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Chapter 1

Introduction

The main aims of this thesis are to prove the Kédaira Embedding Theorem (Theorem-{25)
and the degeneration of the Frolicher Spectral sequence (Theorem for Kahler
manifolds through Hodge Theory.

The first one tells us that there is an embedding of every Kahler manifold with integral
Kéhler cohomology class (called Polarised Manifolds) in some complex projective
space. Now, by Chow’s Theorem, every complex projective manifold is a complex
algebraic variety. So we get a (1, 1)-correspondence between smooth complex projective
(algebraic) varieties and polarised manifolds.

The second one is equivalent to having #ﬁ)&% ~ HIX,0%) for p+q = k
where H?(X, Q%) is the sheaf cohomology of the holomorphic p-forms and F' is the
filtration FPH*(X,C) = D, 5priger H(X). (see Section and Theorem D It is

also equivalent to having the decomposition of betti numbers by, = > h?4 where

ptq=k
b, = dimcH"(X,C) and h?? := dime(HY(X,Q%)). Thus it can be called a weak
version of the Hodge decomposition theorem (Theorem.

Now if (X, O;;lg ) is a complete complex algebraic variety ( has the properties: quasi-projective,
compact with respect to analytic topology) with Zariski topology, we define the
algebraic de Rham complex to be the complex of the sheaves of algebraic differential

forms with exterior derivative. These are by nature locally free coherent sheaves

of O%9-modules. We also have the sheaf of holomorphic functions @%* on X. The

identity map

_[dX . Xan = (X, Og{n) — Xzar = (X7 O?(lg>
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is a morphism of sheaves. Let Coh,eus and Cohpgr be the categories of coherent
X

sheaves of O%g—modules and OF¢'-modules respectively. Then we have the functor
T : COhO()L(lg — COhOg{n

defined by pulling back any element of COhog(lg by Idx and tensoring it with O%" over
the pull-back of O% by Idx (see [5]). The Serre’s GAGA principle tells us that:

Theorem 1 (Serre 1956)
If X is a complete algebraic variety, the functor T is an equivalence of categories

Cohyay and Cohoan. Moreover, for every F € Cohyas we have
X X
HY X4, F) = HY (X, T(F)) Vg
By the GAGA theorem,
Hk<X7 (C) = Hk(‘)(? Q;(,an) = Hk(X7 Q%,alg)

where the first term is the complex cohomology of X with analytic topology, the
last two terms are Hypercohomology ( see Deﬁnition, the first isomorphism is
given by Theorem{I§ and the second isomorphism is obtained by applying GAGA to
hypercohomologies on the complexes of sheaves.

Again by the GAGA principle degeneracy at F; of the Frolicher spectral sequence
associated to the holomorphic and the algebraic de Rham complex are equivalent;
i.e. one degenerates at F; if the other does. So this weak version of the Hodge
decomposition theorem can be generalised for complete algebraic varieties.

We assume the reader is familiar with some multivariable complex analysis like Cauchy
integral formulas, Hartog’s theorem and Riemann’s Theorem( these can be found in [3]
and [I]), some differential geometry like De Rham’s Theorem and Poincare lemma and
Poincaré-Dolbeault lemma (these state the exactness of the de Rham complex and the
Dolbeault complex respectively), some sheaf cohomology and Cech cohomology (these

can be found in [5], [3] and [I]) By a smooth function we will mean a C*°-function.



Chapter 2

Complex Manifolds

Definition 2.0.1 (Complex Manifolds)

Let n € Zsy. A complex manifold X of dimension n, is a smooth (= C*)
2n-dimensional manifold and if there is a smooth atlas U = (Uy, ¢y : Uy — R* =
C")aer, such that the transition maps po0d5" : ¢s(Uas) = Ga(Ua) (Uap := UaNUp)
Ya, 8 € I are holomorphic maps on open subsets of C™.

In this case U is said to be a complex structure on X.

(The ideas presented in this section are adapted from the book [I])
Let Ocn . be the stalk of the sheaf of holomorphic functions at a point z € C". Let

Ol[n] denote Ocn (o,...0)- We have that O[n] is an integral domain, which follows from

.....

the Identity theorem, and also a local ring with the unique maximal ideal
m[n] :={f € O[n]: £(0,...,0) =0}

We prove that:

Proposition 2.0.2 O[n] is a unique factorization domain (UFD for brevity).

PRrROOF Clearly, O[0] = C which is indeed an integral domain. Suppose O[n — 1] is a
UFD and let f € O[n] \ {0}. Since f is not identically zero, we can assume that f is
a holomorphic function f: U — C in a neighbourhood U (say) of (0,..,0) € C" such
that

f(0,...,0,w) # 0 Yw e V \ {0},

where V ={z€ C:(0,..,0,2) € U}.
We first prove the following Lemma which is called the Weierstrass preparation

theorem:



Lemma 1 Let z; be the complex coordinate axes in C". If f is a holomorphic function
around (0, ..,0) in C™ with f(0,...,0) = 0 and is not identically zero on the z,-axis,
then in some smaller neighbourhood around the origin, there is a Weierstrass polynomaial
g of degree d in z, =t and a non-zero holomorphic function h such that f can be

uniquely expressed as

f=g-h

Proof of the Lemma : Let V(f):={f =0}.

Since f does not vanish identically on the z,-axis, we have that the power series
expansion for f around the origin has a term c - t* with ¢ # 0, and k& > 1. Choose
a very small € > 0. Then there is an open n-disc D, of radius » > 0, around the
origin and a 0 > 0, such that f(0,..,0,¢) > ¢ > 0 on the boundary sphere 0D, and
f(z1y ey 21, t) > % on the cylinder D" x 9D,.. Let by (21, .., Zn_1), -+, ba(215 ey Zn_1)

be the solutions of the equation

f(Zb ceey anl,t) =0

in D! x D,.. Then, by the residue theorem, we have the equality of holomorphic

function

. a1 td Of(z,t)
bl(z)+"'+bd(z)_27{\/_—1 8]D)T(f(zat)) ot

Now the elementary symmetric polynomials (), ..., E4(2) are polynomials in 5@ :=

b4 -+ bL and g(z,t) = N0 (—1VE;(2)t% 7 ¥(z,t) e D" xD,, and f =0 <

J=1

g = 0. Then h = ! is holomorphic on (D*~! x D) \ V(f), and has only removable
g
t-singularities for fixed z along V(f). Then h(z,t) extends to a function which is

dt V(z,t) €D x D,

holomorphic in t € D, for each fixed z € D.. But it also extends to a holomorphic

1
/ f(z, U)dv V(z,t) € D™ ! x D, This proves the lemma.
2mv/—1 Jop, v —1

By this lemma we can write f = g - u,

function h(z,t) =

where u is invertible in O[n] and ¢ is a Weierstrass polynomial with coefficients in
O[n — 1]. Now by Gauss’ Lemma, the ring of all Weierstrass polynomials W with
coefficients in O[n — 1] is a UFD. So there are irreducible polynomials g1, ..., g, € W
such that

f=u-1l9
j=1

4



and clearly ¢, ...,g. € W are unique upto multiplication by units. The rest of the
uniqueness part follows from the uniqueness in the Weierstrass preparation theorem.

OJ

2.1 Almost Complex Manifolds
Definition 2.1.1

1. (Complex Vector Bundles) A complex vector bundle of rank r on a real

manifold X is a real vector bundle (E,p) with p~'(X) = C" and a vector bundle

endomorphism J? = 1.

2. (Holomorphic Vector Bundles) A holomorphic vector bundle of rank r on
a complex manifold is a real vector bundle of rank 2r such that there is a trivialization
U = (U, Ya)acr such that the transition maps g 5 = @/}amﬂﬁ_l tUapxC" — Uy g x C"
are holomorphic (where U, g := U, NUg) Vo, B € 1.

A complez structured = (Un, ¢o)acr 0n a complex manifold X, induces an endomorphism
J = TX,]R — TX,R

with J? = —1 defined by J|y, := Idy, x (v/=1-Idcn) : Txr|v, — Uy X C". Now every
vector bundle endomorphism I :=: Txr — T'xr with I? = —1 need not come from a

complex structure on a even dimensional manifold

Definition 2.1.2 (Almost complex structures and Integrable almost complex
structures) An almost complex structure on a manifold X, is a smooth vector
bundle endomorphism J of the tangent bundle of X, such that J*> = —1; and the pair
(X, J) is called an almost complex manifold. Such an almost complex structure

15 said to be integrable if it comes from a complex structure on the manifold.

Note: Here by the "Newlander-Nirenberg question” we will mean the question that

asks the conditions on the pair (X, J) which makes J integrable Let Tx g be the real

5



tangent bundle of an almost complex manifold (X, J) of real dimension 2n and define:

TX,(C = TX,R % C
T)l(’o = TX,IR - Z'JTX’R

T)O(’l = TX,R + ’iJTX’R

Clearly, these three above are complex vector bundles on X. Moreover, if J is integrable,
Ty is a holomorphic vector bundle on the complex manifold X. Let Axc = Txe,
ALY = (T°), A% = (Ty)* be the complex duals of these bundles respectively. Let
Ak g be the real dual of Tx g.

Also define A% 5 = N'(Akp) and A% = A"(AL ) and A} = AP(AY’) ®c
NU(ASY), and Q% := AR°. The first two are called the bundle of real differential k-
forms, complex differential k-forms on X and when J is integrable on X, the
third one is called the bundle of holomorphic p- forms on X.

We have A% c = @, - AY" Let N(Axc) = C® AN'(Axc) ® N(Axc) @ -+,
ANAxr) = ROA (Axr) DA (AxR)D: - and A*(Axc) and N*(Axg) are homogeneous
part of these of degree k respectively. Let d’°a be the degree of a differential form (real
or complex) alpha (or we sometimes say a homogeneous differential form of degree k,
when we want to call all the elements of N(Axc) and \(Axr) as differential forms.)
A(Axc) and N(Axr) are what we call graded commutative algebras meaning
alNp= (—1)"00"‘1055 A a for any two homogeneous differential forms.

Then for any chart (U, z1, Y1, ..., Tn, Yn) of X, with J(z;) = y;, and J(y;) = —x;, for
allj € N, Let zj := x;+1-y;, Z; = xj—1-y;, dz; = dx;+i-dy; and dz; := dv;—i-dy;,
VjeN,.

For every j € N,, and every smooth function f on U we define:

0 100,
aZj o 2 8.1']‘ 8%
oL 00
833‘ o 2 (%Ej 8%
k=1
of =% L,
8zk
k=1



We have the maps Re,Im : Tx c — Txr defined by Re(v +i-w) :=v and Im(v+1i-
w) == w, for real vector fields v,w on X. Then Re : Ty — Tx g and Idry, —v/—1-J
are inverse to each other and hence Ty’ = Tx g are isomorphic as real vector bundles.
Then (a—zj)lgjgn is a basis of Ty, and (8_2j>1§j§n is a basis of Ty'; and (dz;)1<j<n
and (dz;)1<j<n are their dual bases, respectively. We extend d,0 and 0 on N\(Axc)
by

pla A B) = p(a) A B+ (1) u(B) Ao

where o and 8 are homogeneous differential forms Yu = d, 0, 0.

Then we have the sequences of sheaves:

A S A S (2.1)
oG Apa O ppatt O (2.2)

are exact by the Poincaré Lemma and the Poincaré-Dolbeault Lemma respectively,
which we will assume to be true here. For the proofs the reader may see [3]. Let us
denote by A*(X), AP9(X), AE(X) the space of global sections of A g, AR and A% ¢
respectively, and let .A]’fh, R and .Afé@ be the stalks of the sheaves at x associated

to these bundles respectively.

Then the cohomologies of the complexes:

b AR X)) S A (X)) S (2.3)
D pax) B prarix) & (2.4)

are called the de Rham cohomology and Dolbeault cohomology respectively and
we denote the k'™-cohomology 0f by HY (X, R) and that of the complexification
of by HY (X, C) and the q™-cohomology of by Hy*(X), or HZ(X).

Note: The de Rham theorem tells us that Hp,(X,K) = H*(X,K) where the
second one is singular cohomology; for K = R or C. We also have that H*(X,K) is
isomorphic to the kt"-sheaf cohomology of the constant sheaf K on X, for K =R, C.

Definition 2.1.3

1. Letp: E — X be a C*®-vector bundle on a smooth (= C*) manifold X, of rank r.
Then a smooth vector subbundle V C E of & of rank k < r, is called a k-distribution
on (E,X).



A k-distribution on (Txr, X) is called a real k-distribution on X.

Similarly a complex k-distribution on X is a smooth subbundle of rank k of
(Tex, X).

A holomorphic k-distribution on a complex manifold is a holomorphic subbundle
of T;go of complex rank r.

. A real (resp. complex) distribution V is said to be integrable if X has an open
cover U = (Uy)aer such that 3 a C* map ¢y : U — REMXF(pegp,  C2dimeX=F)
such that V|y = ker(d¢y) YU e U

A holomorphic k-distribution V is one for which there is an open cover U and
holomorphic maps ¢y : U — CHMeX=F for eachu € U such that V|y = ker(doy) VYU €
U.

We use the following theorem that characterizes real distributions to answer the Newlander

-Nirenberg Question:

Theorem 2 (Frobenius Theorem)

A real distribution V is integrable if and only if [V, V] C V. o

Frobenius theorem gives us the following answer to this question known as the famous

Newlander-Nirenberg theorem:

Theorem 3 (Newlander-Nirenberg theorem) An almost complex structure J on
a manifold X is integrable iff [T)Ogl, T)Ogl] C T%l (which is same as saying [T)lgo, T)l(’o] -

Ty by taking conjugates) O

PrROOF We prove this theorem by the following lemma which is a more stronger

version of the Frobenius theorem:

Lemma 2 Let E be a holomorphic k-distribution on a complex manifold X. Then E

is integrable if and only if [E,E] C E 0

Proof of the Lemma : We see that since E C Ty° and [E, E] C E = [Re(E), Re(E)] C
Re(FE) and thus by the Frobenius integrability theorem in real case, Re(E) is integrable.
So there is an open cover U of X and real smooth submersive maps ¢y : U — V(U)
where V(U) is an open subset of R?"~2* such that

Re(E)|y = ker(doy)

8



VU € U. Clearly, Tyyr = (Txr|v)/Re(E)|y YU € U, and since Re(F) is invariant
under the action of J, J induces a complex structure on V(U) Let M(U) be a
submanifold of U, which is transverse to the fibers of ¢y, (such a manifold exists if we
refine U sufficiently). Then ¢y is a diffeomorphism of M (U) onto V(U); as Re(E)|y ®
Tyw)r (after shrinking U if necessary), the complex structure on (Tx r|v)/Re(E)|v
by J induces a complex structure on Ty r. As [Tv@w)r, Tuw)r] € Tuw)r (for
Re(E)|y ® Tuwyr) YU € U. we get that the complex structure on every V(U) is
integrable. This makes ¢y is a holomorphic map. This proves the lemma.

Since the statement is local, we assume X to be an open subset of R?" and that J
is real analytic and can be given by a convergent power series. Clearly, J extends
to a holomorphic map U — C™ where U is a neighbourhood of X in C". J gives a
holomorphic distribution £ on U defined by the space corresponding to the eigenvalue
V=1 of J. We have E|x = Ty".

We see that ' = Tyc—i-J1yc and E|x = Txr—i-JTx . So we see that [E, E] C E.
As F is integrable, locally there are holomorphic submersions ¢y : V. — C" on U.
Again as the statement we want to show is local, we assume there is a holomorphic
map ¢ : U — C" Now, ¢|x : X — ¢(X) is a local diffeomorphism where ¢(X)
is open in C"; as Tx C Ty = C?" can be identified with R?® C C?* which is
transversal to Re(F) = T)lc’o. It follows that d¢|r, is an isomorphism and so ¢ is
a local diffeomorphism.

We want to show that the pullback of the complex structure by ¢ and the the
associated complex structure on X are equal. Clearly, J gives a complex structure on
T'x », and we have a complex structure on 7y, given by the isomorphism 7t , = C?n.
We see that Re(E), C Ty, = Tx, ® C is generated by —i - Ja so that a = iJa in

Ty./Re(E), for all a € T, and we see that the composition
TXJ — TU,z — TU,ac/Re(E)ac

for every € Xand it follows that the local isomorphism d¢ : T'x g — T~ r identifies

J with the complex structure on C"
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Chapter 3

Kahler Manifolds

Let (X, J) be an almost complex manifold. A Hermitian metric h: Txg x Txg —
C, on (X, J) is a collection of Hermitian metrics h, : T, X Tk, — C, (of complex
vector spaces) taking Tk, as a complex vector space, where multiplication by v/—1
is given by the endomorphism J, Vo € X, such that all the functions h;; : = —
hz(a%iv %) on X are smooth for all chosen chart (U, (zx)1<k<n), Where n = dimgX.
Since h takes values in C, we can express h as v+ i -v where g and h are tensor fields

on X. We denote Re(h) = u and Im(h) = v.

We have the following correspondence:
{The set of all smooth Hermitian metrics on X}

> {The set of all smooth real (1, 1)-differential forms on X}

given by
h+— —Im(h)

and

(wo(IdTX’R®J)—\/—_1)-w<—<w

Definition 3.0.1

1. We say that a (1,1) differential form w on X is positive if w(u, Jv) > 0 for any two
vector fields u and v
We see that a (1, 1) differential form is positive if and only if the associated Hermitian

metric is positive definite.

11



2. We say that the smooth Hermitian metric on X is Kdahler and the associated form
w is Kahler and the manifold X is Kahler if the almost complex structure on X 1is

integrable and the 2-form w is closed.

We also have the following proposition which is easy to show and so we omit the

proof:

Proposition 3.0.2 Let h be a Hermitian metric and w be the associated (1, 1)-differential
form on an almost complex manifold (X, J). Then the volume form of X is equal to

n

w_' where 2n = dimpX.
n!

3.1 Example of Kahler Manifolds

Example 1 : (Riemann surfaces)

A Riemann surface X is a complex manifold. Any Hermitian metric on X is Kahler
since X is a 2-dimensional real manifold implies that the symplectic real 2-form
associated to the Hermitian metric has to be closed.

Example 2 : (Complex tori)

Let n be a positive integer and I" be a lattice (i.e. a discrete subgroup) in C", and
consider the complex n-tori T" := ?n If we take Hermitian metrics with constant
coefficients on C”, then that metric is invariant under translations and therefore
induces a metric on T".

Example 3 : (Kdhler manifolds with Curvature form of a Line Bundle)
Let X be a complex manifold and let (L, h) be a holomorphic Hermitian line bundle
on X. Let U = (U, )aer is a complex atlas on X that trivializes L, via. the maps ¢, :

L|y, — U, x C™. This means that we have o, € L(U,) such that o,(z) =0 V& € U,
Va € 1. Let go5 : Uy NUg — C be the transition function ¢, o gbgl. Then

Oa = Ga,308 : UaﬁUg — C
Let hy := h(0a,04) Yo € I, then hy = |gas]” - hs : Uy N Uz — C. The 2-forms

00(log(hy)) : Uy — C

Wqo -

1
T omy/—1
are such that w, and wg coincide on U, N Upg, as

L = 2
o — wg = ———=00(l o =0
w wp 27T\/—_1 (Og’g ,5| )

12



Therefore the local 2-forms w, glue together to give a global 2-form ©(L, k) and it

is called the curvature form of (L, h). This form is closed for it is locally exact.

Moreover it is of type (1,1) and therefore it is a Kéhler form on X.

Example 4 : (Fubini-Study metric on CP")

Let [ be any line through origin (by a line through origin in this section we will mean

a complex vector subspace of complex dimension 1) on C"*! and let p : C*** — CP"

be the quotient map. Let U; := p({(20, -+, 2) € CP" : 2; # 0}), for all i € N,,.

Then {p(l)} x I € CP" x C"*'. Let Ocpr(—1) be the union of all such {p(l)} x I.

For every i € N,,, let S(U;) be the set of all lines through the origin [ that intersects

Ui, and for every | € S(U;) choose an element ai(p(l)) = [20," -+ ,2n] € [ such that
= 1. Then o; = j— oj on U; NUj, where j— and ; are meromorphic functions on

j i

CP" that are holomorphlc on U;NU;. Thus, the maps ¢, : O(—1)(U;) = U; x S(U;) —

Ui x C: (p(l),c-0i(p(l))) = (p(l),c-1) Ve € C and V line through the origin [ in

Cn*1, gives a line bundle structure on Ocpr(—1) by being the trivialization maps of

it. This line bundle on CP" is called the tautological line bundle.

Let Ocpr(+1) be the dual of the tautological line bundle, which we call the Twisted

bundle of Serre. Let h be the standard Hermitian metric (usually denoted by

Pstandard) o0 C"1. This defines a Hermitian metric on the subbundle
Ocpn(—l) - CP" x (Cn+1.

Let h* be the metric on Ocpr(+1) dual to the metric h on the tautological bundle.
Let w be the curvature form O(Ocpn (+1) h*). Then

09(log(h* (o))

W; =

\/_

with notations as Example 3. Now h*(o;) = :U; =C" — C and

(Uz)
h(oi) (21, 2n) == 14> 0, HzH2 and w; (21, , 2,) =

We also get that this (1, 1)-form is positive:

1

d0log —
e DR

Lemma 3 (Positivity lemma of Fubini-Study metric) The form w on CP"

defined above is positive o
_ 1 a1 " 112 " zidz
PROOF 0log( - 5) = _ou+ 27;:1 ||z]||2) = — Zj_i A 5 implies,
1+Zj:1 [E2 1+Zj:1 A 1+Zj:1 [E2
iz 2) = VT (0 1P dzy A dzy) + (3 2dZ5) A (X (3dz))
i\~1, """ y~n) — . n
2 (1+ Zj:l ||Zj||2)2
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and so w;(0,...,0) = % - Y. dz; A\ dZ;, which is positive. Now, from definition of the
Fubini-Study metric, we see that it is invariant under biholomorphic maps C"*! onto
itself which preserve the standard metric, and clearly, SU(n + 1) acts on C"*! by
these maps, and this action keeps w invariant. Thus w is positive everywhere.

This construction generalizes in the case of projective bundles over a compact Kéahler
manifold, which is described below:

Example 5 : (Fubini-Study metric on Projective Bundles over a compact
Kéahler manifold)

Let 7 : E— X be a holomorphic vector bundle of rank r + 1, on a complex manifold
X. Let E* := E '\ O be the complement of the zero section Og of the bundle £. The
constant sheaf C% of stalks C* is a group in itself and acts on E* in the natural way.
Let us denote the quotient of this action by P(E). Let pg : E* — P(E)

Let U := (Uy, ¢a)acr be a trivializing open cover of F, by connected open sets. Then
¢o : Ely, — Uy x C™1 are biholomorphic maps and by passing through the quotients

of the action of C% we get the maps ¢, satisfying the commutative diagram:
7Y U) \ 0 23 U, x Cr+t
PE Idy,, Xper+1
P(r1(Uy)) % U, x CP"

The transition maps go g := ¢4 © qbgl : Uy, NUz = GL(r + 1,C), send lines through

origin to lines through origin and we have the commutative triangle of biholomorphic

maps:
O 1
(Ua N U3) x P’ FO)RC) (U Us) x BT
P(¢a)
P(¢s)
YU, N U))

and so we have a well-defined complex manifold structure on P(£) which makes the

map P(7) defined by the diagram:



holomorphic.

Definition 3.1.1 The pair (P(E),P()) is called the projective bundle on X, associated
to the vector bundle (E, ).

We can generalize the tautological bundle on CP" to P(E). Let V' := P(7)*E be the
pull-back of the line bundle E to P(E). Let ¢ : V' — P(E) be the pull-back P(7)* ().
For every x € X, define Op(g)(—1), to be the union of all pairs ¢(I) x I C P(E), x V,
where [ is a line through origin in the fiber V, over z and P(F), is the fiber of P(F)
over z, and let Op(g)(—1) := HyexOp(g)(—1),., and we define the complex manifold

structure on Op(g)(—1) in the natural way and it becomes a holomorphic bundle on

P(E).

Definition 3.1.2 The bundle Opg)(—1) on P(E) is called the tautological bundle.
The dual of the bundle Opg)(—1) is denoted by Oppy(+1), and we call it the twisted

bundle of Serre

Proposition 3.1.3 Let (X, wx) be a compact Kihler manifold and E be a holomorphic
bundle on X, then the manifold P(FE) is Kdihler.

PROOF Let h be a Hermitian metric on E. Then h induces a Hermitian metric
on both V' and therefore induces a Hermitian metric on Opg)(—1) by restriction.
The curvature form wp of the induced metric on the dual Opg)(4+1) is a form on
P(E) whose restriction on each fiber P(7)~!(z) is positive (for this restriction is the
Fubini-Study metric on P(E,) coming from (E,, h;) = (C™ hgandara)), but it may
not be positive everywhere. Consider the unit spheres S(E,) := {v € E, : hy(v,v) = 1}
of each fibers E,. Consider only the (biholomorphic) transition maps that take values
in U(r + 1,C) (these maps actually take values in SU(r + 1)); i.e. the transition
maps preserve the Hermitian metric, (and therefore map unit vectors of one fiber to
the unit vectors of the other fiber of E). Then by these transition maps the spaces
S(E,) glue over X, to give a set S(F), a map s : S(E) — X and trivializing charts
o 0 s (U,) — U, x SE, where (S7 := {z € C"™' : hyundara(2, 2) = 1}) giving S(F)
the structure of a manifold and making s smooth. S(E) is called the sphere bundle
over X, associated to E, and if X is compact, S(FE) is also compact and P(F) is a

quotient space of S(F) in the natural way, so P(F) is compact. Being a form on a
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compact manifold wg is bounded; (i.e. bounded on the sphere bundle S(A\” T5p));
where T E)) is the cotangent bundle on P(FE)). Thus, for sufficiently large A >> 0,

the form

w:=wp+ A P(r)wx

is a real closed form of type (1,1), which is positive on P(E). O

3.2 Blowups

Let Y be a complex submanifold of codimension kof a complex manifold of dimension
n. For every y € Y, there is a complex chart U around y and a collection of k-holomorphic
functions (f1, ..., fx) from U to C with independent differentials such that U NY =
{z€U: fi(z) =--- = fr(z) = 0} . This set of functions is called the system of local

equations of Y around y. We have the following proposition:

Proposition 3.2.1 Lety €Y. Let f := (f1,..., fx) and g := (g1, ..., gx) be the system
of local equations around the open sets U and V' respectively around y, then there exist
a matriz M = (M; ;)1<ij<k of functions holomorphic on U NV and invertible along
UNV Y. Moreover, the restriction of the entries of this matriz to Y is uniquely

determined by the local equations f and g.

Proor Without loss of generality, consider the elements of f to be the first £ complex

coordinates (z1, ..., zx) in UNV. Consider the power series of the functions g; given by

9i(21, oy 2n) = cf)’o + (ci’lzl 4+ cf;lzn) + (c’lzlzf + 03’722212’2 coeddm )

n,n<n

Then
0=g(2) =9(0,...,0, k11, ..., 2) =

0 il il 02 2 02 in 2
=g + (G2 o+ 6 zn) + (G e Zhet T Gl e @k 12642 0 G z) +

Vze{weUNVNY : :w =---=wp=0}. Thus all the coefficients of the above
equation are zero and therefore there exist holomorphic functions N; (21, ..., z,) 1,7 €

N, such that

gi(Zl, ceey Zn) = ZNjﬂ'(Zl? ceey Zn)Zj.



Thus there are holomorphic functions M; ; : UNV — C for 7, j € Nj such that

k
9i = Z M;;f;
j=1
Taking differentials,
k k
dg; = ZMj,idfj + Z fj-dMj;
=1 j=1

and so,
k

dgily =Y (Myly - dfs|Y)

j=1
The uniqueness follows from the fact that (df;|y); and (dgi|y); are independent on

unvny. g

Definition 3.2.2 (Conormal bundle)

Choose an open cover U = (Uy)aer of X by open sets U, of X, such that for every
a € I, 3 a system of local equations f* = (ff, ..., %) of Y, on U,. Then by the above
Proposition 3 matrices M*P = (Mzajﬁ)” of holomorphic functions defined uniquely
and invertible over Y, satisfying dffly = Z?Zl Mjcfi’ﬂ|y : dff|y. So, we see that the
spaces U, x spanc{f{, ..., f&} glue together to give a vector bundle N;/X wa. the
transition functions M*Ply = (MZO‘J’B\Y)” The fibers Ny, of this vector bundle
consists of all the complex linear forms on Tx , which is zero on Ty, for everyy € Y.

This vector bundle is called the conormal bundle of Y in X.

In the case of the above definition and U € U, with f = (f1,..., fx), being the system

of local equations on U of Y < X. Define
Uy :={(Z,2) e CP*"' x U : Z;f;(2) = Z; fi(2) V(i,j) € Ny}

where Z = [Z; : --- : Z}] (i.e. Z is the line in CP* that passes through origin
and (Zy,...,Z) ) and Z; # 0 for some j € Nj. Define 7 : Uy — U given by
the restriction of the projection map CP*' x U — U. Clearly, Uy is a complex
submanifold of CP*~! x U, and the map 7 is holomorphic. By defining the map
Yu U\Y = 75U\ Y) defined by vy (2) = ([fi(2) : - fu(2)],2) V2€U\Y, we
see that TU‘TJI(U\Y) and vy are holomorphic maps inverse to each other. We also see
that 7' (y) = CP* ' x {y}, for every y € Y N U.

Now let U,V € U, and let f = (fi,..., fxr) and ¢ = (¢1,...,gx) be the system of
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local equations on U, and V respectively. Then by the last proposition there is a
matrix MY = (M;:");; of holomorphic functions on U NV — C that are uniquely
determined and invertible on U NV NY, such that

k

fz'U - ZMJ{J@?V ’ f]V (3.1)

j=1

on UNV NY. Then the equation above defines PV : 7} (UNV)\Y) —
7 (UNV)\Y) by

k k

PUV(IFY (2) - fY (2)]2) = (Do MG - f e ) MY - £ ] %)

= (/) (2] 2)

and we have that PYV satisfies the commutative diagram,

PU,V

T (UNV)\Y) » T (UNV)\Y)

UNV)\Y

and PV is nothing but P(*MY") and therefore PYV =1 = P(!MY"V)~1 defines biholomorphic
maps 7, (UNV)\Y) = 7,'(UNV)\Y) which extend to a biholomorphic maps

7 UNV) = (UNV)
by continuity, which is again biholomorphic by Hartog’s theorem.

Definition 3.2.3 The spaces Uy and the maps Ty Uy = U defined above glue
together over X, via. the transition maps PECMYV)=L for U,V € U to give a complex
manifold Xy and a holomorphic map 7 : Xy — X. The pair (Xy,T) 18 called the
Blowup of X along Y.

Note:

1. The transition maps P((MYV)~! = P((!MYV)~1) are also the transition maps of the
projective bundle corresponding to the Normal Bundle Ny, y, where the normal

bundle is defined to be the dual of the conormal bundle Ny, of ¥ in X. So T I(Y)
P(Ny/x).
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2. 771(Y) is a complex submanifold of Xy of codimension 1, (a complex submanifold
of codimension 1 is called a Hypersurface or a Holomorphic divisor). Because
with notations as in Definition if U el and fY = (fY,..., f7) is the system of
local equation of Y in X, then there is some ¢ € Ny such that fio7r(u) =0 = f;jo7(u)

for all 5 € Ny. We now prove the following lemma:

Lemma 4 3 a holomorphic line bundle L on Xy which restricts to the twisted bundle

Op(ny, ) (+1) on 771(Y), and it is trivial outside 7= (Y). 0

PROOF Let D be a holomorphic divisor of a complex manifold X. Let V be a covering
of X by open sets, such that for every U € V, there is a holomorphic function
fY:V = C,such that VNY = f¥=0. Weset X\ D €V and fX\? =1 on
X \ D. By Equality and Proposition we get that the transition functions
g%V : UNV — C of the conormal bundle of D < X, are given by ¢"V = fu/fv
and are invertible on U N V. Let Ox(—D) be the holomorphic line bundle with
the transition functions ¢V U,V € V then we call Ox(—D) the Line Bundle
associated to the divisor D. Then this line bundle is trivial outside X. Now, by
and Propositionwe have dfV = g¥Vdf" along D, so Ox(—D)|p is isomorphic
to the conormal bundle of D — X.

We now prove the following claim:

Claim: Theline bundle Ox, (—77'(Y)) restricts to the twisted bundle Op(yy, ) (+1)
on 7 1Y) = P(Ny/x).

Proof of the claim: By the arguments above we are reduced to showing that
N vy xy = Opvy)y)(—1). The differential 7. : Tk, — 7"Tx induces a map
Ty - N‘r_l(Y) IRy 7*T'x and we check that this map is injective and gives the
required isomorphism onto Op(y,, /%) (—1) C 7*Tx This follows from the identification

7 1Y) = P(Ny/x). OWe now show the next theorem:

Theorem 4 The manifold Xy of the blowup (Xy,7) of a Kdihler manifold (X,wx)

by a compact complex submanifold Y is Kahler, and it is compact if X is compact.n

PROOF The pull-back 7*(wx) of the Kéahler form is positive outside 771(Y"), but only

semi-positive along 771 (Y), for

keT(T*(wX)lel(y)) = HyeyTTfl(y)
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Now by the last lemma, 3 a holomorphic line bundle L on Xy which restricts to
the twisted bundle Op(y,,)(+1) on 77H(Y), and it is trivial outside 77(Y). By
partition of unity we can extend the Fubini-Study metric h on Op(n, «)(+1) to a
Hermitian metric on L, which is the pull-back of the standard metric on C by the
trivialization over Xy \ 771(Y), outside a compact neighbourhood of 771(Y). The
curvature form wy := O(L, hy) is the symplectic form of the Fubini-Study metric
on 7 1(Y) = P(Ny,x)(+1) and zero outside a compact neighbourhood of 77 (Y")

Moreover, wy, is strictly positive on the bundle ker(r,) over the blow-up, and
ker(T*(wx)lr1(v) = Hyey Tr1y)
, we get that supp(wy) is compact and therefore there is some A >> 0, such that
w:=A 7" (wx) +wr

is positive, and real closed of type (1,1) and (Xy,w) is a Kihler manifold.
Since Xy is Hausdorff and X is locally compact Hausdorff and 7 is closed and has
compact fibers, we see that 7 is a proper map; i.e. inverse image of compact subspaces

is compact under 7. Thus Xy is compact if and only if X is compact. O
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Chapter 4

Harmonic Forms and Hodge

Decomposition

Convention: In this chapter we will consider only smooth oriented manifolds. So
whenever we say that M is a manifold, it means it is a smooth oriented manifold. In

case it is a complex manifold we will mention it.

4.1 Hodge star operators and Laplacians

Convention: In this chapter we will consider only oriented manifolds. So whenever

we say that M is a manifold, it means it is a oriented manifold.

4.1.1 The Hodge star operator

Let X be a differentiable Riemannian manifold with Riemann metric g. Let ey, ..e,
be an orthonormal basis of Tk, Then for this metric on A%, and ey, ..e, be an
orthonormal basis of Ty ;, €] A ... A e} is an orthonormal basis of Aﬁg’x. Now assume
that X is oriented, [X] be the orientation class of X and let Vol be the volume form
of X relative to g. The L?-metric on the space A% (X) of C*-differential forms with

compact support on X is defined by
(@ B)ye = [ alaB) Vol Va5 e A5(X)
[X]

The pairing Aﬁ%,x ®r Aﬁ;k — Ag, = R given by the wedge product, gives an

isomorphism p : Aﬁj S H om(Ag ,,R). We also have the R-isomorphism of Ag ,
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with its dual, so we get an isomorphism of sections
Ak B gn—k
*p - AR,:L’ — AR,J} .

which glues as a C*°-map giving an isomorphism of bundles. This operator is called
the Hodge star operator. We can consider this operator on the sheaves of sections
of its domain bundle and codomain bundle.

This operator has the following essential property:

Proposition 4.1.1(«, 8), ;2 = f[X] aNx(B) Vo, e AL (X)

But now if X is also a complex manifold, the metric g and the almost complex
structure J on X together give a hermitian metric, say h on X and we have a L2-metric
(is this L? ?)

(0 B g = /[X] ha, B) Vol Vo, f € (Ac):,(X)

Now this h gives a C-conjugate linear isomorphism of A(’ax with its dual. Now if we

extend * by C-linearity, we get a C-isomorphism
w Al o S AV

but not a C-antilinear isomorphism. So vaguely saying 7 does not capture the
structure provided by h, it only captures the structure provided by g”’. But if we
define () := *(8) VB € (Ac)X,(X), then the operator * ”does capture the structure

given by h” and we get the following proposition:

Proposition 4.1.2 (o, 8),, ;- = f[X} a AF(B) Va,B € (Ac)k(X)

This operator * is also considered as the Hodge star operator but here we will call it
the Conjugate star operator

We have seen that for a complex manifold X, the conjugate star operator is more
closely related to its complex structure than the (real) star operator. Having this
in mind we define the star operator for holomorphic hermitian vector bundles on a
complex manifold followingly:

Let (E, hg) be a holomorphic hermitian vector bundle on a complex manifold X, with

the Dolbeault operator 0. Then this also defines a L? — metric :
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<a76>hE,L2 = f[X} ]’LE(Oé,B) VOZ \V/Ol,ﬂ < (AE@)géq
Then the pairing:

(A7 @ B) @ (AY" @ BY) » AY" = C

makes AY"" 9 ®¢ E* dual to A%? @c F as C-vector spaces. Now by the C-conjugate
linear isomorphism of Q%q ®c E with its dual. We define the Hodge star operator

xg, of the bundle E by the conjugate isomorphism:
xp AV QE — AV ® B
C C
Consider the canonical bundle Kx := A%’ on X. Then this is a holomorphic line
bundle on X. Moreover,

An,nfq E*gAO,nfq K E*
X9 X @ ExQE

Now since A} = A% @ A", We can take E = Q%°. Then we get 0y = (—1)P0.

This also satisfies the similar proposition:

Proposition 4.1.3 (o, 8), > = f[X] aN*p(B8) Va,B € (Ax)
Moreover, if we define Oy = (—1)%% 5! 0 Oyop- 0 *p. Then g is the (formal)

dual of O w.r.t. the L?> metric induced by hg

Moreover, we have 9 = (—1)”%@*, where the coefficient 2 comes from the relation
2kh¥) = ShP4. Now just replace E by A%’ @c E

One of the great things the Hodge star operators do is to provide us with the formal
duals of operators for which come paired with another operator, which we call its
Quasi-adjoint here, such that these two together satisfy a certain condition which
we will mention below. We are lucky that most of the operators we study in this

Chapter have a Quasi-adjoint (mostly they are Quasi-adjoint to themselves):

4.1.2 Operators with a Quasi-adjoint and their Formal Duals

Let X be a Riemannian manifold of dimension n and let V' = Ty i be the real
cotangent bundle of X, and let W =V ®g C be the complexified cotangent bundle.

If X is a complex manifold we have the decomposition A"W = € WP where

pta=r
WP is the set of all (p, ¢)-forms.

23



Let A(V) =R&AVESA*V&--- . and A(W) := A(W) @z C Then under wedge
product of forms A(V) and A(W) form what we call a graded commutative
algebra (not to be confused with a commutative algebra which is graded) which
means for « € AFIW and 8 € AW we have a A 8= (=1)*B A a. for all k,1 > 0.
Every element of AW can be called homogeneous (differential) form of degree
k, for all non-negative k.

Let M, : A(V) = A"V and M,, : A(W) — APYWV be projection maps. We denote

the complexification of M, by M, too. We define the following maps:

(a) Define k : A(V) = A(V) by & := Z(—l)"’””l‘lT and we see at once that ** = K
r>0
and k? =1

(b) Any homogeneous form n of degree r (r > 0) defines an operator e(n) :=n A (%) :
AW) = A(W)
(¢) When X is a complex manifold, define J : A(W) — A(W) by J := Z PP,

p=>0,g>0
and we see that J? = k.

Definition 4.1.4 Let r,s € Z and T : A¥(X) — A*"(X) be a R-linear map. Then
here we call, another R-linear operator S : A¥(X) — A7 (X) to be the Quasi-
adjoint to T if dc : Z — R such that

/XTaAﬁ:c(dO,B)/ aASB

X

for all a and B which are differential forms of appropriate orders and compact support.

Then we define the (formal) dual of T, denoted by T* : A*(X) — A*"(X) as:
T* :=c(k)-x'oSox=c(k) ko (xS%).

When X is a complex Hermitian manifold, a C-linear map T : APY(X) — APT175(X)
is Quasi- adjoint to another C-linear map S : AP4(X) — APT935(X) if it satisfies
a relation similar to above where ¢ can be a complex number and it has its dual defined

as above except the fact that we use the conjugate star operator * in place of .

The formal duals in the case of maps between differential forms with E coefficients
where E is a holomorphic Hermitian vector bundle on a complex hermitian manifold
is defined similarly using the Hodge star operator associated to the bundle and in this

case also ¢ s a complex number.
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The name dual comes from the following proposition:

Proposition 4.1.5 Let X be a complex hermitian manifold. Let T : AP9(X) —
APt (X)) be Quasi-adjoint to the C-linear map S : AP4(X) — APT4S(X). Then

(T, ) = (@, T75)

, for all o and B which are differential forms of appropriate type and compact support.
The inner product above is the L*-metric defined by the Hermitian metric h. The other
(formal) duals also satisfy similar equalities. The only thing is that for real operators,
the L?-metric is defined by the Riemannian metric and for operators on vector valued
differential forms on a complex Hermitian manifold, the L*-metric comes from the

Hermitian metric of the holomorphic vector bundle and the base space.

PrROOF (Ta, B)Vol. = [(Ta A%3 = c¢- [ya NS Ff = c~onz/\¥’1S ¥5 =
(o, T*B)Vol. = (Ta,p) = (a, T*3), for differential forms o and § of appropriate

type.

Let X be a compact complex manifold and let w be a Kéhler form on X. Let
Li=wA(): Ay > A2 ¢ ar—whAa

We call this operator the Lefschetz operator.
Clearly, after complexifying L, L = e(w).
The following corollary of the above proposition tell us what are the duals of certain

useful operators.

Corollary 4.1.6

(a) Let X be a real Riemannian manifold with Riemannian metric g. The dual d* of the

exterior derivative d : A% — A% is given by
d* = (—=1)F 71 dx

(b) Let n be a homogeneous form of degree v (r > 0). The dual e(n)* of the operator
e(n) ==n A (x) : ANW — AMTIV s given by

e(n)" = (=)@ (F e (n)).
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(c) Let X be a complex Hermitian manifold with Hermitian metric h. The dual 0* of

the operator 8 : AYY — A is given by
oF = (—1)"*"1o%

(d) Let X be a complex Hermitian manifold with Hermitian metric h. The dual " of

the operator 0 : A%Y — AZI! is given by
9 = (-1)r="1o%

(e) Let X be a complex Hermitian manifold with Hermitian metric h and let (E, hg)
be the Hermitian holomorphic vector bundle X. The dual 5*E of the operator O :
APE s AP s given by

Oy = (=1)"%5'95%g

(f) Let X be a compact complex manifold and let w be a Kdhler form on X. The dual
L* of the Lefschetz operator L = w A (+) : A% — A2 is given by L* =% 'L*

ProoOF We will only prove 1 and 2. Clearly, 5. follows from 2. The proof of others
are similar to that of 1.
Proof of 1 : Clearly, / da N = (—1)d0°‘+1/ a Ndp for all @ and § which are
differential forms of appfopriate orders and Coir(lpact support. This follows from
Leibnitz rule for d and the Stokes’ Theorem: Leibnitz rule gives us, d(a A ) =
daAB+(—1)">andf. Now by Stokes’ Theorem Jx d(anpB) =0.Now, d°f = d°a+1.
This proves 1.
Proof of 2 : Clearly,
e(manB=nrang = (=11 (arnAp) = (=) (ane(n)s and da-d =
r(dimgX — k — r) therefore / e(nanp= (—1)T(dimRXkT)/ aNe(n)p

b's b's

for any two complex differential forms a and S such that d’a + d°8 + r = dimg X.
This proves 2. U

4.1.3 Computing the Hodge star operator locally on a Manifold
Let n be a positive integer. For every p € N,,, let

Ly i =A{p= (1, optp) €NP | g <o < g}

I, == HpENn Ip,n
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The set I,, (resp. I,,) is called the set of all strictly increasing multinidices (resp.
multiindices of length p) chosen from 1,...n. Suppose p = (1, ...1t,) € I,. Then we
say that the integer p is the length of u and write |u| = p. We also write u; € p to

mean that u; is a component of y; i.e. we treat the multiindices as ”ordered sets”.

Real Manifolds with respect to the real co-ordinate chart

Let (X, g) be a Riemannian manifold of dimension n. Let (U, ¢ = (z1,...,2,)) be a
chart of (X, g) and let V be the cotangent bundle over U with ¢ giving an oriented
frame dx = (dxy,...,dx,) of V on U. For any u € I,, define dx,, := dx,, A--- ANdz,,
Let M(g) = (g:;) be the matrix of g w.r.t. the basis x. Let M(g)~! = (¢"7)

For any a = Z a,dz,,, define

I

— 1yeees — 1,1 NZ
O/’L e O[M Hp — g/’L .« grup Payl’”7l/p

, where we follow the Einstein summation convention. Then if we declare, xa =
D =1 77nip)(>x<oz7,)olx7, (where (u,n) is a permutation of (1,2,..,n)), we can find the

coefficients (xa;,) by the following formula which is easy to show:

Lemma 5 (xa,) = (sgn(u,n))\/detM(g)o 0

Complex manifolds with respect to the complex co-ordinate chart

We now introduce a way to compute *( for every complex differential form ¢ on some
open subset of a complex manifold X of complex dimension n. Let U be a holomorphic
chart of X. Let V be the real cotangent bundle on U and W = V®rC, 1,41, ..., Tn, Yn
be a basis of V and 2, ..., z, be the basis of W0 given by z; = z; + vV—1y; Vi =
1,..nandlet Z; = 2; —vV—1y; Vi=1,..,n.

For any p € N,, and p = (p1, ..f1p) € I, p, define:

Zpt= 2y NN 2y,
Ty =Ty N oo Ny,
...etc. and

Wy = /\ (20 A Zp)

1<i<p
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We see that any form in A"W = R@® A'W @ --- is a complex linear combination
of the terms z4 A Zg A wy for (A, B, M) € I3 such that A, B and M are mutually

disjoint. With the help of this we can compute the Hodge star operator:

Lemma 6 x(z4 AZg Awy) = AMa,b,m)za AZg Awpr,
where A, B, M are mutually disjoint multinidices in I,,, a = |A|, b= |B|, m = |M|,
and M' =N, \ (AUBUM) and

Ma, b,m) = 97 (—1) 25 +m (9P

where p = a + b+ 2n is the total degree of zo4 NZg N wyy. o

4.1.4 Laplacians

Definition 4.1.7 (Laplacians and Harmonic Forms)

e Laplacian and Harmonic forms associated to d :

Let X be a smooth Riemannian manifold. We define the Laplacian associated to
dby, Ng:=dod +d* od: Ak ., — A ..

A form o € A% ., is Ag-Harmonic if Agor = 0.

The space of all As-Harmonic forms of order k on X is denoted by HE or HY%

e Laplacian associated to O :

Let X be a complex manifold equipped with a Hermitian metric h. We define the
Laplacian associated to O by: Ny := Do 0"+ 0" 00 : AL — AYY..

p7
A form a € AYY

,C8

is Ag-Harmonic if Ayga = 0.
The space of all Ap-Harmonic forms of type (p,q) on X is denoted by H*?

e Laplacian associated to O :

Let X be a complex manifold equipped with a Hermaitian metric h. We define the
Laplacian associated to & by: Ay:=d0d +0 00 : AR, — AYL

A form a € AY, is Az-Harmonic if Aga = 0.

The space of all Az-Harmonic forms of type (p,q) on X is denoted by H2*

e Laplacian associated to Oy :

Let X be a complex manifold equipped with a Hermitian metric h and let (E, hg) be a
holomorphic Hermitian vector bundle on X. We define the Laplacian associated

to g by: Ay, = 0p 00y + 0y o0p : (Apx)Pd — (Apx)22.
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A form a € (Ax )b is Ay, -Harmonic if Az _a = 0.

The space of all Ag-Harmonic forms of type (p,q) on X is denoted by H3*

Then following lemma shows us that harmonic forms are closed.

Lemma 7 If X is compact smooth Riemannian manifold. Then

(o, Agar) = (dav, dor) + (d* v, d* )

Corollary 4.1.8 In the case of the above lemma, kerAy = ker(d) N ker(d*)

4.2 Elliptic Differential Operators

4.2.1 Differential Operators

Let X be a smooth manifold and £ = X and F 5 X are two complex vector bundles
of ranks r and s respectively, on X. A C-linear map of sheaves (this is not in general a
map of C¥-modules !) L : e — ep is called a Differential operator of order k if
d an open cover by charts (U, ¢) = (Un, ¢ = (T1,a, -, Tn,a))a of X that trivialize both
E and F by the local frames ¢* := (¢, ..., (%) and n® = (9, ...,n%) respectively on U,

(
and C-linear maps C¥ (U,)" Lg C¥(Uy,)? such that the following diagram commutes:

en(Uy) — 2 (U,
)

)
k k (4.1)
CR (U —Ls (UL

and the maps L, are given by

Lo(f1, - fr)

(> alDIf) heizs

lo| <k, 1<j<r

where D¢ are just some monomials of degree at most k in the polynomial ring
0 0

,-++, = | that acts

axl,a axn,a

as an operator on C¥(U,) and there is some o with |o| = k such that some a?’, # 0.

(multiplication is given by composition of operators) R|

Fix some indices o and /3 for the open sets. Let us denote U = U, N Ug, restrict the

frames and charts on U, to U and denote these without the index «a. Let us explain
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what happens to the Differential operators when we change the chart and the frames

of E and F on U. Let
g:U—GL(n,R), u:U — GL(r,C), v:U — GL(s,C)

be the change of frame maps of the tangent bundle, E and F respectively. Then,

(a) if y1, .., Y, be the new coordinates on U, the linear operator g defined on the tangent

bundle of U, gives a graded homomorphism of commutative graded R-algebra homomorphism

0 0 0 0

of the polynomial rings (with the obvious grading) R| 90 o | = R] o a—yn],
0 0

this maps D € R]| EratiaRE 3_] to a homogeneous polynomial of the same degree
x1 T

0
in R[ —,---,=—]. Thus all linear sums of D? with |o| = m give all the sections
ayl 6yn

of the symmetric product S™(Tg x) Vm < k.

(b) The action of v on frames changes L in the following way : The coefficients a/ of L

change according to the formula:

v (as); =" - (a);

o ez

, where v x (a%7); are the new coefficients and the dot on the right hand side of the

above is matrix multiplication. So, it behaves like a section of F.

(c) But because of the Leibnitz rule, u changes L in a co-ordinate dependent way,

therefore L is not a C-module homomorphism of sheaves or a morphism of vector

bundles. But we do get a section of E* ® F' = Hom(F, F) in the following way:

For each point (z,v) € Ty , with v # 0 choose a function g € C (V') for some open

set V of X such that v = dg.

Z’k

Define oy (z,v)(f) := L(k!

(9—9g(@)" f)x) € F, VfeE,

and call it the principal symbol of L. This does define a section of the vector
bundle Hom(E, F') over some open set V of X if v is a differential 1-form on V and
g is defined all over V. In this construction of o, only the principal part of L is
important; i.e. if two differential operators have the same principal part then they
have the same principal symbol. But this gives us more: let # be the 1-form on X

which is zero everywhere the principal symbol gives a homogeneous morphism
O\ 0 — Hom(E, F).
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meaning, o (z, pv) = pFop(z,v) Yo e Tg,\ 0, Vo € X and Vp > 0.
Note: The principal part of the differential operator L is:

Lpin=( Y al,DS(f;) hisiss

lo| =k, 1<5<r

We are now ready to define and study elliptic differential operators.

4.2.2 The Fundamental Theorem of Elliptic Differential Operators

Definition 4.2.1 We say that a differential operator P : e — ep is elliptic if
op(z,v) is injective for every v and x such that v is a non-zero cotangent vector at x

and x is a point in X.

Suppose (X, g) is a compact Riemannian manifold and let (E, gg)and(F, gr)betwoC>-bundles
over X, with Riemannian metrics g and gr on them, respectively. Let differential
operator P : e — ep. Let fi : E — E* and fy : F — F* be the isomorphisms of E

and F with their dual given by the metrics on them.

We define the formal adjoint of P by P* : ep- — ep- that satisfies (a, PB), . ;. =
(P*a,B),. r2- We will construct such an adjoint later but for now assume that it
exists (7)...... Note:

The proof of the existence tells something about the symbol of the adjoint. We see

that:

Proposition 4.2.2 The symbol of P* is equal to the adjoint of the symbol of P; i.e.
op(r,v) = (op-(7,v))" Yo €T, \0 Vx € X. particularly, P* is an elliptic operator

if and only if P is the same.

Theorem 5 The Fundamental Theorem of Elliptic Differential Operators
Let P: E — F be an elliptic differntial operator on a compact Riemannian manifold
X between two wvector bundles E,F of the same rank with equipped Riemannian
metrics on them. Then the kernel and the image of P are finite dimensional R-vector

spaces, and we have the decomposition eg = ker P & ImP*. o
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4.2.3 Laplacian as an Elliptic Differential Operator and the

Hodge Isomorphism

By computing the symbol of the Laplacians we can see that they are all Elliptic

Differential Operators:

Lemma 8 Symbols of Laplacians

(a) Symbol of A,
Let x € (X,g), where (X,g) is a Riemannian manifold. On a sufficiently small

chart around z, the symbol o, is given by
2
oa, (V)W) = =" w

where v 1s a non-zero section of the cotangent bundle and w is a non-zero section of
some A% around the point x € X, where ||-|| is the norm induced by g.

(b) Symbol of Ay
If x € (X, h) is a point on a complex manifold X with Hermitian metric h. Then on

a sufficiently small chart of X, the symbol oa_ 1s given by

1
oAz = —5 |v||* Id.

]

on AT around x € X, where ||-|| is the norm given by h

(c) Symbol of Ay,
If x € (X, h) is a point on a complex manifold X with Hermitian metric h and (E, hg)
be a holomorphic Hermitian vector bundle on X. Then on a sufficiently small chart

of X, the symbol on,, s given by

on AX? around x € X, where ||-|| is the norm induced by h.

Thus all the Laplacians above are Elliptic Differential Operators. o

PROOF2af: Let a =) i a,dx,, be any differential form. Let 7 be the unique element
in I, where |u| = p, such that (¢, n) is a permutation of (1,...,n).
Then

o= (sgn(u,n)/det(M(g))(D_ g"" -+ g"»"" v, )d,

n
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and define, G# := /det(M(g))(g"*" - - - g"»*#). The G’s are smooth functions on U.
I would like to make a note here that the index 7 in G has not much use except that

it is helpful to keep note of what happens when we apply the Hodge star operator.

Then
k= Z(sgn(u, )Gy, cwdry,
V7n
and
oG da,
d(xa) = Z(sgn(u, n))( 896-77] a,dx; A dz,) + Z(sgn(,u, )Gy ( %dz’i A dz,)
v ¢ v i ¢

Let H;, be the coefficients of dz; Adx,, in the right hand side of the last equality above.
Though the multiindex (7, 7) is not strictly positive we will work with these. Now the

complement of the underlying set of (i,n) is {1, .., st} \ {7}, call this y—i Now if i =

py then sgn(p,m) = (=1)P"sgn(u—1, (i,n)) = (=1)P~7(=1) P02 sgn((i,n), p —

(im)

i). Now as we defined G, for a, we define G in the similar way and we get:

(jvT)vu_j
—r — n— Z aG/Ijﬂ' aOél/
(sd)(@) = 30 (F)FHONOTIGE (e, + Gl ey

10,7
The formula above is complicated because of the choice of the chart. If we change
the chart and dzy, ..., dz, is an orthonormal basis for the metric g, then the above
formula becomes simple; e.g. > Gl ., becomes ay,. So we get,
(sie) o) = 32 (- 0mpin D gy
T

Hyl

If we apply d to the above formula we get d(xdx) and if we replace o by da we get
(*#dx)(dar). Then adding them with appropriate signs we can see that

Pay,
Agla) = — Z(de“)
Byt v
. Thus the symbol of A, is given by:
on,(W)(@) = =2+ .+ 0P+ .. +02)a=—|v)|*a

The proofs of 2b] and [2d are similar to [2a]

Now we can apply the Fundamental Theorem of Elliptic Operators on the Laplacians

and get a similar decomposition.
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Suppose that (X, g) be a compact Riemannian manifold. Note that Laplacians are
self-adjoint, so we have
AH(X) = Hy @ Ag(AH(X).

This gives us the projection map A*(X) — H%. Let Z*(X) be the space of all
d-closed differential forms of degree k on X and B*(X) = d(A* (X)), then we get
the induced map u : Z8(X) — HA%.

Let § € B¥(X) and let 8 = a+Ay(7), where a € H% and v € A¥(X). So, a+d*d(v)
is exact and so in particular it is closed. Thus d*'d(7) is closed. and therefore it lies
in ker(d) N Im(d*) = 0, so « is exact. Thus, « is in ker(d*) N Im(d) = 0, and this

shows that Z*(X) — H% induces a map,
¢ Hpp(XR) = H

We also have the projection map 7 : Z¥(X) — HF (X, R), which when restricted to

Harmonic form gives the map:
v Hy — Hpp(X,R)

which sends every harmonic form to its cohomology class.
The following theorem is of a significant importance to us and I call it the Hodge

[somorphism Theorem:

Theorem 6 (Hodge Isomorphism Theorem)

The maps ¢ and 1 above are inverse to each other. 0

PROOF Let 8 € Z%(X) and let 8 = a + Ag(7), where a € H% and v € A*(X). So,
a + d*d() is closed and so is in ker(d) N Im(d*) = 0, and hence 8 is cohomologous

to a. So we see that the diagram below commutes:

N, A

HE (X, R)

Since both p and 7 are zero on exact forms, the following diagram commutes:

HE (X, R)

\ / (4.3)
Td i, (X,R)

HE (X, R)
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Now if we show that 1 is injective, we will get p o) =1 de% . But that follows from
H% N BY(X) C ker(d*) N Imd =0 n

The similar Isomorphism theorems hold for Complex De Rham cohomology of X,
Dolbeault cohomology of a compact complex Hermitian manifold and the Dolbeault
cohomology of a Hermitian Holomorphic vector bundle on a compact complex vector

bundle.

There is this amazing corollary of the Hodge Isomorphism theorem :

Corollary 4.2.3 The cohomology groups H*(X,R) are all finite dimensional. Moreover,
the same holds for the complex cohomologies of X, the Dolbeault cohomologies of a
compact complex manifold and the Dolbeault cohomologies of a holomorphic hermitian

vector bundle on a compact complex manifold.

4.3 Lefschetz Representation of the Lie algebra
sl(2, C)

Let X be a compact complex manifold of complex dimension n and let w be a Kahler

form on X. Let
Li=wA(): Axp = AR (or, AR — AR s w A

be the Lefschetz operator and let L* denote the formal dual of L obtained using the
Hodge star operator defined by the metric h associated to the Kéahler form w. Then
recall that we have seen that L* =% 'L¥ = k ¥ L ¥. Where

K /\AX’R — /\AX’R o Z(—l)r M, o

r>0

and NAxr =R® ASp ® Ay p @ --- . and M, : A Axr — Ak are the projection
maps for all non-negative r. But what really is k when we take L : A’;QR — A’;“H% ?

Clearly it is (—1)*2 = (=1)*. Also recall that we were introduced to the map
J = Z P4 |_|pr : /\AX,(C — /\.AX’((;, where I_Ip,q : /\»AX,(C N Agéq and

p>0,q>0

/\AX,(C = (/\ »AX,]R) % C.
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Consider the non-commutative algebra G of all C-linear morphism of sheaves Ax ¢ —
Ax ¢ where multiplication is given by composition of maps, and the C-vector space
structure is pointwise. Then the operator [-,:]: GxG -G : [A,B]:=AoB—DBo
A, VA, B € G. This operator is called the commutator because if [A, B] = 0 then
AoB=DBoA,ieAand B commute. Clearly (G, [,]) forms a Lie algebra. We get

the following proposition at once:

Proposition 4.3.1

(a) [L" L] = ) (n—r),

0<r<2n
(b) ¥0Mpq =Tlh—gn-po%,

(¢) [L,J]=[L*,J] = [L,w] = [L*,w] = 0.

By K we will mean either one of the fields R and C.

Definition 4.3.2 (Lie Groups and Lie Algebras)

(a) (Lie Group) Let G be a smooth manifold (real or complex) such that the multiplication
map G X G — G is also smooth (if G is a complex manifold we require this map to

be homogeneous).

(b) (Lie Algebra) Let F be any field. A Lie algebra over I is a pair (V,][-,-]]) where
V' is a vector space over F and [[-,-]] : V XV —= V is a F-bilinear map that satisfies

the following two axioms:
i. (Anticommutativity) [[v,v]]=0 YveV
This implies [[v,w]] = —[[w,v]] Yv,w eV

ii. (Jacobi identity) [[v,w]] + [[w,u]] + [[u,v]] =0 Vu,v,w eV

Example 4.3.3

(a) Clearly (G,|-,]) forms a Lie algebra.

(b) More generally, let V' be any vector space over a field F. Let Endg(V') the non-commutative
algebra of all F-linear endomorphisms on V with pointwise vector space structure
and composition of functions. Then (Endg(V),[-,-]) is a Lie algebra, where [-,-] :
VxV =V Jab :=aocb—boa Ya,b € Endg(V). This particular Lie algebra
is denoted by gl(V') and this operator [-,-] is also called a commutator for the same

reason. When V =TF" we denote gl(V') by gl(n,F)
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(¢) The elements of gl(V') which have trace zero form a Lie algebra with the commutator
of gi(V'). This Lie algebra is denoted by sl(V'). When V = F™ we denote sl(V') by
sl(n,F)

Definition 4.3.4
(a) A represerntation (V,p) of a Lie group G consists of a vector space V' over K
and a smooth group homomorphism
p:G— GL(V).
(b) A representation (V,T) of a Lie algebra g over F is a vector space homomorphism
T:9—gl(V)
over 1 such that
([, w]] ) = [r(v), 7(w)] Vo,w eV,

for any field FF.

(¢) A Lie group homomorphism p: G — H is a group homomorphism between Lie
groups which is also a smooth map.
We can similarly define real analytic Lie group homomorphism of real analytic Lie
groups and holomorphic Lie group homomorphisms of holomorphic Lie groups.

(d) A Lie algebra homomorphism p : (L,[-,-]r) — (M, [, ]am) is a vector space map

¢ : L — M between Lie algebras (L, [-, ) and (M,[-,-]a) such that
[v,w|, = [r(v), 7(w)] Yv,w € L

Example 4.3.5 Let G be any Lie group and for any g € G, let Ly : G — G aw— g-a
and Ry : G — G a v a- g be the left and right multiplication action of G on itself.
By definition of Lie group these maps are smooth. A vector field X on G s said to

be left-invariant (resp. right-invariant) if
dLy(X,) = X4a Vg,a€G.
(resp. dRy(X,) = Xya Vg,a € G. We state the following propositions without proof:

Proposition 4.3.6 All the left invariant sections of the tangent bundle Tk ¢, forms
a subbundle L|G| of Tk and becomes a Lie algebra under the Lie bracket [-, -]
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of vector fields defined by [X,Y|f = X(Yf) = Y(X[) V sections X,Y of Trc
and a F-valued C*®-function f (viewing vector fields as derivations of germs of C*
functions.). Moreover the K-vector spaces L|G| and b are isomorphic, where g is
the K-tangent space at the identity element of G. Thus, g becomes a Lie algebra in
a natural way and the cotangent bundle g* at identity also becomes a Lie algebra by
the natural isomorphism between a vector space and its dual. (We can replace the
left invariant vector fields by right invariant vector fields in this proposition. The
bundle of all right invariant vector fields is denoted by R[G].) We say that g is the

Lie algebra associated to the Lie group G, and we express this statement by saying

Lie(G) =g

For any Lie group homomorphism p : G — H the differential dp : Lie(G) — Lie(H)

18 a Lie algebra homomorphism.
Definition 4.3.7
(a) A morphism of two Lie group representations p; : G — GL(V;) j = 1,2, is a map

of vector spaces ¢ : Vi — V4, such that

p2(g) o =¢popi(g) VgeG.

(b) A morphism of two Lie algebra representations 7; : g — gl(V;) 7 = 1,2, is a map
of vector spaces ¢ : Vi — Vo such that

n(w)odp=¢or(v) Yve€Eg.

(c) A representation (V,p) ( Lie algebra or Lie group representation) is said to be a
subrepresentation of another representation (W,p) (of the same type) if there is
an injective morphism of representations ¢ : (V, p) — (W, p).

(d) A representation (V,p) ( Lie algebra or Lie group representation) is said to be

irreducible if it has no proper subrepresentation.

(e) A representation (V,p) ( Lie algebra or Lie group representation) is said to be

completely reducible if it can be expressed as a direct sum of irreducible subrepresentations.

Definition 4.3.8 Define B := ) 1, co,(n — 7)1, .
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01 00 1 0
Consider the elements e := , f = and h = of s1(2,C)

0 0 10 0 -1
and we get |e, f] = h, [h,e] = 2e and [h, f| = —2f. The elements h,e, f are the basis

of the Lie algebra s1(2,C) and the map
p:sl(2,C) -G
defined by
h—= B, e L" f— L

gives a representation of the Lie algebra sl(2,C). We call this representation of sl(2, C)

the Lefschetz representation.

Definition 4.3.9

(a) Let V be a complex vector space. For any Lie algebra representation 7 : sl(2,C) —
gl(V), an element v € V is said to have wetght \ € C if 7(h)(v) = X-v; i.e. X is an
eigenvalue of T(h) with eigenvector v. Under this representation p of s((2,C) every
differential form of degree p, has weight n-p, as p(h) = B = Z;io(” — j)N;. The
subspace of all all vectors of weight X is called the space of weight- \.

(b) In the above case of the representation (V,7) of sl(2,C), an eigen-vector v € V of
7(h) is said to be primitive if T(e)(v) = 0.

We have the following theorem for s[(2,C) Lie algebras:
Theorem 7 Every finite dimensional sI(2,C) is completely reducible. o

Theorem 8 Every finite dimensional representation of sI(2, C) has a primitive vector.

Let vy be a primitive vector of weight \ in an irreducible representation (V,p) Then

defining
0 forn=-1
Uy =
%P(f)nvo fOTn:O)1727"'
then we have:
p(h)v, = (A —2n)v, (4.4)
o )on = (2 + Dt (45)
ple)v, = (A —n+1)v,—y (4.6)
Moreover, A € Z and A+ 1 = dimcV, and p(f")vg =0 Vn > m. O
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Theorem 9 (Classification of finite dimensional irreducible sl(2,C) representations)
Let V' be a vector space of dimension m € Z=° with the basis (vo, ..., V). Then we

have a s1(2,C) representation on V) defined by:

p(h)v, = (m —2n)v, (4.7)
p(f)vn = (n+ Dvnia (4.8)
ple)v, = (m—n+1)v,—y (4.9)

and with the convention v_1 = vy = 0., which s irreducible. Conversely, every

complex representation of sl(2, C) of dimension m+1 is equivalent this representation.q

For the proofs of these theorems see [2] pg. 171 — 178.

Corollary 4.3.10 Suppose (V, p) be an irreducible complex representation of sI(2,C)
of dimension m + 1, where m € Zs. For every vector u € V' of weight X\, we have an

integer v > 0 and a primitive vector ug of weight A + 2r, such that

u = p(f")uo

and

(m—=r)

Uy = ple) u

m!r!
PROOF Let B = (v, ..., s,) be a basis of V' such that the pair (p, B) satisfies the
condition of Theorem [0} From [4.9] we get

ple) v, =(m—r+1)(m—r+2)--(m—1)m-vy =

and by [4.8 we get
m!

P ple) v, =

0 < Vr < m. Since every irreducible subrepresentation of a sl(2,C) representation
intersects every space of fixed weight in a subspace of dimension 1 (a complex line
through origin), we get that u is a scalar multiple of some v,, say u = ¢ - v,, for fixed

c € C and fixed r, (0 <7 <m). Then

(m —r)!

U= Wp(f)rp(e)ru

and hence % p(€)"u is primitive. O

We will now consider an action of SL(2,C) and s[(2,C) on the symmetric power
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0
S™(C?), Vm € Z~g. Let vy := and vy = and vy, = v%‘k vf; 0<
0 1

Vk < 'm. Then (Uy, x)o<k<m is a basis of S™(C?). Let 7y : SL(2,C) — GL(S'(C?) =
GL(2,C) is the inclusion map SL(2,C) — GL(2,C), and 7, = 77" Let pp, =
dtr,, ¥Ym € Z~o. Then we get the formulas:
P (R) U = (M —2k)vpp, 0 <k <m
Pm(€)Vmo =0
P (f)0mm =0
Pm(€)Vmr =k - Vmp—1 0<k<m

P (f)ompe = (m — K)o 0<k<m-—1

Let ug, := pm(f) 00 = #'k),vmk Then wy is primitive, and the pair (p,,, (uo, ..., Un))

satisfies the condition of Theorem [0 and therefore (S™(C?), p,,) is irreducible. Let
v:=1i(e+ f) =exp(i(e+ f)) € SL(2,C) Nsl(2,C). Then,

m! m!

T (V) Uk = me(V)Um,k = m(ﬁ(’ﬂ(?}w))m*k ‘ (71(7)(711,1))k

_ MR
T m—k) "

as (11(7)vi,e = 11—, €=0,1). Hence,

k|
T (f) 1o = mpm(f)m_kuo (4.10)

4.4 Lefschetz Decomposition and important identities

on Kahler Manifolds

4.4.1 The Lefschetz Decomposition of Diffrerential Forms

Definition 4.4.1 A complex differential p-form « is said to be primitive if
ple)a=L'a=0

We have the following proposition about primitiveness:

Proposition 4.4.2
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(a) Any complex p-form « is primitive then L*a = OVk >n —p+1
(b) All the primitive forms have degree less than n (the complex dimension of X).

PROOF Let sl(2,C) - o vector space spanned by the orbit of o under the action of

s[(2,C). Then by the theory of Lie algebra representation of s[(2,C), we have:
dime(sl(2,C)-a) =n—p+ 1.

with a, p(f), ..., p"7P(f)a being a basis of s[(2, C)-a and p" T (f)a = L"PTa = 0.
2. is true because of dimension count and « # 0. U

Let (-)T : R — R be defined by (2)* := maxz,0 Vz € R.

Theorem 10 (Lefschetz decomposition on differential forms)

(a) Let v be a complex differential form of degree p. Then there is an unique representation,

o= ZLTQT

2r<p

where for each r, . is a primitive p-form of degree (p — 2r). Moreover,
Q, = Z ar’sLs<L*>r+sa
r,8

for some fized, a,s € Q.

(b) If Lo =0, then a,, =0 for all ™ > (n—p+m)™.
In particular, if p <n and L™ Pa =0, then a = 0. o
PROOF Let W be the complex vector space A(Axc). Since every finite dimensional
s[(2, C)-representation can be decomposed into irreducible subrepresentations, we

have:

W=Wwo- - &W.

Now if av is any p-form in W and it a = ). 3; for 8; € Wj, then d(5;) = d(8) = p
forall j =1,2,..., 1.
Now, since each f; has weight n — p, the sub-representation generated by 3; has

dimension n — p + 1 and there is some r; € N such that
Bj = L"n;
where 7; is primitive form of degree (p — 2r;) for all j, and we have
= ¢ - (L7)"76;
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where ¢; € Q for all j.
For every r, let a,. := erzr Bj, then we get

a= ZL’"QT

2r<p

Clearly, proving the expression for a, will prove the uniqueness of the decomposition
of a, which we will now do:

If « = ag+ Lag + -+ + L™y, then (L*)™a = (L*)™ay + (L*)™ Y(L* o L)ay - -+ +
(L*)™ o L™y,

Since . are primitive and (p(e)” o p(f)")(a,) = by, for r = 1,...,m (from [4.10)),

1

;- The formula for a, in (a) is then proved using

where b, € Q we get a,, =
induction on .
Part (b) then follows from the uniqueness in part (a) and the previous proposition.

OJ

4.4.2 Important Identities

Let n be any differential form (possibly complex) of degree r, (r > 0), and recall the
operator e(n) and e(n)* that we were introduced to earlier this Chapter. For any
two homogeneous forms a and  we have e(a A ) = e(«) o e(5). We also have the
following proposition about formal duals:
Proposition 4.4.3 Suppose T} : N*Axc — N Axc and Ty : N*Axc — N2 Ax ¢
be two C-linear maps of sheaves that have Quasi-adjoints S, and Sy respectively and
let ¢1,¢5 1 Z — C be the constants that give us [y Tjo; A B = ¢;(d°B;) - [ aj N S;B;
for any two homogeneous forms c; and B; satisfying k; + d°a; + d°B; = dimg X, for
j=1,2.
(a) If c; and cy satisfy
ca(d’(S18)) = eo(d((¥7191%)8))
for any homogeneous form 3, then: (Ty o Ty)* = Ty o T}'. The converse is also true.
(b) Moreover, if (Ty o Ty)* =Ty o T} and (Ty 0 Ty)* =T} o T3 and ¢y, ¢o satisfy
ca(d°(818)) - e1(dB) = c1(d’(S2)) - ea(dB)
for any homogeneous form (3, then
[Th, T = [13,17]
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PRrROOF We have

/X (Ty 0 Ty)(@) A B = ex(d(S:8)) - 1 (d°5) / o A (S5 081)(8)

X

/X (Ty o T1)(@) A B = e (d(S25)) - caldB) / o A (81 0 5,)(8)

b's
for any two homogeneous forms « and /3 satisfying k; + ks + d%a + d°B = dimpX.

We also have
TyoTy = [(caod’) - (F'S%)| o[(crod’) - (37'51%)]
=(co do) (g0 d’ o (?71511)) . (171(52 o S1)%)

The rest of the proof is trivial. U
Note:

(a) If ¢1,¢9 : Z — C* are group homomorphisms from the additive group of integers
and the multiplicative group of non-zero complex numbers, with ¢? = ¢2 = 1
(multiplication comes from the multiplication of C*) then 1. is true and if moreover

ca(k1) = c1(ka), then 2. is true.

(b) If m; and 7y are homogeneous differential forms of degrees of the same parity, then
the operators 77 = e(n;) and Ty = e(ny) satisfy the above proposition. Moreover
if n; and 7y are homogeneous differential forms of degrees of opposite parity, then
one of the n’s have even degree and therefore the commutator [e(n;), e(n2)] = 0, and
[e(m2)", e(m)*] = 0.

Let {x1,y1, .., Tp, Yn} = {v1, ..., U2, } be the orthonormal basis for the complex cotangent
bundle of X w.r.t. the Hermitian metric given by the Kéahler form w. Then, w =
> 1<j<n Tj A y; and from what we noted above we have
L=e(w)= ) e(z;)oe(y)
1<j<n
which implies,

L =ew) = Y ely) oelz))"

1<j<n
Now, for 1-forms 1 we have e(n)* = *(e(n))* and we see that
e(vj,) (vjy A= Awj) =vj, A Awj,

if j1 & {Ja, -+ jx} and zero otherwise. Next, we prove the following lemma:

44



Lemma 9

(a) [L7;e(x;)] = ely;)" and [L7, e(y;)] = —e(z;)” Vj=1,2,---n.

(b) [L*,e(¢)] = —ie(O)* and [L*,e(C)] = ie({)* for every form ¢ of type (1,0).

(c) [L* e(a)] = —Je(a)* Tt for every real 1-form . 0

Proor Fix j € N,

L7 e(z)] = (Y elyn)elwn))e(z;) — (e(z)( Y elye) e(ar)”)

1<k<n 1<k<n

= e(y;)"e(z;)"e(z;) — e(z;)e(y;) e(z;)"
(from the last equality above we have that e(z;) commutes with e(v;) for all vy # ;).
Suppose 7 is any homogeneous form. Then n =y 4+ x; Ani +y; Ane2 +x; ANy; Ans
where the forms ng, 11, 72, 73 are homogeneous forms where neither x; nor y; occur in

them. Now, [L*, e(x;)]n = m2 — x; A and e(y;)"(n) = n2 — z; A n.

Now,
L% ey)) = (L, e(Ja))] = (L, T o ely) 0 J71) = J o [L*efa)] 0 J 7!
= Je(y;)*J ' = Jxe(y;)¥J ' (since e(a)* = *e(a)x ¥V real 1 — form «)
— % Je(y;)J % = Fe( ;)7
This proves 1. and everything else follows from 1. O

Consider the exponential map

exp : gl(n,C) = GL(n,C) : A et = Z =

k=0
We use the fact that ¢4 o P = eAPe=4 for all A € gl(n,C) and for all P €
End(n,C), where ad(A)(B) := [A, B] for all A, B € gl(n,C) The exponential map
can be defined in a similar way for any Lie Group G and its associated Lie algebra g.

For the representation p : sl(2,C) — G we define

1 1
x = exp(gmple + f)) = exp(5m(L™ + L)).
Define t — e;(a) := exp(itp(e + f)) o e(a) o exp(—itp(e + f)) from C to G.
Lemma 10 Let « be a real 1-form. Then ye(a)x ! = —iJe(a)*J 1 O
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PROOF Clearly, eg(a) = e(a) and ex(a) = ye(a)x™'. The idea of the proof is
to construct a initial value problem, i.e. to construct a differential equation in

independent variable t and dependent variable f(¢) taking values in G such that

f(0) = e(@).
Clearly e;(o) = >3, &lad(it(L* + L))]*e() and every [ad(L* + L)]* is a sum of

monomials in ad(L*) and ad(L) and since we have:
(a) B=[L*"L]=L*oL—LolL*
(b) ad(L)oe(a) =0 and ad(—B) o e(a) = e(a)

we get that
er@) =) c(t)ad(L?)*
k=0

where ¢ (t) are given by power series in ¢ with complex coefficients.

Now, by the last lemma [ad(L*)]*e(a) =0 Vk > 2. So we get that
er(a) = co(t)e(a) + c1(t)ad(L*)e(c)

Now differentiating e;(a) = 3°2°, L[ad(it(L* + L))]*e(a) and
er(a) = co(t)e(a) + c1(t)ad(L*)e(a)

and comparing the coefficients, we get the system of differential equations:
cy(t) = icy(t) and ) (t) = —co(t) now the unique solution of the above system that

satisfies the initial condition is given by: ¢,(t) = cost and ¢;(t) = isint. So,
ei(a) = (cost)e(a) + (isint)ad(L*)e(w)
and the proof of the lemma is complete by putting ¢ = 7 above. O

Lemma 11 Let 8 be any complex differential p-form. Then

®(B) =" " T y(B)

PROOF Let # := i*"~"J'y. Then from equation applied to the Lefschetz

decomposition we get

= ()" ug (4.11)



for every primitive form of weight m. Now, since ug = 1 is a primitive 0-form of

weight n = dimcX, from equation{d.11] above we get

(1) = =L,

1
Hence #(1) = —'L”(l) = Vol.
n!

Now, # e(()5 = i(pH)Q—nJ_lX@(C)ﬁ
= i@ (xe(OxTXB = (—1)Pe(Q) (T xB) = (—1)Pe(()” # B
for every 1-form (. But, % also satisfies:

*(1) = Vol.
¥o0e(()B = (—1)e(¢) o %8 Vp — formp.

Now, as 1-forms generate the whole space of all forms of all degrees (denoted previously

by W) on X, x and # are equal. O

Proposition 4.4.4 Let 8 be any primitive complex differential p-form. Then

— p(p+1) 7’! N

for all v such that 0 <r <n—p

PROOF Applying Theorem-g§|for Lefschetz representation we see that the vector space
generated by {3, p(f)S, ..., p(f)""PB} is an irreducible sub-representation of the Lefschetz
representation. Again applying equation to the Lefschetz representation, we get:

=D | |
N 7 r! 'L"*p*’ﬁ

(n—p—r)!
and by the last lemma we get

P Lyl

¥Lr6 _ Z'(p+2r)27nJ71XLrﬁ _ 7:pzfnjfl Lnfpfrﬁ
(n—p—r)
= ipg‘pJ‘zr—!L"‘p‘””Jﬁ
(n—p—r)!

(as J commutes with L.) But this is exactly equal to the right hand side of the
equality in the proposition. Notice that, J=2(¢) = (—1)P¢ for any p-form ¢ and we
can put ¢ = Jj3 U
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4.5 Hodge Decomposition Theorem

Let d. and d* be defind by: d, := J 'odoJ and d* = J~'od*o.J We will now prove

the following lemma:

Lemma 12 (More Identities)

(a) dep = —i(0 — 0)¢ and dd, = 2+/—100

(b) For a compact Kdhler manifold X : [L,d] = [L*,d*] = 0 and [L,d*] = d. and
L,d) = —d,

(¢c) [L,d] = [L*,d] = 0 and [L,d*] = —d and [L*,d,] = d*

(d) [L,0) = [L,0] = [L*,0*] = [L*,0 ] =0, [L,8*] = id, [L,0] = —id, [L*,0] = iD
and [L,0] = —i0*

(e) d*d, = —d.d* = d*Ld* = —d.L*d,, dd* = —d*d = d*Ld* = —dL*d

(f) 89 = -9 8 = —id LO = —idLd and 8" = —9*8 = i0LD = i0*LO* o

PROOF For every complex smooth function f,

(a)

i) = g = 1Pz + 3 (A ) =

Z Jd +Z 8fjcr) i(a—f\/:dzjwi(a—f(—\/—_ndzj):\/—_1(3—5)f

So, dd.f = (0+ 9)[v/—1(0 — 9)|f = 2v/—100f.
(b) The first part of (b) follows from the Kéhler hypothesis on X i.e. we have [L,d] =0
and [L*, d*] = 0 by taking adjoints.

d* = (—1)P™1 % dx~! on p-forms. Now from Lemma (11| we get

XU =t

Therefore,
Xdx L f = i Gt et en el L = AT f
Define d; := exp(it(L* + L)) o d o exp(—it(L* + L)). Then following the proof of
Lemma [I0, we get
= 1
¢ =D ylad(it(L" + L))]*d
k=0
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and by the Kéhler hypothesis we get [L, d] = 0, and therefore, we have:

o0

Z Jad(L)]

k=0
where ¢ (t) are analytic functions. We see that dz f = xodox™" = iJd*J ' f which

is an operator of degree —1, and therefore we have

d

. cl(g)ad(L*)d

and ¢(%)ad(L*)d = iJd*J~' f we have [ad(L*)|*f =0 Vk > 2. Thus,
dy = co(t) + c1(t)ad(L*)d

and following analogous arguments of the proof of Lemma [10| we get

d; = cos(t) + isin(t)ad(L*)d

So, just by letting t = 7 we are done.
(c) This follows from (a) and (b).

By, [L*,d. = d*, we have d*d. = —d.L*d. + L*d.d. = — — d.L*d. and —d.d* =
d.d.L* —d.L*d. = —d.L*d. This proves, d*d. = —d.d*.
The rest of the proof is similar. O

Theorem 11 (Kdhler Identity) Let X be a compact Kihler manifold. Then the
Laplacian Ay commutes with *,d and L, and we have Ay = 205 = 2A5. So as a
consequence we get that Ay(AP?) C APY Vp,q that are non-negative integers, and

that Ay and Ag are real operators. Moreover, this implies
[A, 0] =0,
for o = L*,d,d*,0,0,0* o
PROOF [Ay, L] = —d[L,d*] — [L,d*|d = —dd. — d.d = 0, by the last lemma. Now
Ay =dd" +d*d=d[L*,d.] + [L*,d.]d

JNgJ V= —d.L*d + d.dL* — L*dd. + dL*d, = Aq as dd, = —d.d
From the last lemma we get, 20 = d + id. and 20* = d* — id}. Therefore,

40y = (dd" + d*d) + (d.d} + did.) + i(d.d" + d*d.) — i(dd} + d;.d)
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We also have

Ag=J ' 'AyJ = d.df + did,

and we are done U
Note: As[L*, Ay = [L*, A4 = [L*, Ap] = [L*, Ag] = 0, the Lefschetz decomposition
theorem gives a decomposition of cohomology. Let H' be the set of all Aj-harmonic
forms of degree r, HY? be the set of all Ag-harmonic forms of type (p,q) and let

% prim D€ the set of all primitive harmonic forms of degree r and let H%? be

the set of all primitive harmonic forms type (p, q).

Theorem 12 (Lefschetz decomposition theorem on cohomology) For a compact

Kahler manifold X, we have the decomposition of cohomology:

@LTHR 2r X (C)

przm
2r<k
and
H"(X,C) = P L"HL.7" (X, C)
2r<k
where H., .. (X,C) is the cohomology of primitive I-forms. 0

PROOF We have the Lefschetz decomposition theorem of Az-Harmonic forms
H])C( = @ LTH])C(,prim
2r<k
s [L,A4] = 0 and the first part follows from the Hodge isomorphism theorem, and

the second is similar.

Theorem 13 (Hodge decomposition theorem on cohomology) Let X be a

Kahler manifold. Then we have the decomposition of cohomologies

= P Hi(X

p+a=Fk

PROOF We have the decomposition of Harmonic forms :
- @
p+q=k
and the theorem follows from the Hodge Isomorphism Theorem. Indeed, if for any

differential k-form o on X, if a = Zp +g=k Opg Where ay, . is a differential form of
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type (p,q) on X. Then by the Kéhler Identity, Ag(a) = > ., Ag(ap,) is the
corresponding decomposition of Ag(a). So, if a € H%, then o, € HE?. So there is a
map 7 : Hy — @, ., "5 defined by m(a) = (. 4)prq=r- This map is injective by

construction and it is also surjective since for any 3 € HEY,
Ada = 2A50é =0

and therefore 3 € H% and 7(8) = 3.

4.6 Applications

Lemma 13 90-Lemma Let zi be a differential form on a Kdhler manifold X, which
is O and O-closed. Then if zi is exact under one of the operators d, 0,0, then xi is

000 exact; i.e. there is some differential form 8 on X such that xi = 003 o

PROOF Suppose that & = 0¢, for some differential form ¢ on X. Then by the Hodge

isomorphism theorem, ¢ = ¢ + Aygpo where Ay = 0. Now, ¢y is 0 closed since
A=2-Ap
From Lemma , we get 00" = —38 0. But then,

£ = D¢y + 200505 = 20(0 0 + 09 )by

= —20 (00¢2) + 20(00) b2

Now —20 (88¢s) is d-closed, as —28 (00¢o) = € — 20(D)¢, and it is in the image
of 9°, and so, —28 (88¢,) = 0, and & = 20(9D) ¢ d

Lemma 14 For a Kdhler manifold (X,w), HP4(X) is canonically isomorphic to
HY(X, Q%) and HE*(X) O

PROOF Now, H(X,C) = H5, and HP(X) = HI%. But Ay = Ay = HEY = H2A
But by the analogue of Hodge isomorphism theorem HZ* = H?(X, QY ).

Clearly the Dolbeault complex
S g x) S gt (x) D

is a resolution of Q% by acyclic ( fine actually) sheaves A%? and therefore, HY(X, Q%) =

H2Y(X) O



Definition 4.6.1 Let (X,w) be a compact Kdhler manifold and consider the pairing
QW : H*(X,R) x H*(X,R) = R

Q®((al, [8)) = /X NG N B

Also define H (o), [8]) = *QW([al. [B))
for any two k-forms o and 8 on X; where [a],[3] € H*(X,R) are cohomology classes

of these forms Yk € Z>y.

Then we have the following proposition which is easy to see so we omit the proof:

Proposition 4.6.2

(a) Hc(gk) are Hermitian and so QW) is alternating when k is odd and symmetric when k

1S even.

(b) The Lefschetz decomposition

@LT‘H}C 2r X (C)

przm
2r<k

15 orthogonal with respect to H(k); and

k r ]{?—21”
L ( ILTH’“ 2T(X(Q)) (—1) Hég :

prim

(¢) The Hodge decomposition

= P H(X)

p+q=k

k(k+1)

s orthogonal with respect to H(k); and (—1) P kH( ) is a positive definite on

the complex subspace H>? (X, C)

prim

(d) The signature sign(Q™) of Q™ is Zp’q(—l)php’q(X), where hP? .= dimcHP(X)
Definition 4.6.3 Define KP A% = D,>pryger AY and FPH*(X,C) := DB gr H(X)

Then we have the following proposition:

ker(d|kr ar)
d(KPrAFT)

In particular HP°(X) is isomorphic to the space of all holomorphic forms of degree

Proposition 4.6.4 FPH*(X,C) =

p on X.
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Chapter 5

Spectral Sequences and

Hypercohomology

5.1 Derived Category and Derived Functors

Let A be an abelian category that has enough injectives.

Definition 5.1.1
(a) (Complexes, Left Bounded Complexes and Injective complexes)

i. A complez (of increasing type)

- dkfl dk dk+1
coo = ML MRS MRS

in A (i.e. d**tod* =0 Vk e Z)is said to be left-bounded if In € Z such that
MF* = 0,Yk < n. We denote any complex as above by (M*,d) or by (M,d).

ii. A non-negative complex is a left-bounded complexr (M, dy;) such that M* =

0,Vk < 0.

iii. (Cochain Maps)
Let (M*,dyr) and (N*,dy) be two complezes (or, left bounded complezes). A sequence
of maps f = (f* : M* — N¥)ucz is said to be a cochain map f : (M,dy) —
(N, dy) if
Fody=dyo f.
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(with proper indices),i.e. the following diagram commutes:

dk—l dk+1

oy et e B e B
fk'—l fk fk+1 (51)

dit dk; kit
c— NFL A N D VR R

iv. Let Kom(A) be the category of all complexes(as objects) and cochain maps(as
morphisms) of A, let , Kom(A) be the subcategory of Kom(A) consisting all left-bounded
complezes in A and let (Kom(A) be the sub-category of all non-negative complexes

of A.

v. Here we call a complex (I,dr) € Kom(A) to be injective if every I* is an injective

object in A.

(b) Two cochain maps (M, dyy) EN (N,dy) are said to be homotopic (or cochain
—
g

homotopic) if 3h = (h* : M* — N*1)cz such that f —g = doh+ hod (with
appropriate indices).

This map h s called a cochain homotopy or a homotopy.

(c) For anyn € N, the n'"-cohomology of any complex (M, dy;) € Kom(A) is defined by

ker(d}
H"(M,dy) == er(djy) nﬂfl)
Im(dy; )
A cochain map f = (f* : M¥ — N¥),cz gives a morphism of of n'"-cohomologies

€ A (since A is closed under kernel, Image and quotients).

H™(f): H"(M,dy) — H"(N,dy) : a+Im(dy ) — (o) + Im(dy )

This makes taking n'"-cohomology a covariant functor

H": Kom(A) > A
(M, dy) > H™(M,dy) (5.2)

(M, das) & (N.d)) — (H" (M, day) "= H (N, dy)

It can be seen easily that this functor maps homotopic cochain maps to the same
map.

(d) A chain map (M,dy) EN (N,dy) is said to be a quasi-isomorphism if all the
morphisms H™(M, dyy) P H"(N,dy) are isomorphisms in A.
Let S(A) be the full sub-category of Kom(A) in which morphisms are all quasi-isomorphisms.
Let 3, S(A) be the full subcategory of K om(.A) whose morphisms are all quasi-isomorphisms.
Let oS(.A) be the full subcategory of ¢ Kom(A) whose morphisms are all quasi-isomorphisms.
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(e) For every n € Z and any complex (M,dy) € Kom(A) define the n-shift of M
as another complex (M[n],d) € Kom(A) such that M[n]* = M*™ and d* :=
(—1)"dkf™ Yk € Z. So we can make any left-bounded complex a non-zero complex

by shifting it.

(f) (Homotopy Categories)
For any (M,dy) (N,dy) in Kom(A), let K"(M,N) := Kom(A)(M, N[n]) € Ab.,
i.e. the set of all cochain maps ((M,dxr) EN (N[n|,dn))) in A, (where Ab. is the
category of abelian groups).

Define D" : K"(M,N) — K""(M, N) by
(D"(f)F = (=)™ dim o 5+ fFrodh = —dyp o fF+ o dh, VE € Z.

Then we see that (K (M, N), D) is a cochain-complex in Ab.

We define the Homotopy category K(A) whose objects are the objects of Kom(.A)
but for any two (M,dy) (N,dy) in Kom(A), the morphisms from M to N are
defined by K(A)(M,N) := HY(K(M,N), D); i.e. the 0"-cohomology of the complex
(K(M,N), D) in Ab.

It can be easily checked that the morphisms in K(A)(M,N) are the cochain maps
(M, dy) EN (N,dy)) in A upto homotopy.

Consider the (covariant) functor k : Kom(A) — K(A) from chain complezes in A
to the homotopy category of A, that maps every object to itself and every cochain

map to its homotopy class.

Define p K (A) := k(K om(A)) and ¢ K(A) := k(oKom(A)).

(9) (Localization of a Category)

Let K be a category and S be a subcategory of K whose objects are same as the
objects of K but whose morphisms are some morphisms in K, which is closed under
composition (and has the identity element corresponding to every object in K). A
(covariant) functor T : K — C' is said to be a localizer of the pair (K, S) if T(s) is
an isomorphism in C' for every morphism s of S. Let L be the category of all localizers
of the pair (K, S) with morphisms being natural transformations. The initial object
F : K — Kg of L (if it exists) is called the localization of K at S. Most of the
time we will call the category Kg the localization of the pair (K,S).

Note that if K is an abelian category we would want all the functors T : K — C' to
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be additive functors and C be an abeliam category and F': K — Kg is additive. But

mostly Kg 1s an additive category but not abelian category.

(h) (Derived Categories)
The category S(A) of quasi-isomorphisms naturally gives a subcategory of K(A)
which we also denote by S(A). Then the derived category of A is defined by
K(A)sa, (if it exists) and is denoted by D(A).
Similarly we define the derived categories : pD(A) = K (A), 54 and ¢D(A) :=
o (A) 50
If we assume that D(A) exists, then taking n'"-cohomology is a functor H" : D(A) —
Ab.

(i) (Cone of a morphism of complexes)
Let (M, dyy) EN (N,dy) be a morphism of complexes in A. We define the cone of f
by the element C;y := (C*,d¥ ) ke defined by :

d, 0

Ck .= M* @ Nkt and d, .=
fk _dkfl
N

v
treating elements of C’; as column vectors such that v € M*, w € N*1
w

We now state the following theorem without proof:

Theorem 14 Let 0 — M % N % P 5 0 be a short exact sequence in the category

Kom(A). Then, taking cohomology gives an exact sequence:

gr-1 H*e) g H*NB) gy
—_— (M,dy) —— H°(N,dy) ———— H" (P, dp)

sk—1
H"(P,dp) N H*(N,dy) e H*(M, du)
HF1(a) Hk+ Sk+1

HM UM, dyr) s gy, dy) P gk p,dp)

| (5.3)

[m]
where the map (called the connecting maps) 6% : H*(P, dp) — H*(M, dy,) is defined

by
8 (p+ Im(dp ")) == (a™ ody o 571)(p) + Im(dyy).
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From, the definition above of the mapping cone of a morphism (M, dy,) EN (N,dy)

we get the split exact sequence:
0—=N[-1]=-C;f—=M—=0

in A. Then by the above theorem we get the long exact sequence of cohomology and

the connecting maps
0% HY(M, dar) = H* (N [=1],dni-y) = H*(N, dw)

are given by H*(f).
Thus we get the following proposition:
Proposition 5.1.2
(a) The cochain map f is a quasi-isomorphism iff the mapping cone (Cy,dc,) is acyclic.

(b) The objects M and N are injective if and only if the mapping cone Cy is injective.

PROOF The first part is clear from the discussion above.
The second part is clear since the cone is constructed using direct sum. We now

prove the following lemma for left-bounded complexes:

Lemma 15 Let (M,dy) € pKom(A). Then there is an injective complex (I,d;) €
wlKom(A) and a cochain map i : (M,dy) — (I,d;) such that:
(a) Each i* is monic.

(b) i is a quasi-isomorphism. O

Note: For now suppose that (M, dy) € oKom(A), otherwise we will shift the
indices of M, and make it happen.

Since A has enough injectives, for each M*, there is an injective resolution

0— MFo k0 — gkl 5 ghk2 5 ..
jk,O jk,l jk,2

So we immediately get a double sequence (J*!);,;cz coming from these injective

resolutions. So if we take J" := @, ,_, JH and

d? — @ jk,l : Jn_>Jn+1
k+l=n
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then it is true that (J, d;) is an injective complex and the obvious inclusion M™ — J"
(™ say) is monic.

However it is not clear whether the map j := (j")nez : (M, dy) — (J,dy) is a cochain
map or not. But we need a cochain map like that because otherwise we will not get
a map between cohomologies. So we follow the following lines of proof. But first we

need the next definition:

Definition 5.1.3 (Double Complexes and their morphisms and the associated

Total Complex)

A double complex (M,d,,dy) consists of double-sequence M := (M*');. 17 in A
with maps d"' - M¥H — M*Uand d' - MM — MY such that dy o dy = dy o dy
with appropriate indices.

The total complex associated to this double complex is a complex (Tot(M), D) where
Tot(M)" == @,,,,_, M* and D" == @, ,,_, (di" + (—=1)kd5") for all integer n > 0
A morphism of double complexes [ : (M,dy,dy) — (N,01,0;) is a collection
of maps f = (f¥ : MM — N®) ez such that f*': (M*' dP) — (N1 97 and
fRr (ME* dE) — (NF*,857) are cochain maps Yk, € Z.

Let f: (M,dy,dy) — (N,01,0;) be a morphism of double complexes. Then this map
induces a map of the assocaited total complexes Tot(f) : (Tot(M),d) — (T'ot(N),d),
defined by:

Tot(f)" == € f*' : Tot(M)" — Tot(N)" Vn € Z
kHl=n

then Tot(f) is a cochain map, called the total map associated to f.

PROOF First we construct an injective complex (I*°,d; ;) and a co-chain map of
monics i*0 : (M*,dj;) — (I*°,dyY), which is done in three steps below. Then if
we apply the same construction to Coker(i*?) in place of (M, d,s), we get another
injective complex (I*!,d; ;) and cochain maps dy} : (I, d; ;) — (I*',d} ;) and we
keep repeating to get a double complex ((I*%);>_1,dy 1, da ) , where (I*71, d?;l) =
(M, dy), d;:l_l =%~ and 0 (M*, dy,) — (I™°,d5 ;) is a chain map of monics and

(I™*,dy 1) is a resolution of M* for all integers k > 0 (i.e.
0— MF TR0 5 TR

is an exact sequence.)

i%0 . .
Step 1: Let I%° be an injective object in A such that M° — I%° is monic.
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We will now construct the push-out of the adjacent diagram.
MO 25 00

Clearly, this push-out is Coker(i%°, —dyy). ld?w

Ml
Now let I be an injective object in A and p' : Coker(i®°, —dy;) — I'° is monic.

Let ¢10 : M' — I'9 be the composition of M' — Coker(i®°, —dy;) with p' and let

d(l]:? : 199 — 10 be the composition of 1% — Coker(i%°, —dy;) with pl.

0,0 1,

. . . . .. 00 - . . .
Then since *° is monic, so is i"* and moreover, d;7; 0i% = i"% o dj;. So till this step

MO 25 jo0
the adjacent diagram commutes: ld(}w ld?f}

M IS o
Step-2 : Now in the next step, not only we want to extend the last box diagram to
;0,0

MO 5 00
0,0
g, dyy

the next diagram: Mt oS 10

1 1,0
dpy d1,1

JVERLRt
But we also want that the two vertical arrows on the right; i.e. d(l]y ; and di ; compose

to zero so that (I,d; ;) becomes a complex. So we don’t just construct the pushout
:1,0

MY ES 0

of ldlM

M2
but we construct the push-out, say P of the diagram:

M*" — Coker(d] ;)

ld}u

M2

in a similar way as before (where the horizontal arrow is the map induced by 7'9.)
and find an injective object I*° and a map p? : P — I*° which is monic. Let
di; - 10 — I be the composition of 1% — Coker(d} ;) with Coker(d};) — P

composed by p?. Let i%° be the composition of M? — P with p?. Then we get what
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0,0
MO 25 100

3y d(I):?
we want in the diagram: ML o
dis dy’y
M2 %9 [2,0
Now for every integer k > 2, having constructed I*° the way we want, we construct
Mk—lik’_lf 7k=10
I*+10 by applying Step-2 to the box diagram: ldfwl ld’f 0

ME 2, ko
(end of step-2)
Now take the total complex (I, d;) associated to the double complex ((I*');. 150, d1.1, d2.1)
and for every integer n > 0,
let i be the map ™" composed with the inclusion I™° — I™. The proof is almost
complete except for the fact that the cochain map " is a quasi-isomorphism, which
is the next step.
Step-3 : The Mitchell’s Full Imbedding theorem tells us that : Every small
abelian category admits a full and faithful exact functor from itself to the

category of abelian groups (See Mitchell’s, Theory of Categories, page no. 151,

and [7]) Following this we will prove this lemma only in the category of abelian groups:

Surjectivity of H"(i) :

Suppose that o= 3", _ @, 4 € kerd; and then

d'(@) = > (P + (—1)PdsN oy, = dya® + > (P + (—1)Pdb oy,

p+q=n p+q=n,p#0
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MO 2, jo0 21, qol 21,
#, £ &)
]\21 a0 [\1’70 d;:? . 1\1’71 d;} N
(see the double-complex: 4 L0 e
M 1.1 1.1
]\\/‘;2 i20 1\2/,0 427 N 1\2/,1 o \
& @ 4

) and therefore, ds jap,, = 0 € I and dy v, +(—1)P T daay 1,41 = 0 € IPTH9 Vg >
1. The exactness of M* — T80 — J&1 5 k2 s ... for all integers & > 0 implies that
there is some 3,1 € "' such that ag,, = dz,lﬁéz_l. We get, BV = a—dfﬁé},)b_l €
@p +q=npo 174 18 cohomologous to « in the total complex and dQ’IBf,)hl = 0. Now
we apply similar arguments on 3" and keep doing this inductively unless we obtain
an element v € I™°. Now, d;y = 0 implies dy vy =0 and dy 1y = 0. da ;7 = 0 means
that Jv € M™ such that v = i"(v) and therefore we see that d; ;v = 0 implies
v € ker(dyr). The process of finding successive [5’s from the alpha’s can be described

by the following downward staircase:

BN e onmt ity g

~

5527)172 e Jin-2 ﬁ(l) e \ Jon

-1 1
d2,1B£,7)171
2
%,(55’;2

652—3 c J273 ﬁ@) cIn \ (IO,n D Il,n—l)

choose from

ve M
where Idg : S — S is the identity map of S for every set S.
Injectivity of H"(i) :

Suppose that € M™* is such that i"(u) = dja for some o € I™, then using almost
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similar arguments (since " () € I"™") we find an absolutely same downward staircase

of successive 3’s as before:

choose from

e I e

; dQYICVO,n
A( )
2, choose from
$

S 5(1) c I \ Jom
a-

2,I71,n—1
2
%ﬂ,wg,gz

6522_3 c T2 3 g, B(Z) cIn \ (IO,n D [l,n—l)

/381—2 Sl

v GVM "

where Idg : S — S is the identity map of S for every set S. and since each new term
B is cohomlogous to « we get that u = dys(v). O
Let T : A — B be a left-exact additive functor from an abelian category A, with
enough injectives, into an abelian category B. Let (M, dy) € ¢Kom(A). The above
lemma guarantees the existence of an injective complex (I, d;) in ¢Kom(A) and an
injective quasi-isomorphism ¢ : (M, dy) — (I,d;), let us denote this pair by (I,1),
and call it an injective embedding of (M, dy;).

Proposition 5.1.4 (Functoriality) Let (M, dy), (N, dy) € oKom(A),i: (M,dy) —
(1,dy) is a co-chain map and j : (N,dy) — (J,dy) is any cochain map to an injective
complex (J,dy).
Every morphism ¢ € oKom(A)(M, N) induces a morphism ¢ € o Kom(A)(I,J) such

I —2
that the adjacent diagram commutes: ZT ]I

M—2 N
Moreover, T(1)) is a quasi-isomorphism in the category B, if ¢ and j are quasi-isomorphisms

and (I,1) is an injective embedding of (M, dyy). Lastly, 1 is unique upto homotopy if

¢ 1S monic.
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PRroOOF Consider the composed map 7 := j o ¢ and we prove the following lemma:

Lemma 16 Suppose that (I,1) is an injective embedding of (M, dyr) and 7 : (M, dyr) —

(J,dy) is a cochain map to an injetive complex (J,dy) Then 3 a cochain map ) :

(I,dr) — (J,dy) such that the adjacent diagram commutes: \ /

such that T'(v) is a quasi-isomorphism in the category B, ifi ,¢ and T are quasi-isomorphisms.q

Proof of the Lemma : Let ¥° : I° — J° be a map such that ¢° 0 i = 7% which

exists since 7" is monic and J° is injective.

MO 25 0
Clearly, Coker(i®, —d3;) is the ld?w

Ml

push-out of the adjacent diagram and so 3!g (shown in the diagram below as a blue

N

MO

arrow) commuting the adjacent diagram

Sk

s MY ——— T
and therefore I'm(q) C I'm(i' + d?) and 3'p (shown in the diagram below)

> C’oker.(io, —d3;)

d% oy

S ap

Now if ¢ is monic, by injectivity of J!, 3! ¢! (shown in the diagram below as a red
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arrow) such that the following diagram commutes:

Coker(i®, —d,) & I'

\\
N
T \\\p J/H! Pl
A

T

M
P . 0 ©“+dy g 1
but q is injective if the chain complex M° —" I ® M
sequence. We get ¢! o d? = d o ¢°. Now having defined ¢* : I* — J* such that

YFodi™ =di ot and 1! = ¢! 0!, we define ¢FF : [+ 5 JE+L by replacing

d9—il
Ly I' is an exact

the indices 0 by k everywhere in the above argument except for the first line.

-O+d0 dO_-l
(prove the exactness of (M =" @& M' " I') or find another argument.
Moreover, it is clear that 1 is a quasi-isomorphism if 7, ¢, j are quasi-isomorphisms.

So what is left in the proof of this lemma is to prove the following claim:
Claim: 1t : (I,d;) — (J,dy) is a quasi-isomorphism, so is

TW): (T(1),dray) = (T(J), drey)-

Proof of the claim : This claim follows from Proposition and the fact that
T(I*) is exact if T' is left-exact and I* is injective.
Now since ¢ is a quasi-isomorphism, the cone Cy of ¥ is acyclic and injective and

therefore T'(Cy,) is exact, and we have the long exact sequence:

D BN T(JY)[-1)) — HENT(CE)) — HYY(T(1%)

/H'C*I(T(w»

HX(T(J*)) «——— HMT(C})) «—— H*(T(J*)[-1])
LR (T @)
HMY(T(J*)[-1]) — H’““(T(C;;)) — HMYT(I*) ——— ..

and thus T'(¢) is a quasi-isomorphism. and the lemma proves the proposition
except the uniqueness (upto homotopy) part which we will show now: Let p be
another morphism satisfying all the properties of ¥ proved so far. Consider the

morphism Y—pu : (I,dr) — (J,dy). Clearly, this is a morphism satisfies the commutative
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daigram:

(1,dr) — (J,dy)

I

(M, dM) L) (N, dN)

The last proposition allows us to define the following:

Definition 5.1.5 Let T : A — B is an left-exact additive functor of abelian categories

where the domain category has enough injectives.

(a) (Injective resolution)
Let Qa : pKom(A) — pD(A) and Qp : wKom(B) — »D(B) be the obvious
(covariant) functors from the categories A and B to their derived categories. The
above proposition shows us that for every (M, dy) € pKom(A) we have an element
I(M) € D(A) (namely I(M) = Qa((I,d;)) where (I,1) is an injective embedding of
(M, dy)) which is unique upto unique isomorphism, such that I(M) is Q s-image of
an injective complex and the homologies of I(M) and M are same. This I(M) is
called the injective resolution of (M, dy). The last proposition shows that every
morphism ¢ : (M,dy) — (N,dy) defines a morphism I(¢) : I(M) — I(N), which
(comes from 1) ) is unique upto unique homotopy.

(b) (Derived Functor)
Define RT : yD(A) — »D(B), by: RT((M,dy)) := T(I(M)), then RT satisfies
RT oQa=QpoT. We call RT the (right-) derived functor of T.
For all integer k > 0, define RFT := H* o T, then RFT is called the k'*-(right)
derived functor of T.

Define RT(¢p) :=T(I(¢)). Then we see that RT is actually a functor.

Theorem 15 (Derived Functors through Acyclic resolutions) Let (M, dy;) R
(N,dy) be a quasi-isomorphism and N* be an acyclic complex Vk for the functor

T: A— B. Then ¢ induces an isomorphism

RFT(M, dy) = HY(T(N), T(dy)) Vk.
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5.2 Filtered complexes and Spectral Sequences

5.2.1 Filtered Complexes

Definition 5.2.1

(a) (Filtrations of Chain Complexes) Let A be an abelian category. An increasing

filtration W, A on A € A is a sequence (W,A)yez such that
- CW,ACW,4AC-- - CA,

where C means "sub-object or equal to.” Similarly a decreasing filtration F*A on

A e Ais a sequence (FPA),ez such that
- DFPAD FPTIAD ...

An increasing filtered complex is a triple (A, W, d) where (A,d) € Kom(A), and
for every p € Z, W,A* C AF, d(W,A*) C W,AM such that (W,A*, d|w,a+) — (A, d)
is a cochain map (notice that we need the last condition (W,A*,d|w, ) — (A,d)
because by C we mean ”sub-object or equal to,” which may not be the same as subset).

Similarly, we define a decreasing filtered complex.
(b) (Filtration of Cohomologies and Derived Functors)

i. (Filtration of Cohomologies)
Let T : A — B be an additive functor of abelian categories and let the domain
category have enough injectives.
Let (A, F,d) be a decreasing filtered complex in category A, and for every p € Z, let
ipp o (FPA* d|ppas) — (A,d) be the inclusion map. Then this defines a morphism
of cohomologies:

H*(ipp) : H*(FPA,d|pvp) — H*(A,d)
Define FPH*(A,d) := Im(H"*(ig»)). Then F*H*(A, d) defines a filtration on H*(A, d).

ii. (Filtration on Derived Functors)
The inclusions igy : (FPA*,d|pra+) — (A, d) induce morphisms of injective resolutions

I(FPAY) 1ry) I(A*), and we have the morphism

RT (i) = T(I(i»)) : RT(FPA") = Qu(T(I(F?A*))) = Qu(T(I(A"))) = RT(A).
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Define FPRT(A) := Im(RT (ig»)). Then F*RT(A) defines a filtration of RT(A*) €
B.

FEverything above can be defined similarly for increasing filtrations.

(c) (Shift of Indices)
Let W,A be an increasing filtration on A. Then the n-shift of W is the filtration
W.n]A of A, defined by Wi[n]A := W, A Yk € Z.
Let (A, W, d) be any increasing filtered complez in the category A, and n € Z. Then
we define the n-shift (A, Win|,d) of W as

Wiln](A)) = (W[n))(A') = Wisn(A)

foralll e Z and k € 7.

Similarly, we can define shifts of decereasing filtrations and filtered complezes.

(d) (Filtered Double Complexes)
An decreasing filtered double complex is a quadraple (A, F,dy,ds) such that :
(A** dy,dy) be a double complex in the category A, and F*(A®!) is an decreasing
filtration on AM!| such that di'(FP AR C FPARLL gnd dEH(FPARY) C FPARIY and
the inclusion (FPAS* dy|ppas,do|prass) — (A", dy,ds) is a morphism of double
complexes.
Define FPTot(A)" := @y, FPAM Vk,l,p € L.
Then (Tot(A), F*(Tot(A)),d" = di + (—1)*d}) is a filtered complex, called the total
filtered complex associated to the double filtered complex (A, F,dy,ds).

Similarly, we can define increasing filtered double complexes.

(e) (Filtration coming from Truncations)

Let (A,d) € yKom(A), such that
(A, d) =A™ T gm+1

Then define

m—+
TPA dTpA :0—)_)0 Am+pdA
( ’ (A) \ — Ay

PpP—Z€Eeroes

P
Amtretl g

Vp € Z (defined in the obvious way.) (where we use the convention that A' =0 V

integers | < m)
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Clearly, (A,T,d) is a decreasing filtered complex (where the inclusion maps are

defined in the obvious way), and it is called the filtration coming from truncation.

(f) (Gradations assocaited to Filtrations)
Let F*A be a decreasing filtration(resp. W, A be an increasing filtration) on A € A.
Then the pth-gradation associated to F*A (resp. W, A) is denoted by Gri.(A) (resp.
Gry'(A)) and is defined by :

FPA W,A
Gri.(A) = TP (resp. Gr)(A) := Wp:A )

5.2.2 Spectral Sequences

We will work in the category of Abelian groups here because most of our work in this
section is through diagram chasing and by Mitchel’s theorem it will also be true in
any small abelian category.

Let (A, F,d) be a decreasing filtered complex with filtrations that are upper bounded

on components and uniformly lower bounded,; i.e.

(a) (upper bounded on components)

for every k € Z, dl € Z such that
F'A¥ =0

(b) (uniformly lower bounded)
Im € Z such that F'A* =0,V k € Z and all integers [ > m.

We assume for now that the uniform lower bound m is zero for otherwise we will
shift the indices. We call the filtered complexes with these properties to be "nicely
bounded filtered complexes”.
Consider the differential d : Grh.(A") — Grh.(A"*!) satisfying the commutative
diagram:

Gri (A" —2—s Grh (A

I

FrAn — ¢ ppgntl

(where the vertical maps are quotient maps)

Then we see that (Gr'»A, d) is a complex and we can take the n"-cohomology group
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H™(Gr%.A, d) V integer n > 0. We also have the gradations of homologies

FPH"(A)
D n —
GripH"(4) = s ok

Theorem 16 (Spectral Sequence of nicely bounded filtered complexes)
There is a triple sequence (BP9, dP?), cz>0 ez with EP9 € Ab. and d2? : EP? —

Eptra—tl gnd dprra=rtl o @pd = (), such that

(a) BLY = GriAvsa, &b = (@,

(b) (EY dy7) = (HPT(Grh.(A)), 077, (isomorphism analogous to the isomorphism of
chain complexes) where 679 : HPT4(Grb (A)) — HPYH (G (A)) is the connecting
map of homologies associated to the short exact sequence

FP(A)

p+1
0— Grim (A) — —FP+2(A)

— Gri(A) — 0

(c) EVYL = HT(EP4,dP1), the r'h-cohomology of (EP4,dP4), defined by

ker(db:7)

(@ Ty

(d) Forp+ q fived, AN € Z=° such that
B = G (7 (4)

Vr > N. o

PROOF We define: ZP4 := {z € FPAPHI . dx € FPr Artatl) and Bpd .= zPH1at 4

d(ZP—7TH72) then B4 C ZP. By definition of Z’s and B’s, d(ZP9) C Zptra—r+1
p.q

Z
and d"H(Bpt) C Byttt Define BP9 = ig and dpt s EpT — EPTTTH be the
T

map induced by d. Then we already have dP™™9 "1 odP4 = () (since dPT 7T odPT = 0).

First we prove 3. : Since d(Z%f%) C ZPH 10" C Br+na—r+1 the quotient map
T ZP9 — EP9 restricts to ZPY, — ker(d??). On the other hand, B, = Zptha—1 4

d(zp—ratr=ty = d(Zp~4+t"1) (mod BP) and so 7 restricts to BYY, — Im/(d2—"1t"1)

ker(dr-7) _
and therefore we have the map ¢ : EP? — — 1o given by .
Im(dr"7777)
We prove that ¢ is bijective. It is surjective since from 7 !(ker(dP?)) = ZP9 N

A=Y (Bt Pty and 2 € 7Y (ker(dP9)) = dz = dzy + 2y € d(ZPTPU) 4 ZPH e
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where, 2, € ZPT197! and zp € ZPHTNTT C FrarH APt we get 2 — 2 € ZPF, and
m(21) = 0, as BP9 D ZPH M9 and therefore 7! (ker(d2?)) C ZP,.

It is injective since m'(Im(de—"7t""1)) = d(Zp~"t"1) + BP1 = B (as we
mentioned earlier).

We now prove 1. : Clearly Z'! = FPAPT® and BP? = FPTL AP So 1. is trivial.
We now prove 2. : The fact (E}?, dV?) = (HPT(Gri(A)), 679) follows from 1.
and 3. To prove 2. we only need to show that d; comes from the connecting maps.
Let 72" : FPA™ — Gr%(A") be the quotient maps. Then, (72"~ (ker(d)) = 2P
and the isomorphism (EP?, d??) = (HPT9(Gr%(A)), 679) is induced by 7%, (by our
previous arguments). Now d(ZP4) C ZPT™4="+1 and therefore we see that ¢ of an
element is obtained by taking a representative z of an element [z] of HPT9(Gr?.(A))
in ker(d), taking a preimage y of this representative in F?AP*¢ and y is in fact in
7P taking dy € FPH AP+ (since y is in ZP%) and taking its 75" P77 But this
is same as d;.

We now prove 4. : For any fixed m € Z, we can take large enough non-negative
integer [ such that F'A* = 0 for k = m—1, m, m+1. As F is decreasing FPT+1Am+1l —
0 and therefore Z = ker(d}) N F?A™ and d(ZP7HY = FPA™ A Tm(d7Y) as
I —q>0Vp+q=m with p being a positive integer. Hence, pE} = Gri,(H™(A"))
0

Theorem 17 Let (A, d) be the total complex associated to the double complex (B, Dy, Ds).
Then if KPA" := @Dysprrizn AR C A™ then (A, K, D) defines a filtered complex,
which we call the Hodge filtered complex, and K is called the Hodge filtration.If

kBP9 s the Spectral Sequence associated to the Hodge filtration, then:
(a) KEY? = AP and dy? = (—1)P Db
(b) (xEVI,dV?) = (H} (KP*), H}, (DY), where (HY}, (KP*)) is the cohomology of
KP* DY) and HL (D;) is the morphism HL (KP*) — HL (KPT1*) is induced by
2 Dy Dy Dy
Dy
1 O

PRrROOF Clearly 1. follows from 1. of Theorem, asdh? = d = (—1)PDY? : Grb (APFY) =
BP4 GT%(AH‘A’“) — Bp.atl

Now 2. follows from 2. of Theorem [16|as the short exact sequence 0 — Grbt(A) —

70



KP(A) ) ‘
KA — Gri.(A) — 0 is the same as

~
o

0—— s Brls—l ___, ppx g prls-l » Bp*

l(—l)P“Ds’“’* l(—l)?DS’*@(—l)P“DS“’* l(—l)pD;’**

00— prHls —  peetlgpetls s gl 4

and d; is same as the connecting map of the long exact sequence of homology of this

complex. 0

5.3 Hypercohomology

Let (X,7x) be a topological space and let Sh(X,.A) be the category of A-sheaves
(ie. F € Sh(X,A), & F: 7% — A; ie. a contravariant functor 7y — A). We
have the global section functor I'x : Sh(X) — A. such that I'x(F) := F(X) for
all F € Sh(X, A). Now, I'x is left-exact and if A has enough injectives, so does
Sh(X,A).

Definition 5.3.1 (Hypercohomologies) Let (F,d) be a complex of sheaves. Then
the derived functors R*T x is called the k' -hypercohomology functor and is denoted

by HE and R*T x(F,d) is the k" -hypercohomology of (F,d), denoted by H: (F,d)

Theorem says that hypercohomologies can be computed from a chain complex

(G, dg) which is quasi-isomorphic to (F,d), and all whose terms are I'y-acyclic.

Definition 5.3.2 Let ¢ : (X, 7x) — (Y, 7y) be a continuous map. Then ¢ defines a
(covariant functor) ¢. : Sh(X, A) — Sh(Y,.A), called the push-forward, defined by

$(F)(U) = F(¢~'(U)) YU € 1y
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Chapter 6

Hodge Theory Revisited

Definition 6.0.1 Let A be an abelian category with enough injectives and let F €
Sh(X, A). Consider the inclusion functor

L:Sh(X, A) — ¢Kom(Sh(X, A))

defined by

LF)=F—=0=20—=---—0)
A complez (G, d) € gKom(Sh(X,.A)) is called a resolution of F if there is a monic
i: F — G° such that L(7) is a quasi-isomorphism and each G* is'x-acyclic Vk € 72°.

This does mean that

HY(X,F) = Hy(G,d)

Definition 6.0.2 (Holomorphic de Rham complex)

Let X be a complex manifold of dimension n and let Q% be the sheaf of holomorphic
forms of degree k on X and let Ox be the structure sheaf (i.e. the sheaf of holomorphic
functions on X). Then the exterior derivative d and the (1,0)-part @ on Q% coincide

and we have the finite complex
050y 20L 3. 50n 50

This complez is called the holomorphic de Rham complex of X, denoted by 2%

or (Qx,d) and we use the convention Q% = Ox.

Let Cx be the constant sheaf on X, with fibers (stalks) C over each point. Consider

the inclusion of sheaves 7 : Cx — Ox. Then we have the following resolution theorem:
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Theorem 18 The holomorphic de Rham complez is a resolution of the constant sheaf

Cx, via. i. Thus, H*(X,C) = H*(X,Cx) = H% (Qx, 0) o

PrROOF We wish to show that all the terms of the holomorphic de Rham complex are
injective sheaves, which means that the sheaves of cohomology H!(Q%) = 0 VI > 0
and Vk > 0, where every sheaf of abelian groups, F, H'(F) is the sheafification of
the presheaf of the sheaf cohomologies H!(U, F) for all integers [ > 0.

To show this, first we want the following lemma:

Lemma 17 Let (A, d) be the total complex associated to the double complex (B, Dy, D3)
and let i : (M, dy) — (B*°, Dy) be a cochain map such that

0— Mp 5 02 1 Dy

s acyclic, meaning that the cohomology of this complex is zero in positive degrees,
then
H*(M,dy) = H*(A,d) Yk >0

The proof of the above lemma is similar to Step-3 of Lemma [15] Now, we have
the inclusion of the holomorphic de Rham complex into the de Rham complex
(Qx,0) — (A%, d), and the de Rham complex is the total complex associated to
the double complex (A%?, 3, (—1)P0), where the complex (A%, (—1)P9) is acyclic, by
the Poincaré - Dolbeault Lemma. Thus by the last lemma, the holomorphic de Rham

complex is quasi-isomorphic to the de Rham complex.

6.1 Frolicher Spectral Sequence

Let X be a complex manifold of dimension n. Consider the filtration from truncations

TPy = S artt &L

on the holomorphic de Rham complex and the Hodge filtration

KPA* = @ AR
r>p,r+s=k

of the de Rham complex. Then for every p, (KP A%, d) is the total complex associated
to the double complex (A%, 0, (=1)%8)ispi=0 and clearly, (A5, 0>y = TP
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Thus by arguments similar to Theorem [18] we see that (K?A, d) and (T%Sy,d) are
quasi-isomorphic. Now each one of the sheaves K? A% are fine sheaves and therefore

they are acyclic w.r.t. the global section functor. Hence by Theorem [L5| we get that
HY(KPA¥(X),d) = HY (T*Qy, 0)
where (KPA*(X),d) is the complex of global sections of (K?A% ., d).

Definition 6.1.1 (Frélicher Spectral Sequence) The spectral sequence i EP9 associated
to the Hodge filtration on the de Rham complex (A(X)d) is called the frélicher

Spectral Sequence or F'SS for brevity.

By Theorem [I7] we have:

(B, di?) = (HY(AP(X), (=1)70) = (H5*(X),0) = (H(X, ), )

where the last isomorphism follows from Serre duality.

6.1.1 Degeneration of F'SS at F; for a Kahler Manifold

For a compact Kahler manifold, the Hodge decomposition
H*(X,C)= P H}(X)
p+q=k

gives us a filtration

FPHMX,C)= € H™(X)

r>p,r+q=k
of H*(X,C) for which we have Gr? H*(X C) = HY*P(X) = H*P?(X,Q%). So we

have the following theorem:

Theorem 19 The Frolicher spectral sequence K of a compact Kdahler manifold degenerates
at E1

PROOF By, We have x BP9 = Grh. H(X,C) and g EPY, = H" (g EP9, dP7) =

dime(kEPY) < dime(xEPY) (6.1)
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and the Hodge decomposition gives, xEP? = Grf. HYH(X,C). So dime(xEP?) <
dime(gEP?) Vr > 1.

But by the Hodge decomposition, Grh, HH (X, C) &2* Grh. HP*(X, C) and the equality
in[6.1occurs for every, (p, q) iff &7 = 0 Vp, g. (=* is true since the Hodge decomposition
implies

FPH*(X,C) = ker(d|goar) /d(FPA1(X))

6.2 Normal Crossing Divisors and Open Manifolds

Definition 6.2(d) (Normal Crossing Divisors) A hypersurface D in a complex
manifold X is called a normal crossing divisor or NCD (for brevity) if there
15 a locally constant function r : X — N, such that for each point x € X, there
s a neighbourhood V' of x and there are n-coordinate functions zq, ..., z, on V, such
that where r is constant on V and DNU = {y eU: Hg(:Ul) zi(y) = O} . We say that
the complex chart (V,(z1,..,2,)) expresses D. We say that D is fully mnormal

crossing if we can take V = X.

(b) Open Manifold associated to a NCD The open manifold associated to a
NCD D in a complex manifold X, is its complement X \ D in X

In this chapter, we will assume X is a complex manifold of complex dimension n, D
isa NCD on X, and U = X\ D is the associated open manifold, and k a non-negative

integer.

Definition 6.2.2 Let Q’)“(’D be the sheaf of meromorphic k-forms on X, that are
holomorphic on U. We say that a section & of Q’}QD over some complex chart V
has logarithmic singularities/ logarithmic poles if it has only poles of order
at most one along VN D, and the same holds for da. Then the sections of Q’)“(’D with

logarithmic singularities forms a subsheaf of Q’}QD, denoted by
Q% (logD)

, called the sheaf of k- forms with logarithmic poles
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Proposition 6.2.3 Let (V, 21, ..., 2,) be a complex chart expressing D, then Q% (logD)|y

is a sheaf of free Ox|y-modules, with basis

dz; dz; . .
Zin Ao A Zp/\dzjl/\---/\dzjq:zSST(V),]tZr(V),erq:k:)
Ziy Zi

p

(

In particular, Q% (logD) is a sheaf of free Ox-modules.

PROOF Let £ € T'(V, Q% (logD)). Let f := Hj(:‘i) z;Then £ has a pole of order at most
1 along {f = 0} . So there is a holomorphic k-form o on V, such that f-& = 0. Then
df Né+ f Ado and therefore df A vanishes along D. Putting £ = ZAB §a,pdzaNdzp for
A C Nyyy and B € N, \ N,y we get that {4 5 vanishes on {gA = HjeNT\A 2 = 0}
and as g4 is a product of primes in the unique factorization domain O(V), (taking V'

sufficiently small) we see that g4 divides €4 . The fact that O(V), is a UFD follows
from 2.0.2 O

Definition 6.2.4 (Logarithmic de Rham complex) As, d(% (logD)) C Q5™ (logD)
we see that (Vs (logD),d) forms a complex of sheaves on X, called the logarithmic

de Rham complex

Let j : U — X be the inclusion of the assocaited open manifold of D in X, then, j

induces the following inclusions of chain complexes

Q(logD) = j % |v = j-Ax|u
Let ¢ be the composition of these inclusions. We have the following theorem:
Theorem 20 ¢ induces a quasi-isomorphism. o

PROOF We prove this statement for fully normal crossing divisor D on a compact
manifold X.
So, we assume that X is the n-polydisc Dy x---xD,, and D = {(21, vy Zn) € D1 X Dy, H;Zl 2 = 0}
U=X\D=Dx---x D} x D,y x D, and there is a deformation retraction of
U to the torus T := [[’_, dD;. Now, as H'(T,Z) = Z", we have :
HYT,C)~=C"
k

N\ H'(T,C) = H*(T,C)
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where the second ismorphism is given by the cup-product and follows from the
Kiinneth forrnula The homology class of the cycles ; generates Hy(T,Z) = Z~

d e . . d 1
“i d;j, where ¢; ; is the Kronecker delta, and ] €

71_\/— oD, 2 = 045, , ; 2
dz;
(U, Q% (logD)) Vi € N,. So, by the Poincaré duality, we get that (—2)1<j<, is a
Zj
basis of H!(T, C).
dzr dz;, dz;,
= A LA

27 Ziy Ziy,
Then the map

and we have

for any multiindex I = (iy,...,ix) € N¥ 1 < Vk <r

H*(D(U, Q% (logD))) — H*(D(U, j.Ax|v)) = H*(U,C)

d d
ZI/\dZJl—> / ZJ

is surjective.

To prove injectivity, we show that any section a of I'(U, Q% (logD)) is cohomologous
in H*(T'(U, Q% (logD))) to some % The approach we take to show this is induction
on 7. '

For r = 0, the statement is same as the statement of Lemma holresolutionthm.
Assuming the statement to be true for » — 1, and Vk, we see that any section a of

dz, . ..
(U, 9% (logD)) can be expressed as o = A B + v, where v is holomorphic in

T

z
" A 8 is holomorphic on
Zr

z., and [ is independent of z,.. Now if « is exact, then
{z, = 0}, so this implies, df = 0.
Now, § and 7 are elements of I'(U, Q% ' (logD")) and T'(U, Q% (logD’)), where D' =

{H;;i zj = 0} . We now apply the induction hypothesis on 5 and v and we get the

result for a. O

Corollary 6.2.5 The above map induces the isomorphism of cohomologies:
H*(U,C) = H*(X, 2% (logD))
PROOF ¢ gives an isomorphism of hypercohomology,
H* (X, Q% (logD)) = H*(X, j.Ax|y) = H (X, j.Ax|y) = HY DX, j.Axly)

where the last isomorphism follows because the sheaves considered are acyclic for the
global section functor. Now, I'(X, j.Ax|;;) = ['(U, Ax|;;). Then H*(T'(U, Ax|;;)) =
H%(U,C).
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6.2.1 Filtrations on the log-deRham complex

Definition 6.2.6 Let D is a fully normal crossing divisor and adapt the notations of
the last theorem. Let | be a non-negative integer < r, and let M% := Q% (logD). Then
we define an increasing filtration W, by W, M% = /\l M A Q}_l; i.e. WM has the
basis dz—? Ndzy where I C N, |I| <1 and I N J is empty, |I| +|J| = n.

Now, for any normal crossing divisor, we define the filtration W locally, by the above

paragraph.

Definition 6.2.7 A divisor D is said to be a globally normal crossing divisor,
if D = UerD;, where all the D;’s are smooth hypersurfaces and the intersections

D;, N---N D, are transversal for every multiindex (i1, ...,%) and for all l.

Let us give a total order on I, and define DO = X D® .= HKg]JK‘:k(ﬂiGKDZ’).
Then either N;cx D; is empty or it is a complex submanifold of X of codimension k,
as the intersections are transversal. Let j, : D) — X be the morphism induced by
the inclusions jg : Njex D; — X.

Theorem 21 There is an isomorphism Gr}’ Mx = (jk)*Qg(l,i) o

ProOF Let (V, (21, ...,2,)) be a complex chart that expresses D, then V N D, is a

fully normal crossing divisor of V. Define the map
Res* : T(V,WMy) = T(V, .Q55) = @=LV, 5.25F p)]
by

d 2/ —1)*dz ek D for ACN, C I with |A|=k&
Resk(ﬁ/\dzB)K: ( )" d2B(ex DV |Al

z )
A 0 otherwise

Then I'(V, W_1 Mx) C ker(Res*), and Res gives a map Gr)VT'(V, M) — T'(V, Q7 %).
Let (21, ...,2)) be another set of local coordinates on V, such that (V, (ui, ..., u,))
expresses D. Then there are non-zero holomorphic functions f; : V. — C* Vj € N,,
such that u; = f;z; Vj € N,; then

duljj = df—]? + dZ—Zj Vi €N,

d d df;
Then “A and ™4 have the same image in Gr}Y (T'(U, M%)) as the forms @i are
ZA UA J

holomorphic on V. So Res is independent of the chosen coordinates that express

79



D, because it anyway does not depend on the last n — r coordinates of any chart

expressing D chosen on V.
Res is injective: If o = 3,5 aA7BdZ% ANdzg € T(V,W,M%) be such that
Res(a)xg =0, VK, with |K| = k; and |A| <r, then ayp =0 VA, with |A| =k, and
hence aw € I'(V, Wy, _1 M¥).

Res is surjective: Let (ax)x € ®xj=x[I'(V, j*Qh’i’;KDi)], then, each ay extend
as a holomorphic form to a neighbourhood of N;cx D; to Bk, say. Shrink V to be

contained in the intersection of all the domain of definitions (assumed to be open),

dZK . .
then f:=5 m; A Bk is defined on V' (here the good news is that the Sk
are finite and so the intersection of the domain of definitions is open).  OSince we

have considered only hypercohomology of increasing complex of sheaves we consider
the hypercohomology of increasing complexes, let M* := W_, be the associated

increasing filtration to W,. Then we have the following theorem:
Theorem 22 We have wEP? = H*+4(D( — p), C). o

PROOF From Theorem-{16}, w E} = HP*4(X, Grh (Q% (logD)) and Grh, (% (logD)) =

Gri¥ Q% (logD)) = (j_p)«(Q25",)) (by the last theorem). Moreover, for every complex

F* of sheaves on DI"P) we have R¥(j_,),F' =0 Vk > 0, as the maps j_,, are proper

maps and have finite fibers, we have
HY(DUP), 7y 2 H (X, (j_p)«F")

And we note that H**4(DP) C) = H>*4(D?, Qp—p) O
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Chapter 7

Hodge Structures and Polarisation

7.1 Pure Hodge Structures

Let X be a compact manifold and let K be a field of characteristic zero. Consider the
morphism of constant sheaves Z — K. The sheaf cohomology group H*(X,K) can be
identified with the Cech cohomology group HF (U,K), where U is a Cech cover of
X (and similarly H*(X,Z) = ﬁk(u, Z)). Since K has characteristic zero and C*(U, Z)

is a complex of free abelian groups of finite rank , we have
C*(U,Z) % K = C*(U,K)
and
H* U, 7) ®K = H* U, K).
Since tensoring with K kills the torsion part, the integral cohomology modulo torsion

is identified with its image H ¥(U,Z)®71 in the cohomology with K-scalars H U, K).

Suppose now that X is a compact Kahler manifold. Then it has the Hodge decomposition,

HYX,C)= @ HM(X)

pta=k

where HP(X) is a complex subspace and we have the Hodge symmetry
HP(X) = Hor(X).

Let w be the Kihler form on X, and L : H*(X,R) — H*"2(X R) be the cup product
with the class [w] € H?(X,R). Then we have the Lefschetz decomposition

prim

Hk<X, ]R) _ @ LT HF=2r
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where each primitive component has a Hodge decomposition induced by the Hodge
decomposition of H*( X, R). We also have the intersection form Q on H*(X,R) Vk < n
defined by,

Qa, B) == /Xw"_k ANaAB = (L""%a pB).

Q is alternating if k is odd and symmetric otherwise. The induced Hermitian form

Ho(a, 8) = i*Q(a, B)
on H*(X, C) satisfies Proposition{4.6.2|

Definition 7.1.1 (Category of Pure Hodge Structures)
e (Integral pure Hodge structure of weight k) An integral pure Hodge structure
of weight kV = (Vz, (VP?), cz) is given by a free abelian group Vg of finite type

together with a decomposition

Ve =V2®C= v
c=V20C= P

pt+a=Fk

where VP4 are C vector spaces satisfying
VP = Vap,

and

VPl =0, Vp,qeZ, p+q#k

e (Morphisms of Integral pure Hodge structures) A morphism ¢ :V — W of
integral pure Hodge structures V = (Vy, (VP9), ,ez) and W = (Wy, (WP?), .cz)
of weights n and m = n + 2r is an abelian group homomorphism ¢ : Vz; — Wy
such that the induced homomorphism ¢ : Vo — We is a C-linear map that satisfies
p(VP1) S WPt Np g € Z and Nr € Z

Definition 7.1.2 (Category of Pure Hodge Complexes) Let A be a commutative
ring with unity.
e (Filtrations, Filtered Complexes and Conjugate Filtrations)
Let M be an A-module. A collection (FP?M),ez of submodules of M is said to be an
increasing filtration(resp. decreasing filtration) of A if
FPM C FPHM VpeZ

(resp.) FPM D FPHIM Vp € Z
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and the ordered pair (M, (FPM),ez) is said to be a filtered complex of the same
type.

A filtration F' = (FPM),ez of a complex vector space M gives another filtration
F = (F"M),ez, called the conjugate filtration defined by F' M = FPM.

e (Morphism of Filtered complexes) A morphism ¢ : (M,F) — (N,G) of two
filtered complexes (M, F = (FPM)yez) and (N,G = (GPN),ez) of degree r € Z over
A consists of a morphism ¢ : M — N of A-modules such that

S(FPM) S GP*"N Vp € Z.

e (n-Opposite Filtrations)
Letn e N, F = (FPM),ez and G = (GPM ),z be two filtrations of an A-module M.
Then F and G are said to be n-opposite filtrations of M iff

Vp,q, p+q=n+1=F'M & G'M = M.

e ( Pure Hodge Filtrations and Pure Hodge Complexes)
Let k € N. and Vy be an abelian group of finite type and Vi := Vz ®z C and filtration
F = (FPVg)pez of a Vi is said to be a Pure Hodge Filtration of weight k of V;,
if F is k-opposite to its conjugate F.
A Pure Hodge Complex of weight k is an ordered pair (Vz, F') where F is a
pure Hodge Filtration of weight k on Vz, where Vy is an abelian group of finite type.

e (Morphism of Pure Hodge Complexes)
A morphism of Pure Hodge Complexes (Vy, F*V¢) and (Wy, F*We) of weights
noand m = n+ 2r,r € Z, —35 < 1 respectively, s a morphism ¢ : Vz — Wg
such that the induced map ¢ : Vo — We gives a morphism of filtered complexes
¢ (Vo, F*Vie) — (We, F*We) of degree r.

Kernel and image of a morphism of Hodge structures has a natural Hodge structure.

The Pure Hodge Complexes with morphisms among them defined as above form the

category of Pure Hodge Complezxes.

Proposition 7.1.3 Let k € N. The categories of Pure Hodge structures and Pure

Hodge complezxes of weight k are isomorphic.
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Definition 7.1.4 An integral polarised Hodge structure of weight-k is a triple
(Vz, F, Q) such that (Vz, F) is a pure Hodge structure of weight k, and a bilinear form

Q which is symmetric if k is even and alternating if k is odd.
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Chapter 8

Chern Class and the Kodaira

embedding Theorem

Definition 8.0.1 (Polarised Manifold)
A polarised manifold is a pair (X, [w]), consisting of a compact complez manifold

X and an integral Kdhler class [w] € H*(X,R) on X.

Definition 8.0.2 (Line Bundles with Special Propperties)
Let X be a compact complex manifold of dimension n andp : L — X be a holomorphic

line bundle over X.

e (Base Point Free ones)

L is said to be base point free/spanned if there exist a map ¢ : X — HY(X, L)
such that if s = ¢(x), then the germ s, # 0.

Suppose L is spanned. Let P := P(H°(X, L)), the projectivized space of global
sections of L, and let P* be the dual projective space of P. We can define a map
Jr + X — P* followingly: the collection of all sections of L that vanish at x forms a
hyperplane, say H, in P. Define jr(z) := H,.

Choose a basis s := (8¢, 51..., 8,) € HY(X, L), which exists because of compactness of
X. Let U := (U)aer be an open cover of X. Then s can be given by its restrictions
Sq 1= Sia Vi € N,, and a € I of L over the open sets in U. Now if we define the
local maps ip o @ Uy = P* = P" by ipo(x) = [so(x) : s1(x) : ... : su(x)], then these
local maps are well defined since L is spanned and glue together to give a global map

iy X — P* = P" since the local maps are compatibe with the transition functions
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of L on intersections.
Moreover,
(a) the map i is holomorphic :
forif Vi i= z=[z20,..,2n) € P": 2 #0 then izl(Vi) is the open subset of X where

the section s; does mot vanish anywhere. Now,

i'(V) —=— vi=Cr (8.1)
S0al®) Snal®)) (S0l Sia(@) Snal®),
e e I e

(where the 1 is at the it"-position) is a holomorphic injection since the meromorphic

sections Z”—Ei; are holomorphic on izl(V;) V) €N, only. Hence iy, is holomorphic.

(b) The map iy, is independent of the basis element s upto a projective transformation.

(c) Let D = ¥ a;z; be a divisor, then i5 (D) = X qa;s; = {x € X : X ja;8:(x) =0} €
M

HY(X, L) is a divisor and therefore is the element [[, sj* € Div(X) = H(X, o
X

and thus
i, H'(P", Op.) — H'(X, O%)
is such a map that 17 (Opn(1y) = L and clearly,

i HO(P", Opn (1)) — HO(X, L)

1S surjective.

e (Very Ample Line Bundles)

L is said to be very ample if i} is an embedding.

e (Ample Line Bundles and Ample Divisors)
L is said to be ample if L®" is a very ample line bundle for some n € N. A divisor

D is ample if its associated line bundle Ox (D)

e (Very Ample Line Bundles)

L is said to be very ample if i} is an embedding.

e (Ample Line Bundles and Ample Divisors)
L is said to be ample if L®™ is a very ample line bundle for some n € N. A divisor

D is ample if its associated line bundle Ox (D)

e (Positive Line Bundles and Positive Divisors)
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(a) Recall that a (1,1)-differential form & is positive iff (TcX)? 3 (u,v) — &(u, Jv) is a
positive definite inner product; where J is the complex structure on X.

(b) Let h be a Hermitian metric on L and let ©(L, h) € A% be the curvature form which
is locally defined by ©(L,h) = 00(loghy), where hy is the square of the local norm
defined by h on Uy, and U = (U)aer is a trivializing open cover of X.

(c) L is said to be a positive line bundle if 3 a Hermitian metric h on L such that

the curvature form ©(L, h) is a positive form.

We now define the Chern class of isomorphism classes of Line Bundle using Sheaf
Cohomology:

Consider the morphism of chain complexes of sheaves of C-modules:

0 i d d d d 0
0 —C -5 A = A, S A S .5 A% — 0

lf=f° lfl lfQ lf?’ lf"“ (8.2)

O 0x LAY DAY B AL D A Do
induced by the inclusion f : C < Ox. Then f*! is just the projection map (upto

homotopy) corresponding to the decomposition of C¥-modules:

Ay = P A

pt+g=k
Vk € N,,. Note that the maps i,j above are inclusions. The inclusion f : C — Ox

defines a morphism of sheaf cohomology:
fFHYX,C) — H*(X,0x)
The chain map also define maps of cohomology groups
f* Hpp(X,C) — HYM(X)

and the last two maps of cohomology coincide by De Rham’s Theorem and Dolbeault’s
Theorem.
Since the Laplacians Ay and Ny coincide upto a factor of 2, f* maps Ag-harmonic

forms to Ag-harmonic forms, giving the chain map of global Harmonic forms:

0% I(X,C) 4 HY 5 HL 5 HE S 5 HE =0

J/f:fO lfl lfQ lj‘S lfﬂ+l (83)

0% T(X,0x) L HO % 1% 2 202 % % 9% 0
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where horizontal maps d,0 are zero on Harmonic forms and f*' is the projection
given by the Hodge decomposition:
i - @
p+q=k
Vk € N,,. Now by the identifications H*(X,C) = H% and HP4(X,C) =2 HE? from the
above chain complex we have the maps f* : H*(X,C) — H%¥(X) whcih is the same
as the map f*: HY (X, C) — Hg’k(X).

*Here I have the following question:

The kernel of this projection map f* is F*H*(X) and the real forms in the kernel of
I? are representable by real (1,1)-harmonic forms.

In the following diagram:
0 % HYX) 2 HY(X) 25 HA(X) % . % HY(X) =0
A S
0% HOO(X) & HONX) L HO?2(X) 5 . % HO(X) =0
(where the horizontal maps are boundary maps), do the vertical maps

together give a morphism of exact sequences?”* Now the exact sequence of

sheaves of abelian groups:

exp2m/—1 "
0 0 7 0 > O% 0 0 (8.5)
Consider the exact sequence of cohomology groups:

0 O HYX,Z) — " HO(X,0x) SPYTL [o(x, 0%)

s

H'(X,0%) p—— HY(X,0x) «—— H'(X.Z)
lé

HY(X,Z) —" s H*(X,0x) “78 po(x,05) — 0 .
(8.6)
The commutativity of the inclusion of sheaves:
/R
i 7 (8.7)
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gives the map of cohomologies:
H*(X,Z) —“— H*(X,0x)

LT (8.8)

H*(X,C)

The wvertical map i* in the last commuting triangle is inclusion upto torsion part.

Now clearly, the kernels of i* and h* contain the torsion part and we have:
kerh* = (ker f* N H*(X,7Z)) @ (torsion part).
Now the L.H.S. is equal to imd* and clearly imdé* = (H"(X)NH?*(X, Z))®(torsion part).

Definition 8.0.3 (Chern Classes of Line Bundles) The Chern class associated
to the line bundle L is defined by c1(L) := 2m\/—1-6*([L]) where [L] is the isomorphism
class of L in the Picard group H'(X, O%).

Theorem 23 (Fundamental Theorem for (first) Chern class of a Line
Bundle) Let L be a holomorphic line bundle over X, and let hy be a Hermitian
metric on L. Then the class of the Curvature form ©(L,hyr) is equal to the image
of ci(L) in H*(X,Z). For every real form & of type (1,1) whose class is equal to the
image of c1(L) in H*(X,Z), 3 a metric h on L such that ©(L,hr) = £. In particular,
the cohomology class of the curvature form is the same for any Hermitian metric on
L. Moreover, if L is positive line bundle with respect to one Hermaitian metric on it,

then L 1is positive with respect to every other Hermitian metric on it. o

PROOF Let U = (U)qer be a trivializing open covering of L. by simply connected
open sets, and let o, be the non-zero holomorphic section over U, that trivializes
Ll Va €. Let hy = hp(04,04) Vo € 1.

Let Zx be the constant sheaf on X with stalks Z. Since the open sets U, are
simply connected, the exponential exact sequences restricted to U, splits on the

right, followingly:

L - exp2my/—1 o
(a) 0 —— Zly, —— CSly, (C2)* o, ——0

1
Ty =T 109

exp2my/—1
(b) 0 —2— Z|, —— Ox|,. 7 7 Oxlp, —>—10

1
2w/ —1 lOg
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Va € I, let w, == O(L, h)|y,. Then w, = ﬁ@g(log he) and so w, = d&, where
504 = 2 ra(logh )
Let (gap : Uap — C*)aper be the transition functions of L over U, where U, 3 =
1 —
U, NUgs. Then 0, = go pos, th h o — &= ———=010g |gas|?
3. Then 0, = go 303, then we have &, — &g T 08 |9u 5l

Let fo,3 € Ok (Uag), such that exp[2myv/—1fs 3] = ga,s. Then exp(—2my/=1- f, 5) =
ga,ﬂ So #_71 log |gOé7/3|2 = faﬁ - ?a,ﬂ = 501 - 56 = _dfa,ﬁ‘
Moreover, the cocycle codition go s - gz, - gy, = 1 of transition maps gives us fq g +

fﬁ,'y + ffy,a E Z We have,

Ja,3 " 98y " Yo = 1 (8.9)
Wo = d&, (8.10)
ba — &= —d(fop) (8.11)

Let P97 .= QT(AZ;QQ),IC’“’T = C (AL), M" := C (C)*) where for every sheaf F on
X, Q* (F) denotes the sheaf of Cech complexes on X.
The exponential short exact sequence (a) gives a short exact sequence of sheaves of
Cech complexes :

0 C(Zx) = C(A%) = M =0
Take the long exact sequence of cohomology of the above complex on the open cover,

U. Then the connecting map 0 : H(U,C¥)*) — H*(U, Zy) is given by

1
§' = ——6x olog

2w/ —1

where & be the Ceech differential of K**. Then,

61(9%5)&, o \/—51C<fa ﬁ) (8.12)

Let (K, D) be the total complex associated to the double complex ((K*")y. >0, d, ).
Since A% are fine sheaves, their sheaf cohomologies vanish on positive degree. So, we

can refine U so that

H (U, A%) =0 Vr>1.

Then (K, D) is a resolution of the constant sheaf Cx on X, with stalks C. Let

(K, D) be the complex of global sections of (IC, D), then there is an isomorphism,

90



H%(X,C) — H*(K, D). By the inclusion of the de Rham complex in (K, D), we get
the morphism of cohomologies H% »(X,C) — H*(K, D) and the inclusion of sheaves
Cx < K° defines a morphism of sheaf cohomologies H*(U,Cx) — HF(K, D).

Moreover, all these morphisms of cohomology are isomorphisms.

Equations 8.10} can be written in the complex (K, D)y as:

(Wa)a + D(?a,ﬂ)a,ﬁ = Ox(&a)
(8.13)

Oc(&a) + D(?a,g)a,ﬁ = 5;¢(7a”3)a75 = 0k (fap)ap as coefficients of dxc(fa5)aps are integers
(8.14)

Then we get (wa)a is cohomologous to 0x(fas)aps in (K, D). So, from equality
we get 2/ =1 - 01(ga.p)ap is cohomologous to (wa)a, and (gas)as € HY(X,O%)
represents the isomorphism class of L, and so 27v/—1 - 6'(ga5)as as a cohomology
class is equal to ¢;(L). This completes the first part of the Theorem.

For the second part, let h be the Hermitian metric induced on L by £. Then {—O(L, h)
is exact, and therefore it is 0-closed and O-closed. So, by 00-lemma, we conclude that
there is a smooth function p on X, such that £ —O(L,h) = %—\1@ -00pu. Then we set
hr = e*h and we are done with the second part.

The last part follows from observing that in the proof of the second part, h is positive
definite if and only if hy, is positive definite. The following theorem is known as the
Kodaira-Akizuki-Nakano Vanishing theorem (KAN Vanishing theorem for brevity)

which we state without proof. The proof can be found in [2]:

Theorem 24 Let L be a positive holomorphic line bundle over a compact complex

manifold. Then for any q > 0, we have H1 (X, Kx ® L) = 0. 0

This helps us to get:

8.1 Kodaira embedding theorem

Theorem 25 (Kddaira embedding theorem) Let X be a compact complex manifold
and let w be a positive Kihler form on X. Let (L, h) be a holomorphic Hermitian line
bundle, such that the curvature form ©(L,h) = w. Then (L, h) is positive and there
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erists a holomorphic embedding ¢ : X — PN for some sufficiently large integer

N > 0. O

PROOF Let z € X and let 7 : X, — X be the blow-up of X at the point z, let
X = X,, and let E = 77 (z). Let I C Oy be the ideal sheaf corresponding to the
hypersurface E of X; i.e. Ig(U) is the set of all holomorphic maps f : U — C such
that f vanishes on U N E, for every complex chart U of X.

Let L be the sheaf of holomorphic sections of the pull-back bundle 7*(L). Then the

restriction of L on F is [~/| g defined by the short-exact sequence:
0= IgL - L—Llg—0 (8.15)

and which is the sheaf of holomorphic sections of 77'L|g. We want to show the
following claim:

Claim: 7 (Kx) =Ky, ® [50"

Proof of the claim : Let us choose a complex chart (U, ¢) around x such that
¢ : U — D" (where D" is the complex unit disc in C"), such that ¢(z) = 0. Let
¢ = (z1, ..., zn), then ¢ itself is the system local equations of Y < X on U, and

U, ={(Z,2) €CP"' xU: Zizj = 2,Z; Vi,j €1,2,...,n}

where Z = [Zy : -+ Z,] € CP""'. We define U’ = {(Z7 2)eU,: Z; # 0} and

QS;.i)(Z, 2 2i|zi = Z;]Z; for j#i
Zi otherwise
Let 7(U) = U
Then ¢ := (¢§">, e ¢7(f)) define local coordinates on
U ={160(Z,2) s+ 602 2)] % (- 0 (Z,2),0001- 60(2,2), 2+ 00(2,2)) 2 € UL
Let « =g -dz A--- Adz, be a monomial section of Kx over U;. Then
(@) = (7°(9)d(r"2) A Ad(Tz) = (77(9) (=007 A A (87 ) A - Ad(zi-0))
= (7'(9) - (=)™ VA d(G) A A d (9
This defines isomorphisms ¢; : 7°(Kx)|7: — Kx, ® Ig(nfl)\gé by

T(a) = [(T*(9)) - d(6))) A -+ Ad(¢D)] @ (—1)m D20

92



which glue together as we vary ¢ to give an isomorphism 1 : 7*(Kx)| e~ Kx, ®
[g("fl) ] $\g Which extends to all of X by continuity. This proves the claim. |
Let N be any integer.

Now tensoring the equation of the above claim by I and L&Y we get :
HEx)®Ip® L2 Kx, @ I8 V@ Ip0 LY = Kx, © IS © L&V

which gives us

K)—(i ® [EL®N o~ [gm ®7‘*(L®N ® K)_(l)

Consider the line bundle associated to the divisor E, denoted by O x(—FE). This is
the line bundle corresponding to the sheaf I on X and by the proof of |4 it restricts
to Or(n,,,,x)(+1) where E' = P(N(4,x). So the curvature form wg of O x(—F), with
the metric induced from the Fubini-Study metric on Op(y,,, ) (+1) through partition
of unity is positive on F, and therefore w,p which is the curvature metric of the line
bundle coming from the sheaf I5" is positive on E.

Let hx be the Hermitian metric on Ky induced by w and wg, := ©(Kx, hx), then
the curvature form of (L®N @ K ', h®"® hy') is given by N -w —wp, for any integer
N, and O(I3" @ 7(L®N @ K')) = wpp +7*(N -w +wg, ) Now, as X is compact, so
is X by Theorem 4] so all the terms of wyp + 7*(N - w + wgk, ) are bounded for fixed
N. As w is positive and w, g is positive on E, we see that w,p + 7°(V - w + wg ) is
positive on the blow-up X for N >> 0.

Let N >> 0. By the KAN vanishing theorem,

0=H'(X,Kx, ® (Kx' ® [pL%")) = HY(X, IpL®") (8.16)

Now consider the exact sequence of cohomology using the short exact sequence [8.15
with L replaced by L®V:
0 — HOX,IpL®N) — HO(X,L®N) — HO(X,L®V|p)
l(s
¢ HY(X,L®N|p) +— HY(X,L®N) «— HY(X,I5L®N)
Then, by , we get that the map HO(X,L®N) — HO(X, L®VN|g) is surjective. So

there is a section of L®N which does not vanish on E. This means that there is a

holomorphic section of L®V that does not vanish on x. Thus we see that the line
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bundle L&V is spanned/ base point free. Consider the holomorphic map i := iyen :
X — P((H°(X, L®N))*) =: P as considered in Definition [8.0.2 which is well-defined
since X is compact and therefore H°(X, L®Y) is finite-dimensional. All we need to
show is that ¢ and its derivative at each point is injective.

1 is injective : First we notice that if we consider the blowup along a complex
submanifold Y of X of codimension k and if C'= 771(Y’), then the claim we proved

before takes the form
TKx) = Kg @187 @1 (Ky)
So, if Y = {z,y} C X, then Ky =1 and k = n, so anyway we get
TH(Ex) 2 Kz, ® 15",

and thus all the arguments made above hold if we replace {z} by Y = {z,y}.

So fix the notation Y := {z,y}.

Now, LEN|y = Fy (LEN @ LYYN), where Fy (LEY @ LEY) is the skyscraper sheaf
corresponding to LYY @ LY around Y ie. the direct sum of skyscraper sheaves
corresponding to L, around x and that of L, around y. We see that the map of
global sections H(X, LN) — HY(X, Fy (LN & LEN)) = LEN @ LYY is surjective,
and so there is a global section of L®Y that vanishes on z (resp. x) but does not
vanish on y (resp. z). Finally we show that for every, x € X,

d,i is injective : Let ay C Ox be the sheaf of holomorphic functions that vanish
at z. Let s, ..., s, be a basis of H%(X, L®") such that so(z) # 0 and sy(x) = -+ =
sp(z) = 0, where the integer p > 0 is dim(H°(X, L®Y)) — 1. Then sy, ..., s, is the
basis of H°(X,ax ® L®Y). Then on a complex chart U around z, i is given by
i(z) = [so(2) : -+- 1 sp(2)] for all z € U. Choose U small enough such that sy(z) # 0
for all z € U. Then, on U, i can be given by i(z) = (242 =Gy ¢ cp,

so(z)? """ so0(z)

Then d,(7) is injective if and only if its dual map from the holomorphic cotangent

space of P at i(z) to the holomorphic cotangent space of X at x is surjective; i.e. if

dz(sl(z)), e dx(zzgjg) span the holomorphic cotangent space of X at x. Clearly, the

s0(2)

. . a .
holomorphic cotangent space of X at x is given by #, where ay, is the stalk of
X,x

s s
ax at the point z € X, and =, ..., 22 € H(U,ax ® L®N)
S0 So
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Consider the short exact sequences of sheaves:

05 ®L% Saye LV S Xgren, = Xegren g (317)

I I
0= IR LN = Iper LN = [_]25 QTN |p = = ® TLEY =0 (8.18)
E

Then, by the KAN vanishing theorem, H'(X,, I27*L®") = 0, and therefore

I
HY (X, 57 1Y) = HO (X, 50r L7V ) = HO (X, 7 (5 @LV)|s) = HO(X, (SrLoM)L)
E X X

is surjective and we have

HO(X,, Ig7* L®Y) = HY(X,, 7" (ax L®Y)) = H*(X,ax ® L®Y)

Thus we see that the map
H(d,) : H(X, ax ® LOY) —» HO(X, X @ L#V],) = 252 @ 18N
ax X z

of the long exact sequence of cohomology is surjective. This completes the proof [J
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