ d ◦χ−1 = iJd∗J−1f which

is an operator of degree −1, and therefore we have

dπ
2

= c1(
π

2
)ad(L∗)d

and c1(π
2
)ad(L∗)d = iJd∗J−1f we have [ad(L∗)]kf = 0 ∀k ≥ 2. Thus,

dt = c0(t) + c1(t)ad(L∗)d

and following analogous arguments of the proof of Lemma 10 we get

dt = cos(t) + i sin(t)ad(L∗)d

So, just by letting t = π
2

we are done.

(c) This follows from (a) and (b).

By, [L∗, dc] = d∗, we have d∗dc = −dcL∗dc + L∗dcdc = − − dcL
∗dc and −dcd∗ =

dcdcL
∗ − dcL∗dc = −dcL∗dc This proves, d∗dc = −dcd∗.

The rest of the proof is similar. �

Theorem 11 (Kähler Identity) Let X be a compact Kähler manifold. Then the

Laplacian ∆d commutes with ∗, d and L, and we have ∆d = 2∆∂ = 2∆∂. So as a

consequence we get that ∆d(Ap,q) ⊆ Ap,q ∀p, q that are non-negative integers, and

that ∆∂ and ∆∂ are real operators. Moreover, this implies

[∆, σ] = 0,

for σ = L∗, d, d∗, ∂, ∂, ∂∗ 2

Proof [∆d, L] = −d[L, d∗]− [L, d∗]d = −ddc − dcd = 0, by the last lemma. Now

∆d = dd∗ + d∗d = d[L∗, dc] + [L∗, dc]d

J∆dJ
−1 = −dcL∗d+ dcdL

∗ − L∗ddc + dL∗dc = ∆d as ddc = −dcd

From the last lemma we get, 2∂ = d+ idc and 2∂∗ = d∗ − id∗c . Therefore,

4∆∂ = (dd∗ + d∗d) + (dcd
∗
c + d∗cdc) + i(dcd

∗ + d∗dc)− i(dd∗c + d∗cd)
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We also have

∆d = J−1∆dJ = dcd
∗
c + d∗cdc

and we are done �

Note: As [L∗,∆d] = [L∗,∆d] = [L∗,∆∂] = [L∗,∆∂] = 0, the Lefschetz decomposition

theorem gives a decomposition of cohomology. Let Hr
X be the set of all ∆d-harmonic

forms of degree r, Hp,q
X be the set of all ∆∂-harmonic forms of type (p, q) and let

Hr
X,prim be the set of all primitive harmonic forms of degree r and let Hp,q

X,prim
be

the set of all primitive harmonic forms type (p, q).

Theorem 12 (Lefschetz decomposition theorem on cohomology) For a compact

Kähler manifold X, we have the decomposition of cohomology:

Hk(X,C) =
⊕
2r≤k

LrHk−2r
prim (X,C)

and

Hp,q(X,C) =
⊕
2r≤k

LrHp−r,q−r
prim (X,C)

where H l
prim(X,C) is the cohomology of primitive l-forms. 2

Proof We have the Lefschetz decomposition theorem of ∆d-Harmonic forms

Hk
X =

⊕
2r≤k

LrHk
X,prim

as [L,∆d] = 0 and the first part follows from the Hodge isomorphism theorem, and

the second is similar.

Theorem 13 (Hodge decomposition theorem on cohomology) Let X be a

Kähler manifold. Then we have the decomposition of cohomologies

Hk(X,C) =
⊕
p+q=k

Hk
∂ (X)

Proof We have the decomposition of Harmonic forms :

Hk
X =

⊕
p+q=k

Hp,q
X

and the theorem follows from the Hodge Isomorphism Theorem. Indeed, if for any

differential k-form α on X, if α =
∑

p+q=k αp,q where αp,q is a differential form of
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type (p, q) on X. Then by the Kähler Identity, ∆d(α) =
∑

p+q=k ∆∂(αp,q) is the

corresponding decomposition of ∆d(α). So, if α ∈ Hk
X , then αp,q ∈ Hp,q

X . So there is a

map π : Hk
X →

⊕
p+q=kH

p,q
X defined by π(α) = (αp,q)p+q=k. This map is injective by

construction and it is also surjective since for any β ∈ Hp,q
X ,

∆dα = 2∆∂α = 0

and therefore β ∈ Hk
X and π(β) = β.

4.6 Applications

Lemma 13 ∂∂-Lemma Let xi be a differential form on a Kähler manifold X, which

is ∂ and ∂-closed. Then if xi is exact under one of the operators d, ∂, ∂, then xi is

∂ ◦ ∂ exact; i.e. there is some differential form β on X such that xi = ∂∂β 2

Proof Suppose that ξ = ∂φ, for some differential form φ on X. Then by the Hodge

isomorphism theorem, φ = φ1 + ∆dφ2 where ∆dφ1 = 0. Now, φ1 is ∂ closed since

∆ = 2 ·∆∂

From Lemma 12, we get ∂∂
∗

= −∂∗∂. But then,

ξ = ∂φ1 + 2∂∆∂φ2 = 2∂(∂
∗
∂ + ∂∂

∗
)φ2

= −2∂
∗
(∂∂φ2) + 2∂(∂∂)φ2

Now −2∂
∗
(∂∂φ2) is ∂-closed, as −2∂

∗
(∂∂φ2) = ξ − 2∂(∂∂)φ2 and it is in the image

of ∂
∗
, and so, −2∂

∗
(∂∂φ2) = 0, and ξ = 2∂(∂∂)φ2 �

Lemma 14 For a Kähler manifold (X,ω), Hp,q(X) is canonically isomorphic to

Hq(X,Ωp
X) and Hp,q

∂
(X) 2

Proof Now, Hk(X,C) ∼= Hk
d, and Hp,q(X) ∼= Hp,q

d . But ∆d = ∆∂ ⇒ H
p,q
d = Hp,q

∂

But by the analogue of Hodge isomorphism theorem Hp,q

∂
∼= Hq(X,Ωp

X).

Clearly the Dolbeault complex

· · · ∂→ Ap,q(X)
∂→ Ap,q+1(X)

∂→ · · ·

is a resolution of Ωp
X by acyclic ( fine actually) sheavesAp,qX and therefore, Hq(X,Ωp

X) ∼=

Hp,q

∂
(X) �
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Definition 4.6.1 Let (X,ω) be a compact Kähler manifold and consider the pairing

Q(k) : Hk(X,R)×Hk(X,R)→ R

Q(k)([α], [β]) :=

∫
X

ωn−k ∧ α ∧ β

Also define H
(k)
Q ([α], [β]) = ikQ(k)([α], [β])

for any two k-forms α and β on X; where [α], [β] ∈ Hk(X,R) are cohomology classes

of these forms ∀k ∈ Z≥0.

Then we have the following proposition which is easy to see so we omit the proof:

Proposition 4.6.2

(a) H
(k)
Q are Hermitian and so Q(k) is alternating when k is odd and symmetric when k

is even.

(b) The Lefschetz decomposition

Hk(X,C) =
⊕
2r≤k

LrHk−2r
prim (X,C)

is orthogonal with respect to H
(k)
Q ; and

L∗(H
(k)
Q |LrHk−2r

prim (X,C)) = (−1)rH
(k−2r)
Q

(c) The Hodge decomposition

Hk(X,C) =
⊕
p+q=k

Hp,q(X)

is orthogonal with respect to H
(k)
Q ; and (−1)

k(k+1)
2 ip−q−kH

(k)
Q is a positive definite on

the complex subspace Hp,q
prim(X,C)

(d) The signature sign(Q(n)) of Q(n) is
∑

p,q(−1)php,q(X), where hp,q := dimCH
p,q(X)

Definition 4.6.3 Define KpAkX :=
⊕

r≥p,r+q=kA
r,q
X and F pHk(X,C) :=

⊕
r≥p,r+q=kH

r,q(X)

Then we have the following proposition:

Proposition 4.6.4 F pHk(X,C) =
ker(d|KpAk)

d(KpAk−1)
In particular Hp,0(X) is isomorphic to the space of all holomorphic forms of degree

p on X.
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Chapter 5

Spectral Sequences and

Hypercohomology

5.1 Derived Category and Derived Functors

Let A be an abelian category that has enough injectives.

Definition 5.1.1

(a) (Complexes, Left Bounded Complexes and Injective complexes)

i. A complex (of increasing type)

· · · →Mk−1 dk−1

→ Mk dk→Mk+1 dk+1

→ · · ·

in A (i.e. dk+1 ◦ dk = 0 ∀k ∈ Z) is said to be left-bounded if ∃n ∈ Z such that

Mk = 0,∀k ≤ n. We denote any complex as above by (M∗, d) or by (M,d).

ii. A non-negative complex is a left-bounded complex (M,dM) such that Mk =

0,∀k < 0.

iii. (Cochain Maps)

Let (M∗, dM) and (N∗, dN) be two complexes (or, left bounded complexes). A sequence

of maps f = (fk : Mk → Nk)k∈Z is said to be a cochain map f : (M,dM) →

(N, dN) if

f ◦ dM = dN ◦ f.
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(with proper indices),i.e. the following diagram commutes:

· · · Mk−1 Mk Mk+1 · · ·

· · · Nk−1 Nk Nk+1 · · ·

dk−1
M

fk−1

dkM

fk

dk+1
M

fk+1

dk−1
N dkN dk+1

N

(5.1)

iv. Let Kom(A) be the category of all complexes(as objects) and cochain maps(as

morphisms) of A, let lbKom(A) be the subcategory of Kom(A) consisting all left-bounded

complexes in A and let 0Kom(A) be the sub-category of all non-negative complexes

of A.

v. Here we call a complex (I, dI) ∈ Kom(A) to be injective if every Ik is an injective

object in A.

(b) Two cochain maps (M,dM)
f→
→
g

(N, dN) are said to be homotopic (or cochain

homotopic) if ∃h = (hk : Mk → Nk−1)k∈Z such that f − g = d ◦ h + h ◦ d (with

appropriate indices).

This map h is called a cochain homotopy or a homotopy.

(c) For any n ∈ N, the nth-cohomology of any complex (M,dM) ∈ Kom(A) is defined by

Hn(M,dM) :=
ker(dnM)

Im(dn−1
M )

∈ A (since A is closed under kernel, Image and quotients).

A cochain map f = (fk : Mk → Nk)k∈Z gives a morphism of of nth-cohomologies

Hn(f) : Hn(M,dM)→ Hn(N, dN) : α + Im(dn−1
M ) 7−→ fn(α) + Im(dn−1

N )

This makes taking nth-cohomology a covariant functor

Hn : Kom(A) A

(M,dM) Hn(M,dM)

((M,dM)
f→ (N, dN)) (Hn(M,dM)

Hn(f)→ Hn(N, dN))

(5.2)

It can be seen easily that this functor maps homotopic cochain maps to the same

map.

(d) A chain map (M,dM)
f→ (N, dN) is said to be a quasi-isomorphism if all the

morphisms Hn(M,dM)
Hn(f)→ Hn(N, dN) are isomorphisms in A.

Let S(A) be the full sub-category of Kom(A) in which morphisms are all quasi-isomorphisms.

Let lbS(A) be the full subcategory of lbKom(A) whose morphisms are all quasi-isomorphisms.

Let 0S(A) be the full subcategory of 0Kom(A) whose morphisms are all quasi-isomorphisms.
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(e) For every n ∈ Z and any complex (M,dM) ∈ Kom(A) define the n-shift of M

as another complex (M [n], d) ∈ Kom(A) such that M [n]k := Mk+n and dk :=

(−1)ndk+n
M ∀k ∈ Z. So we can make any left-bounded complex a non-zero complex

by shifting it.

(f) (Homotopy Categories)

For any (M,dM) (N, dN) in Kom(A), let Kn(M,N) := Kom(A)(M,N [n]) ∈ Ab.,

i.e. the set of all cochain maps ((M,dM)
f→ (N [n], dN [n])) in A, (where Ab. is the

category of abelian groups).

Define Dn : Kn(M,N)→ Kn+1(M,N) by

(Dn(f))k := (−1)n+1dk+n
N ◦ fk + fk+1 ◦ dkM = −dN [n] ◦ fk + fk+1 ◦ dkM ∀k ∈ Z.

Then we see that (K(M,N), D) is a cochain-complex in Ab.

We define the Homotopy category K(A) whose objects are the objects of Kom(A)

but for any two (M,dM) (N, dN) in Kom(A), the morphisms from M to N are

defined by K(A)(M,N) := H0(K(M,N), D); i.e. the 0th-cohomology of the complex

(K(M,N), D) in Ab.

It can be easily checked that the morphisms in K(A)(M,N) are the cochain maps

((M,dM)
f→ (N, dN)) in A upto homotopy.

Consider the (covariant) functor κ : Kom(A) → K(A) from chain complexes in A

to the homotopy category of A, that maps every object to itself and every cochain

map to its homotopy class.

Define lbK(A) := κ(lbKom(A)) and 0K(A) := κ(0Kom(A)).

(g) (Localization of a Category)

Let K be a category and S be a subcategory of K whose objects are same as the

objects of K but whose morphisms are some morphisms in K, which is closed under

composition (and has the identity element corresponding to every object in K). A

(covariant) functor T : K → C is said to be a localizer of the pair (K,S) if T (s) is

an isomorphism in C for every morphism s of S. Let L be the category of all localizers

of the pair (K,S) with morphisms being natural transformations. The initial object

F : K → KS of L (if it exists) is called the localization of K at S. Most of the

time we will call the category KS the localization of the pair (K,S).

Note that if K is an abelian category we would want all the functors T : K → C to
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be additive functors and C be an abeliam category and F : K → KS is additive. But

mostly KS is an additive category but not abelian category.

(h) (Derived Categories)

The category S(A) of quasi-isomorphisms naturally gives a subcategory of K(A)

which we also denote by S(A). Then the derived category of A is defined by

K(A)S(A), (if it exists) and is denoted by D(A).

Similarly we define the derived categories : lbD(A) := lbK(A)
lbS(A) and 0D(A) :=

0K(A)
0S(A)

If we assume that D(A) exists, then taking nth-cohomology is a functor Hn : D(A)→

Ab.

(i) (Cone of a morphism of complexes)

Let (M,dM)
f→ (N, dN) be a morphism of complexes in A. We define the cone of f

by the element Cf := (Ck, dkC)k∈Z defined by :

Ck := Mk ⊕Nk−1 and dkC :=

dkM 0

fk −dk−1
N

,

treating elements of Ck
f as column vectors

v
w

 such that v ∈Mk, w ∈ Nk−1

We now state the following theorem without proof:

Theorem 14 Let 0 → M
α→ N

β→ P → 0 be a short exact sequence in the category

Kom(A). Then, taking cohomology gives an exact sequence:

· · · Hk−1(M,dM) H0(N, dN) Hk−1(P, dP )

Hk(P, dP ) Hk(N, dN) Hk(M,dM)

Hk+1(M,dM) Hk+1(N, dN) Hk+1(P, dP ) ...

Hk−1(α) Hk−1(β)

δk−1

δk

Hk(β) Hk(α)

Hk+1(α) Hk+1(β) δk+1

(5.3)

2

where the map (called the connecting maps) δk : Hk(P, dP )→ Hk+1(M,dM) is defined

by

δk(p+ Im(dk−1
P )) := (α−1 ◦ dN ◦ β−1)(p) + Im(dkM).
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From, the definition above of the mapping cone of a morphism (M,dM)
f→ (N, dN)

we get the split exact sequence:

0→ N [−1]→ Cf →M → 0

in A. Then by the above theorem we get the long exact sequence of cohomology and

the connecting maps

δk : Hk(M,dM)→ Hk+1(N [−1], dN [−1]) = Hk(N, dN)

are given by Hk(f).

Thus we get the following proposition:

Proposition 5.1.2

(a) The cochain map f is a quasi-isomorphism iff the mapping cone (Cf , dCf ) is acyclic.

(b) The objects M and N are injective if and only if the mapping cone Cf is injective.

Proof The first part is clear from the discussion above.

The second part is clear since the cone is constructed using direct sum. We now

prove the following lemma for left-bounded complexes:

Lemma 15 Let (M,dM) ∈ lbKom(A). Then there is an injective complex (I, dI) ∈

lbKom(A) and a cochain map i : (M,dM)→ (I, dI) such that:

(a) Each ik is monic.

(b) i is a quasi-isomorphism. 2

Note: For now suppose that (M,dM) ∈ 0Kom(A), otherwise we will shift the

indices of M, and make it happen.

Since A has enough injectives, for each Mk, there is an injective resolution

0→Mk→Jk,0 →
jk,0

Jk,1 →
jk,1

Jk,2 →
jk,2
· · ·

So we immediately get a double sequence (Jk,l)k,l∈Z coming from these injective

resolutions. So if we take Jn :=
⊕

k+l=n J
k,l and

dnJ :=
⊕
k+l=n

jk,l : Jn → Jn+1
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then it is true that (J, dJ) is an injective complex and the obvious inclusion Mn → Jn

(jn say) is monic.

However it is not clear whether the map j := (jn)n∈Z : (M,dM)→ (J, dJ) is a cochain

map or not. But we need a cochain map like that because otherwise we will not get

a map between cohomologies. So we follow the following lines of proof. But first we

need the next definition:

Definition 5.1.3 (Double Complexes and their morphisms and the associated

Total Complex)

A double complex (M,d1, d2) consists of double-sequence M := (Mk,l)k,l∈Z in A

with maps dk,l1 : Mk,l → Mk+1,l and dk,l2 : Mk,l → Mk,l+1 such that d1 ◦ d2 = d2 ◦ d1

with appropriate indices.

The total complex associated to this double complex is a complex (Tot(M), D) where

Tot(M)n :=
⊕

k+l=nM
k,l and Dn :=

⊕
k+l=n(dk,l1 + (−1)kdk,l2 ) for all integer n ≥ 0

A morphism of double complexes f : (M,d1, d2) → (N, ∂1, ∂2) is a collection

of maps f = (fk,l : Mk,l → Nk,l)k,l∈Z such that f ∗,l : (M∗,l, d∗,l1 ) → (N∗,l, ∂∗,l1 ) and

fk,∗ : (Mk,∗, dk,∗2 )→ (Nk,∗, ∂k,∗2 ) are cochain maps ∀k, l ∈ Z.

Let f : (M,d1, d2) → (N, ∂1, ∂2) be a morphism of double complexes. Then this map

induces a map of the assocaited total complexes Tot(f) : (Tot(M), d)→ (Tot(N), ∂),

defined by:

Tot(f)n :=
⊕
k+l=n

fk,l : Tot(M)n → Tot(N)n ∀n ∈ Z

then Tot(f) is a cochain map, called the total map associated to f.

Proof First we construct an injective complex (I∗,0, d∗1,I) and a co-chain map of

monics i∗,0 : (M∗, d∗M) → (I∗,0, d∗,01,I), which is done in three steps below. Then if

we apply the same construction to Coker(i∗,0) in place of (M,dM), we get another

injective complex (I∗,1, d∗1,I) and cochain maps d∗,02,I : (I∗,0, d∗1,I) → (I∗,1, d∗1,I) and we

keep repeating to get a double complex ((Ik,l)k,l≥−1, d1,I , d2,I) , where (I∗,−1, d∗,−1
1,I ) :=

(M,dM), d∗,−1
2,I := i∗,−1 and i∗,0 : (M∗, d∗M)→ (I∗,0, d∗1,I) is a chain map of monics and

(Ik,∗, d2,I) is a resolution of Mk for all integers k ≥ 0 (i.e.

0→Mk → Ik,0 → Ik,1 → · · ·

is an exact sequence.)

Step 1: Let I0,0 be an injective object in A such that M0 i0,0→ I0,0 is monic.
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We will now construct the push-out of the adjacent diagram.

Clearly, this push-out is Coker(i0,0,−dM).

M0 I0,0

M1

d0M

i0,0

Now let I1,0 be an injective object in A and p1 : Coker(i0,0,−dM) → I1,0 is monic.

Let i1,0 : M1 → I1,0 be the composition of M1 → Coker(i0,0,−dM) with p1 and let

d0,0
1,I : I0,0 → I1,0 be the composition of I0,0 → Coker(i0,0,−dM) with p1.

Then since i0,0 is monic, so is i1,0 and moreover, d0,0
1,I ◦ i0,0 = i1,0 ◦ dM . So till this step

the adjacent diagram commutes:

M0 I0,0

M1 I1,0

d0M

i0,0

d0,01,I

i1,0

Step-2 : Now in the next step, not only we want to extend the last box diagram to

the next diagram:

M0 I0,0

M1 I1,0

M2 I2,0

d0M

i0,0

d0,01,I

d1M

i1,0

d1,01,I

i2,0

But we also want that the two vertical arrows on the right; i.e. d0
1,I and d1

1,I compose

to zero so that (I, d1,I) becomes a complex. So we don’t just construct the pushout

of

M1 I1,0

M2

d1M

i1,0

but we construct the push-out, say P of the diagram:

M1 Coker(d0
1,I)

M2

d1M

in a similar way as before (where the horizontal arrow is the map induced by i1,0.)

and find an injective object I2,0 and a map p2 : P → I2,0 which is monic. Let

d2
1,I : I1,0 → I2,0 be the composition of I0,0 → Coker(d0

1,I) with Coker(d0
1,I) → P

composed by p2. Let i2,0 be the composition of M2 → P with p2. Then we get what
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we want in the diagram:

M0 I0,0

M1 I1,0

M2 I2,0

d0M

i0,0

d0,01,I

d1M

i1,0

d1,01,I

i2,0

Now for every integer k ≥ 2, having constructed Ik,0 the way we want, we construct

Ik+1,0 by applying Step-2 to the box diagram:

Mk−1 Ik−1,0

Mk Ik,0

dk−1
M

ik−1,0

dk−1,0
1,I

ik,0

(end of step-2)

Now take the total complex (I, dI) associated to the double complex ((Ik,l)k,l≥0, d1,I , d2,I)

and for every integer n ≥ 0,

let in be the map in,0 composed with the inclusion In,0 → In. The proof is almost

complete except for the fact that the cochain map in is a quasi-isomorphism, which

is the next step.

Step-3 : The Mitchell’s Full Imbedding theorem tells us that : Every small

abelian category admits a full and faithful exact functor from itself to the

category of abelian groups (See Mitchell’s, Theory of Categories, page no. 151,

and [7]) Following this we will prove this lemma only in the category of abelian groups:

Surjectivity of Hn(i) :

Suppose that α =
∑

p+q=n αp,q ∈ kerdnI and then

dn(α) =
∑
p+q=n

(dp,q1,I + (−1)pdp,q2,I)αp,q = d0,n
2,Iα

0,n +
∑

p+q=n,p 6=0

(dp,q1,I + (−1)pdp,q2,I)αp,q
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(see the double-complex:

M0 I0,0 I0,1 · · ·

M1 I1,0 I1,1 · · ·

M2 I2,0 I2,1 · · ·

...
...

...

i0,0

d0M

d0,02,I

d0,01,I

d0,12,I

d0,11,I

i1,0

d1M

d1,02,I

d1,01,I

d1,12,I

d1,11,I

i2,0

d2M

d2,02,I

d2,01,I

d2,12,I

d2,11,I

) and therefore, d2,Iα0,n = 0 ∈ I0,n+1 and d1αp,q+(−1)p+1d2αp+1,q−1 = 0 ∈ Ip+1,q ∀q ≥

1. The exactness of Mk → Ik,0 → Ik,1 → Ik,2 → · · · for all integers k ≥ 0 implies that

there is some β0,n−1 ∈ I0,n−1 such that α0,n = d2,Iβ
(1)
0,n−1. We get, β(1) := α−dIβ(1)

0,n−1 ∈⊕
p+q=n,p 6=0 I

p,q is cohomologous to α in the total complex and d2,Iβ
(1)
1,n−1 = 0. Now

we apply similar arguments on β(1) and keep doing this inductively unless we obtain

an element γ ∈ In,0. Now, dIγ = 0 implies d1,Iγ = 0 and d2,Iγ = 0. d2,Iγ = 0 means

that ∃υ ∈ Mn such that γ = in(υ) and therefore we see that d1,Iγ = 0 implies

υ ∈ ker(dM). The process of finding successive β’s from the alpha’s can be described

by the following downward staircase:

β
(1)
0,n−1 ∈ I0,n−1 α ∈ In

β
(2)
1,n−2 ∈ I1,n−2 β(1) ∈ In \ I0,n

β
(3)
2,n−3 ∈ I2,n−3 β(2) ∈ In \ (I0,n ⊕ I1,n−1)

...

υ ∈Mn

d−1
2,Iα0,n

choose from

IdIn−dI(β
(1)
0,n−1)

d−1
2,Iβ

(1)
1,n−1

choose from

IdIn\I0,n−dI(β
(2)
1,n−2)

where IdS : S → S is the identity map of S for every set S.

Injectivity of Hn(i) :

Suppose that µ ∈Mn+1 is such that in(µ) = dIα for some α ∈ In, then using almost
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similar arguments (since in(µ) ∈ In,0) we find an absolutely same downward staircase

of successive β’s as before:

β
(1)
0,n−1 ∈ I0,n−1 α ∈ In

β
(2)
1,n−2 ∈ I1,n−2 β(1) ∈ In \ I0,n

β
(3)
2,n−3 ∈ I2,n−3 β(2) ∈ In \ (I0,n ⊕ I1,n−1)

...

υ ∈Mn

d−1
2,Iα0,n

choose from

IdIn−dI(β
(1)
0,n−1)

d−1
2,Iβ

(1)
1,n−1

choose from

IdIn\I0,n−dI(β
(2)
1,n−2)

where IdS : S → S is the identity map of S for every set S. and since each new term

β is cohomlogous to α we get that µ = dM(υ). �

Let T : A → B be a left-exact additive functor from an abelian category A, with

enough injectives, into an abelian category B. Let (M,dM) ∈ 0Kom(A). The above

lemma guarantees the existence of an injective complex (I, dI) in 0Kom(A) and an

injective quasi-isomorphism i : (M,dM) → (I, dI), let us denote this pair by (I, i),

and call it an injective embedding of (M,dM).

Proposition 5.1.4 (Functoriality) Let (M,dM), (N, dN) ∈ 0Kom(A), i : (M,dM)→

(I, dI) is a co-chain map and j : (N, dN)→ (J, dJ) is any cochain map to an injective

complex (J, dJ).

Every morphism φ ∈ 0Kom(A)(M,N) induces a morphism ψ ∈ 0Kom(A)(I, J) such

that the adjacent diagram commutes:

I J

M N

ψ

i

φ

j

Moreover, T (ψ) is a quasi-isomorphism in the category B, if φ and j are quasi-isomorphisms

and (I, i) is an injective embedding of (M,dM). Lastly, ψ is unique upto homotopy if

φ is monic.
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Proof Consider the composed map τ := j ◦ φ and we prove the following lemma:

Lemma 16 Suppose that (I, i) is an injective embedding of (M,dM) and τ : (M,dM)→

(J, dJ) is a cochain map to an injetive complex (J, dJ) Then ∃ a cochain map ψ :

(I, dI)→ (J, dJ) such that the adjacent diagram commutes:

I J

M

ψ

i

τ

such that T (ψ) is a quasi-isomorphism in the category B, if i ,φ and τ are quasi-isomorphisms.2

Proof of the Lemma : Let ψ0 : I0 → J0 be a map such that ψ0 ◦ i0 = τ 0 which

exists since i0 is monic and J0 is injective.

Clearly, Coker(i0,−d0
M) is the

M0 I0

M1

d0M

i0

push-out of the adjacent diagram and so ∃!q (shown in the diagram below as a blue

arrow) commuting the adjacent diagram

M0

Coker(i0,−d0
M) I0

M1 I1

i0

∃! q d0I

i1

and therefore Im(q) ⊆ Im(i1 + d0
I) and ∃!p (shown in the diagram below)

I0 Coker(i0,−d0
M)

M0 M1

J0 J1

ψ0

d0J◦ψ
0

∃! p

i0

d0M

τ0

τ1

d0J

Now if q is monic, by injectivity of J1, ∃! ψ1 (shown in the diagram below as a red
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arrow) such that the following diagram commutes:

Coker(i0,−d0
M) I1

M1 J1

p

q

∃! ψ1

τ1

but q is injective if the chain complex M0
i0+d0M→ I0 ⊕ M1

d0I−i
1

→ I1 is an exact

sequence. We get ψ1 ◦ d0
I = d0

J ◦ ψ0. Now having defined ψk : Ik → Jk such that

ψk ◦ dk−1
I = dk−1

J ◦ ψk−1 and τ 1 = ψ1 ◦ i1, we define ψk+1 : Ik+1 → Jk+1 by replacing

the indices 0 by k everywhere in the above argument except for the first line.

(prove the exactness of (M0
i0+d0M→ I0⊕M1

d0I−i
1

→ I1) or find another argument.

Moreover, it is clear that ψ is a quasi-isomorphism if i, φ, j are quasi-isomorphisms.

So what is left in the proof of this lemma is to prove the following claim:

Claim: If ψ : (I, dI)→ (J, dJ) is a quasi-isomorphism, so is

T (ψ) : (T (I), dT (I))→ (T (J), dT (J)).

Proof of the claim : This claim follows from Proposition 5.1.2 and the fact that

T (I∗) is exact if T is left-exact and I∗ is injective.

Now since ψ is a quasi-isomorphism, the cone Cψ of ψ is acyclic and injective and

therefore T (Cψ) is exact, and we have the long exact sequence:

· · · Hk−1(T (J∗)[−1]) Hk−1(T (C∗ψ)) Hk−1(T (I∗))

Hk(T (J∗)) Hk(T (C∗ψ)) Hk(T (J∗)[−1])

Hk+1(T (J∗)[−1]) Hk+1(T (C∗ψ)) Hk+1(T (I∗)) ...

Hk−1(T (ψ))

Hk(T (ψ))

and thus T (ψ) is a quasi-isomorphism. 16 and the lemma proves the proposition

except the uniqueness (upto homotopy) part which we will show now: Let µ be

another morphism satisfying all the properties of ψ proved so far. Consider the

morphism ψ−µ : (I, dI)→ (J, dJ). Clearly, this is a morphism satisfies the commutative
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daigram:

(I, dI) (J, dJ)

(M,dM) (N, dN)

ψ−µ

i

0

j

�

The last proposition allows us to define the following:

Definition 5.1.5 Let T : A → B is an left-exact additive functor of abelian categories

where the domain category has enough injectives.

(a) (Injective resolution)

Let QA : lbKom(A) → lbD(A) and QB : lbKom(B) → lbD(B) be the obvious

(covariant) functors from the categories A and B to their derived categories. The

above proposition shows us that for every (M,dM) ∈ lbKom(A) we have an element

I(M) ∈ D(A) (namely I(M) = QA((I, dI)) where (I, i) is an injective embedding of

(M,dM)) which is unique upto unique isomorphism, such that I(M) is QA-image of

an injective complex and the homologies of I(M) and M are same. This I(M) is

called the injective resolution of (M,dM). The last proposition shows that every

morphism φ : (M,dM) → (N, dN) defines a morphism I(φ) : I(M) → I(N), which

(comes from ψ ) is unique upto unique homotopy.

(b) (Derived Functor)

Define RT : lbD(A) → lbD(B), by: RT ((M,dM)) := T (I(M)), then RT satisfies

RT ◦QA = QB ◦ T. We call RT the (right-) derived functor of T.

For all integer k ≥ 0, define RkT := Hk ◦ T, then RkT is called the kth-(right)

derived functor of T.

Define RT (φ) := T (I(φ)). Then we see that RT is actually a functor.

Theorem 15 (Derived Functors through Acyclic resolutions) Let (M,dM)
φ→

(N, dN) be a quasi-isomorphism and Nk be an acyclic complex ∀k for the functor

T : A → B. Then φ induces an isomorphism

RkT (M,dM) ∼= Hk(T (N), T (dN)) ∀k.

65



5.2 Filtered complexes and Spectral Sequences

5.2.1 Filtered Complexes

Definition 5.2.1

(a) (Filtrations of Chain Complexes) Let A be an abelian category. An increasing

filtration W∗A on A ∈ A is a sequence (WpA)p∈Z such that

· · · ⊆ WpA ⊆ Wp+1A ⊆ · · · ⊆ A,

where ⊆ means ”sub-object or equal to.” Similarly a decreasing filtration F ∗A on

A ∈ A is a sequence (F pA)p∈Z such that

· · · ⊇ F pA ⊇ F p+1A ⊇ · · ·

An increasing filtered complex is a triple (A,W, d) where (A, d) ∈ Kom(A), and

for every p ∈ Z, WpA
k ⊆ Ak, d(WpA

k) ⊆ WpA
k+1 such that (WpA

∗, d|WpA∗) ↪→ (A, d)

is a cochain map (notice that we need the last condition (WpA
∗, d|WpA∗) ↪→ (A, d)

because by ⊆ we mean ”sub-object or equal to,” which may not be the same as subset).

Similarly, we define a decreasing filtered complex.

(b) (Filtration of Cohomologies and Derived Functors)

i. (Filtration of Cohomologies)

Let T : A → B be an additive functor of abelian categories and let the domain

category have enough injectives.

Let (A,F, d) be a decreasing filtered complex in category A, and for every p ∈ Z, let

iF p : (F pA∗, d|F pA∗) ↪→ (A, d) be the inclusion map. Then this defines a morphism

of cohomologies:

Hk(iF p) : Hk(F pA, d|F pA)→ Hk(A, d)

Define F pHk(A, d) := Im(Hk(iF p)). Then F ∗Hk(A, d) defines a filtration on Hk(A, d).

ii. (Filtration on Derived Functors)

The inclusions iF p : (F pA∗, d|F pA∗) ↪→ (A, d) induce morphisms of injective resolutions

I(F pA∗)
I(iFp )→ I(A∗), and we have the morphism

RT (iF p) = T (I(iF p)) : RT (F pA∗) = QB(T (I(F pA∗)))→ QB(T (I(A∗))) = RT (A∗).
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Define F pRT (A) := Im(RT (iF p)). Then F ∗RT (A) defines a filtration of RT (A∗) ∈

B.

Everything above can be defined similarly for increasing filtrations.

(c) (Shift of Indices)

Let W∗A be an increasing filtration on A. Then the n-shift of W is the filtration

W∗[n]A of A, defined by Wk[n]A := Wn+kA ∀k ∈ Z.

Let (A,W, d) be any increasing filtered complex in the category A, and n ∈ Z. Then

we define the n-shift (A,W [n], d) of W as

Wk[n](Al) = (W [n])k(A
l) := Wk+n(Al)

for all l ∈ Z and k ∈ Z.

Similarly, we can define shifts of decereasing filtrations and filtered complexes.

(d) (Filtered Double Complexes)

An decreasing filtered double complex is a quadraple (A,F, d1, d2) such that :

(A∗,∗, d1, d2) be a double complex in the category A, and F ∗(Ak,l) is an decreasing

filtration on Ak,l, such that dk,l1 (F pAk,l) ⊆ F pAk+1,l and dk,l2 (F pAk,l) ⊆ F pAk,l+1, and

the inclusion (F pA∗,∗, d1|F pA∗,∗ , d2|F pA∗,∗) ↪→ (A∗,∗, d1, d2) is a morphism of double

complexes.

Define F pTot(A)n :=
⊕

k+l=n F
pAk,l ∀k, l, p ∈ Z.

Then (Tot(A), F ∗(Tot(A)), d∗ = d∗1 + (−1)∗d∗2) is a filtered complex, called the total

filtered complex associated to the double filtered complex (A,F, d1, d2).

Similarly, we can define increasing filtered double complexes.

(e) (Filtration coming from Truncations)

Let (A, d) ∈ lbKom(A), such that

(A, d) = Am
dmA→ Am+1 → · · ·

Then define

(T p(A), d|T p(A)) := 0→ · · · → 0︸ ︷︷ ︸
p−zeroes

→ Am+p d
m+p
A→ Am+p+1 → · · ·

∀p ∈ Z (defined in the obvious way.) (where we use the convention that Al = 0 ∀

integers l < m)
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Clearly, (A, T, d) is a decreasing filtered complex (where the inclusion maps are

defined in the obvious way), and it is called the filtration coming from truncation.

(f) (Gradations assocaited to Filtrations)

Let F ∗A be a decreasing filtration(resp. W∗A be an increasing filtration) on A ∈ A.

Then the pth-gradation associated to F ∗A (resp. W∗A) is denoted by GrpF (A) (resp.

GrWp (A)) and is defined by :

GrpF (A) :=
F pA

F p+1A
(resp. GrWp (A) :=

WpA

Wp−1A
)

5.2.2 Spectral Sequences

We will work in the category of Abelian groups here because most of our work in this

section is through diagram chasing and by Mitchel’s theorem it will also be true in

any small abelian category.

Let (A,F, d) be a decreasing filtered complex with filtrations that are upper bounded

on components and uniformly lower bounded; i.e.

(a) (upper bounded on components)

for every k ∈ Z, ∃l ∈ Z such that

F lAk = 0

(b) (uniformly lower bounded)

∃m ∈ Z such that F lAk = 0, ∀ k ∈ Z and all integers l ≥ m.

We assume for now that the uniform lower bound m is zero for otherwise we will

shift the indices. We call the filtered complexes with these properties to be ”nicely

bounded filtered complexes”.

Consider the differential d : GrpF (An) → GrpF (An+1) satisfying the commutative

diagram:

GrpF (An) GrpF (An+1)

F pAn F pAn+1

d

πp,nF

d

πp,n+1
F

(where the vertical maps are quotient maps)

Then we see that (GrpFA, d) is a complex and we can take the nth-cohomology group
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Hn(GrpFA, d) ∀ integer n ≥ 0. We also have the gradations of homologies

GrpFH
n(A) =

F pHn(A)

F p+1Hn(A)
.

Theorem 16 (Spectral Sequence of nicely bounded filtered complexes)

There is a triple sequence (Ep,q
r , dp,qr )p,r∈Z≥0,q∈Z with Ep,q

r ∈ Ab. and dp,qr : Ep,q
r →

Ep+r,q−r+1
r and dp+r,q−r+1

r ◦ dp,qr = 0, such that

(a) Ep,q
0 = GrpFA

p+q, dp,q0 = (d)p+q,

(b) (Ep,q
1 , dp,q1 ) ∼= (Hp+q(GrpF (A)), δp,q), (isomorphism analogous to the isomorphism of

chain complexes) where δp,q : Hp+q(GrpF (A))→ Hp+q+1(Grp+1
F (A)) is the connecting

map of homologies associated to the short exact sequence

0→ Grp+1
F (A)→ F p(A)

F p+2(A)
→ GrpF (A)→ 0

(c) Ep,q
r+1
∼= Hr(Ep,q, dp,q), the rth-cohomology of (Ep,q, dp,q), defined by

ker(dp,qr )

Im(dp−r,q+r−1
r )

,

(d) For p+ q fixed, ∃N ∈ Z≥0 such that

Ep,q
r = GrpF (Hp+q(A))

∀r ≥ N. 2

Proof We define: Zp,q
r := {x ∈ F pAp+q : dx ∈ F p+rAp+q+1} and Bp,q

r := Zp+1,q−1
r−1 +

d(Zp−r+1,q+r−2
r−1 ), then Bp,q

r ⊆ Zp,q
r . By definition of Z’s and B’s, d(Zp,q

r ) ⊆ Zp+r,q−r+1
r

and dp+q(Bp,q
r ) ⊆ Bp+r,q−r+1

r . Define Ep,q
r :=

Zp,q
r

Bp,q
r

and dp,qr : Ep,q
r → Ep+r,q−r+1

r be the

map induced by d. Then we already have dp+r,q−r+1
r ◦dp,qr = 0 (since dp+q+1◦dp+q = 0).

First we prove 3. : Since d(Zp,q
r+1) ⊆ Zp+r+1,q−r

r−1 ⊆ Bp+r,q−r+1
r , the quotient map

π : Zp,q
r → Ep,q

r restricts to Zp,q
r+1 → ker(dp,qr ). On the other hand, Bp,q

r+1 = Zp+1,q−1
r +

d(Zp−r,q+r−1
r ) ≡ d(Zp−r,q+r−1

r ) (mod Bp,q
r ) and so π restricts to Bp,q

r+1 → Im(dp−r,q+r−1
r )

and therefore we have the map φ : Ep,q
r →

ker(dp,qr )

Im(dp−r,q+r−1
r )

given by π.

We prove that φ is bijective. It is surjective since from π−1(ker(dp,qr )) = Zp,q
r ∩

d−1(Bp+r,p−r+1
r ) and z ∈ π−1(ker(dp,qr )) ⇒ dz = dz1 + z2 ∈ d(Zp+1,q−1

r−1 ) + Zp+r+1,q−r
r−1
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where, z1 ∈ Zp+1,q−1
r−1 and z2 ∈ Zp+r+1,q−r

r−1 ⊆ F p+r+1Ap+q+1, we get z − z1 ∈ Zp,q
r+1 and

π(z1) = 0, as Bp,q
r ⊇ Zp+r+1,q−r

r−1 , and therefore π−1(ker(dp,qr )) ⊆ Zp,q
r+1.

It is injective since π−1(Im(dp−r,q+r−1
r )) = d(Zp−r,q+r−1

r ) + Bp,q
r ≡ Bp,q

r+1 (as we

mentioned earlier).

We now prove 1. : Clearly Zp,q
0 = F pAp+q and Bp,q

r = F p+1Ap+q. So 1. is trivial.

We now prove 2. : The fact (Ep,q
1 , dp,q1 ) ∼= (Hp+q(GrpF (A)), δp,q) follows from 1.

and 3. To prove 2. we only need to show that d1 comes from the connecting maps.

Let πp,nF : F pAn → GrpF (An) be the quotient maps. Then, (πp,p+qF )−1(ker(d)) = Zp,q
1

and the isomorphism (Ep,q
1 , dp,q1 ) ∼= (Hp+q(GrpF (A)), δp,q) is induced by πp,p+qF , (by our

previous arguments). Now d(Zp,q
r ) ⊆ Zp+r,q−r+1

r and therefore we see that δ of an

element is obtained by taking a representative z of an element [z] of Hp+q(GrpF (A))

in ker(d), taking a preimage y of this representative in F pAp+q and y is in fact in

Zp,q
1 , taking dy ∈ F p+1Ap+q+2 (since y is in Zp,q

1 ) and taking its πp+1,p+q+1
F . But this

is same as d1.

We now prove 4. : For any fixed m ∈ Z, we can take large enough non-negative

integer l such that F lAk = 0 for k = m−1,m,m+1. As F is decreasing F p+l+1Am+1 =

0 and therefore Zp,q
l+1 = ker(dmA ) ∩ F pAm and d(Zp−l,q+l−1

l ) = F pAm ∩ Im(dm−1
A ) as

l− q ≥ 0 ∀p+ q = m with p being a positive integer. Hence, FE
p,q
l+1
∼= GrpF (Hm(A∗))

�

Theorem 17 Let (A, d) be the total complex associated to the double complex (B,D1, D2).

Then if KpAn :=
⊕

k≥p,k+l=nA
k,l ⊆ An, then (A,K,D) defines a filtered complex,

which we call the Hodge filtered complex, and K is called the Hodge filtration.If

KE
p,q
r is the Spectral Sequence associated to the Hodge filtration, then:

(a) KE
p,q
0 = Ap,q and dp,q0 = (−1)pDp,q

2

(b) (KE
p,q
1 , dp,q1 ) ∼= (Hq

D2
(Kp,∗), Hq

D2
(Dp,∗

1 )), where (Hq
D2

(Kp,∗)) is the cohomology of

(Kp,∗, Dp,∗
2 ) and Hq

D2
(D1) is the morphism Hq

D2
(Kp,∗) → Hq

D2
(Kp+1,∗) is induced by

Dp,∗
1 2

Proof Clearly 1. follows from 1. of Theorem 16, as dp,q0 = d = (−1)pDp,q
2 : GrpK(Ap+q) =

Bp,q → GrpK(Ap+q+1) = Bp,q+1

Now 2. follows from 2. of Theorem 16 as the short exact sequence 0→ Grp+1
K (A)→
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Kp(A)

Kp+2(A)
→ GrpK(A)→ 0 is the same as

0 Bp+1,∗−1 Bp,∗ ⊕Bp+1,∗−1 Bp,∗ 0

0 Bp+1,∗ Bp,∗+1 ⊕Bp+1,∗ Bp,∗+1 0

(−1)p+1Dp+1,∗
2 (−1)pDp,∗2 ⊕(−1)p+1Dp+1,∗

2
(−1)pDp,∗2

and d1 is same as the connecting map of the long exact sequence of homology of this

complex. �

5.3 Hypercohomology

Let (X, τX) be a topological space and let Sh(X,A) be the category of A-sheaves

(i.e. F ∈ Sh(X,A), ⇔ F : τ opX → A; i.e. a contravariant functor τX → A). We

have the global section functor ΓX : Sh(X) → A. such that ΓX(F) := F(X) for

all F ∈ Sh(X,A). Now, ΓX is left-exact and if A has enough injectives, so does

Sh(X,A).

Definition 5.3.1 (Hypercohomologies) Let (F , d) be a complex of sheaves. Then

the derived functors RkΓX is called the kth-hypercohomology functor and is denoted

by Hk
X and RkΓX(F , d) is the kth-hypercohomology of (F , d), denoted by Hk

X(F , d)

Theorem 15 says that hypercohomologies can be computed from a chain complex

(G, dG) which is quasi-isomorphic to (F , d), and all whose terms are ΓX-acyclic.

Definition 5.3.2 Let φ : (X, τX) → (Y, τY ) be a continuous map. Then φ defines a

(covariant functor) φ∗ : Sh(X,A)→ Sh(Y,A), called the push-forward, defined by

φ∗(F)(U) := F(φ−1(U)) ∀U ∈ τY
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Chapter 6

Hodge Theory Revisited

Definition 6.0.1 Let A be an abelian category with enough injectives and let F ∈

Sh(X,A). Consider the inclusion functor

L : Sh(X,A)→ 0Kom(Sh(X,A))

defined by

L(F) := (F → 0→ 0→ · · · → 0)

A complex (G, d) ∈ 0Kom(Sh(X,A)) is called a resolution of F if there is a monic

i : F → G0 such that L(i) is a quasi-isomorphism and each Gk is ΓX-acyclic ∀k ∈ Z≥0.

This does mean that

Hk(X,F) ∼= Hk
X(G, d)

Definition 6.0.2 (Holomorphic de Rham complex)

Let X be a complex manifold of dimension n and let Ωk
X be the sheaf of holomorphic

forms of degree k on X and let OX be the structure sheaf (i.e. the sheaf of holomorphic

functions on X). Then the exterior derivative d and the (1, 0)-part ∂ on Ωk
X coincide

and we have the finite complex

0→ OX
∂→ Ω1

X
∂→ · · · ∂→ Ωn

X → 0

This complex is called the holomorphic de Rham complex of X, denoted by Ω∗X

or (ΩX , ∂) and we use the convention Ω0
X = OX .

Let CX be the constant sheaf on X, with fibers (stalks) C over each point. Consider

the inclusion of sheaves i : CX ↪→ OX . Then we have the following resolution theorem:
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Theorem 18 The holomorphic de Rham complex is a resolution of the constant sheaf

CX , via. i. Thus, Hk(X,C) = Hk(X,CX) = Hk
X(ΩX , ∂) 2

Proof We wish to show that all the terms of the holomorphic de Rham complex are

injective sheaves, which means that the sheaves of cohomology Hl(Ωk
X) = 0 ∀l > 0

and ∀k ≥ 0, where every sheaf of abelian groups, F , Hl(F) is the sheafification of

the presheaf of the sheaf cohomologies H l(U,F) for all integers l ≥ 0.

To show this, first we want the following lemma:

Lemma 17 Let (A, d) be the total complex associated to the double complex (B,D1, D2)

and let i : (M,dM)→ (B∗,0, D1) be a cochain map such that

0→Mp ip→ Ip,0
D2→ Ip,1

D2→ · · ·

is acyclic, meaning that the cohomology of this complex is zero in positive degrees,

then

Hk(M,dM) = Hk(A, d) ∀k ≥ 0

The proof of the above lemma is similar to Step-3 of Lemma 15. Now, we have

the inclusion of the holomorphic de Rham complex into the de Rham complex

(ΩX , ∂) ↪→ (A∗X , d), and the de Rham complex is the total complex associated to

the double complex (Ap,qX , ∂, (−1)p∂), where the complex (Ap,∗X , (−1)p∂) is acyclic, by

the Poincaré - Dolbeault Lemma. Thus by the last lemma, the holomorphic de Rham

complex is quasi-isomorphic to the de Rham complex.

6.1 Frölicher Spectral Sequence

Let X be a complex manifold of dimension n. Consider the filtration from truncations

T pΩ∗X := Ωp ∂→ Ωp+1 ∂→ · · ·

on the holomorphic de Rham complex and the Hodge filtration

KpAk :=
⊕

r≥p,r+s=k

Ap,qX

of the de Rham complex. Then for every p, (KpA∗X , d) is the total complex associated

to the double complex (Ak,lX , ∂, (−1)k∂)k≥p,l≥0 and clearly, (Ak,0X , ∂)k≥p = T pΩ∗X .
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Thus by arguments similar to Theorem 18, we see that (KpA, d) and (T pΩX , ∂) are

quasi-isomorphic. Now each one of the sheaves KpAkX are fine sheaves and therefore

they are acyclic w.r.t. the global section functor. Hence by Theorem 15 we get that

Hq(KpAk(X), d) = Hq
X(T pΩX , ∂)

where (KpAk(X), d) is the complex of global sections of (KpAkX , d).

Definition 6.1.1 (Frölicher Spectral Sequence) The spectral sequence KE
p,q
r associated

to the Hodge filtration on the de Rham complex (A(X)d) is called the frölicher

Spectral Sequence or FSS for brevity.

By Theorem 17 we have:

(KE
p,q
1 , dp,q1 ) ∼= (Hq(Ap,∗(X), (−1)p∂) = (Hp,q

∂
(X), ∂) ∼= (Hq(X,Ωp

X), ∂)

where the last isomorphism follows from Serre duality.

6.1.1 Degeneration of FSS at E1 for a Kähler Manifold

For a compact Kähler manifold, the Hodge decomposition

Hk(X,C) =
⊕
p+q=k

Hp,q
∂ (X)

gives us a filtration

F pHk(X,C) =
⊕

r≥p,r+q=k

Hr,q(X)

of Hk(X,C) for which we have GrpFH
k(X,C) ∼= Hp,k−p

∂ (X) ∼= Hk−p(X,Ωp
X). So we

have the following theorem:

Theorem 19 The Frölicher spectral sequence K of a compact Kähler manifold degenerates

at E1

Proof By, 16 we have KE
p,q
∞
∼= GrpKH

p+q
DR (X,C) and KE

p,q
r+1 = Hr(KE

p,q
r , dp,qr ) ⇒

dimC(KE
p,q
r+1) ≤ dimC(KE

p,q
r ) (6.1)

75



and the Hodge decomposition gives, KE
p,q
1
∼= GrpKH

p+q
DR (X,C). So dimC(KE

p,q
r ) ≤

dimC(KE
p,q
1 ) ∀r ≥ 1.

But by the Hodge decomposition, GrpKH
p+q
DR (X,C) ∼=∗ GrpFHp+q(X,C) and the equality

in 6.1 occurs for every, (p, q) iff dp,qr = 0 ∀p, q. (∼=∗ is true since the Hodge decomposition

implies

F pHk(X,C) = ker(d|KpAk)/d(F pAk−1(X)))

6.2 Normal Crossing Divisors and Open Manifolds

Definition 6.2.1(a) (Normal Crossing Divisors) A hypersurface D in a complex

manifold X is called a normal crossing divisor or NCD (for brevity) if there

is a locally constant function r : X → Nn such that for each point x ∈ X, there

is a neighbourhood V of x and there are n-coordinate functions z1, ..., zn on V, such

that where r is constant on V and D ∩U =
{
y ∈ U :

∏r(U)
j=1 zj(y) = 0

}
. We say that

the complex chart (V, (z1, .., zn)) expresses D. We say that D is fully normal

crossing if we can take V = X.

(b) Open Manifold associated to a NCD The open manifold associated to a

NCD D in a complex manifold X, is its complement X \D in X

In this chapter, we will assume X is a complex manifold of complex dimension n, D

is a NCD on X, and U = X \D is the associated open manifold, and k a non-negative

integer.

Definition 6.2.2 Let Ωk
X,D be the sheaf of meromorphic k-forms on X, that are

holomorphic on U. We say that a section ξ of Ωk
X,D over some complex chart V

has logarithmic singularities/ logarithmic poles if it has only poles of order

at most one along V ∩D, and the same holds for dα. Then the sections of Ωk
X,D with

logarithmic singularities forms a subsheaf of Ωk
X,D, denoted by

Ωk
X(logD)

, called the sheaf of k- forms with logarithmic poles
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Proposition 6.2.3 Let (V, z1, ..., zn) be a complex chart expressing D, then Ωk
X(logD)|V

is a sheaf of free OX |V -modules, with basis

(
dzi1
zi1
∧ · · · ∧

dzip
zip
∧ dzj1 ∧ · · · ∧ dzjq : is ≤ r(V ), jt ≥ r(V ), p+ q = k)

In particular, Ωk
X(logD) is a sheaf of free OX-modules.

Proof Let ξ ∈ Γ(V,Ωk
X(logD)). Let f :=

∏r(V )
j=1 zjThen ξ has a pole of order at most

1 along {f = 0} . So there is a holomorphic k-form σ on V, such that f · ξ = σ. Then

df∧ξ+f∧dσ and therefore df∧ξ vanishes alongD. Putting ξ =
∑

A,B ξA,BdzA∧dzB for

A ⊆ Nr(V ) and B ⊆ Nn \Nr(V ) we get that ξA,B vanishes on
{
gA :=

∏
j∈Nr\A zj = 0

}
and as gA is a product of primes in the unique factorization domain O(V ), (taking V

sufficiently small) we see that gA divides ξA,B. The fact that O(V ), is a UFD follows

from 2.0.2. �

Definition 6.2.4 (Logarithmic de Rham complex) As, d(Ωk
X(logD)) ⊆ Ωk+1

X (logD)

we see that (Ω∗X(logD), d) forms a complex of sheaves on X, called the logarithmic

de Rham complex

Let j : U ↪→ X be the inclusion of the assocaited open manifold of D in X, then, j

induces the following inclusions of chain complexes

Ω·(logD) ↪→ j∗Ω
·
X |U ↪→ j∗A·X |U

Let φ be the composition of these inclusions. We have the following theorem:

Theorem 20 φ induces a quasi-isomorphism. 2

Proof We prove this statement for fully normal crossing divisor D on a compact

manifold X.

So, we assume thatX is the n-polydiscD1×· · ·×Dn andD =
{

(z1, ..., zn) ∈ D1 ×Dn :
∏r

j=1 zj = 0
}
⇒

U = X \D = D×1 × · · · ×D×r ×Dr+1 ×Dn and there is a deformation retraction of

U to the torus T :=
∏r

j=1 ∂Dj. Now, as H1(T,Z) = Zr, we have :

H1(T,C) ∼= Cr

k∧
H1(T,C) ∼= Hk(T,C)
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where the second ismorphism is given by the cup-product and follows from the

Künneth formula. The homology class of the cycles j generates H1(T,Z) = Zr

and we have
1

2π
√
−1
·
∫
∂Dj

dzi
zi

= δi,j, where δi,j is the Krönecker delta, and
dzi
zi
∈

Γ(U,Ωk
X(logD)) ∀i ∈ Nr. So, by the Poincaré duality, we get that (

dzj
zj

)1≤j≤r is a

basis of H1(T,C).

Let
dzI
zI

:=
dzi1
zi1
∧ · · · ∧ dzik

zik
for any multiindex I = (i1, ..., ik) ∈ Nk

r 1 ≤ ∀k ≤ r

Then the map

Hk(Γ(U,Ωk
X(logD)))→ Hk(Γ(U, j∗AX |U)) = Hk(U,C)

dzI
zI
∧ dzJ 7−→

∏
j∈I

∫
∗
(
dzj
zj

)

is surjective.

To prove injectivity, we show that any section α of Γ(U,Ωk
X(logD)) is cohomologous

in Hk(Γ(U,Ωk
X(logD))) to some

dzI
zI
. The approach we take to show this is induction

on r.

For r = 0, the statement is same as the statement of Lemma holresolutionthm.

Assuming the statement to be true for r − 1, and ∀k, we see that any section α of

Γ(U,Ωk
X(logD)) can be expressed as α =

dzr
zr
∧ β + γ, where γ is holomorphic in

zr, and β is independent of zr. Now if α is exact, then
dzr
zr
∧ β is holomorphic on

{zr = 0} , so this implies, dβ = 0.

Now, β and γ are elements of Γ(U,Ωk−1
X (logD′)) and Γ(U,Ωk

X(logD′)), where D′ ={∏r−1
j=1 zj = 0

}
. We now apply the induction hypothesis on β and γ and we get the

result for α. �

Corollary 6.2.5 The above map induces the isomorphism of cohomologies:

Hk(U,C) ∼= Hk(X,Ω∗X(logD))

Proof φ gives an isomorphism of hypercohomology,

Hk(X,Ωk
X(logD)) ∼= Hk(X, j∗AX |·U) = Hk(X, j∗AX |·U) ∼= Hk(Γ(X, j∗AX |·U))

where the last isomorphism follows because the sheaves considered are acyclic for the

global section functor. Now, Γ(X, j∗AX |·U) = Γ(U,AX |·U). Then Hk(Γ(U,AX |·U)) ∼=

Hk(U,C).
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6.2.1 Filtrations on the log-deRham complex

Definition 6.2.6 Let D is a fully normal crossing divisor and adapt the notations of

the last theorem. Let l be a non-negative integer ≤ r, and let M∗
X := Ω∗X(logD). Then

we define an increasing filtration W, by WlM
∗
X :=

∧lM1
X ∧ Ω∗−lX ; i.e. WlM

n
X has the

basis
dzI
zI
∧ dzJ where I ⊆ Nr, |I| ≤ l and I ∩ J is empty, |I|+ |J | = n.

Now, for any normal crossing divisor, we define the filtration W locally, by the above

paragraph.

Definition 6.2.7 A divisor D is said to be a globally normal crossing divisor,

if D = ∪i∈IDi, where all the Di’s are smooth hypersurfaces and the intersections

Di1 ∩ · · · ∩Dil are transversal for every multiindex (i1, ..., il) and for all l.

Let us give a total order on I, and define D(0) = X, D(k) := qK⊆I,|K|=k(∩i∈KDi).

Then either ∩i∈KDi is empty or it is a complex submanifold of X of codimension k,

as the intersections are transversal. Let jk : D(k) → X be the morphism induced by

the inclusions jK : ∩i∈KDi ↪→ X.

Theorem 21 There is an isomorphism GrWk MX
∼= (jk)∗Ω

·−k
D(k) 2

Proof Let (V, (z1, ..., zn)) be a complex chart that expresses D, then V ∩ D, is a

fully normal crossing divisor of V. Define the map

Resk : Γ(V,WkM
·
X)→ Γ(V, j∗Ω

·−k
D(k)) = ⊕|K|=k[Γ(V, j∗Ω

·−k
∩i∈KDi)]

by

Resk(
dzA
zA
∧ dzB)K =

(2π
√
−1)kdzB|(∩i∈KDi)∩V for A ⊆ Nr ⊆ I with |A| = k

0 otherwise

Then Γ(V,Wk−1MX) ⊆ ker(Resk), andRes gives a mapGrWk Γ(V,M ·
X)→ Γ(V, j∗Ω

·−k
D(k)).

Let (z′1, ..., z
′
n) be another set of local coordinates on V, such that (V, (u1, ..., un))

expresses D. Then there are non-zero holomorphic functions fj : V → C× ∀j ∈ Nn,

such that uj = fjzj ∀j ∈ Nn; then

duj
uj

=
dfj
fj

+
dzj
zj
∀j ∈ Nr

Then
dzA
zA

and
duA
uA

have the same image in GrWk (Γ(U,M∗
X)) as the forms

dfj
fj

are

holomorphic on V. So Res is independent of the chosen coordinates that express
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D, because it anyway does not depend on the last n − r coordinates of any chart

expressing D chosen on V.

Res is injective: If α =
∑

A,B αA,B
dzA
zA
∧ dzB ∈ Γ(V,WkM

n
X) be such that

Res(α)K = 0, ∀K, with |K| = k; and |A| ≤ r, then αA,B = 0 ∀A, with |A| = k, and

hence α ∈ Γ(V,Wk−1M
n
X).

Res is surjective: Let (αK)K ∈ ⊕|K|=k[Γ(V, j∗Ω
·−k
∩i∈KDi)], then, each αK extend

as a holomorphic form to a neighbourhood of ∩i∈KDi to βK , say. Shrink V to be

contained in the intersection of all the domain of definitions (assumed to be open),

then β :=
∑

K
1

(2π
√
−1)k

dzK
zK
∧ βK is defined on V (here the good news is that the βK

are finite and so the intersection of the domain of definitions is open). �Since we

have considered only hypercohomology of increasing complex of sheaves we consider

the hypercohomology of increasing complexes, let Mk := W−k be the associated

increasing filtration to W∗. Then we have the following theorem:

Theorem 22 We have WE
p,q
1
∼= H2p+q(D( − p),C). 2

Proof From Theorem-16, WE
p,q
1
∼= Hp+q(X,GrpM(Ω∗X(logD)) andGrpM(Ω∗X(logD)) =

GrW−pΩ
∗
X(logD)) ∼= (j−p)∗(Ω

∗+p
D(−p)) (by the last theorem). Moreover, for every complex

F∗ of sheaves on D(−p) we have Rk(j−p)∗F l = 0 ∀k > 0, as the maps j−p are proper

maps and have finite fibers, we have

Hl(D(−p),F∗) ∼= Hl(X, (j−p)∗F∗)

And we note that H2p+q(D(−p),C) ∼= H2p+q(D−p,ΩD(−p)) �
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Chapter 7

Hodge Structures and Polarisation

7.1 Pure Hodge Structures

Let X be a compact manifold and let K be a field of characteristic zero. Consider the

morphism of constant sheaves Z→ K. The sheaf cohomology group Hk(X,K) can be

identified with the Ĉech cohomology group Ĥk(U ,K), where U is a Ĉech cover of

X(and similarly Hk(X,Z) = Ĥk(U ,Z)). Since K has characteristic zero and C∗(U ,Z)

is a complex of free abelian groups of finite rank , we have

C∗(U ,Z)⊗
Z
K = C∗(U ,K)

and

Ĥk(U ,Z)⊗
Z
K = Ĥk(U ,K).

Since tensoring with K kills the torsion part, the integral cohomology modulo torsion

is identified with its image Ĥk(U ,Z)⊗Z1 in the cohomology with K-scalars Ĥk(U ,K).

Suppose now that X is a compact Kähler manifold. Then it has the Hodge decomposition,

Hk(X,C) =
⊕
p+q=k

Hp,q(X)

where Hp,q(X) is a complex subspace and we have the Hodge symmetry

Hp,q(X) = Hq,p(X).

Let ω be the Kähler form on X, and L : Hk(X,R)→ Hk+2(X,R) be the cup product

with the class [ω] ∈ H2(X,R). Then we have the Lefschetz decomposition

Hk(X,R) =
⊕
r

LrHk−2r
prim
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where each primitive component has a Hodge decomposition induced by the Hodge

decomposition ofHk(X,R).We also have the intersection form Q onHk(X,R) ∀k 6 n

defined by,

Q(α, β) :=

∫
X

ωn−k ∧ α ∧ β = 〈Ln−kα, β〉.

Q is alternating if k is odd and symmetric otherwise. The induced Hermitian form

HQ(α, β) := ikQ(α, β)

on Hk(X,C) satisfies Proposition-4.6.2.

Definition 7.1.1 (Category of Pure Hodge Structures)

• (Integral pure Hodge structure of weight k) An integral pure Hodge structure

of weight k V = (VZ, (V
p,q)p,q∈Z) is given by a free abelian group VZ of finite type

together with a decomposition

VC := VZ ⊗
Z
C =

⊕
p+q=k

V p,q

where V p,q are C vector spaces satisfying

V p,q = V q,p.

and

V p,q = 0, ∀p, q ∈ Z, p+ q 6= k

• (Morphisms of Integral pure Hodge structures) A morphism φ : V → W of

integral pure Hodge structures V = (VZ, (V
p,q)p,q∈Z) and W = (WZ, (W

p,q)p,q∈Z)

of weights n and m = n + 2r is an abelian group homomorphism φ : VZ → WZ

such that the induced homomorphism φ : VC → WC is a C-linear map that satisfies

φ(V p,q) j W p+r,q+r ∀p, q ∈ Z and ∀r ∈ Z

Definition 7.1.2 (Category of Pure Hodge Complexes) Let A be a commutative

ring with unity.

• (Filtrations, Filtered Complexes and Conjugate Filtrations)

Let M be an A-module. A collection (F pM)p∈Z of submodules of M is said to be an

increasing filtration(resp. decreasing filtration) of A if

F pM j F p+1M ∀p ∈ Z

(resp.) F pM ⊇ F p+1M ∀p ∈ Z
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and the ordered pair (M, (F pM)p∈Z) is said to be a filtered complex of the same

type.

A filtration F = (F pM)p∈Z of a complex vector space M gives another filtration

F = (F
p
M)p∈Z called the conjugate filtration defined by F

p
M = F pM.

• (Morphism of Filtered complexes) A morphism φ : (M,F ) → (N,G) of two

filtered complexes (M,F = (F pM)p∈Z) and (N,G = (GpN)p∈Z) of degree r ∈ Z over

A consists of a morphism φ : M → N of A-modules such that

φ(F pM) j Gp+rN ∀p ∈ Z.

• (n-Opposite Filtrations)

Let n ∈ N, F = (F pM)p∈Z and G = (GpM)p∈Z be two filtrations of an A-module M.

Then F and G are said to be n-opposite filtrations of M iff

∀p, q, p+ q = n+ 1⇒ F pM ⊕GqM ∼= M.

• ( Pure Hodge Filtrations and Pure Hodge Complexes)

Let k ∈ N. and VZ be an abelian group of finite type and VC := VZ⊗ZC and filtration

F = (F pVC)p∈Z of a VC is said to be a Pure Hodge Filtration of weight k of VZ

if F is k-opposite to its conjugate F .

A Pure Hodge Complex of weight k is an ordered pair (VZ, F ) where F is a

pure Hodge Filtration of weight k on VZ, where VZ is an abelian group of finite type.

• (Morphism of Pure Hodge Complexes)

A morphism of Pure Hodge Complexes (VZ, F
∗VC) and (WZ, F

∗WC) of weights

n and m = n + 2r, r ∈ Z, −n
2
≤ r respectively, is a morphism φ : VZ → WZ

such that the induced map φ : VC → WC gives a morphism of filtered complexes

φ : (VC, F
∗VC)→ (WC, F

∗WC) of degree r.

Kernel and image of a morphism of Hodge structures has a natural Hodge structure.

The Pure Hodge Complexes with morphisms among them defined as above form the

category of Pure Hodge Complexes.

Proposition 7.1.3 Let k ∈ N. The categories of Pure Hodge structures and Pure

Hodge complexes of weight k are isomorphic.
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Definition 7.1.4 An integral polarised Hodge structure of weight-k is a triple

(VZ, F,Q) such that (VZ, F ) is a pure Hodge structure of weight k, and a bilinear form

Q which is symmetric if k is even and alternating if k is odd.
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Chapter 8

Chern Class and the Ködaira

embedding Theorem

Definition 8.0.1 (Polarised Manifold)

A polarised manifold is a pair (X, [ω]), consisting of a compact complex manifold

X and an integral Kähler class [ω] ∈ Hk(X,R) on X.

Definition 8.0.2 (Line Bundles with Special Propperties)

Let X be a compact complex manifold of dimension n and p : L→ X be a holomorphic

line bundle over X.

• (Base Point Free ones)

L is said to be base point free/spanned if there exist a map φ : X → H0(X,L)

such that if s = φ(x), then the germ sx 6= 0.

Suppose L is spanned. Let P := P(H0(X,L)), the projectivized space of global

sections of L, and let P ∗ be the dual projective space of P . We can define a map

jL : X → P ∗ followingly: the collection of all sections of L that vanish at x forms a

hyperplane, say Hx in P. Define jL(x) := Hx.

Choose a basis s := (s0, s1..., sn) ∈ H0(X,L), which exists because of compactness of

X. Let U := (U)α∈I be an open cover of X. Then s can be given by its restrictions

sα := si,α ∀i ∈ Nn and α ∈ I of L over the open sets in U . Now if we define the

local maps iL,α : Uα → P ∗ ∼= Pn by iL,α(x) := [s0(x) : s1(x) : ... : sn(x)], then these

local maps are well defined since L is spanned and glue together to give a global map

iL : X → P ∗ ∼= Pn, since the local maps are compatibe with the transition functions
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of L on intersections.

Moreover,

(a) the map iL is holomorphic :

for if Vi := z = [z0, .., zn] ∈ Pn : zi 6= 0 then i−1
L (Vi) is the open subset of X where

the section si does not vanish anywhere. Now,

i−1
L (Vi) Vi ∼= CniL (8.1)

x 7−→ [
s0,α(x)

si,α(x)
, .., 1, ...,

sn,α(x)

si,α(x)
] 7−→ (

s0,α(x)

si,α(x)
, ..,

ŝi,α(x)

si,α(x)
, ...,

sn,α(x)

si,α(x)
)

(where the 1 is at the ith-position) is a holomorphic injection since the meromorphic

sections
sj,α(x)

si,α(x)
are holomorphic on i−1

L (Vi) ∀j ∈ Nn only. Hence iL is holomorphic.

(b) The map iL is independent of the basis element s upto a projective transformation.

(c) Let D = Σn
i=0aizi be a divisor, then i∗L(D) = Σn

i=0aisi = {x ∈ X : Σn
i=0aisi(x) = 0} ∈

H0(X,L) is a divisor and therefore is the element
∏

i s
ai
i ∈ Div(X) = H0(X,

M∗
X

O∗X
)

and thus

i∗L : H1(Pn,O∗Pn)→ H1(X,O∗X)

is such a map that i∗L(OPn(1)) = L and clearly,

i∗L : H0(Pn,OPn(1))→ H0(X,L)

is surjective.

• (Very Ample Line Bundles)

L is said to be very ample if i∗L is an embedding.

• (Ample Line Bundles and Ample Divisors)

L is said to be ample if L⊗n is a very ample line bundle for some n ∈ N. A divisor

D is ample if its associated line bundle OX(D)

• (Very Ample Line Bundles)

L is said to be very ample if i∗L is an embedding.

• (Ample Line Bundles and Ample Divisors)

L is said to be ample if L⊗n is a very ample line bundle for some n ∈ N. A divisor

D is ample if its associated line bundle OX(D)

• (Positive Line Bundles and Positive Divisors)

86



(a) Recall that a (1,1)-differential form ξ is positive iff (TCX)2 3 (u, v)→ ξ(u, Jv) is a

positive definite inner product; where J is the complex structure on X.

(b) Let h be a Hermitian metric on L and let Θ(L, h) ∈ A1,1
X be the curvature form which

is locally defined by Θ(L, h) = ∂∂(loghα), where hα is the square of the local norm

defined by h on Uα, and U = (U)α∈I is a trivializing open cover of X.

(c) L is said to be a positive line bundle if ∃ a Hermitian metric h on L such that

the curvature form Θ(L, h) is a positive form.

We now define the Chern class of isomorphism classes of Line Bundle using Sheaf

Cohomology:

Consider the morphism of chain complexes of sheaves of C-modules:

0 C A0
X A1

X A2
X .. AnX 0

0 OX A0,0
X A0,1

X A0,2
X .. A0,n

X 0

0 i

f=f0

d

f1

d

f2

d

f3

d 0

fn+1

0 j ∂ ∂ ∂ ∂ 0

(8.2)

induced by the inclusion f : C ↪→ OX . Then fk+1 is just the projection map (upto

homotopy) corresponding to the decomposition of C∞X -modules:

AkX =
⊕
p+q=k

Ap,qX

∀k ∈ Nn. Note that the maps i, j above are inclusions. The inclusion f : C ↪→ OX
defines a morphism of sheaf cohomology:

fk : Hk(X,C)→ Hk(X,OX)

The chain map also define maps of cohomology groups

fk : Hk
DR(X,C)→ H0,k

∂
(X)

and the last two maps of cohomology coincide by De Rham’s Theorem and Dolbeault’s

Theorem.

Since the Laplacians ∆d and ∆∂ coincide upto a factor of 2, fk maps ∆d-harmonic

forms to ∆∂-harmonic forms, giving the chain map of global Harmonic forms:

0 Γ(X,C) H0
X H1

X H2
X .. Hn

X → 0

0 Γ(X,OX) H0,0
X H0,1

X H0,2
X .. H0,n

X → 0

0 i

f=f0

0

f1

0

f2

0

f3

0

fn+1

0 j 0 0 0 0

(8.3)
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where horizontal maps d, ∂ are zero on Harmonic forms and fk+1 is the projection

given by the Hodge decomposition:

Hk
X =

⊕
p+q=k

Hp,q
X

∀k ∈ Nn. Now by the identifications Hk(X,C) ∼= Hk
X and Hp,q(X,C) ∼= Hp,q

X from the

above chain complex we have the maps fk : Hk(X,C)→ H0,k(X) whcih is the same

as the map fk : Hk
DR(X,C)→ H0,k

∂
(X).

*Here I have the following question:

The kernel of this projection map fk is F 1Hk(X) and the real forms in the kernel of

f 3 are representable by real (1,1)-harmonic forms.

In the following diagram:

0 H0(X) H1(X) H2(X) .. Hn(X)→ 0

0 H0,0(X) H0,1(X) H0,2(X) .. H0,n(X)→ 0

0 δ

f1

δ

f2

δ

f3

δ

fn+1

0 δ δ δ δ

(8.4)

(where the horizontal maps are boundary maps), do the vertical maps

together give a morphism of exact sequences?* Now the exact sequence of

sheaves of abelian groups:

0 Z OX O∗X 00 h exp2π
√
−1 0 (8.5)

Consider the exact sequence of cohomology groups:

0 H0(X,Z) H0(X,OX) H0(X,O∗X)

H1(X,O∗X) H1(X,OX) H1(X,Z)

H2(X,Z) H2(X,OX) H2(X,O∗X) ...

0 h exp2π
√
−1

δ

δ

exp2π
√
−1 h

h exp2π
√
−1 δ

(8.6)

The commutativity of the inclusion of sheaves:

Z OX

C

i

h

f (8.7)
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gives the map of cohomologies:

H∗(X,Z) H∗(X,OX)

H∗(X,C)

i∗

h∗

f∗ (8.8)

The vertical map i∗ in the last commuting triangle is inclusion upto torsion part.

Now clearly, the kernels of i∗ and h∗ contain the torsion part and we have:

kerh∗ = (kerf ∗ ∩H∗(X,Z))⊕ (torsion part).

Now the L.H.S. is equal to imδ∗ and clearly imδ1 = (H1,1(X)∩H2(X,Z))⊕(torsion part).

Definition 8.0.3 (Chern Classes of Line Bundles) The Chern class associated

to the line bundle L is defined by c1(L) := 2π
√
−1·δ1([L]) where [L] is the isomorphism

class of L in the Picard group H1(X,O∗X).

Theorem 23 (Fundamental Theorem for (first) Chern class of a Line

Bundle) Let L be a holomorphic line bundle over X, and let hL be a Hermitian

metric on L. Then the class of the Curvature form Θ(L, hL) is equal to the image

of c1(L) in H2(X,Z). For every real form ξ of type (1,1) whose class is equal to the

image of c1(L) in H2(X,Z), ∃ a metric h on L such that Θ(L, hL) = ξ. In particular,

the cohomology class of the curvature form is the same for any Hermitian metric on

L. Moreover, if L is positive line bundle with respect to one Hermitian metric on it,

then L is positive with respect to every other Hermitian metric on it. 2

Proof Let U = (U)α∈I be a trivializing open covering of L by simply connected

open sets, and let σα be the non-zero holomorphic section over Uα that trivializes

L|Uα ∀α ∈ I. Let hα = hL(σα, σα) ∀α ∈ I.

Let ZX be the constant sheaf on X with stalks Z. Since the open sets Uα are

simply connected, the exponential exact sequences restricted to Uα splits on the

right, followingly:

(a) 0 Z|Uα C∞X |Uα (C∞X )∗|Uα 00 h
exp2π

√
−1

1
2π
√
−1
log

0

(b) 0 Z|Uα OX |Uα O∗X |Uα 00 h
exp2π

√
−1

1
2π
√
−1
log

0
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∀α ∈ I, let ωα := Θ(L, h)|Uα . Then ωα = 1
2π
√
−1
∂∂(log hα) and so ωα = dξα where

ξα = 1
2π
√
−1
∂(log hα)

Let (gα,β : Uα,β → C×)α,β∈I be the transition functions of L over U , where Uα,β =

Uα ∩ Uβ. Then σα = gα,βσβ, then we have ξα − ξβ =
1

2π
√
−1

∂ log |gα,β|2

Let fα,β ∈ O∗X(Uα,β), such that exp[2π
√
−1fα,β] = gα,β. Then exp(−2π

√
−1 · fα,β) =

gα,β So 1
2π
√
−1

log |gα,β|2 = fα,β − fα,β ⇒ ξα − ξβ = −dfα,β.

Moreover, the cocycle codition gα,β · gβ,γ · gγ,α = 1 of transition maps gives us fα,β +

fβ,γ + fγ,α ∈ Z We have,

gα,β · gβ,γ · gγ,α = 1 (8.9)

ωα = dξα (8.10)

ξα − ξβ = −d(fα,β) (8.11)

Let Kp,q,r := Ĉ
r
(Ap,qX ),Kk,r := Ĉ

r
(AkX),Mr := Ĉ

r
(C∞X )∗) where for every sheaf F on

X, Ĉ
∗
(F) denotes the sheaf of Ĉech complexes on X.

The exponential short exact sequence (a) gives a short exact sequence of sheaves of

Ĉech complexes :

0→ Ĉ(ZX)→ Ĉ(A0
X)→M→ 0

Take the long exact sequence of cohomology of the above complex on the open cover,

U . Then the connecting map δ1 : Ĥ1(U , C∞X )∗)→ Ĥ2(U ,ZX) is given by

δ1 =
1

2π
√
−1

δ1
K ◦ log

where δk,∗K be the Ĉech differential of Kk,∗. Then,

δ1(gα,β)α,β =
1

2π
√
−1

δ1
K(fα,β)α,β (8.12)

Let (K, D) be the total complex associated to the double complex ((Kk,r)k,r≥0, d, δK).

Since AkX are fine sheaves, their sheaf cohomologies vanish on positive degree. So, we

can refine U so that

Ĥr(U ,AkX) = 0 ∀r ≥ 1.

Then (K, D) is a resolution of the constant sheaf CX on X, with stalks C. Let

(K,D) be the complex of global sections of (K, D), then there is an isomorphism,
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Hk(X,C)→ Hk(K,D). By the inclusion of the de Rham complex in (K,D), we get

the morphism of cohomologies Hk
DR(X,C)→ Hk(K,D) and the inclusion of sheaves

CX ↪→ K0, defines a morphism of sheaf cohomologies Ĥk(U ,CX) → Hk(K,D).

Moreover, all these morphisms of cohomology are isomorphisms.

Equations 8.10, 8.11 can be written in the complex (K, D)|U as:

(ωα)α +D(fα,β)α,β = δK(ξα)

(8.13)

δK(ξα) +D(fα,β)α,β = δK(fα,β)α,β = δK(fα,β)α,β as coefficients of δK(fα,β)α,β are integers

(8.14)

Then we get (ωα)α is cohomologous to δK(fα,β)α,β in (K,D). So, from equality 8.12

we get 2π
√
−1 · δ1(gα,β)α,β is cohomologous to (ωα)α, and (gα,β)α,β ∈ H1(X,O∗X)

represents the isomorphism class of L, and so 2π
√
−1 · δ1(gα,β)α,β as a cohomology

class is equal to c1(L). This completes the first part of the Theorem.

For the second part, let h be the Hermitian metric induced on L by ξ. Then ξ−Θ(L, h)

is exact, and therefore it is ∂-closed and ∂-closed. So, by ∂∂-lemma, we conclude that

there is a smooth function µ on X, such that ξ−Θ(L, h) = 1
2π
√
−1
· ∂∂µ. Then we set

hL = eµh and we are done with the second part.

The last part follows from observing that in the proof of the second part, h is positive

definite if and only if hL is positive definite. The following theorem is known as the

Kodaira-Akizuki-Nakano Vanishing theorem (KAN Vanishing theorem for brevity)

which we state without proof. The proof can be found in [2]:

Theorem 24 Let L be a positive holomorphic line bundle over a compact complex

manifold. Then for any q > 0, we have Hq(X,KX ⊗ L) = 0. 2

This helps us to get:

8.1 Ködaira embedding theorem

Theorem 25 (Ködaira embedding theorem) Let X be a compact complex manifold

and let ω be a positive Kähler form on X. Let (L, h) be a holomorphic Hermitian line

bundle, such that the curvature form Θ(L, h) = ω. Then (L, h) is positive and there
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exists a holomorphic embedding φ : X ↪→ PN for some sufficiently large integer

N > 0. 2

Proof Let x ∈ X and let τ : Xx → X be the blow-up of X at the point x, let

X̃ = Xx, and let E = τ−1(x). Let IE ⊆ OX̃ be the ideal sheaf corresponding to the

hypersurface E of X; i.e. IE(U) is the set of all holomorphic maps f : U → C such

that f vanishes on U ∩ E, for every complex chart U of X.

Let L̃ be the sheaf of holomorphic sections of the pull-back bundle π∗(L). Then the

restriction of L̃ on E is L̃|E defined by the short-exact sequence:

0→ IEL̃→ L̃→ L̃|E → 0 (8.15)

and which is the sheaf of holomorphic sections of π−1L|E. We want to show the

following claim:

Claim: τ ∗(KX) = KXx ⊗ I
⊗(n−1)
E

Proof of the claim : Let us choose a complex chart (U, φ) around x such that

φ : U → Dn (where Dn is the complex unit disc in Cn), such that φ(x) = 0. Let

φ = (z1, ..., zn), then φ itself is the system local equations of Y ↪→ X on U, and

Ũx =
{

(Z, z) ∈ CPn−1 × U : Zizj = ziZj ∀i, j ∈ 1, 2, ..., n
}

where Z = [Z1 : · · · : Zn] ∈ CPn−1. We define Ũ i
x =

{
(Z, z) ∈ Ũx : Zi 6= 0

}
and

φ
(i)
j (Z, z) =

zj/zi = Zj/Zi for j 6= i

zi otherwise

Let τ(Ũ i
x) = U i

x.

Then φ(i) := (φ
(i)
1 , ..., φ

(i)
n ) define local coordinates on

Ũ i
x =

{
[φ

(i)
1 (Z, z) : · · · : φ(i)

n (Z, z)]× (zi · φ(i)
1 (Z, z), ..., 1 · φ(i)

i (Z, z), ..., zi · φ(i)
n (Z, z)) : z ∈ U i

x

}
Let α = g · dz1 ∧ · · · ∧ dzn be a monomial section of KX over U i

x. Then

τ ∗(α) = (τ ∗(g))·d(τ ∗z1)∧· · ·∧d(τ ∗zn) = (τ ∗(g))·d(zi·φ(i)
1 )∧· · ·∧d(φ

(i)
i )∧· · ·∧d(zi·φ(i)

n )

= (τ ∗(g)) · (−1)(n−1)zn−1
i · d(φ

(i)
1 ) ∧ · · · ∧ d(φ(i)

n )

This defines isomorphisms ψi : τ ∗(KX)|Ũ ix → KXx ⊗ I
⊗(n−1)
E |Ũ ix by

τ ∗(α) 7→ [(τ ∗(g)) · d(φ
(i)
1 ) ∧ · · · ∧ d(φ(i)

n )]⊗ (−1)(n−1)zn−1
i
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which glue together as we vary i to give an isomorphism ψ : τ ∗(KX)|X̃\E → KXx ⊗

I
⊗(n−1)
E |X̃\E which extends to all of X̃ by continuity. This proves the claim. �

Let N be any integer.

Now tensoring the equation of the above claim by IE and L̃⊗N we get :

τ ∗(KX)⊗ IE ⊗ L̃ ∼= KXx ⊗ I
⊗(n−1)
E ⊗ IE ⊗ L̃⊗N = KXx ⊗ I

⊗n
E ⊗ L̃

⊗N

which gives us

K−1
Xx
⊗ IEL⊗N ∼= I⊗nE ⊗ τ

∗(L⊗N ⊗K−1
X )

Consider the line bundle associated to the divisor E, denoted by O X(−E). This is

the line bundle corresponding to the sheaf IE on X̃ and by the proof of 4 it restricts

to OP(N{x}/X)(+1) where E ∼= P(N{x}/X). So the curvature form ωE of O X(−E), with

the metric induced from the Fubini-Study metric on OP(N{x}/X)(+1) through partition

of unity is positive on E, and therefore ωnE which is the curvature metric of the line

bundle coming from the sheaf I⊗nE is positive on E.

Let hX be the Hermitian metric on KX induced by ω and ωKX := Θ(KX , hX), then

the curvature form of (L⊗N ⊗K−1
X , h⊗n⊗ h−1

X ) is given by N ·ω−ωKX for any integer

N, and Θ(I⊗nE ⊗ τ ∗(L⊗N ⊗ K
−1
X )) = ωnE + τ ∗(N ·ω+ωKX ) Now, as X is compact, so

is X̃ by Theorem 4, so all the terms of ωnE + τ ∗(N · ω + ωKX ) are bounded for fixed

N. As ω is positive and ωnE is positive on E, we see that ωnE + τ ∗(N · ω + ωKX ) is

positive on the blow-up X̃ for N >> 0.

Let N >> 0. By the KAN vanishing theorem,

0 = H1(X̃,KXx ⊗ (K−1
Xx
⊗ IEL̃⊗N)) = H1(X̃, IEL̃

⊗N) (8.16)

Now consider the exact sequence of cohomology using the short exact sequence 8.15

with L replaced by L⊗N :

0 H0(X̃, IEL̃
⊗N) H0(X̃, L̃⊗N) H0(X̃, L̃⊗N |E)

· · · H1(X̃, L̃⊗N |E) H1(X̃, L̃⊗N) H1(X̃, IEL̃
⊗N)

δ

Then, by 8.16, we get that the map H0(X̃, L̃⊗N) → H0(X̃, L̃⊗N |E) is surjective. So

there is a section of L̃⊗N which does not vanish on E. This means that there is a

holomorphic section of L⊗N that does not vanish on x. Thus we see that the line
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bundle L⊗N is spanned/ base point free. Consider the holomorphic map i := iL⊗N :

X → P((H0(X,L⊗N))∗) =: P as considered in Definition 8.0.2, which is well-defined

since X is compact and therefore H0(X,L⊗N) is finite-dimensional. All we need to

show is that i and its derivative at each point is injective.

i is injective : First we notice that if we consider the blowup along a complex

submanifold Y of X of codimension k and if C = τ−1(Y ), then the claim we proved

before takes the form

τ ∗(KX) ∼= KX̃Y
⊗ I⊗k−1

C ⊗ τ ∗(KY )

So, if Y = {x, y} ⊆ X, then KY = 1 and k = n, so anyway we get

τ ∗(KX) ∼= KX̃Y
⊗ I⊗n−1

C ,

and thus all the arguments made above hold if we replace {x} by Y = {x, y} .

So fix the notation Y := {x, y} .

Now, L⊗N |Y = FY (L⊗Nx ⊕ L⊗Ny ), where FY (L⊗Nx ⊕ L⊗Ny ) is the skyscraper sheaf

corresponding to L⊗Nx ⊕ L⊗Ny around Y ; i.e. the direct sum of skyscraper sheaves

corresponding to Lx around x and that of Ly around y. We see that the map of

global sections H0(X,L⊗N)→ H0(X,FY (L⊗Nx ⊕ L⊗Ny )) = L⊗Nx ⊕ L⊗Ny is surjective,

and so there is a global section of L⊗N that vanishes on x (resp. x) but does not

vanish on y (resp. x). Finally we show that for every, x ∈ X,

dxi is injective : Let aX ⊆ OX be the sheaf of holomorphic functions that vanish

at x. Let s0, ..., sp be a basis of H0(X,L⊗N) such that s0(x) 6= 0 and s1(x) = · · · =

sp(x) = 0, where the integer p ≥ 0 is dim(H0(X,L⊗N)) − 1. Then s1, ..., sn is the

basis of H0(X, aX ⊗ L⊗N). Then on a complex chart U around x, i is given by

i(z) = [s0(z) : · · · : sp(z)] for all z ∈ U. Choose U small enough such that s0(z) 6= 0

for all z ∈ U. Then, on U, i can be given by i(z) = ( s1(z)
s0(z)

, ..., sp(z)

s0(z)
) ∈ Cp.

Then dx(i) is injective if and only if its dual map from the holomorphic cotangent

space of P at i(x) to the holomorphic cotangent space of X at x is surjective; i.e. if

dx(
s1(z)
s0(z)

), ..., dx(
sp(z)

s0(z)
) span the holomorphic cotangent space of X at x. Clearly, the

holomorphic cotangent space of X at x is given by
aX,x
a2
X,x

, where aX,x is the stalk of

aX at the point x ∈ X, and
s1

s0

, ...,
sp
s0

∈ H0(U, aX ⊗ L⊗N)
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Consider the short exact sequences of sheaves:

0→ a2
X ⊗ L⊗N → aX ⊗ L⊗N

dx→ aX
a2
X

⊗ L⊗N |x =
aX,x
a2
X,x

⊗ L⊗Nx → 0 (8.17)

0→ I2
E ⊗ τ ∗L⊗N → IE ⊗ τ ∗L⊗N

dE→ IE
I2
E

⊗ τ ∗L⊗N |E =
IE
I2
E

⊗ τ ∗L⊗NE → 0 (8.18)

Then, by the KAN vanishing theorem, H1(Xx, I
2
Eτ
∗L⊗N) = 0, and therefore

H0(Xx, IEτ
∗L⊗N)→ H0(Xx,

IE
I2
E

⊗τ ∗L⊗N |E) = H0(Xx, τ
∗(
aX
a2
X

⊗L⊗N)|E) = H0(X, (
aX
a2
X

⊗L⊗N)|x)

is surjective and we have

H0(Xx, IEτ
∗L⊗N) = H0(Xx, τ

∗(aXL
⊗N)) = H0(X, aX ⊗ L⊗N)

Thus we see that the map

H0(dx) : H0(X, aX ⊗ L⊗N)→ H0(X,
aX
a2
X

⊗ L⊗N |x) =
aX,x
a2
X,x

⊗ L⊗Nx

of the long exact sequence of cohomology is surjective. This completes the proof �
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